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Li Qin 

 

MOLECULAR MECHANISMS OF ACQUIRED GEMCITABINE RESISTANCE IN PANCREATIC 

CANCER 

 

Most pancreatic cancer patients receiving gemcitabine chemotherapy eventually 

develop resistance to gemcitabine. To improve survival and prognosis of pancreatic 

cancer patients, better understanding the mechanisms of gemcitabine resistance and 

discovery of new therapeutic targets are required. In this study, I investigated the 

molecular mechanisms of acquired gemcitabine resistance using a stepwise 

gemcitabine-selected pancreatic cancer cell line in comparison to the parental cell line. I 

found that 14-3-3σ is up-regulated in the drug resistant cell line due to demethylation in 

its first exon, and the up-regulation of 14-3-3σ gene expression, in turn, contributes to 

gemcitabine resistance. Intriguingly, I found that demethylation of the 14-3-3σ gene in 

gemcitabine resistant cells is reversibly regulated by DNMT1 and UHRF1. Furthermore, I 

found that 14-3-3σ over-expression causes gemcitabine resistance by inhibiting 

gemcitabine-induced apoptosis and caspase-8 activation possibly via binding to YAP1. 

The finding of demethylation of the 14-3-3σ gene in gemcitabine resistant cells led to a 

hypothesis that other genes may also be changed epigenetically following gemcitabine 

selection. By RRBS (Reduced Representation Bisulfite Sequencing) analysis, 845 genes 

were found to have altered methylation. One of these genes, PDGFD, was further 
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investigated and found to have reversible demethylation at its promoter region in the 

drug resistant cells and contribute to gemcitabine resistance possibly via autocrine 

activation of the STAT3 signaling pathway. Together, these findings not only provide 

evidence that 14-3-3σ and PDGFD over-expression contribute to acquired gemcitabine 

resistance and that reversible epigenetic changes may play an important role in 

acquired gemcitabine resistance, but also demonstrate that the molecular mechanisms 

of acquired gemcitabine resistance in pancreatic cancer cells are complex and 

multifaceted. 
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Introduction 

A. Pancreatic ductal adenocarcinoma (PDAC) 

             Pancreatic cancer ranks the fourth most common cause of human death by 

cancer in the western world, with a 5-year survival rate less than 5% for all stages of the 

disease and a median survival of 6 months after diagnosis, thereby exhibiting the 

poorest prognosis of all solid tumors [1-3]. Pancreatic cancer has an annual mortality 

rate of approximately 95% with over 250,000 patients dying worldwide [4]. In 2014, an 

estimated 46,420 people will be diagnosed with pancreatic cancer in the United States, 

and approximately 39,590 people will die from the disease (please see 

http://www.cancer.org/cancer/pancreaticcancer/detailedguide/pancreatic-cancer-key-

statistics). What makes it so lethal is its stealth, which means that it exhibits no clear 

early warning signs or symptoms and therefore often goes undetected until it is 

advanced and too late for resection. In the vast majority of cases, symptoms only 

develop after pancreatic cancer has already grown and begun to spread.  

             Pancreatic ductal adenocarcinoma, or PDAC, is by far the most common type of 

pancreatic malignancy. Although surgical resection remains the only curative 

intervention and offers the best patient outcome for this disease, surgical removal of 

the tumor is possible in only approximately 15% of the patients [5]. Therefore, the poor 

survival rate is mainly attributed to the late detection of PDAC and emergence of a 

largely drug-resistant phenotype over time.            
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B. Gemcitabine in pancreatic cancer treatment 

             Routine treatment options to improve prognosis in patients with pancreatic 

cancer are limited. Its array of treatments includes but is not limited to chemotherapy, 

radiotherapy, immunotherapy, hormonal therapy, medications, surgery, and nutritional 

therapy. At present, single-agent gemcitabine, which has been considered the standard 

of care since 1997, is recommended as first-line chemotherapy for patients with 

advanced pancreatic cancer and has been extensively studied in phase II and III trials.   

             Gemcitabine is a deoxycytidine analogue and was approved by FDA in 1997 as 

the first-line chemotherapeutic drug for patients with locally advanced or metastatic 

pancreatic adenocarcinoma [6, 7]. It functions by either directly and competitively 

incorporating into DNA or inhibiting ribonucleotide reductase M1 or M2 (RRM1/RRM2) 

to prevent DNA replication and, thereby, interrupting DNA synthesis and inhibiting 

cancer cell growth [8]. However, although gemcitabine is the standard and most 

commonly used drug for treatment of pancreatic cancer, almost all patients would 

eventually develop resistance to this therapeutic agent. Over the past decade, 

numerous trials have been conducted to improve the outcome in patients by 

combination therapies using gemcitabine as backbone. Currently, combinational 

treatments using gemcitabine and other therapeutics have shown some promise but no 

real significant improvements in overall survival rates. So far, gemcitabine with erlotinib, 

an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is the only FDA-
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approved combination treatment for PDAC. Unfortunately, this regimen only has a 

modest effect to prolong median overall survival of patients for less than 2 weeks [9] . 

Although gemcitabine monotherapy or in combination with other agents has become 

standard chemotherapy for the treatment of PDAC, gemcitabine imparts a progression-

free survival interval ranging from 0.9 to 4.2 months only [10]. Therefore, the effect of 

gemcitabine on survival has been disappointing. Due to the characterization of PDAC by 

a high propensity for local invasion and distant metastasis as well as early relapses and 

largely drug-resistant phenotype, overcoming the gemcitabine drug-resistant phenotype 

has become a hot topic in this field. Understanding acquired gemcitabine resistance 

could lead to better improvements in the outcome for patients with pancreatic cancer. 

In order to do so, I strongly suggest that a better understanding of the molecular 

mechanisms by which gemcitabine resistance arises is likely to lead to novel therapeutic 

strategies for the successful treatment of patients diagnosed with pancreatic cancer. 

C. Gemcitabine metabolism and known resistance mechanisms 

             Gemcitabine (2',2'-difluorodeoxycytidine, dFdC)  is a prodrug that requires 

cellular uptake and intracellular phosphorylation into its active metabolites, gemcitabine 

diphosphate and triphosphate [8]. As shown in Figure 1, gemcitabine is transported into 

cells via human equilibrative nucleoside transporter-1 protein (hENT1), where it is 

phosphorylated by the rate-limiting enzyme deoxycytidine kinase (dCK) into 

gemcitabine monophosphate (dFdCMP), and is further phosphorylated into active 
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metabolites, the gemcitabine diphosphate (dFdCDP) and gemcitabine triphosphate 

(dFdCTP) by nucleoside monophosphate kinase (NMPK) and nucleoside diphosphate 

kinase (NDPK) respectively [11, 12]. Gemcitabine triphosphate (dFdCTP) is incorporated 

into DNA, thereby competing with dCTP for incorporation. Once dFdCTP is incorporated, 

two phosphate molecules are split off and thus leave dFdCMP in the DNA chain, while it 

allows only one more deoxynucleoside triphosphate to be incorporated, after which 

DNA replication terminates. dFdCMP is resistant to be removed from the DNA strand by 

proofreading enzymes (i.e., polymerase ε), leading to impairment of their ability to 

repair the DNA strand, which is the mechanism also known as “masked-chain 

termination.” Gemcitabine diphosphate (dFdCDP), on the other hand, inhibits 

ribonucleotide reductase M1 or M2 (RRM1/RRM2) that convert CDP to dCDP, leading to 

depletion of  dCTP pools and facilitating incorporation of dFdCTP into DNA [13]. As 

depicted in Figure 1, gemcitabine has various self-potentiating mechanisms that 

contribute to the maintenance of dFdCDP and dFdCTP levels for prolonged periods of 

time. For example, since dCTP inhibits dCK, decreased dCTP pools from RRM1/RRM2 

inhibition by dFdCDP can result in higher dCK activity and thus an increase in 

phosphorylation of dFdC to its active metabolites. In addition, dFdCTP can inhibit 

deoxycytidylate deaminase (dCMPD), an enzyme that deaminates dFdCMP to its inactive 

form dFdUMP, leading to a potentiation of its own formation.       

             It is known that high intracellular accumulation of dFdCTP and incorporation into 

DNA are associated with greater sensitivity to gemcitabine in preclinical tumor models 



5 
 

[14]. Moreover, clonogenic survival assays demonstrated that increased gemcitabine 

concentrations result in a decrease of cell viability, which suggested a prolonged periods 

of time for intracellular retention of active gemcitabine metabolites [15, 16]. The 

intracellular accumulation of active metabolites and cytotoxicity of gemcitabine are 

influenced by multiple factors, such as (a) the dosing schedule, (b) 

phosphorylation/activation by dCK, (c) cellular uptake via hENT1, (d) 

degradation/inactivation through CDA, and (e) genetic factors (e.g., single nucleotide 

polymorphisms in dCK and CDA) [17-20]. 
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Figure 1. Gemcitabine metabolic schema and proposed pharmacological mechanisms 

of gemcitabine and its metabolites. Transportation of dFdC into the cell is mediated by 

hENT1, which is followed by intracellular phosphorylation by dCK to its monophosphate 

dFdCMP, and subsequently into its active dFdCDP and dFdCTP metabolites. dFdCTP is 

incorporated into DNA, thereby competing with dCTP for incorporation. dFdCDP inhibits 

RRM1/2, which prevents the conversion of CDP to dCDP and thus reduced synthesis of 

dCTP, leading to an elevation of intracellular dFdCTP/dCTP ratio and enhanced 

incorporation of dFdCTP into DNA.  
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             Remarkable progress has been made during the last decade toward identifying 

and understanding the complicated signaling pathways that contribute to the initiation, 

progression of PDAC, and signaling pathways that contribute to intrinsic and acquired 

gemcitabine resistance in pancreatic cancers. To date, several molecular markers to 

predict gemcitabine sensitivity have been reported and investigated with or without 

relation to gemcitabine metabolism, including messenger RNA (mRNA) and microRNA, 

as well as genes related to gemcitabine metabolism and transport, such as 

deoxycytidine kinase, ribonucleotide reductase, and human equilibrative nucleoside 

transporter-1 [21-24]. However, the potential use of such markers in clinical settings 

remains limited due to the difficulties in evaluating their protein or mRNA levels in 

clinical samples. For example, accurate quantitative analyses of mRNA from clinical 

samples are often difficult as a result of degradation. Therefore, more reliable methods-

based biomarkers are needed to predict responses to gemcitabine. 

             The most studied gemcitabine resistance mechanisms are the dysregulation of 

the enzymes participating in gemcitabine metabolism pathways, including down-

regulation of transporter hENT1, down-regulation of rate-limiting enzyme dCK, and up-

regulation of RRM1/RRM2 [25-31]. It suggests that the ratio of the expression level of 

these four genes (hENT1 Χ dCK)/ (RRM1 Χ RRM2) decreased progressively with 

development of acquired gemcitabine resistance and, thus, this ratio correlates with 

acquired gemcitabine resistance in pancreatic cancer cells, which may be a useful 

predictive marker for the efficacy of gemcitabine chemotherapy in pancreatic cancer 
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patients [30]. Other studies show changes in a variety of cellular signaling pathways 

such as Akt/mTOR signaling pathway and NF-kB signaling pathway, as well as 

malfunction of proteins involved in cell survival/apoptosis pathway [32-34]. Emerging 

evidence suggests molecular and phenotypic association between gemcitabine 

resistance and acquisition of epithelial-mesenchymal transition (EMT)-like phenotype of 

pancreatic cancer cells [35-39]. This process is also believed to be reminiscent of “cancer 

stem-like cells” characteristics in many cancer systems including pancreatic cancer [40-

43]. EMT has been classified as a unique process by which epithelial cells undergo 

remarkable morphological changes characterized by transition from epithelial 

phenotype (cobblestone phenotype) to mesenchymal phenotype (elongated fibroblastic 

phenotype) with increased motility and invasion [44, 45]. Despite our improved 

understanding, it is crucial to continue efforts toward discovering biomarkers and 

unraveling the molecular mechanisms that support and drive this gemcitabine-resistant 

phenotype, which will ultimately provide means to improve treatment of this deadly 

disease. 

D. 14-3-3 sigma and 14-3-3 family 

             Our lab has previously found that high expression of 14-3-3σ (sigma) associates 

with intrinsic gemcitabine resistance in human pancreatic cancer [46], but whether or 

not 14-3-3σ associates with acquired gemcitabine resistance is not known and needs to 

be investigated. It was previously found that 14-3-3σ protein level was increased 
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significantly in about 71% of human pancreatic cancer tissues compared with matched 

normal tissues, and that the 14-3-3σ protein level in pancreatic cancers correlated with 

lymph node metastasis and poor prognosis of the patients [46]. Importantly, the Kaplan-

Meier survival curves demonstrated a trend of higher patients’ survival with low 14-3-3σ 

expression compared to high 14-3-3σ expression (p=0.06). These evidences suggest that 

14-3-3σ may be used as a potential biomarker and promising therapeutic target for 

treating pancreatic cancer.  

             14-3-3σ, also known as human mammary epithelial marker 1 or stratifin, is a 

member of highly conserved family called 14-3-3 proteins that are present in all 

eukaryotic organisms [47]. 14-3-3 proteins belong to a highly conserved multigene 

family of phosphoserine/phosphothreonine-binding molecules with consensus RSXpSXP-

binding motif and play an essential role in multiple biological processes such as cell 

signaling, cell division, survival and cell death [48-51].  

             Among the seven human 14-3-3 family members (β, ε, θ/τ, ζ, σ, γ, η), 14-3-3σ is 

uniquely induced by p53 activation and has a positive feedback effect on p53 activity in 

response to DNA damage [52]. Therefore, 14-3-3σ might function as a potential tumor 

suppressor. Moreover, 14-3-3σ is a negative regulator of the cell cycle by initiating cell 

cycle checkpoint control after DNA damage, and is also required to prevent mitotic 

catastrophe after DNA damage [53-56]. 14-3-3σ was demonstrated to be induced by 

DNA damage such as γ-irradiation and Adriamycin treatment in a p53-dependent 
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manner [53]. Moreover, exogenously over-expressing 14-3-3σ caused a cellular 

phenotype remarkably similar to that observed following γ-irradiation, with an increase 

in cell size and failure to progress through G2/M cell cycle. These results strongly 

suggest that one of the molecular mechanisms underlying the G2/M cell cycle arrest 

following γ-irradiation is based on the activation of p53, which in turn transcriptionally 

activates 14-3-3σ [53].  Furthermore, 14-3-3σ appears to sequester CDC2-CyclinB1 

complexes in the cytoplasm, causing G2/M cell cycle arrest, and 14-3-3σ knockout fails 

to arrest CDC2-Cyclin B1 complexes in cytoplasm, resulting in mitotic catastrophe 

[55].   In addition, inactivation of CDC25C, an activator of CDC2-Cyclin B1 complex, via 

phosphorylation at serine 216 by serine/threonine protein kinase CHK1, created a 

binding site for 14-3-3 proteins and resulted in cytoplasmic arrest of CDC25C [57, 58]. 

Therefore, 14-3-3 proteins act on both CDC25C and CDC2-Cyclin B1 complexes to ensure 

that mitosis does not occur in the presence of DNA damage [55, 59].  

E. Association of 14-3-3σ expression with drug resistance 

             14-3-3σ was not only found to correlate with intrinsic gemcitabine resistance, it 

was also previously found to contribute to cisplatin resistance, Adriamycin resistance, 

and mitoxantrone resistance in several human cancer cells.  It was found that the 

parental colon cancer HCT116 cells were six times more tolerance  to cisplatin than 

the 14-3-3σ-KO HCT116 cells [60]. In human pancreatic cancer cell lines, it was found 

that in response to cisplatin treatment, 14-3-3σ-over-expressing PANC-1 cells exhibited 



11 
 

attenuated PARP cleavage and significantly decreased activation of caspase-3, 

compared with sham-transfected PANC-1 cells. Moreover, T3M4 pancreatic cancer cells 

with silenced 14-3-3σ exhibited an elevated PARP cleavage and caspase-3 activation 

following cisplatin treatment [61]. These findings suggest that 14-3-3σ over-expression 

contributes to intrinsic cisplatin resistance by inhibiting apoptosis. In addition, 14-3-3σ 

over-expression was also found to be associated with acquired cisplatin resistance in 

non-small cell lung cancer cells. It was found that 14-3-3σ mRNA expression levels were 

significantly increased in acquired cisplatin-resistant A549 and Calu1 cells compared 

with parental A549 and Calu1 cells that are cisplatin-sensitive, and that suppressing 14-

3-3σ expression in cisplatin-resistant Calu-1 cells magnified cisplatin response [62].  

             Previous proteomic analysis identified 14-3-3σ as a contributor to acquired 

Adriamycin resistance in breast cancer cells [63]. By utilizing two-dimensional gel 

electrophoresis and mass spectrometry analysis, 14-3-3σ was one of the 17 proteins 

identified with differential expression levels between parental MCF7 cells and acquired 

Adriamycin-resistant cells MCF7/AdVp3000. Further studies by knocking down 14-3-3σ 

expression in these cells as well as ectopic over-expression of 14-3-3σ in parental MCF7 

cells showed that the increased 14-3-3σ expression in resistant MCF7/AdVp3000 cells 

contributed to the drug-resistant phenotype [63].  

             Experiments were also conducted by ectopically over-expressing 14-3-3σ in 

HEK293 cells, and results showed that ectopic over-expression of 14-3-3σ in HEK293 
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cells resulted in increased resistance to mitoxantrone [63]. In addition, by perfoming 

two-dimensional gel electrophoresis, 14-3-3σ was also found to be over-expressed in 

the mitoxantrone-selected atypical multidrug-resistant cell line EPP85-181RNOV, 

suggesting its association with mitoxantrone resistance in human pancreatic 

adenocarcinoma [64].  

             In prostate cancers, it was found that the expression level of 14-3-3σ was much 

higher in androgen-independent prostate cancer cell lines DU145, PC3, and CWR22RV 

than that in the androgen-dependent cell line LNCaP, and that the androgen-

independent cells are more resistant to mitoxantrone and Adriamycin than the 

androgen-dependent cells [65]. Moreover, depleting 14-3-3σ expression in androgen-

independent DU145 and CWR22RV cells significantly sensitized these cells to 

mitoxantrone and Adriamycin treatment by abrogating G2/M cell cycle checkpoint and 

promoting apoptosis, whereas restoring 14-3-3σ expression in androgen-dependent 

LNCaP cells enhanced drug resistance [65]. This study indicates that advanced 

and hormone-refractory prostate cancers may have an increased level of 14-3-3σ, which 

in turn contributes to mitoxantrone and Adriamycin resistance in advanced 

and hormone-refractory prostate cancers. Thus, therapeutic intervention targeting 14-3-

3σ may be useful for sensitizing hormone-refractory prostate cancers to 

chemotherapeutic drugs by both G2/M checkpoint abrogation and apoptosis 

enhancement.   
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             Our lab has previously found that high expression of 14-3-3σ associates with 

intrinsic gemcitabine resistance in human pancreatic cancer, and that over-expression of 

14-3-3σ caused resistance to γ-irradiation and anticancer drugs including Adriamycin, 

mitoxantrone, and gemcitabine in pancreatic cancer cell lines [46]. Therefore, 14-3-3σ 

may serve as a prognosis marker predicting survival of pancreatic cancer patients. 

Despite the evidence that high 14-3-3σ expression level contributes to intrinsic 

gemcitabine resistant in pancreatic cancer cell lines and prognosis in pancreatic cancer 

patients, it is unknown if and how 14-3-3σ contributes to acquired gemcitabine 

resistance. 

F. YAP1, a potential binding partner of 14-3-3σ 

             As a chaperon protein, the potential contribution of 14-3-3σ to drug resistance 

may be by regulating its binding partners. One potential binding partner of 14-3-3σ is 

called YAP. YAP is a 65 kDa protein (sometimes termed YAP65 or YAP1) that was 

originally identified due to its interaction with the Src family tyrosine kinase Yes [66]. 

YAP is a transcriptional coactivator without a DNA-binding motif while maintaining a 

potent transactivation domain at its C terminus [67]. Thus it binds and activates several 

transcription factors including Runx [67] and four highly conserved TEAD/TEF 

transcription factors [68]. Structurally, it contains a proline-rich domain, a TEAD-binding 

domain, either one or two WW domains depending on alternative splicing [69], a SH3-

binding motif, a transactivation domain (TAD), and a PDZ interaction motif.  The WW 
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domain is the domain for protein-protein interaction, while the N terminus of YAP has a 

binding domain for the TEA domain (TEAD) family of DNA-binding proteins, which have 

been linked to the growth-promoting function of YAP [68]. These DNA-binding proteins 

include other possible transcriptional partners for YAP (ErbB, Runx2, and chromatin 

modeling proteins) as well as the negative YAP regulator LATS (large tumour suppressor) 

kinase [69-72]. Through its carboxyl terminus, YAP was reported to bind to the PDZ-

containing protein EBP50, a submembranous scaffolding protein [73]. 

             By transducing signals from cytoplasm to nucleus, YAP is important for 

transcriptional regulation. The important role of YAP was first discovered 

in Drosophila, where its homolog, Yorkie, was shown to promote tissue growth by 

increasing cell proliferation and inhibiting apoptosis [72]. Genetically, Yorkie is the 

ultimate effector of the evolutionarily conserved Hippo pathway [72]. The localization of 

YAP is controlled by phosphorylation. Five phosphorylation sites (S61, S109, S127, S164, 

S381) of YAP have been described and various kinases from Hippo-like pathways 

including LATS have been shown to be directly involved in the subcellular localization, 

transcriptional coactivator activity and biological functions of YAP [74-77]. Once 

phosphorylated at a key serine (S127), YAP is sequestered in the cytoplasm, where it can 

no longer function to promote target gene expression [78].  

             YAP was also found to bind to apoptosis-related proteins or transcription factors 

including p53 binding protein-2 (p53BP-2) [79], an important regulator of the apoptotic 
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activity of p53 [80]. YAP also interacts with the p53 family member p73, resulting in an 

enhancement of p73's transcriptional activity [81]. Since YAP is homologous to TAZ (45% 

identity), a transcriptional coactivator that is regulated by interaction with 14-3-3 [82], it 

may also potentially bind to 14-3-3 proteins. It was reported that YAP phosphorylation 

by Akt induces its interaction with 14-3-3 and suppresses its ability to promote p73-

mediated transcription of pro-apoptotic genes in response to DNA damaging agents [83]. 

More importantly, the crystal structure of 14-3-3σ/YAP phosphopeptide with pSer127 

complex has been resolved with 1.15 Å resolution [84]. However, whether or not YAP 

interacts with 14-3-3σ needs to be further investigated. 

G. 14-3-3σ gene methylation in cancers 

             For a long time, cancer has been widely recognized as a complex disease 

characterized by both multiple genetic and epigenetic alterations [85, 86]. Epigenetic 

regulations like chromatin modifications are known to exert a significant impact on gene 

expression. Several chromatin-modifying enzymes have been identified and known to 

catalyze specific modifications including methylation, acetylation, phosphorylation and 

ubiquitination. DNA methylation is one of the most important epigenetic alterations and 

plays a critical functional role in various biological and physiological processes including 

development, differentiation and progression of various diseases such as tumorigenesis 

[87-90]. Hypermethylation of important genes including tumor suppressor genes has 
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been extensively studied and frequently described in many human cancers including 

pancreatic cancer [91-97]. 

             14-3-3σ has been found to be frequently lost or decreased in various human 

tumors (Table 1) including breast cancer [98], esophageal squamous cell carcinoma [99],  

human oral squamous cell carcinoma [100], salivary gland adenoid cystic carcinoma 

[101], gastric carcinoma [102], urinary bladder carcinoma [103], and prostate cancer 

[104]. Its inactivation in these human cancers is broadly believed to be caused by 

promoter hypermethylation, which leads to block of DNA transcription and results in 

gene silencing [98, 101-104]. However, whether or not and how the methylation status 

of 14-3-3σ gene is regulated during development of acquired gemcitabine resistance is 

not known. 
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Table 1. Frequency of 14-3-3σ gene methylation in different types of cancers. 

Type of cancer Frequency 
Sample 

size References 

Basal-cell carcinoma 
Benign prostate hyperplasia 
Breast cancer 

68% 
100% 
86% 

41 LMT 
29 (MT) 
50 (T) 

[105] 
[104] 
[54] 

Breast cancer 100% 32 (MT) [54] 
Breast ductal carcinoma in situ 83% 18 (MT) [106] 
Breast invasive ductal carcinoma 96% 25 (MT) [106] 
Gastric carcinoma 43% 60 (T) [102] 
Hepatocellular carcinoma 
Large-cell lung cancer 
Non-small-cell lung cancer 
Oral squamous-cell carcinoma 
Prostate carcinoma (Pca) 
Prostate intraepithelial neoplasia (high-grade) 

89% 
57% 
6% 

35% 
99% 

100% 

19 (T) 
7 (L) 

17 (L) 
92 (T) 

121 (MT) 
39 (MT) 

[107] 
[108] 
[108] 
[109] 
[104] 
[104] 

Small-cell lung cancer 69% 13 (L) [108] 
Small-cell lung cancer 33% 24 (ML) [108] 
Urinary bladder carcinoma (invasive) 57% 14 (MT) [103] 
Urinary bladder carcinoma (noninvasive) 21% 14 (MT) [103] 
Vulval pre-malignant neoplastic lesions VIN III  
Vulval squamous-cell carcinoma 

59% 
55% 

22 (T) 
36 (T) 

[110] 
[110] 

L, cell line; LMT, laser-microdissected tumour; MT, microdissected tumour; T, non-
dissected tumour; VIN III, vulval intraepithelial neoplasia 

  

[110] 
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H. Uhrf1/DNMT1 complex, an emerging regulator of gene methylation 

             It is well known that DNA methylation is established and maintained by three 

active DNA methyltransferases, DNMT1, DNMT3a, and DNMT3b [111, 112]. 

Both DNMT3a and DNMT3b are regarded as de-novo DNA methyltransferases, 

whereas DNMT1 has a strong preference for hemi-methylated CpG substrates 

generated during DNA replication and is regarded as maintenance DNA 

methyltransferase [111-113]. Consistent with its central role in maintenance of DNA 

methylation, DNMT1 is associated with DNA replication forks in the S phase of cell cycle 

[114, 115], making it a good target for studying epigenetic alteration or inheritance 

during biological and pathological processes. Recent studies have focused on the central 

topic how DNMT1 is recruited to the DNA replication foci. 

             Recently, Uhrf1 (ubiquitin-like, containing PHD and RING finger domains 1) was 

identified as a DNMT1-interacting protein that recruits DNMT1 to replication forks to 

maintain DNA methylation and hence Uhrf1 is essential for epigenetic inheritance [116, 

117]. Uhrf1 is a multi-domain protein associated with cell proliferation and epigenetic 

regulation, and is a putative oncogenic factor that is found over-expressed in numerous 

cancers [118, 119]. Structurally, it harbors an ubiquitin-like domain, a plant 

homeodomain (PHD), a Set and Ring Associated (SRA) domain and a RING domain.  It is 

considered an efficient marker to differentially diagnose pancreatic adenocarcinoma, 

chronic pancreatitis and normal pancreas [120].  Moreover, Uhrf1 was also found to be 
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over-expressed in bladder cancer and the intensity of its over-expression appears to be 

related to the stage of the cancer, suggesting Uhrf1 as a novel molecular marker for 

diagnosis and prognosis of bladder cancer [121]. Furthermore, Uhrf1 could bind to 

histones and methyl-CpG dinucleotides with a preference for hemimethylated CpG sites 

via a unique SRA domain which is found only in Uhrf family [122, 123]. The consequence 

of Uhrf1 binding is recruitment of transcriptional repressors like DNMT1 (Figure 2) and 

histone deacetylase 1 (HDAC1) along with PCNA, resulting in methylation of the newly 

synthesized strands, which plays an important role in facilitating and maintaining DNA 

methylation in human genome [124-128]. Therefore, Uhrf1 is hypothetically involved in 

a macro-molecular protein complex called "Epigenetic Code Replication Machinery" that 

would be able to duplicate the epigenetic code by acting at the DNA replication fork and 

activating the right enzymatic activity at right moment [129, 130].  

             The ultimate outcome of Uhrf1 binding is repression of its target genes. By 

forming a complex with HDAC1, Uhrf1 was found to bind to methylated promoter 

regions of tumor suppressor genes such as p16 and p14 in cancer cells [131]. Moreover, 

Uhrf1 was also found to cooperate with G9a to enhance the transcriptional repression 

of p21 gene [132]. Furthermore, Uhrf1 was found to be over-expressed in colorectal 

cancer tissues to promote colorectal cancer growth and metastasis by repressing 

p16ink4a [133]. In addition, other tumor suppressor genes were also identified to be 

negatively regulated by Uhrf1, including RB1 and BRCA1 [127, 134]. However, whether 
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the putative tumor suppressor genes such as 14-3-3σ are epigenetically regulated by 

Uhrf1 needs to be investigated. 
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Figure 2. A successive DNA transfer model for maintenance DNA methylation by Uhrf1 

and DNMT1. Schematic model showing cooperative action by Uhrf1 and DNMT1 for 

maintenance of DNA methylation. Uhrf1 recognizes and binds to hemi-methylated CpG 

sites of the genome, leading to the recruitment of DNMT1 to the site and transfer of 

hemi-methylated DNA to DNMT1, followed by subsequent methylation of newly 

synthesized strand by DNMT1 to maintain DNA methylation. Pre-existing and newly 

synthesized DNA strands are indicated by red and blue lines, respectively.  
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I. Platelet-derived growth factor (PDGF) family 

             Platelet-derived growth factor (PDGF) signaling pathway has been extensively 

studied and well characterized since PDGF was first described in 1970s as a serum factor 

that promoted the smooth muscle cell proliferation [135]. The PDGF family comprises of 

four different polypeptides encoded by different genes, which have been identified as 

PDGF-A, PDGF-B, PDGF-C and PDGF-D [136-138]. PDGFs need to be assembled into 

disulfide-bonded dimers via homodimerization or heterodimerization in order to play 

their functional role. To date, four homodimers PDGF-AA, PDGF-BB, PDGF-CC and PDGF-

DD, and one heterodimer PDGF-AB have been described [139]. It is noteworthy that no 

heterodimers involving PDGF-C and PDGF-D chains have been identified. In addition, it is 

notable that PDGF-A and PDGF-B are secreted in their active forms, while PDGF-C and 

PDGF-D are secreted as inactive forms, requiring further activation for their function 

[136, 140, 141]. Structurally, as shown in Figure 3A, PDGF-A and PDGF-B mainly encode 

the growth factor domain and have short N-terminal extensions that undergo 

intracellular proteolytic processing for activation. However, both PDGF-C and PDGF-D 

encode a unique N-terminal CUB (for complement C1r/C1s, Uegf, Bmp1) domain, which 

is cleaved extracellularly followed by secretion for activation [142]. The domain 

structures of PDGF family members are provided in Figure 3A. 
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Figure 3. PDGF proteins and PDGF-PDGFR interactions. (A) Schematic drawing of the 

structure of four PDGF proteins (PDGF-A, B, C and D). (B) Representation of the PDGF-

PDGFR interactions. The extracellular region of the PDGF receptor (PDGFR) consists of 

five immunoglobulin-like domains (shown as blue or red balls) while the intracellular 

part is the tyrosine kinase domain (shown as blue or red rectangles).  
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             PDGFs exert their cellular effects by activating two structurally related receptor 

tyrosine kinases (PDGFR), PDGFR-α and PDGFR-β by phosphorylation [136, 137, 143, 

144]. As shown in Figure 3B, the PDGF-AA activates PDGFR-α, whereas PDGF-BB 

activates PDGFR-α, PDGFR-α/β or PDGFR-β. PDGF-AB and PDGF-CC activate either 

PDGFR-α or PDGFR-α/β, while PDGF-DD specifically binds to and activates its cognate 

receptor PDGFR-β (homo or hetero- dimmers). Although all four PDGF ligands play their 

oncogenic roles through binding with two PDGFRs, they promote carcinogenesis 

through different targets. Specifically, the phosphorylation of PDGFR by PDGFD triggers 

a number of downstream signaling pathways including activation of phosphatidylinositol 

3 kinase (PI3K), Akt, nuclear factor-κB (NF-κB), Notch, and extracellular signal-regulated 

kinase (ERK) [139, 145-147].  

J. PDGFD over-expression in human cancers 

             PDGFD has generated considerable interest in recent years because of its up-

regulation and involvement in the progression of several types of human cancers [147-

153]. Although PDGFD was discovered over a decade ago, the functional role of PDGFD 

is just beginning to be understood. A growing body of literature strongly suggests that 

PDGFD may function as a key player in the development and progression of numerous 

human cancers by regulating the processes of cell proliferation, apoptosis, migration, 

invasion, angiogenesis, and metastasis [139, 153-156]. It has been reported that PDGFD 

signaling is frequently deregulated in human malignancies with up-regulated expression 



25 
 

of PDGFD in prostate, lung, renal, ovarian, brain, and pancreatic cancers [146, 147, 149-

152]. Over-expression of PDGFD in breast cancer cells was found to promote tumor 

growth and lymph node metastasis through increased proliferation and decreased 

apoptosis via activation of MAPK and Akt signaling pathway [157]. In pancreatic cancer, 

PDGFD was reported to be strongly expressed in pancreatic adenocarcinomas, reactive 

cells of chronic pancreatitis, and in islets, but to a lesser degree in the normal ducts 

[147]. These findings make PDGFD a promising target for improvement in therapeutic 

treatment of pancreatic cancers. However, the association of PDGFD over-expression 

with resistance to therapeutic agents has not been extensively studied. PDGFD was only 

shown to be identified as one of the key genes that influenced semustine 

chemosensitivity in glioblastoma [158]. Also, in postate adenocarcinoma, increased 

PDGFD expression in PTEN knockout cells was shown to contribute to radio resistance 

observed in these cells [154]. However, whether or not and how PDGFD associates with 

gemcitabine resistance is unknown. 

K. Specific aims of the present work 

             As discussed above, one of the major obstacles in successful treatment of 

pancreatic cancer is the development of drug resistance that makes the patients 

unresponsive to drug treatment and eventually leads to poor prognosis. Although 

gemcitabine is the first-line therapy used for treating pancreatic cancers, acquired 

gemcitabine resistance in a substantial number of patients appears to hinder its 
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effectiveness. Extensive studies have been carried out in the cancer research 

community to understand the mechanisms responsible for drug resistance in a hope to 

discover potential therapeutic targets for prognosis and therapeutic treatments of 

pancreatic cancer patients. However, progress in our understanding of acquired 

gemcitabane resistance has been very slow and more studies are needed. 

             To further investigate the mechanisms of gemcitabine resistance, a gemcitabine 

resistant pancreatic cancer cell line was generated by stepwise selection of a pancreatic 

cancer cell line MiaPaca-2 with increasing concentrations of gemcitabine. The resistant 

cell line was cloned and named G3K, and can survive and grow in the presence of 3000 

nM of gemcitabine; this is ~6,500 (relative resistance factor or RRF) fold more resistant 

to gemcitabine than the parental MiaPaca-2 cells. In addition to the up-regulation of 

known gemcitabine resistant enzymes such as ribonucleotide reductase M1/M2 (RRM1 

or RRM2), the expression of 14-3-3σ protein, but not other 14-3-3 family members, was 

dramatically increased in the resistant cells. Furthermore, our data indicate that 14-3-3σ 

up-regulation is widely recognized to be caused by gene demethylation of its first exon. 

             Therefore, the first aim of my present work is to investigate the detailed 

mechanism through which gemcitabine selection causes 14-3-3σ gene demethylation. 

By examining the DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) and the 

recruiter Uhrf1, I found that DNMT1 and Uhrf1, but not DNMT3a or DNMT3b, play a 

critical role in 14-3-3σ gene methylation, and knocking down expression of either one 
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leads to 14-3-3σ gene re-expression. Moreover, by ChIP assay, I found that Uhrf1 could 

recruit DNMT1, and both proteins bind to the methylated region of 14-3-3σ gene, 

demonstrating an important role of these two proteins for maintaining the methylation 

status of 14-3-3σ gene. Moreover, gemcitabine selection leads to the reduced 

expression of Uhrf1, which results in a decreased recruitment of DNMT1 to the 14-3-3σ 

gene and eventually leads to the 14-3-3σ gene demethylation. Because the altered 

expression of Uhrf1 and DNMT1 in G3K cells likely also influence the methylation status 

of other genes, which may also contribute to acquired gemcitabine resistance, the 

second aim was designed to profile global changes in gene methylation comparing 

MiaPaca-2 and G3K cells using Reduced Representation Bisulfite Sequencing (RRBS). 

Among 845 genes that have been found to have altered methylation, PDGFD was shown 

to play an important role in acquired gemcitabine resistance possibly by regulating 

STAT3. The third aim was designed to investigate the detailed mechanism of 14-3-3σ-

mediated gemcitabine resistance in pancreatic cancer cells. My studies showed that 14-

3-3σ over-expression protected cancer cells from gemcitabine-induced apoptosis likely 

by forming a complex with YAP1 and together inhibiting caspase-8 activation and 

gemcitabine-induced apoptosis.  

             The outcome of this study shall lead to a better understanding of epigenetic 

regulation of 14-3-3σ gene and molecular mechanisms of acquired gemcitabine 

resistance in pancreatic cancer, particularly the mechanism of PDGFD-mediated 

gemcitabine resistance. It may also help discover potential therapeutic targets and 
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develop better antineoplastic drugs and treatment regimens that maybe more effective 

for drug resistant pancreatic cancer patients. Moreover, this study strongly suggests 

that reversible epigenetic regulation may play an important role in development of 

acquired gemcitabine resistance in pancreatic cancer patients and targeting epigenetic 

regulation may provide a new direction for chemosensitization of gemcitabine resistant 

human pancreatic cancers. 
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MATERIALS AND METHODS 

A. Materials 

             Metafectene Pro transfection reagent was obtained from Biontex. siRNAs 

targeting 14-3-3σ (sc-29590), YAP1 (sc-38637), Uhrf1 (sc-76805), DNMT1 (sc-35204), 

DNMT3a (sc-37757), DNMT3b (sc-37759) as well as PDGFD (sc-39709) and antibodies 

against 14-3-3θ (sc-732), 14-3-3ζ (sc-1019), DNMT1 (sc-135887), and DNMT3a (sc-20703) 

were purchased from Santa Cruz Biotechnology. Antibodies against GFP (ab290), YAP1 

(ab52771), p-YAP1 (ab76252), TRPC3 (ab70603), and DNMT1 (ab13537) antibody for 

ChIP assay were from Abcam. Antibodies against 14-3-3σ (05-632), RRM1 (MABE567), 

ChIP Assay kit (17-295), and CpGenome Universal DNA Modification kit (17-295) were 

purchased from EMD Millipore. Antibodies against Uhrf1 (612264) and FASN (610963) 

were from BD Biosciences. Antibodies against histone H3 (9715), p-STAT3 (9145), STAT3 

(9139), Caspase-8 (9746), and Parp-1 (9542) were from Cell Signaling. Antibodies against 

hENT1 (T0108), PDGFD (SAB1101911), and RRM2 were from Epitomics, Sigma, and 

generated in-house [159], respectively. Lipofectamine, pcDNA3.1(+) plasmid, and G418 

were from Invitrogen. PDGFD cDNA was purchased from Thermo Scientific. RNeasy Mini 

kit and Qiagen Blood and Cell Culture DNA Kit were from Qiagen. The iScriptTM cDNA 

synthesis kit and the SYBR Green PCR master mix were from Bio-Rad and Applied 

Biosystems, respectively. Gemcitabine were purchased from Besse Medical whereas 
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Ara-C, 5-FU, Adriamycin, mitoxantrone, and nocodazole were form Sigma. All other 

chemicals were purchased from Sigma or Fisher Scientific. 

B. Cell lines, cell cultures, and transfections  

             Human pancreatic cancer cell line MiaPaca-2 (ATCC) and its derivative lines G3K 

and G3KRev were cultured at 37℃, 5% CO2 in DMEM medium supplemented with 10% 

fetal bovine serum and 2.5% horse serum. G3K cells were generated by stepwise 

selection of MiaPaca-2 using gradually increasing concentrations of gemcitabine starting 

at 4 nM. G3K cells were clonal and maintained in the presence of 3 µM gemcitabine. The 

G3KRev cell line was generated by culturing the drug-resistant G3K cells in the absence 

of gemcitabine for six months and partially lost its gemcitabine resistance phenotype. 

Human pancreatic cancer cell line Aspc-1 was a gift from Dr. Jingwu Xie (Indiana 

University) and was cultured in RPMI medium supplemented with 10% FBS. MCF7 and 

its derivative lines MCF7/AdVp3000, and MCF-7/AdVpG3K/REV were gifts from Dr. 

Susan E. Bates (National Cancer Institute) and cultured as previously described [63]. The 

cell lines were authenticated by analysis of tandem repeat sequences on September 17, 

2013. 

             For transient knockdown or over-expression of target genes, cells were plated in 

a six-well plate at a density of 1.5-3×105 cells/well and cultured overnight in complete 

medium. About 60-120 pmol siRNAs of target genes or control scrambled siRNAs, or 1-

2μg of over-expressing plasmid of target genes or vector control plasmid were diluted in 
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serum-free Opti-MEM medium and then transiently transfected into cells using 

Metafectene Pro transfection reagent as previously described [160].  

             For stable transfection, the cDNA of 14-3-3σ and PDGFD gene was engineered 

into pcDNA3.1(+) and transfected into MiaPaca-2 cells using Lipofectamine and 

Metafectene respectively. Stable clones were selected using 1 mg/ml G418 as previously 

described [63, 65]. The stable clones were maintained in complete medium 

supplemented with 200 μg/ml G418. 

             Similarly, the stable shRNA knockdown was generated as previously described 

[63, 65]. Briefly, G3K cells were transfected with pSilencer-σ (14-3-3σ shRNA cloned into 

pSilencer 3.1-H1neo vector) or scrambled shRNA construct [63, 65] using Lipofectamine 

followed by selection with 1 mg/ml G418 for 2 weeks. Individual clones were tested for 

14-3-3σ knockdown and positive clones were propagated and maintained in complete 

DMEM medium. 

C. Cell lysate preparation, TCA protein precipitation and Western blot 

             Cultured cells were harvested, washed with PBS, and lysed in TNN-SDS buffer (50 

mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.5% Nonidet P-40, 50 mM NaF, 1 mM sodium 

orthovanadate, 1 mM dithiothreitol, 0.1% SDS, and 2 mM phenyl-methylsulfonyl 

fluoride) for 30 minutes at 4°C with constant agitation. The cell lysates were then 

sonicated briefly and followed by centrifugation (14,000×g at 4°C) for 15 minutes to 
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remove insoluble materials. The protein concentrations of supernatants were measured 

by Bradford assay. 

             Cell lysates were separated by SDS-PAGE and transferred to a PVDF membrane 

followed by a 2-hr incubation in blocking solution (PBS-buffered saline containing 5% 

nonfat dried milk and 0.1% Tween 20) and a 2-hr incubation with primary antibodies. 

After extensive washing, immunoreactivity was detected with specific secondary 

antibodies conjugated to horseradish peroxidase. Signals were captured using ECL x-ray 

film. 

             For the detection of secreted proteins, 1 volume of TCA (100% w/v) was added 

to 4 volumes of protein samples collected from the conditioned medium, followed by 

incubation for 40 minutes at 4°C and centrifugation (14,000×g at 4°C) for 5 minutes to 

precipitation all proteins. After aspirating the supernatant, the protein samples were 

washed twice with pre-cold acetone, followed by centrifugation (14,000×g at 4°C) for 5 

minutes. After removing the supernatant and air-dry, protein samples were solubilized 

by adding 2Χ loading buffer and ready for SDS-PAGE. When comparing two or more 

protein samples, the volume of 2Χ loading buffer was calculated based on cell numbers 

at the same time the conditioned medium was collected. 

D. Membrane preparation  
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             The membrane vesicles were prepared as described previously [161]. Briefly, the 

cells were washed with ice-cold PBS and resuspended in hypotonic lysis buffer (10 

mM KCl, 1.5 mM MgCl2, 10 mM Tris-HCl, pH 7.4, 2 mM PMSF) at 1 × 106 cells/ml 

followed by being homogenized 100 strokes with glass homogenizer and centrifugation 

at 4,000 × g for 10 min at 4°C. Crude membranes were obtained by centrifugation of the 

4,000 × g supernatant at 100,000 × g for 1.5 hrs. The crude membrane pellet was then 

resuspended in STBS (250 mM sucrose, 10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 

mM PMSF), passed through a 26-gauge needle for 20 times, aliquoted, and stored at 

−80 °C.  

E. Survival and apoptosis assay  

             Survival assay was performed as previously described using MTT colorimetric or 

colony formation assay [46, 162]. Briefly, cells were seeded in 96-well plate at 2000-

3000 cells/well and cultured for 24 hrs followed by treatment with different dose of 

anticancer drugs and incubated continuously for 3 days followed by addition of MTT (5 

mg/ml) to a final concentration of 0.5 mg/ml and incubation of the plates at 37°C for 4 

hours. The OD570nm and OD630nm were measured using an automated plate reader and 

analyzed using GraphPad Prism software to generate fitted curve and IC50. Relative 

resistance factor (RRF) is calculated using the following formula: RRF=IC50(test)/IC50(control). 

For apoptosis assay, photometric enzyme immunoassay using a Cell Death Detection 

ELISA Plus kit (Roche Diagnostics, Indianapolis, IN) was performed for quantitative in 
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vitro determination of cytoplasmic histone-associated DNA fragments and apoptosis as 

previously described [163]. 

F. Quantitative real-time RT-PCR  

             Quantitative RT-PCR was performed as described previously [164, 165]. Briefly, 

total RNA was extracted using RNeasy Mini Kit followed by reverse-transcription using 

iScriptTM cDNA synthesis kit and quantitative PCR using the SYBR Green PCR master mix. 

The primer pairs used are: 5′-TAGGCGCTGTTCTTGCTCCAA-3′ (forward) and 5′- 

ACCAGTGGTTAGGTGCGCTCA-3′ (reverse) for 14-3-3σ; 5′-GGCAAGTTCTCCGAGGTCTCTG-

3′ (forward) and 5′-TGGTACATGGCTTTTCGATAGGA-3′ (reverse) for DNMT3b, 5’-

TCTGGCTTTCTTTGCAGCAA-3’ (forward) and 5’-CAGCGGGCTTCTGTAATCTGA-3’ (reverse) 

for RRM2; 5′-GCCTTTACCGTCACCCTTATC-3′ (forward) and 5′-

AAAGGTACTACTTATGGGGGC-3′ (reverse) for PTPRG; 5′-GTGTCCCGCTCAGGTATAAAAG-3′ 

(forward) and 5′-GGGACCACATTCTCAAAGAGAC-3′ (reverse) for Adora2B; 5′-

CCCCTTCCAACCAGAATGTA-3′ (forward) and 5′-TGCCAAGAGAAACTGCTGAA-3′ (reverse) 

for DUSP6; 5′-CCCCAAAAGTAGCGTAACCA-3′ (forward) and 5′-CCGGTACTCCTGCGTGTTA-

3′ (reverse) for Olig1; 5′-TGAACACCCTGGGCTCTATC-3′ (forward) and 5′-

GGCAGCTGGTCTCCACTTAG-3′ (reverse) for SLC35D3; 5′-CACCTCGGACTCTGTGTTCA-3′ 

(forward) and 5′-AAGGGCAACATGAGAGCTTG-3′ (reverse) for Cdc42EP3; 5′-

CGTGGTCAGGTTGTTTGATGTG-3′ (forward) and 5′-ACTCGGTGTGAATGAAGAAAGTCC-3′ 

(reverse) for CDK6; 5′-ATTGCGATTTCGTGGTGTACAT-3′ (forward) and 5′-
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CCATATTCACCAGTGCTGCTCTT-3′ (reverse) for SLC25A27; 5′-CCCAGGAATTACTCGGTCAA-

3′ (forward) and 5′-ACAGCCACAATTTCCTCCAC-3′ (reverse) for PDGFD; 5′-

GGCCGCACGACTATTTCT-3′ (forward) and 5′-AGCCCCTTGTAGGCATTG-3′ (reverse) for 

TRPC3; 5′-AAGGACTCATGACCACAGTCCAT-3′ (forward) and 5′-CCATCACGCCACAGTTTTC-

3′ (reverse) for GAPDH. 

G. Immunofluorescence and confocal microscope imaging  

             1-2 × 105 G3K cells were seeded on a glass coverslip in a six-well tissue culture 

plate. After the culture reaches confluence, the cells were washed 3 times with ice-cold 

PBS and fixed with acetone/methanol (1:1) at room temperature for 15 min and 

incubated with blocking solution (3% bovine serum albumin in PBS) for 1 h. The cells 

were then probed with primary antibody YAP1 (1:200) for 2 hrs followed by incubation 

with FITC-conjugated goat anti-rabbit IgG F(ab′)2fragment (Sigma) (1:1000 dilution) for 

30 min. After being washed 3 times with blocking solution, the cells were re-probed 

with another primary antibody 14-3-3σ (1:50) for 2 hrs followed by incubation with 

Alexa Fluor 647 dye (Life Technologies) for additional 30 min. Then, after being washed 

3 times, the cell nucleus was counterstained with DAPI (25 μg/ml) for 20 min. The 

coverslips were then mounted on the slides before viewing with Olympus 2 confocal 

microscope. The laser excitation lines are as follows: 405 nM for DAPI, 488 nM for FITC, 

and 635 nM for Alexa Fluor 647. The image was then virtualized by Olympus Fluoview 

Ver.3.0 viewer (FV10-ASW 3.0 viewer). 
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H. Immunoprecipitation assay 

             Immunoprecipitation was performed as previously described [166]. Briefly, 1mg 

of cell lysates were first pre-cleaned by incubation with 1 μg of normal mouse IgG at 

4 °C for 1 h, then mixed with 150 μL of protein G agarose beads (50% slurry) and 

incubated at 4 °C for 2 hrs followed by centrifugation at 500× g for 5 min. The cleared 

supernatants were split into two equal parts incubated with either normal mouse IgG 

(as a negative control) or incubated with primary antibodies (anti-Flag, anti-YAP1, anti-

pYAP1, or anti-GFP) at 4 °C for 3 h, then each part was mixed with 50 μL of protein G 

agarose beads. After overnight incubation at 4 °C, the reaction was centrifuged to 

collect precipitates which were then washed five times with lysis buffer (50 mM Tris-HCl, 

pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100) before being subjected to SDS-

PAGE analysis for Western blot analysis. 

I. Chromatin-immunoprecipitation (ChIP) Assay  

             The ChIP assay was performed using ChIP assay kit following manufacturer’s 

instructions. Briefly, chromatin DNA was crosslinked by formaldehyde and sheared by 

sonication in 200 μl of SDS lysis buffer. After centrifugation, dilution, and pre-cleaning, 

the crosslinked protein-DNA complexes were precipitated by overnight incubation with 

the primary antibodies against histone H3, Uhrf1, DNMT1 or without any antibody as a 

negative control. The precipitated DNA was analyzed by PCR using primers 5′-

CTGAACAGGCCGAACGGTATGAAGAC-3′ and 5′-GAATCGATGATGCGCTTCTTGTCATC-3′ (for 
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CpG island sequences of 14-3-3σ) and (5′-GCTCTTGGCTAGGTAACTGGACTCTTG-3′ and 5′- 

AGGGGCTTTCCTCATTCTGCCTGCTAC-3′ (for nonCpG island sequences of 14-3-3σ). 

J. Genomic DNA isolation, bisulfite modification, methylation-specific PCR and 

sequencing 

             Genomic DNA was isolated from MiaPaca-2, G3K, and G3KRev cells using Qiagen 

Blood and Cell Culture DNA Kit and modified by sodium bisulfite using the CpGenome 

universal DNA modification kit according to the supplier's protocol, followed by 

Methylation-specific PCR as previously described [167]. Briefly, 10 μg bisulfite-modified 

genomic DNAs were subjected to PCR analysis using primers 5′-

TGGTAGTTTTTATGAAAGGCGTC-3′ and 5′-CCTCTAACCGCCCACCACG-3′ for methylated 

sequence or primers 5′-ATGGTAGTTTTTATGAAAGGTGTT-3′ and 5′-

CCCTCTAACCACCCACCACA-3′ for unmethylated sequence. The PCR products were then 

subjected to separation and analysis by agarose gel electrophoresis. 

             For sodium bisulfite sequencing, 10 μg bisulfite-modified genomic DNAs were 

first amplified using primers 5′-GAGAGAGTTAGTTTGATTTAGAAG-3′ and 5′-

CTTACTAATATCCATAACCTCC-3′ (for 14-3-3σ gene) or primers 5′- 

TGAGTTTTTATAGGTTTAATTAGGAGGG-3′ and 5′-ACTCTCCCCAAACTTCCTACATACTA-3′ 

(for PDGFD gene) and subcloned into pGEM-T vectors (Promega). For sodium bisulfite 

sequencing of 14-3-3σ gene, six independent clones from MiaPaca-2 cells and 4 

independent clones from G3K cells were isolated and subjected to DNA sequencing. For 
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sodium bisulfite sequencing of PDGFD gene, four independent clones from MiaPaca-2, 

G3K, and G3KRev cells were isolated and subjected to DNA sequencing. 

K. Reduced representation bisulfite sequencing (RRBS) and data analysis 

             RRBS was applied on the DNA samples following the protocol described in 

reference [168].  Briefly, genomic DNA was isolated from MiaPaca-2, G3K, and G3KRev 

cells using Qiagen Blood and Cell Culture DNA Kit, respectively. For each cell line, three 

different DNA preparations were diluted to the same volume and same concentration, 

followed by being mixed together to reduce preparation bias and sent to BGI (Beijing 

Genomics Institute) for sequencing. Briefly, the DNA samples were treated with 

restriction enzyme MspI, and Illumina Paired-End protocol was used to construct the 

library following the digestion. 40-220bp fragments were selected and subjected to 

bisulfite treatment by ZYMO EZ DNA Methylation-Gold kit. All the bisulfite converted 

products were amplified by PCR and then followed by sequencing with IlluminaGAII.  

             The RRBS data was analysed in collaboration with Dr. Yunlong-Liu’s lab. Briefly, 

the raw 49bp reads from sequencing were filtered before alignment, in which step the 

adapter sequences, contamination and low quality reads were removed. The cleaned 

reads were subjected to alignment to the genome using BGI SOAPaligner version2.01 

[169]. Due to the strand specificity of DNA methylation, each bisulfite converted read 

pair were aligned twice: (1) the observed cytosines on the forward read of the pair were 

in silico converted to thymines and mapped to the genome converted the same way, 
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and (2) the observed guanines on the reverse read of the pair were in silico converted to 

adenosines and mapped to the genome converted the same way. To estimate 

methylation level for each region, only bases with quality >14 were considered to 

exclude sequencing errors. The level estimation is derived by dividing the number of 

converted cytosine bases in the region by the total number of bases covering CpG 

cytosines in the same region. Differentially methylated regions (DMR) were derived 

from windows with at least 5 CpG sites and a 2-fold change in methylation level, and 

also with Fisher’s exact test p value <0.01, as described in [170].  
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Results 

Section I: Detailed mechanism of reversible epigenetic regulation of 14-3-3σ during 

gemcitabine selection 

A. A gemcitabine-selected pancreatic cancer cell line is cross-resistant to Ara-C but not 

to other anticancer drugs.  

             To investigate acquired gemcitabine resistance, I subjected the pancreatic ductal 

adenocarcinoma cell line MiaPaca-2 to stepwise selection with escalating 

concentrations of gemcitabine starting at 4 nM. The final resistant cells were cloned and 

named G3K that was viable in the presence of 3000 nM of gemcitabine. Authentication 

using short tandem repeat sequence analysis confirms that G3K was derived from the 

parental MiaPaca-2 cells (data not shown). The G3K clone has an estimated IC50 of 

26.6±3.8 µM while the parental MiaPaca-2 cells have an IC50 of 4.1±1.3 nM to 

gemcitabine (Figure 4A-B). Thus, G3K cells are ~6,500 (relative resistance factor or RRF) 

fold more resistant to gemcitabine than the parental MiaPaca-2 cells.  

             The G3K cells were next examined for cross-resistant to gemcitabine analogue, 

Ara-C, and other anticancer drugs using MTT assay. As expected, G3K cells are ~3,500 

fold more resistant to Ara-C with an IC50 of 388.4±48.9 µM than the parental MiaPaca-2 

cells with an IC50 of 112.8±74.4 nM (Figure 4B). However, G3K cells did not show any 
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significant resistance to vinblastine, paclitaxel, and nocodazole although G3K may be 

slightly more resistant to 5-FU and mitoxantrone than MiaPaca-2 cells (Figure 4C). 
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Figure 4. Drug response profiles of MiaPaca-2 and its derivative G3K cells. (A). Dose 

response of MiaPaca-2 and G3K cells to gemcitabine treatment. (B) and (C). IC50 of 

MiaPaca-2 and G3K cells to gemcitabine, Ara-C, 5-FU, mitoxantrone, vinblastine, 

paclitaxel, and nocodazole (n=4-8, **p<0.01, ***p<0.001). 
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B. Ribonucleotide reductase and 14-3-3σ are up-regulated in G3K cells.  

             The finding that G3K cells are cross-resistant to Ara-C but lack of cross-resistance 

to multiple other anticancer drugs prompted us to investigate if any known mechanisms 

of gemcitabine resistance are up-regulated in G3K cells. These mechanisms include but 

are not limited to over-expression of hENT1, ribonucleotide reductase RRM1 and RRM2 

[25, 30, 171]. The expression level of 14-3-3σ was also examined because of its 

association with intrinsic gemcitabine resistance [46]. As shown in Figure 5A, the protein 

level of hENT1 in G3K cells remains the same as in MiaPaca-2 cells, as determined by 

Western blot analysis. However, the expression of RRM1, RRM2, and 14-3-3σ are 

drastically up-regulated in G3K cells compared with the parental MiaPaca-2 cells. 

Interestingly, the other members of the 14-3-3 protein family, 14-3-3θ and 14-3-3ζ, did 

not increase in expression in the G3K cells. 

             To further validate the increased expression of RRM and 14-3-3σ, I next 

performed real time RT-PCR analysis. As shown in Figure 5B, the mRNA levels of both 

RRM1 and 14-3-3σ are significantly increased in G3K cells compared to MiaPaca-2 cells, 

up to ~3.1 fold and ~8.3 fold increase respectively. I also found that the expression of 

RRM1 and 14-3-3σ were up-regulated early during the selection process by testing the 

MiaPaca-2 cells with intermediate level of resistance generated during stepwise 

selections (Figure 5C). Although RRM1 remained in the same up-regulated level in all 

intermediate cells and the final G3K cells, 14-3-3σ appears to be further up-regulated in 
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G3K cells compared to the other preceding intermediate cells. This observation suggests 

that up-regulation of both RRM1 and 14-3-3σ may occur as an early event of acquired 

gemcitabine resistance.  
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Figure 5. Ribonucleotide reductase and 14-3-3σ are up-regulated in G3K cells. (A) 

Western blot analysis of hENT1, RRM1 and 2, 14-3-3σ, ζ, and θ expression in both 

MiaPaca-2 and G3K cells. (B) Real time RT-PCR analysis of RRM1 and 14-3-3σ mRNA in 

MiaPaca-2 and G3K cells (N=3, p<0.001). (C) Western blot analysis of RRM1 and 14-3-3σ 

in the intermediate gemcitabine-resistant cells G100, G500, and G1K. Beta-actin was 

used as a loading control for Western blot analyses and GAPDH was used as an internal 

control for PCR analyses. 
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C. 14-3-3σ over-expression contributes to acquired gemcitabine resistance.  

             Because RRMs are well known contributors to acquired gemcitabine resistance 

[25, 30, 171], I chose to further investigate the potential contribution of 14-3-3σ to the 

acquired gemcitabine resistance in G3K cells. Although 14-3-3σ has been suggested to 

contribute to intrinsic gemcitabine resistance [46] and high 14-3-3σ levels correlate with 

resistance, there are no studies on its potential role in acquired gemcitabine resistance. 

For this purpose, I first knocked down the expression of 14-3-3σ in G3K cells using siRNA 

and tested if 14-3-3σ was involved in gemcitabine and Ara-C resistance in G3K cells. As 

shown in Figure 6B, 14-3-3σ was successfully knocked down in G3K cells by siRNA and 

the reduced 14-3-3σ expression was accompanied with ~80% reduction in gemcitabine 

resistance. Ara-C resistance was also reduced by ~65% by 14-3-3σ knockdown. Thus, 14-

3-3σ over-expression in G3K cells may contribute to both gemcitabine and Ara-C 

resistance.  

             To further verify the role of 14-3-3σ in acquired gemcitabine resistance, I 

established a stable MiaPaca-2 cell line with over-expression of ectopic 14-3-3σ. Figure 

6C shows the stable over-expression of ectopic 14-3-3σ in MiaPaca-2 cells and the 

significantly increased resistance of the stable cells to both gemcitabine and Ara-C, with 

~2.2 fold and ~1.5 fold increase respectively, confirming that 14-3-3σ over-expression 

causes gemcitabine and Ara-C resistance.  
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             To validate the role of 14-3-3σ in acquired gemcitabine resistance in G3K cells, I 

created a partially revertant cell line, G3KRev, by continuously culturing G3K cells in the 

absence of gemcitabine selection for 6 months and tested the level of gemcitabine 

resistance and 14-3-3σ expression. As shown in Figure 6A, G3KRev cells have a 

significantly lower IC50 to gemcitabine than the G3K cells (14.6±1.8 µM vs 22.7±1.1 µM). 

The expression level of 14-3-3σ in the G3KRev cells is also reduced compared with that 

of the G3K cells. Taken together, I conclude that the up-regulated 14-3-3σ likely 

contributes to the acquired gemcitabine resistance in G3K cells and that both the up-

regulated 14-3-3σ expression and gemcitabine resistance are partially reversible in vitro. 
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Figure 6. 14-3-3σ up-regulation contributes to gemcitabine and Ara-C resistance. (A) 

Association of 14-3-3σ expression with gemcitabine resistance. Expression of 14-3-3σ 

and IC50 to gemcitabine in MiaPaca-2, G3K and the revertant G3KRev cells were 

determined using Western blot analysis and MTT assay, respectively. (N=4, **p<0.01). 

(B) 14-3-3σ knockdown reduces gemcitabine and Ara-C resistance in G3K cells. G3K cells 

were transiently transfected with 14-3-3σ siRNA (Si) or scrambled control siRNA (Scr) 

followed by Western blot analysis of 14-3-3σ expression and MTT analysis of cellular 

response to gemcitabine and Ara-C. RRF, relative resistance factor=IC50(Si or 14-3-3σ)/IC50(Scr 

or Vec), (N=3-4, ***p<0.001). (C) 14-3-3σ over-expression in MiaPaca-2 cells causes 

gemcitabine and Ara-C resistance. Stable MiaPaca-2 cells with 14-3-3σ over-expression 

(flag-σ(6)) or transfected with vector control (Vec(1)) were established and subjected to 

Western blot analysis and MTT analysis of cellular response to gemcitabine and Ara-C. 

(N=3-4, ***p<0.001). 
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Figure 6 (cont). 

 

 

 

 

 

 

 



50 
 

D. Differential methylation of 14-3-3σ gene in MiaPaca-2 and G3K cells.  

             The 14-3-3σ gene was found frequently hypermethylated and thus its expression 

was suppressed in several cancer cells [54, 98, 101-104]. Thus, I hypothesize that the 14-

3-3σ gene in the parental MiaPaca-2 cells may be hypermethylated and 14-3-3σ 

expression remains low.  Following gemcitabine selection the methylation status of the 

14-3-3σ gene may be altered, resulting in increased transcription and expression of 14-

3-3σ. To test this hypothesis, I first treated the parental MiaPaca-2 cells with a well-

known demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC, decitabine) that inhibits 

DNA methyltransferases, and determined 14-3-3σ expression level using Western blot. 

As shown in Figure 7A, 5-Aza-dC treatment increased 14-3-3σ expression in a dose-

dependent manner. Thus, the 14-3-3σ gene is likely silenced in the parental MiaPaca-2 

cells by methylation and reactivated in G3K cells.  

             Although it has been reported that gemcitabine does not possess the 

pyrimindine ring modification at position 5, which is responsible for inhibition of DNA 

methyltransferases (DNMTs) and, thus, do not inhibit DNA methylation [172], a recent 

study showed that gemcitabine reactivated several epigenetically silenced genes 

possibly by inhibiting DNMT1 [173]. Thus, it is possible that treatment with gemcitabine 

during selection reactivated 14-3-3σ gene expression. To test this possibility, I treated 

the parental MiaPaca-2 cells with different concentrations of gemcitabine followed by 

Western blot analysis of 14-3-3σ expression. As shown in Figure 7A, unlike 5-Aza-dC, 
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gemcitabine treatment did not increase 14-3-3σ expression. Thus, reactivation of 14-3-

3σ gene in G3K cells is unlikely due to direct gemcitabine-induced demethylation.  

             Next, I compared the methylation status of the 14-3-3σ gene in G3K and the 

parental MiaPaca-2 cells using methylation-specific PCR (MSP). As shown in Figure 7B, 

14-3-3σ gene in the parental MiaPaca-2 cells was amplified only by primers for 

methylated sequences whereas in G3K cells it was amplified only by primers for 

unmethylated sequences. Thus, the 14-3-3σ gene in the parental MiaPaca-2 cells is 

heavily methylated whereas it is unmethylated in G3K cells. Analysis of the first exon 

with 27 CpG dinucleotides in the 14-3-3σ gene that are known to be methylated in 

cancer cells [54] using sodium bisulfite sequencing shows that 25 of these CpG 

dinucleotides in the parental MiaPaca-2 cells are fully methylated and the remaining 2 

are partially methylated (Figure 7C). However, in G3K cells 23 of the 27 CpG 

dinucleotides are unmethylated and the remaining 4 are partially methylated. Clearly, 

the methylations of the 14-3-3σ gene in the parental MiaPaca-2 cells have been 

removed in G3K cells. 
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Figure 7. Methylation status of 14-3-3σ gene in MiaPaca-2 and G3K cells. (A) Effect of 

5-Aza-dC or gemcitabine treatment on 14-3-3σ expression. MiaPaca-2 cells were treated 

with increasing concentrations of 5-Aza-dC or gemcitabine for 5 days or 72hrs 

respectively, followed by Western blot analysis of 14-3-3σ, cleaved Parp-1 and actin as a 

loading control. (B) Methylation-specific PCR (MSP) analysis of MiaPaCa-2 and G3K cells. 

Con., control MSP without genomic DNA input. (C) Sodium bisulfite sequencing analysis 

of MiaPaCa-2 and G3K cells. The 27 CpG islands in the first exon of 14-3-3σ gene is 

shown with solid circles for fully methylated, open circles for unmethylated, and half 

filled circles for partially methylated CpG dinucleotides. The sequence profile containing 

CpG dinucleotides #10-14 is shown for both MiaPaca-2 and G3K cells. (D) Methylation 

status of 14-3-3σ gene in the revertant G3KRev cells. MSP were used to determine the 

methylation status of 14-3-3σ gene in G3KRev cells as with MiaPaca-2 and G3K cells as 

controls. U, primers for unmethylated; M, primers for methylated. 
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Figure 7 (cont). 
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E. Demethylation of the 14-3-3σ gene is reversible.  

             As shown above, the increased expression of 14-3-3σ in G3K cells is partially 

reversed in the revertant G3KRev cells. The partial reversion in 14-3-3σ expression may 

be due to partial reversal of the methylation status of the 14-3-3σ gene. To test this 

possibility, I performed MSP of isolated genomic DNAs from the partially revertant 

G3KRev cells as described above. Figure 7D shows that the 14-3-3σ gene can be 

amplified by primers for both methylated and unmethylated sequences, indicating that 

the 14-3-3σ gene in G3KRev cells is likely partially reversed and that some cells have 

restored the methylation of their 14-3-3σ gene while others retains the demethylated 

14-3-3σ gene. Thus, demethylation of the 14-3-3σ gene is likely partially reversible. The 

incomplete reversal of 14-3-3σ gene methylation following removal of gemcitabine 

suggests that the increased 14-3-3σ expression in G3K cells is unlikely due to direct 

gemcitabine-induced demethylation, consistent with the observation shown in Figure 

7A. 

             Previously, up-regulation of 14-3-3σ expression was also observed in an 

Adriamycin-selected breast cancer cell line MCF7/AdVp3000 and it was decreased in the 

revertant MCF7/AdVp3000/Rev cells [63] (see also Figure 8A). However, the mechanism 

of 14-3-3σ regulation in these cell lines is not yet known. To determine if gene 

methylation is involved in regulating 14-3-3σ expression in these cells, I performed MSP 

of isolated genomic DNAs from the parental MCF7, Adriamycin-selected 
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MCF7/AdVp3000, and the revertant MCF7/AdVpG3K/Rev cells with MiaPaca-2 cells as a 

positive control. As shown in Figure 8B, while the 14-3-3σ gene in MiaPaca-2 cells can 

be amplified only using primers for methylated sequences, in all breast cancer cells it 

can be amplified only using primers for the unmethylated sequences. Thus, up-

regulation of 14-3-3σ expression in MCF7/AdVp3000 cells and its reversal in 

MCF7/AdVp3000/Rev cells is unlikely due to changes in methylation status of the 14-3-

3σ gene. 
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Figure 8. 14-3-3σ up-regulation in Adriamycin-selected MCF7/AdVp3000 cells is not 

due to gene demethylation. (A) Western blot analysis of 14-3-3σ expression in MCF7, 

MCF7/Advp3000 (AdVp), and MCF7/AdVp/Rev (Rev) cells. Actin was used as a loading 

control. (B) MSP analysis of 14-3-3σ gene in MCF7, MCF7/Advp3000 (AdVp), and 

MCF7/AdVp/Rev (Rev) cells with MiaPaCa-2 cells as a control. U, primers for 

unmethylated; M, primers for methylated. Contl., control MSP without genomic DNA 

input. 
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F. Uhrf1 and DNMT1 play important roles in regulating 14-3-3σ expression.  

             To determine what regulates the reversible methylation of 14-3-3σ gene in 

MiaPaca-2 and G3K cells, I first compared the expression level of enzymes important for 

DNA methylation among the parental MiaPaca-2, gemcitabine resistant G3K, and the 

partially revertant G3KRev cells using Western blot or real-time RT-PCR. As shown in 

Figure 9A, while DNMT3a and DNMT3b were increased in G3K and remained high in 

G3KRev cells, DNMT1 is increased in G3K but reduced back to the basal level in G3KRev 

cells. The expression pattern of these methyltransferases is peculiar and inconsistent 

with the expression pattern of 14-3-3σ in MiaPaca-2, G3K, and G3KRev cells. 

             Another protein of importance in gene methylation, Uhrf1, has been shown to 

play a major role in recruiting DNMTs [174] and loss of Uhrf1 results in 75% reduction in 

genomic methylation [175]. Thus, I tested the expression pattern of Uhrf1. As shown in 

Figure 9A, Uhrf1 protein is reduced in G3K cells and increased in the G3KRev cells. The 

profile of Uhrf1 expression in these cells is consistent with the partially reversible 

change in 14-3-3σ expression and gene methylation in these cells. The consequence of 

Uhrf1 binding is recruitment of DNMT1 and histone deacetylase 1, resulting in 

methylation of newly synthesized DNA strands [124, 126-128]. Thus, reduced Uhrf1 

expression in G3K cells is likely responsible for reduced methylation of 14-3-3σ gene by 

reducing recruitment of DNMT1 protein to the methylated CpG islands despite the 

presence of high level of DNMT1. In MiaPaca-2 cells, however, the high level of Uhrf1 
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may efficiently recruit enough DNMT1 despite low DNMT1 level for efficient 

methylation of 14-3-3σ gene. If so, knocking down either Uhrf1 or DNMT1 in MiaPaca-2 

cells would effectively reduce the level of the recruiter (Uhrf1) or the pool of DNMT1 to 

be recruited for methylation of 14-3-3σ gene and consequently increase 14-3-3σ 

expression. Furthermore, the slight increase of Uhrf1 expression in the G3KRev cells 

may be responsible for the increased methylation and reduced expression of 14-3-3σ 

gene. In addition, due to the fact that Uhrf1 has been shown to regulate p21 expression 

[132], I next tested the expression of p21 in MiaPaca-2, G3K, and G3KRev cells. As 

shown in Figure 9A, p21 protein level shows an expression profile in these cells similar 

to that of 14-3-3σ, consistent with the possible regulatory role of Uhrf1 in these cells. 

             To determine if the reduced Uhrf1 expression is possibly responsible for 

increased expression of the 14-3-3σ gene in G3K cells, I knocked down Uhrf1 in the 

parental MiaPaca-2 cells using siRNA and tested its effect on 14-3-3σ expression. Figure 

9B shows that 14-3-3σ protein level is dramatically increased by Uhrf1 knockdown. This 

observation is confirmed by real time RT-PCR analysis of 14-3-3σ mRNA, with ~1.4 fold 

and ~2.4 fold increase of 14-3-3σ mRNA by Uhrf1 and DNMT1 knockdown, respectively 

(Figure 9C).  

             To determine if DNMTs also contribute to 14-3-3σ expression regulation, I 

performed similar experiment by knocking down DNMT1, DNMT3a, and DNMT3b in 

MiaPaca-2 cells. Figure 9D shows successful knockdown of DNMT1, DNMT3a, and 
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DNMT3b as determined using Western blot or real-time RT-PCR. However, only DNMT1 

knockdown significantly up-regulated the protein level of 14-3-3σ. DNMT3a and 

DNMT3b knockdown did not appear to affect 14-3-3σ expression. The effect of DNMT1 

knockdown on 14-3-3σ expression was also confirmed by real time RT-PCR analysis 

(Figure 9C). Taken together, I conclude that likely both Uhrf1 and DNMT1 play 

important roles in regulating 14-3-3σ expression. 
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Figure 9. Role of Uhrf1 and DNMT1 in 14-3-3σ expression. (A) Western blot analysis of 

Uhrf1, DNMT1, DNMT3a, and p21 expression as well as real-time RT-PCR analysis of 

DNMT3b expression in MiaPaca-2, G3K, and G3KRev cells. (B-D) Effect of Uhrf1, DNMT1, 

DNMT3a and DNMT3b knockdown on 14-3-3σ expression. MiaPaca-2 cells were 

transiently transfected with scrambled control siRNA (Scr) or siRNAs targeting Uhrf1 (B), 

DNMT1, DNMT3a, and DNMT3b (D) followed by Western blot analysis of Uhrf1, DNMT1, 

DNMT3a, and 14-3-3σ protein levels (B, D) or real time RT-PCR analysis of DNMT3b and 

14-3-3σ mRNA levels (C-D). (N=4-5, *p<0.05, ***p<0.001). Actin and GAPDH were used 

as a loading control for Western blot and internal control for PCR analyses, respectively. 
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Figure 9 (cont). 
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G. Uhrf1 binds and helps recruit DNMT1 to methylated region of 14-3-3σ gene. 

             To further determine the role of Uhrf1 and DNMT1 in regulating 14-3-3σ 

expression and gene methylation, I first determined if Uhrf1 binds to the methylated 

CpG islands in the first exon of 14-3-3σ gene in MiaPaca-2 cells using ChIP assay. As 

shown in Figure 10A, Uhrf1 was bound to the CpG islands but not to the CpG-free 

sequences in the promoter region of the 14-3-3σ gene in MiaPaca-2 cells. Knocking 

down Uhrf1 also reduced Uhrf1 binding to the CpG islands of 14-3-3σ gene (Figure 10B). 

Thus, Uhrf1 likely can bind to the methylated CpG island sequences of the 14-3-3σ gene. 

             As shown in Figure 9A, DNMT1 expression was found increased in G3K cells, 

which is peculiar since methylation of 14-3-3σ gene in G3K cells is reduced. However, 

because Uhrf1 binding to CpG island sequences helps recruit DNMT1 to maintain the 

methylation status of the DNA, it is possible that the reduced Uhrf1 expression in G3K 

cells reduces DNMT1 recruitment despite the higher level of DNMT1 in G3K cells. To test 

this possibility, I first compared the binding of DNMT1 to the CpG island sequences of 

the 14-3-3σ gene between MiaPaca-2 and G3K cells. As shown in Figure 10C, binding of 

DNMT1 to the CpG island sequences of 14-3-3σ gene is indeed much less in G3K than in 

MiaPaca-2 cells despite the higher expression level of DNMT1 in G3K cells. Importantly, 

Uhrf1 knockdown in MiaPaca-2 cells dramatically reduced DNMT1 binding to the CpG 

island sequences of the 14-3-3σ gene (Figure 10D), indicating that DNMT1 could not be 

effectively recruited to the CpG island sequences of the 14-3-3σ gene in the absence of 
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Uhrf1, and hence Uhrf1 is the recruiter of DNMT1. Thus, I conclude that Uhrf1 likely 

plays a major role in regulating 14-3-3σ expression by binding to its CpG-rich sequences 

and helps recruit DNMT1 to the site to reversibly methylate the 14-3-3σ gene during 

replication. The reduced Uhrf1 expression by gemcitabine selection in G3K cells likely 

decreased DNMT1 recruitment and methylation of 14-3-3σ gene while the slightly 

increase in Uhrf1 level in G3KRev cells is responsible for partial reversal of 14-3-3σ gene 

methylation. 
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Figure 10. Binding of Uhrf1 and DNMT1 to the CpG islands of the 14-3-3σ gene. (A) 

ChIP analysis of Uhrf1 binding to the CpG island sequences or nonCpG island 

sequences of 14-3-3σ gene. (B, D) Effect of Uhrf1 knockdown on Uhrf1 and DNMT1 

binding to the CpG island sequences of 14-3-3σ gene in MiaPaca-2 cells. MiaPaca-2 cells 

were transiently transfected with scrambled control or Uhrf1 siRNAs followed by ChIP 

analysis of Uhrf1 and DNMT1 binding. (C) DNMT1 binding to the CpG island sequence of 

14-3-3σ gene in G3K cells is less than that in MiaPaca-2 cells. ChIP with histone H3 

antibody or without any primary antibody were used as positive and negative controls, 

respectively. Normal IgG was also used as negative control, which did not 

immunoprecipitate any DNA (data not shown). 
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H. Gemcitabine treatment does not affect Uhrf1 and DNMT1 expression.  

             Finally, to investigate if the altered expression of Uhrf1 and DNMT1 in G3K cells 

is potentially due to gemcitabine treatments during selection, I performed a Western 

blot analysis to detect both Uhrf1 and DNMT1 expression in MiaPaca-2 cells following 

treatments with gemcitabine at different concentrations for 72 hrs. As shown in Figure 

11, gemcitabine treatments had no effect on Uhrf1 and DNMT1 expression. Therefore, 

the mechanism of regulation of Uhrf1 and DNMT1 expression in the drug resistant cells 

remains to be determined. 

             Overall, this section of my thesis demonstrated that 14-3-3σ over-expression 

contributed to acquired gemcitabine resistance and that the up-regulated 14-3-3σ 

expression was caused by lack of gene methylation regulation during gemcitabine 

selection. As summarized in Figure 12, Uhrf1 and DNMT1 bind to the methylated region 

of 14-3-3σ gene in parental MiaPaca-2 cells to maintain the methylation status, whereas 

during gemcitabine selection, the expression of Uhrf1 is dramatically decreased and 

thus insufficient to recruit DNMT1 to the site to methylate the DNA, resulting in 14-3-3σ 

gene demethylation and re-expression. After gemcitabine removal, however, the slight 

increase of Uhrf1 expression likely functions to recruit the methylation machinery to 

restore the methylation of 14-3-3σ gene. 
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Figure 11. Effect of gemcitabine treatment on Uhrf1 and DNMT1 expression. MiaPaca-

2 were treated with/without increasing concentrations of gemcitabine, and G3K cells 

were used as control without treatment, followed by Western blot analysis of Uhrf1, 

DNMT1. Actin was used as a loading control. 
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Figure 12. Schematic model of epigenetic regulation of 14-3-3σ gene following 

gemcitabine selection and drug removal. The relative expression levels of Uhrf1 and 

DNMT1, as well as their binding status to 14-3-3σ gene during gemcitabine selection or 

drug removal are shown in the model. Solid circles represent fully methylated CpG 

islands of 14-3-3σ gene, and open circles represent unmethylated CpGs. 
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Section II: Identification of PDGFD as a potential contributor to acquired gemcitabine 

resistance by Reduced Representation Bisulfite Sequencing (RRBS) 

A. Identification of reversibly-methylated genes using Reduced Representation 

Bisulfite Sequencing (RRBS).  

             The finding of demethylation of the 14-3-3σ gene in gemcitabine resistant cells 

led to a hypothesis that other genes may also have changed epigenetically following 

gemcitabine selection. To profile global changes in gene methylation in response to 

gemcitabine selection, genomic DNAs from MiaPaca-2, G3K, and G3KRev cells were 

isolated and subjected to RRBS sequencing, which yield genome-

wide methylation profiles on a single nucleotide level, by BGI (Beijing Genomics 

Institute). The RRBS data were analysed in collaboration with Dr. Yunlong-Liu’s lab. 

             As a result, the RRBS yields about 65~70 Million clean reads for each sample, 

with map rate of >92%, unique mapping rate of >70%, and >97% of unique reads with 

enzyme cutting site (Figure 13A). Moreover, the RRBS targeted a reasonable proportion 

of genome of interest in all samples, with >70% of promoters and >83% of CG islands 

were covered respectively (Figure 13B). The individual CpG sites within CG islands and 

promoters were also examined and good depth coverage at 4X and 10X were achieved, 

and all samples showed consistent coverage (data not shown). 



69 
 

Figure 13. RRBS sequencing results comparison and characterization of genomic 

coverage. (A) RRBS sequencing results comparison. (B) Genomic coverage 

characterization of promoter and CG island (CGI) numbers. 
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             According to RRBS outcome, 845 genes are differentially methylated between 

MiaPaca-2 and G3K cells, and 282 genes are differentially methylated between G3K and 

G3KRev cells. The list of these differentially methylated genes is shown in Appendices. 

Because the methylation changes in the promoter region most likely influence gene 

transcription and expression, I filtered these genes with differential methylation level in 

the promoter region and with a 2-fold change cutoff. As shown in Figure 14, 159 genes 

have increased methylation while 459 genes have decreased methylation in G3K cells 

compared with MiaPaca-2 cells. By comparing with G3K cells, G3KRev cells have 104 

genes with increased and 88 genes with decreased methylation. Together, there are 65 

genes that have reversible methylation changes from MiaPaca-2 to G3K and to G3KRev 

cells (Table 2). 
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Figure 14. Flowchart of DMR filteration of genes. Genes with DMR p-value<0.01 were 

first filtered by DMR at the promoter regions, followed by further filter with 2-fold 

methylation level change. 
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Table 2. List of reversibly methylated genes. 

Paca2 vs G3K up, G3K vs G3KRev down Paca2 vs G3K down, G3K vs G3KRev up 

ADORA2B, CDC42EP3, CPNE7, FBXO27, 

JAG2, MIR1915, MRPS6, NPAS2, OLIG1, 

PTPRG, PWWP2B,  SLC45A1, SNORD56B, 

SOX13, TNRC18, WNT9A 

AFAP1L2, ANXA2P3, APBA1, CCNO, 

CDC42BPB, CDK6, CHRNA7, CRAMP1L, 

DDIT4L, DSE, DUSP6, EFNA5, ELOVL2-AS1, 

FAM133B, FRAS1, FUOM, GALNT7, GNS, 

GRM4, H2AFY2, JMJD8, KIAA1324L, 

KIF21B, LOC100506190, LONRF3, MCTP1, 

MDFIC, MIR205HG, MMP25, MTA1, NKX1-

2, PDGFD, PRDM1, RAET1G, RASD2, 

RNASET2, SEMA5B, SLC25A27, SLC31A2, 

SLC35D3, SOWAHD, TMEM181, TRPC3, 

WDR1, WNT11, ZNF593, ZNF669, ZNF808, 

ZNF83 
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             Among these 65 genes, 10 genes with the highest degree of methylation level 

change were selected for further analysis using real-time RT-PCR. Figure 15 shows that 

the mRNA level of five genes (CDK6, SLC35D3, SLC25A27, PDGFD, and TRPC3) with 

decreased methylation increases in G3K cells compared with MiaPaca-2 cells.  However, 

the other genes have different outcomes. While the mRNA level of DUSP6 with 

decreased methylation is reduced, the mRNAs of Olig1 and PTPRG with increased 

methylation are significantly increased and the mRNAs of Cdc42EP3 and Adora2B with 

increased methylation were not significantly affected in G3K cells (Table 3). Therefore, 

the methylation change of the genes in the promoter region may not be sufficient to 

predict change in the mRNA level of corresponding genes.  
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Figure 15. Identification of transcriptional changes in candidate genes. (A-B) Real time 

RT-PCR analysis of mRNA level of candidate genes including DUSP6, Olig1, Cdc42EP3, 

Adora2B, PTPRG, CDK6, SLC35D3, SLC25A27, PDGFD, and TRPC3 gene between 

MiaPaca-2 and G3K cells. GAPDH was used as internal control. (N=3-5, *p<0.05, 

**p<0.01, ***p<0.001). ↑: methylation is increased in G3K cells, ↓: methylation is 

decreased in G3K cells. 
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Table 3. Identification and characterization of candidate genes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

DMR (G3K-
MiaPaca-2)  

mRNA level change 
(G3K/MiaPaca-2) Significance 

Negative correlation of methylation change with mRNA level change  
CDK6  -0.5 1.684548 p<0.001 

SLC35D3  -0.57 2.171952 p<0.05 

SLC25A27  -0.39 2.566402 p<0.05 

PDGFD  -0.41 6.164361 p<0.05 

TRPC3  -0.48 15.42079 p<0.001 

Positive correlation of methylation change with mRNA level change  

PTPRG  0.21 1.551086 p<0.01 

Olig1  0.34 4.334516 p<0.001 

DUSP6  -0.41 0.596951 p<0.01 

No correlation of methylation change with mRNA level change  

cdc42EP3  0.28 1.074495 NS 

Adora2B  0.26 1.148135 NS 
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B. Reversible up-regulation of PDGFD.  

             Next, TRPC3 and PDGFD were selected for validation of their expression at 

protein level. Firstly, membrane fractions were prepared from both MiaPaca-2 and G3K 

cells for Western blot analysis of TRPC3. As shown in Figure 16A, TRPC3 protein level did 

not appear to change despite its mRNA level increased ~15 fold in G3K cells. Thus, 

TRPC3 mRNA level does not seem to correlate with its protein level. To determine 

PDGFD protein level, MiaPaca-2 and G3K cells were cultured in serum-free medium for 

24 hrs, followed by collection of conditioned medium (CM) and TCA precipitation. The 

precipitated proteins were subjected to Western blot analysis. As shown in Figure 16C, 

PDGFD production was dramatically elevated in G3K cells compared with MiaPaca-2 

cells.  

             To determine if increased PDGFD production in G3K cells was reversed in G3KRev 

cells, real-time RT-PCR analysis was performed. As shown in Figure 17A, the increased 

PDGFD mRNA level in G3K cells (~16 fold increase compared with MiaPaca-2 cells) was 

dramatically decreased in the G3KRev cells (only ~2.4 fold increase compared with 

MiaPaca-2 cells). Moreover, the Western blot analysis confirmed this finding (Figure 

17C). Thus, the expression of PDGFD is reversibly up-regulated in G3K cells.  
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Figure 16. Identification of TRPC3 and PDGFD expression in MiaPaca-2 and G3K cells. 

(A) Western blot detection the expression level of TRPC3 protein in the cell membrane 

fraction. MRP3 was used as a loading control for membrane fraction. (B) The secreted 

proteins in MiaPaca-2 and G3K conditioned medium (CM) were precipitated by TCA 

precipitation method, followed by SDS-PAGD and coomassie blue staining. (C) The 

secretion of PDGFD is significantly increased in G3K cells. The secreted proteins in 

MiaPaca-2 and G3K conditioned medium (CM) were precipitated by TCA precipitation 

method, followed by Western blot detection of the expression of PDGFD. 
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Figure 17. Reversible transcription and expression of PDGFD. (A) Real time RT-PCR 

analysis of PDGFD mRNA level in MiaPaca-2, G3K, and G3KRev cells. GAPDH was used as 

internal control. (N=4, **p<0.01). (B) The secreted proteins in MiaPaca-2, G3K, and 

G3KRev conditioned medium (CM) were precipitated by TCA precipitation method, 

followed by SDS-PAGD and coomassie blue staining. (C) PDGFD expression is reversibly 

increased in G3K cells. The secreted proteins in MiaPaca-2, G3K, and G3KRev 

conditioned medium (CM) were precipitated by TCA precipitation method, followed by 

Western blot detection of PDGFD expression. 
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C. Validation of reversible methylation change of PDGFD gene.  

             To validate the RRBS data that suggest a reversible methylation change of PDGFD 

gene in G3K cells, I performed sodium-bisulfite gene sequencing analysis of the 26 CpG 

dinucleotides residing in the promoter region of PDGFD gene in all three cell lines. As 

shown in Figure 18, 14-22 out of 26 CpG dinucleotides were methylated in MiaPaca-2 

cells. However, these CpG dinucleotides were all unmethylated in G3K cells. 

Interestingly, in G3KRev cells, 16-17 out of 26 CpG dinucleotides were again methylated. 

Thus, the methylation change of PDGFD promoter is reversible, and consistent with 

RRBS data. 
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Figure 18. Reversible methylation change of PDGFD gene. Sodium bisulfite sequencing 

analysis of PDGFD gene in MiaPaca-2, G3K, and G3KRev cells was conducted. Briefly, 

genomic DNA was treated with sodium bisulfite and the promoter region of PDGFD 

gene was amplified by PCR, followed by cloning into pGEM-T vector. 4 clones from 

each cell line were picked for sequencing. The 26 CpG islands in promoter region of 

PDGFD gene were shown with solid circles for fully methylated, open circles for 

unmethylated. The chromatogram represents sequence profile containing CpG 

dinucleotides #2-13 for all three cells. 
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Figure 18 (cont). 
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D. PDGFD up-regulation plays an important role in gemcitabine resistance.  

             It has been reported that PDGFD signaling is frequently deregulated in human 

malignancies with up-regulated expression in prostate, lung, renal, ovarian, brain, and 

pancreatic cancer [146, 147, 149-152]. However, its relationship with therapeutic drug 

resistance is limited to the discovery of its role in regulation of radiosensitivity in 

prostate adenocarcinoma, as well as its influence on sensitivity and resistance of 

glioblastoma to semustine [154, 158]. To determine if PDGFD potentially contributes to 

gemcitabine resistance in pancreatic cancer, I knocked down PDGFD in both G3K and 

Aspc-1 cells and performed the MTT assay to test its response to gemcitabine. Figure 

19A and Figure 19C show knockdown of PDGFD in G3K and Aspc-1 cells at both protein 

and mRNA levels, respectively. As shown in Figure 19B and Figure 19D, the sufficient 

knockdown of PDGFD is accompanied with a dramatic reduction of gemcitabine 

resistance by 63.7%-76.5% in G3K and 46.4%-84.8% in Aspc-1 cells, respectively. Thus, 

PDGFD knockdown likely reduces gemcitabine resistance in both cells.   

             Next, to further test the influence of PDGFD over-expression on gemcitabine 

sensitivity, stable clones with PDGFD over-expression were generated from MiaPaca-2 

cells. Figure 20A-B show increased PDGFD production in these clones compared with 

vector control clone by Western blot analysis of conditioned medium. Moreover, the 

increased production of PDGFD is accompanied with an increased resistance to 

gemcitabine by 4.8-4.9 fold (Figure 20C). Furthermore, MiaPaca-2 cells cultured in 
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conditioned medium from G3K cells are also more resistant to gemcitabine (by 2.4-fold 

increase averagely), than cells cultured with fresh medium (Figure 20D). Together, these 

results suggest that PDGFD plays an important role in gemcitabine resistance in human 

pancreatic cancers and that there may be bystander effect of resistant cells on sensitive 

cells. 
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Figure 19. PDGFD over-expression contributes to gemcitabine resistance in both G3K 

and Aspc-1 cells. (A, C) Western blot and PCR analysis of PDGFD knockdownin G3K and 

Aspc-1 cells. G3K (A) and Aspc-1 (C) cells were transiently transfected with scrambled 

control siRNA (Scr) or siRNAs targeting PDGFD followed by Western blot analysis of 

secreted PDGFD protein level, and RT-PCR analysis of the PDGFD mRNA level. GAPDH 

was used as an internal control for RT-PCR. (N=5-6, **p<0.01, ***p<0.001). (B, D) 

PDGFD knocking down in G3K and Aspc-1 cells reduces gemcitabine resistance. G3K (B) 

and Aspc-1 (D) cells were transiently transfected with scrambled control siRNA (Scr) or 

siRNAs targeting PDGFD followed by MTT assay for detection of the drug resistance. 

(N=3-4, **p<0.01, ***p<0.001).  
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Figure 20. PDGFD over-expression leads to increased gemcitabine resistance in 

MiaPaca-2 cells. (A-B) MiaPaca-2 cells were stably transfected with vector control 

(vec(1)) or PDGFD plasmid (PD(2) and PD(9)) followed by SDS-PAGE analysis of total 

secreted proteins as a loading control (A) and Western blot analysis of PDGFD 

production (B). (C) PDGFD over-expression increases gemcitabine resistance. MiaPaca-2 

cells were stably transfected with vector control (vec(1)) or PDGFD plasmid (PD(2) and 

PD(9)) followed by MTT assay for detection of gemcitabine resistance. (N=5, *p<0.05). 

(D) Bystander effect of resistant cells on sensitive cells. MiaPaca-2 cells were cultured in 

either fresh medium or G3K conditioned medium, followed by MTT assay for detection 

of gemcitabine resistance. (N=5, **p<0.01). 
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E. PDGFD over-expression contributes to gemcitabine resistance possibly by regulating 

STAT3 signaling pathway.  

             It has been reported that PDGFD activation triggers a number of downstream 

signaling pathways including activation of phosphatidylinositol 3 kinase (PI3K), Akt, 

nuclear factor-κB (NF-κB), Notch, and extracellular signal-regulated kinase (ERK) [139, 

145-147]. It has also been reported that STAT3 is up-regulated in several drug-selected 

cancer cells including acquired resistance to erlotinib, vemurafenib, temozolomide, 

cisplatin, and paclitaxel [176-180]. Thus, I hypothesize that PDGFD over-expression may 

contribute to gemcitabine resistance by regulating STAT3 signaling pathway.  

             To test this hypothesis, I first compared the activation of STAT3 signaling 

pathway in MiaPaca-2 and G3K cells. As shown in Figure 21A, both the p-stat3 and total 

Stat3 as well as Stat3 downstream targets including VEGF and MMP2 were up-regulated 

in G3K cells. More importantly, knocking down PDGFD in G3K cells led to significant 

reduction of p-stat3/Stat3 and Stat3 downstream targets (Figure 21B). Similarly, 

knocking down PDGFD in Aspc-1 cells also reduced the level of p-stat3 and total Stat3 as 

well as Stat3 downstream targets (data not shown) while over-expression of PDGFD in 

parental MiaPaca-2 cells caused markedly increased level of p-stat3, total Stat3 and 

Stat3 downstream target VEGF (Figure 21C). Interestingly, the revertant G3KRev cells 

showed dramatically decreased expression of p-stat3 to the basal level compared with 

G3K cells although the total Stat3 level seems unchanged (Figure 22C). Taken together, 



87 
 

these findings strongly suggest that PDGFD actively regulates STAT3 signaling pathway, 

which may mediate PDGFD-induced gemcitabine resistance in pancreatic cancer cells. 
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Figure 21. PDGFD actively regulates STAT3 signaling pathway. (A) Western blot analysis 

of secreted PDGFD, p-stat3, stat3, VEGF, secreted VEGF, and secreted MMP2 expression 

in both MiaPaca-2 and G3K cells. (B) Effect of PDGFD knockdown on Stat3 signaling in 

G3K cells. G3K cells were transiently transfected with scrambled control siRNA (Scr) or 

siRNAs targeting PDGFD followed by Western blot analysis of p-stat3, stat3, VEGF, and 

MMP2 secretion. Actin was used as a loading control. (C) Effect of PDGFD over-

expression on Stat3 signaling in MiaPaca-2 cells. MiaPaca-2 cells were stably transfected 

with vector control (vec(1)) or PDGFD plasmid (PD(9)) followed by Western blot analysis 

of p-stat3, stat3, and VEGF expression. Actin was used as a loading control.  
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F. Stat3 potentially contributes to gemcitabine resistance.  

             Finally, the potential role of Stat3 in gemcitabine resistance was tested by over-

expressing wild type and constitutively activated mutant Stat3 (Stat3c) in parental 

MiaPaca-2 cells (Figure 22A). Figure 22B shows that over-expressing either the wild type 

or the constitutively activated Stat3 in parental MiaPaca-2 cells significantly increased 

gemcitabine resistance, by ~1.7 fold and ~2.3 fold increase respectively. Therefore, it is 

possible that PDGFD-induced up-regulation of Stat3 signaling may serve as a mediator 

for PDGFD-induced gemcitabine resistance. 

             Thus, I conclude that gemcitabine selection causes PDGFD gene demethylation 

and protein up-regulation, and its over-expression in turn contributes to gemcitabine 

resistance by activating STAT3 signaling pathway (Figure 23). 
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Figure 22. Stat3 over-expression promotes gemcitabine resistance in MiaPaca-2 cells. 

(A-B) Effect of PDGFD over-expression on gemcitabine resistance in MiaPaca-2 cells. 

MiaPaca-2 cells were stably transfected with vector control, stat3, or stat3c plasmid 

followed by Western blot analysis for detecting the expression of stat3 (A) or MTT assay 

for detecting the gemcitabine resistance. Actin was used as a loading control for 

Western blot. (N=3-4, **p<0.01). (C) Western blot detection of the expression of total 

Stat3 and p-stat3 in MiaPaca-2, G3K, and G3KRev cells. Actin was used as a loading 

control. 
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Figure 23. Schematic model of PDGFD-mediated gemcitabine resistance during drug 

selection. Gemcitabine selection leads to PDGFD gene demethylation and protein up-

regulation, which binds to its cognate receptor and activates Stat3 signaling. Activation 

of Stat3 signaling pathway causes transcription of its downstream target genes and 

contributes to gemcitabine resistance. 
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Section III: Molecular mechanism of 14-3-3σ-mediated gemcitabine resistance in 

pancreatic cancer 

             The previous studies showed that 14-3-3σ over-expression in G3K cells 

contribute to gemcitabine resistance. However, the underlying mechanism through 

which 14-3-3σ contributes to acquired gemcitabine resistance remains unknown. Here, 

based on the escalating interest in recent years on one potential binding partner of 14-

3-3σ, YAP1, I tested the hypothesis that 14-3-3σ contributes to acquired gemcitabine 

resistance by binding to YAP1.  

A. YAP1 over-expression in G3K cells and its contribution to gemcitabine resistance. 

             To determine the potential role of YAP1 in 14-3-3σ-mediated gemcitabine 

resistance, I first tested the level of total YAP1 and p-YAP1 in both MiaPaca-2 and G3K 

cells. As shown in Figure 24, the level of both YAP1 and p-YAP1 as well as the mRNA 

level of YAP1 (~4.7 fold increase) were found highly elevated in G3K compared with 

MiaPaca-2 cells, suggesting that YAP1 may be transcriptionally up-regulated in G3K cells. 

Interestingly, 14-3-3σ knockdown in G3K cells also reduced total YAP1, p-YAP1, and 

YAP1 mRNA levels (~50% reduction) (Figure 25A-B). Moreover, over-expression of 14-3-

3σ in MiaPaca-2 cells resulted in an increase of YAP1, p-YAP1, and YAP1 mRNA levels 

(~2.5 fold increase) (Figure 25C-D), indicating that YAP1 may be transcriptionally 

regulated by 14-3-3σ. However, knocking down of YAP1 in G3K cells did not affect the 
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protein level of 14-3-3σ (Figure 26A). Thus, 14-3-3σ may regulate the transcription and 

expression of YAP1, but not vice versa.  

             To determine whether the increased expression of YAP1 in G3K cells contributes 

to gemcitabine resistance, I first knocked down YAP1 in G3K cells by using specific siRNA 

followed by examining the difference in gemcitabine resistance using MTT assay. As 

shown in Figure 26A-B, knocking down YAP1 dramatically reduced the drug resistance in 

G3K cells, by up to 80% reduction. However, over-expression of YAP1 in the parental 

MiaPaca-2 cells did not significantly influence the gemcitabine resistance (Figure 26C-D). 

The reason for the discrepancy between these two experiments could be that YAP1 

over-expression in MiaPaca2 cells may need 14-3-3σ for gemcitabine resistance. To test 

this possibility, I over-expressed YAP1 in MiaPaca-2 cells with stable flag-14-3-3σ-over-

expression and tested the effect on gemcitabine resistance. As shown in Figure 26E-F, 

over-expression of YAP1 in these cells further increase gemcitabine resistance by ~2.4 

fold. Thus, it is likely that YAP1 requires 14-3-3σ to contribute to gemcitabine resistance.  
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Figure 24. YAP1 is over-expressed in resistant G3K cells. (A) Western blot analysis of 

YAP1, p-YAP1 and 14-3-3σ expression in both MiaPaca-2 and G3K cells. Actin was used 

as a loading control. (B) Real time RT-PCR analysis of YAP1 mRNA level in MiaPaca-2 and 

G3K cells (N=3, **p<0.01). 
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Figure 25. Regulation of YAP1 expression by 14-3-3σ protein level. (A) Effect of 14-3-3σ 

knockdown on YAP1/p-YAP1 expression. G3K cells were transiently transfected with 

scrambled control siRNA (Scr) or siRNAs targeting 14-3-3σ followed by Western blot 

analysis of YAP1, p-YAP1 and 14-3-3σ protein level. Actin was used as a loading control. 

(B) Real time RT-PCR analysis of YAP1 mRNA level in G3K cells stably transfected with 

scrambled control shRNA (scr sh3’) or shRNA targeting 14-3-3σ (14-3-3 sh(11)). GAPDH 

was used as internal control. (N=3, **p<0.01). (C-D). Effect of 14-3-3σ over-expression 

on YAP1 expression. MiaPaca-2 cells were stably transfected with vector control (vec(1)) 

or pcDNA3.1(+)-flag-14-3-3σ plasmid (flag-σ(6)) followed by Western blot analysis of 

YAP1, p-YAP1, and 14-3-3σ protein levels (C) or real time RT-PCR analysis of YAP1 mRNA 

level (D). (N=3, **p<0.01). Actin and GAPDH were used as a loading control for Western 

blot and internal control for PCR analysis, respectively. 
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Figure 26. YAP1 over-expression contributes to gemcitabine resistance, but requires 

the presence of 14-3-3σ. (A-B) Effect of YAP1 knockdown on gemcitabine resistance in 

G3K cells. G3K cells were transiently transfected with scrambled control siRNA (Scr) or 

siRNAs targeting YAP1 followed by Western blot analysis of YAP1 and 14-3-3σ protein 

level (A) or MTT assay for detection of drug resistance(B). (N=4, **p<0.01). Actin was 

used as a loading control for Western blot. (C-D) Effect of YAP1 over-expression on 

gemcitabine resistance in MiaPaca-2 cells. MiaPaca-2 cells were transfected with vector 

control (GFP-C2) or GFP-YAP plasmid followed by Western blot analysis of YAP1 protein 

level (C) or MTT assay for detection of drug resistance (D). (N=4, not significant). Actin 

was used as a loading control for Western blot. (E-F) Effect of YAP1 over-expression on 

gemcitabine resistance in 14-3-3σ-over-expressing MiaPaca-2 cells. 14-3-3σ-over-

expressing MiaPaca-2 cells (MiaPaca-2 flag-σ (6)) were transfected with vector control 

(GFP-C2) or GFP-YAP plasmid followed by Western blot analysis of YAP1 protein level (E) 

or MTT assay for detection of drug resistance (F). (N=3, **p<0.01). Actin was used as a 

loading control for Western blot. 
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Figure 26 (cont). 
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B. Gemcitabine resistance requires both 14-3-3σ and YAP1.  

             To better understand the mechanism of 14-3-3σ and YAP1 in contributing to 

acquired gemcitabine resistance, either 14-3-3σ or YAP1 was up-regulated but down-

regulated the other, followed by MTT assay to determine gemcitabine response. As 

shown in Figure 27A-B, over-expressing 14-3-3σ markedly increased YAP1 protein level 

and gemcitabine resistance in MiaPaca-2 cells. However, knocking down YAP1 in 14-3-

3σ-over-expressing MiaPaca-2 cells diminished the 14-3-3σ-induced gemcitabine 

resistance. Similarly, up-regulation of YAP1 in 14-3-3σ-over-expressing MiaPaca-2 cells 

significantly increased gemcitabine resistance, whereas knocking down 14-3-3σ in these 

cells abolished gemcitabine resistance despite that the ectopic YAP1 expression 

maintains at high level (Figure 27C-D). Together, these findings suggest that both 14-3-

3σ and YAP1 are required for gemcitabine resistance. 

             To better address this observation, I performed the double knockdown 

experiment. Either 14-3-3σ or YAP1, or both proteins were knocked down in G3K (Figure 

28A-B) or Aspc-1 (Figure 28C-D) cells to test the changes in gemcitabine resistance. Not 

surprisingly, knocking down either 14-3-3σ or YAP1 alone dramatically reduces 

gemcitabine resistance in both cell lines, by ~61% and ~69% reduction in G3K cells 

respectively. However, knocking down both 14-3-3σ and YAP1 simultaneously did not 

further reduce drug resistance, by ~72% reduction in G3K cells. Thus, it is possible that 

14-3-3σ and YAP1 cooperates with each other to contribute to gemcitabine resistance, 
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and hence it is likely that the mechanism of 14-3-3σ-mediated gemcitabine resisance is 

the same as YAP1-mediated gemcitabine resistance. 
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Figure 27. Gemcitabine resistance requires both 14-3-3σ and YAP1. (A-B) YAP1 

knockdown counteracts increased gemcitabine resistance caused by 14-3-3σ over-

expression. MiaPaca-2 vec(1) and MiaPaca-2 flag-σ(6) cells were transiently transfected 

with scrambled control siRNA (Scr) or siRNAs targeting YAP1 followed by Western blot 

analysis of YAP1 and 14-3-3σ (A) or MTT assay for detection of drug resistance (B). (N=3, 

**p<0.01, ***p<0.001). Actin was used as a loading control for Western blot. (C-D) 14-3-

3σ knockdown counteracts with increased gemcitabine resistance caused by YAP1 over-

expression. MiaPaca-2 flag-σ(6) cells were transiently co-transfected with (1) GFP-C2 

vector and scrambled control siRNA (GFP-C2/Scr si), or (2) GFP-YAP over-expression 

plamid and scrambled control siRNA ( GFP-YAP/scr si), or (3) or GFP-YAP over-expression 

plamid  and siRNA targeting 14-3-3σ (GFP-YAP/14-3-3σ si),  followed by Western blot 

analysis of YAP1 and 14-3-3σ (C) or MTT assay for detection of drug resistance (D). (N=3, 

**p<0.01, ***p<0.001). Actin was used as a loading control for Western blot. 
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Figure 27 (cont). 
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Figure 28. Decreased expression of both 14-3-3σ and YAP1 by RNA knockdown does   

not further reduce drug resistance. G3K cells (A-B) or Aspc-1 cells (C-D) were transiently 

transfected with either scrambled (Scr) siRNA, 14-3-3σ siRNA, and YAP1 siRNA alone, or 

co-transfected with both 14-3-3σ and YAP1 siRNA simultaneously, followed by Western 

blot analysis of YAP1 and 14-3-3σ (A, C) or MTT assay for detection of drug resistance (B, 

D). (N=3-5, *p<0.05, **p<0.01, ***p<0.001, NS: not significant). Actin was used as a 

loading control for Western blot. 
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C. 14-3-3σ and YAP1 form a complex.  

             The finding of indispensable roles of both 14-3-3σ and YAP1 in gemcitabine 

resistance suggests that 14-3-3σ may form a complex with YAP1. To test this possibility, 

co-immunoprecipitation assay was performed in G3K cells transiently transected with 

GFP-YAP1 and flag-14-3-3σ. As shown in Figure 29A, YAP1 and p-YAP1 proteins could be 

co-immunoprecipitated by 14-3-3σ antibody and flag-14-3-3σ protein could be co-

immunoprecipitated by GFP antibody. Thus, 14-3-3σ may bind with YAP1/p-YAP1 to 

form a complex in G3K cells. 

             Next, co-localization analysis of these two proteins was performed using 

immunofluorescence staining. As shown in Figure 29B, both 14-3-3σ and YAP1 appear to 

localize to the cytoplasm of G3K cells and the overlay image indicates their co-

localization, which supports the possibility that these two proteins reside and form a 

complex in the cytoplasm.  
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Figure 29. 14-3-3σ interacts and binds with YAP1 in vitro. (A) 14-3-3σ co-

immunoprecipitates with YAP1, and vise versa. G3K cells were transiently transfected 

with pEGFP-YAP1 plasmid or co-transfected with both pEGFP-YAP1 and pcDNA3.1-flag-σ 

plasmid, followed by immunoprecipitation with either 14-3-3σ or GFP antibody, and 

Western blot detection the existence of YAP1, p-YAP1 or 14-3-3σ in the complex. (B) 

YAP1 co-localizes with 14-3-3σ in vitro. The localization of both YAP1 and 14-3-3σ in the 

G3K cells was visualized by confocal microscopy. 
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D. Both 14-3-3σ and YAP1 protect against gemcitabine-induced caspase-8 activation 

and apoptosis.  

             To further investigate the mechanism of 14-3-3σ and YAP1-induced gemcitabine 

resistance, I tested their effect on gemcitabine-induced apoptosis. 14-3-3σ was knocked 

down in G3K cells to test its influence on gemcitabine-induced apoptosis. As shown in 

Figure 30A, knocking down 14-3-3σ in G3K cells led to dose-dependent increase in 

gemcitabine-induced Parp-1 cleavage, suggesting its potential protective role in 

apoptosis. To confirm this result, a stable knockdown clone was established by 

transfecting the G3K cells with 14-3-3σ shRNA followed by apoptotic assay. Treatment 

the G3K cells with scrambled shRNA with 40 μM or 80 μM of gemcitabine for 24 hrs 

induced apoptosis by ~1.9 fold and ~4.8 fold increase compared with no treatment 

control respectively, whereas in 14-3-3σ knockdown cells it induced more apoptosis, by 

~4.8 fold and ~9.5 fold increase (Figure 30B). The apoptotic assay showed that 14-3-3σ 

knockdown cells appeared to undergo more apoptosis following gemcitabine treatment, 

confirming the protective role of 14-3-3σ against gemcitabine-induced apoptosis. 

Moreover, gemcitabine-induced Parp-1 cleavage was found to be markedly increased in 

14-3-3σ knockdown cells compared with vector shRNA transfected cells (Figure 31A). 

Similarly, knocking down YAP1 in G3K cells also led to dose-dependent increase in 

gemcitabine-induced Parp-1 cleavage, suggesting that YAP1 over-expression may also 

protect G3K cells from gemcitabine-induced apoptosis (Figure 31B). Together, these 
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experiments strongly suggest that both 14-3-3σ and YAP1 up-regulation contribute to 

gemcitabine resistance by inhibiting Parp-1 cleavage and gemcitabine-induced apoptosis. 

             To further investigate the specific apoptotic pathway that 14-3-3σ and YAP1 

participated in, the Western blot analysis was conducted to detect the caspase-8 and 

caspase-9 activation under gemcitabine treatment in G3K cells. As shown in Figure 31A, 

cleaved and active caspase-8 was found to be dramatically elevated in 14-3-3σ 

knockdown G3K cells compared with control cells upon gemcitabine treatment. Similarly, 

knocking down YAP1 in G3K cells also led to an increased activation of caspase-8 

following gemcitabine treatment (Figure 31B). However, caspase-9 activation was not 

affected (data not shown). Thus, likely 14-3-3σ and YAP1 function in inhibiting 

gemcitabine-induced apoptosis by attenuating caspase-8 activation. 
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Figure 30. Decreased expression of 14-3-3σ by RNA knockdown promotes parp-1 

cleavage and apoptotic cell death. (A) G3K cells were transiently transfected with either 

scrambled (Scr) siRNA or siRNA targeting 14-3-3σ, followed by Western blot analysis of 

cleaved parp-1 and 14-3-3σ. Actin was used as a loading control. (B) 14-3-3σ knocking 

down leads to compromised apoptosis. G3K cells stably transfected with either 

scrambled shRNA (scr sh3’) or 14-3-3σ shRNA (14-3-3σ sh(11)) were treated 

with/without various dose of gemcitabine, followed by apoptotic assay to measure the 

enrichment of nucleosomes released in the cytoplasm. (N=5, *p<0.05, **p<0.001).  
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Figure 31. Decreased expression of either 14-3-3σ or YAP1 by RNA knockdown leads     

to increased parp-1 cleavage and caspase-8 activation. (A) G3K cells stably transfected 

with either scrambled shRNA (scr sh3’) or 14-3-3σ shRNA (14-3-3σ sh(11)) were treated 

with or without various dose of gemcitabine, followed by Western blot analysis of 

cleaved parp-1, cleaved caspase-8 and 14-3-3σ. Actin was used as a loading control. (B) 

G3K cells were transiently transfected with either scrambled (Scr) siRNA or siRNA 

targeting YAP1, followed by Western blot analysis of cleaved parp-1, caspase-8 

activation and YAP1. Actin was used as a loading control. 
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             Finally, in order to further confirm its protective role in gemcitabine-induced 

apoptosis, 14-3-3σ was over-expressed in parental MiaPaca-2 cells followed by Western 

blot detection of caspase-8 activation. As shown in Figure 32A, following treatment with 

various doses of gemcitabine, 14-3-3σ over-expression led to much less Parp-1 cleavage 

and caspase-8 activation, with Parp-1 cleavage and caspase-8 activation saw at 20 nM of 

gemcitabine treatment compared to 10 nM in vector control cells, confirming that 14-3-

3σ up-regulation protects MiaPaca-2 cells from gemcitabine-induced caspase-8 

activation and apoptosis. Furthermore, 14-3-3σ over-expression in MiaPaca-2 cells also 

caused a delay of caspase-8 activation at different time points under 100 nM of 

gemcitabine treatment, with caspase-8 activation at 48 hrs compared to 24 hrs in vector 

control cells (Figure 32B), suggesting that the protective role of 14-3-3σ in gemcitabine-

induced apoptosis and caspase-8 activation is not only dose-dependent, but also time-

dependent.  

             Taken together, 14-3-3σ appears to contribute to gemcitabine resistance by up-

regulating YAP1 protein level and then forming a complex with YAP1 and p-YAP1, then 

both 14-3-3σ and YAP1 in the complex may protect against gemcitabine-induced 

apoptosis via attenuating caspase-8 activation (Figure 33). 
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Figure 32. 14-3-3σ over-expression in MiaPaca-2 cells protects against parp-1 cleavage 

and caspase-8 activation. (A) MiaPaca-2 cells stably transfected with vector control or 

pcDNA3.1-flag-σ plasmid were treated with/without various dose of gemcitabine, 

followed by Western blot detection the expression level of cleaved parp-1, cleaved 

caspase-8, and 14-3-3σ. Actin was used as a loading control. (B) MiaPaca-2 cells stably 

transfected with vector control or pcDNA3.1-flag-σ plasmid were treated with 100nM of 

gemcitabine, followed by Western blot detection the expression level of cleaved 

caspase-8 and 14-3-3σ at different time points. Actin was used as a loading control. 
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Figure 33. Schematic model of 14-3-3σ-mediated gemcitabine. 14-3-3σ up-regulation 

in resistant G3K cells mediated gemcitabine resistance by up-regulating YAP1 

expression, binding with YAP1/p-YAP1 as a complex, and together inhibiting 

gemcitabine-induced caspase-8 activation. 

 

 

 

 

 



112 
 

Discussion 

             Stepwise selections with anticancer drugs have been used as a standard method 

to create model cell lines for laboratory studies and identify novel mechanisms of 

acquired resistance. G3K cells selected with gemcitabine in this study are clonal and 

cross resistant to Ara-C. Considering the similarity in structure, mechanism of action, 

and metabolism between gemcitabine and Ara-C, it was not surprising to find the cross-

resistance of G3K cells to Ara-C. The observation of increased expression of RRM is also 

as expected as these proteins have previously been shown to be up-regulated and 

contribute to gemcitabine resistance in other gemcitabine-selected cells [181, 182]. 

However, the findings of the up-regulated expression of 14-3-3σ via reversible 

epigenetic regulation during gemcitabine selection and its role in acquired gemcitabine 

resistance are unexpected and novel. 

             14-3-3σ, a homo-dimeric protein that functions as a chaperone, binds to >100 

phospho-serine/phospho-threonine proteins and plays an important role in cell survival 

[183]. Up-regulated expression of 14-3-3σ has been found in PDAC and appears to 

associate with poor prognosis of PDAC by causing resistance to gemcitabine [46, 184]. 

However, it remains to be determined if 14-3-3σ plays an important role in clinically 

acquired gemcitabine resistance in PDAC. The possible role of 14-3-3σ in resistance to 

other anticancer drugs such as Adriamycin and cisplatin has also been reported 

previously [60, 61, 63, 65]. Similar to the finding of this study that 14-3-3σ can be 
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selected and responsible for acquired gemcitabine resistance, it can also be selected 

and responsible for acquired Adriamycin resistance [63]. 

             Although some of the other members of the 14-3-3 protein family such as 14-3-

3ζ and 14-3-3θ/τ have been reported to also contribute to [185, 186] and associate with 

[187] drug resistance, respectively, I did not find up-regulation in expression of 14-3-3ζ 

and 14-3-3θ/τ in the gemcitabine resistant G3K cells. This observation suggests that 14-

3-3ζ and 14-3-3θ/τ may not participate in the acquired gemcitabine resistance in PDAC.  

             This study is the first time to find that 14-3-3σ-mediated gemcitabine resistance 

may be possibly through binding with YAP1 and protecting against gemcitabine-induced 

caspase-8 activation and apoptosis. There are two distinct apoptotic pathways, the 

mitochondria pathway with subsequent activation of caspase-9, or the death receptor 

pathway via activation of caspase-8. In this study, I found that 14-3-3σ exerts its 

protective effect mainly by binding to YAP1 and inhibiting gemcitabine-induced 

apoptosis and caspase-8 activation, suggesting that the apoptotic pathway induced by 

gemcitabine is likely the cell death receptor pathway although it remains unclear how 

14-3-3σ/YAP1 complex protects against caspase-8 activation. This study is consistent 

with previous report that gemcitabine induces caspase-8 and caspase-3 activation in 

H292 cells and enhances cell sensitivity to Fas-mediated cytotoxic activity [188], which 

supported our evidence that gemcitabine induces apoptosis by activating caspase-8. 

Moreover, it is also reported that gemcitabine induces apoptosis in non-small cell lung 



114 
 

cancer (NSCLC) cells by increasing functionally active Fas (CD95, APO-1) expression, as 

well as up-regulation of Fas ligand (FasL) which triggers cell apoptosis via an 

autocrine/paracrine loop [188, 189], demonstrating the important role of death 

receptor pathway (extrinsic pathway) in contributing  to gemcitabine-induced apoptosis. 

Therefore, it will be interesting to investigate whether or not 14-3-3σ and YAP1-

mediated inhibition of gemcitabine-induced caspase-8 activation by down-regulating or 

inactivating Fas or FasL. Fas stimulation triggers apoptosis via the so-called type I 

extrinsic signaling pathway. Central to this pathway is the direct caspase-8-mediated 

cleavage and activation of caspase-3 as compared to the type II pathway which first 

requires caspase-8-mediated Bid cleavage to trigger mitochondrial cytochrome c release 

for caspase-3 activation. However, in this study, caspase-9 activation under gemcitabine 

treatment seems not be interfered by 14-3-3σ and YAP1 expression, suggesting type I 

extrinsic signaling pathway as the main pathway. In contrast to the well established role 

of caspase-3 as an effector caspase, caspase-3 is also delineated to 

induce feedback activation of the apical caspases including caspase-2, caspase-8, 

caspase-9 and caspase-10A in doxorubicin and TNFα-induced apoptosis [190]. Moreover, 

the positive feedback loop between active caspases-3 and caspase-8 is also reported in 

lymphocytes, hepatocytes and Hela cells [191]. It has shown that fully processed, active 

p17 caspase-3 feeds back on caspase-8 by cleaving its partially processed p43 form into 

the fully processed p18 species [191], suggesting a possibility that 14-3-3σ protects 

against gemcitabine-induced caspase-8 activation by suppressing caspase-3 activation 
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first. Therefore, it will be intriguing to investigate if 14-3-3σ-mediated inhibition of 

gemcitabine-induced caspase-8 activation is dependent on caspase-3 activation or not. 

             Although it is unknown if other mechanisms of 14-3-3σ-induced gemcitabine 

resistance exist, the fact that it binds to various proteins important for different cellular 

processes suggest that other protein partners may also mediate 14-3-3σ-induced 

gemcitabine resistance. Somatic knockout of 14-3-3σ in colon cancer cells has been 

shown to cause drug-induced mitotic catastrophe by reducing cellular ability to arrest in 

G2/M phase [55]. In addition, increased 14-3-3σ expression in breast cancer cells was 

found to make cancer cells more resistant to drug-induced apoptosis [63], possibly due 

to 14-3-3σ binding and arresting cyclin B1 and CDC2 [55, 65] and pro-apoptotic proteins 

such as Bax and Bad [192, 193] in cytoplasm. 14-3-3σ over-expression was also found to 

contribute to cisplatin resistance in gastric cancer cells through Erk and p38 activation 

[194], suggesting a possible role of Erk and p38 in mediating 14-3-3σ-induced 

gemcitabine resistance. Nevertheless, it remains to be determined if 14-3-3σ-induced 

gemcitabine resistance is also via cytoplasmic retention of cyclin B1 and CDC2, 

interference of Erk and p38 signaling pathway, and blockade of mitotic catastrophe. In 

addition, based on similar expression profile of RRM1, RRM2, and 14-3-3σ, and the 

regulatory role of 14-3-3σ on YAP1 expression, it is intriguing to determine whether or 

not 14-3-3σ potentially regulates the expression of RRM1 and RRM2. The possible role 

of 14-3-3σ in regulating gemcitabine metabolism pathway is not studied and remains to 

be investigated. I am currently working toward this direction.            
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             The regulation of 14-3-3σ expression occurs in multiple steps and epigenetic 

regulation by methylation has been observed in cell line models and clinical samples 

although the mechanism of regulation by methylation was unknown [195, 196]. 

However, the increased 14-3-3σ expression following drug selection in different cell 

lines appears to be regulated by different mechanisms. Epigenetic regulation likely 

occurs only in the parental cells where the 14-3-3σ gene is epigenetically silenced in 

MiaPaca-2 cells due to hypermethylation of the promoter. Up-regulation of 14-3-3σ 

expression in Adriamycin-selected and resistant MCF7 cells is likely mediated by other 

mechanisms.  In response to DNA damage, 14-3-3σ is induced in a p53-dependent 

manner, and in turn it positively regulates p53 and suppresses tumor cell growth, 

indicating a positive feedback between 14-3-3σ and p53 [197]. Similar to our finding 

that 14-3-3σ over-expression in Adriamycin-selected and resistant MCF7 cells is not 

mediated by epigenetic regulation, 14-3-3σ mRNA level change in 5-fluorouracil (5-FU)-

selected and resistant MCF7 cells was due to p53 protein expression but not 

methylation level change [198]. Like p53, 14-3-3σ was also found to be transactivated by 

p73 and, in turn, stabilize p73 and enhance the p73-mediated transcriptional activity as 

well as its pro-apoptotic function [199]. Our preliminary study has found that p73 

expression was increased in G3K cells, whereas in parental MiaPaca-2 cells p53 gene is 

mutated, thus it is likely that in G3K cells 14-3-3σ is transactivated by p73. Furthermore, 

except for being regulated by gene methylation and transcription, 14-3-3σ protein was 

also found to be regulated by phosphorylation and proteolytic inactivation [200, 201]. It 

was found that TGFβ1 induced phosphorylation of 14-3-3σ at Ser69 and Ser74, which 
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regulates MCF7 tumor progenitor population and acts as a feed-forward mechanism in 

TGFβ/Smad3-dependent transcription [201]. In addition, the estrogen-responsive E3 

ubiquitin ligase Efp was identified to specifically targets 14-3-3σ for degradation in 

breast cancers [200]. Therefore, both epigenetic silencing by gene methylation, p53 

inactivation, and proteasome-dependent proteolysis leads to loss of 14-3-3σ. 

             In this study, it is the first time to discover that Uhrf1 and DNMT1 bind to 

methylated region and regulate and maintain the hypermethylation status of 14-3-3σ 

gene. The finding that the 14-3-3σ gene could be reversibly methylated by DNMT1 and 

Uhrf1 during gemcitabine selection is consistent with the observation of reduced Uhrf1 

expression in G3K cells, which recruits DNMT1. The finding that 14-3-3σ expression is 

progressively up-regulated during gemcitabine selection suggests that the gene 

demethylation may also be progressive. Although the decreased methylation of the 14-

3-3σ gene in the drug resistant G3K cells is inconsistent with the increased expression of 

DNMT1, but it is consistent with the reduced level of Uhrf1. 

             Uhrf1, a multi-domain protein associated with cellular proliferation and 

epigenetic regulation, binds to histones and methyl-CpG dinucleotides with a preference 

for hemi-methylated CpG sites. The consequence of Uhrf1 binding was recruitment of 

DNMT1 and histone deacetylase 1, resulting in methylation of nascent DNA strands [124, 

126-128]. Thus, reduced Uhrf1 expression in G3K cells is likely responsible for reduced 

methylation of 14-3-3σ gene by reducing recruitment of DNMT1 to the methylated CpG 
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islands despite the presence of high level of DNMT1. In MiaPaca-2 cells, however, the 

high level of Uhrf1 may efficiently recruit enough DNMT1 despite low DNMT1 level for 

sufficient methylation of 14-3-3σ gene. Therefore, knocking down either Uhrf1 or 

DNMT1 in MiaPaca-2 cells would effectively reduce the level of the recruiter (Uhrf1) or 

the pool of DNMT1 to be recruited for methylation of 14-3-3σ gene and consequently 

increase 14-3-3σ expression. Furthermore, the slight increase of Uhrf1 expression in the 

G3KRev cells may be responsible for the increased methylation and reduced expression 

of 14-3-3σ gene. These findings also suggest that other genes that are under epigenetic 

regulation, specifically DNA methylation, may also change in their expression similar as 

14-3-3σ. In addition, I found that p21, a known Uhrf1 downstream target gene, has a 

similar expression profile as 14-3-3σ in the parental MiaPaca-2, gemcitabine resistant 

G3K and revertant G3KRev cells. What other genes have similar expression profile in 

these cells and whether these genes such as p21 also contribute to the acquired 

gemcitabine resistance are very intriguing, and have been partly answered by RRBS 

analysis of global gene methylations.  

             There are several methods available for global DNA methylation evaluation. 

Comparing with MeDIP, MethylCap, the bisulfite-based method RRBS is slightly more 

accurate than the other two enrichment-based methods in identifying Differential 

Methylated Regions (DMRs) [202]. Due to single nucleotide resolution, RRBS has the 

advantage of offering a direct measure of methylation levels without requiring statistical 

correction of CpG bias as in MeDIP and MethylCap. However, the method design of 
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RRBS only focuses on CpG-rich regions (promoters and CG islands) and thus has a much 

lower genomic coverage (RRBS reads are clustered in approximately 1% of the genome) 

than MeDIP and MethylCap, the latter two methods are theoretically capable of 

covering all methylation regions across the whole genome. Despite the great difference 

in genomic coverage, the identified DMRs are similar among these three methods due 

to depth requirement for reliably detecting DMRs that are statistically significant.  

             14-3-3σ gene, which was confirmed to be differentially methylated, nevertheless 

was not listed among the total 65 candidate genes. The reason is that the RRBS read 

coverage for 14-3-3σ gene is only 11.71% and among 27 CpG dinucleotides analyzed 

using traditional bisulfite sequencing, only 4 were covered in the RRBS sequencing 

regions. It is, however, noteworthy that RRBS revealed significant difference in 

differential methylation of 14-3-3σ gene between MiaPaca-2 and G3K cells with a P-

value of 9.23e-15. Moreover, studies on 14-3-3σ gene methylation are focused on its 

first exon, and whether or not 14-3-3σ gene is methylated at its promoter or other 

regions is unknown. Based on our RRBS study that significantly differential methylation 

of 14-3-3σ gene appears only in the region of first exon, CpG islands of 14-3-3σ gene at 

promoter and other regions may not be frequently methylated. 

             It is widely recognized that gene methylation at the promoter may affect gene 

transcription and expression. However, among the 10 candidate genes selected by 

DMRs from RRBS analysis, two had no change in mRNA levels as determined using real 
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time RT-PCR. Thus gene methylation change in the promoter region may not necessarily 

lead to mRNA level change. In general, gene silencing has been thought to be either due 

to direct inhibition of transcription factor binding by DNA methylation or mediated by 

methyl-binding domain (MBD) proteins that recruit chromatin-modifying complexes to 

methylated DNA  to bring about further changes in chromatin structure: prototypically 

those associated with nucleosomal compaction and transcriptional silencing [203, 204]. 

The linkage between gene promoter methylation and heritable transcriptional 

suppression is well recognized, however, it seems that CG Island (CGI) methylation is not 

the initiating event in gene silencing, but acts to lock in the silent state. For example, 

during X-chromosome inactivation, X-linked CGIs do not become methylated until after 

gene silencing and the acquisition of several silencing chromatin modifications, such as 

H3K27me3 [205, 206]. Moreover, the majority of CGIs that gain methylation during 

differentiation are already silent in embryonic stem cells, providing further evidence 

that gene silencing precedes DNA methylation [207]. Therefore, the causative 

relationship between gemcitabine selection and differential gene methylation is unclear. 

In addition, using regionally methylated plasmids, it has been reported that parameters 

such as position, length, or density of methylated cytosines are crucial for the efficiency 

of gene repression [208-210]. Furthermore, other studies also suggested that 

transcriptional inhibition relies on methylation at specifically critical CpG sites [211-213]. 

Thus, it is likely that DMRs of some genes in our RRBS analysis are not the key CpG sites 

and hence the gene transcription is not affected. Noticeably, it was also reported that 

densely methylated elements (DMEs) of the genome are disproportionately enriched for 
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exons, and that DNA methylation in the region of the first exon is much more tightly 

linked to transcriptional silencing than methylation in the upstream promoter region 

[214], indicating a more predictive role of first exon rather than promoter region in gene 

silencing. Moreover, it was demonstrated that methylation of promoter sequences does 

not have a greater repressive effect than the modification of flanking, nonregulatory 

DNA sequences, and that the presence of a transcription factor can compete for the 

establishment of an inactive promoter conformation, thus reducing the silencing effect 

[215]. Additionally, the existence of factors indifferent to DNA methylation status and 

the demonstration that this modification is often capable of repressing transcription 

only after chromatin has been assembled suggest that other factors such as chromatin 

structure may impede DNA methylation-mediated gene silencing [210, 216, 217]. 

Thereby, gene transcription and repression is a complicated process and the 

methylation of CpG islands located in gene promoters is not always equated with 

transcriptional inactivity, other factors such as methylation density, critical CpG 

methylation sites, competing transcription factors as well as chromatin status and other 

player participating in gene transcription and repression complex should also be 

considered.  

             PDGFD, as the latest addition to PDGF family, has generated considerable 

interest in recent years because of its up-regulation and involvement in the progression 

of many types of human cancers [147-153]. The growing body of literature strongly 

suggests that PDGFD may function as a key player in the development and progression 
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of human cancers by regulating the processes of cell proliferation, apoptosis, migration, 

invasion, angiogenesis, and metastasis. It has been reported that PDGFD signaling is 

frequently deregulated in human malignancies and PDGFD expression was up-regulated 

in many human cancers including prostate, lung, renal, ovarian, brain, and pancreatic 

cancer [146, 147, 149-152]. Pancreatic cancer, like many other tumors, has been shown 

to over-express PDGFD. However, the association of PDGFD with drug resistance, 

especially gemcitabine resistance in pancreatic cancers, is unknown. This study not only 

identified PDGFD as an important contributor of gemcitabine resistance for the first 

time, but also newly investigated its methylation status in the promoter region. Thus it 

is very possible that the up-regulated expression of PDGFD found in many other cancers 

was also accredited to gene demethylation, and if so, targeting PDGFD gene methylation 

and over-expression may be a useful therapeutic approach to overcome different 

human tumors.  

             It is known that PDGFD upregulation triggers a number of downstream signaling 

pathways including activation of phosphatidylinositol 3 kinase (PI3K), Akt, nuclear 

factor-κB (NF-κB), Notch, and extracellular signal-regulated kinase (ERK) [139, 145-147]. 

Here, it is the first time to show a direct association of PDGFD expression and activation 

of Stat3 signaling pathway. However, other signaling pathways that might regulate 

PDGFD-mediated gemcitabine resistance are not excluded. Thus it is interesting to 

investigate other downstream signaling pathways of PDGFD such as NF-κB and ERK to 

complete the study of molecular mechanisms of PDGFD-induced gemcitabine resistance. 
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It is noteworthy that in addition to PDGFD, the methylations of PDGFB and PDGFC genes 

were also found significantly reduced in G3K cells compared with MiaPaca-2 cells, based 

on the RRBS analysis. Therefore, it will be of interest to determine if the methylation 

change of both PDGFB and PDGFC genes also leads to increased gene transcription and 

protein expression, and whether these two genes also play important roles in acquired 

gemcitabine resistance. 

             The overall outcome of this study suggests the importance of epigenetic 

alterations, specifically methylation of chromatin DNA, which may play an important 

role in gemcitabine resistance. It also revealed a critical role of 14-3-3σ and PDGFD in 

acquired gemcitabine resistance. Finally, targeting 14-3-3σ, PDGFD, and perhaps DNA 

methylation may be considered for therapeutic development in combinational 

treatment to overcome gemcitabine resistance.  
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Summary and Conclusion 

             The experimental results of this dissertation can be summarized as follows: 

             1. Acquired gemcitabine resistant cell line G3K is cross-resistant to Ara-C, but not 

to other anticancer therapeutic drugs been tested. 

             2. In addition to increased RRM1/2, 14-3-3σ expression and transcription level 

are dramatic elevated in gemcitabine-resistant cells. 

             3. Down-regulation of 14-3-3σ expression in gemcitabine-resistant cell line G3K 

decreases drug resistance level to both gemcitabine and Ara-C. 

             4. Ectopic over-expression of 14-3-3σ in the parental MiaPaca-2 cells increases 

resistance to both gemcitabine and Ara-C. 

             5. 14-3-3σ gene in the parental MiaPaca-2 cells is hyper-methylated, whereas in 

gemcitabine-resistant G3K cells it is hypo-methylated. 

             6. Demethylation of 14-3-3σ gene during gemcitabine selection is partially 

reversible followed by drug retrieval. 

             7. Although 14-3-3σ expression is up-regulated in Adriamycin-resistant breast 

cancer cell line MCF7/Advp3000, the methylation status of 14-3-3σ gene remains 

unchanged during Adriamycin selection. 

             8. The expression level of DNMT1 in gemcitabine-resistant G3K cells is markedly 

increased, while down-regulation of DNMT1 in parental MiaPaca-2 cells restores 14-3-

3σ gene expression. 
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             9. The expression level of Uhrf1 in gemcitabine-resistant G3K cells is dramatically 

decreased, and down-regulation of Uhrf1 in parental MiaPaca-2 cells leads to 14-3-3σ 

gene re-expression. 

             10. Both Uhrf1 and DNMT1 bind to methylated region of 14-3-3σ gene in the 

parental MiaPaca-2 cells, together function to repress 14-3-3σ gene expression. 

             11. DNMT1 protein is recruited by Uhrf1 for binding to 14-3-3σ gene, and down-

regulation of Uhrf1 in MiaPaca-2 cells affect DNMT1 binding. 

             12. Through RRBS, 845 genes are found differentially methylated comparing 

MiaPaca-2 and G3K cells, and 282 genes found differentially methylated comparing G3K 

and G3KRev cells. 

             13. PDGFD gene is reversibly demethylated during gemcitabine selection, and 

the reversible demethylation leads to corresponding increase/decrease of gene 

transcription and protein expression. 

             14. Down-regulation of PDGFD in gemcitabine resistant G3K cells and Aspc-1 cells 

compromises gemcitabine resistance. 

             15. Ectopic over-expression of PDGFD in parental MiaPaca-2 cells escalates cell 

resistance to gemcitabine. 

             16. The expression level of STAT3, p-stat3, and STAT3 downstream targets MMP2 

and VEGF is increased in gemcitabine resistant G3K cells compared with MiaPaca-2 cells. 

             17. Down-regulation of PDGFD in gemcitabine resistant G3K cells impairs STAT3 

signaling pathway, whereas ectopic over-expression of PDGFD in parental MiaPaca-2 

cells activates STAT3 signaling pathway. 
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             18. Ectopic over-expression of STAT3 in parental MiaPaca-2 cells increases drug 

resistance to gemcitabine. 

             19. The expression level of YAP1/p-YAP1 is increased in gemcitabine-resistant 

G3K cells. 

             20. Both the protein and mRNA levels of YAP1 are regulated by 14-3-3σ 

expression. 

             21. Down-regulation of YAP1 in gemcitabine-resistant G3K cells leads to 

sensitization to gemcitabine treatment. 

             22. Ectopic over-expression of YAP1 in MiaPaca-2 cells dramatically increases 

gemcitabine resistance, whereas it requires existence of 14-3-3σ. 

             23. Down-regulation of 14-3-3σ or YAP1 reduces gemcitabine resistance caused 

by the up-regulation of YAP1 or 14-3-3σ. 

             24. Down-regulation of either 14-3-3σ or YAP1 in gemcitabine resistant G3K cells 

and Aspc-1 cells reduces gemcitabine resistance, while down-regulation of both proteins 

do not further reduce drug resistance. 

             25. 14-3-3σ and YAP1/p-YAP1 binds to each other in gemcitabine resistant G3K 

cells, and co-localizes at the cytoplasm. 

             26. Down-regulation of either 14-3-3σ or YAP1 in gemcitabine resistant G3K cells 

leads to increased PARP-1 cleavage and caspase-8 activation under gemcitabine 

treatment. 

             27. Over-expression of 14-3-3σ inhibits and delays parental MiaPaca-2 cells from 

gemcitabine-induced PARP-1 cleavage and caspase-8 activation. 
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Future Plans 

             The key findings of my current study showed: 1) the contribution of 14-3-3σ 

over-expression in acquired gemcitabine resistance and its reversibly epigenetic 

regulation by Uhrf1 and DNMT1 during gemcitabine selection; 2) identification of 

PDGFD as a differentially methylated gene during gemcitabine selection and as a critical 

contributor to gemcitabine resistance; 3) 14-3-3σ mediated gemcitabine resistance at 

least partially by binding with YAP1 protein and together protecting against caspase-8 

activation and apoptosis induced by gemcitabine. Future directions that may extend the 

current are: 

             1. Based on similar expression and methylation profile of 14-3-3σ and PDGFD, it 

is possible that PDGFD gene is epigenetically regulated by the same machinery as 14-3-

3σ. Therefore, it is very interesting to investigate whether or not Uhrf1 and DNMT1 also 

binds to the methylated region of PDGFD gene and function to repress its expression. 

Another gene of interest is p21 the protein expression profile of which is found to be 

same as 14-3-3σ, yet other studies has demonstrated that Uhrf1 binds to p21 promoter 

to repress its gene expression. Thereby, it will be interesting to investigate the 

methylation status of p21 gene during gemcitabine selection and whether or not the 

increased expression of p21 contributes to acquired gemcitabine resistance. In addition, 

other proteins such as HDAC1 and methyl-CpG binding proteins like MeCP2 should also 
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be tested to better understand dynamic changes of "Epigenetic Code Replication 

Machinery" of 14-3-3σ and PDGFD gene during gemcitabine selection. 

             2. RRBS data shows a global methylation profile change during gemcitabine 

selection, yet our top candidate gene PDGFD was only screened among 10 genes 

transcriptionally tested. Therefore, it is highly possible that there are other genes with 

methylation status change also play important roles in acquired gemcitabine resistance. 

Hence continuous discovery of other genes participating in gemcitabine resistance is 

critical and helps to better understand the complex process of gemcitabine resistance, 

as well as helps improvement of clinically therapeutic treatment for pancreatic cancer 

patients in the future. 

             3. 14-3-3σ and YAP1 over-expression are shown to inhibit gemcitabine-induced 

caspase-8 activation, which belongs to death receptor pathway. Therefore, whether or 

not 14-3-3σ and YAP1 mediate through extracellular signals and what is the detail 

mechanism of inhibiting caspase-8 activation are intriguing and need to be further 

investigated. Moreover, solid evidence is lacked to prove the importance of caspase-8 

inhibition in 14-3-3σ-mediated gemcitabine resistance, and thus the usage of caspase-8 

inhibitor or siRNA would help demonstrate this hypothesis. Furthermore, since caspase-

3 feeds back on caspase-8 for its activation, it is very interesting to dissect the process of 

which 14-3-3σ and YAP1 inhibit caspase-8 activation and whether or not inhibition of 

caspase-3 activation precedes inhibition of capsase-8 activation. Therefore, utilizing a 
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caspase-3 inhibitor or siRNA would be necessary to help understand the process. If 

inhibition of caspase-3 precedes inhibition of caspase-8 activation, then future research 

should focus on the molecular mechanism by which 14-3-3σ and YAP1 inhibit 

gemcitabine-induced caspase-3 activation. 

             4. This study showed that 14-3-3σ up-regulation contributes to acquired 

gemcitabine resistance by up-regulating YAP1 and together inhibit gemcitabine-induced 

apoptosis. However, since 14-3-3σ is a chaperon protein and binds >100 protein ligands, 

YAP1 binding followed by inhibition of gemcitabine-induced apoptosis may not the sole 

mechanism by which 14-3-3σ contributes to gemcitabine resistance. Thereby, other 

possibilities including but not limited to cytoplasmic retention of CDC2-Cyclin B1 

complexes, prevention of mitotic catastrophe, and interference of gemcitabine 

metabolic pathway should also be investigated. In addition, this study also showed that 

PDGFD over-expression contributes to acquired gemcitabine resistance possibly by 

activating Stat3 signaling pathway, yet other signaling pathways downstream of PDGFD 

activation are not investigated. Therefore, future studies should also focus on other 

possible signaling pathways like NF-κB and ERK pathway that might mediate PDGFD-

induced acquired gemcitabine resistance. 

             5. This study suggests a bystander effect of resistant cells on sensitive cells as 

shown in Figure 20D, indicating that co-culturing MiaPaca-2 cells with G3K cells likely 

makes MiaPaca-2 cells more resistant to gemcitabine treatment compared to MiaPaca-2 
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cells being surrounded by its own. Hence, it will be very interesting to test this 

hypothesis. In order to do so, stable clones of MiaPaca-2 cells with GFP vector plasmid 

(MiaPaca-2-GFP cells) should first be established, followed by performing a colony 

formation assay comparing colonies with green fluorescence under gemcitabine 

treatment in both experimental group of MiaPaca-2-GFP cells co-cultured with G3K cells 

and control group of MiaPaca-2-GFP cells co-cultured with MiaPaca-2 cells. The long-

term goal of this direction is to inject MiaPaca-2-GFP cells with either G3K cells or 

MiaPaca-2 cells into mice xenograft model to compare the growth of MiaPaca-2-GFP 

cells in each group and their responses to gemcitabine treatment. 

             6. Overall, this research identified 14-3-3σ and PDGFD overexpression by 

epigenetic regulation and their contribution to acquired gemcitabine resistance, and 

long-term goals should move forward toward this direction. I have previously 

established stable clones of 14-3-3σ over-expression and PDGFD over-expression in 

MiaPaca-2 cells, and stable knockdown clones of 14-3-3σ in G3K cells, and thus stable 

knockdown clones of PDGFD should also be generated. Then these four pairs of stably 

over-expression or knockdown cells will be injected into nude mice xenograft, followed 

by gemcitabine treatment and comparison of parameters including tumor size, tumor 

volume, mouse survival and death, response to gemcitabine treatment, tumor growth 

and apoptosis, and tumor angiogenesis and metastasis. These in vivo experiments will 

help verify the critical role of 14-3-3σ and PDGFD in gemcitabine resistance. Because 

both 14-3-3σ and PDGFD were identified to be up-regulated in tissue specimens of 
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pancreatic cancer patients [46, 147], if these in vivo experiments show any significance 

of survival benefit, it will be very intriguing and important to test this effect in 

pancreatic cancer patients. First of all, inhibitors of both 14-3-3σ and PDGFD need to be 

developed. Then pancreatic cancer patients, especially those with advanced and 

resistant pancreatic cancers, will receive combinational therapies of gemcitabine with 

14-3-3σ inhibitor or gemcitabine with PDGFD inhibitor within a safe dose range. This 

study may finally lead to a discovery and improvement of a successful treatment 

regimen for pancreatic cancer patients. 
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Appendices 

Appendix 1. List of 230 genes the methylations of which are increased in G3K cells 

compared to MiaPaca-2 cells: 

ABHD14A, ABHD14A-ACY1, ACSS1, ADAM23, ADCY3, ADM, ADORA2A, ADORA2B, 

ADRA2B, AGXT2L1, AKNA, ANGPTL6, ANKRD20A2, AP3B1, ARHGAP22, ARHGDIA, 

ARHGEF6, ARHGEF7, ART5, ASAH2B, ATG5, B4GALT6, BCKDK, BCL11B, BDH1, BMP6, 

BMPR1B, BTBD11, C16orf59, C17orf96, C17orf97, C1orf229, C22orf34, C4orf48, C7orf25, 

CABP1, CACNG2, CAMK2D, CD8A, CDC42EP1, CDC42EP3, CDH15, CDH4, CDK5R1, 

CDKN2AIP, CERKL, CHID1, CHRND, CHSY1, COBLL1, CPLX2, CPNE7, CRHR1, CTAGE1, 

CYP1B1, DAB2IP, DACH1, DACT2, DFNB59, DUSP4, EBF3, ECHDC2, EFNA3, EPHA4, EPHA8, 

ERVK13-1, ESRP2, FAM167A, FAM176C, FAM219A, FASN, FBXO27, FBXO44, FGFRL1, 

FLJ45983, FLJ46257, FOS, FOXF2, FYCO1, GADD45B, GALNTL4, GBX2, GJB2, GLIS3, GPC2, 

GPR160, GPSM1, HBQ1, HCN2, HMHA1, HRASLS, HTT-AS1, IAH1, IGF2-AS, IQSEC2, ITPKA, 

JAG2, JDP2, KBTBD11, KCNQ2, KCNQ4, KCNS2, KCTD15, KDELC1, KIF1A, KLF11, KLF8, 

KLHDC7B, KREMEN2, LARGE, LCP1, LEMD3, LINC00159, LINC00293, LINC00461, 

LINC00473, LLGL2, LMF1, LOC100128946, LOC100131825, LOC285577, LOC286083, 

LOC643923, LOC728613, LOC728716, LRRC32, LRRFIP1, LYNX1, MAFK, MAP2K3, 

MAPRE2, MAST3, MDFI, MESDC1, MGMT, MIR1915, MIR3201, MIR3621, MIR4724, 

MIR598, MMP17, MORN3, MRPS6, MST1P2, MYH11, MYO1B, NCR3LG1, NFATC1, NFIB, 

NGEF, NINL, NOD2, NPAS2, NRIP3, OLIG1, OR1F1, OSMR, OVOL2, PALLD, PARD3B, 
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PCGF5, PCSK6, PDLIM1, PEX6, PODXL2, POU3F1, PPM1E, PPOX, PRAF2, PRELID1, PTGFRN, 

PTK6, PTMA, PTPN21, PTPRG, PWWP2B, RASSF2, RHBDD1, RHOB, RIMBP2, RNF144B, 

RPS6KL1, RRAGC, RSPO1, SALL1, SAMD4A, SIM2, SLC16A14, SLC3A2, SLC45A1, SLC7A5P2, 

SLCO5A1, SMARCA2, SNORD56B, SNORD68, SNTG2, SOWAHC, SOX13, ST6GAL1, STK3, 

SUPT7L, SYCE3, TBR1, TFCP2L1, TMEM17, TMEM179, TMEM181, TMEM200B, TNFRSF6B, 

TNRC18, TPO, TRABD2B, TSC22D4, USH1G, VEGFC, VPS37D, VWCE, WNT3, WNT9A, 

XIRP1, ZBTB47, ZDHHC2, ZNF213, ZNF232, ZNF396, ZNF442, ZNF512, ZNF717, ZNF763, 

ZYX 
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Appendix 2. List of 615 genes the methylations of which are decreased in G3K cells 

compared to MiaPaca-2 cells: 

AATK-AS1, ABCG1, ABHD8, ABLIM2, ABR, ABRACL, ACTB, ADAM19, ADAMTS3, 

ADAMTSL4, ADM, ADRA2A, ADRB1, ADRB2, ADSSL1, AFAP1L2, AFF3, AGFG2, AGPAT3, 

AKR1B1, ALKBH7, ALS2CR8, AMIGO1, AMOTL1, ANK1, ANKRD18DP, ANKRD6, ANXA2P3, 

APBA1, APBB2, AQP7P1, ARAP3, ARC, ARHGAP5, ARNTL, ARNTL2, ASTE1, ATP8B2, 

ATRNL1, BAD, BANK1, BARX2, BATF3, BBX, BCL7A, BCOR, BCR, BDH1, BIK, BIN1, BLM, 

BMP6, BRSK2, C10orf10, C10orf129, C11orf70, C14orf132, C14orf180, C15orf59, 

C18orf25, C1orf204, C22orf34, C2orf82, C5orf55, C6orf141, C9orf106, C9orf96, CABLES2, 

CACNA1D, CACNA1I, CACNG4, CAMK2B, CAMK2G, CAV2, CBR3-AS1, CBS, CBX8, 

CCDC109B, CCDC149, CCDC174, CCDC71L, CCNO, CDC42BPB, CDK6, CDYL, CEBPA, 

CELSR1, CERS4, CHAC1, CHD7, CHRM4, CHRNA7, CHST1, CHST15, CIB2, CIDEA, CKAP4, 

CLDN11, CLDN4, CLK3, CLPTM1L, CMTM3, COL11A2, CPE, CPEB2, CPNE5, CRADD, 

CRAMP1L, CREG2, CT62, CTAG1A, CTAG1B, CTIF, CTSO, CXCL1, CXXC5, CYP2W1, DACT2, 

DBNDD1, DBP, DCAF5, DCTD, DDIT4L, DENND3, DGAT1, DGKZ, DIXDC1, DLL1, DLX4, 

DNAJB1, DNAJB2, DNMT3B, DOC2A, DPF1, DPYSL5, DRD3, DSE, DUS3L, DUSP15, DUSP6, 

EBF3, ECE1, EFNA5, EGLN3, EHBP1L1, ELANE, ELFN1, ELOVL2-AS1, ELOVL7, ENO3, ENOX1, 

EPS8, ERF, ERICH1, ESYT2, ETHE1, ETS2, ETV2, EXD3, EXPH5, F3, FAM102A, FAM105A, 

FAM133B, FAM155A, FAM160B1, FAM196A, FAM198B, FAM211A, FAM213A, FAT4, 

FBXL16, FBXO6, FGF18, FGF19, FGF8, FHOD1, FLJ30403, FLJ42102, FMNL1, FMNL3, 

FOXF1, FRAS1, FTMT, FUCA1, FUOM, GAB1, GADD45B, GADD45G, GALNT7, GALNTL4, 
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GAS1, GGN, GLCCI1, GMNC, GNG7, GNS, GORASP1, GPR123, GPR132, GPR146, GPS1, 

GPX4, GRHL1, GRIA2, GRM4, GSN, GSTO2, H2AFY2, H3F3AP4, HDAC5, HERPUD2, HEY1, 

HIPK3, HIVEP2, HLA-B, HLA-C, HLA-L, HLX, HMP19, HNRNPD, HOXA3, HOXB2, HOXB9, 

HS3ST3B1, HSD11B2, HTR6, HUNK, IDH2, IFITM3, IGF2BP2, IGSF3, IKBKE, IL15RA, IL17RA, 

IL20RB, INPP4B, INS, INSIG1, INSIG2, INTU, IRF2BPL, IRF5, IRS1, ITGA9, JARID2, JMJD8, 

KANK3, KANK4, KC6, KCNC1, KCNH3, KCNJ12, KCNK18, KCNK9, KIAA1024, KIAA1199, 

KIAA1324L, KIF1A, KIF21B, KIF6, KIT, KLF13, KLHL36, KLHL4, KLK6, KNDC1, KRBA1, 

KRT19P2, KSR2, L3MBTL2, LACC1, LEF1-AS1, LGI3, LHB, LIMCH1, LINC00112, LINC00290, 

LINC00347, LINC00461, LINC00667, LITAF, LMO1, LOC100128511, LOC100271722, 

LOC100288974, LOC100506190, LOC158572, LOC255512, LOC283663, LOC283922, 

LOC284751, LOC389895, LOC643355, LOC645752, LOC648987, LOC728875, LONRF3, 

LPAL2, LPHN2, LPPR3, LRIG1, LRRC43, LRRC6, LRRCC1, LRRK1, LSP1P3, LTBP3, LYPD3, 

MAML3, MAMSTR, MAN1A1, MAN1C1, MAPK4, MARK1, MB21D1, MBOAT2, MC4R, 

MCOLN3, MCTP1, MDFIC, MED12L, MEGF9, MEIS2, MERTK, METTL10, MFAP3L, MGAT5B, 

MGC21881, MGC45800, MICALL1, MIDN, MIR101-1, MIR130B, MIR153-1, MIR205HG, 

MIR3182, MIR4456, MIR4479, MIR4634, MIR4787, MIR548I2, MIR573, MIR589, MLL3, 

MLL4, MLLT6, MMP25, MMP28, MN1, MNX1, MSI1, MTA1, MUC6, MYO6, NAAA, 

NAGPA-AS1, NAT8L, NCKAP5L, NDRG4, NDUFV2, NEIL1, NEK11, NINJ2, NIPAL1, NIPAL4, 

NKX1-2, NMU, NOTUM, NQO2, NR4A1, NR4A2, NRARP, NRN1, NSG1, NTNG2, NTSR1, 

NUDT16, OGDHL, OR2L1P, OSBPL7, OSTF1, OTOF, PABPC1L, PABPC5, PALM, PANX2, 

PAOX, PAQR5, PAQR8, PARD6G, PARP11, PARP8, PARP9, PAX2, PCDHGC3, PDGFB, 

PDGFC, PDGFD, PDK3, PDPR, PDZD2, PF4, PGAP2, PGF, PHLDA2, PHLDA3, PIK3IP1, 
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PIK3R1, PITPNM2, PKNOX2, PLEKHA5, PLEKHG1, PLXNA2, PMAIP1, PPCS, PPFIBP2, 

PPM1E, PPM1H, PPM1K, PPP1R14C, PPP4R4, PRDM1, PRDM5, PRDM6, PRKCDBP, PRKCZ, 

PSD2, PSMD1, PTBP1, PTCH2, PTPRK, PXDN, QPCT, RAB12, RAB26, RAB3B, RAET1G, 

RANBP17, RAPGEF4, RASAL2-AS1, RASD2, RASSF9, RCCD1, RHPN1-AS1, RIMBP3B, RIPK4, 

RNASET2, RNF126, RNF152, RNF207, RNLS, RNPEPL1, ROBO2, ROCK2, RPA4, RTN1, RXRA, 

SAPCD2, SARM1, SBNO2, SCAND2, SCD5, SCOC, SCRN1, SDC3, SDK1, SDK2, SEL1L3, 

SEMA4F, SEMA5B, SEPHS2, SEPT11, SEPT4, SEPT5, SEPT8, SEPT9, SERPINE2, SETMAR, 

SFRP1, SH3BGRL2, SHH, SHOX2, SKIDA1, SLC16A7, SLC16A9, SLC22A20, SLC25A27, 

SLC27A1, SLC2A11, SLC31A2, SLC35D3, SLC37A2, SLC44A3, SLC4A8, SLC6A8, SLITRK5, 

SMCR8, SMTNL2, SNORA47, SNORD82, SNX24, SNX33, SOCS1, SOCS3, SOWAHD, SOX4, 

SOX6, SOX7, SPAG1, SPATA31D1, SPATA6, SPATA6L, SPECC1, SPHK1, SQSTM1, ST3GAL1, 

ST3GAL5, STK11, STK32C, STOX1, STOX2, SULF2, SUV420H1, SYNE4, SYT12, SYT7, TACC3, 

TALDO1, TBC1D14, TBC1D9, TBL1XR1, TBX2, TBXAS1, TCF7, TCTE1, TDRD7, TEAD3, 

TENM3, TFAP2A, TFAP4, THBS2, THEMIS2, TIGD2, TMEFF1, TMEM150C, TMEM179B, 

TMEM181, TMEM38A, TMEM56-RWDD3, TMX4, TNFSF9, TNK2, TNNI3, TNS3, TP53TG1, 

TPBG, TPM1, TPM2, TPRA1, TRIL, TRPC3, TSKU, TSPAN14, TSPAN15, TSPAN18, TSPAN5, 

TTC23L, TTC9, TXN2, TXNRD1, UBE2E2, UHRF1, ULK1, UPP1, UST, VAX2, VEGFC, VPS13D, 

VTI1B, WDR1, WIPF3, WNT11, WNT2B, WNT4, WNT8B, WSCD2, WWC2-AS2, ZC3HAV1L, 

ZFAND2A, ZFAND4, ZFHX3, ZFP36, ZFYVE28, ZNF136, ZNF14, ZNF223, ZNF253, ZNF32, 

ZNF362, ZNF385C, ZNF419, ZNF44, ZNF440, ZNF469, ZNF516, ZNF517, ZNF555, ZNF593, 

ZNF669, ZNF700, ZNF771, ZNF808, ZNF83, ZNF833P 
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Appendix 3. List of 140 genes of which the methylations are increased in G3KRev cells 

compared to G3K cells: 

AFAP1L2, ANXA2P3, APBA1, APOBEC3A, B3GNT5, C10orf11, C14orf37, C1orf21, 

C22orf26, CAMK2D, CCNO, CDC42BPB, CDCA7L, CDK6, CHRNA7, CHURC1-FNTB, CNN3, 

CRAMP1L, CTAGE1, CYP11A1, DDIT4L, DDX60, DGCR6, DSE, DUSP6, EFNA5, EGR4, 

ELOVL2-AS1, EPHA7, FAM133B, FAR2, FLJ30838, FRAS1, FRMD6, FUOM, GALNT6, 

GALNT7, GALNTL1, GDPD5, GFPT2, GLIS3, GNS, GPR160, GREB1L, GRM4, GULP1, H2AFY2, 

HIC2, HIVEP2, HLA-A, HLX, HNRNPD, HRASLS, IL15, INSIG1, IRAK1BP1, JMJD8, KCNQ4, 

KIAA1324L, KIAA1609, KIF21A, KIF21B, KLF15, KLHL13, LINC00290, LOC100287042, 

LOC100506190, LOC285577, LOC648987, LONRF3, LRR1, MCTP1, MDFIC, MIR205HG, 

MIR4473, MIR4479, MIR573, MLPH, MMP25, MTA1, NFIA, NKX1-2, NOBOX, PARP4, 

PCDH9, PDGFD, PHF10, PLXNA1, PPM1H, PRDM1, PRKAG2, PRR5L, PTGES, RAB39B, 

RAD21L1, RAET1G, RASD2, RASSF1, RGS2, RNASET2, ROR2, RSPO4, RUNDC3A, SAMD13, 

SAMD5, SEMA5B, SERTAD1, SFXN3, SLC16A7, SLC19A2, SLC25A27, SLC31A2, SLC35D3, 

SLC35G2, SLC7A5P1, SOWAHD, SPATA31D1, STK17A, TMA16, TMEM181, TMEM200B, 

TRABD2A, TRIL, TRPC3, VDR, VENTXP7, VGLL3, WDR1, WNT11, WNT6, ZNF160, ZNF470, 

ZNF593, ZNF611, ZNF630, ZNF669, ZNF704, ZNF789, ZNF808, ZNF83 
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Appendix 4. List of 142 genes of which the methylations are decreased in G3KRev 

cells compared to G3K cells: 

ABCB6, ACAP3, ACOT11, ADAP1, ADORA2B, AHNAK2, AKT3, AMOTL2, ARAF, ARHGAP29, 

ARHGEF6, ARX, ASAP1-IT1, BCL7A, BCOR, C15orf59, C9orf106, CACNG6, CBFA2T3, CBX8, 

CDC42EP3, CELSR1, COL18A1, COL18A1-AS1, CPNE7, CSTB, CUX1, CXXC5, DGKE, DOCK3, 

DPYSL2, EDN2, EIF4E3, ELFN1, EPS8L1, ERVK13-1, EXD3, FAM131B, FAM174A, FAM84B, 

FBXO27, FGFRL1, FOXQ1, GADD45B, GAS1, GBX2, GFOD1, GPM6B, GPSM1, GRIN1, HCN2, 

IKBKE, IMPA2, INS, IRX3, JAG2, KCNH3, KLF4, KLHL29, LHX4, LHX9, LINC00523, 

LINC00674, LMX1B, LOC284751, LOC339874, LOC643355, LRRK1, MAGED4, MAGIX, 

MB21D1, MFI2, MIR124-3, MIR1915, MIR4456, MIR4516, MIR4686, MMEL1, MN1, MPG, 

MRPS6, MUC17, MXRA7, NCOR2, NEDD4L, NFIA, NPAS2, NR2F6, NT5DC2, NUDT11, 

NUP210, NXN, OAZ1, OLIG1, OR1F1, PAX2, PDGFB, PFKFB2, PIP5K1C, PLEC, PNPLA7, 

PPARG, PRDM16, PRR5, PTPRG, PWWP2B, RALGPS2, RBMS1, RIPK4, RNU6ATAC, SATB1, 

SCARNA3, SERPINE2, SESTD1, SH3GL1, SHOX2, SIM2, SLC25A17, SLC25A39, SLC45A1, 

SLC9A3R2, SMAD3, SNCG, SNORD56B, SNORD68, SOCS1, SOX13, SSTR5, TENC1, TET3, 

TJP3, TNRC18, TPRN, TTYH1, TXN2, WNT9A, WSCD2, WWC3, XIRP1, ZNF213, ZNF555, 

ZNF761 
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Appendix 5. List of 309 genes of which the methylations are increased in G3KRev cells 

comparing with MiaPaca2 cells: 

ABHD14A, ABHD14A-ACY1, ACSS1, ADM, ADORA2A, AGXT2L1, AKNA, ANGPTL6, ANKH, 

ANKRD20A2, APOBEC3A, ARHGAP22, ARHGDIA, ARHGEF16, ARHGEF7, ARL6IP4, ARRDC4, 

ARSD, ART5, ASAH2B, ATF3, ATG5, B3GNT5, B4GALT6, BAHCC1, BBX, BCKDK, BCL11B, 

BDH1, BMP6, BMPR1B, BSX, BTBD11, C14orf132, C17orf96, C17orf97, C1orf21, C1orf229, 

C20orf112, C22orf34, C4orf48, C7orf25, CA12, CABP1, CALN1, CAMK2D, CCND2, CD8A, 

CDC42EP1, CDCA7L, CDH15, CDH4, CDS1, CERKL, CHID1, CHRND, CHSY1, CNNM1, 

COBLL1, COL5A1, CPLX2, CPOX, CRHR1, CTAGE1, CTBP2, CYP1B1, DACH1, DDIT4L, 

DFNB59, DHPS, DLGAP1-AS1, DLGAP2, DSE, DUSP4, EBF3, ECHDC2, EGR1, EGR4, ELFN1, 

EPHA4, EPHA8, FAHD1, FAM176C, FAM219A, FBXO27, FBXO44, FGFRL1, FLJ44511, 

FLJ45983, FLJ46257, FOS, FOXA1, FOXF2, FOXP1, FZD1, FZD10, GADD45B, GALNTL4, 

GBX2, GFPT2, GJB2, GLIS3, GPC1, GPC2, GPR160, GPSM1, GRIN3B, GULP1, H19, HBQ1, 

HDAC9, HLA-A, HLA-E, HMHA1, HRASLS, IAH1, IFT140, IGF2-AS, IQSEC2, IRX2, ITGB8, 

ITPKA, JDP2, JHDM1D, KBTBD11, KCNQ2, KCNQ4, KCNS2, KCTD15, KDELC1, KIAA0284, 

KIAA0513, KIF1A, KLF11, KLF15, KLF6, KLHDC7B, KREMEN2, LARGE, LCP1, LINC00461, 

LINC00473, LINC00628, LLGL2, LMF1, LOC100128946, LOC100131825, LOC100287042, 

LOC285577, LOC286083, LOC339807, LOC643923, LOC648987, LOC728613, LOC728716, 

LPAR3, LRRC32, LRRFIP1, LUZP2, LYNX1, MAFK, MAPRE2, MAST3, MBLAC1, MESDC1, 

MGMT, MIR3201, MIR3621, MIR3914-2, MIR4655, MIR4724, MIR581, MIR598, MKI67, 

MLPH, MMP17, MORN3, MST1P2, MYH11, MYO1B, NCR3LG1, NDST3, NFASC, NFIA, 
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NFIB, NGEF, NINL, NKX6-1, NOD2, NRIP3, NRL, NUDT16L1, OR1F1, OSMR, OVOL2, P4HA2, 

PALLD, PARD3B, PCDH9, PCGF5, PCOLCE-AS1, PDE4D, PDLIM1, PEX6, PGM2L1, PGPEP1L, 

PODXL2, POU3F1, PPM1E, PPM1H, PRAF2, PRELID1, PRR5L, PTGFRN, PTK6, PTMA, 

PTPN21, PWWP2B, RAB39B, RAD21L1, RASGEF1A, RASSF1, RASSF2, RBM33, RHBDD1, 

RHOB, RIMBP2, RNF130, ROR2, RPP40, RPS6KL1, RPUSD1, RRAGC, RSPO1, RUNDC3A, 

S1PR1, SALL1, SAMD13, SAMD4A, SARM1, SATB2-AS1, SCAMP1, SERTAD1, SFXN3, SFXN4, 

SLAIN1, SLC10A3, SLC16A14, SLC35G2, SLC3A2, SLC7A5P1, SLC7A5P2, SLCO5A1, 

SMARCA2, SNTG2, SOWAHC, ST6GAL1, STK17A, STK3, SUPT7L, SVIL, SYCE3, SYNPO, 

SYT17, TBR1, TFCP2L1, TGFA, TGFB1I1, TMEM171, TMEM179, TMEM181, TMEM200B, 

TMEM238, TNRC6C, TPBG, TPO, TRABD2A, TRABD2B, TSC22D3, TSC22D4, TUB, TUBA4A, 

UBB, USH1G, USP25, VDR, VEGFC, VGLL3, VLDLR, VPS37D, VWCE, WNT2B, WNT3, WNT6, 

ZDHHC2, ZNF160, ZNF20, ZNF396, ZNF423, ZNF442, ZNF470, ZNF512, ZNF528, ZNF611, 

ZNF669, ZNF717, ZNF789, ZNF808, ZNRF1  
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Appendix 6. List of 645 genes of which the methylations are decreased in G3KRev 

cells comparing with MiaPaca2 cells: 

AATK-AS1, ABCB6, ABHD8, ABLIM2, ACAP3, ACOT11, ACTB, ADAM19, ADAMTS3, 

ADAMTSL4, ADAP1, ADM, ADRB1, ADRB2, ADSSL1, AFF3, AGFG2, AKT3, ALG10, AMOTL1, 

AMOTL2, ANK1, ANKRD18DP, ANKRD29, APBB2, AQP7P1, ARAP3, ARC, ARHGAP23, 

ARHGAP29, ARHGAP5, ARHGEF6, ARNTL, ARTN, ARX, ASTE1, ATP8B2, ATRNL1, 

B4GALNT4, BAHCC1, BARX2, BATF3, BCL2L14, BCL7A, BCOR, BCR, BIK, BIN1, BLM, BMP6, 

BRSK2, BTNL9, C10orf10, C10orf129, C11orf70, C12orf57, C14orf132, C15orf59, 

C18orf25, C1orf115, C1orf170, C1orf204, C22orf34, C2CD4C, C3orf79, C6orf141, 

C9orf106, CABLES2, CACHD1, CACNA1D, CACNA1I, CACNG4, CACNG6, CAMK2B, 

CAMK2G, CAV2, CBFA2T3, CBLN2, CBR3-AS1, CBX4, CBX8, CCDC109B, CCDC149, 

CCDC174, CCDC71L, CCNO, CD34, CDC42EP1, CDH8, CDK6, CEBPA, CELSR1, CERS4, 

CHAC1, CHD7, CHRM4, CHST1, CIB2, CIDEA, CKAP4, CLDN4, CLK3, CMTM3, COL11A2, 

COL18A1, COL18A1-AS1, CPE, CPEB2, CPNE5, CPNE9, CRADD, CREG2, CRISPLD2, CSNK1E, 

CSTB, CT62, CTAG1A, CTAG1B, CTIF, CXCL1, CXXC5, CYB5R3, CYP1A1, CYP24A1, CYP2W1, 

DACT2, DBNDD1, DBP, DCAF5, DCTD, DDHD1, DEFA5, DGKZ, DHRS3, DIXDC1, DLK2, DLL1, 

DLX4, DNAJB1, DNAJB2, DNAJC6, DNMT3B, DOC2A, DOCK3, DPYSL2, DPYSL5, DSE, 

DUS3L, DUSP1, DUSP15, EBF3, ECE1, EDN2, EFNA5, EGLN3, EHBP1L1, EIF4E3, ELANE, 

ELFN1, ELOVL6, ENTHD2, EPHB3, EPS8L1, ERICH1, ESYT2, ETHE1, ETV2, EXD3, FAM105A, 

FAM184A, FAM196A, FAM198B, FAM20C, FAM211A, FAM213A, FAM27A, FAM65A, 

FAT4, FBXL16, FBXO6, FGF8, FGFRL1, FLJ42102, FMNL1, FMNL3, FOXF1, FOXQ1, FRG2, 
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FTMT, FUCA1, FUOM, GAB1, GAD1, GADD45B, GADD45G, GALNT11, GAS1, GBX1, GBX2, 

GFRA2, GGN, GINS2, GLCCI1, GLIS3, GMNC, GNG7, GORASP1, GPM6B, GPR132, 

GPR137B, GPR146, GPS1, GRIA2, GRM4, GSTO2, GUK1, H1F0, H3F3AP4, HDAC11, HDAC5, 

HERPUD2, HEY1, HHEX, HIPK3, HIVEP2, HLA-L, HLX, HNRNPD, HOXA3, HOXB1, HOXB2, 

HOXB9, HRC, HS3ST3B1, HSD11B2, HTR6, HUNK, IFITM3, IGF2BP2, IGSF3, IGSF8, IKBKE, 

IL15RA, IL17RA, IL20RB, IMPA2, INF2, INPP4B, INS, INSIG2, INTU, IRF2BPL, IRF5, IRS1, 

IRX3, ITGA9, JARID2, JMJD8, JUNB, KANK3, KCNC3, KCND3, KCNG3, KCNH3, KCNK18, 

KCNK9, KIAA0895L, KIAA1024, KIAA1324L, KIF1A, KIF6, KLC2, KLF13, KLF16, KLF4, KLF9, 

KLHL29, KLHL36, KLK6, KRT19P2, KSR2, L3MBTL2, LEF1-AS1, LGI3, LHB, LHX2, LHX4, LHX9, 

LIMCH1, LINC00112, LINC00290, LINC00461, LINC00518, LINC00523, LINC00667, 

LINC00674, LITAF, LMO1, LMO2, LMX1B, LOC100128511, LOC100271722, 

LOC100288974, LOC100506190, LOC255512, LOC283663, LOC283856, LOC283922, 

LOC284751, LOC339874, LOC400958, LOC643355, LOC645752, LOC648987, LPAL2, 

LPIN1, LPPR3, LRIG1, LRRC43, LRRCC1, LRRK1, LSP1P3, LTBP3, LYPD3, MAGED4, MAGIX, 

MAML3, MAMSTR, MAN1A1, MAN1C1, MAP1B, MAPK4, MARK1, MB21D1, MBOAT2, 

MCM5, MCOLN3, MDFIC, MECOM, MED12L, MEIS2, METTL10, MFI2, MFNG, MGAT4A, 

MGAT5B, MGC45800, MICALL1, MIDN, MIR101-1, MIR124-3, MIR130B, MIR153-1, 

MIR183, MIR3180-4, MIR339, MIR3615, MIR4456, MIR4634, MIR4664, MIR4686, 

MIR4787, MIR5189, MIR548I2, MIR573, MIR589, MLL3, MLLT6, MMEL1, MMP25, MN1, 

MNX1, MRPS10, MSI1, MUC17, MUC6, MYZAP, N4BP2L1, NAAA, NBL1, NCOA1, NCOR2, 

NDRG4, NDUFV2, NEDD4L, NEIL1, NFIA, NINJ2, NIPAL1, NIPAL4, NKX1-2, NOTUM, NPAS2, 

NPPC, NQO2, NR2F6, NR4A2, NRARP, NRN1, NSUN5, NTNG2, NTSR1, NUDT11, NUDT16, 
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NUP210, OAZ1, OR1F1, OSBPL7, OTOF, PABPC1L, PAOX, PAQR5, PAQR8, PARD6G, PARP9, 

PAX2, PCDHGC3, PDGFA, PDGFB, PDGFC, PDPR, PDZD2, PF4, PFKFB2, PHKA2-AS1, 

PIK3IP1, PIP5K1C, PITPNM2, PLEC, PLEKHA5, PLEKHG1, PLXNA2, PLXNA3, PMAIP1, 

PNMA2, PNPLA7, PPAPDC3, PPARG, PPCS, PPFIBP2, PPM1H, PPM1K, PPP1R14C, PPP4R4, 

PRDM1, PRDM16, PRDM6, PRKCQ, PRKCZ, PRR5, PRRX2, PRTG, PSD2, PSMD1, PTBP1, 

PTCH2, PTDSS2, PTGS1, PTPRK, PXDN, RAB26, RABAC1, RALGPS2, RANBP17, RAPGEF3, 

RAPGEF4, RASAL2-AS1, RASGEF1A, RASSF9, RBM20, RBMS1, RBPMS, RCAN2, RCCD1, 

RHPN1-AS1, RIMBP3B, RIPK4, RNF126, RNF152, RNF207, RNLS, RNPEPL1, RNU6ATAC, 

ROBO2, RSPH1, SAMD14, SBNO2, SCAND2, SCARNA3, SCD5, SCN8A, SCRN1, SDK1, SDK2, 

SEL1L3, SEMA4F, SEPHS2, SEPT11, SEPT5, SEPT8, SEPT9, SERPINE2, SFRP1, SH3BGRL2, 

SH3KBP1, SHOX2, SIM2, SKIDA1, SLC16A9, SLC22A20, SLC25A17, SLC25A27, SLC27A1, 

SLC29A4, SLC2A11, SLC37A2, SLC38A1, SLC44A3, SLC45A1, SLC4A8, SLC52A3, SLC6A8, 

SLC9A3R2, SMAD3, SMCR8, SMTNL2, SNCG, SNORA47, SNORD56B, SNORD82, SOCS3, 

SOX4, SOX6, SOX7, SOX8, SOX9, SPAG1, SPATA6, SPATA6L, SPC24, SPECC1, SPHK1, 

SQSTM1, SRCIN1, ST3GAL1, STK11, STOX2, STX17, SULF2, SUV420H1, SYNE4, SYNM, 

SYT12, SYT7, TACC1, TACC3, TALDO1, TAOK3, TBC1D14, TBC1D9, TBL1XR1, TBX2, TCF7, 

TDRD7, TEAD3, TENC1, TENM3, TFAP2A, THEMIS2, TIGD2, TJP3, TMC6, TMEM107, 

TMEM150C, TMEM179B, TMEM38A, TMEM56-RWDD3, TMTC2, TMX4, TNFSF9, TNNI3, 

TNRC18, TNS3, TP53TG1, TPBG, TPM1, TPM2, TPRN, TRIM62, TRPC3, TSKU, TSPAN14, 

TSPAN18, TSPAN5, TTC23L, TTC9, TTYH1, TXN2, TXNRD1, UBAC1, UBE2E2, UHRF1, ULK1, 

UNC5A, USP49, UST, VAMP3, VEGFC, VPS13D, VTI1B, VWA1, WDR81, WDR83, WIPF3, 

WNK2, WNT11, WNT2B, WNT4, WNT9A, WSCD2, WWC2-AS2, WWC3, ZBTB7A, 
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ZC3HAV1L, ZFAND2A, ZFAND4, ZFP36, ZNF136, ZNF14, ZNF223, ZNF304, ZNF362, 

ZNF385C, ZNF419, ZNF44, ZNF440, ZNF469, ZNF516, ZNF517, ZNF555, ZNF700, ZNF761, 

ZNF771, ZNF777, ZNF833P 
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