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ABSTRACT 

 

Natalia M. VanDuyn 

 
 

IDENTIFICATION AND CHARACTERIZATION OF MOLECULAR  
MODULATORS OF METHYLMERCURY-INDUCED TOXICITY AND  

DOPAMINE NEURON DEGENERATION IN CAENORHABDITIS ELEGANS 
 

 

Methylmercury (MeHg) exposure from occupational, environmental and food sources is 

a significant threat to public health. MeHg poisonings in adults may result in severe 

psychological and neurological deficits, and in utero exposures can confer significant 

damage to the developing brain and impair neurobehavioral and intellectual 

development.  Recent epidemiological and vertebrate studies suggest that MeHg 

exposure may contribute to dopamine (DA) neuron vulnerability and the propensity to 

develop Parkinson’s disease (PD).  I have developed a novel Caenorhabditis elegans 

(C. elegans) model of MeHg toxicity and have shown that low, chronic exposure confers 

embryonic defects, developmental delays, reduction in brood size, decreased animal 

viability and DA neuron degeneration.  Toxicant exposure results in an increase in 

reactive oxygen species (ROS) and the robust induction of several glutathione-S-

transferases (GSTs) that are largely dependent on the PD-associated phase II 

antioxidant transcription factor SKN-1/Nrf2.  I have also shown that SKN-1 is expressed 

in the DA neurons, and a reduction in SKN-1 gene expression increases MeHg-induced 

animal vulnerability and DA neuron degeneration.  Furthermore, I incorporated a novel 

genome wide reverse genetic screen that identified 92 genes involved in inhibiting 

MeHg-induced animal death. The putative multidrug resistance protein MRP-7 was 

identified in the screen.  I have shown that this transporter is likely expressed in DA 

neurons, and reduced gene expression increases cellular Hg accumulation and MeHg-
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associated DA neurodegeneration. My studies indicate that C. elegans is a useful 

genetic model to explore the molecular basis of MeHg-associated DA 

neurodegeneration, and may identify novel therapeutic targets to address this highly 

relevant health issue. 

 

Richard M. Nass, Ph.D., Chair 
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I.  INTRODUCTION  
 

Methylmercury (MeHg) is an environmental contaminant that is known to damage the 

nervous system, however the genes and molecular pathways involved in the pathology 

are largely unknown.  The following Introduction will provide important background 

information to understand the results of my studies and the relevance of this dissertation 

to the field of MeHg toxicity.  I first introduce MeHg, discussing its prevalence in the 

environment and effects on human health and reviewing the current understanding of 

the cellular effects of MeHg.  I then provide a brief review of Parkinson’s disease (PD) 

and how MeHg may be contributing to the development of this very common 

neurodegenerative disease.  My studies support a role for the transcription factor Nrf2 

and multidrug resistance proteins (MRPs) in inhibiting MeHg toxicity.  I summarize the 

function, expression and regulation of these proteins and describe their relevance to 

MeHg.  Finally, I introduce C. elegans as a model system and present information on its 

use in toxicology and the genes relevant to my thesis project.     

 

A.  Methylmercury 

1.  Methylmercury in the environment and routes of exposure  

Methylmercury (MeHg) is ubiquitously present in the environment, as it originates from 

both natural and industrial sources.  Inorganic mercury (Hg(0)) vapor is released into the 

atmosphere from volcanoes as well as coal-burning power plants and other types of 

factories (Clarkson & Magos 2006).  The Hg circulates and becomes deposited in the 

sediment at the bottom of bodies of water where microorganisms and bacteria methylate 

it, through a process recently shown to require the genes hgcA and hcgB, to result in the 

formation of MeHg (Wood 1974, Parks et al. 2013).  MeHg then enters the aquatic food 

chain as the bacteria are consumed by small fish, which are eaten by larger fish and so 

on, up to the highest predator fish.  The MeHg accumulates through this food chain and 

can be found at high levels in the muscles of the fish and marine mammals at the top 

(ex. shark, tuna, swordfish and pike).  In healthy aquatic ecosystems, sharks may 

contain up to 4 ppm MeHg and in polluted areas, levels as high as 20 parts per million 

(ppm) have been reported (Clarkson & Magos 2006).  Therefore, the main source for 

human MeHg exposure is through the consumption of contaminated fish, marine 

mammals and shellfish, putting populations worldwide at risk for the toxic effects of 

exposure (Fig. 1).   
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 Two widespread outbreaks of MeHg poisonings in humans provided much of the 

basis for determining the toxic effects of MeHg and revealed the severe neurotoxic 

potential of the contaminant.  Outcomes of both acute and chronic exposure to MeHg 

have been well documented since the 1950s in Minamata, Japan where people ate fish 

containing high levels of mercury for an extended period of time and developed a 

condition later termed “Minamata disease”.  The most common symptoms in adults 

included alterations of sight, hearing, taste and smell, impaired movement, tremors, 

numbness and psychiatric changes (Takeuchi 1982, Ekino et al. 2007).  In cases of the 

highest exposure, brain MeHg levels as high as 25 ppm were observed and often 

resulted in lethality.  Autopsies revealed damage to the cortex of the cerebrum and 

cerebellum, and lesions in brain regions consistent with the symptoms observed (Eto et 

al. 2010).  The detrimental effects of fetal exposure were also revealed during the 

Minamata outbreak.  Numerous miscarriages were attributed to the MeHg poisoning, 

and children born following exposure suffered from cerebral palsy and other defects in 

brain development resulting in neurobehavioral changes and delayed intellectual 

development in addition to the symptoms experienced by adults (Harada 1995).  The 

effects on the brain due to infant or prenatal exposure were long lasting, with symptoms 

persisting throughout life and the brain damage obvious upon autopsy more than 20 

years after exposure (Eto et al. 2010).  In 1992, the number of confirmed cases of 

Minamata disease totaled 2,252 and nearly half of the cases ended in fatality (Harada 

1995). 
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Figure 1.  Illustration of the Hg cycle in the environment and routes of human exposure 
to MeHg.  Created with images from Microsoft Clip Art. 
 

 

  A larger occurrence of poisonings happened in 1971 in the rural population of 

Iraq as a result of the consumption of wheat that had been intended for planting and was 

coated with a MeHg-containing fungicide (Clarkson & Magos 2006).  In total, 6,530 

people were admitted to the hospital as a result of exposure and 459 of those people 

died.  MeHg in hair was recorded as high as almost 600 ppm and blood levels reached 

3.7 ppm (Bakir et al. 1973).  The observations of brain damage in both adults and infants 

ranged from mild to severe and symptoms correlated with total body burden of MeHg:  

paresthesia, ataxia, dysarthria, deafness, and death, from low to high.  The effects on 

infants were well characterized.  Infants exposed in utero had blood concentrations at 

least as high as in the mother, however those who were born before the outbreak and 

therefore only exposed through milk had concentrations equal to or lower than the 
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cortical organization” (Choi et al. 1978).  These studies and others have led to the 

conclusion that MeHg poses a significant risk to the unborn fetus.  

 These initial observations revealed the severe neurotoxic potential of MeHg, and 

numerous studies have been conducted to investigate the dose response profile of the 

toxicant and the environmental levels that lead to a risk of toxicity.  Limits for MeHg 

exposure have been based on correlations between Hg levels and the risk for toxicity.  

Studies of populations in New Zealand, the Seychelles islands and the Faroe Islands 

have been carried out because of the high levels of seafood in the diets of these people.  

Maternal hair Hg concentrations were recorded for hundreds of women, and their 

children were monitored for several years following birth.  The scores on various 

neurological tests in relation to the maternal hair Hg were used to estimate the BMDL, 

which indicates the lower statistical bounds on the benchmark dose (BMD). It was 

determined that maternal hair levels higher than 20 ppm may contribute to an increased 

risk for neurological deficits in their children (van Wijngaarden et al. 2006).  

 The data from epidemiological studies were taken into account and the 

Environmental Protection Agency (EPA) reference dose of 0.1 ug/kg bw/day was 

ultimately based largely on developmental endpoints from the Faroe Islands study 

(USEPA 2001).  In 2001, the Food and Drug Administration (FDA) released a consumer 

advisory warning pregnant women and young children against eating high-level predator 

fish including shark, swordfish, king mackerel and tilefish and suggesting they consume 

less than 12 oz. of other fish per week (USFDA 2001).  The EPA extended these 

guidelines in 2004 and suggested that no more than 6 oz. of tuna should be eaten per 

week (Rheinberger & Hammitt 2012).  These warnings are warranted based on an 

analysis of the National Health and Nutrition Examination Survey (NHANES) 1999-2000 

study that indicated nearly 10% of women of child-bearing age in the U.S. had blood 

mercury levels above the advisable limit and this number increases to over 25% in 

Korea (Schober et al. 2003, Kim & Lee 2010).  It was estimated by the National 

Academy of Sciences that over 60,000 children are born every year in the U.S. at risk for 

neurological impairments caused by prenatal exposure to MeHg and analysis by another 

group estimated this number to be as high as 600,000 (Trasande et al. 2005, Zuckerman 

et al. 2007).  As the fetus can accumulate higher levels of MeHg than the mother, 

exceeding these suggested limits can lead to significant effects on the child.  In the 

population as a whole, it has been estimated that by 2020, the decreased IQ and other 
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impacts on human health due to MeHg exposure could cost society billions of dollars 

annually (Sundseth et al. 2010).       

 As a result of the continuing efforts of the EPA and the FDA to establish safe 

limits of exposure, as of December 2008, all 50 states in the U.S. had issued Hg 

advisories for fish consumption (USEPA 2010).  This was based on the water quality 

criterion of 0.3 mg/kg (MeHg/fish tissue wet weight).  In 2009, the National Lake Fish 

Tissue Study found that half of the lakes sampled (all in the US) contained fish that 

exceeded the limit of 0.3 mg MeHg/kg (USEPA 2009).  These observations indicate that 

MeHg remains high in the environment and Hg emissions continue to be a problem 

worldwide.  While countries are improving methods to reduce Hg burden, Asia still 

contributes in high amounts due to the burning of fossil fuels (Pacyna et al. 2010).  

Because of the long half-life of Hg(0) in the atmosphere, the toxicant does not just affect 

Asia, but can travel long distances and contribute to the problem of MeHg in other areas 

of the world (Driscoll et al. 2013).  In an effort to reduce the effects of Hg on the 

environment, a treaty called the Minamata Convention on Mercury is being signed by 

over 140 countries in the fall of 2013 and will require governments to monitor and 

regulate Hg pollution (Poulain & Barkay 2013).  Current research is also addressing the 

methylation and demethylation of Hg, as the true impact of toxicant is determined by the 

amount of Hg that is converted to MeHg (Driscoll et al. 2013, Poulain & Barkay 2013).  

 Despite monitoring and regulations by the EPA and FDA, the consumption of 

contaminated fish is still a worldwide problem.  Several populations and groups of 

people rely on the fish they catch themselves as a primary food source (Driscoll et al. 

2013).  It is not feasible, financially or logistically, to monitor the Hg consumption in 

situations like this, placing these groups at risk for MeHg-associated toxicities.   

 Limiting intake is the best way to prevent MeHg poisoning, however if high 

exposures do occur, drugs used for the treatment of inorganic Hg poisoning can be 

helpful in MeHg poisoning. Penicillamine, N-acetyl-DL-penicillamine and sodium 2,3-

dimercaptopropane-1-sulfonate (DMPS) and dimercaptosuccinic acid (DMSA) increase 

the excretion rate of Hg in humans exposed to MeHg (Clarkson et al. 1981, Rusyniak et 

al. 2010).  These drugs have free thiol groups that can bind MeHg, and a resin 

synthesized to contain sulfhydryl groups also increased excretion.  These chelation 

therapies rely on the normal physiological excretion routes, but chelation combined with 

a hemodialysis device can further enhance the removal of Hg from the body (Al-Abbasi 

et al. 1978, Lund et al. 1984).  These compounds have limited solubility and low efficacy 
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but N-acetylcysteine (NAC) is clinically available and had a greater effect on MeHg 

clearance (Ballatori et al. 1998).  These drugs can increase the excretion rate of MeHg, 

but unfortunately often have little effect on overall clinical improvement (Rusyniak et al. 

2010).  Often there is a long latency period between exposure and the development of 

symptoms, limiting the efficacy of any treatment.          

 

2.  Human health effects of MeHg exposure    

The majority of the effects of MeHg have been described above in relation to the 

poisonings in Iraq and Minamata disease.  The symptoms such as numbness, tremors 

and sensory disturbances can occur soon after exposure, but may also manifest much 

later (Yorifuji et al. 2008).  Psychiatric and behavioral symptoms can be detected long 

after the exposure occurred or following low chronic exposure (Yorifuji et al. 2011).  

Other possible long-term neurological outcomes of MeHg exposure include delayed 

development, lower IQ scores, and deficits in language, memory and attention (Clarkson 

& Magos 2006).  These effects have been documented following the acute MeHg 

poisonings described above, as well as in longitudinal studies that monitor the 

development of children exposed in utero as a result of maternal fish consumption.  In 

the Faroe Islands, where people regularly consume pilot whale meat that contains up to 

2 ppm Hg, significant effects on several neurological endpoints were observed even 

when maternal hair Hg levels were lower than the advisable limit at that time (Grandjean 

et al. 1997, Bourdineaud et al. 2011).  Another smaller study of prenatal exposure in 

New Zealand also found significant effects of MeHg exposure on developmental tests.  

However the maternal hair levels associated with impairment in the child were slightly 

higher, around 15 ppm (Rice et al. 2003).  In contrast, the Seychelles Child Development 

Study has found no correlation between fish consumption and a negative impact on the 

neurological development on children (Myers et al. 2009, Davidson et al. 2011).  This 

lack of correlation may be explained by lower overall Hg consumption, or by the 

protective effects afforded by long chain poly-unsaturated fatty acids (LCPUFAs) also 

present in fish.     

Early life exposure to neurotoxicants can cause changes in the brain that may 

not manifest symptoms for several years.  Minamata disease can remain latent until the 

nervous system is again compromised, by another stress or through the normal process 

of aging (Weiss 2010).  Even if the effects of MeHg exposure do not result in classic 

Minamata disease, the damage can sensitize the nervous system making it more 
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susceptible to memory loss, cognitive defects and age-related neurodegenerative 

diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Trasande et 

al. 2005, Weiss 2010).  These subtle changes induced by MeHg are a significant 

problem because there are no signs of toxicity until later in life when age-related 

processes are exacerbated by the pre-existing damage. 

Although the nervous system is the most prominent target of MeHg, effects on 

other parts of the body are also observed.  The effects of MeHg on the cardiovascular 

system were first recognized in a population of men in Finland who consumed high 

amounts of fish and had an increased risk of acute myocardial infarction and death from 

coronary heart disease and cardiovascular disease (Salonen et al. 1995, Salonen et al. 

2000).  Further epidemiological and animal studies also reported this association 

(Virtanen et al. 2007).   

 

3.  Cellular and molecular effects of MeHg exposure 

Given the detrimental effects of MeHg on human health, the mechanisms underlying the 

toxicity have been an area of extensive research.  Reviewed below are studies in animal 

models, cell culture and in vitro systems that have provided insight into the 

consequences of MeHg exposure at the cellular and molecular level.    

 

a.  Glutathione and reactive oxygen species      

Oxidative damage is one of the key mechanisms by which MeHg exerts its toxic effects.  

Reactive oxygen species (ROS) are reactive molecules that contain oxygen such as 

hydrogen peroxide (H2O2), hydroxyl radicals and superoxide radicals (Forman et al. 

2009).  ROS are important in intracellular signaling pathways, but excess ROS can 

attack and damage other molecules including DNA, lipids and proteins.  There are 

multiple cellular mechanisms that regulate the balance between oxidized and reduced 

conditions, but disruption of this balance in the favor or oxidation is termed oxidative 

stress (Roberts et al. 2009).  The glutathione system is a significant regulator of the 

oxidative balance (Forman et al. 2009). 

Glutathione (GSH) is a tripeptide comprised of glutamate, glycine and cysteine 

and is important for detoxification of xenobiotics and maintaining the oxidative balance of 

cells.  GSH is the reduced form of the molecule as the thiol (-SH) group can participate 

in conjugation reactions (Forman et al. 2009).  MeHg has a high affinity for -SH groups 

and can bind GSH, which may inhibit MeHg from reacting with other cellular targets and 
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also increase the excretion of MeHg from the cell (Ballatori & Villalobos 2002).  

Glutathione peroxidase (GPx) catalyzes the reaction between GSH and H2O2 to form 

H2O and GSSG, the oxidized form of the molecule.  Under normal conditions, 

glutathione reductase converts GSSG back to GSH and the redox balance is 

maintained.  However, excessive amounts of ROS can deplete GSH and increase level 

of GSSG leading to oxidative stress and cellular damage. 

There are numerous reports of the role of oxidative stress in MeHg toxicity.   

MeHg exposure significantly increases lipid peroxidation in cell culture and in mouse 

liver, kidney and brain (Sarafian & Verity 1991, Andersen & Andersen 1993).  Oxidative 

DNA damage and the formation of 8-hydroxydeoxyguanosine (8-OHdG) are another 

consequence of MeHg exposure, contributing to its genotoxic effects (Ogura et al. 1996, 

Belletti et al. 2002).  Total ROS, as detected by the fluorescent dye 2,7-dichlorodihydro-

fluorescein-diacetate (DCFDA), are increased by MeHg (Kaur et al. 2006, Mori et al. 

2011).  Superoxide and H2O2 were increased in mouse brains following MeHg exposure 

(Yee & Choi 1994).  Mitochondria from mice administered MeHg show a significant 

increase in ROS, and this effect is specific to the cerebellum (LeBel et al. 1990).  ROS 

are increased in primary astrocytic cultures by MeHg exposure, and the increase can be 

prevented by antioxidants (Shanker et al. 2002).  Consistent with increased ROS, GSH 

levels are often decreased following MeHg exposure (Yee & Choi 1996, Kaur et al. 

2006, Mori et al. 2007).  However, the decrease is usually transient and followed by an 

increase in GSH synthesis and total levels in order to compensate and reduce the 

oxidative stress (Sarafian et al. 1996).  Drugs that increase GSH, such as 15-deoxy-

delta-12,14-prostaglandin J2 (15d-PGJ2), can help mitigate the oxidative stress induced 

by MeHg (Chang & Tsai 2008).  Overall, these studies indicate that MeHg exposure can 

contribute to oxidative stress by increasing ROS and decreasing GSH.  

   

b.  Mitochondria  

Mitochondria are a major source of ROS in the cell and appear to be a key cellular target 

of MeHg.  Mitochondrial respiration is impaired by MeHg in synaptosomes and in brain 

slices (Fox et al. 1975, Verity et al. 1975).  MeHg impairs mitochondrial function and 

leads to an increased production of ROS (Atchison & Hare 1994).  In zebrafish muscle, 

MeHg inhibits mitochondrial energy metabolism (Cambier et al. 2009).  Protein 

expression levels of subunits of the electron transport chain (ETC) are increased in the 

hippocampus and kidneys of mice fed a diet containing MeHg levels similar to that of 
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human consumption (Bourdineaud et al. 2011).  MeHg decreased the activity of complex 

II in the cerebellum of exposed rats (Mori et al. 2011).  MeHg may disrupt complex II or 

III to lead to the increased ROS observed following exposure (Yee & Choi 1996).  The 

disruption of the ETC can lead to cellular toxicity both by decreasing ATP levels 

available to maintain normal cellular function as well as by increasing the levels of 

damage-inducing ROS.  It has also been demonstrated that the mitochondrial 

permeability transition pore (MPTP) opens and the mitochondrial membrane potential is 

decreased in the presence of MeHg (Shenker et al. 1999, Limke & Atchison 2002).  

Opening of the MPTP can increase ROS levels and impair ATP production, and also 

lead to a release of Ca2+ into the cytosol, which can in turn have a significant impact on 

cellular function.  

 

c.  Calcium signaling 

Calcium plays a role in important cellular processes and dysregulation of Ca2+ can be 

toxic.  MeHg exposure results in an increase in intracellular Ca2+, both from intracellular 

stores (endoplasmic reticulum (ER) and mitochondria) and from the influx of extracellular 

Ca2+ (Hare et al. 1993).  This increased Ca2+ is likely a contributor to the cell death 

induced by MeHg.  Ca2+ can activate pro-apoptotic calpains and caspases and cause 

the opening of the MPTP, facilitating the release of pro-apoptotic cytochrome c.  Ca2+ is 

also required for the functioning of proteins with various roles in apoptotic signaling 

including calcineurin, nitric oxide synthase, endonucleases, phospholipases, 

transglutaminases and proteases (Orrenius et al. 2003).  The Ca2+ chelators ethylene 

glycol tetraacetic acid (EGTA) and 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic 

acid tetrakis(acetoxymethyl)ester (BAPTA) can partially reduce the cytotoxicity of MeHg 

suggesting that the high intracellular Ca2+ levels are a key factor in the toxicity (Sarafian 

& Verity 1991, Marty & Atchison 1998). 

MeHg may also interact with or pass through calcium channels, disrupting their 

function and further altering intracellular Ca2+ levels (Bailey et al. 2013).  Voltage-

sensitive Ca2+ currents can be inhibited by MeHg in PC12 cells (derived from a rat 

pheochromocytoma in the adrenal medulla) and Ca2+ channel blockers can prevent 

MeHg-induced neurotoxicity in cells and rats (Sakamoto et al. 1996, Marty & Atchison 

1998, Shafer et al. 2002).  Recent studies show that the Ca2+ channel blocker nimodipine 

can attenuate MeHg-induced neurobehavioral changes in mice (Atchison & Narahashi 

1982).  Ca2+ channels facilitate neurotransmission in many excitable cells of the nervous 
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systems and blockage of these channels, along with others, can lead to severe defects 

in nervous system function.   

 

d.  Neurotransmission and the dopaminergic system 

MeHg disrupts neurotransmission and has multiple effects on ion channels (Sirois & 

Atchison 1996).  The toxicant can both increase and decrease excitatory synaptic 

transmission, blocking evoked neurotransmitter (NT) release while stimulating the 

spontaneous release of dopamine (DA), gamma-Aminobutyric acid (GABA), 

acetylcholine (ACh) and serotonin (Tuomisto & Komulainen 1983, Minnema et al. 1989, 

Juárez et al. 2002, Surmeier et al. 2010).  MeHg can also bind and inhibit NT receptors 

and the transporters involved in re-uptake (Atchison 2005).   

 Early observations in synaptosomes showed spontaneous release of several 

neurotransmitters (including DA) following MeHg exposure, and at the time, this was 

attributed to a general increase in membrane permeability (Minnema et al. 1989).  Later 

studies sought to explain the source of DA release.  Varying K+ and Ca2+ during MeHg-

evoked DA release from mouse striatal slices showed that, in addition to spontaneous 

release, K+ stimulated release is significantly enhanced (Kalisch & Racz 1996).  This 

suggests that membrane permeability cannot be the only source of increased DA 

release.  Much research has been performed to investigate these mechanisms in vivo.  

In live rats, MeHg can be perfused into the brain and direct collection and measurement 

of DA is carried out by high-performance liquid chromatography (HPLC).  In this system, 

an immediate response to MeHg exposure is DA release and increased extracellular DA 

(Faro et al. 1997).  The release was shown to be independent of Ca2+ and to originate 

from a source other than vesicles (Faro et al. 2002a).  There are some inconsistencies 

among systems and exposure conditions, as this experiment showed that KCl-stimulated 

release was inhibited by MeHg, rather than enhanced.  Further, vesicular stores play a 

significant role in DA release in MeHg-exposed PC12 cells (Tiernan et al. 2013).  N-

methyl-D-aspartate (NMDA) receptors and nitric oxide synthase (NOS) may play a role 

in the MeHg-induced DA release, likely through an indirect mechanism involving Ca2+ 

(Faro et al. 2002b).  

 There is also evidence for an interaction of MeHg with the dopamine transporter 

(DAT).  MeHg can inhibit DAT function but MeHg-evoked DA release was shown to be 

dependent on DAT (Faro et al. 2002a, Dreiem et al. 2009).  Increased extracellular DA 

can come from increased release or decreased reuptake.  MeHg may bind to the -SH 
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groups on DAT to block the transporter and inhibit the reuptake of DA.  GSH and 

cysteine prevent the MeHg-induced DA release, likely by binding MeHg and preventing 

its interaction with DAT (Bonnet et al. 1994, Faro et al. 2002a, Faro et al. 2005).  MeHg 

could also have a similar effect as amphetamine, causing DA efflux through DAT (Faro 

et al. 2002a, Leviel 2011).  

In addition to affecting DA release, MeHg can cause overall changes in DA 

signaling.  Decreased tyrosine levels and a reduction in the DA synthesis rate were 

observed in the brains of MeHg exposed rats (Sharma et al. 1982).  However, studies in 

PC12 cells showed that MeHg increased tyrosine hydroxylase (TH) activity and DA 

synthesis in short term exposures (Tiernan et al. 2013).  In mice, a diet containing MeHg 

led to decreased DA levels and impairment of DA-associated behaviors (Bourdineaud et 

al. 2011, Bourdineaud et al. 2012).  

Early life exposure to MeHg can cause lasting changes in the DA system.  

Gestational exposure to a single dose of MeHg in rats altered DA-related behavioral 

responses up to 22 days of age (Cuomo et al. 1984).  Female rats exposed to low levels 

of MeHg during pregnancy and lactation produced offspring with altered motor activity in 

the first month of life, decreased spatial learning ability at 2 months and impaired 

mobility at 6 months of age (Rossi et al. 1997, Giménez-Llort et al. 2001, Daré et al. 

2003).  Function of the DA system can be analyzed by its response to chemical 

challenges.  Amphetamine is a DA agonist and increases activity of the DA system.  

Exposure to MeHg during early postnatal development caused an increased sensitivity 

to amphetamine-induced behaviors later in life (Wagner et al. 2007).  Cocaine also 

targets the DA system, and rats exposed to MeHg in utero showed enhanced response 

to this drug, but not other drugs that target other NT systems (Reed & Newland 2009).   

Aside from DA signaling and NT release, the viability of dopaminergic cells can 

also be affected by MeHg.  The morphology of the DA neurons in primary 

mesencephalic neuronal cultures was affected by MeHg such that the number of 

neurites per cell was significantly decreased (Götz et al. 2002).  Furthermore, apoptotic 

indicators including decreased cell size and increased chromatin condensation were 

observed following MeHg exposure (Götz et al. 2002).  Embryonic stem cells can be 

differentiated in mixed neuronal cultures in vitro.  The addition of MeHg during this 

period of differentiation resulted in gene expression changes that decreased the number 

of cells that matured into dopaminergic neurons (Zimmer et al. 2011).  Together, these 
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studies indicate that DA neurons are sensitive to MeHg, both during early development 

and adulthood.     

 

e.  Protein synthesis and interactions 

MeHg impairs protein synthesis and can also bind proteins containing -SH groups 

(Syversen 1977, Clarkson 1987, Kasama et al. 1989, Atchison & Hare 1994).  Binding 

by MeHg can alter the function of enzymes or cause modifications to other proteins 

impairing their function (LoPachin & Barber 2006).  The accumulation of misfolded and 

damaged proteins contributes to the pathology of several neurodegenerative diseases 

and may also play a role in MeHg-induced cytotoxicity (Stefani & Dobson 2003).  The 

ubiquitin-proteasome system (UPS) is a cellular mechanism for targeting and degrading 

damaged proteins and several studies demonstrate a role of the UPS in protecting 

against MeHg toxicity (Hershko & Ciechanover 1998).  Enhancement of the UPS system 

promotes cell survival in the presence of MeHg as yeast overexpressing a ubiquitin-

conjugating enzyme (Cdc34), a ubiquitin binding protein (Rad23) or an F-box protein 

(Ymr258c) show enhanced resistance to the toxicant (Hwang et al. 2002, Hwang et al. 

2007, Hwang et al. 2009).  Furthermore, UPS genes are upregulated by MeHg exposure 

in mouse embryonic fibroblast (MEF) cells, supporting their role in inhibiting the toxicity 

(Yu et al. 2010). 

 One specific protein target of MeHg is tubulin.  Microtubules are a component of 

the cytoskeleton that help to maintain cellular structure, participate in the intracellular 

transport of vesicles and organelles and play an integral role in cytokinesis.  MeHg binds 

the sulfhydryl groups in tubulin monomers and results in depolymerization (Abe et al. 

1975).  This disruption of microtubules can inhibit mitosis, creating micronucleated or 

multinucleated cells (Sager & Syversen 1984).  Axonal transport of proteins is impaired 

by MeHg, likely due to the effects on microtubules (Abe et al. 1975).  Microtubules also 

participate in cell migration.  One of the key pathological findings of fetal Minamata 

disease was abnormal organization of the cerebellar granule cells, which suggested 

impaired migration.  Experimental evidence shows that MeHg impairs cell migration in 

vitro and in cerebellar organotypic slice cultures, inhibiting the migration of the cells from 

the external layer towards the internal layer (Kunimoto & Suzuki 1997, Sass et al. 2001, 

Mancini et al. 2009).  Further in vivo studies demonstrate that MeHg disrupts neuronal 

migration and patterning of the nervous system in developing Drosophila (Rand et al. 
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2009).  Tubulin is one well-characterized protein target of MeHg binding, but numerous 

other targets exist with a variety of cellular consequences. 

 

f.  MeHg-associated developmental effects  

In addition to the damage on the nervous system, in utero MeHg exposure can affect 

other cellular processes and structures.  MeHg exposure in mice during pregnancy 

resulted in the death of embryos, defects in those that survived and chromosomal 

aberrations (Curle et al. 1987).  Tail development in zebrafish is altered by MeHg 

exposure (Yang et al. 2010).  Fish embryos exposed to MeHg during development 

exhibit abnormalities in multiple systems from the skeleton to the nervous system (Weis 

2009).  One way that MeHg could be altering development is through a direct regulation 

of the transcription of genes involved in developmental pathways such as Enhancer-of-

split and Bearded complex genes in Drosophila (Rand et al. 2008).     

 

g.  MeHg-induced cell death 

The increases in ROS and intracellular Ca2+ following MeHg exposure likely contribute to 

the cell death associated with MeHg toxicity (Ceccatelli et al. 2010).  Both apoptosis and 

necrosis have been observed following MeHg exposure, and ROS and Ca2+ can play a 

role in both types of cell death (Castoldi et al. 2000, Orrenius et al. 2003, Zong & 

Thompson 2006).  Apoptosis may occur at lower MeHg concentrations, and necrosis 

often predominates at higher concentrations or prolonged exposure times (Kunimoto & 

Suzuki 1997, Castoldi et al. 2000).  The apoptotic cell death following MeHg exposure 

has been described in numerous systems, ranging from cell culture to rats and these 

studies have been extensively reviewed (Ceccatelli et al. 2010).  The pathways leading 

to apoptosis vary in the different models.  The classic pathway of cytochrome c release 

followed by activation of caspases has been observed (Tamm et al. 2006).  Also, 

lysosomal proteases may play a role, as do calpains activated by the increased 

intracellular Ca2+ (Ceccatelli et al. 2010, Tofighi et al. 2011).  MeHg induces apoptosis 

and increases Bax, Bad, cytochrome c and caspases 12, 9, 8 and 3 (Usuki et al. 2008, 

Cuello et al. 2010, Sokolowski et al. 2011).  The mechanism of MeHg-induced cell death 

may vary depending upon cell type, however multiple mechanisms can also be activated 

simultaneously in a single cell (Ceccatelli et al. 2010).   

 

 



 14 

4.  Genetic studies associated with MeHg toxicity 

Although a genome-wide reverse genetic screen for modulators of MeHg toxicity in an 

animal has not been previously reported, in yeast, screens of genomic libraries have 

identified several genes that when overexpressed facilitate resistance to MeHg.  

Overexpression of CDC34/UBC3 (a ubiquitin conjugating enzyme) or Ymr258c (an F-

box protein) may increase resistance to MeHg by enhancing the function of the UPS and 

removal of damaged proteins or proteins that contribute to MeHg toxicity (Hwang et al. 

2009, Furuchi et al. 2002).  In another screen, MeHg-resistant clones were identified to 

have increased expression of GFAT (L-glutamine:D-fructose-6-phosphate).  The GFAT 

enzyme is essential for amino acid biosynthesis and may be inhibited by MeHg, so 

increased expression of the protein could attempt to compensate for the impaired 

function (Miura et al. 1999).  Bop3 and proteins that interact with it were also found to 

increase resistance to MeHg, but the function of Bop3 and the mechanism of resistance 

is unknown (Miura et al. 1999, Furuchi et al. 2002, Hwang et al. 2005, Hwang et al. 

2009).  In human cell culture (HEK293 cells), a small interfering RNA (siRNA) screen of 

8,500 genes revealed a single gene, PIGB, for which knockdown made the cells 

resistant to MeHg (Hwang et al. 2007).  PIGB encodes the phosphatidylinositol glycan 

class B, which is involved in the synthesis of membrane-associated 

glycosylphosphatidylinositol (GPI) anchors.  The mechanism by which PIGB may 

contribute to MeHg toxicity had not yet been identified.  More recently, an siRNA screen 

targeting nearly 50,000 human mRNA transcripts in HEK293 cells revealed that 

PRKAA1 (a subunit of adenosine monophosphate-activated protein kinase (AMPK)) is 

also involved in MeHg toxicity (Hwang et al. 2010).  The AMPK activator (AICAR) 

suppressed MeHg-induced cell death, suggesting that AMPK and its role in regulating 

cellular energy metabolism may promote survival in the presence of MeHg.  These 

unbiased, screen-based studies have implicated signaling pathways in MeHg toxicity 

that may not have been identified through targeted studies.     

 More mechanistic studies have also identified genes associated with MeHg 

toxicity.  As the mitochondria and ROS have been implicated in MeHg toxicity, the role of 

genes associated with the ETC were analyzed in response to MeHg in yeast.  Loss of 

Rip1, part of complex III, increased resistance to MeHg, however this effect was not 

observed for any other components of complex III, suggesting that Rip1 may contribute 

to MeHg-induced ROS production through a novel function independent of the ETC (Lee 

et al. 2009).  To determine if attenuation of ROS may inhibit MeHg toxicity, several 
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antioxidant enzymes were overexpressed in HeLa cells, and it was shown that increased 

expression of manganese superoxide dismutase (Mn-SOD) increased the resistance to 

MeHg (Naganuma et al. 1998).  Pharmacological inhibition of another antioxidant 

enzyme, GPx1, in mitochondria isolated from mouse brain and human SH-SY5Y cells 

significantly increased MeHg toxicity (Franco et al. 2009).  Overexpression of GPx1 in 

cerebellar granule cells increased the resistance to MeHg (Farina et al. 2009).  

Considering that hydrogen sulfide (H2S) can provide the -SH group for detoxification of 

MeHg and that the enzyme cystathionine B-synthase (CBS) catalyzes the production of 

H2S, the role of CBS in MeHg toxicity was investigated.  In SH-SY5Y cells, siRNA 

knockdown of the CBS gene was found to enhance MeHg-induced cell death and 

overexpression reduced toxicity in the presence of MeHg, suggesting that this gene 

contributes to cellular protection against MeHg (Yoshida et al. 2011).   

 Gene expression studies in several different systems have provided insight into 

the cellular response to MeHg.  Microarray analysis of mouse embryonic fibroblast 

(MEF) cells exposed to MeHg or the proteasome inhibitor MG132 showed increases in 

genes associated with the UPS/ubiquitin system, phase II enzymes, cell cycle regulation, 

and genes associated with PD (Yu et al. 2010).  Microarray analyses have also been 

used to characterize the gene expression profile in the brains of mice exposed to MeHg 

in utero (Glover et al. 2009).  Serial analysis of gene expression (SAGE) revealed genes 

associated with MeHg in zebrafish muscle including ribosomal genes, protein synthesis, 

ETC, mitochondria, ER, detoxification and stress response (Cambier et al. 2010).  A 

further study investigated the gene expression changes in zebrafish brain following a 

chronic exposure to MeHg at environmentally relevant doses (Cambier et al. 2012).  

Analysis of protein expression in the brain of the Atlantic cod showed alterations in 

proteins associated with the mitochondria, tubulin, oxidative stress and calcium (Berg et 

al. 2010).  One of the most significant changes was in the protein pyridoxine kinase, 

which plays a role in the synthesis of several neurotransmitters, including DA (Berg et al. 

2010).  Insight into the mechanisms of how MeHg affects development was gained by 

microarray analysis of gene expression during the specific time period of neural tube 

closure (Robinson et al. 2010).  Comparison of the various microarray data sets shows 

genes associated with mitochondria, ER, the UPS and stress response are commonly 

upregulated by MeHg exposure.  The microarray studies are consistent with other 

reports of the mechanisms of MeHg toxicity, suggesting that microarray analysis may be 

a useful method for identifying novel MeHg-associated genes.  
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5.  Selenium inhibits MeHg toxicity   

Identifying approaches to inhibit the toxicity of a chemical may contribute to 

understanding the mechanisms of toxicity.  Studies show that supplementing selenium 

(Se) is one method of protecting against MeHg toxicity.  Se is a trace element that is 

required for normal cellular function and is a cofactor of several enzymes.  Se 

supplementation can reduce MeHg toxicity in whole animals and it has been shown that 

co-exposure prevents toxicant-associated morphological changes to the kidney and 

animal death (Parízek & Ostádalová 1967).  Se reduced or delayed the onset of 

behavioral deficits induced by chronic exposure to MeHg, indicating Se can also inhibit 

the neurotoxicity of MeHg (Heath et al. 2010).   

 The affinity of Hg for Se is approximately a million times higher than its affinity for 

sulfur (i.e. -SH groups), therefore in biological systems Hg and Se are often tightly bound 

(Ralston & Raymond 2010).  It was first believed that a biological function of Se was to 

sequester the Hg, however recent studies suggest that Hg sequesters the Se.  The 

excess Se is beneficial by overcoming the deficit to keep selenoenzymes functioning 

properly (Ralston & Raymond 2010).  Selenoproteins are often antioxidants or 

participate in redox balance, including glutathione peroxidases and thioredoxin 

reductases (Gromer et al. 2005).  The interaction of Hg and Se suggest several other 

mechanisms by which Se could be decreasing the toxicity of MeHg (Khan & Wang 

2009).   

 The Hg-Se complex can also form another species with glutathione, (GS)5(HgSe) 

core (Gailer et al. 2002).  The similar [(GS)2AsSe]- complex promotes the excretion of 

arsenic (As) through the liver, and the same could be true for the Hg complex (Carew & 

Leslie 2010).  Furthermore, the export of the As complex is mediated by the multidrug 

resistance protein MRP2, which also transports the MeHg-GSH complex.  As the 

reaction between Hg and Se can occur in the absence of a biological system, it is 

possible that the Hg-Se complex is formed in the environment thus limiting the uptake of 

MeHg.  In rice plants, high Se levels in the soil and plants correlates with low MeHg 

content (Zhang et al. 2012).  Although the protective effect of Se against MeHg toxicity is 

well documented, the mechanism(s) contributing to this effect are still debated and a 

better understanding of the interaction may provide opportunities to reduce the effects of 

MeHg on the environment or human health.   
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B.  Parkinson’s disease 

1.  Background 

PD is an age-related neurodegenerative disorder that affects about 1-2% of the 

population over 65 and the prevalence is higher in those over 85 (Nuytemans et al. 

2010).  PD presents clinically with a set of symptoms including tremor, rigidity, 

bradykinesia, postural instability, flexed posture and the freezing phenomenon (Fahn 

2008, Jankovic 2008).  Other symptoms include depression, sleep disorders and 

impairment of cognitive and sensory function (Jankovic 2008).  Pathologically, PD is 

defined by the loss of DA neurons in the substantia nigra pars compacta (Damier et al. 

1999, Petrucelli & Dickson 2008).  Lewy bodies and Lewy neurites, which contain α-

synuclein, are also found in the brain of people with PD, and the lesions resulting from 

these inclusions spread through the brain as the disease progresses (Braak et al. 2003).  

Currently, there is no cure for PD.  Treatment involves either drug therapy to increase 

DA synthesis, such as L-DOPA, or deep brain stimulation.  Both options only relieve the 

symptoms and do not inhibit the progression of the disease, and the efficacy of 

treatment can decrease over time (Fahn 2008).  

The precise etiology of PD remains unknown, but it is likely that both genetic and 

environmental factors contribute to the development of most cases of PD.  Mutations in 

several genes have been associated with the development of PD, however less than 

10% of cases are classified as the “familial” (inherited) form of the disease (Corti et al. 

2011).  The most well-known and well-studied genes are α-synuclein, parkin, PINK1, DJ-

1, and LRRK2 (Nuytemans et al. 2010, Vistbakka et al. 2012).  The majority of PD cases 

(over 90%) are considered sporadic or idiopathic.  Similar molecular mechanisms may 

be associated with DA neuron cell death, whether the cause is genetic or environment-

related, and include mitochondrial dysfunction, oxidative stress and proteasomal 

dysfunction (Thomas & Beal 2011).   

There are numerous environmental factors that may contribute to the 

development of PD.  Pesticides, herbicides and insecticides have all been positively 

correlated with the disease, and the exposures can be occupational by those who use 

them or due to living on a farm and drinking well water (Freire & Koifman 2012).  

Specifically, the use of paraquat and rotenone is positively correlated with PD (Tanner et 

al. 2011).  Other environmental and industrial contaminants can also contribute to PD:  

polychlorinated biphenyls (PCBs), the solvent trichloroethylene (TCE), and metals 

including lead, copper and MeHg (Petersen et al. 2008, Caudle et al. 2012).         
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2.  MeHg and Parkinson’s disease 

Epidemiological evidence suggests a correlation between exposure to MeHg and the 

development of PD.  The prevalence of PD in people from the Faroe Islands is 

approximately two times higher than the prevalence expected in other populations and it 

is thought that the diet of these native people may explain the increased risk (Petersen 

et al. 2008).  The traditional Faroe diet consists of large amounts of pilot whale meat and 

blubber, which contain high levels of MeHg and PCBs.  Although prenatal MeHg 

exposure was not correlated with the risk of PD, a study comparing the dietary history of 

PD patients with normal controls showed that there was a significant association 

between the adulthood consumption of whale meat and blubber and the development of 

PD (Petersen et al. 2008).  These results, as well as several cohort studies of children 

born in the Faroes, have led to the recommendation that pilot whale should no longer be 

consumed in any amounts (Weihe & Joensen 2012).  Occupational PCB exposure has 

been associated with an increased incidence of PD, so the presence of PCBs along with 

MeHg in the Faroe diet may contribute to the higher prevalence of PD observed in this 

study (Steenland et al. 2006).  However, several other reports support the role of MeHg 

in PD independent of PCBs (Ohlson & Hogstedt 1981, Ngim & Devathasan 1989, 

Finkelstein et al. 1996, Seidler et al. 1996). 

 A study based on the direct measurement of Hg content, rather than interviews 

or self-reporting of past exposure, showed a significant and dose dependent correlation 

between blood and urinary Hg levels and PD (Ngim & Devathasan 1989).  A single case 

study of a female dentist with parkinsonism suggested a link between Hg and 

parkinsonism.  Chelation therapy with d-penicillamine resulted in an increase in urinary 

Hg excretion and sustained improvement of the parkinsonism (Finkelstein et al. 1996).  

In 1981 a small case-control study was carried out on PD patients and a control 

population.  Questionnaire reporting revealed that 6 of the PD patients, but only 2 

controls, had been exposed to mercury (organic and inorganic were both included) 

(Ohlson & Hogstedt 1981).  Due to the small sample size the results were not 

statistically significant, but these findings are supportive of a possible connection 

between the metal and the disease.  A much larger case-control study in Germany 

surveyed several possible risk factors for PD, including exposure to chemicals and 

heavy metals.  This study detected an increase in the odds ratio for occupational 

mercury exposure (not significant) and a positive association between dental amalgams 

and PD (Seidler et al. 1996). 
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 Identifying correlations between toxicant exposure and the development of 

neurodegenerative diseases is challenging due to varied exposure conditions and the 

lack of accurate reporting methods (Cannon & Greenamyre 2013).  Furthermore, early 

life exposures to environmental toxicants can contribute to neurodegenerative disorders 

later in life, but a long latency period greatly impairs the ability to establish a causal 

relationship (Weiss et al. 2002, Trasande et al. 2005).  Although the epidemiological 

evidence is inconclusive, the similarities between the cellular effects of MeHg toxicity 

and the dysfunctions that contribute to PD are supportive of an association between the 

toxicant and the disease.  Oxidative stress is involved in DA neuron cytotoxicity, and 

results from sources including dysfunctional mitochondria, reduced ability to buffer ROS 

and altered DA metabolism (Dawson & Dawson 2003, Drechsel & Patel 2008, Zeevalk 

et al. 2008).  Oxidative stress is one of the well-documented effects of MeHg exposure.  

In PD, mitochondrial dysfunction is associated with both genetic and environmental 

causes of the disease and the mitochondria may be the organelle most highly damaged 

by MeHg (Thomas & Beal 2011).  MeHg disrupts Ca2+ signaling and the sustained 

elevation of intracellular Ca2+ in DA neurons due to autonomous pacemaking may 

contribute to the selective sensitivity of these cells (Surmeier et al. 2010).  There is also 

evidence of ER stress in both PD and MeHg toxicity (Hoozemans et al. 2007, Zhang et 

al. 2013).  There is an emerging role of the immune response in the progression of PD 

and MeHg can alter the function of glia and astrocytes (Bassett et al. 2012).  Although 

Hg was not included in the study, several other metals were shown to contribute to the 

formation of the α-synuclein fibrils that form Lewy bodies and are toxic to DA neurons 

(Uversky et al. 2001).  Finally, PD is an age-related disorder with the incidence 

increasing dramatically in older individuals.  MeHg accumulates in the brain and other 

tissues, which could allow for a compounding effect that slowly increases over time 

before resulting in observable damage.         

 The UPS is another molecular target of both MeHg and PD (Yu et al. 2010).  Two 

of the genes that cause familial PD are components of the UPS; parkin is a ubiquitin 

ligase and UCHL1 is a ubiquitin hydrolase.  Function and activity of the UPS is inhibited 

in several PD models (Lim & Tan 2007).  This could lead to accumulation of damaged or 

misfolded proteins (ex. α-synuclein) that contribute to the cytotoxicity.  In the brains of 

human PD patients, a gene called SKP1A, which is associated with ubiquitin-mediated 

protein degradation was significantly decreased in comparison to healthy controls.  This 

led to the development of a new model for sporadic PD in which small hairpin RNA 
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(shRNA) knockdown of SKP1A confers cell death in a substantia nigra (SN)-derived cell 

line (Mandel et al. 2009).  SKP1A is an F-box binding protein and a member of the SCF 

ubiquitin ligase complex, similar to the yeast gene Ymr258c that confers resistance to 

MeHg (Hwang et al. 2009).  Microarray analysis in MEF cells exposed to MeHg identified 

20 genes involved in PD-related pathways, including the ubiquitin hydrolase Uchl1 (Yu et 

al. 2010).  These studies suggest that the UPS plays a role in MeHg toxicity and PD, and 

the pathologies may involve common molecular pathways.  

 

C.  Nrf2   

Cellular stress results in increased expression of genes and proteins that function to 

minimize the insult and promote survival.  In the case of oxidative stress, genes 

containing an antioxidant response element (ARE) are induced by the transcription 

factor nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or Nrf2) (Kensler et al. 2007).  

Nrf2 binds to the ARE in the promoter of the target gene and increases the transcription 

of the gene.  Genes encoding phase II detoxification enzymes (ex. glutathione s-

transferases (GSTs)), antioxidant enzymes (ex. heme oxygenase 1 (HO-1)) and phase 

III enzymes (ex. MRPs) are under the control of Nrf2 (Jaiswal 2004).  Nrf2 is activated 

during oxidative and ER stresses and by a wide range of insults including xenobiotics, 

heavy metals, natural compounds, pharmacological agents and radiation (Kensler et al. 

2007).  This diversity in inducers implicates Nrf2 in a variety of conditions and disease, 

from cancer to neurodegenerative diseases to heavy metal toxicity, and the transcription 

factor plays a significant role in the cellular response to MeHg.      

 

1.  MeHg and Nrf2 

MeHg exposure can activate Nrf2 and expression of Nrf2 inhibits MeHg toxicity in 

several cell types.  In SH-SY5Y cells, overexpression of Nrf2 increases resistance to 

MeHg and siRNA mediated knockdown of Nrf2 results in sensitivity to MeHg (Toyama et 

al. 2007).  Nuclear Nrf2 levels are higher following MeHg exposure, and levels of Nrf2 

target proteins in whole-cell extracts also increased (Toyama et al. 2007).  In a whole 

animal model, Nrf2 -/- hepatocytes were more sensitive to MeHg-induced cytotoxicity 

(Toyama et al. 2007).  Nrf2 is also induced following MeHg exposure in astrocytes.  

MeHg exposure increased nuclear localization of Nrf2, ARE-driven luciferase activity and 

the expression of three Nrf2 target genes (Wang et al. 2009a).  Reduced Nrf2 activity, 

via inhibition of PI3 kinase (an upstream regulator of Nrf2), decreased cell viability in the 
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presence of MeHg (Wang et al. 2009a).  MeHg exposure in microglia increased nuclear 

Nrf2 and expression of its target genes as well (Ni et al. 2010).  shRNA-mediated 

knockdown of Nrf2 sensitizes the microglia to MeHg-induced cell death (Ni et al. 2010).  

Although Nrf2 is involved in the MeHg response in both microglia and astrocytes, the 

nuclear translocation and upregulation of target genes occurs more quickly and at lower 

MeHg concentrations in microglia and the sensitizing effect of Nrf2 knockdown is also 

more dramatic in these cells (Ni et al. 2011).  Nrf2 is conserved across species and in 

Drosophila overexpressing Nrf2, the hatching rate in the presence of MeHg is greatly 

increased relative to wild type (WT) flies (Rand et al. 2009).          

In addition to genetic manipulation of Nrf2, pharmacological and chemical 

activators of the transcription factor can also inhibit MeHg toxicity.  Carbon monoxide 

(CO) (a product of the enzymatic reaction mediated by HO-1) activates Nrf2, and 

through this pathway, is able to reduce the toxicity of MeHg in SH-SY5Y cells (Toyama 

et al. 2010).  Two different Nrf2 activators, 6-methylsulfinylhexyl isothiocyanate (6-HITC) 

and sulforaphane (SFN), can inhibit MeHg toxicity in primary mouse hepatocytes, and 

SFN decreases the neurotoxicity and mortality induced by MeHg in mice (Toyama et al. 

2011a).    

Gene expression studies suggest that Nrf2 is induced and regulates transcription 

following MeHg exposure.  Microarray analysis of SH-SH5Y cells exposed to MeHg 

indicated that 4 out of the 15 genes upregulated over 10-fold have been shown to be 

regulated by Nrf2 (Toyama et al. 2011b).  Nrf2-regulated genes are also among the 

transcripts increased in Atlantic cod following MeHg exposure (Yadetie et al. 2013).   

 

2.  Role of Nrf2 in PD 

Nrf2 is activated in response to oxidative stress.  Oxidative stress may contribute to the 

DA neuron cell death that occurs in PD, suggesting that Nrf2 may be an attractive 

therapeutic target for the disease (Johnson et al. 2007).  Studies have shown that Nrf2 is 

activated and inhibits 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced 

cytotoxicity in a mouse model of PD (Burton et al. 2006).  Overexpression of Nrf2 in 

astrocytes reduces MPTP toxicity (Chen et al. 2009).  Nrf2 knockout mice also had a 

greater loss of DA neurons following MPTP and 6-hydroxydopamine (6-OHDA) exposure 

than WT (Burton et al. 2006, Jakel et al. 2007, Innamorato et al. 2010).  SFN can reduce 

the striatal DA neuron loss caused by MPTP and 6-OHDA in WT mice (Siebert et al. 

2009, Jazwa et al. 2011).  Another Nrf2 activator, tert-Butylhydroquinone (tBHQ), 
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decreases 6-OHDA-induced cytotoxicity in mouse neuronal cells (Jakel et al. 2007).  

Nrf2 overexpression also inhibits the toxicity induced by α-synuclein in a Drosophila PD 

model (Barone et al. 2011).  In addition to the animal and cell culture evidence, 

epidemiological data shows that a variation in the promoter of NFE2L2 (the gene coding 

for Nrf2) is associated with delayed onset and reduced risk of PD (von Otter et al. 2010).  

As this genetic variant of the Nrf2 gene is suggested to suppress the disease, this 

change in the promoter sequence is likely to result in increased expression or activity of 

Nrf2. 

The oxidative stress associated with DA neuron degeneration is likely due in part 

to DA auto-oxidation producing H2O2 and DA quinones, both of which can contribute to 

the induction of Nrf2 transcriptional activity (Shih et al. 2007).  Nrf2 activity has also been 

shown to decline with age, and as PD is an age-related disease, this decline may 

contribute to the sensitivity of the neurons (Suh et al. 2004, Sykiotis & Bohmann 2010).  

Nrf2 activating compounds have been shown to inhibit DA neuron toxicity in cell culture 

models, suggesting the possible utility of Nrf2 as a therapeutic target for PD (Cuadrado 

et al. 2009).  DA agonists with catechol rings may disrupt the association between 

Nrf2/Keap1 and promote Nrf2 activity, in addition to their role in supplementing 

endogenous DA.  GSK-3B inhibitors may also stimulate Nrf2 mediated transcription and 

increase oxidative stress resistance (Cuadrado et al. 2009).  Deprenyl is a candidate PD 

therapeutic that offers neuroprotection via multiple mechanisms, including the activation 

of Nrf2 and its antioxidant target genes (Nakaso et al. 2006).              

 

3.  Expression and regulation of Nrf2 

The activity of Nrf2 is tightly regulated to allow rapid increases in gene expression in 

response to stress.  This regulation is achieved mainly at the level of Nrf2 localization 

and protein turnover, with Nrf2 sequestered in the cytoplasm under non-stressed 

conditions by the protein kelch-like ECH-associated protein 1 (Keap1) (Itoh et al. 1999).  

Besides the physical association of Nrf2 with Keap1, which is further enhanced by 

Keap1 binding to actin, Keap1 also acts as an adaptor protein to facilitate the 

ubiquitination and eventual proteasomal degradation of Nrf2 (Zhang et al. 2004a, 

Kensler et al. 2007).  Upon stress, the interaction between Keap1 and Nrf2 is disrupted, 

allowing accumulation of higher amounts of Nrf2, which can translocate to the nucleus 

(Nguyen et al. 2009).  The interaction between Keap1 and Nrf2 can be disrupted by 

electrophiles, including MeHg.  Keap1 is rich in cysteines and the binding of 
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electrophiles to the reactive SH groups causes the dissociation from Nrf2 (Dinkova-

Kostova et al. 2002, Nguyen et al. 2009).  Nrf2 is then free to translocate to the nucleus, 

via a process involving its nuclear localization sequence (NLS) and importin α and 

importin β (Theodore et al. 2008). 

 Keap1 is a key player in controlling Nrf2, yet other mechanisms may also 

participate in the regulation of the localization or transcriptional activity of Nrf2.  

Mammalian studies have implicated the histone deacetylase (HDAC) SIRT1 in the 

regulation of Nrf2, such that overexpression or inhibition of SIRT1 affected the binding of 

Nrf2 to the ARE, Nrf2 regulated transcription and nuclear localization (Kawai et al. 2011).  

SIRT1 inhibitors increase Nrf2 activity, suggesting that increased acetylation is a positive 

regulator of the transcription factor.  Consistent with these studies, the histone 

acetyltransferase (HAT) p300/CBP acts as a transcription co-activator, and can directly 

acetylate Nrf2 to enhance the binding to target genes (Sun et al. 2009, Kawai et al. 

2011).  Specific protein kinases are also involved in both inhibition and enhancement of 

Nrf2 activity.  GSK-3B phosphorylates Fyn and Fyn phosphorylates Nrf2 resulting in 

nuclear export of Nrf2 and an inhibition of the response to oxidative stress (Jain & 

Jaiswal 2007, Rojo et al. 2008b).  In contrast, phosphorylation of Nrf2 via MAPK 

pathways, including those involving ERK and p38, lead to increased activity of Nrf2 (Yu 

et al. 2000, Zipper & Mulcahy 2000).  

    

4.  The role of Nrf2 and GSH in cellular toxicity    

The expression of several of the genes involved in the GSH system is increased by 

exposure to xenobiotics under the regulation of Nrf2 (Kensler et al. 2007).  The first 

evidence that Nrf2 was a regulator of this process was in Nrf2 knockout mice, which 

showed a reduced GST response in the presence of butylated hydroxyanisole (BHA) 

compared to WT mice (Itoh et al. 1997).  A more comprehensive identification of genes 

regulated by Nrf2 involved microarray analysis of WT and Nrf2 -/- mice with or without 

SFN treatment (Thimmulappa et al. 2002).  Several GSTs were identified, along with 

other antioxidant genes that had been previously linked to Nrf2 and also new genes.  

Chromatin immunoprecipitation sequencing (ChIP-Seq) provided direct evidence that 

Nrf2 can bind the ARE in several GST genes (Malhotra et al. 2010). 

 Although GSH plays a role in the detoxification of numerous xenobiotics, it is 

partucularly important for MeHg due to the high affinity of Hg compounds for the -SH 

group (Sarafian et al. 1996, Clarkson & Magos 2006).  The -SH group on GSH can bind 
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MeHg, preventing MeHg from attacking other molecules and proteins.  Further, the GS-

MeHg complex is a substrate for ATP binding cassette (ABC) transporters, expediting 

the excretion of MeHg from the cell (Sarafian et al. 1996).  Conjugation with GSH is a 

important route of MeHg excretion from astrocytes (Fujiyama et al. 1994).  Cell lines with 

increased GSH levels are more resistant to MeHg toxicity (Miura & Clarkson 1993).     

 

5.  Nrf2 and Glutathione S-transferases  

Conjugation of GSH to xenobiotics can occur in a reaction catalyzed by GSTs (Forman 

et al. 2009).  GSTs belong to the phase II class of cellular detoxification enzymes.  This 

conjugation of electrophiles to the reduced GSH molecule typically inactivates and 

prepares the electrophile for excretion (Wilce & Parker 1994, Armstrong 1997).  As 

organisms are confronted with a multitude of stressors and toxicants, they have also 

developed a large number of detoxification mechanisms (Hayes et al. 2005).  Organisms 

usually express several GSTs so they can react to a variety of substrates in different 

locations.  GSTs have been grouped into seven species-independent classes based on 

sequence similarity (Hayes et al. 2005). GST expression is dependent upon sex, age 

and tissue type and this is controlled primarily though transcriptional regulation by Nrf2 

among other factors (Eaton & Bammler 1999).  There are numerous substrates for 

GSTs, including environmental toxicants, pesticides, drugs and endogenous molecules 

(Eaton & Bammler 1999).   

 

6.  Nrf2 and heat shock proteins   

Heat shock proteins (HSPs) are proteins induced in response to cellular stress and 

function to minimize damage to the cell.  They typically act as molecular chaperones 

either assisting in the localization or transport of another protein or binding to damaged 

proteins and targeting them for degradation in the proteasome or to another organelle for 

repair (Samali & Orrenius 1998a).  HSPs are induced following exposure to thermal 

stress, oxidative stress and heavy metals, including Hg (Sanders 1993, Stacchiotti et al. 

2004, Yu et al. 2006).  These proteins mitigate cellular insults and have a diverse range 

of functions, including promoting protein folding, regulating protein trafficking, stabilizing 

proteins and regulating protein degradation (Sarafian et al. 1996).  The induction of 

HSPs is under the control of heat shock factors (HSFs) that translocate to the nucleus, 

bind to heat shock elements (HSEs) in the genome and upregulate transcription of HSPs 

(Samali & Orrenius 1998a).  
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7.  Nrf2 and multidrug resistance proteins 

Nrf2 can also regulate the expression of phase III detoxification enzymes including 

MRPs.  In primary rat hepatocytes, MRP1 and MRP2 levels were decreased in Nrf2-/- 

cells and increased in cells with decreased Keap1 expression (Toyama et al. 2007).  

One of the main routes of MeHg excretion is through MRPs and, following exposure, Hg 

content was correlated with the level of MRP expression (Toyama et al. 2007).  Nrf2 

activators can inhibit MeHg toxicity, both by increasing expression of genes to combat 

ROS and by increasing the transporters necessary for MeHg export.  Isothiocyanates, 

which activate Nrf2, increased cell viability in the presence of MeHg and decreased the 

total Hg content in vitro.  The effect was also observed in vivo, as Hg was decreased in 

the brain and liver of mice (Toyama et al. 2011a).  MRP1 expression is decreased by 

Nrf2 siRNA, and some tumor tissues that had high levels of Nrf2 were found to have 

high levels of MRP1 (Ji et al. 2013).   

 

D.  MRPs 

ABC transporters are proteins that utilize energy from ATP to transport substances 

across cellular membranes, often against a concentration gradient.  They are 

characterized by the presence of (at least) two membrane-spanning domains and two 

nucleotide-binding domains (NBDs), but differ by substrate specificity and localization or 

tissue expression (Sharom 2008).  NBDs are located in the cytoplasmic loops of the 

protein and contain conserved sequences referred to as the Walker A and Walker B 

motifs and a third sequence between them called Walker C or the ABC signature 

sequence (Fig. 2).  The hydrophobic transmembrane domains form the opening that 

allows the substrate to pass through the membrane.  The Walker A, B and C motifs are 

involved in ATP binding and ATPase activity to provide the energy for substrate 

transport (Dean et al. 2001, Jones & George 2002).   The ABC transporters are grouped 

into classes based on the overall structure and phylogenetic analysis.  Proteins in the 

ABCC class are termed MRPs.  Some in this class have an additional N-terminal 

transmembrane domain (for a total of 3) and the typical two NBDs (Fig. 2). 
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Figure 2.  Diagram of an MRP transporter.  The protein contains at least 2 
transmembrane domains (TMD) and two nucleotide-binding domains (NBD).  The NBDs 
participate in ATP hydrolysis and contain three conserved sequences, termed Walker A, 
Walker B and Walker C.  Shown is a member of the ABCC/MRP class of transporters 
that contains an extra transmembrane domain (TMD 0).   
 

 

 The classes of ABC transporters also differ by substrate.  The ABCC/MRP family 

transports several different drugs (anticancer agents, antibiotics, etc.), endogenous 

molecules, metalloids, pesticides and toxins, but the preferred substrates appear to be 

GSH conjugates of endogenous and exogenous compounds (Dallas et al. 2006, Sharom 

2008).  Functionally, ABC transporters are often thought of in the context of multidrug 

resistance and cancer chemotherapeutics.  However their ability to transport toxins, 

pesticides, metals and GSH-conjugated metabolites gives them an important role in 

detoxification and removal of these compounds from the cell (Sharom 2008).  GSH is 

required for the transport of certain substrates.  MRP1 was shown to transport As(GS)3 

but not unconjugated arsenite and GSTπ was closely associated with this process, likely 

facilitating the conjugation of GSH to As and therefore increasing export (Leslie et al. 

2004).  

 

1.  Expression, function and regulation of MRPs 

MRPs are widely expressed in the body and their function has been characterized in 

several organs including liver, kidney, gut, pancreas, bladder, muscle, skin and brain 

(Borst et al. 2000).  MRPs can be expressed on both sides of polarized epithelial cells, 

and the different isoforms may facilitate either the uptake or the excretion of their 

substrates (Dallas et al. 2006).  For example, MRP1 is localized to the basolateral 

membrane in the liver and likely participates in uptake, but MRP2 is found primarily at 

NBD 1 NBD 2 

TMD 0 TMD 1 TMD 2 

intracellular 

extracellular 

ATP ADP+Pi 
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the apical membrane and transports its substrates into the bile for excretion (Borst et al. 

2000, Dallas et al. 2006).  In the blood brain barrier (BBB), MRP1, 4 and 5 are 

expressed on the apical membrane and may serve to prevent compounds from crossing 

into the central nervous system (CNS) (Zhang et al. 2004b).  MRPs can be expressed in 

tumor tissues, but overexpression of another family of ABC transporters, the multiple 

drug resistance proteins (MDRs), is more highly implicated in chemoresistance to cancer 

therapeutics (Sharom 2008).   

 MRPs play a crucial role in uptake and excretion, especially in the organs that 

facilitate these processes (ex. liver, kidney, gut), however their role in the CNS is largely 

undefined (Dallas et al. 2006).  Although much information has been gathered about the 

expression of MRPs in the CNS, there seems to be considerable variability between 

species and between studies.  Dallas et al. 2006 has provided a comprehensive 

summary of expression studies and concludes that either mRNA or protein of all MRPs 

(1-9) are expressed in some part of the CNS in at least one species (Dallas et al. 2006).  

Hartz and Bauer also provide an in depth review of MRP expression in the CNS and at 

least some evidence is presented for expression of MRP1 – 8 in either brain capillary 

endothelial cells, glia or neurons (Hartz & Bauer 2011).  Functional characterization of 

MRPs in the BBB suggests a role for inhibiting the accumulation of substances in the 

CNS, however information regarding the function of MRPs in glia and astrocytes is more 

limited, and almost nonexistent in neurons (Dallas et al. 2006).  The exception is MRP1, 

which has been documented in brain cancer to be expressed and involved in 

chemoresistance (Dallas et al. 2006).  The first study in non-diseased tissue to identify 

MRP1 expression (mRNA and protein) was performed in rat neurons (Falcão et al. 

2007).  They also show that the MRP1 is functional as inhibition by MK571 increases the 

toxicity of unconjugated bilirubin (Falcão et al. 2007).  

As the expression of MRPs is quite varied between cell types, there are multiple 

mechanisms that contribute to their regulation.  Nrf2 regulates the expression of phase II 

and phase III enzymes, including GSTs and MRPs.  Several antioxidants and Nrf2 

activators can increase the expression of MRPs (Kauffmann et al. 2002, Shinkai et al. 

2006, Vollrath et al. 2006).  The involvement of Nrf2 in MRP activation has also been 

shown genetically.  In Nrf2 -/- mouse fibroblasts, the basal expression level of MRP1 is 

significantly decreased compared to WT, and the induction of MRP1 by diethyl maleate 

is also abolished (Hayashi et al. 2003).  Like GSTs, ARE sequences can be found in the 

promoter region of MRP2 and other MRPs (Vollrath et al. 2006).  A recent study has 
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identified two ARE sequences in the promoter of MRP1, and both play a role in Nrf2-

mediated induction of the gene (Ji et al. 2013).         

Other signaling pathways can also contribute to the regulation of MRP 

expression.  JNK, c-Jun, MAPK, STAT3, NF-KB, TNF-R1 and AP-1 have been 

implicated in the regulation of ABC transporter function or expression (Miao & Ding 

2003, Dreuw et al. 2005, Zhou et al. 2006, Ronaldson et al. 2008, Hartz & Bauer 2010).  

Drugs or endogenous compounds that serve as ligands for nuclear receptors can alter 

the expression of ABC transporter genes (van de Water et al. 2005, Ronaldson et al. 

2008).  In the absence of exogenous stimuli, inflammation and other pathological 

conditions can modulate MRP expression (van de Water et al. 2005).    

 

2.  MRPs and MeHg toxicity 

MeHg has been shown to bind tightly with thiol groups, including those on the cysteine of 

GSH, and ABCC transporters have been previously associated with the export and 

detoxification of MeHg.  The main focus has been on the family member ABCC2/MRP2 

and its expression in the liver and kidneys.  MRP2 was shown to participate in the 

transport of a NAC-MeHg complex to increase urinary excretion in rats (Madejczyk et al. 

2007). Other chelating agents, DMPS and DMSA, also increase the excretion of MeHg 

through the kidneys and it was demonstrated that this effect is greatly reduced in MRP2 

knockout rats (Zalups & Bridges 2009).  DMPS/DMSA can also reduce the fetal burden 

of MeHg following maternal exposure, and the elimination of Hg from fetal tissue is 

dependent on MRP2 (Bridges et al. 2009, Bridges et al. 2012).  More detailed 

mechanistic studies of membrane vesicles confirmed that MeHg-cysteine (Cys) 

conjugates are substrates of MRP2 (Bridges et al. 2011).  This role of the transporter 

may be expected as the liver and kidneys are an important route of excretion for MeHg 

in the body (Clarkson & Magos 2006).  However, there are few data concerning the role 

of ABCC transporters and MeHg in neurons.   

In one study, SH-SY5Y cells were treated with MeHg and microarray analysis 

showed that ABCC3 was upregulated following the exposure (Toyama et al. 2011b), but 

it was not reported which other MRPs may be expressed in these cells.  In mixed cortical 

neuron cultures (containing neurons and glia) GSH supplementation decreased MeHg 

cytotoxicity, but this effect required the activity of a transporter inhibited by MK571 

(MRP1, MRP2, MRP4 or MRP5) (Reid et al. 2003, Łania-Pietrzak et al. 2005, Pratt et al. 
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2005, Yamazaki et al. 2005, Rush et al. 2012).  This is consistent with the reported role 

of MRP1 in GSH export from astrocytes (Minich et al. 2006).   

 

3.  Role of MRPs in PD 

While there are presently no reports of ABCC family transporters directly contributing to 

DA neuron degeneration or the development of PD in vertebrates, MRPs are found in 

the BBB, which functions to limit the accumulation of toxicants in the brain (Dallas et al. 

2006).  Neuroimaging studies have revealed that Pgp (an MDR) function in the BBB 

decreases with age (Bartels et al. 2009).  The function of MRPs in the BBB may also 

decline with age.  PD is an age-related disorder and decreased protection by the BBB 

may contribute to increasing neuronal sensitivity.  Furthermore, GSH plays an important 

role in the regulation and reduction of elevated ROS levels in PD (Hirrlinger & Dringen 

2005).  In astroglial cells, extracellular DA can react with GSH in a superoxide-

dependent manner to form DA adducts and deplete GSH, inhibiting the antioxidant 

potential (Hirrlinger et al. 2002).  Also, DA auto-oxidation can produce H2O2, which 

causes the export of GSSG out of cells through MRP1 (Hirrlinger et al. 2002).  The key 

role of ABCC family transporters in the export of GSH conjugates could have multiple 

implications for the cellular effects involved in PD.  

 Polymorphisms in the ABC transporter gene Pgp/MDR1/ABCB1 have been 

associated with the development of PD.  In a study of Chinese PD patients, three single 

nucleotide polymorphisms (SNPs) in MDR1 were significantly associated with the risk for 

PD in males over age 60 (Lee et al. 2004).  Pesticide exposure can also have an effect 

on the contribution of MDR1 to PD.  PD patients exposed to pesticides with at least one 

mutated copy of MDR1 (C3435T) had a 5 fold increased risk of the disease compared to 

the non-exposed patients (Droździk et al. 2003).  The correlation between MDR1 

polymorphism, pesticide exposure and PD was also significant in a study of French 

patients, however it was the G2677(A,T) variant rather than C3435T (Dutheil et al. 

2010).  Although these results are for MDR1, not MRP1, there are several reported 

polymorphisms in ABCC family genes.  Mutations lead to disease including Dubin-

Johnson syndrome (ABCC2), Pseudoxanthoma elasticum (ABCC6), cystic fibrosis 

(ABCC7/CFTR) and persistent hyperinsulinemic hypoglycemia of infancy 

(ABCC8/SUR1) (Conseil et al. 2005).  It is quite plausible that polymorphisms in these or 

other MRP genes could contribute to the sensitivity to MeHg and the toxicity resulting 

from its accumulation.  Single mutations can have a dramatic effect on transporter 
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function or specificity and it may be possible for individuals to differ in their ability to 

detoxify MeHg.  Identifying these populations could lead to better precautionary or 

preventative methods for reducing MeHg-induced toxicities. 

 

E.  C. elegans 

1.  Characteristics of the model system 

The nematode C. elegans is a useful model for toxicological studies (Nass & Hamza 

2007).  C. elegans are small, inexpensive to maintain in the laboratory and have a short 

generation time and large number of clonal progeny.  Each adult nematode is about 1 

mm in length and thousands of animals can be grown in a petri dish filled with agar and 

seeded with a lawn of E. coli (Riddle 1988).  C. elegans are primarily hermaphrodites 

and each animal can produce over 300 progeny via self-fertilization.  Males occur at a 

low frequency but can be used for genetic crosses to generate strains with multiple 

mutations.  The nematodes can grow from egg to egg-laying adult, transitioning through 

four larval stages (termed L1 – L4) in about 3.5 days at 20°C (Brenner 1974). The 

nematodes contain 959 somatic cells and have highly developed and organized 

reproductive, digestive, muscular and neuronal systems.  Both the developmental 

lineage and the synaptic connectivity for each neuron of the 302 cell nervous system 

have been mapped (Hope 1999).   

 C. elegans are a genetically tractable model organism and possess several 

characteristics that allow for facile genetic manipulation (Nass & Settivari 2008).  The 

genome has been fully sequenced and annotated.  A large collection of mutant strains is 

available to the C. elegans community, and mutations can be identified and mapped in 

as little as a week.  RNAi can be utilized to knock down gene expression if a mutant is 

unavailable and the RNAi techniques are convenient for large-scale genetic screens 

(Kamath & Ahringer 2003).  The nematodes are transparent allowing for the visualization 

of fluorescent reporters in living animals, and animals expressing transcriptional or 

translational fusion reporters can be generated within a few days (Boulin et al. 2006).  

 The genome of C. elegans contains nearly the same number of genes as the 

human genome and numerous proteins, cellular processes and molecular pathways are 

conserved between the nematode and humans (Peterson et al. 2008).  Of particular 

importance to this project is the conservation of stress response pathways and the 

nervous system. C. elegans and humans share nearly all molecular components 

involved in neurotransmission including neurotransmitter biosynthetic enzymes, release 
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mechanisms, ionotropic and G-protein coupled receptors, ion channels (except voltage 

gated Na+ channels) and second messenger systems (Bargmann 1998).  C. elegans 

have both phase I and phase II detoxification enzymes including cytochrome P450s, 

short-chain dehydrogenases, UDP-glucuronosyl or glycosyl transferases, and GSTs 

(Lindblom & Dodd 2006).  Induced expression of these and other stress response genes 

and proteins have been demonstrated in C. elegans in several studies, including those 

of cadmium (Cd) (Cui et al. 2007), di(2-ethylhexyl)phthalate (Roh et al. 2007) and 

oxidative stress (Leiers et al. 2003).  Further facilitating research is the wide array of 

resources available to the C. elegans community.  Wormbase.org is an integrated 

database that provides gene information including sequence, expression profiles, 

function and a collection of gene specific literature.  The Caenorhabditis Genetics Center 

(CGC) coordinates the sharing of nematode strains among laboratories.   There are also 

databases for RNAi screen results, microarray gene expression data, protein networks 

and nematode anatomy, among others (Antoshechkin & Sternberg 2007).  

 

2.  Use of C. elegans in toxicology  

As the development, morphology, behaviors and lifespan of C. elegans are consistent 

and well characterized, changes in any of these traits may be used to indicate and 

monitor toxicity, as well as the response to exogenous compounds or stressors 

(Peterson et al. 2008).  Common endpoints of toxicological studies are lethality, 

reproductive capacity, growth rate and motility (Leung et al. 2008).  Animal viability has 

been used to monitor the toxicity of ethanol and several metals, including Hg and Cd 

(Tatara et al. 1997, Traunspurger et al. 1997, Dhawan et al. 1999).  Decreased brood 

size and slow growth have been observed with exposure to ethanol, Cd, sodium arsenite 

and sodium fluoride (Traunspurger et al. 1997, Dhawan et al. 1999, Wang et al. 2007, Li 

et al. 2012).  These parameters have also been utilized for high-throughput screening of 

chemicals such as pesticides and metals, exposing at L1 stage to monitor growth and L4 

stage to measure reproductive capacity, with automated detection by the COPAS 

Biosort (Boyd et al. 2010).  Morphological changes during development can also be 

characterized, and ethanol, a human teratogen, caused physical defects in C. elegans 

larvae following embryonic exposure (Davis et al. 2008).  Behaviors can be used to 

indicate toxicity and possible neurological damage.  Movements such as head thrashing 

and body bends were decreased by sodium fluoride exposure (Li et al. 2012).  Computer 

monitored locomotion assays have been used to characterize toxicity and lethal 
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concentration 50s (LC50s) for metals and organophosphate pesticides (Dhawan et al. 

2000, Cole et al. 2004).  Neurotoxicity and neurodegeneration can also be observed by 

the morphology of green fluorescent protein (GFP)-expressing neurons.  Alterations in 

DA or GABA neurons have been reported following exposure to metals including Mn, Al, 

Hg, Pb, Cu, and Cd (Du & Wang 2009, Settivari et al. 2009, VanDuyn et al. 2013).    

Gene expression changes can also be observed in the transparent nematode 

using reporter genes expressed behind stress-inducible promoters (Link et al. 1999).  

For example, the promoter from an HSP gene fused to GFP results in increased 

fluorescence in the presence of heat, superoxide-generating quinones and the human B-

amyloid protein (Link et al. 1999). These reporter strains allow for convenient 

visualization of gene expression in intact living animals and have even been proposed 

for use as biosensors (Hasegawa et al. 2008).  Gene expression profiles measured by 

microarray or real time polymerase chain reaction (RT-PCR) may also be used to 

indicate toxicity as well as characterize the physiological effects of a toxicant (Swain et 

al. 2010).  Biochemical assays including GSH level, ROS level, mitochondrial membrane 

potential and oxygen consumption have also been successfully applied in C. elegans 

studies of Mn, Al, sodium arsenite and sodium fluoride (Settivari et al. 2009, Li et al. 

2012, VanDuyn et al. 2013).   

 

3.  C. elegans DA system and PD model 

Although the C. elegans nervous system is fairly simple in terms of the relatively low 

number of cells and synapses (302 and ~5000, respectively in the hermaphrodite), the 

nematode contains nearly all the neurotransmitters and synaptic components present in 

humans and mammals (White et al. 1986, Bargmann 1998).  DA is detectable by HPLC, 

and formaldehyde-induced fluorescence (FIF) indicates the presence of the 

neurotransmitter in 8 cells in hermaphrodites, and an additional 6 cells in the tail of the 

male (Sulston et al. 1975, Nass & Blakely 2003).  To identify genes involved in DA 

synthesis and regulation, mutants with reduced FIF staining were identified and named 

cat-1 to cat-5 (Sulston et al. 1975).  cat-1 was later identified as the C. elegans homolog 

of the vesicular monoamine transporter (VMAT) (Duerr et al. 1999).  cat-1 mutants do 

not exhibit the basal slowing response on bacteria, as seen in animals that have had 

their DA neurons laser ablated (Duerr et al. 1999, Sawin et al. 2000).  cat-2 encodes TH, 

and is expressed in the cells identified as dopaminergic by FIF (Lints & Emmons 1999).  

These mutants are also defective in the basal slowing response (Sawin et al. 2000).  
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Other enzymes necessary for the synthesis of DA also have homologues in the 

nematode; cat-4 encodes a GTP cyclohydrolase and bas-1 encodes an aromatic amino 

acid decarboxylase.  Therefore, C. elegans likely contain all the proteins necessary for 

the synthesis and packaging of DA.   

 The mechanism of DA re-uptake is also conserved between the nematode and 

humans.  The C. elegans DAT dat-1 was identified by homology of the predicted 

sequence, and the protein transports DA and is inhibited by DAT antagonists in vitro and 

in vivo (Jayanthi et al. 1998, Nass et al. 2002).  The similarity between the DA neurons 

in nematodes and humans has allowed for the establishment of an in vivo model for DA 

neuron degeneration in which the DA neurons can be observed in a living animal.  To 

visualize the DA neurons in a living animal, GFP was expressed behind the dat-1 

promoter, which resulted in a strong fluorescent signal specifically in these cells (Nass et 

al. 2001, Nass et al. 2002).  Importantly, exposure to toxicants that cause DA neuron cell 

death in mammals also causes DA neurodegeneration in C. elegans.  6-OHDA is a 

neurotoxicant that primarily enters cells through DAT, causing selective degeneration of 

the DA neurons (Sachs & Jonsson 1975).  This effect is also observed in C. elegans, as 

exposure to 6-OHDA results in a loss of GFP in the DA neurons (Nass et al. 2002).  

Other PD-associated toxicants are also effective in killing the DA neurons in the 

nematode, including MPP+ and rotenone (Braungart et al. 2004, Saha et al. 2009).  

Furthermore, C. elegans can be used to model the mechanisms of familial PD as 

overexpression of human α-synuclein or LRRK2 causes DA neuron degeneration (Lakso 

et al. 2003, Yao et al. 2010).   

 Exposure to heavy metals is believed to be a contributing factor to the 

development of PD (Caudle et al. 2012).  A C. elegans model of manganism has been 

developed that supports this claim, as well as allows characterization of the molecular 

mechanisms of neurotoxicity induced by metals (Settivari et al. 2009).  In C. elegans, Mn 

exposure increases ROS and GSH, and causes alterations in mitochondrial function.  

The divalent metal transporter SMF-1 (human DMT-1) contributes to the neurotoxicity 

induced by Mn, and SKN-1 and GST-1 inhibit DA neuron cytotoxicity (Settivari et al. 

2009, Settivari et al. 2013).  Al3+ is another metal associated with the development of PD 

(Zayed 1990).  In C. elegans, Al3+ induces DA neuron degeneration and this effect is 

dependent on SMF-3, a homologue of the human divalent metal transporter (VanDuyn et 

al. 2013).  
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4.  SKN-1  

SKN-1 is the C. elegans homolog of the transcription factor Nrf2 and has several 

functions in C. elegans.  The skn-1 gene was originally identified to code for a 

maternally-expressed gene product that is necessary for normal cell fate determination 

in the early embryo, such that offspring of skn-1 mutants fail to develop a pharynx or 

intestine (Bowerman et al. 1992).  These structures originate from the EMS cell of the 

blastomere, and the fate of the EMS cell is specified by GATA factors, which are direct 

targets of SKN-1 (Bowerman et al. 1992, Maduro et al. 2001).  Later studies revealed 

that SKN-1 binds DNA as a monomer to act as a transcription factor and likely functions 

in the same way as human Nrf2 (Walker et al. 2000).   

 In larval and adult stages, SKN-1 is expressed in the intestine and the two ASI 

(chemosensory) neurons (An & Blackwell 2003).  Similar to Nrf2, a functional SKN-

1::GFP fusion protein localizes to intestinal nuclei after external stress.  Furthermore, the 

SKN-1 dependent activation of antioxidant genes has also been shown in C. elegans.  

Acrylamide treatment causes an upregulation of gst-4 that is not present after RNAi 

knockdown of SKN-1 (Hasegawa et al. 2008).  Heat and paraquat induce expression of 

the C. elegans glutamylcysteine synthetase (gcs-1) except in a skn-1(zu67) background, 

where SKN-1 was not functional, and deletion of the SKN-1 binding site in the promoter 

of gcs-1 also reduces this expression (An & Blackwell 2003).  Lack of induction of these 

genes plays a significant role in the animals as SKN-1 mutants are both sensitive to 

oxidative stress (paraquat) and exhibit a decreased lifespan (An & Blackwell 2003).      

 As a transcription factor, SKN-1 likely functions primarily in the nucleus.  A GFP 

reporter strain was used to demonstrate that upon stress, the SKN-1 protein translocates 

from the cytoplasm to the nucleus, where it binds to DNA at AREs (An & Blackwell 

2003).  The consensus sequence for the ARE in C. elegans has been identified as 

WWTRTCAT, where R = G or A and W = T or A.  This sequence (termed canonical) 

should be randomly found about every 2000 base pairs (bp), but sequence analysis has 

shown that several phase II detoxification enzymes have two or more SKN-1 binding 

sites in their promoter region (5’ of the ATG start codon) (An & Blackwell 2003).  Further 

bioinformatic analysis revealed a slightly more restrictive sequence than the canonical 

one (Oliveira et al. 2009).  Microarray was used to identify lists of genes upregulated and 

downregulated by SKN-1, both in the presence and absence of stress.  Weeder Web 

analysis for overrepresented motifs in the regions 2 kb upstream of genes regulated by 
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SKN-1 revealed a consensus sequence slightly different than the canonical one, as well 

as a novel motif present in SKN-1 downregulated genes (Oliveira et al. 2009).  

 SKN-1 is located in the cytoplasm under normal conditions in intestinal cells (An 

& Blackwell 2003).  Cytoplasmic localization of SKN-1 is maintained by WDR-23, a 

functional homolog of Keap1.  In mammals, Keap1 is a ubiquitin ligase that ubiquitinates 

Nrf2, targeting it for degradation in the proteasome.  Loss of wdr-23 (xrep-1) results in 

constitutive expression of GST-4, suggesting constitutive activation of SKN-1 

(Hasegawa & Miwa 2010).  There is evidence that MAPK pathways may also participate 

in the activation of Nrf2 (Owuor & Kong 2002).  Phosphorylation of Nrf2 by PKC releases 

it from being targeted for proteasomal degradation and increases nuclear localization 

and target gene expression (Bloom & Jaiswal 2003).  In C. elegans, SKN-1 must also be 

phosphorylated for nuclear translocation, by pmk-1, nekl-2, pdhk-2, mkk-4 and ikke-1 

(Inoue et al. 2005, Kell et al. 2007).  The SEK-1/PMK-1 pathway is activated by oxidative 

stress, as indicated by phosphorylation of PMK-1 following treatment with As, paraquat 

and tert-butyl hydroperoxide (t-BOOH) (Inoue et al. 2005). Phosphorylation can also be 

a negative regulator of Nrf2/SKN-1.  GSK-3 (glycogen synthase kinase-3) has 

widespread cellular targets and effects, from growth to apoptosis, and is implicated in 

disorders from diabetes to AD (Jope & Johnson 2004).  Inactivation of GSK-3B leads to 

the nuclear localization of Nrf2 (Rojo et al. 2008a, Rojo et al. 2008b).   

 A functional UPS is also required for proper SKN-1 regulation in C. elegans as 

RNAi knockdown of proteasome subunits caused nuclear localization of SKN-1 (Kahn et 

al. 2008).  The authors suggest that this is a result of the activation of the SKN-1 stress 

response, for example damaged proteins may accumulate and activate SKN-1, or the 

dysfunctional proteasome itself could induce a signaling pathway leading to SKN-1 

activation.  However, given the mechanism of Nrf2 regulation by Keap1 in mammals, it 

seems likely that a decrease in proteasome or ubiquitination function could inhibit the 

cytoplasmic degradation of SKN-1 and lead to its accumulation in the nucleus.  The 

effects on SKN-1 nuclear localization were different for different subunits or proteasome 

genes and there was often a disconnect between skn-1 activation and gst-4 expression, 

suggesting that there are other regulatory mechanisms at play (Kahn et al. 2008).  

Translation initiation factors (TIFs) also appear to play a role in SKN-1 regulation as 

SKN-1 activity is increased following RNAi of the TIFs (Wang et al. 2010).    
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5.  GSTs         

A comprehensive analysis of the C. elegans databases, including literature and genomic 

BLAST searches, revealed 48 genes encoding GSTs including members of the Alpha, Pi 

and Sigma classes (Leiers et al. 2003, Lindblom & Dodd 2006).  Several of the C. 

elegans GSTs are of the sigma class, which are mainly found in invertebrates, but the 

sigma class also includes the hematopoietic prostaglandin D synthase in mammals 

(Kanaoka et al. 1997).  The role of GSTs in conjugation is the most widely recognized, 

but they can also participate in cellular signaling, metabolism, catabolism and even 

apoptosis, explaining the presence of multiple genes (van Rossum et al. 2001).  The 

proteins may differ in function, and they also have different expression patterns 

(Hasegawa et al. 2008).  As in vertebrates, C. elegans GSTs participate in stress 

response.  RNAi knockdown of multiple GSTs sensitizes and overexpression of gst-10 

provides resistance to the oxidative stress inducer 4-hydroxynonenal (4-HNE) 

(Ayyadevara et al. 2005, Ayyadevara et al. 2007).  Overexpression of gst-4 increases 

resistance to paraquat and juglone (Leiers et al. 2003).  GST mRNA expression is 

induced by stress caused by exposure to acrylamide and allyl isothiocyanate, among 

other compounds, and this can be regulated by SKN-1 (Hasegawa et al. 2008, 

Hasegawa & Miwa 2010).  

 

6.  HSPs 

C. elegans contain several HSPs that are highly conserved with vertebrates.  The C. 

elegans HSP genes include the small HSPs (hsp-16.1, 16.2, 16.41, 16.48) and up to 9 

members of the HSP70 gene family (Candido et al. 1989, Heschl & Baillie 1990).  The 

small HSPs are homologous to the mammalian protein alphaB-crystallin, which is 

expressed in multiple tissues (Parcellier et al. 2005, Mineva et al. 2008).  The C. elegans 

HSPs have been shown to regulate protein synthesis and degradation and participate in 

stress response (Prahlad & Morimoto 2009).  GFP expression driven by the hsp-16.2 

reporter can be induced by heat, the oxidative stressor juglone and expression of the 

human β-amyloid peptide and observed in the living nematode (Link et al. 1999).  

Metals, including Cd, Al, Mn, Cu and Hg, can also increase the expression of HSPs 

(Guven & de Pomerai 1995, Guven et al. 1995, Dennis et al. 1997).   
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7.  MRPs 

The first MRPs described in C. elegans were MRP-1 to 4 and these were identified 

based on sequence homology to the human protein MRP1 (Broeks et al. 1996).  Further 

sequence analysis has revealed that C. elegans contains 9 MRPs (mrp-1 to 8 and cft-1) 

and the proteins were classified based mostly on the position of their nucleotide binding 

domains (Sheps et al. 2004).  An mrp-1 mutant strain was generated and found to be 

sensitive to Cd and arsenite, compared to WT (Broeks et al. 1996).  Both Cd and 

arsenite form GSH complexes and are substrates for human MRP1.  C. elegans MRPs 

can transport more than metals.  Ivermectin, an anthelmintic drug, is likely a MRP-1 

substrate.  An ivermectin resistant strain of nematodes was generated and found to have 

increased expression of several ABC transporters (Yan et al. 2012).  Several parameters 

of viability were assessed following knockdown of individual transporters, and decreased 

MRP-1 seemed to cause the greatest sensitivity to ivermectin (Yan et al. 2012).  Some 

endogenous molecules may also be substrates for MRP-1.  The insulin-signaling 

pathway regulates nematode growth and entry into the dauer phase, and this regulation 

is disrupted in mrp-1 mutants.  Therefore, MRP-1 likely transports a substance or 

molecule critical for the insulin-signaling pathway (Yabe et al. 2005).  The similarity 

between human and C. elegans MRPs extends beyond sequence and the types of 

substrates.  Human MRP1 can rescue the dauer regulatory defect in mrp-1 mutants, 

suggesting an equivalent function of the two proteins (Yabe et al. 2005).  Other ABC 

transporters can also contribute to heavy metal transport in C. elegans including pgp-1 

and hmt-1 (Broeks et al. 1996, Vatamaniuk et al. 2005).  

 

8.  RNAi and RNAi Screens      

RNA interference (RNAi) is a method of reducing the levels of endogenous mRNA by 

introducing exogenous double stranded RNA (dsRNA) (siRNA – small/short interfering 

or silencing RNAs) with a corresponding sequence.  dsRNA can be introduced into the 

nematode by three methods:  injection, soaking or feeding.  In C. elegans, the RNAi 

effect likely involves more than anti-sense binding and degradation of the endogenous 

RNA as the interference effect can spread from cell to cell throughout most of the body 

of the nematode and also pass from one generation to the next, such that progeny of an 

injected mother can show the phenotype associated with gene knockdown (Fire et al. 

1998).  Early observations indicated that although RNAi was effective in most cells, 

neurons were quite resistant to the effects (Kamath et al. 2001, Timmons et al. 2001).  
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To overcome this resistance, researchers have employed the use of a nematode strain 

that has a mutation in the rrf-3 gene (Simmer et al. 2003).  RRF-3 is a RNA-directed 

RNA polymerase that is involved in the processing of siRNAs and it has been shown that 

rrf-3 mutants are more sensitive to RNAi than WT nematodes, especially in the neurons 

(Simmer et al. 2002). Further characterization using strains that express GFP in specific 

neuronal types showed that RNAi is enhanced in the DA and GABA neurons in the rrf-3 

mutants (Asikainen et al. 2005).  Another mutant, eri-1, is sensitive to RNAi as the gene 

encodes an siRNA-degrading RNase (Kennedy et al. 2004).    

  For RNAi by feeding, consumption of bacteria expressing dsRNA results in a 

decrease in the complementary mRNA in the nematode (Timmons et al. 2001).  The 

bacterial feeding strain has been optimized for maximum efficiency of this procedure.  

The dsRNA sequence is flanked by T7 promoters in a vector referred to as L4440 (Fire 

et al. 1998).  The E. coli genome encodes the T7 polymerase downstream of a lac 

operon, which normally represses the expression of the polymerase.  When isopropyl β-

D-1-thiogalactopyranoside (IPTG) is added, the repression of the lac operon is released 

and T7 is expressed, allowing transcription of the dsRNA sequence. A lambda prophage 

DE3 was introduced that allows for IPTG-inducible production of T7 polymerase (Fire et 

al. 1998, Timmons et al. 2001).  Thus, dsRNA is not produced in the bacteria until IPTG 

is present.  Bacteria express an enzyme that degrades dsRNA (RNaseIII), which was 

found to limit the effectiveness of feeding RNAi, therefore the E. coli strain HT115 was 

utilized as it has a mutation in the rnc gene and does not express RNaseIII (Timmons et 

al. 2001).  Antibiotic selection can be used to maintain the HT115 rnc- strain 

(tetracycline) and cells with the dsRNA plasmid (ampicillin) (Timmons et al. 2001).    

 Libraries of feeding RNAi bacterial clones have been generated to facilitate RNAi 

screens (Kamath & Ahringer 2003, Rual et al. 2004).  The first RNAi library to be 

constructed (the Ahringer library) was based on the GenePairs primers, which are 

designed to amplify polymerase chain reaction (PCR) products from all 19,000 genes 

predicted by the initial sequencing of the C. elegans genome.  The PCR products were 

cloned into the L4440 vector and transformed into HT115(DE3) E. coli as described 

above (Kamath & Ahringer 2003).  The final library was prepared as glycerol stocks of 

each bacterial strain (16,757 total) contained in 52 384-well plates (Kamath & Ahringer 

2003).  A screen was performed using the library and phenotypes such as sterility, 

lethality and slow growth were observed for approximately 10% of the strains (1,722 

clones) (Kamath et al. 2003).    
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 A second RNAi feeding library, the ORFeome-RNAi v1.1 Library (Open 

Biosystems, OBS), was generated that offers several advantages over the Ahringer 

library (Rual et al. 2004).  First, the library sequences are obtained from the C. elegans 

ORFeome, which is a collection of the open reading frames (ORFs), or cDNAs, from the 

genome.  The fragments include the entire ORF, which can improve specificity over the 

randomly placed primer pairs of the Ahringer library.  Also, the lack of introns increases 

the sequence that can be included in the siRNAs, further facilitating binding.  These 

traits may enhance the effectiveness of the RNAi, but the real advantage is in the vector 

construction and the versatility of the library.  The C. elegans ORFeome was constructed 

from all predicted ORFs in the genome, 11,942 in Version 1.1.  Researchers utilized the 

Gateway cloning system, which allows for recombinational cloning and easy transfer of 

the ORF between different types of vectors for various applications.  The final RNAi 

library contains 10,953 clones, 1,736 of which were not present in the Ahringer library 

(Rual et al. 2004).  An initial screen with this library revealed 1,066 bacterial strains that 

produced a phenotype different than WT, which is approximately 10% and similar to the 

results observed in the screen using the Ahringer library (Rual et al. 2004).    

 RNAi screens are designed to identify genes for which decreased expression 

results in a particular phenotype.  Genome wide screens have been utilized to identify 

genes involved in development, lifespan, fat content and osmoregulation (Ashrafi et al. 

2003, Hamilton et al. 2005, Lamitina et al. 2006).  In addition to the study of normal 

physiological processes, the use of RNAi screens for toxicological studies in C. elegans 

has proven to be successful (Cui et al. 2007, Kim & Sun 2007).  After identifying 94 

genes involved in Cd toxicity by microarray, a low throughput RNAi screen of those 

genes resulted in 50 genes that when knocked down increased the nematodes’ 

sensitivity to Cd (Cui et al. 2007).  In a more unbiased study, RNAi knock-down of the 

available genes on chromosomes III and IV (about 6000) revealed 608 paraquat-

resistant clones (Kim & Sun 2007).  These studies suggest that a genome wide RNAi 

screen for clones showing differential sensitivity to MeHg may identify novel genes and 

pathways involved in MeHg-associated toxicity.  

 

9.  Limitations of C. elegans as a genetic model system 

All model systems have limitations that should be acknowledged when applying 

experimental results to the study of human disease.  As C. elegans are in contact with 

numerous compounds and chemicals in their natural soil habitat, they have an 
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exoskeleton called the cuticle that guards them from the environment.  This covering is 

comprised of collagen and is largely impermeant (Dengg & van Meel 2004).  Therefore, 

some drugs, toxicants or other compounds may need to be used at higher 

concentrations to facilitate entry into the animal (Nass & Settivari 2008).  Despite high 

exposure conditions, once inside the cells of the nematode, many compounds have 

similar binding affinities and kinetics as would be observed in other organisms (Nass & 

Settivari 2008).  If solubility of the chemical at high concentrations is an issue, 

nematodes can tolerate up to 2% dimethyl sulfoxide (DMSO) and several mutants exist 

that have increased cuticle permeability (Dengg & van Meel 2004, Page & Johnstone 

2007).  

 Although C. elegans contain most of the neuronal types found in mammals, the 

number of neurons and cell-cell interactions is greatly reduced (Bargmann 1998).  The 

proximity of certain cells to each other and the connections that neurons make can have 

a significant impact on neuronal function and pathology that may not be fully represented 

in C. elegans (Nass & Settivari 2008).  Genetically, there is high homology between 

human and C. elegans genes, however the abundance of proteins that affect toxicity or 

pathology may be different (Nass & Settivari 2008).  For example, the stress response 

proteins (GSTs, CYPs, HSPs) in C. elegans may be expressed at higher levels than in 

mammals due to their exposure to such a variety of compounds in their natural 

environment (Lant & Storey 2010).  

 

F.  Hypothesis and key questions 

Despite years of study, the molecular basis of MeHg toxicity remains largely unknown.  

The environmental contaminant continues to pose a significant risk to human health.  Of 

particular concern is the contribution of MeHg exposure to PD.  The increasing lifespan 

of the population increases the number of individuals at risk for developing PD and other 

age-related neurodegenerative disorders.  The role of MeHg in the pathology of these 

disorders has not been elucidated.  A significant hindrance to studies of MeHg toxicity in 

vertebrates is the complexity of the nervous system and the lack of convenient genetic 

techniques.  Cell culture has provided some insight, however it does not always 

recapitulate in vivo conditions.  I propose the use of C. elegans to investigate the genes 

and pathways involved in MeHg-induced toxicity and DA neuron pathology.   
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1.  What endpoints of MeHg-associated toxicity can be measured in C. elegans? 

To facilitate the use of C. elegans as a model to study the genetics of MeHg-associated 

toxicity, it is important to characterize the effects of MeHg exposure in the nematode and 

identify assays that may be utilized to indicate toxic endpoints.  I will study animal 

viability, reproduction and development, as well as ROS and stress-response gene 

expression following MeHg exposure.  

 

2.  What are the genes and molecular pathways involved in MeHg toxicity? 

I will utilize microarray analysis of gene expression and RT-PCR to determine how 

mRNA levels are altered following MeHg toxicity.  Furthermore, I will incorporate a 

reverse genetic screen to identify genes and pathways involved in MeHg toxicity.  The 

expression of over 90% of the genes in the C. elegans genome will be reduced 

individually and then I will determine how the reduction of each gene affects viability in 

the presence of MeHg.   

 

3.  Does MeHg decrease DA neuron viability in C. elegans?   

I will utilize a GFP reporter strain to examine the morphology of the DA neurons 

following MeHg exposure in live animals.  The contribution of genes identified to be 

involved in MeHg toxicity to DA neuron vulnerability will also be examined.   
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II. Methods 

 

A.  C. elegans strains and maintenance.  

Nematode growth media (NGM) plates with a lawn of OP50 bacteria were used for 

standard maintenance (Brenner 1974, Hope 1999).  8P plates (an enriched media) with 

a lawn of NA22 bacteria were used to grow large amounts of nematodes for 

synchronization and also for the early MeHg experiments.  Nematodes were cultured in 

a 20°C incubator during growth and experiments, unless noted otherwise.  The strains 

used in all experiments are summarized in Table 1.  

 

Strain Genotype Source Description 
N2 wild type CGC wild type 

BY250 Pdat-1::GFP Injection into N2 GFP in DA neurons 

NL2099 rrf-3(pk1426) CGC RNAi sensitive 

OD70 unc-119(ed3)III;ItIs44 
[pie-1p-mCherry::PH 

(PLC1delta)+unc119 (+)]  
CGC mCherry on plasma 

membrane of  
embryonic cells 

TJ356 zIs356 IV CGC DAF-16::GFP reporter  

RJ934 Pdat-1::GFP; smf-3(ok1035) Cross 
BY250 x RB1074 

GFP in DA neurons,  
smf-3 mutant 

RJ928 Pdat-1::GFP; rrf-3(pk1426)  Cross  
BY250 x NL2099 GFP in DA neurons, 

RNAi sensitive 
RJ1040 Punc-47::GFP; rrf-3(pk1426) Cross  

EG1285 x NL2099 GFP in GABA neurons, 
RNAi sensitive 

RJ1046 
 

Cross  
DR2022 x NL2099 GFP in ASI neurons, 

RNAi sensitive 
RJ1072 Peat-4::GFP; rrf-3(pk1426) Cross  

DA1240 x NL2099 GFP in glutamatergic 
neurons, RNAi sensitive 

RJ1074 Punc-17::GFP; rrf-3(pk1426) Cross 
 LX929 x NL2099 GFP in cholinergic 

neurons, RNAi sensitive 
RJ1082 Ptph-1::GFP; rol-6(su1006); rrf-

3(pk1426) 
Cross  

GR1366 x NL2099 GFP in serotonergic 
neurons, RNAi sensitive 

RJ1089 Pmrp-7::CFP; Pdat-1::YFP Injection into N2 YFP in DA neurons, CFP 
behind MRP-7 promoter 

 
Table 1.  Summary of C. elegans strains with genotype and phenotypic description.  
Source column shows from where the strain was acquired or how it was generated.  
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B.  Synchronization 

To obtain an age-synchronized population of nematodes, gravid adults (full of embryos) 

were collected in a 15 ml tube and washed.  5 ml of a sodium hypochlorite solution (1.25 

ml 10 M NaOH, 5 ml Clorox bleach, 18.75 ml H2O) was added to the pellet.  Animals 

were mixed gently and monitored for approximately 4 – 7 minutes until the majority of 

the adults had broken open and released their eggs.  M9 buffer (22 mM KH2PO4, 22 mM 

Na2HPO4, 85 mM NaCl, 1 mM MgSO4) was added to fill the tube and the eggs were 

pelleted by centrifugation at 2000 RPM for 2 minutes.  The synchronization solution was 

discarded and the eggs were washed three additional times with M9.  The tube was filled 

with M9 and allowed to incubate for 18 hours while mixing on a Nutator at room 

temperature (Nass et al. 2002, Nass & Hamza 2007).  During this time, the eggs hatch 

and arrest at the L1 stage due to the lack of food.  

 

C.  Genetic crosses 

Genetic crosses were performed to generate strains containing multiple mutations or 

transgenes.  Transgenic strains expressing GFP in each neuronal type were obtained 

from the CGC.  Each strain was crossed with the RNAi sensitive strain NL2099 [rrf-

3(pk1426)] so the morphology of each type of neuron could be analyzed following RNAi 

and MeHg exposure.  Males from the GFP strain were mated with NL2099 

hermaphrodites and progeny (F1) resulting from mating rather than self-fertilization were 

selected by the expression of GFP.  F1 nematodes were allowed to self-fertilize, and F2 

progeny were isolated onto individual plates.  Animals from plates with 100% GFP-

expressing F3 progeny were picked for single worm PCR to determine if the rrf-3 

mutation was present.  Lines with 100% GFP and 100% homozygous rrf-3 mutants were 

isolated and used in further experiments.  

 

D.  RNAi 

RNAi by feeding was carried out on NGM plates containing 1 mM IPTG and 100 µg/ml 

ampicillin largely as described (Ahringer 2006).  The bacterial strain used for feeding 

RNAi is HT115 (DE3), an RNase III-deficient E. coli strain carrying the L4440 vector 

(Fire Lab Vector Kit).  For control (no gene knockdown) experiments, the empty L4440 

vector was used.  To achieve knockdown of a specific gene, the L4440 vector contained 

a sequence complementary to the target gene.  These gene-specific clones are 

available in the ORFeome-RNAi v1.1 Library (Open Biosystems/Thermo Fisher 
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Scientific, Waltham, MA) and the RNAi feeding library (Source BioScience Life Sciences, 

Nottingham, UK).  Cultures of RNAi bacteria were streaked from the frozen glycerol 

stocks onto (Luria broth) LB plates with 100 µg/ml ampicillin and grown overnight at 

37°C.  For liquid cultures, LB broth with 50 µg/ml ampicillin was inoculated with an 

individual colony from the LB plate and grown for 14 – 16 hours at 37°C.  Plates were 

spotted with the overnight culture and allowed to dry for at least 24 hours before use.   

 The RNAi sensitive strains NL2099 or RJ928 were used for all RNAi 

experiments.  Second-generation RNAi nematodes were used for experiments when 

possible:  animals (P0) were fed RNAi bacteria from L1 to adult stage, then their progeny 

(F1) were also fed RNAi bacteria until the desired stage was reached and the 

experiment was carried out.  For skn-1, knockdown of the gene produces an embryonic 

lethal phenotype, such that the embryos are produced but fail to hatch (Bowerman et al. 

1992).  Therefore, first generation nematodes were used for all skn-1 RNAi experiments, 

and the presence of unhatched eggs was an indication of gene knockdown.    

 

E.  Toxicant exposures 

Methylmercury chloride (CH3HgCl, 442534-5G-A, Sigma-Aldrich, St. Louis, MO) was 

prepared as a 1 mM solution in H2O.  The powder was carefully weighed into a 50 ml 

conical tube, the appropriate amount of H2O was added and the tube was mixed on a 

Nutator 1 – 2 hours in the hood to dissolve.  The tubes containing MeHg were sealed 

with parafilm, covered in foil and stored at 4°C for up to 10 days.  For all assays except 

DA neuron degeneration, MeHg was added to the agar before it was poured into the 

plates.  Plates containing 10 µM MeHg required 10 ml 1 mM MeHg in 1 L of agar, so 

MeHg makes up 1% of the total volume.  Up to this concentration, no H2O was removed 

from the agar preparation to account for the additional volume.  However, at 

concentrations above 10 µM (1%), the volume of H2O used in the preparation of the agar 

was adjusted to account for the addition of the MeHg solution.  For DA neuron 

degeneration exposures, MeHg was added to the top of plates that were already spread 

with bacteria and completely dry.  The final concentration of MeHg was determined 

using the volume of agar added to the plate as the final volume.  For example, to 

prepare large plates with 1 µM MeHg, 25 µl of 1 mM MeHg (1 mM x volume = 1 µM x 25 

ml) and 725 µl H2O were combined as 750 µl is the amount that covers a large plate 

evenly.  The MeHg-H2O mixture was pipetted onto the plate, the plate was tilted to 

spread out the liquid and allowed to dry.  Small (35 mm) petri dishes (containing 3 ml 
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agar) were used for viability assays.  DA neuron degeneration exposures were carried 

out on medium (60 mm) or large (90 mm) petri dishes (no difference was observed 

based on plate size).  For experiments requiring a large amount of nematodes (RT-PCR, 

Western blots, ROS, etc.) large petri dishes containing MeHg were used.                  

 Selenium was used in the form of sodium selenite, Na2SeO3 (214485, Sigma-

Aldrich, St. Louis, MO).  A 30 mM solution was prepared in H2O, filter sterilized with a 2 

µm filter and stored at 4°C.  Selenium was added on top of the agar in plates that had 

been previously poured, before seeding with bacteria.  Live bacterial cultures spotted 

onto plates containing selenium turned a red-orange color, with higher [Se] leading to a 

deeper color.  This effect only occurred when the bacteria was alive.  Dead bacterial 

cultures were prepared by first growing cultures, then either autoclaving or microwaving 

the culture.  When the heat-killed culture was spotted onto plates with selenium, there 

was no color change and the inhibitory effects on MeHg-induced lethality were at least 

partially, and sometimes fully, impaired.   

 The bacteria spotted onto MeHg plates does not grow or thicken as it does on 

control plates.  To overcome this, concentrated cultures were prepared to have a larger 

number of bacterial cells in a smaller volume of liquid.  Overnight cultures were 

centrifuged at 4000 RPM for 10 minutes (in either 15 or 50 ml conical tubes) to pellet the 

cells.  The LB broth was removed, leaving 10% of the original volume for the NA22 

culture for 8P plates.  For example, 50 ml was used to resuspend the pellets resulting 

from 500 ml of culture.  For later RNAi experiments, and the third round of the screen, 5 

ml original culture was concentrated to 1.25 ml final volume.     

 

F.  Viability assay  

For measurements of whole animal viability, a synchronized population of nematodes 

was used.  Animals were grown to the desired stage on plates without MeHg.  Then, 

animals were transferred to plates containing MeHg either by picking or washing the 

animals into a tube and pipetting the desired amount onto the new plate.  Nematodes 

were then incubated for the desired amount of time, usually 24 or 48 hours, at 20°C.  

Viability was determined by manual counting of the number of live animals and the total 

number of animals on the plate.  Nematodes were considered alive if they moved in 

response to light touch on the nose with a metal pick (Strange 2006).  To ensure that the 

nematodes considered dead were not just paralyzed, “dead” animals were carefully 

picked onto a fresh plate (without MeHg).  After 24 hours, the animals had not moved 
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from the initial location, confirming that this was an effective method for determining if 

animals are dead or alive.  At least 20 nematodes were counted per [MeHg] and the 

experiment was repeated at least three times.  Results are reported as mean ± standard 

error of the mean (SEM).  

 

G.  Pharyngeal pumping assay 

Synchronized L4 stage nematodes were exposed for 24 hours on 8P plates containing 

MeHg at 20°C.  Animals were imaged on the exposure plates, using StreamPix (NorPix 

Inc., Montreal, Quebec, Canada) to obtain video clips with the camera zoomed in on the 

pharynx.  Videos were taken for at least 30 seconds, or longer if the animal moved out of 

the field of view.  The number of pumps in 30 seconds was counted and multiplied by 2 

to obtain the number of pumps per minute and the data was presented as % of control.  

At least 10 nematodes were recorded for 0 and 5 µM MeHg, and 6 nematodes on 20 µM 

were observed.  Data is presented as mean ± SEM.      

 

H.  Brood-size assay  

N2 nematodes were synchronized and grown to L4 stage on 8P plates.  L4s were then 

placed individually onto 8P plates containing various concentrations of MeHg (0-15 µM).  

After 24 hours, each nematode was moved to a fresh plate every 12 hours to limit the 

number of progeny on each plate and to ensure the adult could be distinguished from its 

progeny.  Animals were transferred to new plates until egg laying stopped.  The number 

of live progeny on each plate was counted after 48 – 72 hours of growth and the plates 

for each nematode were totaled.  At least 15 animals were assayed for each [MeHg].  

 

I.  Larvae development rate assay  

Synchronized L1 stage N2 nematodes were placed on 8P plates with 0 or 10 µM MeHg 

and incubated at 20°C.  The nematodes were examined every 12 hours and the time 

was recorded when the animals reached L4 and adult stage, as indicated by the 

presence of the “white patch” at the vulva (L4) or embryos (adult).  All animals on a 

single plate developed at essentially the same rate.  The experiment was repeated at 

least 4 times.   
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J.  Embryonic development assay.  

Synchronized L1 stage OD70 nematodes were incubated on 8P plates containing 0 or 

10 µM MeHg for 72 hours. OD70 nematodes contain a fusion of the pleckstrin homology 

domain derived from mammalian PLC1d1, which binds to a phosphoinositide lipid on the 

plasma membrane, to the red fluorescent protein mCherry (Audhya et al. 2005).  The 

pie-1 promoter drives expression specifically in germ cells.  When the nematodes 

reached adult stage and contained embryos, they were immobilized on 2% agarose 

pads with 2% sodium azide for examination and imaging with a fluorescent inverted 

microscope (Axioplan 2 and Axiovision Release 4.5, Carl Zeiss, Jena, Germany).  At 

least 50 animals were observed for each condition and representative images are 

shown. 

 

K.  ROS analysis  

Total ROS formation was evaluated in the whole nematode using the dye DCFDA.  

DCFDA is a non-fluorescent molecule that can easily enter cells (Kampkötter et al. 

2007).  The dye is cleaved in the presence of ROS to yield the fluorescent DCF, which 

can be monitored and quantitated.  ROS levels were determined using previously 

reported protocols (Kampkötter et al. 2007, Schulz et al. 2007).  Synchronized L4 stage 

nematodes were exposed to 25 µM MeHg for 8 hours.  Following exposure, nematodes 

were washed off the plates with M9 buffer and washed three additional times.  

Nematodes in M9 (50 µl) were combined with 50 µl of 100 µM DCFDA (for a final 

concentration of 50 µM) in a 96 well plate with black sides and a clear bottom, 4 wells 

per condition.  Controls included nematodes without DCFDA and DCFDA without 

nematodes.  The fluorescence was measured at excitation and emission wavelengths of 

485 and 520 nm in a Spectrafluor Plus plate reader (Tecan, Durham, NC).  An initial 

read was obtained, the plates were incubated at room temperature for 1 hour with 

shaking and the final fluorescence was measured.  The fluorescence intensity of the 

control wells was subtracted from all other wells and the change in fluorescence was 

determined by subtracting the initial value from the final value.  The experiment was 

repeated in triplicate and average values were calculated.  

 

L.  RNA extraction  

After the desired exposure or growth condition, nematodes were collected from the 

plates by washing with water and washed at least 3 times to remove bacteria.  TRIzol 



 48 

reagent (Life Technologies, Grand Island, NY) was added to the pellet of nematodes, 

approximately 1 ml TRIzol per 100 µl of pellet.  Samples were frozen at -80°C and later 

thawed for processing, or RNA was isolated immediately as previously described 

(Novillo et al. 2005).  Samples were vortexed and incubated in TRIzol for 10 minutes at 

room temperature, then centrifuged for 10 minutes at 14K RPM at 4°C.  The debris was 

pelleted to the bottom and the top layer was removed to a new tube.  200 µl chloroform 

was added to separate the protein and other impurities, samples were vortexed and 

allowed to sit at room temperature for 3 minutes.  Samples were centrifuged for 10 

minutes at 12K RPM at 4°C and the top clear layer was removed to a new tube.  500 µl 

isopropanol was added to precipitate the RNA, the tube was inverted to mix and 

incubated at room temperature for 10 minutes.  The RNA was pelleted by centrifugation 

for 10 minutes at 12K RPM at 4°C and then the pellet was washed with 75% ethanol.  

After air drying, the pellet was dissolved in nuclease free H2O and the concentration was 

measured using a ND-1000 spectrophotometer (Nanodrop Technology, Wilmington, 

DE).  RNA samples were stored at -80°C. 

 

M.  cDNA synthesis 

cDNA synthesis was carried out using the iScript cDNA Synthesis Kit (Bio-Rad, 

Hercules, CA) or the Maxima First Strand cDNA Synthesis Kit for RT-qPCR (Thermo 

Fisher Scientific, Waltham, MA) following manufacturer’s instructions.  Both kits use a 

mixture of oligo dT and random hexamer primers and 1 µg of total RNA was used as the 

template.  cDNA was quantified using a ND-1000 spectrophotometer and stored at -

20°C.      

 

N.  RT-PCR measurements  

Primers were designed using Primer3 software to be gene specific and exon spanning to 

avoid amplification of contaminating genomic DNA.  Glyceraldehyde-3-dehydrogenase 

(GAPDH) was selected as the gene for normalization in the RT-PCR because its 

expression does not change as a result of MeHg treatment (data not shown, Wilson et 

al. 2005, Yin et al. 2007).  Primer sequences are listed in Table 2.  Real-time PCR was 

performed using 2X SYBR Green PCR master mix (Life Technologies, Grand Island, 

NY) or Maxima SYBR Green/ROX qPCR Master Mix (Thermo Fisher Scientific, 

Waltham, MA) and the StepOnePlus Real-Time PCR System (Life Technologies, Grand 

Island, NY).  25 µg of cDNA was used as the template, reactions were performed in 
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triplicate and each experiment was repeated with three independent cDNA samples.  

Primer specificity and the formation of a single product were verified by a melting curve.  

Relative fold change in expression of each gene was calculated using the ΔΔCt method, 

normalized to GAPDH.  

 

Gene Primer Sequence (5’ – 3’) 
gapdh F:  CAATGCTTCCTGCACCACTA 
 R:  CTCCAGAGCTTTCCTGATGG 
gst-1 F:  CAAGGACGTTCTTCCAGGAG 
 R:  CTGGAACACCATCAAGAGCA 
gst-4 F:  TGCTCAATGTGCCTTACGAG 
 R:  AGTTTTTCCAGCGAGTCCAA 
gst-5 F:  CCGGACAACAATACGAGGAT 
 R:  GAGCCAAGAAACGAGCAATC 
gst-10 F:  ATTCGAAGACATTCGGTTCG 
 R:  TTGCTCCAGTCTGCACAATC 
gst-12 F:  GGAGTTCCGTTTGAGGATGA 
 R:  CGACGTTTAGGACAGGCATT 
gst-21 F:  AATGCTGACGCATGAAGATG 
 R:  GCCTTGACGCAATGTATCCT 
gst-38 F:  TCCAATGCTCGAGGTAGATGGCAA 
 R:  ACGAGCCTCCGCGTAATAGTCTTT 
hsp-4 F:  TTGAAGCCGGTTCAGAAAGT 
 R:  GCTCCTTGCCGTTGAAGTAG 
hsp-6 F:  AACGCCGTTGTTACAGTTCC 
 R:  GCTCGTTGATGACACGAAGA 
hsp-16.1 F:  CAATGTCTCGCAGTTCAAGCCAGA 
 R:  GCACCAACATCAACATCTTCGGGT 
hsp-16.2 F:  CTCAACGTTCCGTTTTTGGT 
 R:  CGTTGAGATTGATGGCAAAC 
hsp-16.41 F:  GAAACAAAATCGGAACATGGA 
 R:  TCTTTGGAGCCTCAATTTGG 
hsp-16.48 F:  CATGCTCCGTCCTCCATTTT 
 R:  TTGTGATCAGCATTTCTCCAA 
hsp-70 F:  TTAACTGGAATCCCACCAGCTCCA 
 R: ATCTCGTTGTGCTGCGTCTTCTCT 
mrp-7 F:  CGAGAAGACGTTGCAGGAC 
 R:  ATTTGGGCCGATTACCTTCT 

 

Table 2.  RT-PCR primer sequences. 
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O.  Protein preparation 

Protein extracts from whole nematodes were prepared for Western blot analysis 

following previously established methods with slight modifications (Weimer et al. 2003, Li 

et al. 2009).  Following exposure, animals were washed from plates with H2O and 

washed an additional three times.  150 µl of mito buffer (20 mM HEPES, pH 7.5, 250 

mM sucrose, 1 mM EDTA, 1 mM EGTA, 10 mM KCl, 1.5 mM MgCl2, 1 mM DTT, 0.1 mM 

PMSF, 2 µg/ml leupeptin, 2 µg/ml pepstatin, 2 µg/ml aprotinin) was added to 300-400 µl 

of pelleted nematodes and the tubes were frozen at -20°C until protein purification or 

processed immediately.  Animals were homogenized on ice with 50 – 60 strokes in a 2 

ml glass tissue grinder.  The lysate was centrifuged for 4 minutes at 400xg at 4°C and 

the supernatant was collected without disturbing the insoluble debris.  The protein 

concentration was determined using the Quick Start Bradford assay (Bio-Rad, Hercules, 

CA) with bovine gamma globulin as the standard.   

 

P.  Western blot analysis 

NuPAGE LDS buffer (Invitrogen, Carlsbad, CA) and β-mercaptoethanol were added to 

50 µg of protein and samples were heated at 95°C for 20 minutes.  Total cell lysates 

were separated by SDS-polyacrylamide gel electrophoresis (PAGE) using pre-cast 

NuPAGE 10% Bis-Tris gels and NuPAGE MOPS running buffer (Invitrogen, Carlsbad, 

CA).  Proteins were transferred to polyvinylidene difluoride (PVDF) membranes in a Tris-

glycine transfer buffer (Bio-Rad, Hercules, CA).  Membranes were blocked with 5% non-

fat dry milk dissolved in TBST (tris-buffered saline, 0.1% Tween-20) for 2 hours at room 

temperature and then incubated in primary antibody overnight at 4°C.  The GST-38 

antibody was generated against amino acids 6-92 of the putative C. elegans GST-38 

sequence (WP:CE15958) using Genomic Antibody Technology at Strategic Diagnostics 

Inc. (SDI, Newark, DE).  This rabbit polyclonal antibody was affinity purified by SDI and 

used at a 1:20,000 dilution.  A mouse monoclonal antibody to GAPDH (ab36840, 

Abcam, Cambridge, MA) was used to ensure equal loading of the wells (1:5,000 

dilution).  Membranes were washed three times in TBST for 15 minutes and incubated 

with horseradish peroxidase-conjugated secondary anti-rabbit IgG  (611-1302 Rockland, 

Gilbertsville, PA) for 1 hour at room temperature.  Proteins were detected using 

Amersham enhanced chemiluminescence (ECL) reagent (GE Healthcare, Piscataway, 

NJ) and the image was captured with the ChemiDoc XRS system (Bio-Rad, Hercules, 
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CA).  The intensity of each band was quantified using the Quantity One software (Bio-

Rad, Hercules, CA).   

 

Q.  Dopamine neuron degeneration 

For DA neuron degeneration assays, RJ928 gravid adults were used for the 

synchronization procedure and L1 stage nematodes were washed with H2O and placed 

on RNAi plates containing the appropriate bacteria and MeHg.  Nematodes were 

incubated for 4 days at 20°C.  For scoring of DA neuron degeneration, 50 – 60 animals 

were picked into 10 µl of H2O on a 2% agarose pad on a glass slide (Nass & Hamza 

2007).  For immobilization, 2% sodium azide (10 µl) was added and the nematodes were 

covered with a glass coverslip.  A fluorescent microscope (Leica MZ 16FA, Switzerland) 

was used to examine the GFP-expressing DA neurons.  Nematodes were scored as 

either “normal” or “degeneration” based on our previously reported method (Nass et al. 

2002).  To be considered normal, the GFP must be intact from the nerve ring to the tip of 

the nose in all 4 CEP processes (cephalic dendrites).   

 

R.  Immunohistochemistry.  

For localization and expression studies, primary C. elegans cultures were created 

(Bianchi & Driscoll 2006, Settivari et al. 2009).  Nematodes were grown to the gravid 

adult stage, collected and lysed with sodium hypochlorite solution.  The eggs were 

pelleted and washed with egg buffer (118 mM NaCl, 48 mM KCl, 2 mM CaCl2, 2 mM 

MgCl2, 25 mM HEPES).  A 60% sucrose solution was used to separate the eggs from 

the debris and the eggs were washed again with egg buffer.  The eggs were incubated 

in chitinase (C6137, Sigma, St. Louis, MO) at 4 mg/ml, or later 1 unit/ml, for 50 minutes 

to dissolve the egg shells (Frokjaer-Jensen 2003, Bianchi 2006, Strange et al. 2007).  

The embryonic cells were dissociated by passing the solution through a 21 gauge 

needle, then collected and grown on polylysine-coated coverslips in L-15 media 

containing 10% fetal bovine serum (FBS) and 1% pen/strep.  Cells were cultured for 3 

days at 20°C.   

 For immunocytochemistry, cells were fixed in 4% paraformaldehyde and 

permeabilized with 0.5% triton X-100 (Settivari et al. 2009).  Cells were incubated in a 

blocking buffer of 1% normal donkey serum followed by the SKN-1 primary antibody (sc-

9244, Santa Cruz Biotechnology, Santa Cruz, CA) at a 1:1,000 dilution overnight at 4°C.  

A Cy5-conjugated donkey anti-goat secondary antibody (AP180S, EMD Millipore 
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Corporation, Billerica, MA) was used at a 1:1,000 dilution and incubated for 1 hour at 

room temperature.  Coverslips were mounted onto slides with VECTASHIELD HardSet 

Mounting Medium (Vector Laboratories, Burlingame, CA, USA).  As a control for the 

specificity of the SKN-1 antibody, cells were incubated in a mixture of primary antibody 

and the complementary antigenic peptide (sc-9244p; Santa Cruz Biotechnology, Santa 

Cruz, CA) at a ratio of 1:5, followed by secondary antibody as described above.  

 For expression analysis in transgenic strains, the nematode cultures were 

enriched for transgenic animals by picking rollers and then processed as above.  After a 

72 hour incubation, cells were fixed with 4% paraformaldehyde and then directly 

mounted onto slides with the VECTASHIELD HardSet Mounting Medium. 

 Confocal microscopy was used to obtain images of the cells.  The Zeiss LSM 510 

microscope (Carl Zeiss, Jena, Germany) was used for the SKN-1 experiments and the 

Nikon Eclipse Ti with NIS Elements AR software (Nikon Instruments Inc., Melville, NY) 

was used for CFP/YFP expression in the MRP-7 experiments (440 nm and 514 nm 

lasers, respectively).  Z-stacks were assembled in ImageJ (Rasband 1997-2012).    

  

S.  Inductively coupled plasma mass spectrometry (ICP-MS) 

1.  Collecting samples for ICP-MS analysis 

a.  MeHg 

Gravid adult NL2099 nematodes were bleached and synchronized L1s were placed onto 

RNAi plates seeded with RNAi bacteria.  Nematodes (P0) were grown to the adult stage 

and synchronized again.  L1s (F1) were grown on RNAi for 3 days to the adult stage and 

then transferred to RNAi plates containing 1 µM MeHg and seeded with the appropriate 

RNAi bacteria.  Nematodes were grown on the RNAi + MeHg plates for the indicated 

amount of time at 20°C.  After exposure, animals were washed off of the plates with ice 

cold H2O into pre-weighed metal-free 1.5 ml tubes and the tubes were kept on ice 

throughout the washing process.  Nematode pellets were washed 3 times with ice cold 

H2O.  L1s were present on the plate, therefore the adults were allowed to settle by 

gravity on ice and the L1s were removed during the washes to ensure that the Hg 

measurement reflected only the content in adults.  After the final wash, the H2O was 

removed and samples were frozen at -20°C until further processing.   
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b.  Aluminum 

Synchronized L1 stage WT (BY250) and smf-3 mutant (RJ934) nematodes were placed 

on NGM plates and grown for 48 hours at 20°C.  L4 stage nematodes were washed off 

the plates with W5 H2O (Thermo Fisher Scientific, Waltham, MA, submicron filtered 

HPLC grade H2O to minimize contamination of aluminum from diH2O) and washed three 

times to remove bacteria.  Nematodes were added to 15 ml tubes and exposed to W5 

H2O or 100 µM AlCl3 for 30 minutes at room temperature.  Ice-cold W5 H2O was added 

to each tube to stop the exposure, nematodes were moved to pre-weighed tubes, and 

additionally washed 4 more times with ice-cold W5 H2O.  All H2O was removed from the 

pellet and the tubes were frozen at -80°C.    

 

2.  Digesting samples for ICP-MS analysis 

a.  MeHg 

Frozen nematode samples were thawed, centrifuged to collect any liquid to the bottom of 

the tube and H2O was removed down to the top of the pellet.  The total weight of the 

tube and pellet was recorded.  Digestion was carried out using the MARSXpress 

microwave digestion system with 20 ml capacity vessels (CEM, Matthews, NC).  

Concentrated HNO3 (1 ml) (Optima grade, Thermo Fisher Scientific, Waltham, MA) was 

used to transfer the sample to the digestion vessel.  Millipore filtered H2O (1 ml) was 

added to achieve a final concentration of 50% acid.  The vessels were evenly distributed 

and secured into the carousel and placed into the digestion chamber.  The following 

parameters were used:  Max – 1600W, % – 100, Ramp – 20 min, °C – 200, Hold – 15 

min.  The Max was determined based on the total volume of all vessels in the chamber:  

10 to 20 ml – 400W, 20 to 60 ml – 800W, > 60ml – 1600W.  After heating and cool-

down, the contents of each vessel were transferred to a 50 ml metal-free tube by filling 

the vessel with Millipore filtered H2O, pouring the acid + H2O into the 50 ml tube and 

adding H2O to bring the volume to 50 ml.  This resulted in a final acid concentration of 

2%.  Samples were stored at 4°C before analysis by ICP-MS. 

 

b.  Aluminum 

Samples were thawed and the open tubes were placed in an oven overnight (12 – 14 

hours) at 60°C to dry the pellets.  The dry weight of each sample was determined and 

then the dried pellet was transferred to the digestion vessel.  Samples were digested in 

45% HNO3, 5% HCl using the parameters as above.  Digested samples were diluted 
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with W5 H2O to achieve a solution containing 2% acid and stored at room temperature 

before analysis.   

 

3.  ICP-MS analysis 

a.  MeHg 

A standard curve for Hg was prepared from 0.1 – 5.0 parts per billion (ppb) Hg in 2% 

HNO3 (Wilbur & Soffey 2003).  All samples contained the internal standard mix #71 at 1 

ppb (89Y and 209Bi were monitored) and 200 ppb Au.  Au was added to prevent the loss 

of Hg due to binding to the container and to limit Hg build up in the instrument, as Au 

maintains Hg2+ rather than Hg in solution (Thermo Scientific Application Note 40612 

2008).  Digested samples were diluted in 2% HNO3 to achieve a final concentration of 

0.1 mg nematode tissue/ml.  Although the nematode matrix did not appear to cause 

interference with the Hg measurement, the total dissolved solids were kept constant to 

ensure consistency.  Also, maintaining this concentration resulted in nearly all sample 

measurements falling within the range of the standard curve.  The pellet obtained 

following exposure needed to be > 5 mg so that the concentration of sample would be > 

0.1 mg/ml (5 mg / 50 ml = 0.1 mg/ml).  Samples containing less than this amount were 

either repeated, or the sample was not diluted and the actual tissue weight was used in 

the final calculation.  Samples were introduced into the X Series ICP-MS (Thermo Fisher 

Scientific, Waltham, MA) and the isotopes 201Hg and 202Hg were monitored.  202Hg was 

used for data analysis as it is the most abundant Hg isotope (Reyes et al. 2008).  The 

[Hg] in ng/ml (ppb) was divided by the concentration of tissue in the sample (usually 0.1 

mg/ml) and the data was expressed as ng Hg/mg nematodes (wet weight) or ppm Hg.   

 

b.  Aluminum 

A standard curve for Al was prepared in 2% HNO3 ranging from 0 to 100 ppb Al.  

Beryllium and gallium were used as internal standards (9Be and 71Ga were monitored).  

Samples were introduced into the ICP-MS and 27Al was monitored.  Al content was 

normalized to dry weight of the nematode pellet and expressed as µg Al/g nematodes or 

ppm Al.   

 

 

 

 



 55 

T.  Transgenic animals 

1.  Constructs  

Cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) were used as the 

reporters for co-expression studies (Miller et al. 1999).  The GFP in pRN200 (Nass et al. 

2002) was replaced with YFP from the vector L4817 (Fire Lab Vector Kit, Addgene, 

Cambridge, MA).  The plasmids were digested with AgeI and ApaI, which flank the GFP 

or YFP regions of the plasmids.  ExpressLink T4 DNA Ligase (Invitrogen, Carlsbad, CA) 

was used to ligate the YPF fragment into the pRN200 vector.  The method was also 

used to generate a promoterless CFP expression vector by replacing the GFP in 

pPD95.73 with the CFP fragment from L4816.  To generate a transcriptional fusion of 

mrp-7 with CFP, the mrp-7 promoter was amplified from genomic DNA based on primers 

designed by The Genome BC C. elegans Gene Expression Consortium, which amplify 

3466 bp 5’ of the start codon (Hunt-Newbury et al. 2007).  The PCR product was 

generated using Elongase Enzyme Mix (10480-010, Invitrogen, Carlsbad, CA) as this 

mixture of polymerases has proofreading ability and allows for amplification of targets 

over 5 kb, and the following primers:  F – 

GTCGACTAGAGGATCCTTTAAAATCTCGTCGACATCACT, R – 

CCAATCCCGGGGATCCCTAATTTTTGGAGTTTGTGTT.  The mrp-7 promoter was 

inserted into the promoterless CFP vector at the BamHI site using the In-Fusion HD 

cloning system (Clontech, Mountain View, CA).  Ligation reactions were transformed into 

Max Efficiency DH5α supercompetent cells (Invitrogen, Carlsbad, CA).  Single colonies 

were grown for miniprep (QIAprep Spin Miniprep Kit, Qiagen, Germantown, MD) and the 

ligation was confirmed by restriction digest or PCR.      

 

2.  Microinjections  

C. elegans microinjections were performed largely as described (Evans 2006).  A drop of 

halocarbon oil (H8898, Sigma-Aldrich, St. Louis, MO) was placed onto an injection pad 

(2% agarose with small bits of glass baked at 60°C overnight in a vacuum oven) and 

young adult nematodes were picked into the oil.  The animals were carefully pressed 

onto the agarose and allowed to stick to immobilize them.  Injection needles were pulled 

and loaded with 1.2 µl of injection mixture (1x Injection Buffer with DNA constructs 

totaling 100-200 ng/µl).  The injection mix for the mrp-7 transcriptional fusion contained 

Pmrp-7::CFP at 75 ng/µl, Pdat-1::YFP at 50 ng/µl, pRF4 (rol-6) at 50 ng/µl and pUC19 at 25 

ng/µl.  The needle was inserted into the gonad of the nematode and DNA was injected 
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into the animal.  M9 buffer was used to re-hydrate the animals and they were picked 

onto an NGM plate to recover.  

 

U.  RNAi Screen  

An RNAi screen by feeding in liquid culture was performed in a 96 well format as 

previously described by (Kamath & Ahringer 2003, Ahringer 2006).  First, the bacterial 

cultures for feeding were prepared from the RNAi libraries.  Cultures from the RNAi 

library glycerol stocks were spotted onto rectangular LB plates (Nunc OmniTray, 12-565-

450, Thermo Fisher Scientific, Waltham, MA) containing 50 µg/ml ampicillin and 10 

µg/ml tetracycline using sterile disposable inoculators (Nunc Disp Inoculator, 14-245-

101, Thermo Fisher Scientific, Waltham, MA).  The spots were allowed to dry and plates 

were incubated overnight at 37°C.  To grow liquid cultures, 500 µl of LB broth with 50 

µg/ml ampicillin was dispensed into each well of a 96-well deep well plate (Scienceware 

96 Deep-Well Plate, F378600001, Bel-Art Products, Wayne, NJ) using a multi-drop 

dispenser (Multidrop DW, 5840177, Thermo Fisher Scientific, Waltham, MA) 

immediately prior to use.  The LB broth was inoculated from the colonies on the flat LB 

plate and the plates were covered with lids (96 Deep-Well Plate Covers, 378600004, 

Bel-Art Products, Wayne, NJ), secured with a rubber band and grown overnight at 37°C 

with shaking at 300 RPM.  IPTG was added to each well to a final concentration of 1 mM 

and the plates were shaken 1 hour to induce the dsRNA expression.  To concentrate the 

cultures, the bacteria was pelleted by centrifugation and the LB broth was removed.  The 

pellets were resuspended in 160 µl S basal with 100 µg/ml ampicillin and 1 mM IPTG.  

50 µl was transferred to each well of a standard 96 well plate (Nunc MicroWell 96-Well 

Microplate, 260860, Thermo Fisher Scientific, Waltham, MA).   

 Synchronized L1 stage NL2099s were resuspended in S basal + 100 µg/ml 

ampicillin + 1 mM IPTG + 0.01% Tween and ~40 nematodes were added to each well. 

Tween was used to prevent the animals from sticking to the tips and ensure that an 

equal number was added to each well (Lagido et al. 2008).  The initial OD600 of each well 

was determined by measuring the OD600 in a plate reader (Synergy HT, BioTek, 

Winooski, VT) following a 30 second shake.  Plates containing nematodes were grown in 

a refrigerated shaking incubator set at 20°C and 160 RPM.  After 48 h of incubation, 

MeHg was added to each well to a final concentration of 5 µM and the OD600 (t=2 days) 

was recorded again.  The shaking step in the plate reader helped to mix the MeHg into 

the solution and resuspended any bacteria that had settled to the bottom of the well.  
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The plates were again incubated for 2 days.  At the end of the exposure, the final OD600 

(t=4 days) was recorded.  A ratio of growth was determined by dividing the OD600 t=4 / 

OD600 t=2.  If the nematodes were healthy and consumed all the bacteria, the t=4 would 

be close to 0, resulting in a ratio close to 0.  If the nematode viability was impaired and 

little bacteria was consumed, the t=4 would be near t=2 and the ratio would be close to 

1.  To select genes that may affect viability, clones with a ratio greater than 0.5 (or wells 

which were obviously different from other wells based on visual observation) were 

identified and subjected to a second round of testing.   

 For the second round of the screen, each gene was tested again in liquid +/- 

MeHg.  HT115 (empty vector) and skn-1 bacteria were included in every plate as a 

control (VanDuyn et al. 2010).  50 µl of bacteria was pipetted into two wells of a 96 well 

plate, nematodes were added and the plates were incubated as above.  After 48 hours, 

MeHg was added to one well per clone, and H2O was added to the other well for control.  

The OD600 was measured at day 0, 2 and 4 and the t=4/t=2 ratio was calculated.  Clones 

for which the MeHg ratio was greater than 2 times the control ratio (as observed for skn-

1 RNAi), or for which there was a clear difference between control and MeHg based on 

visual observation, were selected to undergo a third round of screening.   

 For the third round, a live/dead assay on agar plates was carried out for each 

clone.  Synchronized NL2099 L1 stage nematodes were grown on plates seeded with 

each individual RNAi clone for 48 hours.  L4 stage nematodes were transferred onto 

RNAi plates containing 10 µM MeHg and seeded with the RNAi bacteria.  After 48 hours, 

the number of live animals was determined as described in the viability assay above.  

Each clone was tested in triplicate (> 20 animals per replicate) and clones for which the 

average percent live nematodes was significantly different from WT (HT115) were 

identified as  “screen hits”. 

 

V.  RNAi clone sequencing 

The RNAi feeding clone in well III-6J08 of the Source BioScience library was grown 

overnight in LB broth + 50 µg/ml ampicillin and a miniprep kit was used to isolate 

plasmid DNA (QIAprep Spin Miniprep Kit, Qiagen, Hilden, Germany). Sequencing 

services were carried out by ACGT, Inc. (Wheeling, IL, USA) using their provided 

M13F(-20) primer. The resulting nucleotide sequence was mapped to the C. elegans 

genome using the BLASTN feature at WormBase.org. 
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W.  Determination of SKN-1 binding sites 

To determine if genes have SKN-1 binding sites, the region 2 kb (or until the start of 

another gene) upstream (5’) of the ATG start codon was identified using the genome 

browser on Wormbase.org.  This sequence is always given for the + strand but the 

consensus sequence can be found on either the + or – strand, so the search includes 

both the forward sequence and its reverse complement, with all combinations of the 

variable bases.   

 A method of experimentally determining SKN-1 binding sites is through the use 

of ChIP-seq analysis (Niu et al. 2011).  A SKN-1::GFP translational fusion (which 

produces functional SKN-1 protein) was utilized to generate transgenic animals.  

Synchronized nematodes were collected at the L1 stage and formaldehyde was used to 

cross-link DNA to proteins before a GFP antibody was used to pull down SKN-1::GFP.  

Any DNA fragments that were bound by SKN-1 were isolated and sequenced.  A 

program called PeakSeq and other statistical analysis was used to identify regions of 

DNA that were bound by SKN-1.  The genes that were bound by SKN-1 are presented 

as a table in the publication, but also annotated as a “Track” in the genome browser on 

Wormbase.org.  Therefore, regions bound by SKN-1 are indicated by peaks in the 

promoter region when viewing the genome browser.  The presence of SKN-1 binding 

sites is not conclusive evidence that the gene is regulated by SKN-1 but it supports the 

hypothesis.   

 

X.  DAVID analysis of screen hits and microarray data 

DAVID (the database for annotation, visualization and integrated discovery) is a program 

for the analysis of large gene lists, such as those generated by microarray experiments 

(Huang et al. 2009).  DAVID compares a list of genes input by the user to a reference 

gene list, first assigning a biological annotation to each gene and then determining the 

classes of genes or related gene groups that are over-represented based on their 

frequency in the input list versus the reference list.  The list of genes upregulated > 2-

fold by MeHg exposure in the microarray was submitted and the Affymetrix C. elegans 

Array was used as the reference list.  

 

Y.  BLAST searches and sequence alignment 

To determine putative homologues, the NCBI BLAST program was utilized (Altschul et 

al. 1990).  Protein sequences were compared using the blastp feature.  C. elegans 
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protein sequences were obtained from WormBase.org and subjected to search against 

the human genome, or human protein sequences were obtained from the NCBI protein 

database and used as the query sequence for a search of the most recent build of the C. 

elegans genome.   

 Sequence alignment was carried out using the ClustalW program with the default 

parameters (Larkin et al. 2007).  In the output, an asterisk represents a fully conserved 

residue, a colon (:) indicates strongly conserved residues (> 0.5 in the Gonnet PAM 250 

matrix) and a period (.) indicates a weakly conserved residue (≤ 0.5 in the Gonnet PAM 

250 matrix).   

 

Z.  Statistical analysis 

Statistical analysis was performed using GraphPad Prism software (GraphPad Software, 

San Diego, CA).  For comparison of two groups, a student’s t-test was used.  For 

multiple groups, one-way ANOVA analysis was performed.  When two variables were 

compared, two-way ANOVA was done.  All ANOVA tests were followed by Bonferroni 

post-tests (which are preferred over the Tukey test for small samples).  Error bars 

represent the standard error of the mean (SEM).   
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III.  Characterization of MeHg toxicity in C. elegans 

 

MeHg exposure in vertebrates confers animal death and impairs development and 

reproduction (Verschuuren et al. 1976, Curle et al. 1987).  MeHg also increases ROS 

and induces stress response gene expression (Kaur et al. 2006, Yu et al. 2010).  These 

endpoints were evaluated to determine if C. elegans recapitulates key features of 

mammalian MeHg toxicity.   

 

A.  Viability 

1.  Chronic exposure to MeHg confers animal death 

Chronic exposure of C. elegans to MeHg results in animal death that is increased with 

increasing concentrations of MeHg.  Initial experiments were performed on 8P plates 

containing MeHg at concentrations between 0 and 125 µM.  Wild type (N2) nematodes 

were synchronized and grown to the fourth larval stage (L4) on standard media before 

being transferred to the plates containing MeHg.  After 48 hours, the number of live 

animals was determined.  Based on the results of this experiment, the LC50 was 

approximately 95 µM after a 48 hour exposure on 8P plates (Fig. 3). 

 

 
Figure 3.  MeHg confers concentration-dependent animal death.  WT (N2) L4 stage 
nematodes were exposed to various concentrations of MeHg on 8P plates for 48 hours.  
The number of live animals was determined and expressed as % of control.  Data was 
analyzed using one-way ANOVA followed by a Dunnett’s multiple comparison test. * 
indicates a significant difference from 0 µM MeHg with p < 0.01.    
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MeHg-induced lethality appears dependent on the age of the nematodes when 

the exposure begins.  Adult nematodes appear to be the most sensitive, as they develop 

a severe “egg-laying defective” (egl) phenotype that may contribute to the overall toxicity 

resulting in death.  L4 stage nematodes placed on 5 µM MeHg exhibit a significant 

reduction in egg-laying and accumulation of embryos that hatch inside the adult (Fig. 4A 

and B) and 20 µM results in the egl phenotype combined with non-viable embryos (Fig. 

4C and D).  MeHg exposure beginning at early larval stages (L2 – L3, 24 hours post 

synchronization) inhibits the formation of embryos, suggesting that the lethality observed 

may be due to direct effects on that animal.  

 

 
Figure 4.  MeHg exposure inhibits egg-laying and results in an accumulation of embryos 
inside the hermaphrodite.  Under normal/control conditions, 10 – 15 embryos are 
present in the uterus at this age and eggs are laid before the 44-cell stage of 
development (see Fig. 8A).  Growth on 5 µM MeHg causes the egl phenotype, in which 
egg-laying is inhibited and larvae hatch inside the hermaphrodite (A and B).  At higher 
MeHg concentrations (20 µM), the embryos accumulate but are not viable (C and D).   
 

 

2.  Selenium inhibits MeHg toxicity  

Nematodes are able to survive exposure to high concentrations of MeHg when selenium 

(1 mM) is also present on the plates (Fig. 5).  The bacteria turns red in the presence of 

Se, and this may be due to a metabolic process as the bacteria must be alive for the red 
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color to develop.  Also, when Se is added to dead bacteria, the compound is unable to 

inhibit MeHg toxicity.    

 

 
Figure 5.  Selenium inhibits MeHg-induced lethality.  L4 stage N2 nematodes were 
exposed to MeHg or MeHg + Se (1 mM Na2SeO3) on 8P plates for 48 hours.  The 
number of live animals was determined and expressed as % of control.  The 
combination exposure is significantly different than MeHg alone; * indicates p < 0.001 by 
two-way ANOVA followed by Bonferroni post test.      
 

 

 Although the ability of Se to inhibit MeHg toxicity has been documented in 

multiple systems, the mechanisms involved are still debated (Khan & Wang 2009).  One 

hypothesis is that supplemental Se increases the Se available for selenoproteins and 

therefore the antioxidant capacity of the cell, enhancing the ability to buffer the oxidative 

stress induced by MeHg (Ralston & Raymond 2010).  However, Se can bind MeHg with 

a high affinity (Ralston & Raymond 2010).  Intracellular binding could sequester MeHg 

and prevent it from reacting with other molecules and may also enhance excretion 

(Ralston et al. 2007).  A third possibility is that Se may bind MeHg outside the cell and 

inhibit uptake.  Analysis of Hg levels shows that the Hg in the nematodes is dramatically 

reduced when co-exposed with Se (Fig. 6), suggesting either impaired uptake or 

increased excretion of MeHg when Se is present.  
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Figure 6.  Hg levels are reduced by co-exposure with Se.  L4 stage N2 nematodes were 
exposed to 25 µM MeHg or 25 µM MeHg + 1 mM Na2SeO3 for 8 hours and then 
collected for Hg analysis.  The LECO Advanced Mercury Analyzer 254 was used to 
measure total Hg in the nematode samples, and the data was normalized to wet weight.  
Analysis was completed by Rosalice Buehrer in the Department of Earth Sciences at 
IUPUI.   
 

 

3.  MeHg exposure reduces pharyngeal pumping rate  

Pharyngeal pumping is a C. elegans behavior that may be impaired when the nervous 

system is not functioning properly (Avery & You 2012).  Several neurotransmitters, 

including DA, are involved in the regulation of pumping rate (Marr et al. 2003).  

Pharyngeal pumping rate can also be an indicator of overall animal health.  L4 stage 

nematodes were exposed to MeHg for 24 hours and the number of pumps per minute 

was determined.  There was a significant decrease in the pumping rate at 5 µM and 20 

µM MeHg (Fig. 7).  
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Figure 7.  MeHg exposure reduces the pharyngeal pumping rate.  L4 stage N2 
nematodes were placed on 8P plates containing the indicated MeHg concentration for 
24 hours.  Individual animals were recorded on the plates for 30 seconds, the number of 
pumps was counted and multiplied by 2 to obtain pumps per minute.  Data is expressed 
as percent of control and is the average of at least 6 animals.  The pharyngeal pumping 
rate is significantly decreased by MeHg compared to control as determined by one-way 
ANOVA, * indicates p < 0.001.     
 

 

B.  Reproduction and development 

1.  MeHg reduces brood size 

To determine the reproductive capacity of nematodes exposed to MeHg, a brood size 

assay was incorporated to quantify the total number of progeny produced by a single 

animal.  Synchronized N2 animals were placed on 8P plates and grown to the L4 stage.  

Animals were transferred individually to plates containing MeHg from 2.5 – 15 µM.  The 

adult nematodes were moved to a new plate (with the same [MeHg]) every 24 hours until 

egg-laying stopped.  The number of progeny (larval stage) on each plate was counted 

and the counts from each plate were combined to determine the total number of progeny 

from a single animal.  The progeny were counted once they had hatched into larvae 

rather than un-hatched embryos, however no eggs were observed that failed to hatch on 

any plates.  At concentrations of MeHg as low as 2.5 µM, the brood size is significantly 

lower than for unexposed nematodes and 10 µM MeHg reduces the brood size by over 

90% (Fig. 8).   
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Figure 8.  Exposure to MeHg causes a reduction in brood size.  L4 stage nematodes 
were transferred to plates containing MeHg, one animal per plate, and the parent was 
moved to a new plate every 24 hours.  The total number of progeny produced by each 
animal was calculated over its entire period of egg-laying.  One-way ANOVA was used 
to determine that the brood size is significantly different from 0 µM on all concentrations 
of MeHg; * indicates p < 0.01.      
 

 

As mentioned above, MeHg exposure inhibits egg-laying, so the reduction in 

brood size may be a combinatorial effect of decreased embryo production and 

decreased egg-laying.  Sodium arsenite is another toxicant that reduces the brood size 

of C. elegans and following exposure, DAPI staining was used to identify and count 

mitotic cells and apoptotic cells in the gonad (Wang et al. 2007).  A correlation was 

found between the reduced brood size, decreased mitotic cells and increased apoptotic 

cells (Wang et al. 2007).  Increased apoptosis and decreased mitosis could likely be 

occurring during MeHg exposure as well, contributing to the reduction in brood size.     

 

2.  MeHg causes embryonic defects 

Studies in several systems show that MeHg can cause embryonic defects and 

teratogenic effects (Curle et al. 1987, Carvalho et al. 2008, Weis 2009).  Fluorescent 

reporters and the transparency of the nematode allow us to study embryonic 

development in vivo and over time in living animals.  The strain OD70 was used to 

visually monitor cell division in the embryos (Audhya et al. 2005).   This strain expresses 

mCherry behind the pie-1 promoter to drive expression only in germ cells, and fused to a 

plekstrin homology domain to target the protein to the cell membrane.  Normal 
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development occurs through a series of tightly regulated cell divisions, resulting in 

embryos as shown in Fig. 9A.  However, growth of L1 animals on 10 µM MeHg until 

adulthood produces significant changes in the appearance of the embryos.  Shown are 

representative images, but nearly all animals displayed some degree of embryonic 

defects.  The cell division becomes abnormal, resulting in embryos that appear to be a 

random jumble of cells (Fig. 9B).  Defects in mitosis are suspected as multinucleated 

cells were also observed (Fig. 9C and D).  Abnormal fertilization or formation of the 

oocyte during embryogenesis could also contribute to multinucleated embryos.  MeHg 

has been shown to cause multinucleated cells in PtK2 cells by interfering with 

microtubules and mitotic division (Sager & Syversen 1984).  

 

 
Figure 9.  Exposure to MeHg causes embryonic defects.  L1 nematodes expressing the 
mCherry fluorophore behind the pie-1 promoter were grown to adulthood on 8P plates in 
the presence of water (A) or 10 µM MeHg (B-D), and fluorescence (A,B and D) or DIC 
(C) images were obtained.  Relative to control (A), MeHg causes irregular cell division 
(B), and some cells are multinucleated (C and D).  The scale bar is 50 µm.   
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3.  MeHg decreases growth rate 

Measuring animal size is a method of monitoring growth rate.  L1 stage nematodes were 

put on plates containing MeHg up to 50 µM and images of the animals were captured 

after 72 hours.  ImageJ was used to measure the length of each nematode and values 

were presented at percent of control.  Nematodes on 50 µM MeHg appear to remain 

near the L1 stage and reach a size less than 20% of control animals (Fig. 10).   

 

 
Figure 10.  Growth on MeHg decreases nematode size.  L1 stage N2 nematodes were 
placed on 8P plates with the indicated concentration of MeHg and grown for 72 hours.  
Images were obtained and the size of at least 10 animals was measured using the 
ImageJ software.  Control (0 µM) nematodes reached adult size by this time, but all 
MeHg conditions significantly decreased size (one-way ANOVA, * p < 0.001).       
 

 

4.  MeHg delays larval development 

As C. elegans have a consistent and well-defined life cycle, the time to reach 

developmental milestones can be monitored in addition to measuring the body size.  

Synchronized L1 stage N2 animals were placed on 8P plates containing 10 µM MeHg 

and were monitored during exposure until the adult stage was reached, as determined 

by the presence of embryos inside the nematode.  For nematodes exposed to MeHg, the 

time to reach adulthood was about 1.4 times longer than for unexposed controls (56 

hours vs. 78 hours) (Fig. 11).  At concentrations higher than 10 µM, animals rarely 

produced embryos or fully developed to the adult stage.     
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Figure 11.  MeHg delays animal development.  L1 stage N2 nematodes were placed on 
8P plates containing 10 µM MeHg.  The time to reach adulthood (as determined by the 
presence of eggs in the gonad) was recorded and expressed as percent of control.  The 
time to reach adulthood was significantly increased in the presence of MeHg (student’s t-
test, * indicates p < 0.01). 
 

 

C.  Biochemistry 

1.  MeHg induces C. elegans stress response 

C. elegans have been proposed for use as biosensors because of the availability of 

stress-inducible reporter strains (David et al. 2003).  DAF-16 is a transcription factor 

involved in the insulin-like signaling pathway that regulates life span and stress 

resistance (Henderson & Johnson 2001).  In unfavorable conditions, DAF-16 is localized 

to the nucleus to enhance the expression of genes that promote survival and longevity.  

A DAF-16::GFP reporter strain (TJ356) shows nuclear localization of GFP following 

exposure to stress such as starvation, heat and oxidative stress (ex. juglone) 

(Henderson & Johnson 2001).  I exposed TJ356 L4 stage nematodes to MeHg and 

observed a distinct nuclear localization of DAF-16::GFP within 4 hours (Fig. 12).  The 

activation and nuclear localization of DAF-16 suggests that MeHg induces a nematode 

stress response pathway and DAF-16 and insulin-like signaling may be involved in the 

cellular response to MeHg.   
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Figure 12.  MeHg induces DAF-16 nuclear localization.  L4 stage TJ356 nematodes 
have a diffuse expression of GFP under non-stressed conditions, indicating cytoplasmic 
localization of DAF-16 (A).  After 4 hours of exposure to 25 µM MeHg 30% of nematodes 
exhibited nuclear localization of DAF-16::GFP (B).  After 24 hours of exposure, DAF-
16::GFP was localized to the nucleus in 70% of animals.    
 

 

2.  MeHg increases total ROS 

DAF-16 can be activated in response to oxidative stress and one of the effects of MeHg 

exposure is an increase in cellular ROS (InSug et al. 1997, Limke et al. 2004).  

Therefore, I determined total ROS following MeHg exposure utilizing the dye DCFDA 

(Kampkötter et al. 2007).  DCFDA is a non-fluorescent molecule that can easily enter 

cells.  The dye is cleaved in the presence of ROS to yield the fluorescent DCF, which 

can be monitored and quantitated.  To determine if MeHg increases ROS in C. elegans, 

N2 animals were grown to the L4 stage, then incubated on plates containing 25 µM 

MeHg for 8 hours.  Following incubation, DCFDA was added to the nematodes and the 

fluorescence was measured at t=0 and after 1 hour and normalized to the protein 

content of each well.  After MeHg exposure, the level of ROS increases more than two-

fold compared to untreated nematodes (Fig. 13). 

 

A   Control B   MeHg 
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Figure 13.  Exposure of C. elegans to MeHg increases ROS.  Synchronized L4 stage 
N2 nematodes were exposed to 25 µM MeHg on 8P plates for 8 hours and then 
incubated with DCFDA for 60 minutes.  Change in fluorescence was normalized to 
protein concentration.  Shown are mean ± SEM of four replicates.  A student’s t-test 
indicates that MeHg significantly increases ROS compared to control, * indicates p = 
0.02.     
 

  

 The assay using DCFDA measures ROS non-specifically (Karlsson et al. 2010).  

Using other methods to quantify the various species of ROS (ex. H2O2, superoxide 

radical) may give further insight into the cellular targets of MeHg, as the disruption of 

different processes can produce different species of ROS.  

 

3.  Microarray analysis 

The C. elegans Affymetrix chip, which contains probes for 22,500 transcripts, was used 

to compare global gene expression between control and MeHg treated animals 

(Affymetrix).  L4 stage N2 nematodes were exposed to 25 µM MeHg and control 

conditions for 8 hours then collected and the RNA was prepared for microarray analysis.  

A single replicate of the microarray was performed and a cut-off value of 2-fold change 

was used to determine which genes were significantly different between MeHg and 

control.  With a single replicate, more advanced statistical methods could not be applied, 

however some evidence suggests that the fold change may be more restrictive and 

provide a more biologically relevant interpretation of the data compared with other 

statistical methods (Dalman et al. 2012).  Based on the cut-off of 2-fold, 508 genes were 

upregulated and 165 genes were downregulated following MeHg exposure.  Phase II 
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detoxification enzymes were some of the highest upregulated genes, including HSPs 

and GSTs.  DAVID analysis was performed on the list of upregulated genes and the 

gene groups with enrichment scores greater than 1 were identified (Table 3).  Phase I 

and II detoxification enzymes (GSTs, UGTs, CYPs) were some of the highest 

upregulated genes.  HSPs are another class stress response proteins (Samali & 

Orrenius 1998b).  The F-box and SKp1 genes are related to the UPS system, which 

plays a role in the cellular stress response (Hershko & Ciechanover 1998).  These 

microarray results are similar to those obtained in other systems, especially MeHg-

treated MEF cells (Yu et al. 2010).  There were also 5 dod genes (“downstream of daf-

16”) upregulated by MeHg, suggesting that the transcription factor DAF-16 is activated 

by the toxicant.  The DAF-16 regulated genes are likely involved in stress resistance or 

survival and the induction of these dod genes is consistent with the nuclear localization 

of DAF-16 observed following MeHg exposure (Fig. 12).   

 Of the 165 down-regulated genes, DAVID analysis did not indicate any enriched 

gene groups.  However three of the 20 most decreased genes were heme responsive 

genes, hrg-1, hrg-3 and hrg-4.  In humans and other mammals, Hg and MeHg are 

known to alter heme biosynthesis and the profile of the amounts of heme intermediates 

(porphyrins) in the urine can be used as a biomarker for Hg and MeHg exposure (Woods 

1996).  Although HO-1 is often believed to function as an antioxidant and provide 

cytoprotection, when heme is broken down it releases free iron (Fe) and carbon 

monoxide (CO), which are both pro-oxidants (Ponka 1999).  Heme serves many other 

functions in the cell, but one hypothesis is that the nematode may downregulate the 

genes necessary for heme uptake in response to MeHg in an attempt to limit additional 

cellular stress caused by Fe or CO.   
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Gene class Enrichment score 

Glutathione S-transferase 9.64 

F-box A protein 5.08 

UDP-glucuronosyl transferase 3.75 

Heat shock protein 3.36 

CYtochrome P450 family 2.96 

Neuropeptide-like protein 2.28 

SKp1 related (ubiquitin ligase 
complex component) 1.44 

 
Table 3.  DAVID analysis of genes upregulated > 2-fold in microarray revealed 7 gene 
classes with enrichment scores greater than 1.    
 

 

4.  RT-PCR  

The redox balance in cells is maintained by increasing the expression of antioxidant 

proteins, including GSTs, in response to increased amounts of ROS (Prestera et al. 

1993).  In the microarray results, the expression of 18 GSTs was increased and 8 of 

these were in the top 100 genes.  The induction of GSTs was indicated by the 

microarray results, so RT-PCR was used to verify these results and measure the 

expression of two other GSTs associated with stress response but not found in the 

microarray results.  L4 stage animals were exposed to 25 µM MeHg for 2 hours or 8 

hours and then mRNA was isolated from each sample.  gst-4, 12, and 21 were 

increased at 2 hours, and gst-4, 5, 12, 21 and 38 were significantly increased after 8 

hours of exposure (Fig. 14), consistent with the results obtained from the microarray 

analysis.  These GSTs are of the Sigma class and homologous to hematopoietic 

prostaglandin D synthase (H-PGDS), the only vertebrate member of the Sigma class of 

GSTs (Kanaoka & Urade 2003).  Among the GSTs tested, gst-38, which is expressed in 

the intestines and nervous system, showed the largest change, with a 50-fold increase in 

mRNA levels.  gst-38 expression levels have previously been shown to increase 5-fold 

or less following exposure to Cd, acrylamide, arsenite, or hyperoxia, suggesting that gst-

38 expression is likely a sensitive indicator of tissue-associated oxidative stress (Liao & 

Freedman 1998, Hasegawa et al. 2008, Oliveira et al. 2009, Park et al. 2009).  



 73 

 
Figure 14.  MeHg induces the expression of GST mRNAs.  L4 stage N2s were exposed 
to 25 µM MeHg for 2 hours (black bars) or 8 hours (gray bars).  RT-PCR was used to 
quantify gene expression.  The ddCt method was used to calculate the fold change, and 
data was normalized to GAPDH.  The log fold-change values of control and MeHg 
exposure were compared by a t-test.  * indicates a significant difference from unexposed 
nematodes (p < 0.05).  A t-test was used to determine if the induction following an 8 
hour exposure was different from a 2 hour exposure, # indicates p < 0.05.   
 

 

 HSPs have been shown to be upregulated following stress (Yu et al. 2006).  The 

small HSPs and hsp-70 were induced greater than 2-fold by MeHg as indicated in the 

microarray results.  hsp-6 was not included in the list of upregulated genes.  RT-PCR 

showed that the small HSPs were upregulated greater than 2-fold, but none of the genes 

were significantly different between control and MeHg-exposed at either time point (Fig. 

15).  In contrast to the microarray, RT-PCR did not show an increase in hsp-70.  hsp-6 

expression was essentially unchanged as indicated by RT-PCR and was also not found 

to be upregulated by microarray.  This suggests that the increase in HSPs is specific and 

not general to the whole gene class.  
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Figure 15.  MeHg induces expression of HSP mRNAs.  L4 stage N2s were exposed to 
25 µM MeHg for 2 hours (black bars) or 8 hours (gray bars).  RT-PCR was used to 
quantify gene expression.  The ddCt method was used to calculate the fold change, and 
data was normalized to GAPDH.  The log fold-change values of control and MeHg 
exposure were compared by a t-test.  No significant difference was found.  
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IV.  SKN-1 inhibits MeHg-induced toxicity 

 

Mammalian studies have demonstrated a role for Nrf2 in inhibiting MeHg toxicity.  Nrf2 

regulates the expression of stress response genes following MeHg exposure and 

decreased Nrf2 levels often increase sensitivity to MeHg (Toyama et al. 2007).  I found 

that MeHg exposure in C. elegans increases the expression of GSTs, and many GSTs 

are regulated by SKN-1, so I evaluated the role of SKN-1 in my newly developed C. 

elegans model of MeHg toxicity.  

 

A.  SKN-1 inhibits MeHg-induced animal death 

The transcription factor Nrf2 regulates the expression of phase II detoxification enzymes 

and has been shown to play a significant role in inhibiting MeHg toxicity in vertebrate 

systems (Toyama et al. 2007).  As the expression of several GSTs was induced 

following MeHg exposure, I asked whether SKN-1 may inhibit MeHg-induced lethality in 

C. elegans.  RNAi-sensitive NL2099 animals were fed bacteria containing either an 

empty vector (control) or a vector expressing skn-1 dsRNA to reduce skn-1 mRNA 

expression.  The decrease in skn-1 mRNA levels was confirmed by RT-PCR, and the 

protein levels are also likely decreased as the nematodes exhibit the skn-1 deletion 

phenotype of non-viable embryos (Simmer et al. 2003, data not shown).  Although SKN-

1 is required for reproduction, loss of skn-1 does not affect viability at larval and adult 

stages under non-stressed conditions (An & Blackwell 2003) (Fig. 23).  However, when 

exposed to MeHg, the skn-1 RNAi animals are up to 5 times more sensitive to the 

toxicant than WT controls (Fig. 16).  The nematodes have decreased viability when 

exposed to much lower concentrations than WT.  These results indicate that SKN-1 

increases C. elegans survival in the presence of MeHg and identifies a common 

molecular pathway of MeHg toxicity conserved from nematodes to higher mammalian 

systems.   
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Figure 16.  skn-1 mRNA knockdown increases whole animal vulnerability to MeHg.  
RNAi sensitive NL2099 animals were grown on RNAi plates to knockdown skn-1 for 48 
hours, then transferred to plates containing MeHg for 24 hours.  The number of live 
animals was determined and expressed as percent of control.  Two-way ANOVA 
analysis indicates that skn-1 RNAi is significantly different than control, * indicates p < 
0.001.    
 

 

Lower concentrations of MeHg are necessary in this experiment due to the 

increased sensitivity of skn-1 RNAi nematodes.  However, the sensitivity of WT animals 

is also slightly increased when the exposures are done on NGM (or RNAi) plates rather 

than 8P plates.  Approximately 20% of WT animals are dead at 25 µM on RNAi plates, 

however this level of lethality is reached at 75 – 100 µM on 8P plates (compare Fig. 3 to 

Fig. 16).  It is important to consider this difference when comparing the results of various 

experiments and the concentrations of MeHg.   

A reduction in expression of skn-1 increases sensitivity to MeHg, therefore I 

asked if overexpression of SKN-1 could increase resistance.  A transgenic strain (LD1) 

containing the full-length SKN-1 protein fused to GFP expresses this construct and the 

SKN-1 protein is functional (An & Blackwell 2003).  LD1 strain nematodes exhibit 

increased viability in the presence of MeHg compared to WT (Fig. 17A).  WDR-23 is a 

negative regulator of SKN-1 function, therefore decreased expression of wdr-23 allows 

greater SKN-1 activity (Choe et al. 2009).  RNAi mediated knockdown of wdr-23 results 

in decreased animal death following MeHg exposure (Fig. 17B).  These results indicate 

that increased expression and/or activity of SKN-1 can reduce MeHg toxicity.   
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Figure 17.  Overexpression or increased activity of SKN-1 increases resistance to 
MeHg.  LD1 (SKN-1::GFP) animals are more resistant to MeHg than WT (A).  RNAi 
knockdown of wdr-23, a negative regulator of SKN-1, also inhibits MeHg-induced animal 
death (B).  Note that exposure in A was on 8P plates and B was on RNAi plates, 
explaining the discrepancy between the % live WT animals at 50 µM.  
 

 

B.  SKN-1 regulates MeHg-induced gene expression 

It has been reported that SKN-1 regulates the expression of several GSTs in C. elegans 

(An et al. 2005).  At least 3 SKN-1 binding sites are found in the promoter region (1 kb 

upstream of the start codon) of gst-4, gst-5, gst-12 and gst-38, however gst-21 has no 

SKN-1 binding sites.  Given the microarray and RT-PCR results, and the involvement of 

SKN-1 in whole-animal viability, I determined if the expression of the upregulated GSTs 

was dependent on SKN-1.  Nematodes were grown on control or skn-1 RNAi bacteria for 

48 hours, then exposed to 25 µM MeHg for 4 hours and RNA was isolated from the 

animals.  RT-PCR was used to measure gene expression, and results are presented as 

fold change in MeHg-treated samples relative to unexposed.  The induction of gst-4 and 

gst-38 is significantly decreased after skn-1 RNAi relative to WT, approximately 15 and 

55 fold less (Fig. 18).  This is consistent with the inhibition of induction of gst-4 and gst-

38 by skn-1 RNAi following hyperbaric oxygen exposure (Park et al. 2009).  skn-1 is also 

necessary for the induction of gst-12 by hyperbaric oxygen, however this gene is not 

significantly different in my results, indicating that the skn-1 response may vary with 

different toxicants (hyperbaric oxygen versus MeHg).  There may be a reduction in gst-5 
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and gst-12 following skn-1 RNAi, although not significant in this experiment.  gst-21 

expression does not decrease after skn-1 RNAi consistent with the lack of SKN-1 

binding sites in its promoter.  These results indicate that MeHg-associated induction of 

gst-4 and gst-38 is largely dependent on the expression of skn-1, and suggests that the 

corresponding proteins levels may also be skn-1-dependent.       

 

 
Figure 18.  SKN-1 regulates the expression of GSTs.  RNAi sensitive NL2099s were 
grown on skn-1 RNAi or control bacteria for 48 hours, then exposed to 25 µM MeHg for 
4 hours.  RT-PCR was used to quantify mRNA expression by the ddCt method.  Fold 
change in mRNA levels after MeHg exposure relative to control is presented for WT and 
skn-1 RNAi animals.  The expression of gst-4 and gst-38 is significantly lower in skn-1 
RNAi animals compared to WT.  Paired t-tests were performed on log-transformed fold-
change values, * indicates p < 0.01.   
 

 

C.  SKN-1 regulates GST-38 expression 

To determine if GST-38 protein expression is also dependent on skn-1, antibodies to 

GST-38 were generated, and protein levels were determined following exposure to 25 

µM MeHg for 4 hrs.  Consistent with the induction of gst-38 mRNA expression, exposure 

to the toxicant results in an approximate 12-fold increase in GST-38 protein levels (Fig. 

19).  Furthermore, MeHg-associated induction of the GST-38 protein appears to be 

highly dependent on skn-1 as genetic knockdown of the transcription factor inhibits the 

increase in GST-38 following exposure to MeHg.   
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Figure 19.  MeHg-induced expression of GST-38 protein is dependent on skn-1.  
Animals were exposed as for RT-PCR and protein lysates were prepared.  Western blot 
analysis with primary antibodies to GAPDH and GST-38 showed an increase in GST-38 
expression following MeHg exposure in WT nematodes, but not after skn-1 RNAi.  
Western blots were performed in triplicate and one representative image is shown.   
 

 

D.  SKN-1 is expressed in DA neurons 

Nrf2 is expressed in DA neurons in mammals, and a decrease in Nrf2 gene expression 

in vitro and in vivo renders cells vulnerable to DA neurotoxins (Jakel et al. 2007, Siebert 

et al. 2009).  Previous studies of SKN-1 expression and localization have included 

analysis of transgenic animals overexpressing SKN-1 fused to GFP (SKN-1::GFP) and 

suggested protein expression in the intestines and the chemosensory ASI neurons 

(Bishop & Guarente 2007, Tullet et al. 2008). However, translational reporter fusions 

may not give a complete representation of endogenous protein expression levels and 

cellular localization (Boulin et al. 2006).  To determine whether the C. elegans DA 

neurons express SKN-1, C. elegans primary cultures were generated from RJ928 

animals that have robust expression of GFP in DA neurons both in vivo and in vitro 

(Nass et al. 2002, Carvelli et al. 2004).  The cells in primary cultures have been shown to 

express proteins and fluorescent reporters that are observed in the corresponding cells 

in the whole animal (Christensen et al. 2002).  Therefore, cell type specific genes and 

proteins likely exhibit similar expression patterns in cell culture and whole nematodes.  

Differences may be seen if the protein is stage-specific; proteins only expressed in 

adults may not be present in the embryonic cell culture.   

 A primary antibody to SKN-1 was used to evaluate cellular SKN-1 expression levels. 

SKN-1 immunoreactivity is observed in DA neurons (Fig. 20A-D). Although intracellular 

organelle markers were not utilized, most cells had SKN-1 specific staining that 
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appeared to be largely localized to the nucleus, although some DA neurons were 

observed in which SKN-1 was present in the cytoplasm (Fig. 20A-D; data not shown). 

No specific staining was observed in any cells from animals in which skn-1 mRNA levels 

were reduced using RNAi (Fig. 20E-H; data not shown). These results indicate that 

SKN-1 is expressed in DA neurons, and that a reduction in the transcription factor 

mRNA levels by RNAi results in a significant loss of SKN-1 immunoreactive protein 

expression in the DAergic cells. 

 

 
Figure 20.  SKN-1 is expressed in DA neurons.  Primary C. elegans cultures expressing 
GFP in the DA neurons were generated with WT (A-D) or skn-1 RNAi animals (E-H).  
Cells were incubated with a SKN-1 primary antibody followed by incubation with Texas 
Red conjugated donkey anti-goat secondary antibodies.  DIC images of WT (A) and skn-
1 RNAi (E) cultures.  DA neurons from WT (B) and skn-1 RNAi (F) animals expressing 
GFP driven by the dat-1 promoter.  SKN-1 is expressed in DA neurons in WT animals 
(C) but not in skn-1 RNAi animals (G).  (D) overlay of B-C and (H) overlay of F-G.  
Images were obtained with a confocal microscope, scale bar represents 5 µm.       
 

 

 To further show that the antibody is specific for SKN-1, a blocking peptide 

complementary to the antibody was utilized.  The peptide is able to bind to the antibody 

and prevent its reactivity with endogenous SKN-1.  No reactivity is seen in WT cells 

when exposed to the antibody-peptide mixture, suggesting that the primary antibody is 

specific for SKN-1 (Fig. 21).  
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Figure 21.  A specific complementary peptide blocks the reactivity of the SKN-1 
antibody.  Primary C. elegans cultures expressing GFP in the DA neurons were 
generated with WT animals. (E-H).  Cells were incubated with a SKN-1 primary antibody 
(A-D) or a mixture of the SKN-1 antibody and its blocking peptide (1:5 ratio) (E-H), 
followed by incubation with Texas Red conjugated donkey anti-goat secondary 
antibodies.  DA neurons are identified by GFP (B and F).  SKN-1 immunoreactivity is 
seen in DA neurons in cells from WT animals, but not when the antibody is mixed with 
the blocking peptide (G).  DIC (A and E) and overlay (D and H) images.     
 

 

 Transcriptional and translational fusion reporter strains often provide an accurate 

representation of a gene’s expression pattern, however there are some factors that may 

inhibit the transgene from being observed in cells that actually express the endogenous 

gene.  The construct may not include all the endogenous regulatory elements, such as 

introns and UTRs, necessary for expression in a particular cell type (Boulin et al. 2006).  

The reduced stability of GFP when fused to another protein can also decrease the 

fluorescence intensity and inhibit detection.  Subcellular localization of a translational 

fusion may also impair visualization of the reporter (Boulin et al. 2006).  Studies have 

shown that C. elegans embryonic cells in culture exhibit gene expression patterns similar 

to that of early larval stage nematodes (Strange et al. 2007).  Our results demonstrate 

for the first time that SKN-1 is expressed in the DA neurons of C. elegans.   
 

E.  SKN-1 inhibits MeHg-induced DA neuron degeneration 

Neuronal degeneration has been observed following MeHg exposure.  In rat cortical 

neuron cultures, the degeneration results from the MeHg-induced downregulation of 

Merge Pdat-1::GFP Ab SKN-1 

WT 

DIC 

WTpeptide 

B 

F 

C 

G 

D 

H 

A 

E 



 82 

Rac1, which normally promotes the outgrowth of neurites (Fujimura et al. 2009, Fujimura 

et al. 2011). Nrf2-dependent stress response pathways have been shown to inhibit 

MeHg- and PD-associated toxicant pathologies (Jakel et al. 2007, Toyama et al. 2007).  

Considering SKN-1 inhibits MeHg-induced animal death and is expressed in DA 

neurons, we asked whether the transcription factor may also mitigate toxicant-

associated DA neuron vulnerability.  First, the effectiveness of feeding RNAi for gene 

knockdown in the DA neurons was determined.  RJ928 nematodes were grown on RNAi 

bacteria expressing dsRNA that targets GFP.  In second-generation L4 stage animals, 

less than 20% of animals had normal GFP expression, indicating that the RNAi is 

effective (data not shown).  Then L1 stage RJ928 nematodes were grown on plates 

containing 0.5 to 2 µM MeHg and seeded with skn-1 RNAi bacteria for 4 days.  DA 

neuron viability was assessed in vivo as previously described (Settivari et al. 2009).  We 

found that chronic exposure to sub-lethal MeHg concentrations caused a significant loss 

of DA neurons (up to 30% of the animals exposed to 1 µM MeHg) in animals with a 

reduction of skn-1 mRNA within 96 hours at all concentrations tested (Fig. 22).  The DA 

neuron degeneration appears similar to our prior PD-associated toxicant studies in which 

we characterized the cellular pathology by loss of DA neuron GFP expression, 

decreased DA levels and loss of DA neuron integrity by electron microscopy (Nass et al. 

2002, Settivari et al. 2009).  The DA neurotoxicity appears to occur without large-scale 

cellular death as animals exposed at these concentrations for up to 5 days did not 

display any decrease in viability.  Only 10% of skn-1 RNAi animals had died after 6 days 

of exposure on the highest concentration (Fig. 23), consistent with the decrease in 

longevity of skn-1 mutants (Oliveira et al. 2009).  These results indicate that the C. 

elegans DA neurons are vulnerable to MeHg, and the expression of SKN-1 inhibits the 

toxicant-induced DA neuron degeneration. 
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Figure 22.  SKN-1 inhibits MeHg-induced DA neuron degeneration.  Synchronized L1 
stage RJ928 nematodes were grown on the indicated concentrations of MeHg for 4 days 
and the animals were scored for DA neuron degeneration.  (A) GFP-expressing DA 
neurons within the head of a WT nematode exposed to MeHg and (B) DIC image of the 
corresponding animal.  (C) GFP-expressing DA neurons in the head of a skn-1 RNAi 
animal exposed to MeHg; image chose emphasizes significant loss of CEP cell bodies 
and dendrites.  (D) DIC animals of the corresponding animal.  (E) Quantification of DA 
neuron integrity in WT and skn-1 RNAi animals, shown are mean values ± SE of three 
replicates.  Data was analyzed using two-way ANOVA followed by Bonferroni post test.  
* indicates a significant difference between skn-1 RNAi and WT at each concentration, p 
< 0.01.  Within the skn-1 RNAi group, all the MeHg groups were significantly different (p 
< 0.03) from the 0 µM MeHg group.       
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Figure 23.  Viability of skn-1 RNAi nematodes exposed to low concentrations of MeHg is 
not decreased for up to 5 days.  L1 stage RJ928 animals were grown on skn-1 RNAi 
plates containing MeHg for the indicated amount of time, and the number of live animals 
was determined each day.    

 

 

 In addition to its role in oxidative stress, SKN-1 may also control the expression 

of genes involved in DA regulation and signaling.  Interestingly, the DA-associated 

genes cat-4 (human GTPCH, GTP cyclohydrolase I), ptps-1 (human PTPS, 6-pyruvoyl 

tetrahydrobiopterin synthase) and bas-1 (human AAADC, aromatic amino acid 

decarboxylase) were identified to contain multiple SKN-1 binding sites and are 

upregulated in a SKN-1-dependent manner after arsenite stress (Oliveira et al. 2009).  

GTPCH and PTPS are involved in the synthesis of tetrahydrobiopterin (BH4), a cofactor 

of TH, which catalyzes the rate-limiting step in DA synthesis.  AAADC catalyzes the 

conversion of L-DOPA to dopamine, so altered expression of any of these genes could 

have an effect on DA levels.  GTPCH and PTPS are decreased prior to the observation 

of DA neuron loss in a Drosophila PD model and low BH4 levels have been observed in 

the cerebrospinal fluid of PD patients (Lovenberg et al. 1979, Scherzer et al. 2003).  

Therefore, we asked if cat-4 plays a role in MeHg-induced DA neuron degeneration.  We 

found that RNAi knock down of cat-4 increases DA neuron degeneration in the presence 

of MeHg and double knock down of cat-4 and skn-1 has an additive effect (Fig. 24).  

Dysregulation of the metabolic pathways involving cat-4 and ptps-1 would disrupt DA 

regulation in general, but could also lead to accumulation of toxic metabolites that 

contribute to cell death (Blau et al. 2001).  In C. elegans, cat-4 mutants exhibit increased 
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permeability of their cuticle due to reduced tyrosine cross-linking, so this could also 

contribute to overall sensitivity, possibly by increased MeHg uptake (Loer & DePaul 

2002).       

	
  
Figure 24.  cat-4 RNAi increases sensitivity to MeHg-induced DA neuron degeneration.   
Synchronized L1 stage RJ928 nematodes were grown on 1 µM MeHg for 4 days and the 
animals were scored for DA neuron degeneration.  Quantification of DA neuron integrity 
is shown as mean values ± SE of three replicates.  Data was analyzed using two-way 
ANOVA followed by Bonferroni post test.  * indicates a significant difference between 
RNAi and WT, p < 0.001.  # indicates a significant difference between double RNAi of 
cat-4+skn-1 compared to either single RNAi, p < 0.05.  
 

 

F.  SKN-1 inhibits Aluminum-induced DA neuron degeneration 

Exposure to aluminum (Al3+) has been associated with the development of PD and our 

lab has developed a model of Al3+-induced DA neuron degeneration (Zayed et al. 1990, 

VanDuyn et al. 2013).  Al3+ exposure in C. elegans results in a decrease in mitochondrial 

membrane potential and ATP levels (VanDuyn et al. 2013).  SKN-1 inhibits Al3+-induced 

DA neuron degeneration as RNAi knockdown of skn-1 increases the number of 

nematodes that exhibit DA neuron pathology (VanDuyn et al. 2013).  Al3+ toxicity is 

facilitated by SMF-3, a protein homologous to the rice Al3+ transporter Nrat1 and an 

intracellular metal transporter in yeast, Smfp2.  A strain expressing mutant smf-3 has 

increased resistance to the DA neuron degeneration induced by Al3+ (VanDuyn et al. 

2013).  As loss of the transporter results in decreased toxicity, we hypothesized that the 

Al levels would be altered in the mutant strain relative to WT.  Consistent with my 

hypothesis, I found that smf-3 mutant animals contain higher total Al levels following 
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acute exposure (Fig. 25A).  These results are consistent with a model in which SMF-3 is 

expressed in an intracellular compartment and transports Al3+ out of the compartment 

(Fig. 25B).  A genetic knockout of SMF-3 would increase Al3+ in the intracellular 

compartment, sequestering the metal from the cytoplasm and other intracellular 

compartments, potentially inhibiting the metal-associated toxicity.  

 

 
Figure 25.  SMF-3 contributes to Al3+-induced DA neuron degeneration.  (A) Whole 
animal Al levels are greater in smf-3 mutant nematodes than WT.  ICP-MS was used to 
quantify Al following a 30 minute exposure to 100 µM Al3+.  (B) A model of SMF-3-
associated trafficking and toxicity in DA neurons.  SMF-3 promotes cytotoxicity by 
transporting Al3+ into the cytoplasm, where it can interact with SKN-1 and α-synuclein, 
and promote apoptosis through a pathway involving CED-4. 
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V.  RNAi screen for mediators of MeHg toxicity 

 

Genetic screening is a powerful tool for the identification of genes involved in a particular 

biological process.  In a reverse genetic (RNAi) screen, the expression of individual 

genes is decreased and the effect of decreased gene expression is analyzed (Kamath & 

Ahringer 2003).  I utilized this genetic tool to identify genes involved in MeHg-associated 

toxicity.  

 

A.  Development and implementation of a MeHg-sensitive RNAi screen 

The genetic pathways and mediators of the MeHg-induced defects are largely ill-defined.  

In order to identify novel molecular modulators of MeHg-associated toxicity, I developed 

and implemented a genome wide reverse genetic screen.  I have described how C. 

elegans can be used for hypothesis driven study of the mechanisms involved in MeHg 

toxicity for predicted targets including stress response and neuronal pathways.  

However, another utility of this model system lies in the ability to identify, in an unbiased 

fashion, molecular targets that have never before been associated with MeHg toxicity. 

 Over 18,500 bacteria strains, each expressing dsRNA for a specific C. elegans 

gene, were fed individually to the nematode in liquid media in 96-well plates and 

consumption of the bacteria results in a reduction of protein expression coded by the 

dsRNA-associated gene (Fig. 26A) (Kamath et al. 2001).  Nematodes were grown in the 

RNAi bacteria for 2 days and then MeHg was added at a concentration that was not 

lethal to WT animals (5 µM).  After 2 more days, the OD600 of each well was measured in 

a plate reader.  The OD600 indicates the amount of bacteria remaining in the wells.  In 

wells with a high OD600, the bacteria were not consumed and the animals may have 

become too sick to eat or had died.  This suggests that either the dsRNA-associated 

gene codes for a protein necessary for growth and development under non-stressed 

conditions or for a protein required for maintaining viability under MeHg-associated 

stress.  Approximately 900 genes were identified in the first round of the screen.  

 In order to determine if the protein targeted by the RNAi clone is necessary for 

viability in normal conditions or may be involved in inhibiting MeHg-associated toxicity, a 

second round of screening was performed in liquid media including a control well to 

compare to MeHg treatment (Fig. 26B).  If both the control and MeHg containing well 

had low bacteria density, the initial identification of the dsRNA conferring MeHg 

resistance was likely a false positive due to a technical error and this gene was excluded 
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from further analysis.  If both wells contained a high concentration of bacteria, the 

knockdown of gene expression likely reduced viability independent of the MeHg 

exposure, and these genes were also excluded.  If the control well had a significantly 

reduced bacteria level and the MeHg-containing well had a high density of bacteria, the 

protein coded by the targeted gene likely inhibits MeHg toxicity, and the gene was tested 

in a third and final round of screening (Fig. 26C).  The first two rounds of the screen 

were done with relatively low stringency to ensure that I did not miss a gene that plays a 

role in inhibiting MeHg-associated animal death.  Numerical cut-off values for the OD600 

measurements were established and followed as described in the Methods section, but if 

a clone that did not meet the cut-off seemed to inhibit growth by visual inspection under 

a dissecting microscope, or the results were questionable, it was placed on the list to 

evaluate in the next round.     

The first two rounds of the screen provided an indirect measurement of animal 

viability, quantifying the amount of bacteria consumed.  For the third round, nematodes 

were grown on RNAi plates, exposed to MeHg and the viability of each animal was 

directly assessed as described for the previous live-dead assays.  RNAi clones that 

significantly reduced viability relative to HT115 (WT control) were considered “screen 

hits”.  
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Figure 26.  Work-flow diagram for the genome wide RNAi screen. In the first round 
screen (A), all clones were exposed to MeHg and assayed for viability. The MeHg 
concentration (5 µM) allows WT nematodes to grow and consume all bacteria from the 
well (low OD600) so any wells that retain bacteria (high OD600) contain an RNAi clone that 
causes a change from WT. This includes genes that increase sensitivity to MeHg but 
also genes that are necessary for growth or development in the absence of toxicant. The 
second round screen (B) included a control and a MeHg treated well for each clone and 
allowed for differentiation between these possibilities and also identified false positives 
from the first round. Clones for which the control and MeHg wells were different in the 
second round were tested on agar plates for a direct measure of animal viability (C). At 
least 20 animals per plate were assayed, and the experiment was repeated three times 
for each clone.   
 

 

Note 

The screen was inadvertently performed using a media lacking some recommended 

additives.  Standard protocols for C. elegans RNAi by feeding in liquid culture call for the 

use of S medium to resuspend the bacterial pellet.  S medium contains 1 liter S basal, 

10 ml 1 M potassium citrate, 10 ml trace metals solution, 3 ml 1 M CaCl2, 3 ml 1 M 

MgSO4 (Stiernagle 1999).  However, I used S basal without adding the additional 
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ingredients.  The key difference is the absence of Ca2+ and Mg2+ in S basal, resulting in 

a significant reduction in these elements in the final growth media.  The compositions of 

standard nematode growth media (NGM) plates, S basal and S medium are listed in 

Table 4.   

 

Component Agar plates S medium S Basal 

BactoAgar 17 g/L 

  BactoPeptone 2.5 g/L 

  NaCl 51.3 mM 100.1 mM 100.1 mM 
K

2
HPO

4
 2.5 mM 5.7 mM 5.7 mM 

KH
2
PO

4
 10 mM 44.1 mM 44.1 mM 

cholesterol 5 µg/ml 5 µg/ml 5 µg/ml 
CaCl

2
 1.1 – 2.2 mM 2.9 mM 10-15 µM* 

MgSO
4
 1.0 – 1.7 mM 2.9 mM 20 µM* 

  

   Ampicillin 100 µg/ml 100 µg/ml 100 µg/ml 

IPTG 1 mM 1 mM 1 mM 

  

   potassium citrate, pH 6.0 

 

9.75 mM 

 trace metals solution 

      disodium EDTA  

 

48.7 µM 

    FeSO
4
 

 

24.2 µM 6 µM* 
   MnCl

2
  

 

9.8 µM 

    ZnSO
4
  

 

9.8 µM 

    CuSO
4
  

 

0.975 µM 

  
Table 4. Composition of C. elegans growth media.  * indicates the concentration is 
estimated based on the amount present in the E. coli culture. 
  
  

  To determine if the different growth medias may affect nematode viability as 

determined by bacteria consumption under my screening conditions, 96 well plates were 

prepared containing HT115 bacteria suspended in S medium, S basal, S medium minus 

Ca2+ or S medium minus Mg2+.  The OD600 was measured each day for 4 days, and the 

results were expressed as the bacteria remaining (% of day 0) (Fig. 27).  There was no 

significant difference between S medium and S basal, or when the Ca2+ or Mg2+ were 

excluded from the S medium.  Although the bacteria remaining in the no Ca2+/MeHg 
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group appears increased at day 3 and 4 (Fig. 27C), the variability is such that the 

difference is not significant.  Viability assays were also performed with various 

concentrations of Ca2+ and Mg2+ added to S basal solution and no differences were 

observed (data not shown).    
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Figure 27.  The reduction of Ca2+ or Mg2+ levels does not significantly affect nematode 
growth.  NL2099 strain nematodes were grown in 96 well plates following the conditions 
of the RNAi screen using the indicated solutions to resuspend the HT115 (WT) bacteria.  
MeHg was added on day 2 to 5 µM.  The OD600 was measured each day and presented 
as the % of day 0.  Comparisons were made between S medium and S basal (A), S 
medium and S medium with reduced Mg (B) and S medium and S medium with reduced 
Ca2+ (C).   
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 Ca2+ and Mg2+ are required for animal viability, however under the conditions of 

my screen, there appeared to be little effect from the reduction of these elements. During 

the screen knockdown of 242 genes in the Open Biosystems library decreased the 

growth or viability of the nematodes in the absence of MeHg.  216 of these genes (89%) 

have been previously reported to produce developmental or lethal phenotypes in 

literature.  I also observed phenotypes (dumpy, clear, protruding vulva, sterile) that have 

been reported in other RNAi screens, indicating that the overall effectiveness of RNAi 

was not significantly impaired by the modified media.  Also, several genes were 

identified as screen hits that have been previously implicated in MeHg toxicity:  skn-1 

(Nrf2 in mammals); eft-3, eft-4, cyc-1 (zebrafish muscle microarray data); ubc-1 (MEF 

microarray data); proteasome-associated genes (yeast and MEF data).  The third round 

of screening was carried out on RNAi agar plates, which contained normal levels of the 

elements found in the standard media.  Overall, the reduction of Ca2+ and Mg2+ levels 

appear to have had minimal impact on the results of the screen.  However, it is possible 

that some genes may not have been identified in the modified media that would have 

been in normal media.   

   

B.  Results 

Of the approximately 18,500 genes that were screened, 92 genes were identified to 

code for proteins whose expression increases resistance to MeHg-associated animal 

death. These genes are strongly biased towards mechanisms that affect the 

mitochondria, transcription, translation, and calcium signaling, and will be reported in a 

future publication (Table 5, Fig. 28).  SKN-1 was identified in the screen, providing 

further validation of the method to identify genes whose expression inhibits MeHg-

associated animal death.   
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Cellular process Number of genes 

signaling 19 

translation 16 

transcription 12 

protein degradation 8 

transport 8 

energetics 7 

mRNA processing 7 

structure 7 

replication 3 

endocytosis 3 

apoptosis 2 
 
Table 5.  Groups of genes whose reduced expression increases MeHg-associated 
animal death.  The screen hits are grouped into classes based on the cellular process 
that they are likely involved in.  If the function of the C. elegans gene has not been 
reported or predicted, the function of the human homologue was used for classification.   
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Figure 28.  A summary of the screen results.  The number in parentheses represents 
the number of genes associated with that organelle or cellular process.   
 

 

 One of the more robust hits observed in the screen was produced by the clone in 

well III-6J08 of the Source BioScience library (Kamath & Ahringer 2003).  Library 

annotation labeled this clone as C51G7.a and this primer set produces an amplicon that 

overlaps the wah-1 gene (genomic location III:11,995,030..11,997,474).  The sub-library 

containing only the Source BioScience clones not present in the Open Biosystems 

library was created based on the provided library annotation.  It has been reported that 

mistakes exist in the Source BioScience library and its annotation (Qu et al. 2011).  Also, 

the names given to the original GenePairs primers may now correspond to another 

sequence name as the C. elegans genome has been updated, so the different names 

may result in some genes being targeted by clones in both libraries.  The different 

nomenclature led to the inclusion of C51G7.a in the sub-library despite the presence of 

wah-1 in the Open Biosystems library.   Interestingly, wah-1 was not a positive hit when 
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screened in the Open Biosystems library.  The strong phenotype of this clone labeled 

C51G7.a and the discrepancy between the libraries led me to investigate further and 

sequence both clones.  The Open Biosystems wah-1 sequencing result matched wah-1 

in the C. elegans genome.  The results for the clone labeled C51G7.a mapped to the 

gene mrp-7, a predicted ABC transporter (www.WormBase.org).   
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VI.  The transporter MRP-7 inhibits MeHg toxicity 

 

MRP-7 was the most robust hit from the RNAi screen and this gene was previously 

uncharacterized in C. elegans.  Given the role of ABC transporters in MeHg toxicity, I 

further investigated the role of MRP-7 in the C. elegans response to MeHg. 

 

A.  MRP-7 is homologous to human MRP1 

A BLAST search of the C. elegans MRP-7 sequence revealed that 14 human proteins 

match with an E value of 0.0, with identity scores ranging from 31-43%.  MRP1 (ABCC1) 

shares 43% identity and 61% similarity with MRP-7, the highest of any of the MRPs, so  

a sequence alignment was prepared between these proteins. Human MRP1 (accession 

NP_004987.2) was obtained from the NCBI Protein database and C. elegans MRP-7 

sequence was obtained from Wormbase.org.  ClustalW was used to align the sequences 

(Fig. 29).  Fully conserved residues are highlighted in dark gray and residues that are 

similar between the two sequences are highlighted in light gray (this includes both 

strongly and weakly similar residues as defined by ClustalW).  The transmembrane 

helices of MRP1 are indicated by a thick black line (Bakos et al. 1996).  The Walker A, 

Walker B and the ABC signature sequences of MRP1 are indicated in boxes (Frelet & 

Klein 2006).  There is high conservation of these consensus sequences between the 

human and C. elegans proteins.  Walker A and B are nucleotide binding domains that 

have a conserved sequence between a wide array of proteins that bind ATP (Walker et 

al. 1982).  The ABC signature sequence, also called Walker C, is required for ATPase 

activity (Ren et al. 2004).  The similarity between the protein sequences suggests that 

MRP-7 may have similar substrates to MRP1, one of which is MeHg (Rush et al. 2012).   
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Figure 29.  Sequence alignment of human MRP1 with C. elegans MRP-7.  ClustalW 
was used to align human MRP1 (accession NP_004987.2) with C. elegans MRP-7 
(accession NP_507812.3). Identical residues are highlighted in dark gray and similar 
residues are highlighted in light gray. Thick black lines indicate the transmembrane 
domains of MRP1 and the conserved Walker A, Walker B and ABC signature sequences 
are boxed. 
 

 

 

MRP1   MALRGFCSADGSDPLWDWNVTWNTSNPDFTKCFQNTVLVWVPCFYLWACFPFY--FLYLSRHDRGYIQMTPLNKTKTALG 78 
MRP-7  -MLSSFCGDG---------HPFSTGLPNVSICAQHTVLVWVPAAFFLLTLPFLSAQCHLTAQRFARLPFSAHFIIKLLLV 70 
 
MRP1   FLLWIVCWADLFYSFWERSRGIFLAPVFLVSPTLLGITMLLATFLIQLER-RKGVQSSGIMLTFWLVALVCALAILRSKI 157 
MRP-7  AFLAANSLATWCYVLFSKNS---YAAAYYVYPGLW-VLVWTGTFLVHLIRLRCGLVSSGIQHVTSLIFLLCGAPEFYQWI 146 
 
MRP1   MTALKEDAQVDL-------FRDITFYVYFSLLLIQLVLSCFSDRSPLFSETIHDPN---PCPESSASFLSRITFWWITGL 227 
MRP-7  RMENSNSFPNDLTTTDSAQFLSIAYLSWYSALILYTFSLCFADPRGAKTDDEKASSKSAASPELQSSFLNRLTLWWFNSI 226 
 
MRP1   IVRGYRQPLEGSDLWSLNKEDTSEQVVPVLVKNWKKECAKTRKQPVKVVYSSKDPAQPKESSKVDANEEVEALIVKSPQK 307 
MRP-7  PWTGARRDLEIDDIFELNERSGTEFLSELWESFWEPKRLKYIHD--TSIWAKKDPSE----------QEKDPVVI----- 289 
 
MRP1   EWNPSLFKVLYKTFGPYFLMSFFFKAIHDLMMFSGPQILKLLIKFVNDTKAPDWQGYFYTVLLFVTACLQTLVLHQYFHI 387 
MRP-7  ---PSVVSSLFMMFRWEFLLASTLKFVSDTMQFASPFLLHELLNFISAKNAPFWKGMALSILMFSVSELRSLILNGYFYI 366 
 
MRP1   CFVSGMRIKTAVIGAVYRKALVITNSARKSSTVGEIVNLMSVDAQRFMDLATYINMIWSAPLQVILALYLLWLNLGPSVL 467 
MRP-7  MFRMGTKIQTSLTAAVYKKTLLISNSARRDRTVGEIVNLMAIDVERFQMITPQIQQFWSCPYQITFALVYLFITLGYSAL 446 
 
MRP1   AGVAVMVLMVPVNAVMAMKTKTYQVAHMKSKDNRIKLMNEILNGIKVLKLYAWELAFKDKVLAIRQEELKVLKKSAYLSA 547 
MRP-7  PGVVIMVIFVPMNIISSMIVRKWQIEQMKLKDERTKMVNEVLNGIKVVKLYAWEVPMEAYIDEIRTKELALIKKSAMVRN 526 
 
MRP1   VGTFTWVCTPFLVALCTFAVYVTIDENNILDAQTAFVSLALFNILRFPLNILPMVISSIVQASVSLKRLRIFLSHEELEP 627 
MRP-7  ILDSFNTASPFLVALFSFGTFVLSNPSHLLTPQIAFVSLALFNQLRSPMTMIALLINQAVQAVVSNKRLKEFLVAEELDE 606 
 
MRP1   DSIERRPVKDGGGTNSITVRNATFTWARSDPP---TLNGITFSIPEGALVAVVGQVGCGKSSLLSALLAEMDKVEGHVAI 704 
MRP-7  KCVDR-SVNIERSHNAVRVENLTASWDPEEAAGEKTLQDVDLTAPRNSLIAVVGKVGSGKSSLLQALLGEMGKLRGRIGV 685 
 
MRP1   KGSVAYVPQQAWIQNDSLRENILFGCQLEEPYYRSVIQACALLPDLEILPSGDRTEIGEKGVNLSGGQKQRVSLARAVYS 784 
MRP-7  NGRVAYVPQQPWIQNMTLRDNITFGRPFDRKRYDQVLYACALKADIKILPAGDQTEIGEKGINLSGGQKARVSLARAVYQ 765 
 
MRP1   NADIYLFDDPLSAVDAHVGKHIFENVIGPKGMLKNKTRILVTHSMSYLPQVDVIIVMSGGKISEMGSYQELLARDGAFAE 864 
MRP-7  NLDVYLLDDPLSAVDAHVGRHIFEKVIGPNGLLREKTRILVTHGLTYTKMADEILVMLEGKIEESGTFEHLIKRRGLFFD 845 
 
MRP1   FLRTYAS----TEQEQDAEENGVTGVSGPGKEAKQMENGMLVTDSAGKQLQRQLSSSSSYSGDISRHHNSTAELQKAEAK 940 
MRP-7  FMEEYKSGSDNSSEAGGSQDDDFEAIGGEIQDYMNPEDVVLTVTNDLDETIRTPELTTQISTMSSPEKPPTGTSPAAATE 925 
 
MRP1   KEETWKLMEADKAQTGQVKLSVYWDYMKAIGLFISFLSIFLFMCNHVSALASNYWLSLWTDDPIVNGTQEHTKVR---LS 1017 
MRP-7  SQN--KLIKKEGIAQGKVEIATYQLYVKAAGYLLSIAFIGFFIVYMTLQILRSFWLSAWSDEYDPDSPSAHPMAKGWRLG 1003 
 
MRP1   VYGALGISQGIAVFGYSMAVSIGGILASRCLHVDLLHSILRSPMSFFERTPSGNLVNRFSKELDTVDSMIPEVIKMFMGS 1097 
MRP-7  VYGALGFSETACFFVALLALVFVGQRASKNLHGPLIHNLMRSPMSFYDTTPLGRILNRCAKDIETIDMMLPMNFRYLVMC 1083 
 
MRP1   LFNVIGACIVILLATPIAAIIIPPLGLIYFFVQRFYVASSRQLKRLESVSRSPVYSHFNETLLGVSVIRAFEEQERFIHQ 1177 
MRP-7  VLQVAFTLIVIIISTPLFAVVILPLALIYLIFLRYYVPTSRQLKRLESVHRSPIYSHFGETIQGAASIRAFGKVDEFRQD 1163 
 
MRP1   SDLKVDENQKAYYPSIVANRWLAVRLECVGNCIVLFAALFAVISRHS---LSAGLVGLSVSYSLQVTTYLNWLVRMSSEM 1254 
MRP-7  SGRILDTFIRCRYSSLVSNRWLAVRLEFVGNCIIFFAALFAVLSKEFGWITSPGVIGVSVSYALNITEVLNFAVRQVSEI 1243 
 
MRP1   ETNIVAVERLKEYSETEKEAPWQIQETAPPSSWPQVGRVEFRNYCLRYREDLDFVLRHINVTINGGEKVGIVGRTGAGKS 1334 
MRP-7  EANIVSVERVNEYTNTPNEAPWRIEGREPAPGWPSRGVVKFDGYSTRYREGLDLVLHDISADVAAGEKIGIVGRTGAGKS 1323 
 
MRP1   SLTLGLFRINESAEGEIIIDGINIAKIGLHDLRFKITIIPQDPVLFSGSLRMNLDPFSQYSDEEVWTSLELAHLKDFVSA 1414 
MRP-7  SFALALFRMIEAAGGRIVIDDVEVSQIGLHDLRSNITIIPQDPVLFSGTLRFNLDPFFTYSDDQIWRALELAHLKHFAAG 1403 
 
MRP1   LPDKLDHECAEGGENLSVGQRQLVCLARALLRKTKILVLDEATAAVDLETDDLIQSTIRTQFEDCTVLTIAHRLNTIMDY 1494 
MRP-7  LPDGLLYKISEAGENLSVGQRQLVALARALLRHTRVLVLDEATAAVDVATDALIQETIREEFKECTVFTIAHRLNTIMDY 1483 
 
MRP1   TRVIVLDKGEIQEYGAPSDLLQQR-GLFYSMAKDAGLV---- 1531 
MRP-7  DRIMVLDKGSILEFDTPDALMADKNSAFAKMVADAAEQDKHE 1525  
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B.  MRP-7 inhibits MeHg-induced animal death  

RNAi mediated knock down of mrp-7 was found to reduce animal viability in the screen, 

resulting in 0% live animals on 10 µM MeHg.  Nematodes were then grown on mrp-7 

RNAi bacteria and the reduction in mrp-7 RNAi levels was confirmed by RT-PCR (data 

not shown).  Animals were transferred to plates containing MeHg from 0 to 10 µM MeHg 

and the number of live animals was counted 48 hours later.  The reduction in mrp-7 

expression results in a dramatic decrease in animal viability, resulting in an LC50 of 5 

µM (Fig. 30).  These results indicate that MRP-7 inhibits MeHg-induced animal death in 

a concentration dependent manner.  Vertebrate MRPs have been shown to confer 

increased resistance to toxic substrates in a dose-dependent manner, largely by 

pumping substances out of the cell (Leslie et al. 2004).  MRP-7 may also be inhibiting 

toxicity through limiting MeHg accumulation within the cell. 

 
Figure 30.  MRP-7 inhibits MeHg-induced whole animal death.  RNAi sensitive NL2099 
nematodes were grown on RNAi bacteria to knock down mrp-7 expression or empty 
vector for WT control and 2nd generation L3 animals were exposed to the indicated 
concentrations of MeHg for 48 hours.  The number of live animals was counted and 
indicated as the percent of the total number of animals (> 50 per condition).  The data is 
presented as mean ± SEM of 4 independent replicates.  Data was analyzed by two-way 
ANOVA with Bonferroni post-tests.  mrp-7 RNAi is significantly different from WT with p 
< 0.05 (#) or p < 0.001 (*). 
 

 

There are 8 MRP genes in C. elegans, but mrp-7 was the only ABC transporter 

identified in the screen.  As there is high homology among the MRPs, I wanted to verify 

that the other transporters were not playing a role in MeHg-associated animal viability.  I 
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utilized RNAi to knock down gene expression of mrp-1 – 8 and exposed the nematodes 

to 10 µM MeHg as described above.  All knockdown groups showed similar viability as 

WT except for mrp-7 (Fig. 31). Although these studies do not exclude a role for other 

MRP transporters in MeHg toxicity, under these conditions their expression does not 

appear to affect MeHg-induced lethality.  

 

 
Figure 31.  Other MRPs do not affect MeHg-induced lethality.  RNAi sensitive NL2099 
nematodes were grown on RNAi bacteria to knock down gene expression or empty 
vector for WT control and second-generation animals were exposed to 10 µM MeHg for 
48 hours.  The number of live animals was counted and indicated as the percent of the 
total number of animals (> 50 per condition).  The data is presented as mean ± SEM of 3 
independent replicates. Data was analyzed by one-way ANOVA with a Bonferroni post-
test, * indicates p < 0.001. 
 

 

C.  MRP-7 inhibits accumulation of Hg 

Expression of MRP1 confers resistance to a variety of toxicants, including metals and 

GSH conjugates, by increasing their excretion (Dallas et al. 2006).  Considering the high 

homology between MRP1 and MRP-7, I asked whether MRP-7 may be involved in 

regulating cellular Hg levels.  To determine if MRP-7 expression can modulate whole 

animal Hg levels, WT and mrp-7 RNAi adult animals were grown on 1 µM MeHg for up 

to 48 hours and whole animal Hg levels were determined by ICP-MS.  Chronic MeHg 

exposure resulted in approximately 2-fold higher levels of Hg in mrp-7 RNAi versus WT 

animals at the later time points (Fig. 32).  Other experiments using different stage 

nematodes have shown a significant difference as early as 24 hours (data not shown).  

These results indicate that MRP-7 may be inhibiting MeHg toxicity by increasing cellular 

export of the compound.  
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Figure 32.  MRP-7 inhibits the accumulation of MeHg.  RNAi sensitive NL2099 
nematodes were grown on RNAi bacteria knocking down mrp-7 expression or empty 
vector for WT control and second-generation adult animals were exposed to 1 µM MeHg 
for the indicated amount of time.  Following exposure, animals were collected and the 
Hg content was measured by ICP-MS.  Hg content was normalized to the wet weight of 
the nematode samples and the data is presented as mean ± SEM of 4 independent 
replicates.  Data was analyzed by two-way ANOVA with Bonferroni post-tests.  mrp-7 
RNAi is significantly different from WT with p < 0.001 (*). 
 

 

 The amount of Hg that accumulates in WT nematodes (~ 20 ppm) is in the range 

of that found in the brains of humans and other mammals following MeHg exposure.  

The brain of an infant that died in Iraq following in utero MeHg exposure contained 13.7 

ppm total Hg (Choi et al. 1978).  After 8 weeks of MeHg consumption, adult mice had 

brain Hg concentrations as high as 23 ppm (Fujimura et al. 2009).  Most studies suggest 

that brain Hg levels above 1 ppm could begin to lead to neurological changes in 

humans, so while these cases may be at the higher end of the spectrum, the amounts of 

MeHg used in my C. elegans studies are within the range and highly relevant to human 

and vertebrate studies. Furthermore, the amount of MeHg necessary to elicit DA neuron 

degeneration in C. elegans (~ 0.5 – 1 µM) is as low or lower than the concentrations 

used in cell culture experiments.  For example, cell death is observed in about 50% of 

cortical neurons exposed to 100 nM MeHg for 3 days (Fujimura et al. 2011).  PC12 cells 

exhibit significant cell death after 2 hour exposure to 5 µM MeHg (Tiernan et al. 2013).  

In SH-SY5Y cells, 1 µM for 6 hours was a sub-lethal dose that induced significant 

changes in gene expression (Toyama et al. 2011b).  
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D.  MRP-7 expression reduces the MeHg-associated stress response 

I have shown that MeHg exposure increases ROS and induces a stress response 

indicated by the increased expression of GSTs in WT animals (Fig. 13 and 14).  The 

greater sensitivity and higher Hg levels in mrp-7 RNAi animals led me to further 

investigate the gene expression changes in these animals.  RT-PCR was performed 

following acute (4 hours on 25 µM MeHg) or chronic (4 days on 400 nM MeHg) 

exposure.  Acute MeHg exposure results in an induction of gst-38 and hsp-16.1, and 

there is no significant difference between the WT response and that of mrp-7 RNAi 

animals (Fig. 33A and B).  There is also no difference in cellular Hg content between 

WT and mrp-7 RNAi at early time points of exposure (Fig. 32), suggesting that the stress 

levels may be similar.  Chronic MeHg exposure in mrp-7 RNAi animals may result in 

greater intracellular stress compared to WT as gst-1, hsp-4 and hsp-6 mRNA levels are 

significantly increased following chronic exposure but not in WT animals (Fig. 33C and 

D).  The gene expression changes are consistent with the ICP-MS data in that higher Hg 

levels are observed in mrp-7 RNAi animals compared to WT at later time points (Fig. 

32).  Acute exposure (2, 4 or 8 hours) to MeHg in WT animals did not increase gst-1 

levels (Fig. 14 and Fig. 33A), however a significant increase was observed under the 

chronic exposure conditions that result in higher total Hg levels (4 days).  

The HSP genes selected for analysis are indicative of stress in specific cellular 

compartments.  HSP-4 is homologous to the human BiP/GRP78 and is upregulated in 

response to ER stress and the UPR (Kaufman 1999, Shen et al. 2001).  HSP-6 is 

specifically activated by the mitochondrial UPR (Yoneda et al. 2004).  HSP-16.1 is in the 

family of small HSPs that function in stress resistance in C. elegans and was found to be 

localized to the Golgi apparatus (Kourtis et al. 2012).  Therefore, the increased 

expression of these genes not only indicates cellular stress induced by MeHg, but also 

may suggest that the ER, mitochondria and Golgi apparatus are cellular targets of 

MeHg.   
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Figure 33.  GST and HSP mRNA expression are increased following MeHg exposure. 
Animals were exposed to 25 µM MeHg for 4 hours (A and B) or 400 nM MeHg for 4 days 
(C and D) and mRNA expression was measured by RT-PCR and analyzed using the 
ddCt method with normalization to GAPDH. dCt values for each gene were analyzed by 
one-way ANOVA followed by a Bonferroni post-test, * indicates a significant difference 
from the control treated group at p < 0.001 (A), p < 0.01 (B and D) or p < 0.05 (C), # 
indicates a significant difference between the WT and mrp-7 RNAi MeHg treated groups 
at p < 0.05.  
 

 

E.  mrp-7 mRNA levels are increased following MeHg exposure 

The microarray and RT-PCR studies presented in this thesis demonstrate that the 

expression of numerous genes that may contribute to inhibiting the toxicity of MeHg are 

upregulated following exposure to the toxicant.  Therefore, I hypothesized that mrp-7 

expression may also be upregulated following MeHg exposure.  Short-term exposure to 

MeHg resulted in no change in mrp-7 mRNA levels (data not shown), however a 4 day 
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exposure to 400 nM MeHg caused a significant increase in mrp-7 expression (Fig. 34).  

This is consistent with studies in vertebrate cell culture.  Exposure of a fish cell line to 

HgCl2 induced expression of 4 abcc (MRP) mRNAs (Della Torre et al. 2012).  Inorganic 

Hg also increases expression of MRP1 and MRP2 at both the gene and protein level in 

Madin-Darby canine kidney (MDCK) cells (Aleo et al. 2005).  MeHg could be causing an 

increase in expression of the transporter in an attempt to lower cellular Hg levels and 

decrease toxicity.     

 
Figure 34.  mrp-7 mRNA levels are increased following chronic MeHg exposure. 
NL2099 L1 stage nematodes were grown on 400 nM MeHg for 4 days and mrp-7 mRNA 
expression was measured by RT-PCR and analyzed using the ddCt method with 
normalization to GAPDH. dCt values for control and MeHg groups were compared using 
a student’s t-test. * indicates a significant difference, p < 0.05.  
 

 

F.  MRP-7 inhibits DA neuron degeneration 

As MRP-7 contributes to whole animal death, I asked if the transporter may function in 

DA neurons to reduce cytotoxicity.  L1 animals were grown on plates containing various 

concentrations of MeHg and seeded with RNAi bacteria targeting mrp-7 or containing an 

empty vector.  Initially, 1 µM MeHg was used as in the skn-1 experiments, but this 

concentration resulted in delayed development of mrp-7 RNAi nematodes, so 

concentrations were reduced to 100 – 500 nM.  Following a 96 hour exposure to MeHg, 

the DA neurons were evaluated under a fluorescent dissecting microscope.  Chronic 

exposure of mrp-7 RNAi animals to MeHg results in a significant loss of DA neurons at 

concentrations as low as 300 nM.   Exposure to 400 nM MeHg results in approximately 

60% of the mrp-7 RNAi animals displaying significant DA neurodegeneration, while none 

of the WT animals’ DA neurons degenerate (Fig. 35C and E).  The neurodegeneration 
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often presented as the loss of one or more complete CEP process.  Importantly, there 

are no gross morphological differences, or differences in growth and development 

between WT and mrp-7 RNAi animals for this exposure condition, suggesting that the 

toxicant is not causing wide-spread cell death (Fig. 35A and C).   

 

 
Figure 35.  MRP-7 inhibits MeHg-associated DA neuron degeneration. RNAi sensitive 
RJ928 L1 stage nematodes were grown on plates containing MeHg and seeded with 
RNAi bacteria targeting mrp-7 or empty vector. After 4 days, the DA neurons were 
visualized using a fluorescent microscope and scored for degeneration.  Nematodes are 
considered normal if all 4 CEP processes are intact from the cell body to the tip of the 
nose. MeHg (0.5 µM) does not affect the DA neurons in WT animals (A) however 
exposure to 0.5 µM MeHg causes degeneration of the DA neurons in the absence of 
mrp-7 (C). The DIC images (B, D) illustrate that there are no gross morphological 
differences between WT and mrp-7 RNAi, and the animals are of similar size (scale bar 
is 50 µM). Quantification of degeneration is presented as the percent of animals with 
normal CEPs (E). The data is presented as mean ± SEM of 5 independent replicates. 
Data was analyzed by two-way ANOVA with Bonferroni post-tests. mrp-7 RNAi is 
significantly different from WT with p < 0.01 (#) or p < 0.001 (*).       
 

 

G.  MRP-7 is expressed in DA neurons 

MRPs reduce cellular toxicity by transporting substrates out of the cell, and MRP-7 

inhibits accumulation of Hg in C. elegans, supportive of a role of MRP-7 in MeHg 

transport (Sharom 2008).  As a decrease in mrp-7 results in MeHg-induced DA 

neurodegeneration, I asked if MRP-7 may be expressed in the DA neurons and 

generated a transgenic reporter strain to determine the expression pattern of MRP-7.   

Transgenic animals expressing transcriptional fusions with fluorescent proteins 

are often used to determine the expression pattern of a gene (Boulin et al. 2006).  The 
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BC C. elegans Gene Expression Consortium has generated promoter::GFP fusions for 

numerous C. elegans  genes (Hunt-Newbury et al. 2007).  As mentioned above, 

reporters may not always show the full endogenous expression pattern, however the 

work of the Consortium has shown good agreement between the expression patterns 

determined by GFP reporters and the patterns determined by SAGE analysis of mRNA 

expression (Hunt-Newbury et al. 2007).  Their results suggest that transcriptional 

reporters can be useful tools for investigating gene expression patterns, provided the 

potential limitations are acknowledged.  The Consortium website provides the primers 

used to isolate the promoter region for each construct, which are designed to amplify 

about 3 kb upstream of the start codon unless an upstream gene requires shortening 

(Hunt-Newbury et al. 2007).  A strain expressing Pmrp-7::GFP (BC10031) was generated 

by their group and is available from the CGC.  Their studies suggest MRP-7 expression 

in the “intestine, body wall muscle, head neurons” (www.WormBase.org).  As there are 

several types of neurons in the head of the nematode, I wanted to determine if MRP-7 is 

expressed in the DA neurons.  CFP and YFP are two fluorophores that are commonly 

used together to determine co-localization as their excitation and emission wavelengths 

have minimal overlap, so genetic constructs were generated to express CFP behind the 

mrp-7 promoter (as determined by the Consortium) and YFP behind the dat-1 promoter 

(Miller et al. 1999, Nass et al. 2002).  In the transgenic nematodes (RJ1089), dat-1 

expression is localized to the DA neurons (Fig. 36B) as in the original Pdat-1::GFP strain, 

BY250 (Nass et al. 2002).  CFP fluorescence is observed in the intestine and what 

appear to be two continuous lines down either the side of the animal, possibly seam 

cells or alae of the epidermis (Fig. 36C).  There is also CFP expression in the head, but 

it is difficult to observe if there is overlap with the Pdat-1::YFP expression in the whole 

animal in vivo (Fig. 36D).   

  

 
Figure 36.  Expression pattern of Pmrp-7::CFP in whole animals.  RJ1089 strain young 
adult nematodes were visualized by confocal microscopy.  YFP and CFP were viewed 
with the appropriate lasers, and no interference was detected between the signals.   

bright field  Pdat-1::YFP Pmrp-7::CFP overlay 
A B C D 
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As the visualization of whole nematodes did not conclusively show expression of 

MRP-7 in the DA neurons, primary cultures were prepared from the RJ1089 animals.  As 

observed previously in primary cultures, the DA neurons express yellow fluorescence 

and form processes (Fig. 37B) (Settivari et al. 2009).  CFP was expressed in several, 

but not all cells, including DA neurons (Fig. 37C), indicating that the 3466 kb promoter of 

MRP-7 is sufficient to drive the expression of the MRP protein.  All DA neurons 

expressed CFP (Fig. 37D).  Future experiments could utilize neuronal subtype specific 

antibodies or fluorescent reporters to further characterize the cellular localization of 

MRP-7.  These results indicate that MRP-7 is likely expressed in DA neurons and may 

function to inhibit MeHg-associated DA neurodegeneration.  

 

 
Figure 37.  MRP-7 is expressed in C. elegans DA neurons.  Transgenic animals [Pdat-

1::YFP; Pmrp-7::CFP] were used to generate primary cultures.  Confocal imaging was used 
to visualize the expression of the fluorophores.  DA neurons were identified by the 
presence of YFP (B). MRP-7 expression (C) was detected in the DA neurons as well as 
other cells (D), but not all cells (A).       
  

 

H.  Other types of neurons do not degenerate following MeHg exposure 

Individual transgenic strains with specific neuronal types labeled with GFP are available 

from the CGC.  I crossed each strain with the rrf-3 mutant strain NL2099 to generate 

strains that have GFP-expressing neurons that are sensitive to RNAi.  The types of 

neurons expressing GFP include GABA, glutamatergic, cholinergic, serotonergic and the 

ASI neurons.  Each strain was exposed to 0.5 or 1 µM MeHg following knockdown of 

mrp-7 or skn-1 and no significant changes in neuronal morphology were observed under 

these conditions.  A representative image of GABA neurons following MeHg exposure is 

shown (Fig. 38).  The selective degeneration of the DA neurons is consistent with 

vertebrate literature suggesting these neurons are more sensitive to stress and cell 

death relative to other types of neurons (Petrucelli & Dickson 2008).  As the DA quinone 
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and MeHg both react with GSH, the GSH levels may be depleted faster or to a greater 

extent by MeHg than in other neurons, contributing to the selective sensitivity (Cuadrado 

et al. 2009).  

 

 
Figure 38.  MeHg exposure does not cause GABA neuron degeneration.  RJ1040 [Punc-

47::GFP; rrf-3(pk1426)] nematodes were grown on RNAi plates seeded with HT115 or 
mrp-7 RNAi bacteria containing 0.5 µM MeHg for 4 days.  GFP is expressed in GABA 
neurons.  There were no observable breaks in the dorsal or ventral nerve cord.  The cell 
bodies may be slightly smaller in mrp-7 RNAi nematodes, but overall the GABA neurons 
were essentially normal following MeHg exposure.   
 

 

  

A   WT + MeHg B  mrp-7 RNAi + MeHg 
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VII.  Discussion 

 

The studies presented in this thesis describe a novel C. elegans model of MeHg toxicity 

and DA neuron degeneration, and the identification of genes involved in modulating the 

toxicity.  Several cellular processes have been associated with MeHg toxicity, yet the 

genetic and molecular bases of the toxicity remain largely undefined.  Acute MeHg 

exposure in mice and rats can cause DA release, and DA-related behaviors are altered 

following chronic MeHg exposure, however it is difficult to investigate the molecular 

basis of the pathology in these systems due to the complexity of the mammalian brain 

(Faro et al. 1997, Bourdineaud et al. 2011).  As MeHg exposure has been linked 

epidemiologically to PD, the prevalence of MeHg in the environment and the increasing 

incidence of PD indicate that determining the contribution of the toxicant to the disease 

could provide significant benefit to public health.  

 C. elegans has been established as a model system for elucidating the molecular 

mechanisms of both gene-associated and toxicant-induced DA neuron cell death (Nass 

et al. 2008).  My studies show that exposure to MeHg induces DA neuron degeneration 

in C. elegans, thus establishing a whole animal model for studying the molecular basis of 

MeHg-associated DA neuron pathology.  I have utilized gene expression and 

hypothesis-driven studies as well as a genome wide reverse genetic screen to identify 

genes involved in MeHg toxicity.  The increased expression of GSTs and other stress 

response genes following MeHg exposure led to the discovery that the transcription 

factor SKN-1/Nrf2 inhibits MeHg toxicity in the whole animal as well as DA neurons.  A 

novel RNAi screen identified genes required for viability in the presence of MeHg, 

including the ABC transporter MRP-7, which plays a significant role in MeHg excretion 

and inhibits MeHg-induced DA neuron degeneration. 

   

A.  Viability 

My studies show that C. elegans recapitulates several of the key features of MeHg 

toxicity in mammals.  Chronic exposure results in animal death, which is reduced by co-

exposure with Se.  In mammals, the brain of the developing fetus is more sensitive to the 

damaged induced by MeHg than the adult brain (Clarkson et al. 2003).  In C. elegans 

exposed to MeHg, I find significant effects on several parameters of reproduction and 

development including developmental delay, impaired reproductive capacity and 

embryonic defects.  
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  Effects on C. elegans viability and development are commonly monitored in 

toxicological studies and have been employed as endpoints in high throughput toxicity 

screening (Boyd et al. 2012).  However, observations of animal death or delayed 

development following toxicant exposure provide little information regarding the 

mechanisms of toxicity as multiple processes may be involved in producing the effect.  

Biochemical assays may be useful in C. elegans to suggest molecular effects of toxicant 

exposure.  I utilized the dye DCFDA to show that MeHg increases ROS levels in the 

nematode, consistent with observations in mammals (Ali et al. 1992).  Furthermore, the 

genetic techniques available in C. elegans provide an excellent opportunity to identify 

genes involved with cellular processes (Boulin & Hobert 2012).  The genes and 

molecular pathways involved in biological processes such as development, neuronal 

function and cell death are highly conserved between C. elegans and humans (Shaye & 

Greenwald 2011).  Therefore, the identification of genes and pathways that are 

associated with a toxicant in the nematode may provide insight into the mechanisms of 

toxicity in humans and other vertebrates.    

 The gene expression profile following toxicant exposure provides information 

about both the cellular processes disrupted by the toxicant and the defense mechanisms 

that the cell has activated.  Microarray analysis of gene expression is sensitive and can 

detect cellular changes before visible toxicity or cell death occurs, contributing to its 

utility in toxicology (Nuwaysir et al. 1999).  Microarray analysis following MeHg exposure 

has been completed in several organisms, but these studies are mostly tissue specific 

(ex. brain, liver).  I used microarray analysis to identify MeHg-induced changes in gene 

expression in the whole nematode and approximately 500 genes were found to be 

upregulated over 2-fold after MeHg exposure.  DAVID analysis of the list of upregulated 

genes indicates an enrichment of genes involved in stress response (GSTs, HSPs, 

CYPs) and the ubiquitin proteasome pathway.  Similar results were found by microarray 

analysis of MEF cells following MeHg exposure; there was an enrichment of genes 

involved in glutathione metabolism, Nrf2-mediated stress response and protein 

ubiquitination pathways, among other processes (Yu et al. 2010).  The gene response 

profile in my microarray is consistent with those obtained from mammalian studies, 

suggesting that the molecular pathways involved in MeHg toxicity are likely similar 

between C. elegans and vertebrates.  

 Microarrays have been the standard technique for global analysis of gene 

expression for several years, however new technologies have led to the development of 
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a method called RNA-seq that offers several advantages over traditional microarray for 

transcriptome profiling (Wang et al. 2009b).  RNA-seq uses high-throughput sequencing 

to identify all cDNAs in the cell at a given time.  Microarray analysis is limited to the 

genes represented on the chip, however there is no such bias with RNA-seq and a 

comprehensive gene expression profile can be obtained.  The technology can also be 

more sensitive, identifying transcripts that may not be detected by microarray (Wang et 

al. 2009b).  We, along with our collaborator Dr. Garry Wong and his colleagues, have 

utilized RNA-seq to analyze gene expression following MeHg exposure in C. elegans.  

As reported in Rudgalvyte et al. 2013, the RNA-seq data indicates upregulation of GSTs, 

HSPs, UGTs and CYPs (Rudgalvyte et al. 2013).  Furthermore, 5 of the top 20 genes 

from RNA-seq were also identified by my microarray analysis (Rudgalvyte et al. 2013).  

The RNA-seq analysis was performed after chronic exposure to 10 µM MeHg and the 

microarray results in this thesis indicate changes following acute exposure to MeHg.  

The RNA-seq study results are consistent with my microarray data, suggesting that 

similar classes of stress response genes are induced by MeHg exposure following 

different exposure conditions.  

 

B.  SKN-1 

My gene expression studies show that MeHg exposure increases expression of specific 

GSTs, prompting me to investigate the mechanisms involved in regulating the 

expression of these genes.  Phase II detoxification enzymes, including GSTs in 

mammals and C. elegans, can be regulated by the transcription factor Nrf2/SKN-1 and 

Nrf2 has been implicated in MeHg toxicity (Toyama et al. 2007, Oliveira et al. 2009, Yu 

et al. 2010).  I found that SKN-1 is required for the transcription of gst-4 and gst-38, and 

there are likely more genes upregulated by MeHg that are regulated by SKN-1 (Oliveira 

et al. 2009).  RNAi knockdown of skn-1 increases sensitivity to MeHg, suggesting that 

SKN-1 plays a significant role in managing MeHg-associated toxicity, likely by increasing 

the expression of genes with protective functions.  MeHg increases cellular ROS levels 

and SKN-1 may upregulate antioxidant genes that can reduce ROS.  SKN-1 target 

genes also include members of the UPS and regulators of transcription and translation.  

As MeHg can bind and damage proteins, the SKN-1 response could facilitate the 

removal of damaged proteins and the production of new proteins to promote cell 

survival.  SKN-1 is known to upregulate GSTs and may control the expression of 

transporters such as MRP-7, which could promote the conjugation of MeHg to GSH and 



 112 

then excretion through the transporters (Oliveira et al. 2009).  Therefore, the protective 

role of SKN-1 likely involves downstream pathways and systems that contribute to 

survival in the presence of MeHg.   

 SKN-1 has been shown to be localized in the cytoplasm of intestinal cells under 

normal conditions, and oxidative stress results in translocation of the protein to the 

nucleus (An & Blackwell 2003).  In the nucleus, SKN-1 can bind to ARE sequences and 

enhance the transcription of stress response genes.  SKN-1 has also been observed in 

the ASI neurons, which are two chemosensory neurons in the head of the nematode, 

and the protein is constitutively nuclear in these cells (Bishop & Guarente 2007).  The 

expression of SKN-1 in the ASI neurons is involved in longevity, as dietary restriction 

causes SKN-1 to initiate signals that result in increased lifespan (Bishop & Guarente 

2007).  The reported expression pattern of SKN-1 did not include DA neurons, however 

it was based on observations of a translational reporter strain, which may not always 

reveal the true expression patterns of a protein (Boulin et al. 2006).  Studies in 

mammalian cells have shown that Nrf2 is expressed in and can inhibit cytotoxicity in DA 

neurons (Siebert et al. 2009).  Therefore, I hypothesized that SKN-1 may be expressed 

in C. elegans DA neurons.  Immunoreactivity of a SKN-1 antibody in DA neurons in 

primary cultures supports this hypothesis and shows that SKN-1 is expressed in C. 

elegans DA neurons (Fig. 20).   

 The discovery of SKN-1 expression in the DA neurons has contributed to other 

studies in our lab and we have reported that SKN-1 also inhibits DA neuron 

degeneration induced by Al3+, Mn, rotenone and 6-OHDA (Settivari et al. 2013, VanDuyn 

et al. 2013, data not shown).  Further genetic studies of Al3+-induced DA neuron 

degeneration revealed a role for SMF-3, a C. elegans homologue of the mammalian 

divalent metal transporter.  smf-3 mutants have increased resistance to Al3+, and given 

its role as a transporter, we hypothesized that the decreased toxicity was due to 

decreased Al levels.  I utilized ICP-MS to measure total Al levels following an acute 

exposure to Al and found a significant increase in smf-3 mutants compared to WT (Fig. 

25).  These results are consistent with a model that includes SMF-3 localization in an 

intracellular compartment where the transporter facilitates movement of Al3+ into the 

cytosol.  Our identification of SMF-3 is the first report of an Al transporter in any animal.  

Collectively, our studies underscore the crucial role of SKN-1 in DA neurons in response 

to toxicant-induced stress and suggest that oxidative stress is involved in the cellular 

response to a variety of PD-associated neurotoxicants.       
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C.  RNAi Screen 

Genome-wide RNAi screens provide a relatively unbiased approach to discover new 

genes associated with a specific cellular process or phenotype (Sugimoto 2004).  In 

contrast, the results of hypothesis driven experiments may be limited by the initial 

question being asked.  For example, we have utilized strains with mutations in PD-

associated genes to determine if loss of function in those genes may increase sensitivity 

to DA neurotoxicants.  In this targeted approach, our results are specific for the mutants 

and may limit the identification of other genes involved in the DA neuron degeneration.  

My screen largely assumes no a priori knowledge of genes involved in MeHg toxicity.  I 

screened two RNAi libraries for suppressors of MeHg-induced lethality utilizing the OD600 

of the bacterial culture as the indicator of viability.  A plate reader was utilized to 

measure the OD600 of each well in the 96-well microtiter plate, which allowed for the 

whole plate to be analyzed in approximately a minute.  skn-1 RNAi was used to optimize 

the MeHg concentration that would allow the detection of nematodes with increased 

sensitivity relative to WT.  I chose the highest concentration of MeHg that allowed 

viability of WT animals, but significantly decreased the viability of MeHg-exposed skn-1 

RNAi animals.  skn-1 RNAi also served as the positive control during the second round 

of the screen.  For skn-1, the bacteria in control wells are consumed and results in an 

OD600 near 0 while wells with MeHg have an OD600 near 1 at the end of the exposure.  

Obtaining this result in the control suggested that both the RNAi and MeHg are likely 

effective.  Furthermore, the observation of decreased viability for genes with previously 

reported growth defective phenotypes throughout the screen suggested that the RNAi 

was effective.  It is possible that not every RNAi clone efficiently knocked its target gene, 

which may have resulted in false negatives (genes involved in MeHg toxicity that were 

not identified due to the conditions of the screen).  However, the goal was to identify 

genes that likely play a significant role in MeHg toxicity, not to definitively identify every 

gene that affects MeHg-associated animal sensitivity.     

  At the completion of the screen, 92 RNAi clones were identified that significantly 

inhibit animal viability in the presence of MeHg.  The genes were largely organized into 

groups based on their function (or predicted function) as annotated in WormBase 

(www.WormBase.org).  If no information was available for the C. elegans gene, it was 

classified based on the function of the closest human homolog.  The protein sequence 

for nearly all C. elegans genes is available at WormBase.org, so NCBI BLAST was used 

to search for the human homologue of each screen hit.  Over 90% of the screen hits 
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have an identifiable human homologue.  This is supportive of my hypothesis that the 

screen in C. elegans will identify genes that likely play a role in MeHg toxicity in humans.   

 The screen identified several genes that have been associated previously with 

MeHg toxicity, as well as new genes that previously have not been implicated.  Seven 

genes associated with the mitochondria were identified, including ETC subunits.  The 

mitochondria are known to be a cellular target of MeHg (Atchison & Hare 1994).  Also, 

RNAi knockdown of the mitochondria-associated genes may impair mitochondrial 

function, increasing ROS and intracellular calcium, and sensitizing the cells to further 

insult by MeHg.    

 The effects of MeHg on protein homeostasis reported in the literature are 

consistent with my screen results (Syversen 1977).  Eight genes involved in protein 

degradation, specifically the UPS, were found to increase sensitivity to MeHg.  This is 

consistent with the studies in yeast that show overexpression of UPS genes can confer 

resistance to MeHg (Furuchi et al. 2002, Hwang et al. 2009).  Impairment of protein 

synthesis also appears to increase sensitivity to MeHg, as several translation initiation 

and elongation factors and ribosomal subunits were identified in the screen.   

 Consistent with mammalian literature showing an important role for calcium in the 

response to MeHg, knockdown of two genes that encode regulators of Ca homeostasis 

was found to increase sensitivity to MeHg (Hare et al. 1993).  Genes related to 

homeostasis of other ions and vacuole and peroxisome function were identified, which 

may be involved in cellular detoxification.  The screen hits may also provide insight into 

the mechanisms of cell death caused by MeHg, as two apoptosis-related genes and 

three genes associated with endocytosis (often linked to autophagy) were found to 

increase sensitivity to MeHg.  

 MeHg targets the nervous system in mammals and causes DA neuron 

degeneration in C. elegans, however few genes involved in nervous system 

development or function were identified in the screen.  This is likely because the 

endpoint of the screen was animal death and few neurons in the worm are required for 

viability (Bargmann 1993).  A more sensitive assay using a lower MeHg concentration 

and a behavioral phenotype as the endpoint may identify genes involved in nervous 

system function.   Also, the MeHg exposure began at L4 stage, so MeHg-associated 

genes involved in embryonic or early larval development may not have been identified.  

Altering the time points or other parameters of the screen may also allow for the 

identification of additional genes involved in MeHg-associated toxicity.  
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My microarray analysis identified genes for which expression is increased 

following MeHg exposure, and the RNAi screen identified genes that inhibit MeHg 

toxicity.  It may be expected that genes inhibiting MeHg toxicity are preferentially 

upregulated following exposure.  However, I found minimal overlap between the genes 

identified by the microarray and the genes identified in the screen; only 4 of the screen 

hits were upregulated by MeHg in the microarray results and one screen hit was found to 

be upregulated in the RNA-seq results.  The genes identified in the screen are 

necessary for animal viability in the presence of MeHg.  These genes may code for 

stress response proteins or detoxification enzymes that play a specific role in the cell’s 

response to MeHg exposure (i.e. SKN-1 and MRP-7).  However, the genes could also 

play a role in a normal cellular process, that when inhibited by gene knockdown, results 

in an increase in the cell’s sensitivity to MeHg insult.  For example, knockdown of a gene 

involved in mitochondrial function may result in damage to the mitochondria, sensitizing 

the organelle to the effects of subsequent MeHg exposure. The upregulation of one 

individual gene by MeHg may also not have a significant effect on cellular toxicity, and 

that gene could be indicated in the microarray but not identified by the screen.  For 

example, several GSTs are upregulated by MeHg yet RNAi knockdown of an individual 

GST does not affect MeHg toxicity.  However, knockdown of SKN-1 increases 

sensitivity, which likely results in decreased expression of several GSTs, among other 

genes.  

My genetic screen identified RNAi clones that caused increased sensitivity to 

MeHg and therefore genes involved in inhibiting MeHg toxicity.  To identify genes for 

which knockdown increases resistance to MeHg, a screen could be performed with a 

higher concentration of MeHg that would result in the lethality of WT animals.  Here, 

RNAi clones that allow survival in the presence of MeHg would be identified.  As 

knockdown of these genes results in enhanced survival in the presence of MeHg, the 

function of the gene would facilitate MeHg toxicity.  For example, a gene that acts in a 

pathway of apoptosis could be activated in the presence of MeHg, and knockdown of 

this gene may inhibit apoptosis and promote survival.  Negative regulators of pathways 

that inhibit toxicity could also be identified.  For example, wdr-23 should be identified in 

such a screen and could be used as a positive control, as I have shown knockdown of 

this gene results in increased expression of SKN-1 and increased animal survival.  This 

screen could produce a list of genes with the potential to further elucidate the pathways 

involved in MeHg toxicity.      
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Following the observation that MRP-7 was mis-annotated, I determined if any of 

the other Ahringer library hits may be incorrectly labeled.  The reliability of all clones in 

the Ahringer library has been predicted based on bioinformatic gene analysis and clone 

sequencing and is provided in an online database 

(http://biocompute.bmi.ac.cn/CelRNAi/) (Qu et al. 2011).  Thirty of the screen hits were 

from the Ahringer library and 12 of these, including MRP-7, were reported in the 

database as “marginal”, suggesting that there is a possibility the clone may target a 

different gene than was indicated in the original library database.  Therefore it is likely 

important in future studies to verify the identity of the clones by sequencing.   

 

D.  MRP-7 

Cellular detoxification often involves reactions in three phases (Klaassen & Lu 2008).  

Phase I and phase II detoxification metabolize and conjugate the chemical or toxicant, 

which prepares it for excretion from the cell during phase III.  Phase I and II enzymes 

were found to be upregulated by MeHg exposure as determined by microarray analysis 

and loss of a key regulator of phase II enzyme expression, SKN-1, increases sensitivity 

to MeHg.  MeHg is able to bind numerous proteins and cause widespread cellular 

damage, so conjugation and the SKN-1 antioxidant response may not be enough to fully 

mitigate the toxicity.  A single phase III transporter was identified in the RNAi screen, 

MRP-7, and knockdown of this protein results in greater sensitivity to MeHg than loss of 

SKN-1.  These results suggest that excretion from the cell may be a more effective 

method of reducing MeHg toxicity than phase I or II detoxification.  

 ABC transporter literature largely focuses on roles in chemoresistance or 

excretion, likely functioning on the plasma membrane to facilitate removal of substrates 

from the cell (Sharom 2008).  mrp-7 RNAi animals contain higher Hg levels following 

exposure to MeHg than WT, suggesting that MRP-7 functions to inhibit the intracellular 

accumulation of MeHg.  My studies are supportive of a model in which MRP-7 is located 

on the plasma membrane.  MeHg can enter the cell via diffusion across the plasma 

membrane, or through Ca2+ channels or amino acid transporters (Lakowicz & Anderson 

1980, Kerper et al. 1992, Marty & Atchison 1997).  Intracellular MeHg is transported out 

of the cell, against the concentration gradient, via the action of MRP-7 (Fig. 39).  This 

model is consistent with the function of MRP2 in MeHg transport in the kidney.  MeHg 

accumulates in the epithelial cells of the proximal tubules and is then transported by 

MRP2 out of the cell and into the lumen of the kidney for excretion (Zalups & Bridges 
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2009).  Subcellular localization studies utilizing an antibody to MRP-7 or a translational 

fluorescent reporter could help to confirm that MRP-7 is expressed on the plasma 

membrane.  

 

 
 
Figure 39.  A model for MRP-7 mediated transport of MeHg.  The dashed line 
represents an undefined mechanism of movement into the cell.  MRP-7 is likely 
expressed on the plasma membrane and pumps intracellular MeHg out of the cell.  
 
 
 
 Regardless of the specificity or localization of MRP-7, it is clear that loss of the 

transporter increases the amount of MeHg in the cell and therefore likely increases 

cellular stress.  The gene expression changes following MeHg exposure in mrp-7 RNAi 

animals provide insight into the molecular pathways that are perturbed by the toxicant.  

The upregulation of gst-38 is expected as this gene is also increased in WT animals 

following MeHg (Fig. 14).  The increase in gst-1, hsp-4 and hsp-6 expression in the mrp-

7 RNAi animals after chronic, but not acute, exposure is consistent with the increased 

Hg levels at later time points.  It appears that when the Hg levels are higher, the cells are 

under greater stress, and induce different or additional genes in response to this stress.   

 GSTπ plays a role in PD and the C. elegans homologue gst-1 has been shown to 

be expressed in C. elegans DA neurons and is involved in DA neuron sensitivity to Mn 

(Settivari et al. 2013).  Upregulation of this gene following MeHg exposure in mrp-7 RNAi 

animals suggests that the DA neurons may be under stress, and the observation of DA 

neuron degeneration following MeHg exposure in mrp-7 RNAi animals is consistent with 

this hypothesis.   

hsp-4 is a homologue of the protein BiP that is upregulated during ER stress (Ient 

et al. 2012).  Induction of hsp-4 in mrp-7 RNAi animals indicates that MeHg may be 

contributing to an ER stress response.  The accumulation of unfolded proteins is also a 

cause of ER stress (Gorbatyuk & Gorbatyuk 2013).  Therefore, the upregulation of hsp-4 
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could be a direct effect of MeHg exposure or a consequence of the activation of the UPR 

by MeHg.   

There is also evidence for a UPR activated specifically in the mitochondria 

(Haynes & Ron 2010).  hsp-6 is a chaperone that is upregulated in response to this 

mitochondrial UPR (Yoneda et al. 2004).  Insults that are known to cause ER stress and 

increase hsp-4 levels, such as tunicamycin and heat stress, had no effect on hsp-6 

expression, suggesting that the upregulation of hsp-6 occurs specifically following 

mitochondrial disruption (Yoneda et al. 2004).  Oxidative stress can activate the hsp-6 

mitochondrial UPR response, so the increase in ROS by MeHg could contribute to the 

hsp-6 induction following exposure.  However, MeHg may also activate hsp-6 in another 

manner as hsp-6 can be upregulated in the absence of ROS (Yoneda et al. 2004).  

MeHg could potentially disrupt mitochondrial proteins through its interaction with thiol 

groups which could also activate the mitochondrial UPR and hsp-6.   

hsp-16.1 is a member of the small HSP family, which are known to functions as 

chaperones to stabilize protein folding and prevent the accumulation of mis-folded 

proteins (Jakob et al. 1993).  In C. elegans, HSP-16.1 is localized specifically to the 

Golgi apparatus, an organelle which participates in the processing and packaging of 

proteins (Kourtis et al. 2012).  The Golgi also stores and regulates intracellular Ca2+ 

through the function of the Ca2+ and Mg2+ ATPase, PMR-1 (Van Baelen et al. 2001).  

Stress can induce the release of Ca2+ from the Golgi to increase intracellular Ca2+ levels 

that ultimately contribute to cell death (Kourtis et al. 2012).  HSP-16.1 contributes to 

cellular protection by functioning with PMR-1 to prevent high intracellular Ca2+ levels.  

MeHg has been shown to increase intracellular Ca2+ by releasing the cation from the ER 

and mitochondria, and the upregulation of HSP-16.1 in C. elegans suggests that Golgi-

related Ca2+ release may also contribute to MeHg-induced cellular toxicity (Marty & 

Atchison 1997).  Overall, these gene expression studies suggest that the level of cellular 

stress appears to be higher following MeHg exposure in mrp-7 RNAi animals relative to 

WT.   

MRP-7 plays a role in inhibiting toxicity in C. elegans following MeHg exposure, 

and consistent with its role in promoting survival, mrp-7 mRNA levels are increased in 

the presence of MeHg (Fig. 34).  Mammalian studies have shown that Nrf2 can 

contribute to the regulation of MRPs (Ji et al. 2013).  As the expression of C. elegans 

homologues of several Nrf2-regulated genes, including ABC transporters, is regulated by 

SKN-1 and there are two SKN-1 binding sites in the promoter of mrp-7, I hypothesized 
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that mrp-7 expression is dependent on SKN-1 (Oliveira et al. 2009).  skn-1 expression 

was reduced with RNAi and mrp-7 mRNA levels were measured by RT-PCR.  After RT-

PCR with several independent biological replicates, the results were inconclusive due to 

variability.  Two replicates showed a decrease in mrp-7, two replicates showed an 

increase in mrp-7 and two replicates showed no change in expression levels.  SKN-1 

may play a role in the regulation of mrp-7, but a conclusion cannot be drawn from these 

results.  Further investigations could use alternative methods for measuring gene or 

protein expression.  A primary antibody to MRP-7 could be generated and used for 

Western blotting.  The Pmrp-7::CFP strain (RJ1089) contains the mrp-7 promoter with both 

SKN-1 binding sites, so decreased CFP fluorescence following skn-1 RNAi may indicate 

that SKN-1 regulates MRP-7 protein expression.  The inability to perform skn-1 RNAi for 

more than one generation may decrease the success of these experiments (Hamilton et 

al. 2005).  If the mrp-7 mRNA or protein is present in the embryo or first larval stage, 

there would be detectable mrp-7 expression before skn-1 is knocked down.  If mrp-7 is 

not highly upregulated following MeHg exposure, or has a long biological half-life and is 

not transcribed at high levels under normal conditions, a loss of SKN-1 may have little 

effect as the initial mrp-7 could still be detected.  If skn-1 RNAi could be performed on 

multiple generations, mrp-7 may not be transcribed in the second-generation progeny in 

the absence of SKN-1 allowing for a detectable difference.  

 

E.  Implications in PD 

I have identified several cellular responses to MeHg in C. elegans that have also been 

reported in models of DA neuron degeneration or PD.  Furthermore, genes identified to 

play a role in MeHg toxicity have also been associated with PD.  Chronic exposure of the 

nematode to MeHg results in degeneration of the DA neurons while no effect is 

observed on the morphology other neuronal types.  In PD, death of the DA neurons in 

the SN is observed while other cell types remain largely unaffected (Petrucelli & Dickson 

2008).  A hypothesis for this selective sensitivity of DA neurons is that these cells have 

an intrinsically elevated level of ROS and therefore less external insult is needed to 

disrupt the oxidative balance and cause oxidative stress (Drechsel & Patel 2008).  I have 

shown that MeHg increases ROS, so it is possible that the DA neurons have a lower 

threshold for ROS thus making these cells more sensitive than others.  Furthermore, the 

DA neurons in C. elegans are not required for animal viability.  Therefore, the loss of the 

DA neurons specifically can be observed without widespread cell death in the whole 
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animal.  The selective death of DA neurons makes C. elegans an attractive model for 

investigating the role of MeHg in DA neuron degeneration. 

 GSH is an antioxidant molecule with important functions in both MeHg toxicity 

and PD.  MeHg exposure can decrease GSH levels and the brains of PD patients also 

have reduced GSH content (Yee & Choi 1996, Zeevalk et al. 2008).  Decreased GSH 

disrupts the oxidative balance of cells and reduces the ability to tolerate increased ROS.  

In MeHg toxicity and PD, GSH also plays a role in conjugation and excretion of 

substances from the cell, either MeHg itself or quinones formed from DA auto-oxidation 

(Zeevalk et al. 2008, Rush et al. 2012).  My results show that the GSH system is 

involved in MeHg toxicity, as several GSTs are upregulated following exposure, and 

SKN-1 could be regulating the expression of additional genes in the GSH pathways.  

GSTs likely facilitate the conjugation of GSH to MeHg and polymorphisms in GSTs have 

been associated with elevated MeHg levels as well as an increased risk of PD 

(Schläwicke Engström et al. 2008, Shi et al. 2009).  MeHg-GSH conjugates can be 

removed from the cell by MRPs, and this may also be true for MRP-7 (Rush et al. 2012).  

It has yet to be determined if MRPs may participate in the excretion of substances from 

DA neurons in PD.  However, I have shown that MRP-7 is expressed in C. elegans DA 

neurons, suggesting that MRPs may play a role in inhibiting DA neuron cytotoxicity in 

humans.   

 The transcription factor Nrf2 has been implicated in PD and modulation of its 

activity could be a promising therapy for the disease (Cuadrado et al. 2009).  Nrf2 also 

inhibits MeHg toxicity (Toyama et al. 2007).  I have shown that the Nrf2 homologue 

SKN-1 inhibits MeHg-induced animal death and DA neuron degeneration in C. elegans.  

Furthermore, Nrf2/SKN-1 regulates gene expression to decrease ROS and increase 

GSH (Kensler et al. 2007).  Other SKN-1 regulated genes may also have implications in 

DA neuron physiology or pathology.  The C. elegans gene cat-4 is involved in the 

synthesis of DA and is regulated by SKN-1 (Oliveira et al. 2009).  CAT-4, homologous to 

human GFP cyclohydrolase I, inhibits MeHg-induced DA neuron degeneration in our 

model, suggesting that altered DA regulation may contribute to the sensitivity of these 

cells.  CAT-4/GTPCH is involved in the synthesis of BH4, and in humans reduced BH4 

levels have been found in PD patients and mutations in GTPCH have been correlated 

with developing parkinsonism (Lovenberg et al. 1979, Nygaard et al. 1992, Blau et al. 

2001).  DA can activate Nrf2, but the contribution of Nrf2 in the regulation of DA 
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synthesis is largely unknown and our model may provide an opportunity for further 

investigation into the role of Nrf2 and the possible significance to PD (Shih et al. 2007).            

 The UPS likely plays a role in inhibiting cytotoxicity following MeHg exposure. 

MeHg exposure increases expression of UPS genes and overexpression of UPS 

components in yeast confers resistance to the toxicant (Hwang et al. 2009, Yu et al. 

2010).  The studies in my thesis are also supportive of a role for protein degradation in 

the cellular response to MeHg exposure.  The high affinity between MeHg and thiol 

groups provides the potential for MeHg to bind, modify or disrupt proteins (Clarkson 

1987).  If damaged, these proteins could become substrates for the UPS.  This thesis 

also provides evidence for a role of the UPS in MeHg toxicity.  Microarray analysis 

shows an induction of F-box and SKp1 related genes, both related to ubiquitination.  In 

the RNAi screen, 8 genes were identified that have putative roles in the UPS and protein 

degradation. 

My studies also show an induction of hsp-4 in mrp-7 RNAi animals following 

chronic MeHg exposure (Fig. 33D).  The ER chaperone protein BiP (hsp-4 in C. 

elegans) binds newly synthesized proteins and ensures proper trafficking into the ER for 

protein folding (Ient et al. 2012).  BiP can also promote the recycling of damaged 

proteins through the UPS (Kaufman 1999).  BiP levels have been shown to be elevated 

by many sources of ER stress, including exposure to MeHg in C. elegans (hsp-4) and 

rats (Grp78) (Helmcke & Aschner 2010, Zhang et al. 2013). These reports and my data 

suggest that ER stress may be activated by high levels of MeHg or MeHg-associated 

stress.   

The accumulation or aggregation of damaged or misfolded proteins may be a 

contributor to the DA neuron cytotoxicity observed in PD (Hoozemans et al. 2007).  

Impairment of the UPS can produce PD-like effects in model systems, and the overall 

function of the UPS is decreased in PD models and human PD patients (Lim & Tan 

2007).  Also, one mutation associated with familial PD occurs in the parkin gene, which 

is a component of the E3 ubiquitin ligase complex (Vistbakka et al. 2012).  Mutations in 

another ubiquitination-related gene, UCH-L1, are considered a risk factor for PD (Klein & 

Westenberger 2012).  The PD-associated toxicant 6-OHDA can induce expression of 

BiP, suggesting the involvement of ER stress and the UPR in DA neuron toxicity (Chen 

et al. 2004).  BiP overexpression can mediate the neurotoxicity of α-synuclein in DA 

neurons (Gorbatyuk et al. 2012).  These studies suggest that damaged proteins and 

UPS dysfunction contribute to the neuronal degeneration observed in PD.  Furthermore, 
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the therapeutic potential of BiP activators is now being demonstrated in animal models 

of PD (Gorbatyuk & Gorbatyuk 2013).    

MeHg exposure could impair the UPS in DA neurons, sensitizing them to 

additional insults and contributing to the development of PD.  Alternatively, it is possible 

that the impairment of the UPS in PD could exacerbate the effects of MeHg exposure in 

the DA neurons.  Nematode fluorescent reporter strains are available for direct 

observation of protein turnover and UPS function in particular C. elegans cell types 

(Hamer et al. 2010).  This could allow for further investigation of the role of the UPS in 

MeHg toxicity in DA neurons.  Impairment of the UPS by MeHg in the DA neurons would 

provide significant support for a role of the toxicant in contributing to DA neuron death 

observed in PD.  PD mutant strains in which the DA neurons are already vulnerable 

could also be tested for sensitivity to MeHg.     

 My studies have identified several genes and pathways involved in MeHg 

toxicity, and many of these are also implicated in PD.  MeHg may be contributing to the 

degeneration of DA neurons through multiple mechanisms as suggested by literature 

and the studies presented in this thesis.  The possible pathways and organelles involved 

in MeHg cytotoxicity are diagrammed in Figure 40 and described below.  Although the 

molecular mechanisms by which MeHg contributes to DA neuron pathology are largely 

undefined, the model described in this thesis provides a solid basis to begin to address 

this question.   
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Figure 40.  A model for MeHg-associated DA neuron cytotoxicity.  Extracellularly, MeHg 
may interact with membrane proteins including Ca2+ channels and the dopamine 
transporter.  Routes of MeHg entry into the cell include Ca2+ channels and diffusion 
through the plasma membrane.  Intracellularly, MeHg can cause protein damage that 
activates the UPS as indicated by an upregulation of the ER-associated hsp-4.  MeHg 
may also target the mitochondria, resulting in an increase in hsp-6 expression.  
Furthermore, intracellular MeHg may result in Ca2+ release from the ER, Golgi apparatus 
and mitochondria.  MeHg-associated oxidative stress may result in the nuclear 
localization of SKN-1 and the upregulation of SKN-1 target genes including GSTs, and 
alter DA homeostasis. 
 
 

MeHg is known to bind to –SH groups, which can cause disruption of protein 

folding or damage to the proteins (Clarkson 1987).  My studies are consistent with 

literature suggesting an initiation of the UPR following MeHg exposure and the 

involvement of the UPS in mediating MeHg-induced cellular damage.  MeHg causes an 

increase in hsp-4 mRNA, which is expressed in the ER and an indicator of the UPR (Fig. 

33).  Damaged proteins can be degraded and removed from the cell to prevent cellular 
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toxicity by the UPS.  I have shown that components of the UPS are upregulated by 

MeHg exposure, and RNAi knockdown of several UPS components increases the 

sensitivity of C. elegans to MeHg (Table 3, Table 5).  The UPS also plays a role in the 

cellular pathology associated with PD (Lim & Tan 2007).  Therefore, accumulation of 

unfolded or damaged proteins in the DA neurons may contribute to the cytotoxicity 

caused by MeHg. 

 MeHg has been shown to cause an increase in intracellular ROS (Kaur et al. 

2006, Mori et al. 2011).  I have shown that total ROS are also increased in C. elegans 

exposed to MeHg (Fig. 13).  Also, I have found that the transcription factor SKN-1, which 

is often induced by oxidative stress, plays an important role in mediating MeHg toxicity.  

SKN-1 target genes (ex. gst-1, gst-38) are upregulated following MeHg exposure (Fig. 

18, Fig. 33).  Also, knockdown of SKN-1 increases whole animal and DA neuron 

sensitivity to MeHg, likely due in part to a reduced ability to buffer ROS (Fig. 16, Fig. 

22).  Oxidative stress contributes to DA neuron cell death in PD; many PD-associated 

toxicants increase ROS and mutations in DJ-1, which protects cells against oxidative 

damage, are the most common cause of early-onset PD (Ariga et al. 2013).  

 Disruption of mitochondrial function or mitochondrial damage may also play a 

role in MeHg-induced degeneration of DA neurons.  Numerous studies in mammalian 

systems implicate the mitochondria in MeHg toxicity (Atchison & Hare 1994).  My studies 

show that MeHg induces hsp-6 expression, a marker of the mitochondrial UPR, and 

RNAi knockdown of mitochondria-associated genes renders animals more vulnerable to 

MeHg (Table 5, Fig. 33).  Furthermore, mitochondrial dysfunction can produce ROS and 

contribute to oxidative stress as well as releasing pro-apoptotic factors to promote cell 

death (Turrens 2003).  The mitochondria are a common target of PD-associated 

toxicants that cause DA neuron cell death and PINK1 is a mitochondrial protein that 

when mutated causes PD (Exner et al. 2012).   

 Another effect of MeHg exposure that could contribute to MeHg-induced DA 

neuron toxicity is a disruption of intracellular calcium levels.  MeHg has been shown to 

enter cells through calcium channels as well as inhibit Ca2+ transport (Sirois & Atchison 

1996).  Exposure of cells to MeHg can cause the release of Ca2+ from intracellular 

stores, including the mitochondria, ER and Golgi apparatus followed by an influx of 

extracellular Ca2+ (Marty & Atchison 1997, Limke et al. 2003, Kourtis et al. 2012).  My 

studies have shown that MeHg affects these organelles, suggesting that Ca2+ levels may 

also be altered by MeHg exposure in C. elegans (Fig. 33).  Also, two mediators of Ca2+ 
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homeostasis were identified in my RNAi screen (data not shown).  Excess intracellular 

Ca2+ can have multiple effects on the cell, including promoting cell death through 

apoptosis (Orrenius et al. 2003).  Ca2+ may play a role in the selective vulnerability of DA 

neurons in PD as these neurons display autonomous pacemaking involving Ca2+ 

currents (Chan et al. 2009).  The intrinsic disruption in Ca2+ homeostasis in these 

neurons may predispose them to further insult by toxicants that also affect Ca2+ levels, 

such as MeHg.   

 DA may also contribute to the intrinsic vulnerability of DA neurons to damage by 

toxicants.  DA is reactive and auto-oxidation can produce quinones and lead to oxidative 

stress (Shih et al. 2007).  There are reports in literature that suggest both an increase 

and a decrease in DA release following MeHg exposure and disruption of DA 

homeostasis could cause damage to the cells (Faro et al. 1997, Faro et al. 2002a).  

MeHg can also interact with and disrupt the function of the DAT, possibly contributing to 

the changes in intracellular DA content (Dreiem et al. 2009).   

 Increases in intracellular MeHg concentrations could lead to increased toxicity 

and the damage may be more severe in cells intrinsically sensitive to insult, such as DA 

neurons.  My studies show that the transporter MRP-7 is expressed in DA neurons in C. 

elegans and may be involved in Hg efflux to inhibit cellular toxicity (Fig. 32, Fig. 37).  

Although an MRP has not been previously identified in DA neurons, my studies suggest 

the transporter may mediate neuronal vulnerability to neurotoxicants.  
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VIII.  Future directions  

 

A.  Cell-type specific RNAi 

SKN-1 and MRP-7 inhibit MeHg-induced DA neuron degeneration.  RNAi mediated 

knockdown of skn-1 or mrp-7 exclusively in the DA neurons could provide an opportunity 

to further characterize the role of the proteins in these neurons.  Cell-type specific 

knockdown of skn-1 or mrp-7 in other cells could also be utilized to determine in which 

cells the proteins play a role in animal viability and how the proteins may function to 

inhibit toxicity in the developing embryo.  A method for cell-type specific RNAi takes 

advantage of the gene sid-1.  SID-1 is a dsRNA channel that is required for uptake of the 

dsRNA into cells and sid-1 mutants are essentially resistant to RNAi (Calixto et al. 2010).  

Therefore, SID-1 can be expressed behind cell-type specific promoters in sid-1 mutants 

and RNAi will result in gene knockdown only in cells that express the channel.  Cell-type 

specific RNAi could also allow knockdown of a gene necessary for development or 

viability in a subset of cells while maintaining normal expression in the rest of the animal.  

For example, SKN-1 knockdown exclusively in the DA neurons may allow the RNAi to be 

continued through multiple generations as the expression the cells necessary for 

embryonic development would not be affected. 

 

B.  Epigenetics, acetylation and ubiquitination 

 Epigenetics is a rapidly-advancing area of study in toxicology, but few papers 

exist regarding epigenetics in MeHg toxicity.  Mice exposed to MeHg in utero and for 7 

days after birth had increased methylation and decreased acetylation of the histones at 

the BDNF promoter (Onishchenko et al. 2008).  mRNA levels of the DNA 

methyltransferase (DNMT-1) were decreased and methylation of CpG sites in the 

promoter of p16(INK4a), a tumor suppressor gene, was reduced following MeHg 

exposure in rats (Desaulniers et al. 2009).  These studies suggest that epigenetic 

changes may be affecting gene expression following MeHg exposure, but the larger 

implications of these observations are still unknown.  Our C. elegans model provides a 

convenient opportunity for in utero exposure and analysis of offspring, that may facilitate 

MeHg-associated epigenetic studies.  As the larvae develop quickly, and the animals 

have a lifespan of only 2-3 weeks, the effects of in utero MeHg exposure may be 

monitored at various time points from birth to death.   
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In addition to histones, other proteins can be acetylated with varying 

consequences on cellular function.  Acetylation can be detected with antibodies or 

through liquid chromatography – mass spectrometry (LC-MS) (Choudhary et al. 2009).  

Analysis of the acetylation state of individual proteins is helpful for hypothesis driven 

studies.  This would allow us to determine if acetylation is altered by MeHg exposure 

and which proteins may be the target of this acetylation.  The identification of acetylated 

proteins could also provide insight into the acetyltransferases or deacetylases that are 

affected by MeHg (Choudhary et al. 2009).  The combination of this sensitive technology 

and with our model for MeHg toxicity may provide insight into the role of MeHg in protein 

acetylation.      

The strong association between the UPS and MeHg and the UPS and PD 

warrants further investigation into how the UPS is contributing to pathology.  The C. 

elegans model of MeHg described here provides an opportunity for these studies.  First, 

nematode fluorescent reporter strains are available for direct observation of protein 

turnover and UPS function in particular C. elegans cell types (Hamer et al. 2010).  This 

could allow for further investigation into the role of the UPS in MeHg toxicity in DA 

neurons.  Impairment of the UPS by MeHg in the DA neurons would provide support for 

a role of the toxicant in contributing to DA neuron death observed in PD.  PD-associated 

mutant strains in which the DA neurons are already vulnerable could also be tested for 

sensitivity to MeHg.  Additionally, ubiquitinated proteins can be detected and identified 

using LC-MS, allowing the identification of which proteins in the nematode become 

ubiquitinated following MeHg exposure.  This technique may identify the proteins or 

protein classes that are damaged by MeHg and targeted for degradation.  It would also 

be interesting to determine how ubiquitinatio or UPS function are affected following 

knockdown of the ubiquitin-related genes identified in the genetic screen.   

  

C.  Further studies on RNAi screen hits 

My RNAi screen identified 92 genes involved in inhibiting MeHg toxicity.  This list of 

genes provides opportunities for follow-up studies that have the potential to identify new 

molecular pathways involved in MeHg toxicity.  Below I have provided examples of how 

three genes (eat-6, gob-1 and C39E9.10) that were identified in the screen may be 

contributing to MeHg toxicity, based on their proposed function and current literature.  

Further characterization would provide both information about the function of the protein 

in C. elegans biology and how the protein may contribute to MeHg toxicity.  I have also 
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described how the screen may have revealed novel regulators of SKN-1 as knockdown 

of any gene upstream of SKN-1 could result in a similar phenotype as SKN-1 RNAi.  

Based on their predicted functions, two genes could be involved in the phosphorylation 

or stabilization of SKN-1.  Genes involved in nuclear transport were identified in the 

screen and, as the mechanism of SKN-1 nuclear translocation is undefined, may provide 

insight into this important step in the activation of SKN-1.   

eat-6 encodes the a subunit of a Na+/K+ ATPase and mutation leads to a 

reduction in the ion gradients necessary for action potentials and a slowed pharyngeal 

pumping rate (Davis et al. 1995).  In Drosophila, mutations in the α-subunit of the 

Na+/K+ ATPase result in hyperexcitability and neuronal degeneration (Palladino et al. 

2003).  Mutations in the human gene (ATP1A4) can lead to rapid-onset dystonia-

parkinsonism, which causes some symptoms similar to PD but is not responsive to L-

dopa therapy and does not cause loss of DAT or significant neuronal loss (de Carvalho 

Aguiar et al. 2004).  MeHg can bind to the ATPase and inhibit its function.  The 

depolarization of the membrane caused by loss of Na+/K+ ATPase function could 

increase Ca2+ entry into the cell and increase ROS to contribute to cytotoxicity (Huang et 

al. 2008).  Loss of eat-6 by RNAi could also lead to elevated intracellular Ca2+ and ROS, 

sensitizing the cells to further insult by MeHg.  Future studies could determine if eat-6 is 

expressed in DA neurons and contributes to neurotoxicity in C. elegans.   

C39E9.10 is homologous to the human SPNS1 (protein spinster homolog isoform 

1), originally labeled HSpin1 (Yanagisawa et al. 2003).  In Drosophila, the spin gene is 

required for programmed cell death and loss of this protein results in degeneration of 

neurons and the accumulation of lipofuscin in the lysosomes (Nakano et al. 2001).  The 

human HSpin1 interacts with Bcl-2/Bcl-xL to induce autophagy and a decrease in this 

protein could impair normal cell death pathways and contribute to neurodegeneration 

(Yanagisawa et al. 2003).  Lipofuscin can be measured in C. elegans and determining 

the role of C39E9.10 may provide insight into the role of autophagy in MeHg toxicity and 

DA neuron degeneration.   

The gob-1 gene encodes the trehalose-6-phosphatase enzyme that converts 

trehalose-6-phosphate (T-6-P) to trehalose (Kormish & McGhee 2005).  Trehalose is a 

sugar that protects cells against the stress from multiple types of insults in plants and 

other organisms including C. elegans.  Trehalose also prevents the accumulation of 

unfolded proteins (Singer & Lindquist 1998).  RNAi knockdown of gob-1 decreases the 

levels of trehalose while increasing levels of the potentially toxic T-6-P.  Treatment with 
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exogenous trehalose extends life span in C. elegans, so it is possible that a reduction of 

this compound in the nematode may increase basal stress levels and sensitize the 

animal to further insult by MeHg (Honda et al. 2010).   

nekl-2 is a kinase that is predicted to phosphorylate SKN-1 to facilitate its entry 

into the nucleus.  This kinase was identified in a screen and it was shown that RNAi 

knockdown results in decreased SKN-1 nuclear localization, decreased stress resistance 

and decreased life span (Kell et al. 2007).  The human homologue of nekl-2 is NEK8 

which plays a role in the cytoskeleton and cell cycle progression.  Mutations in the 

human and mice NEK8 genes result in cystic kidney disease (Liu et al. 2002, Zalli et al. 

2012).  Although the neurotoxic effects are the primary concern for MeHg toxicity, effects 

on the kidneys have been reported in numerous animal studies.   

K03H1.10 is homologous to C. elegans cbp-1 and the mammalian p300/CBP 

transcriptional coactivator (Shi & Mello 1998).  Based on the predicted sequence, 

K03H1.10 contains the domains necessary for interaction with the transcription factor 

CREB and another binding domain, however it lacks the HAT domain.  cbp-1 promotes 

the stabilization and activation of SKN-1 in C. elegans development and p300/CBP 

interacts with and acetylates Nrf2 in mammalian systems (Shi & Mello 1998, Sun et al. 

2009).  Without the HAT domain, K03H1.10 is unlikely to acetylate SKN-1, however it 

may still participate in the binding and stabilization of SKN-1 in gene promoters.    

Currently the mechanism of SKN-1 entry into the nucleus is undefined.  In 

mammals, Nrf2 nuclear translocation is facilitated by importin α and importin β 

(Theodore et al. 2008).  As SKN-1 nuclear localization is necessary for survival in the 

presence of MeHg, loss of any upstream regulators may also decrease viability after 

MeHg exposure.  The screen identified ima-3 and imb-3 (homologues of importin α and 

importin β), nxt-1 (NXT2), ran-4 (NTF2) and three members of the nuclear pore complex 

(NUP 98, 160, 205).   NTF2 (nuclear transport factor 2) is necessary to bind RanGDP 

and facilitate its entry into the nucleus through the NPC (nuclear pore complex) (Ribbeck 

et al. 1998).  Ran is being constantly depleted from the nucleus as it is necessary for 

transport of many substrates out of the nucleus (as RanGTP).  NXT1 is a nuclear export 

factor that also participates in Ran-mediated transport.  Disruption of nuclear transport in 

general can lead to many types of dysfunction in the cell and has been linked to 

neurodegenerative disease including PD (Patel & Chu 2011).   
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