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ABSTRACT

Amini, Amin M.S.M.E., Purdue University, August 2017. A Novel Approach to
Forecast and Manage Electrical Maximum Demand. Major Professors: Ali Razban
and Jie Chen.

Electric demand charge is a large portion (usually 40%) of electric bill in residen-

tial, commercial, and manufacturing sectors. This charge is based on the greatest of

all demands that have occurred during a month recorded by utility provider for an

end-user. During the past several years, electric demand forecasting have been broadly

studied by utilities on account of the fact that it has a crucial impact on planning re-

sources to provide consumers reliable power at all time; on the other hand, not many

studies have been conducted on consumer side. In this thesis, a novel Maximum Daily

Demand (MDD) forecasting method, called Adaptive-Rate-of-Change (ARC), is pro-

posed by analysing real-time demand trend data and incorporating moving average

calculations as well as rate of change formularization to develop a forecasting tool

which can be applied on either utility or consumer sides. ARC algorithm is imple-

mented on two different real case studies to develop very short-term load forecasting

(VSTLF), short-term load forecasting (STLF), and medium-term load forecasting

(MTLF). The Chi-square test is used to validate the forecasting results. The results

of the test reveal that the ARC algorithm is 84% successful in forecasting maximum

daily demands in a period of 72 days with the P-value equals to 0.0301. Demand

charge is also estimated to be saved by $8, 056 (345.6 kW) for the first year for

case study I (a die casting company) by using ARC algorithm. Following that, a

new Maximum Demand Management (MDM) method is proposed to provide electric

consumers a complete package. The proposed MDM method broadens the electric

consumer understanding of how MDD is sensitive to the temperature, production,
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occupancy, and different sub-systems. The MDM method are applied on two differ-

ent real case studies to calculate sensitivities by using linear regression models. In all

linear regression models, R2s calculated as 0.9037, 0.8987, and 0.8197 which indicate

very good fits between fitted values and observed values. The results of proposed

demand forecasting and management methods can be very helpful and beneficial in

decision making for demand management and demand response program.
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1. INTRODUCTION

The position of the electric consumers in the power systems operation has been change

due to a couple of reasons. First, upgrading the electrical power systems infrastruc-

ture have been truly expensive and in some cases temporarily, to meet the consumers

high demand. Moreover, implementation of competitive electricity markets causes

the consumers to play an active role in power systems. Electric demand is a large

portion (usually 40%) of electric bill in residential, commercial, and manufacturing

sectors (residential sector gets charge in some states). It also has a crucial impact

on planning resources for utilities to provide consumers reliable power at all time.

Peak demand forecasting and management would not only cut down demand charges

costs on end-user sides, but also would help the utilities to keep up with their current

infrastructure for a longer period of time without having a significant investment on

increasing capacity. Referring to sustainability definition as being able to be main-

tained at a certain level, demand forecasting and management can maintain/decrease

the electric infrastructure owned by consumers and utilities [1]. Furthermore, by

decreasing spikes on electric demand, generation would be more efficient with less

carbon footprints.

In chapter 1, some definitions in electric systems have been defined along with

literature survey in load forecasting. Chapter 2 proposes a novel maximum daily

demand forecasting algorithm, called ARC algorithm, for residential, commercial and

manufacturing sectors. The algorithm is proposed by analysing demand trend data

and incorporating moving average calculation as well as rate of change formularization

to develop an electrical maximum demand forecasting algorithm. Moreover, a new

method for maximum daily demand management has been proposed in chapter 2 by

understanding the impacts of number of degree-days, number of occupants, number
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of productions, and sensitivity of maximum daily demand to different sub-systems. In

chapter 3, the ARC algorithm and management method have been applied on three

different real case studies. Results of case studies have been verified in chapter 4.

Chapter 5 is the conclusion and future works for this dissertation.

1.1 Definitions

Electric bills for industrial and commercial customers break down into two major

parts, energy consumption and demand. In this section, electric parameters used in

this dissertation such as electric demand, maximum demand, demand factor, diver-

sity factor, and load factor have been defined by using IEEE Std 141-1993, IEEE

recommended practice for electric power distribution for industrial plants.

1.1.1 Electric Demand

Electric demand is defined as “the electric load at the receiving terminals averaged

over a specified interval of time” (IEEE Std 141-1993). Note that electric demand is

expressed in kilowatts (kW), kilovoltamperes (kVA), amperes (A), or other suitable

units. The unit is based on the particular utilitys demand rate structure and the way

that the utility provider charges the costumer. The interval of time is generally 15

min, 30 min, or 1 h, based on utilitys demand metering interval [2].

1.1.2 Load Diagram

Load diagram (or load profile) is the curve showing the electric demand of an

electric system against time, on a daily, weekly, or monthly basis. This representation

can be in 2D or 3D as it is shown in Fig.1.1. Figure1.1(a) is color-coded based on

the day for 24hr in the period of one week, while Fig.1.1(b) is color-coded based on

the magnitude of electric demand for 24hr in the period of 40 days. As it is shown

in Fig.1.1(a), on Saturday and Sunday, the company has no production and the load
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is at the lowest, indicated by red and purple. This load diagram also reveals the

base-load of 80kW for this facility. The base-load of about 200kW has been shown in

Fig.1.1(b) in that period except on March, 5th, 2015 which the end-user experienced

power outage for 2 hours.

Load profile is like the finger print for an electric consumer. In other words, it is a

distinctive characteristic for each consumer. Load profile alone can reveal a great deal

of information, and it is a function of multiple parameters, such as hours of operation,

base-load, maximum demand, number of shifts, onset of occupancy, occupied period,

specific procedure to start-up at the beginning of the day/shifts, etc. Figure 1.2 shows

a typical and a non-typical load diagram. A typical load diagram has a specific pattern

while a non-typical diagram does not have a specific pattern. In other words, a typical

load diagram is repetitive through out different working days for a company. Lacking

a routine procedure/number of productions in a company would cause a non-typical

(non-repetitive) load diagram.

1.1.3 Maximum Demand

Maximum demand is defined as “the greatest of all demands that have occurred

during a specified period of time such as one-quarter, one-half, or one hour” (IEEE

Std 141-1993). It is worth to mention that for utility billing purposes the period

of time is generally one month. Therefore, utility provider monitors the costumers

electric load at the receiving terminal, which is called behind-the-meter, averaged

over a specified interval of time and then records the maximum of the electric loads

in a month as the maximum demand. Each facility will get charged for the maximum

demand every month along with electric energy consumption [2]. Using the definition,

the Maximum Daily Demand (MDD) is defined as the greatest of all demands that

have occurred during one day.
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(a) 2D load diagram

(b) 3D load diagram

Fig. 1.1. 2D and 3D representation of Load Diagram

1.1.4 Demand Factor

Demand factor is “the ratio of the maximum coincident demand of a system, or

part of a system, to the total connected load of the system, or part of the system,
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(a) A typical load diagram

(b) A non-typical load diagram

Fig. 1.2. Typical & non-typical Load Diagrams

under consideration” (IEEE Std 141-1993). The resultant is always between 0 to

1.00. Demand factor usually varies from 0.8 to 1; however, for some plants with very

low diversity it goes down to 0.15 to 0.25 [2].
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1.1.5 Diversity Factor

Diversity factor is “the ratio of the sum of the individual non-coincident maxi-

mum demands of various subdivisions of the system to the maximum demand of the

complete system”. The diversity factor is always 1 or greater. Note that the term

diversity, as distinguished from diversity factor is defined as the percent of time that

a machine, piece of equipment, or a facility has its maximum load or demand (i.e., a

machine with 50% diversity operates at its maximum load level 50% of the time that

is turned on).

1.1.6 Load Factor

Load factor is “the ratio of the average load over a designated period of time to

the peak load occurring in the period” (IEEE Std 141-1993). Securing the connecting

power is always a crucial requirement for electric utility providers. This requirement

translated into sizing and installing needs adequate supply cable and securing capacity

for the supply transformer. Whether the equipment will work at full capacity all the

time, part time, or no time at all, installation must be sized to the full capacity of

connected device. Therefore, demand charge can always be a large portion of the total

electric bill. It usually ranges from 1/3rd to 2/3rd of the total electric bill depends

on the tariff, type of facility, number of shifts, production rate, weather, occupation

rate, and occupant behaviors.

1.2 Load Forecasting

Electric demand forecasting plays a pivotal role in power system management,

especially for ensuring economic and reliable operation in power systems. To achieve

this end, electric utilities use load forecasting models, to ensure the load factor of

one occurs at any time which means that the supplied electric energy meets the loads

plus the energy lost in the power system. Adjusting the supply-demand balance in
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the electric system at any time requires utilizing different models for load forecasting

on a variety of time horizons. Moreover, demand forecasting can be a very strong

tool on the costumer side. Load forecasting is categorized based on the time scale

and these could be listed into: very short-term load forecasting (VSTLF), short-term

load forecasting (STLF), medium-term load forecasting (MTLF) and long-term load

forecasting (LTLF) [3]. Very short-term load forecasting (VSTLF) is mostly used for

load-frequency control and detecting contingencies in power system [4–6].

VSTLF method forecasts the loads from an hour to several hours into the future in

a moving window manner based on real-time data collected from an electric consumer.

The forecasting is in steps of a few minutes (i.e., usually equals to utility monitoring

time-interval for demand). A great number of methods have been used for VSTLF.

Existing methods are extrapolation, time series, fuzzy logic, and neutral networks

(NN). Effective forecasting is usually very difficult in VSTLF on account of the fact

that data includes a lot of noise and load features is usually complicated [7]. In section

2.1, more obstacles in VSTLF have been discussed.

STLF is utilized from an hour-ahead to a day-ahead forecasting in power system

operation. Short-term load forecasting methods include conventional techniques, i.e.,

multiple regression [6, 8–11]], similar day approach, time series [4, 5, 12]. Artificial

intelligent based approach that is more reliable has been proposed in the last cou-

ple of years, which result more accurate predictions in comparison to conventional

techniques [13, 14]. Some of AI methods are used for forecasting are genetic algo-

rithms [15], neural networks [16–18], and fuzzy system [19].

Medium-term load forecasting and long-term load forecasting are ranged respec-

tively from one week to one year, and one year to decades. The short-term load

forecasting has been extensively studied in the literature during last decade [20–23].

Instead, a few studies have been conducted about MTLF in [1, 24, 25] and LTLF

in [25–27].

As system complexity increases, the results are not always reliable to make im-

portant decisions such as ceasing the production or turning off major equipment for
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a specified period. The results of the forecasting methods would be the input for

preliminary decisions on Demand Response program. Equation (1.1) shows the prob-

ability of forecasting the monthly maximum demand for a facility working 24/7 with

100% accuracy by assuming the demand time interval as 15 min.

P =
15min

30days× 24hrs× 60mins
× 100% = 0.347% (1.1)

As it is shown in equation (1.1), assuming confidence limits of 100%, the prob-

ability of forecasting the maximum demand in a month is only 0.347%. Therefore,

proposing a validated method with reliable results would be a great help to manage

the demand.

1.3 Demand Response

The position of the electric consumers in the power systems operation has been

change due to a couple of reasons. First, upgrading the electrical power systems

infrastructure have been truly expensive and in some cases temporarily, to meet the

consumers high demand. Moreover, implementation of competitive electricity markets

causes the consumers to play an active role in power systems [28].

The term demand-side load management is the result of planning processes used

by utilities in the late 1980s. The most widely accepted definition of demand-side

management is by Gellings (1989): “Demand -side management is the planning, im-

plementation, and monitoring of those utility activities designed to influence customer

use of electricity in ways hat will produce desired changes in the utility’s load. Utility

programs falling under the umbrella of demand-side management include: load man-

agement, new uses, strategic conservation, electrification, customer generation, and

adjustments in the market share” [29].

Any program intended to influence the costumer’s use of energy is considered

demand-side management. One of the most prominent practices of demand-side man-

agement is Demand Response (DR) program. This program has been very prominent
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in recent years. Demand Response is the ability to reduce electric usage at a facility

in the event the utility or Independent System Operation (ISO) calls upon to do so.

Electricity demand response is considered an effective way that can help manufac-

turers reduce electricity consumption, power demand, carbon footprints, and overall

energy cost in a carbon-constrained world. By participating in the DR program, the

electric consumer will get paid money based on the amount of energy usage which

they are able to reduce under conditions when the power grid is stressed. In some

states, like New York, the revenues are very high. As a matter of fact, the rate for

the revenue is usually five times higher than the charging rate [30].

Although demand response program has a great number of benefits for consumer

and utility, making decisions upon the call and implementing DR program in a facility

is not easy on account of the fact that in most cases the electric consumer will be

notified only a couple hours (or in some cases only 30 minutes) prior to start of each

DR hours. In a nutshell, having a systematic approach in Demand Response program

is crucial; a program which puts specific electricity consuming devices in priority or

deferral to be allowed to run.

1.4 Literature Survey

This section offers an extensive yet concise review of current demand forecasting

methods. It also covers current practices for demand management; i.e., demand

response to provide a framework for the present study. There are a great number

of reasons why conducting a review of relevant literature is useful for the purpose of

the present study: It informs a summary of load forecasting methods on utility side

and costumer side, the strategies that are developed to facilitate demand cost saving,

and the gaps in the literature. At the conclusion of this section, the current gaps in

demand forecasting and its applications are presented.

A great deal of work and research have been done in electricity demand forecasting

and demand response program for electric power systems on both utility side and
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costumer side. A survey of these researches is presented in Table 1.1 at the end of this

chapter. Most of the studies propose the concept and necessity of demand forecasting,

a technique for load forecasting, pros and cons, verification of the method, and its

application in the real world. However, maximum demand forecasting is usually the

result of load forecasting in these literatures. In other words, most of the work has

been done in forecasting the load pattern as the first step, instead of predicting the

maximum demand itself. Predicting the maximum demand (and not the load pattern)

will require less calculation, less data as input, and will take let time to be done.

Furthermore, most existing studies regarding demand forecasting and demand re-

sponse have been conducted on utility side. In comparison, forecasting the maximum

demand on the costumer side, known as behind-the-meter, can be as hard as doing

so on utility side on account of the fact that having a much lower load, compare

to utility load, makes the load profile more sensitive to electricity-consuming devices

(such as chillers, HVAC, lights, etc.) while the impact of these sub-systems are indeed

negligible in power system load forecasting. More gaps in the existing studies have

been pointed out at the end of this chapter.

A thorough survey and literature review has been done on present techniques used

in electricity demand forecasting by [17, 18, 31, 32]. Authors focused on summarizing

the electricity demand forecasting techniques, their applications, and the reliability

of each technique.

A large variety of mathematical methods have been developed for load forecast-

ing in [4–6, 8–10, 12, 33]. Feinberg et al. (2003) apply econometric approach, which

integrate statistical methods and economic theory when forecasting demand for elec-

tricity. They point out that the main advantage of econometric approach is that it

can explain why demand can either increase or decrease in the future. Main drawback

is that electricity cost changes have to remain the same for upcoming time.

Kandil et al. (2001) categorize forecasting methods as qualitative and quantitative

methods. They used classical long-term forecasting time-series methods, i.e., straight

line, logistic, gompertz, exponential, and polynomial to model the utility load and
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then compared the results with stochastic models, exponential smoothing, decom-

position model, and casual method. Moreover, they proposed a new model of load

forecasting for fast growing power system, which has taken into account the different

levels of maximum temperature and some levels of social activity.

Hippert et al. (2001) emphasizes the importance of neural networks and fuzzy sys-

tem in modeling automatically complex nonlinear inputoutput relationships through

learning process using a database of load and explanatory variables. This method

shows better accuracy in VSTLF and STLF compare to MTLF and LTLF. Main

drawback is the complexity of the method which requires more inputs.

Kiartzis et al. (2000) tested their proposed fuzzy expert system for peak load

forecasting by using historical load and temperature data of the Greek interconnected

power system. Test results show that the fuzzy expert system can forecast future loads

with an accuracy comparable to that of neural networks.

Sun et al. (2016) consider HAVC system and manufacturing system as dependent

systems by considering the temperature as a function of manufacturing operation

to find an optimal demand response strategy [34]. This strategy is very suitable

in some specific industrial processes where temperature plays a critical role in the

manufacturing quality and production (e.g., paint shop). However, the drawback of

this method is that in most of the manufacturing facilities these two sub-systems are

independent and can play role in maximum demand independently.

A great number of researches have been conducted in commercial section. On

e of the most important factors in this section is occupant behaviors. Results of a

questionnaire conducted by Nisiforou (2012) revealed in [35] that while employees are

willing to engage in energy saving methods, “they are not willing to sacrifice their

own personal satisfaction for these measure”.
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Table 1.1.: Summary of the literature survey in electricity

demand forecasting and demand-side management

Research

Characteristics

Methodology

Used

Results Obtained Author

Name (year)

Discuss

motivations as well

as pros and cons of

electricity demand

forecasting

techniques

Present techniques

used in electricity

demand forecasting

to increase the

efficiency of power

system

Survey and summarize

the electricity demand

forecasting techniques

and their applications.

Alkhathami et

al.(2015) [31]

Suganthi et

al. (2012) [32]

Load forecasting

methods for power

system

management

Load forecasting

techniques can be

classified as

follows:

• Economic

approach

• Multiple

regression

• Exponential

smoothing

• Adaptive

load

forecasting

• Time series

Main advantage of

Econometric approach

is that it can explain

why demand can

either increase or

decrease in the future.

Main drawback is that

electricity changes

have to remain the

same.

Although the times

series approach is still

widely used, newer

techniques offer a lot of

promise for developing

the methodology used

for load forecasting.

Feinberg et

al.(2003) [4]

Hyndman et

al.(2014) [5]

Kandil et

al.(2001) [6]

Chikobvu et

al.(2012) [9]

Amjady et

al.(2001) [10]

Sigauke et

al.(2010) [12]

Fan et

al.(2014) [15]

continued on next page
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Table 1.1.: continued

Research

Characteristics

Methodology

Used

Results Obtained Author

Name (year)

Recent techniques

for load

forecasting

Recent load

forecasting

methods:

• Neural

Networks

• End-use

Models

• Genetic

Algorithm

• Fuzzy system

• Artificial

Intelligent

Techniques

Over the last few

years, the most active

research in load

forecasting has been

neural network.

Neural networks and

fuzzy system can

model automatically

complex nonlinear

inputoutput

relationships through

learning process using

a database of load and

explanatory variables.

Genetic Algorithms

includes impression,

non-linearity,

robustness, and

uncertainty in the

process of computing.

Artificial intelligent

has proven itself as one

of the most reliable

techniques.

Islam(2011)

[16]

Kalogirou(2000)

[17]

Hippert et

al.(2001) [18]

Li et

al.(2013) [21]

Feinberg et

al.(2003) [4]

Abdel-

Aal(2006) [13]

Amin-Naseri

et

al.(2008) [14]

Fan et

al.(2014) [15]

continued on next page
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Table 1.1.: continued

Research

Characteristics

Methodology

Used

Results Obtained Author

Name (year)

Demand-side man-

agement/Demand

Response

techniques

Particle swarm

optimization

(PSO)

HAVC system and

manufacturing system

are dependent systems

by considering the

temperature as a

function of

manufacturing

operation to find an

optimal demand

response strategy.

Sun et

al.(2016) [34]

1.4.1 Research Needs

After conducting a review of relevant literature, it appears that there are several

important gaps in the literature that the method proposed as part of the present

study paper addresses. The gaps are both in demand forecasting part and demand

management part:

• Boroojeni et al. (2017) and many others (see [4,10,16,20–23,33]) focus on max-

imum demand forecasting as a result of load forecasting; consequently, most

of the work has been done in forecasting the load pattern as the first step,

instead of predicting the maximum demand itself. Predicting the maximum de-

mand (and not the load pattern) will require less calculation, less data as input,

and will take let time to be done. The present study proposes a novel maxi-

mum demand-forecasting algorithm from very short-term to short-term horizon,

called Adaptive Rate of Change (ARC), which predicts maximum demand as

the first and primarily result.
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• Most of the existing studies regarding demand forecasting and demand response

have focused on utility side [6, 9, 12, 13, 25]. In comparison, forecasting on the

electric consumer side can be challenging as utility side since the load profile of

the facility is more sensitive than a larger power system. Moreover, forecasting

the electric demand on the costumer side would play a very crucial role for

planning the electric infrastructure in the utility side. The application of the

method proposed in this study is more applicable to the consumers; however,

the application for the lager power systems can be investigated.

• Sun et al. (2014) find an optimal demand response strategy using particle swarm

optimization (PSO) by considering HVAC system and manufacturing system as

two dependent systems, while these two systems are independent in most of

the cases. Furthermore, HVAC system and manufacturing system have been

studied as a single unit; therefore, the study would not provide the costumer

the impact of each sub-system on the maximum demand. The present study

directly investigates these gaps in research by measuring the impact of specific

electricity-consuming device/devices (e.g., chillers, HVAC unit, lights, etc.) as

sub-systems individually on maximum demand.

• Powell et al. (2016) and many others assume HVAC load is a function of number

of occupants and they have not considered the influence of occupants behavior

itself in maximum demand forecasting. While in a great number of cases as

Nisiforou (2012) revealed, occupant behaviors, and not necessarily the number

of occupants, can have a crucial impact on demand saving by sacrificing their

own personal satisfaction. The present study investigates not only the impact of

the number of occupants in Maximum Demand, but also the occupant behaviors

implicitly.
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1.5 Research Goals

This section discusses the research goals of this dissertation. The purpose of the

study described in this paper was first to provide the electric consumer a tool to

forecast the maximum daily demand. Residential, commercial, and manufacturing

sectors have been considered in this study. The second purpose was to provide a

method for decreasing the forecasted peak demand by understanding the impacts

of number of degree-days, number of occupants, and number of productions. It

also identifies the sensitivity of maximum daily demand to different sub-systems,

such as HVAC, boiler, furnace, lighting, air compressor, etc. Finally, it identifies

conditions for and magnitude of cost savings associated with maximum daily demand

management.
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2. METHODOLOGY

In this section, the methodology of a novel maximum demand forecasting and man-

agement method have been proposed. In section 2.1, after Rate-of-change method

explanation, a novel maximum demand forecasting algorithm, denoted as Adaptive-

Rate-of-Change (ARC) has been proposed in detail. The ARC algorithm is applicable

to very short-term and short-term forecasting methods to predict Maximum Demand

one or several hours into the future. In section 2.2, a new method for Maximum

Demand Management (MDM) has been proposed. The MDM method helps the end-

user to understand out how temperature, production, and occupancy affect Maximum

Demand (MD). In section 2.2.4, a novel MDM approach is proposed to manage the

maximum demand by defining a specific electricity-consuming device (or devices) as

sub-system in a manufacturing facility or a commercial building.

2.1 Adaptive-Rate-of-Change (ARC) Algorithm

This section presents the proposed Rate-of-Change (ROC) methodology, denoted

as Adaptive Rate of Change (ARC). The algorithm uses the historical demand data

as the only input which is provided by utility provider. This method does not intend

to forecast the magnitude of the electric demand but rather predicts the time that the

maximum demand would occur. The ARC algorithm consists of two phases. In the

first phase the algorithm uses historical demand data to calculate the rate of change

with respect to each time interval and then determines how many positive ROCs

of the trend are involved in the development of a local maximum demand. After

determining the reference ROC, the algorithm starts to monitor real-time demand

data in the second phase to calculate moving standard deviation. At the end, the
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result of the algorithm would be an alert for an upcoming spike which meets two

specified criteria.

In section 3.1 the ARC algorithm has been applied on two case studies. The

results of the algorithm have been verified in section 4. At the end of section 2.2,

the results of the ARC algorithm has been used with MDM method to present a

systematic approach for planning and decision making.

Representing the electric demand pattern as a time series is generally accepted

[36]. A time-series is a sequence of data points, usually consisting of consecutive

measurements occurred over a time interval [3]. Such time series function takes into

account one or more factors which affect Maximum Demand (MD); i.e., time, social,

economic, temperature, and noise component. Interference noise component is a

crucial factor in very short-term forecasting methods since the forecasting is based on

real-time data collected for an electric consumer or a specified system in the facility.

Noise can be generated from machinery, nearby power lines, computers, etc. Noise

can be reduced by not being close to noise sources or using an insulated Faraday cage

for measuring and logging data.

The temperature factor has been the focus of a great number of previous studies;

however, using this factor alone is not a feasible approach for manufacturing facili-

ties. Furthermore, time factor definitely plays a crucial role in Maximum Demand

forecasting. Time is the factor which takes into account the shift start time, lunch

break, number of shifts, shift duration, and indicates if a company follows a specific

operating schedule or not.

The time series function for demand pattern can then be modeled as a stochastic

process, representing by Gupta in [37] as:

Xt = Tt + St + It (2.1)

Where Tt is the normal or trend component which represents the general shape of

the demand pattern; St is the seasonal component which represents the temperature

effect on demand, and It is the noise component of the peak demand. Noise plays a
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very crucial role when the case study is a low power system (i.e., the magnitude of the

noise spike is similar to the inrush current). In the original setting the seasonal effect

is a long-term seasonal stochastic influence on the curve. In our short-term real-time

setting strategy, this can be viewed as the temperature/weather effect which varies

throughout a daily operation as given in Eq.(2.2).

Tt = Tt−1 + qt (2.2)

Equation(2.2) represents that the trend component is changed by the q factor at

any time t. The change factor q is generated by u, which is a stationary, zero-mean

as it is represented in Eq. (2.3). The noise component, It, can be modeled as Eq.

(2.4) to be sampled from ε, which is a stationary, zero mean, and white noise process

with an unknown variance.

qt = qt−1 + ut (2.3)

It = It−1 + εt (2.4)

Therefore, the change in the demand pattern can be modeled as Eq.2.5. This is a

simplified model as the seasonal effect between two very short increments is negligible.

∆X = Xt −Xt−1 = (Tt + St + It) − (Tt−1 + St−1 + It−1) = qt + εt (2.5)

where ε is the aggregated stationary, zero-mean, white noise process, constituting

the trending random walk and the noise random walk. In a nutshell, the change in

demand is a function of change factor q and random noise processes ε.

As the focus in this study is forecasting maximum daily demand (MDD) for the

whole residential, commercial, and manufacturing facility the noise component (εt)

can be assumed much smaller than the trend component of demand (qt). Therefore

by assuming qt >> εt, Rate-of-Change (ROC) is define as follow:

ROC =
Xt −Xt−1

tt − tt−1
=

qt + εt
tt − tt−1

(2.6)
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then,

ROC =
∆Xt

∆t
(2.7)

Owing to the fact that the rate of change for demand is a mean reverting process,

the Eq.(2.7) will approach to zero when demand curve gets close to its peak. In other

words, the ROC slows down when the electrical demand curve is about to revert as

is shown in Eq.(2.8) [38].

lim
Xt→peak

dXt

dt
= 0 (2.8)

Figure 2.1 shows the flowchart representation of the ARC algorithm. As it is

shown, the algorithm consists of two phases. The only input for the first phase is

historical demand data. In this phase the ROC will be calculated for each time

interval by using Eq.(2.7). The ROC would be positive if demand increases for that

specific interval and would be negative if demand decreases. Next step, the algorithm

would investigate each time-interval to find out if that interval has been involved in

the positive increment or not. It is an incontrovertible fact that every local or global

maximum demand is the last incident of a single or series of positive slopes as it is

explained in Table 2.1. As it is shown in the table, in this case, a spike in demand

has occurred on 13 : 30 : 00PM after three positive ROCs in a row. Afterward, the

algorithm determines the statistical mode of the positive ROCs leading to peaks, and

in the last step, it would calculate the mode of chosen ROCs (in that specific number

of positive ROCs), denoted as reference ROC.

It is recommended that the historical data used in this section be chosen from the

same month which the forecasting is going to be occurred on account of the fact that

the similarity of the historical data to the forecasting period would be most probable

due to the fact that the conditions which have effect on demand (i.e., weather, pro-

duction, etc.) would be similar.
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Fig. 2.1. The flowchart representation of the ARC methodology
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Table 2.1.
An example of calculating number of ROCs leading to a spike in demand

Time Demand(kW) ROC Positive?

12:30:00 PM 439.3

12:45:00 PM 428.64 -0.7107 0

13:00:00 PM 549.96 8.0880 1

13:15:00 PM 601.44 3.4320 1

Spike in Demand 13:30:00 PM 611.16 0.6480 1

13:45:00 PM 571.21 -2.6633 0

Total steps involved 3

The second criteria is defined in the second phase of the algorithm. First, the

method imports demand data and starts to calculate current ROC as well as the

30-period moving average plus one standard deviation. Current demand has to be

greater than moving average plus one standard deviation to meet the first criteria.

Moving average ha been chosen since peak demand is a real-time mean reverting

process. One standard deviation makes the model insensitive to local minimums and

maximums. Having a greater ROC than the reference ROC is the second criteria

for a spike to be identified as an alert. Afterward, the algorithm checks the data to

see if it meets both criteria. If the spike meets both conditions, the algorithm would

issue a warning that the peak will occur in certain periods of time. The confidence

time window for the algorithm is twice as the interval owing to the fact that only

assuming one interval further as a positive increment is safe otherwise the accuracy

would decrease by widening the confidence window. It is worth mentioning that this

algorithm is not only a very short-term forecasting algorithm, but also it can be used

as a short-term forecasting method by having the input data in longer intervals. For

instance, by using maximum daily demand (MDD) as the input the results of the

algorithm would be in a confident window of a day.
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2.2 Maximum Demand Management

In section 2.1, a new maximum daily demand forecasting method was proposed.

The results of ARC algorithm will be presented in 3.1. Once the maximum daily

demand is forecasted, the user needs to take action for decreasing the load at that

specific forecasted time. In this section, a new method for Maximum Demand Man-

agement (MDM) has been proposed. The focus of this study is to define a regression

model which contains explanatory variables to find out how temperature, production,

and occupancy affect Maximum Daily Demand (MDD). Each explanatory variables

has different effects on Maximum Demand and it has been determined independently.

This method can be applied in residential, commercial, and manufacturing sectors. In

contrast to previous studies [6, 9, 12,13,25], this study is conducted on the consumer

side.

In section 2.2.4, the study goes further to identify the impact of specific electricity-

consuming device/devices (e.g., chillers, HVAC unit, lights, etc.) as sub-systems

individually on maximum daily demand. The results of these two different meth-

ods help the electric consumers in residential/commercial sectors, with no technical

background, to decrease their maximum demand. Moreover, it helps the consumers

in commercial/manufacturing sectors to get a better understanding of their electric

demand systems, demand-side management (i.e., by being involved in Demand Re-

sponse program, etc.), and planning for on-site electric power generation, known as

distributed generation (DG).

2.2.1 Temperature

Outside temperature plays a crucial role in the time and magnitude of elec-

tric demand. The electric demand for a cooling/heating load is a function of out-

side temperature. In a residential/commercial sector the electric demand associated

with cooling/heating loads may be changed significantly throughout the course of

a year to maintain the conditions of the air space within comfort zone (defined by
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ANSI/ASHRAE standard 55). However, in manufacturing sector, as Sun et al. (2016)

mention in [34], for a vast majority of industrial processes the temperature does not

influence the production; therefore, the load on a heating/cooling system is indepen-

dent from the operation of manufacturing system. Those industrial processes where

temperature plays an important role in the manufacturing quality and productivity

(e.g., paint shop) are out of the scope of this dissertation.

The degree-days

Degree-day is a measure of the energy requirement for heating and cooling of

buildings. “The degree-days of a time interval (monthly, seasonal, and annual) are

defined as the summation of the temperature anomaly between the mean daily air

temperature and the base temperature” [39]. For a time interval of n days accumu-

lated heating degree-days can be defined as:

HDD =
n∑

i=1

(Tbh − Tmeani)
+ (2.9)

In Eq.(2.9), Tmeani is the daily mean air temperature, defined as Tmeani = (Tmaxi+

Tmini)/2, where Tmaxi(Tmini) is the daily mean maximum (minimum) air temperature;

Tbh is the base temperature and is usually defined as 10◦C, 12◦C, 14◦C, 16◦C, and

18◦C [40]. Similar to HDD, CDD can be defined as:

CDD =
n∑

i=1

(Tmeani − Tbc)
+ (2.10)

where, Tbc is the base temperature and is usually defined as 18◦C, 20◦C, 22◦C,

24◦C, and 26◦C [40]. In the current study Tbh and Tbc are defined as 18◦C since

this base is the most common in literatures. n is also consider as one in this study,

since CDD and HDD will be defined for each day later on. Figure2.2 shows the load

diagram for an assembly manufacturing facility with an air-conditioned space. In this

facility, the energy associated to cooling/heating load is very significant compare to

manufacturing load. Figure 2.2(a) is the load diagram for a week (n = 7) in the



25

Winter with HDD = 28◦C. As it is indicated in the graph, the demand spikes have

been occurred between 7 − 8 : 30AM due to the heating load during the start-up.

Figure 2.2(b) is the load diagram for a week (n = 7) in the Summer with CDD = 8◦C.

The demand spikes have been shifted to the afternoon between 1 : 30 − 3PM due

to the cooling load in the facility (operation schedule has been almost the same for

the chosen weeks). Comparing two graphs reveals that degree-days affects the time

and the magnitude of electric demand significantly throughout the course of a year.

Therefore, maximum daily demand (MDD) can be written as a function of degree-day

(DD):

MDD = f (Degree − day) (2.11)

Degree-day (DD) can be either HDD or CDD depends on Tmean. When Tmean >

18◦C, CDD will be considered and in case Tmean < 18◦C, HDD will be considered in

calculations. In days with Tmean = 18◦C, HDD = CDD = 0◦C

Regression Model

The regression model can be obtained by assuming the maximum daily demand

(MDD) as an explained variable and the degree-days as an explanatory variable [5].

Accordingly, the model includes the days with the same number of occupants and

the same occupied period for residential/commercial consumers. For manufacturing

facilities, days with the same number of productions have been considered regardless

of the number of occupants. Figure2.3 shows the maximum daily demand (MDD) in-

creases as the outside air temperature increases. The parameters α1 and α0 determine

the slope and the intercept of the line respectively:

MDD = α0 + α1(DD) (2.12)

The unit of regression coefficient α1 is kW/◦C which describes the sensitivity of the

maximum daily demand to the number of degree-days as it is defined in Eq.(2.13).

α1 =
d(MDD)

d(DD)
(2.13)



26

(a) Load diagram in the Winter

(b) Load diagram in the Summer

Fig. 2.2. Load diagram for a manufacturing facility with air-conditioned space
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It is worth pointing out that having daily mean air temperature Tmeani instead of

degree-days in the regression model will provide the same results due to the fact that

Eq.(2.9) and Eq.(2.10) are linear functions.

Fig. 2.3. Regression model of MDD as a function of degree-days

2.2.2 Production

Manufacturing processes dominate a large portion of maximum demand for man-

ufacturers. Air compressor, lighting, furnace, boiler, vacuum, and grinder are just

a few examples of significant electricity-consuming devices in manufacturing sector.

In several cases, maximum demand is the aggregate of inrush currents during the

start-ups.

For a vast majority of industrial processes the temperature does not influence the

production; hence the operation of manufacturing process is independent from the

cooling/heating loads. Therefore, maximum daily demand (MDD) can be written as

a function of the number of production (P):

MDD = f (Production) (2.14)
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Regression Model

Similar to previous section, the regression model can be obtained by assuming

the maximum daily demand (MDD) as an explained variable and the number of

production (P) as an explanatory variable. Accordingly, the model includes the days

with the same degree-days for manufacturing consumers to find out the impact of

the number of production on MDD. Figure 2.4 shows the maximum daily demand

(MDD) increases as the number of production increases. The parameters β1 and β0

determine the slope and the intercept of the line respectively:

MDD = β0 + β1(P ) (2.15)

Fig. 2.4. Regression model of MDD as a function of number of production

The unit of regression coefficient β1 is kW/numberofproduction which describes

the sensitivity of the maximum daily demand to the number of production (P) as it

is defined in Eq.(2.16).

β1 =
d(MDD)

d(P )
(2.16)

2.2.3 Occupancy

The use of appliances, lighting, and domestic hot water within a residential /com-

mercial building varies considerably with respect to number of occupants, occupied
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period, and occupant behaviors. The present study investigates not only the impact

of the number of occupants in maximum daily demand, but also the occupant be-

haviors implicitly. Occupant behaviors can have a crucial impact on electric demand

by sacrificing their own personal satisfaction or consuming excess energy based on

their own desirables. Therefore, maximum daily demand (MDD) can be written as a

function of occupancy (Ox):

MDD = f (Occupancy) (2.17)

Monitoring the occupancy in residential/commercial sectors can save a great deal

of electric energy which the electric consumers do not even use. Although it is out of

the scope of this dissertation, monitoring the occupancy would also reveal the idling

equipment, and phantom load. Phantom load is electricity used by devices that are

turned off but still plugged into an outlet.

Regression Model

The regression model can be obtained by assuming the maximum daily demand

(MDD) as an explained variable and the occupancy (Ox) as an explanatory variable.

Accordingly, the model includes the days with the same degree-days for residen-

tial/commercial consumers to find out the impact of occupancy on MDD. Figure2.5

shows the maximum daily demand (MDD) increases as the occupancy increases. The

parameters γ1 and γ0 determine the slope and the intercept of the line respectively:

MDD = γ0 + γ1(Ox) (2.18)

The unit of regression coefficient γ1 is kW/numberofoccupants which describes

the sensitivity of the maximum daily demand to the occupancy (OX) as it is defined

in Eq.(2.19).

γ1 =
d(MDD)

d(Ox)
(2.19)

In a nutshell, Table 2.2 indicates the conditions for defining regression coefficients.

The conditions depend on the electric sector category (residential, commercial or
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Fig. 2.5. Regression model of MDD as a function of occupancy

manufacturing). For instance, β1 can only be defined for manufacturing sector for a

period of time while number of degree-day (DD) is fixed and number of production

(P) varies regardless of occupation status.

Table 2.2.
Conditions for defining regression coefficients α1, β1, and γ1 in differ-
ent electric sectors

Reg. Coeff. Resid./Commercial Manufacturing

DD P Ox DD P Ox

α1 variable n/a fixed variable fixed n/a

β1 n/a n/a n/a fixed variable n/a

γ1 fixed n/a variable n/a n/a n/a

The results of section 2.2.1, 2.2.2, and 2.2.3 will help the electric consumer to get a

better understanding of their maximum daily demand and how temperature, number

of production, and occupation affect it during a specific period of time by using his-

torical data as input to find explanatory variables. Finally, the energy manager would

be able to manage the maximum demand of the facility by changing temperature or

number of production. Similarly, the operation manager/householder can manage
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the maximum demand in commercial/residential sector by changing the temperature

or the number of occupants to have the correlated saving on maximum demand.

2.2.4 Sub-system Approach

In some cases, changing temperature, number of production, or number of oc-

cupants is not a feasible solution for demand management and maximum demand

(MD) has to be controlled by load-shedding. Load shedding is the action to reduce

the power consumption to keep the power demand below a defined level [41]. Seek-

ing to have demand management by load shedding come to full fruition by finding

out how does each sub-system affect the maximum daily demand (MDD). There-

fore, maximum daily demand (MDD) for an end-user can be written as a function of

maximum daily demand of a sub-system (MDDSub−system):

MDD = f (MDDSub−system) (2.20)

while MDDSub−system itself can be a function of degree-days, occupation, and number

of production. Regression coefficients for a sub-system can be defined as follows:

α‘
1 =

d(MDDSub−system)

d(DD)
(2.21)

β‘
1 =

d(MDDSub−system)

d(P )
(2.22)

γ‘1 =
d(MDDSub−system)

d(Ox)
(2.23)

Figure2.6 shows the correlation between the total maximum daily demand (MDD)

and a sub-system’s maximum daily demand (MDDSub−system). In this case, the

correlation is degree-days; however, it can be also defined based on occupants and

number of production. It is worth to mention that the conditions represented in Table

2.2 are still necessary.
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Fig. 2.6. The correlation between MDD and MDDSubsystem

Consequently, by considering the relation of the total MDD with MDDSub−system,

and using Eq.2.13, Eq.2.16, Eq.2.19, Eq.2.21, Eq.2.22, Eq.2.23, regression coefficients

(corresponding factors) in this model can be defined as:

αSub−system =
d(MDD)

d(MDDSub−system)
=

d(MDD)
d(DD)

d(MDDSub−system)

d(DD)

=
α1

α‘
1

(2.24)

βSub−system =
d(MDD)

d(MDDSub−system)
=

d(MDD)
d(P )

d(MDDSub−system)

d(P )

=
β1
β‘
1

(2.25)

γSub−system =
d(MDD)

d(MDDSub−system)
=

d(MDD)
d(Ox)

d(MDDSub−system)

d(Ox)

=
γ1
γ‘1

(2.26)

Nature of the load in terms of its occurrence would be an indicator for selecting a

device as a sub-system. The nature of electric loads have been categorized by IEEE

Std 141-1993 as follows [2]:
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• Continuous

The electric demand for such load is always greater than zero and the

load diversity is slightly less than 100%. Lighting is an example of a continuous

load.

• Intermittent

Intermittent loads occur at irregular intervals. Air compressor, roof-top

units (RTUs), chillers, and refrigerators are examples of this type.

• Cyclical

Cyclical loads occur at regular intervals with a repetitive pattern in load

profile. Loads controlled by time relay circuits are in this category.

• Special or unusual loads

There is no pattern in load profile. Such as resistance welding, arc welding,

induction melting, etc.

• Combination of above

Generally, sub-system shall be chosen not only among significant electricity-

consuming devices throughout an/a industrial/commercial facility, but also the loads

which do not have continuous natures of occurrence. Due to the fact that such loads

can cause a positive rate-of-change in demand (dXt > 0 in Eq.(2.7) over a time period

dt), while for continuous loads, dXt = 0 (except during start-up periods). HVAC,

chiller, air compressor, and pumps are among sub-systems which have significant

effect on maximum demand.

Shedding is effected on a priority basis, and in accordance with load defining

parameters and priorities defined by load operational levels automatically or manually

sensed or entered into the overall building automation system (BAS).
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3. CASE STUDY

In section 3.1, the ARC algorithm is implemented on two different case studies. In

3.1.1, the ARC algorithm has been implemented on an aluminum die casting facility

to build an hour-ahead maximum demand forecaster using three weeks of historical

demand data. In 3.1.2, the same forecaster has been developed for a generator man-

ufacturer by using three months of historical demand data. In chapter 4, the results

from the algorithm have shown 84% successful rate on forecasting maximum demand

for case study II.

In section 3.2, the new MDM method is implemented on the same aluminum die

casting company to find out the sensitivity of maximum daily demand to the air

handling units.

3.1 Adaptive Rate-of-Change (ARC) Results

In this section ARC algorithm is implemented on two different real case studies to

develop a VSTLF,STLF and MTLF. Case study I is an aluminum die casting company

and case study II is a generator manufacturer company. Both manufacturing facilities

are located in Indiana, U.S., and for both cases demand charge is a large portion of

the electric bill. In case study I, only two weeks have been used to determine the

reference ROC while in case study II three months of historical demand data has

been used. In each case study, the use of the ARC algorithm is demonstrated by

showing the results of each step represented in section 2.1. In chapter 4, the ARC

algorithm has been evaluated, and superior performance of our proposed methodology

is illustrated.
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3.1.1 Case Study I

Case study I is a metal die casting facility, located in Shelbyville, Indiana, U.S.,

with a great volume of electricity consumption due to the nature of its production.

The facility works 24/7 in three shifts. Shift hours is shown in Table 3.1. Demand

for this facility is being recorded every 30 min and the greatest of all demands in

a month will be used for utility billing purposes. Table 3.2 shows the summary of

electric consumption in 2016 for this facility. As it is shown, the facility consumed

14,122,924 kWh of electricity with the highest monthly peak demand of 2,213 kW

occurred on Aug. 4, 2016 at 15:00.

Table 3.1.
Shift hours for case study I

Shift Shift starts- Shift ends

1st 6:30 AM- 3 PM

2nd 2:30 PM- 11 PM

3rd 10:30 PM- 7 AM

Electricity rates are declared in the rate structure, provided by local utility provider.

The Energy Charge is $0.016275/ kWh and Demand Charge is $13.08/kW. How-

ever, by considering different riders, these rates would be higher. For instance, as is

shown in Fig.3.1, the electricity bill for March 2016 shows the total demand charge

of $26,243.71 which is based on $13.08/kW. However, by considering all electric de-

mand riders, which have been indicated by arrows, the demand rate would increase to

$23.31/kW. Table 3.3 shows the electricity analysis for 2016 including different riders.

Electricity usage vs. demand in 2016 is shown in Fig.3.2. As it is shown in Table 3.4,

demand cost is accounted for 58% of the total electricity charge in 2016. Therefore,

maximum demand study would help the end-user to cutdown total electric charge.
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Table 3.2.
Summary of electric consumption for case study I in 2016

Weekday Maximum Demand (kW) 2,213

Weekend Maximum Demand (kW) 2,059

Power Factor at Time of Maximum Demand 79.36%

Maximum Reactive Demand (kVAR) 1,728

Load Factor 0.7266

Total Energy Usage (kWh) 14,122,924

Maximum Demand (kW) 2,213

Maximum Demand Time 08/04/2016 15:00

Using the method described in 2.1, the ARC algorithm will be applied on case

study I to forecast peak demand for the last week in March 2016. As it is recom-

mended in 2.1, the historical data shall be chosen from the same month which is going

to be foretasted; therefore, two weeks of demand data in March 2015 have been used

for the first phase of the algorithm. First the ROC will be calculated for each time

interval by using Eq.2.7. Then the algorithm investigates each time-interval to find

out if that interval has been involved in the positive increment or not. As is shown

in Fig.3.3, throughout the historical demand data, peaks can be induced by several

number of positive ROCs, among which 2 positive ROCs provides the strongest signal,

which is the statistical mode.

Next step is selecting reference ROC by calculating the mode of ROCs when the

number of positive ROC equals 2 steps. In this case the reference ROC is 1.5 kW/min.

Therefore, peaks occur most frequently in 2 time intervals (2 ∗ 30min = 1hr) with

the slope of 1.5 (kW/min) from the start point to the peak.

Once the reference ROC is determined, second phase starts by importing demand

data as input. The algorithm calculates ROC for each time interval as time moves

on. At the same time it computes the moving average of demand plus one standard
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Fig. 3.1. Electricity cost breakdown for case study I in March 2016

Table 3.4.
Cost breakdown for case study I in 2016

Demand Cost Energy Cost Total

$582,143 $405,610 $996,751

%58 %42 %100

deviation for the last 30-period. At this stage, a spike has to meet two conditions to

be identified as a daily peak. Current demand has to be greater than moving average

plus one standard deviation to meet the first criteria. It also has to have a greater
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Fig. 3.2. Energy usage vs. Demand for case study I in 2016

Fig. 3.3. Number of positive ROCs leading to peak in the historical data

ROC than the reference ROC. If the spike meets both conditions, the algorithm

would issue a warning that the peak will occur in certain periods of time. Figure
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3.4 shows the load diagram for case I from Mon., March 21st, 2016 to Sun., March

27th, 2016. One standard deviation plus average has been also calculated and showed

on the graph. Being above the one standard deviation plus one moving average line

is the first criteria. By applying this criteria local maximum spikes will be filtered.

This condition also helps to eliminate the peaks at the beginning of- the shifts which

usually have low demands.

Fig. 3.4. Load diagram and one std+ave for the last week of March 2016

Figure3.5 illustrates the zoom-in of Tuesday, March 22nd. Forecasted peaks have

been indicated on the load diagram. All forecasted peak demands meet two con-

ditions. They are all above the one standard deviation plus moving average line,

and they all have a greater ROC than reference ROC. As it has been mentioned in

previous chapter, proposed algorithm only forecasts the time and not the magnitude

of upcoming peaks. Table 3.5 shows the first top six maximum demands in March

22nd. It also indicates the actual time that peaks occurred and the forecasted time by

the algorithm. The confidence time window for the algorithm is twice as the interval

which in this case is an hour. Thus, forecasting any peak demand an hour ahead is a

success for the algorithm.
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Fig. 3.5. Forecasting results for March 22,2016

Table 3.5.
Forecasting results for case study I on Mar. 22, 2016

Demand (kW) Actual Time Forecasted Time Success

1922.4 15:00 14:30 X

1920 17:30 17:00 X

1905.6 18:00 17:00 X

1900.8 23:30 23:00 X

1898.4 20:00 20:00 X

1893.6 16:00 — ×

As it is shown in the table, the algorithm could forecast the first top 5 maximum

demands in that specific day of March 2016. However, it missed the sixth maximum

demand due to the fact that this spike is located on a negative slope with a negative
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ROC. Thus, this data point does not meet the first criteria of ARC to be recognized

as a peak.

3.1.2 Case Study II

Case study II is a manufacturing facility produces sheet metal enclosures for gen-

erators and large motors. They also provide testing to those generators and motors.

Case study II is located in Monticello, Indiana, U.S., and operates about 6,240 hours

annually. The facility works Monday through Friday in three shifts. Shift hours is

shown in Table 3.6. Demand for this facility is being recorded every 15 min and the

greatest of all demands in a month will be used for utility billing purposes. Electricity

rates are declared in the rate structure, provided by local utility provider. By consid-

ering riders, the Energy Charge is $0.05401/ kWh and Demand Charge is $15.27/kW.

Table 3.7 shows the electricity analysis for 2014-15 including different riders. As it is

shown, the facility consumed 1,708,200 kWh of electricity with the highest monthly

peak demand of 633 kW occurred on March 10, 2015 at 13:45. Electricity usage vs.

demand in 2014-15 is shown in Fig.3.6.

Table 3.6.
Shift hours for case study II

Shift Shift starts- Shift ends

1st 7 AM- 3 PM

2nd 3 PM- 11 PM

3rd 11 PM- 7 AM

This case has a non-typical load profile, as it is shown in Figure 1.2 (b); there-

fore, the load pattern is not repetitive which is a result of lacking a routine proce-

dure/number of productions in this company. As it is shown in Table 3.8, demand cost
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Fig. 3.6. Energy usage vs. Demand for case study II in 2014-15

is accounted for 53% of the total electricity charge in 2014-15. Therefore, maximum

demand study would help the end-user to cutdown total electric charge.

Table 3.8.
Cost breakdown for case study II in 2014-15

Demand Cost Energy Cost Total

$103,772 $92,266 $196,038

%53 %47 %100

Similar to case study I, the ARC algorithm will be applied on case study II to

forecast peak demand from April, 6th, 2015 to June, 26th, 2015. Three month of

historical demand data, from April to June 2014 have been used for the first phase

of the algorithm. First the ROC will be calculated for each time interval by using

Eq.2.7. Then the algorithm investigates each time-interval to find out if that interval

has been involved in the positive increment or not. Similar to case study I, throughout
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the historical data the daily maximum demand can be induced by several numbers of

positive ROCs, among which 2 positive ROCs provides the strong signals, along with

a peak inducing reference ROC of 2.5 kW/min, as is shown in Fig.3.7.

Fig. 3.7. Number of positive ROCs leading to peak in the historical data

Therefore, peaks occur most frequently in 2 time intervals (2 ∗ 15min = 30min)

with the slope of 2.5 (kW/min) from the start point to the peak.

Once the reference ROC is determined, second phase starts by importing demand

data as input. The algorithm calculates ROC for each time interval as time moves

on. At the same time it computes the moving average of demand plus one standard

deviation for the last 30-period. At this stage, a spike has to meet two conditions

to be identified as a daily peak. If the spike meets both conditions, the algorithm

would issue a warning that the peak will occur in certain periods of time. Figure

3.8 shows the result of the ARC algorithm for 5 consecutive working days in the

second week of April 2015. The forecasted peak demands, indicated by circles, are

the times when the warning criteria are met. The confidence time window for the

algorithm is twice as the interval (which in this case is 30min). Thus, forecasting any
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peak demand 30min ahead is a success for the algorithm. As shown in Fig.3.8, the

method captures not only the daily maximum demand but also the secondary, and

sometimes, thirdly demand spikes. This is useful for the plant manager in order to

reschedule the process more efficiently to avoid high demand charges. Later in section

3.2, plant manager (or in general, the electric consumer) would get a better under-

standing of each sub-system’s impact on maximum daily demand and its sensitivity

to explanatory variables.

Fig. 3.8. ARC forecasting results for 2nd week of April 2015

3.2 Maximum Demand Management

In this section, the same forging company and a commercial building have been

chosen as case studies to apply the new MDM method proposed in 2.2. In sections

3.2.1, 3.2.2, and 3.2.3 explanatory variables are calculated to see the sensitivity of

maximum daily demand to number of degree-days, production, and occupants. Later

in section 3.2.4, the study goes further to see how does a sub-system affect maximum
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daily demand. The result of this section would be so beneficial for electric consumers

to decrease their demand by changing explanatory variables or a sub-system’s load.

3.2.1 Explanatory Variable α1

In this section, the proposed MDD method is implemented on the same metal

die casting company to find out the regression coefficient α1 for October 2016. The

only air conditioners systems in this facility are four York cooling makeup air systems

provide cold air to this facility. The result of this study would reveal how sensitive is

MDD to the temperature. As it is mentioned in section 2.2.1, the base temperature

for cooling degree-days calculation is chosen as 18◦C. Maximum daily demands and

CDDs have been shown in Table 3.9 for fifteen days in October 2016. These days

have positive CDDs with the same number of productions as 7,820 parts per day. As

it is represented in Table 2.2, number of occupants is not a factor in manufacturing

sectors for defining α1. The linear regression model is obtained by using Eq.2.11 as

it is shown in Fig.3.9. The regression coefficient α1 = 29.39kW/◦C describes the

sensitivity of the maximum daily demand to the number of cooling degree-days for

this facility in Oct. 2016. In other words, in this case, cooling down the facility

by 1◦C would increase MDD by 29.39kW . The intercept of the line, α0 = 1, 688.6

represents the baseline of the maximum daily demand in a day with CDD = 0. This

is the maximum demand related to all consumption in the plant, it also includes the

idling power of the cooling units.

3.2.2 Explanatory Variable β1

The same method has been approached to find out the regression coefficient β1 for

the same metal die casting company. MDD can be written as a function of production

by using Eq.2.14. As it is mentioned in Table 2.2, the model shall include the days

with the same degree-days for manufacturing consumers to find out the impact of

production on MDD; moreover, number of occupants is not a factor in manufacturing
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Table 3.9.
Days with a positive CDD and same number of production in Oct. 2016

Date CDD (◦C) MDD (kW)

10/6/2016 9.5 1,973

10/7/2016 7.7 1,906

10/8/2016 0.2 1,690

10/11/2016 5.4 1,877

10/13/2016 5 1,846

10/14/2016 4.2 1,826

10/16/2016 7.3 1,900

10/17/2016 8 1,894

10/20/2016 4 1,812

10/21/2016 4 1,752

10/22/2016 2 1,718

10/24/2016 5.3 1,872

10/25/2016 2 1,781

10/26/2016 4.2 1,802

10/28/2016 6.7 1,899

sectors for defining β1. The model includes 24 days in Feb. and Mar. 2016 all

with zero cooling degree-days as it is shown in Fig.3.10. The result of this study

would reveal how sensitive is MDD to the number of production in this case study.

The linear regression model is obtained by using Eq.2.14 as it is shown in Fig.3.10.

The regression coefficient β1 = 1.6488kW/(100Parts) describes the sensitivity of the

maximum daily demand to the number of productions for this facility. For instance,

increasing the production by 100 pieces would increase MDD by 1.6488kW . It is

worth to mention that on account of the fact that the company has been running all
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Fig. 3.9. Linear regression of MDD vs. CDD in Oct. 2016

the time during the test, β0 = 1, 730.1 shows the idling power of all manufacturing

equipment in the plant when the production is zero.

3.2.3 Explanatory Variable γ1

The same method has been approached to find out the regression coefficient γ1 for

a museum in Indiana, U.S. to see how the number of occupants would have effect on

MDD. The museum is air-conditioned in the Summer and Winter by using two 300

Ton chillers and seven air handling units. This case is a commercial building; there-

fore, MDD can be written as a function of number of occupants by using Eq.2.17.

The model can be applied on 19 days from Nov. 2015 to Mar. 2016 as it is shown

in Table3.11. As it is mentioned in Table 2.2, the model includes the days with the

same degree-days to find out the impact of occupants on MDD; in this case, all days

have the same HDD = 18◦C by considering the base temperature as 18◦C in calcu-

lations. The result of this study would reveal how sensitive is MDD to the number
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Fig. 3.10. Linear regression of MDD vs. production in Feb. & Mar. 2016

of occupants in this case. The linear regression model is obtained by using Eq.2.17

as it is shown in Fig.3.11. The regression coefficient γ1 = 0.2738kW/(10Persons)

describes the sensitivity of the maximum daily demand to the number of attendance

for this commercial building. For instance, increasing the number of occupants by

10 would increase MDD by 0.2738kW . The museum has constraints on temperature

and humidity of the building which can be a reason of not having the MDD very

sensitive to the number of occupants. It is worth to mention that γ0 = 228.89 shows

the demand required mostly by air handling units to keep the temperature at 18◦C

and lighting systems in this museum.

3.2.4 Sub-system Approach

As it is mentioned in 2.2.4, in some cases, changing temperature, number of pro-

duction, or number of occupants is not a feasible solution for demand management. In

fact, load shedding can be a better practice for demand management which provides
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Fig. 3.11. Linear regression of MDD vs. number of occupants in Nov.
2015 to Mar. 2016

more options to end-users. Seeking to have demand management by load shedding

come to full fruition by finding out how does each sub-system affect the MDD. In

this section the same metal die casting company has been chosen to demonstrate the

results of the sub-system approach described in 2.2.4. In this case, four AHUs have

been chosen as the sub-system to see how the MDD for the whole facility is sensitive

to the electric demand of the AHUs. (MDDAHUs). The same time window as 3.2.1

(fifteen days in Oct. 2016) has been considered for this study. As it is defined in

2.24, first step to find αAHUs is to calculate α1. This regression coefficient has been

already calculated in 3.2.1 as α1 = 29.39kW/◦C. Next step is finding α‘
1, which is

the sensitivity of AHUs to CDD as it is defined in 2.21. In order to do that, the re-

gression model has been made and presented in Fig.3.12. α‘
1 = 27.457kW/◦C means

increasing CDD by 1◦C would increase the AHUs’ MDD by 27.457.

Finally, αAHUs can be calculated by using Eq.3.1 and considering four AHUs as

one single sub-system.
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Fig. 3.12. Linear regression of AHUs’ MDD vs. CDD in Oct. 2016

αAHUs =
d(MDD)

d(MDDAHUs)
=

d(MDD)
d(DD)

d(MDDAHUs)
d(DD)

=
α1

α‘
1

=
29.39

27.457
= 1.07 (3.1)

αAHUs shows the sensitivity of total MDD of this facility to AHUs’ MDD. Although

αAHUs is dimensionless, it is helpful for interpretation to have the same units in both

numerator and denominator (kW/kW ). In this case αAHUs = 1.07kW/kW means

increasing/decreasing the AHUs’ MDD by 1kW would result in increasing/decreasing

total MDD of the facility by 1.07kW . Another way to calculate αAHUs is to have MDD

vs. AHUs’ MDD model directly from data. As it is shown in Fig.3.13, αAHUs obtained

in this way is very close to αAHUs calculated by using Eq.3.1. The intercept of the

line shows the MDD of the facility would be 1, 470kW once all four AHUs are turned

off.

The results of the study can be very useful for plant manager to manage the MDD

of the facility. For instance, this facility is enrolled in Demand Response program by

the utility provider. By using the result of this study, the plant manager is aware of

the sensitivity of MDD to the AHUs’ MDD. If the utility calls upon to reduce the
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Fig. 3.13. Linear regression of MDD vs. AHUs’ MDD in Oct. 2016

demand at the facility by 107kW , the plant manager can accomplish that by reducing

the AHUs’ power by 100kW (αAHUs is considered as 1.07kW/kW ).
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Table 3.10.
Number of productions for 24 days in Feb. & Mar. 2016 with CDDs = 0◦C

Date Production (*100 Pieces) MDD (kW)

2/5/2016 63.47 1,824

2/6/2016 81.54 1,870

2/7/2016 70.28 1,848

2/8/2016 36.25 1,800

2/9/2016 77.2 1,843

2/10/2016 73.14 1,865

2/12/2016 63.74 1,853

2/14/2016 36.25 1,781

2/15/2016 5.77 1,732

2/16/2016 84.06 1,879

2/17/2016 72.67 1,834

2/19/2016 28.08 1,781

2/20/2016 24.25 1,766

2/23/2016 17.18 1,762

2/24/2016 71.2 1,843

2/25/2016 31.19 1,802

2/26/2016 71.18 1,822

3/1/2016 5.77 1,741

3/4/2016 23.25 1,793

3/5/2016 71.47 1,867

3/6/2016 58.9 1,812

3/8/2016 5.29 1,731

3/9/2016 70.62 1,862

3/10/2016 84.04 1,853
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Table 3.11.
Number of occupants for 19 days in Nov.2015 to Mar.2016 with HDDs = 18◦C

Date Occupants (*10 Persons) MDD (kW)

11/22/2015 25 237.15

12/3/2015 9.5 222.6

12/4/2015 3.2 223.7

12/5/2015 8 233.1

1/2/2016 154.6 270.15

1/3/2016 49.1 238

1/4/2016 44 242.85

1/5/2016 48.1 239.7

1/6/2016 85.6 258

1/16/2016 66.2 243

1/26/2016 2.6 230.5

1/27/2016 4.7 229.7

2/4/2016 2.9 231.5

2/5/2016 4.9 235

2/6/2016 12.5 235.9

2/8/2016 3.4 232.6

2/16/2016 4.8 230.6

3/2/2016 2.6 220.35

2/4/2016 16.1 244.5
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4. RESULTS ANALYSIS

4.1 Results Verification

In this section the results of the ARC algorithm have been verified by using Pear-

son’s chi-squared test. This test is called the test of independence which assesses

whether unpaired observations on two variables, expressed in a cross tabulation (con-

tingency table), are independent of each other. The result of the case study II (a

manufacturing produces metal sheets for generators) presented in section 3.1.2 is

chosen for verification on account of the fact that the population is much larger com-

pare to case study I (a die casting company). Moreover, as it is mentioned in section

3.1.2, case study II has a non-typical load profile which makes it much harder for the

algorithm to forecast the MDDs; therefore, this case has been chosen as the worst

case scenario for results verification. In other words, if the algorithm shows promising

results for case study II, it will definitely show satisfactory results for case study I

since forecasting MDD for a typical load diagram is easier than forecasting MDD for

a non-typical load diagram. A standard Pearson’s chi-squared test is performed by

categorizing demand time series into binomial pair, 1 and 0. 1 means a maximum

daily demand occurrence either in reality or prediction while 0 means the rest. As

it is explained in Fig.4.1 by using IBM SPSS software, and considering demand data

from April, 6th, 2015 to June, 26th, 2015 (72 working days), 84.72% of the actual

daily maximum demands have been successfully forecasted by the ARC algorithm,

and 15.28% of daily maximum demands have been totally missed. It also shows 6,724

times, when no daily peak demands have been occurred, the algorithm has not is-

sued any warnings while the method issues undesired signals 1.70% of the time when

a maximum daily demand has not been occurred in reality. Undesired signals may

include local maximums throughout a day which might be beneficial for the end-user
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to manage the demand. For calculating the P-value, null hypothesis (H0) is con-

sidered such that the methodology will create an unbiased result which; therefore,

should catch 50% of the peaks because the test has only two categorical variables.

Alternative hypothesis (Ha) is that the algorithm can catch more than 50% of MDDs.

Null hypothesis will be rejected if the algorithm catches more than 50% of the MDDs

throughout 72 working days. As the result of IBM SPSS software, the P-value equals

0.0301 and thus the null hypothesis is rejected.

Fig. 4.1. Results of Pearson’s Chi-squared test for ARC algorithm

Regarding the MDM linear regression models, Table4.1 shows R2s for three dif-

ferent case studies. The regression models account for 90.37%, 89.87%, and 81.97%

of the variance respectively for MDD vs DD, MDD vs P, and MDD vs Ox. Theoret-

ically, if a model could explain 100% of the variance, the fitted values would always

equal the observed values and, therefore, all the data points would fall on the fitted
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regression line. In these cases, R2s indicate a very good fit between fitted values and

observed values (R2s are close to 100%).

Table 4.1.
R2s for three different regression models

Model R2

MDD vs DD 90.37%

MDD vs P 89.87%

MDD vs Ox 81.97%

4.2 Cost Saving

Case study I in section 3.1.1 has been selected to show cost saving calculation

for demand charge by using ARC algorithm. We assume the maximum demand for

March 2016 has been occurred on March 22nd. By using the results of ARC algorithm,

the company would be able to skip the first 5 forecasted maximum demands, shown

in Table 3.5. Therefore, as it is mentioned in section 3.1.1, by considering demand

rate as $23.31/kW, demand cost saving for March 2016 can be calculated as follow:

Saving = (1, 922.4kW − 1, 893.6kW ) × $23.31/kW = $671.3 (4.1)

Therefore, in this case, by using ARC algorithm the potential saving in Mrch 2016

is $671. Consequently, demand cost saving for one year can be estimated by using

the same method for 12 months as follow:

Saving = $671.3/month× 12
month

year
= $8, 056/year (4.2)

As it is shown in Eq.4.2, the demand charge saving can be very significant by

using the forecasting algorithm.
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5. CONCLUSION

In this thesis, a novel MDD forecasting method, called ARC algorithm, was proposed

by analysing demand trend data and incorporating moving average calculation as

well as rate of change formularization to develop an electrical maximum demand

forecasting algorithm. This tool can be used by electric consumers in residential,

commercial, and manufacturing sectors to predict upcoming peak demands in VSTLF,

STLF, and MTLF windows. Then ARC algorithm was applied on two different case

studies with typical and non-typical load diagrams for a period of one week and three

months respectively. The results reveal that the proposed ARC method would have

the following advantages:

• Prior works in electrical maximum demand forecasting have been mainly focused

on the utility side while ARC algorithm is a forecasting tool which can be used

on either utility or consumer sides. In this dissertation the forecasting method

was conducted on consumer side.

• Prior works have been mainly focused on using seasonal effects on MDD fore-

casting which is not always a feasible approach for industrial manufacturing

facilities. Instead, the only input for the ARC algorithm is the historical de-

mand data which can decrease the intrinsic uncertainties associated with de-

mand forecasting. Therefore, the proposed algorithm has the simplicity that

not only needs less input but also runs faster.

• Using real-time data for calculating moving average and one standard deviation

to predict the future makes the ARC algorithm very adaptive to the growing

and dynamic systems such as increasing production, or expanding the electric

network in the facility.
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• ARC algorithm’s results for case study I (a metal die casting company) reveal

that the algorithm captures not only the daily maximum demand but also the

local maximums. For instance, the algorithm could capture the first top 5

maximum demands in a specific day in case study I. Moreover, demand cost

saving was estimated as $8,056 in a year by using the forecasting algorithm.

• The Chi-square method was used to validate the forecasting results in case study

II (a manufacturing facility produces sheet metal enclosures for generators). The

results of the test reveal that the ARC algorithm is 84% successful in forecasting

maximum daily demands (for the period of 72 days) for a non-typical load

diagram with the P-value equals to 0.0301.

The focus of this study was to help the end-users to understand how temperature,

production, and occupancy affect MDDs in their facilities by using linear regression

models. The MDM method was applied on three different real case studies in com-

mercial and manufacturing sectors and the sensitivity of MDD to the number of

degree-days, number of production and number of occupants was determined inde-

pendently. These information broaden the electric consumer understanding of how

MDD is sensitive to the temperature, production, and occupancy. Finally, the sensi-

tivity of MDD to different sub-systems was defined and investigated. The application

of proposed algorithm can help the end-user to manage the MDD by turning a specific

electricity-consuming device (such as chillers, fans, lights, etc.) on or off or it can be

more sophisticated to reduce the load on particular equipment without completely re-

moving the load by using sub-systems’ regression coefficients. In all linear regression

models, R2s indicated a very good fit between fitted values and observed values.

In a nutshell, the proposed method can be used to provide the electric consumer a

MDD forecasting and management tool. The effective forecasting provided essential

context for MDM by understanding MDD’s sensitivities to temperature, production,

occupancy, and different sub-systems in a facility. It can also be very helpful in

decision making for demand management and demand response program.
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5.1 Future Work

Future works include but are not limited to the following:

• Proposing an optimized solution for MDM by finding priorities for sub-systems.

Later on by using a PLC, the scheme can offer a flexible solution suitable for

a user with many sheddable loads. In this case the shedding sequence can be

programmed into the PLC, and an interface allows the end-user to change the

priorities of load shedding.

• Conducting a cost analysis to find out the total cost (i.e. energy and demand

costs) of making a product in manufacturing sector or having an occupant in a

commercial sector.

• Even though ARC algorithm results were verified by Chi-square test, a different

energy modeling software can be used for result verification.
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