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ABSTRACT 

Wenjie Lu 

Understanding Aromatase:   

A Mechanistic Basis for Drug Interactions and New Inhibitors 

 

Aromatase is the cytochrome P450 enzyme that converts androgens to estrogens. 

Aromatase is the target of the aromatase inhibitor class of drugs widely used to treat 

estrogen-mediated conditions including breast cancer. Little is known about the role of 

this enzyme in drug metabolism or in drug interactions. Since this lack of knowledge has 

been an impediment to optimal therapy, it is important to understand these roles of 

aromatase. Therefore, a comprehensive series of studies was carried out to characterize 

its ability to metabolize drugs and its susceptibility to inhibition by xenobiotics. The 

overall objective of this work was to better understand the interactions of small molecules 

with aromatase and to use this new knowledge to predict aromatase-mediated drug 

interactions and anticipate novel molecular structures that interact with the enzyme.  

Aromatase was shown to be a drug metabolizing enzyme able to metabolize 

methadone both in vitro (Km of 314 μM) and in vivo (22% of methadone clearance). A 

number of novel aromatase inhibitors that employ diverse kinetic mechanisms were 

identified. These include a potent competitive inhibitor: norendoxifen (Ki of 35 nM), two 

non-competitive inhibitors: endoxifen (Ki of 4.0 μM) and N-desmethyl-tamoxifen (Ki of 

15.9 μM), a mechanism-based inhibitor: methadone (KI of 40.6 ± 2.8 μM; kinact of 0.061 

± 0.001 min-1), and a stereoselective inhibitor: naringenin (IC50s of 2.8 μM for (R)-

enatiomer and 1.4 μM for (S)-enatiomer). Through investigation of the structure-potency 
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relationships so discovered, a series of new biochemical structures to be exploited as 

aromatase inhibitors were identified.   

These studies have identified new roles for aromatase as a catalyst for methadone 

metabolism and as a mediator of the effects of tamoxifen by demonstrating that a number 

of its metabolites can act as aromatase inhibitors. This work also provides a new 

mechanistic framework for the design of novel aromatase inhibitors that can be used in 

breast cancer. Overall, the data suggest ways to more consistently treat breast cancer with 

current medications, to better anticipate drug interactions, and therefore to improve the 

quality of life of patients in ways that minimize side effects, while optimizing therapeutic 

benefits, in each person treated. 

 

David A. Flockhart, M.D., Ph.D., Chair   
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 CHAPTER ONE 

Introduction and Literature Review 

 

The cytochrome P450 enzyme family 

The cytochrome P450s (CYPs) are a superfamily of enzymes. These enzymes all 

contain a molecule of heme non-covalently bound to the polypeptide chain. CYPs use O2 

and H+, which is derived from the cofactor reduced nicotinamide adenine dinucleotide 

phosphate (NADPH), to carry out the oxidative metabolism of a number of endogenous 

and exogenous compounds like steroids, bile acids and drugs. In humans, there are more 

than 50 individual CYP isoforms (Gonzalez and Tukey 2006). The CYP genes with 

known functions are expressed in the endoplasmic reticulum of a number of tissues 

(Nelson et al. 2004). Human liver expresses important drug-metabolizing CYPs, 

including CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, 

CYP2E1, CYP3A4 and CYP3A5. These are the most actively studied of the drug-

metabolizing enzymes since they are the responsible for metabolizing the vast majority of 

therapeutic xenobiotics (Gonzalez and Tukey 2006).  

The activities of these CYPs determine the rate of biotransformation of a parent 

substrate into active and/or inactive metabolites. This process influences several 

subsequent outcomes including the concentration of the substrate and its metabolites that 

will be achieved in the body and the rate of their elimination from the body. The CYPs 

that catalyze steroid and bile acid synthesis have very specific substrate preferences. In 

contrast, the CYPs that carry out xenobiotic metabolism have the capacity to bind and 

metabolize a large number of structurally diverse chemicals. A single compound can also 



2 
 

be metabolized by different CYPs. This extensive overlapping of substrate specificities is 

one of the underlying causes for the predominant clinical pharmacokinetic drug-drug 

interactions. For example, when two coadministrated drugs are both metabolized by the 

active site of the same CYP, they compete for the binding site. As a result, the 

metabolism of one or both drugs may be inhibited and this can lead to increased clinical 

exposure to the parent drug and decreased exposure to the metabolites. The activity of 

CYPs can also be influenced by factors other than co-medication, including 

environmental and genetic factors.  

 

Aromatase and its role in steroidogenesis 

The CYP that converts androgens to estrogens is CYP19, also known as 

aromatase (Chen 1998). Aromatase has been recognized as a key enzyme in 

steroidogenesis as it is the only enzyme responsible for the demethylation and subsequent 

aromatization of testosterone to estradiol and androstenedione to estrone.  

 

Aromatase expression and variability in aromatase activity 

Unlike most of the important CYPs, aromatase is not highly expressed in healthy 

human livers (Carruba 2009) and hepatic aromatase activity is minimal. In 

premenopausal women, aromatase activity is high in the ovaries. Estrogens produced in 

the ovaries are important hormones that can circulate and act on distal estrogen receptors 

in the target tissues. In postmenopausal women and men, estradiol is primarily 

synthesized in extragonadal tissues where it also serves locally as a paracrine, autocrine 

or intracrine factor. Aromatase is expressed in these extragonadal sites including 
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osteoblasts and chondrocytes of bone, mesenchymal cells of breast and other adipose 

tissue, the vascular endothelium, aortic smooth muscle cells, and numerous sites in the 

brain (Simpson 2003).  

Aromatase is coded by the gene CYP19A1, which is located on chromosome 

15q21.1 in humans. This gene spans 120 kb and it has a large and complex upstream 

regulatory unit comprising untranslated exon I and a number of promoters, and a 30 kb 

coding region consisting of nine translated exons II to X (Simpson 2003). Untranslated 

exon I is associated with at least 10 different tissue–specific promoters. Since the exon I 

is not translated, the translated protein product are identical in all the tissues. Each tissues 

utilizes its own promoters and associated enhancers and suppressors to express a unique 

untranslated first exon 5’-UTR (Simpson and Davis 2001; Sebastian and Bulun 2001; 

Bulun et al. 2003). This differential splicing process leads to different amounts of mRNA 

transcripts, differences in mRNA stability and protein translation (Simpson and Davis 

2001; Santen et al. 2009; Wang, Li, and Hu 2009). As a result, this process defines the 

tissue-specific regulation of aromatase activity and estrogen biosynthesis.  

Since aromatase expression is present in many tissues and its regulation is 

complex, the enzyme activity has been shown to vary with a lot of factors including 

gender (Labrie et al. 1997), menstrual cycle (Sano et al. 1981), age (Labrie et al. 1997; 

Grow 2002), weight (Yousefi et al. 2011) and ethnicity (Marsh et al. 2011). The enzyme 

activity is also influenced by genetic variants. The most widely studied is a 

tetranucleotide (TTTA)n tandem repeat polymorphism located in intron 4 of the human 

CYP19A1 gene, and it has been reported that the number of TTTA repeats is associated 

with estrogen concentrations and risks for several estrogen-regulated diseases (Somner et 
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al. 2004; Gennari et al. 2004; Ahsan et al. 2005; Kristensen et al. 2000; Masi et al. 2001). 

There have also been a few reports of a rare autosomal recessive disease, human 

aromatase deficiency, caused by loss-of-function mutations in the CYP19A1 gene (Bulun 

2000; Belgorosky et al. 2009; Rochira and Carani 2009). In addition, aromatase activity 

may be influenced by many extrinsic factors such as herbal supplements (Wang et al. 

2009), red wine (Eng et al. 2003), calcitriol (Krishnan and Feldman 2011), myosmine 

(Doering and Richter 2009), and environmental toxins like phthalates (Toda et al. 2003). 

 

Aromatase as a target of endocrine therapy for breast cancer 

Aromatase expression and activity has been shown to be enhanced in various 

cancers, including breast tumors, hepatocellular carcinoma, adrenocortical tumors and 

testicular tumors (Bulun and Simpson 2008; Jongen et al. 2006; Carruba 2009; Bulun et 

al. 1997; Young et al. 1996; Aiginger et al. 1981). Local paracrine and/or intracrine 

estrogen signaling is believed to stimulate the progression and recurrence of the disease, 

particularly in the case of breast cancer. About 70 - 80% of all newly diagnosed breast 

cancers are positive for the estrogen receptor (Hammond et al. 2010). The total number 

worldwide is more than one million every year. Peripheral estrogen synthesis by 

aromatase is the primary pathway for the production of estrogen in women after ovarian 

function subsides during menopause or after another pathological change or medical 

intervention that reduces or eliminates ovarian function. For this reason, the enzyme 

aromatase represents an important target of many therapies that are designed to treat post-

menopausal estrogen-dependent breast cancer by reducing estrogen concentrations, and 

thereby reducing the growth of breast tumors and patients’ risk for recurrent breast 
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cancer. Of note, in premenopausal women aromatase inhibitors do not suppress estrogen 

concentrations because their ovarian-pituitary feedback loop prevents effective 

suppression of the enzyme activity. In fact, aromatase inhibition has been an effective 

endocrine therapy for other estrogen-mediated conditions. For example, the enzyme can 

be valuably targeted as part of treatments for infertility in premenopausal women in 

whom reduction of systemic estrogen is used to stimulate pituitary function and increase 

ovarian function (Pritts 2010).   

Two classes of drugs have been effective and widely used in treating hormone 

receptor positive breast cancer (Burstein et al. 2010; Osborne, Zhao, and Fuqua 2000): 

aromatase inhibitors (AIs) and selective estrogen receptor modulators (SERMs). While 

AIs operate by reducing peripheral estrogen generation, SERMs reduce estrogenic effects 

by antagonism of estrogen binding to the estrogen receptors (Figure 1.1). The most 

widely used SERM, tamoxifen, reduces the risk for recurrence and mortality in women 

with estrogen-sensitive breast cancer by 40% (Early Breast Cancer Trialists' 

Collaborative Group 2005). Over the last decade, large definitive trials have 

demonstrated that therapy with AIs is more effective than tamoxifen treatment in both the 

metastatic and adjuvant settings, but the absolute benefit relative to tamoxifen is only 2-

4% (Cuzick et al. 2010). On the basis of trials such as these, AIs have become the 

standard of care for the treatment of endocrine-responsive breast cancer in post-

menopausal women. 
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Figure 1.1. Mechanism of action of aromatase inhibitors and SERM tamoxifen. 

The AIs reduce peripheral estrogen generation by blocking aromatase activity. The 

SERMs reduce estrogenic signaling by antagonism of estrogen binding to the estrogen 

receptors. Source: with permission from Smith et al. 2003 (see Appendix). 

 

Efficacy and toxicity profiles of current aromatase inhibitors 

There are three aromatase inhibitors currently on the market: the azoles, 

anastrozole (Arimidex™) and letrozole (Femara™), which are potent competitive 

inhibitors, and the steroidal compound, exemestane (Aromasin™), which is a 
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mechanism-based inhibitor. These are the third-generation AIs. They are more selective 

and more clinically efficacious than the first-generation AI aminoglutethimide and the 

second-generation AIs formestane, fadrozole and rogletimide (Smith and Dowsett 2003). 

All third generation AIs decrease circulating estrogen concentrations by at least ten-fold 

compared to concentrations before treatment in untreated postmenopausal women. They 

have also been shown in large clinical trials to reduce the risk for breast cancer 

recurrence in post-menopausal women with estrogen-sensitive breast cancer by about 

50% (Cuzick et al. 2010).  

Despite their efficacy, therapy with current AIs results in marked side effects that 

make the drugs difficult to tolerate for the 2 - 5 years required for effective breast cancer 

treatment (Figure 1.2). Toxicities are one of the major reasons for discontinuation of AIs, 

and the most common adherence-limiting toxicity is the AI-associated musculoskeletal 

syndrome, or AIMSS (Henry et al. 2008; Henry, Giles, and Stearns 2008; Crew et al. 

2007; Morales et al. 2004; Land et al. 2006). This syndrome consists of a constellation of 

musculoskeletal symptoms, including generalized arthralgias, trigger finger, digital 

stiffness, carpal tunnel syndrome, or tendinitis/tendinopathy that occur in the absence of 

any alternative reason for development of these symptoms, such as trauma, pre-existing 

rheumatoid arthritis, or other definable causes. Earlier studies suggest that AIMSS is the 

reason for recorded discontinuation in 10 - 20% of all patients taking an aromatase 

inhibitor (Henry et al. 2008; Land et al. 2006). In a more recent survey (1,199 women), 

about 60% patients experienced debilitating side effects and AIMSS was the reason for 

discontinuation in ~ 75% of those who stopped the drug (Zivian and Salgado 2008).  
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Figure 1.2. Side effects of current AIs reported by breast cancer patients. 

The AI-associated musculoskeletal toxicities such as muscle pain and bone pain were the 

reason for discontinuation in ~ 75% of those who stopped taking the drug. Source: with 

permission from Zivian and Salgado 2008 (see Appendix). 
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While the available AIs reduce the recurrence of breast cancer, they do not 

eliminate recurrence. About 50% of patients treated with AIs still developed recurrent 

cancer (Cuzick et al. 2010). Furthermore, the positive effects of AIs come at the price of 

numerous side effects, which reduce compliance with therapy, reduce the quality of life 

of breast cancer patients and also decrease overall disease-free survival 

(Oberguggenberger et al. 2011; Zivian and Salgado 2008; Ziller et al. 2009; Partridge et 

al. 2008; Hershman et al. 2010). In a recent systemic review and meta-analysis of seven 

randomized controlled trials that compared AIs with tamoxifen as primary adjuvant 

endocrine therapy in postmenopausal women (a total of 30023 patients), treatment with 

current AIs was found to be associated with increased odds of developing cardiovascular 

disease and bone fractures that were major causes of death in this patient population 

(Amir et al. 2011). These cumulative toxicities of current AIs significantly reduced the 

survival benefit to this therapy despite improvements in cancer-free survival. Thus, there 

remains a need for developing more tolerable and effective drugs with better risk/benefit 

profile as the next generation of AIs.  

Aromatase inhibition therapy has also been shown to be effective in the 

prevention of the first occurrence of breast cancer. In a study of 4560 postmenopausal 

women who were at moderately increased risk for breast cancer, therapy with one of the 

available AIs, exemestane, was associated with a 65% relative reduction in the annual 

incidence of invasive breast cancer (Goss et al. 2011). It follows that improved AIs that 

are less toxic and easier to take could be better treatment options in a preventive setting 

for women at risk.  
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In addition, aromatase inhibitors are being explored as therapies for a number of 

other estrogen-related conditions. A recent study suggested that aromatase inhibition 

could be utilized as a better therapy for refractory endometriosis-related chronic pelvic 

pain than conventional treatments (Abushahin et al. 2011).  

 

 Evidence suggesting a broader role for aromatase in xenobiotic disposition 

The conversion of androgens to estrogens by aromatase is a key step in 

steroidogenesis, but this may not be the only important role that this enzyme plays in 

humans. Although aromatase has been widely recognized as an enzyme that “has strict 

substrate requirements and does not participate in xenobiotic or drug metabolism” 

(quoted from Gonzalez and Tukey 2006), emerging evidence suggests that this enzyme 

may also interact with xenobiotics, such as medications, dietary compounds and even 

environmental toxins. The clinical relevance of these interactions remains unclear. 

 

Possible involvement in drug metabolism and drug interactions 

Placental aromatase is able to metabolize methadone (Nanovskaya et al. 2004), 

cocaine (Osawa et al. 1993), and buprenorphine (Deshmukh, Nanovskaya, and Ahmed 

2003) in vitro, but the role of aromatase in drug metabolism in general has not been 

carefully investigated. The biochemical mechanism by which aromatase catalyzes the 

metabolism of testosterone or androstenedione employs 3 moles of O2 and 3 moles of 

NADPH for every mole of estrogen generated, and it involves three successive 

hydroxylations of the 19-methyl group of the androgens followed by the removal of this 

methyl group (Simpson et al. 2002) (Figure 1.3). Since it has been shown that aromatase 
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is able to remove a methyl group from cocaine and buprenorphine, it follows that other 

medications of similar structure and class may also be aromatase substrates.  

 

 

Figure 1.3. Demethylation of testosterone by aromatase. 

Source: modified from Vaz 2003. 

 

Aromatase has activity in many tissues. Therefore it is possible that the aggregate 

of this activity contributes significantly to drug metabolism in vivo. For example, 

methadone is a drug that undergoes demethylation and that has large inter-individual 

variability in its clearance, and the enzymatic route by which this reaction occurs in the 

human body is controversial (Shiran et al. 2009). Women metabolize methadone faster 
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than men (Baselt and Casarett 1972), and methadone clearance is significantly increased 

during pregnancy, when placental aromatase has high activity (Flockhart et al. 2009; 

Nanovskaya et al. 2004). This evidence all points to a possible role for aromatase in the 

metabolism of methadone and other drugs subject to demethylation. 

Since it is possible that aromatase contributes to human drug metabolism, co-

administration of aromatase inhibitors, particularly in patients with breast cancer, may 

result in pharmacokinetic drug-drug interactions that decrease the elimination of those 

drugs metabolized by aromatase and thereby lead to unfavorable pharmacodynamic 

effects at standard doses.  

Aromatase inhibition may also alter the metabolism of endogenous testosterone 

and androstenedione. This change might lead to indirect effects on up- or down-

regulation of gene expression brought about by changes in the androgen and estrogen 

signaling pathways. These effects include the regulation of the expression of other drug 

metabolizing enzymes, drug transporters and even receptors, all of which might in turn 

contribute to undesirable drug side effects and/or alterations in drug disposition. It 

follows that aromatase may play an important role in drug metabolism and drug 

interactions. 

 

The active search for new aromatase inhibitors 

Since the current AIs are drugs that inhibit aromatase activity in the human body 

by binding to the active site of the enzyme, it is possible that other xenobiotics might also 

affect the enzyme activity in the similar way. The currently available AIs (letrozole, 

anastrozole, and exemestane) bring about side effects that limit patients’ compliance with 
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treatment (Hershman et al. 2010; Ziller et al. 2009; Partridge et al. 2008), and thus cause 

higher rates of breast cancer recurrence (Thompson et al. 2010). As a result, there is a 

recognized need for next generation inhibitors (Muftuoglu and Mustata 2010).  

A large number of investigators have invested significant effort in the search for 

novel structures and mechanisms that bring about adequate aromatase inhibition, while 

limiting side effects. More than a decade ago, a chemopreventive synthetic retinoid was 

reported to inhibit aromatase activity (Ciolino, Wang, and Sathyamoorthy 2000). Later, 

researchers found that phytochemicals in white button mushrooms, especially the 

unsaturated fatty acids linoleic acid and linolenic acid, have anti-aromatase activity (Chen 

et al. 2006). More and more studies have emerged in the last two years. Ellagitannins, a 

class of compounds found in pomegranate fruit, were extracted and tested, and 

derivatives were reported as potential aromatase inhibitors (Adams et al. 2010). Retinol 

and all-trans retinoic acid and several 7-substituted-4-imidazolylflavans based on the 

structure of natural flavonoids were shown to interact with aromatase (Yahiaoui et al. 

2011; Ciolino, Dai, and Nair 2011). Resveratrol and a series of synthesized new 

resveratrol analogues were characterized for their ability to inhibit aromatase, and one 

compound was suggested as a new promising aromatase inhibitor (Sun et al. 2010). This 

search remains active, and in contrast to conventional thinking, it is clear that aromatase, 

a catalyst of endogenous steroid metabolism, has the structural ability to interact with a 

large number of xenobiotics.  
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Summary  

Aromatase is an important cytochrome P450 enzyme that converts androgens to 

estrogens. Since estrogens drive breast cancer proliferation, aromatase is also the target of 

the aromatase inhibitor class of drugs used to treat breast cancer. While the available AIs 

are effective, they bring about severe side effects that reduce the quality of life of breast 

cancer patients, reduce compliance with therapy and also cause cardiovascular and 

musculoskeletal toxicities, which bring down the overall survival of breast cancer 

patients. There is a need for effective and more tolerable drugs with better risk/benefit 

profile as the next generation of aromatase inhibitors.  In addition, little is known about 

the role of aromatase in xenobiotic drug metabolism, or in drug interactions. As a result, 

optimal therapy with AIs could be compromised by unpredictable adverse events and 

reductions in efficacy that result. 

 

Research aims 

My long-term goal is to improve the treatment of breast cancer by optimizing the 

use of medications in ways that minimize side effects, while optimizing therapeutic 

benefits, in each person treated. The primary objective of my work is to better understand 

the interactions of small molecules with aromatase and to use this new knowledge to 

predict aromatase-mediated drug interactions and anticipate novel molecular structures 

that interact with the enzyme. Since aromatase is able to remove a methyl group from 

androgens to generate estrogens, I selected for study a group of drugs that (1) similarly 

undergo demethylation, and (2) are commonly prescribed to breast cancer patients and 

therefore are clinically relevant. 
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The overall hypothesis of this work is that aromatase interacts with a group of 

selected xenobiotics and therefore plays important roles in xenobiotic disposition and 

action in breast cancer. The specific objective of this research is to investigate 1) the 

ability of aromatase to metabolize drugs and possible involvement in pharmacokinetic 

drug-drug interactions that may result in significant clinical effects; 2) the effects of a 

selected series of xenobiotic compounds and their metabolites on aromatase activity. The 

specific objective will be tested through the following specific aims:  

Specific aim 1: To test the ability of aromatase to metabolize methadone and 

determine its quantitative contribution to methadone clearance in humans.  

Specific aim 2: To test the ability of a select group of compounds to inhibit 

aromatase activity.  

 

Significance  

The studies described herein may have clinical implications. Breast cancer is the 

most common cancer in women and one of the leading causes of death worldwide (Ferlay 

et al. 2010), and aromatase inhibitors are widely used as effective agents in the treatment 

of this disease. The translational relevance of this work includes new insights into drugs 

that are metabolized by aromatase, and that interact with it as inhibitors, and these 

findings have the potential to improve the use of methadone, and of the AI class of drugs, 

both of which are commonly co-prescribed with a wide range of other medications. As a 

result, it may be possible to more consistently treat breast cancer with current 

medications, and to better anticipate drug interactions. It also provides new insights into 

xenobiotic-aromatase interactions that illuminate potential alternative AIs. 
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Overall, this study could allow a better understanding of the involvement of 

aromatase in xenobiotic disposition and effects. This research will create a robust 

scientific knowledge base upon which to build future studies that address the importance 

of aromatase as a target for drug interactions, and that improve the rational prescribing 

database involving aromatase inhibitors.  
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CHAPTER TWO 

Metabolism of Methadone by Aromatase In Vitro 

 

Introduction  

Methadone is a synthetic analgesic that is distinguished by its long duration of 

action, a property that makes it ideal for the treatment of chronic pain and for opioid 

withdrawal (Fredheim et al. 2008). Prescriptions in the United States have grown by 

1300% between 1997 and 2006 (Kharasch et al. 2009), primarily as the result of 

increasing use as a first-line analgesic. In addition, methadone maintenance therapy is the 

mainstay for the treatment of opioid addiction, but it is estimated that fewer than 10% of 

individuals who are addicted to heroin and prescription opioids are actually receiving 

methadone (Kleber 2008).  

Despite its advantages and widespread utility, the use of methadone is limited by 

complex pharmacokinetic characteristics that include a long elimination half-life and 

susceptibility to pharmacokinetic drug-drug interactions (Weschules, Bain, and 

Richeimer 2008). The goal of predictable, reproducible and effective dosing is 

confounded by considerable inter-individual variability in methadone pharmacokinetics, 

particularly in its clearance (up to 100-fold, Totah et al. 2008). This variability is further 

complicated by stereoselectivity in methadone pharmacokinetics. While methadone is 

generally administered as a racemic mixture, consisting of equal amount of two 

enantiomers; the (R)-, levo-, 1-or (+) and the (S)-, dextro-, d- or (-) methadone, these 

enantiomers differ in pharmacokinetic and pharmacodynamic properties. The 

unpredictability of methadone’s effects due to these multiple characteristics results in a 
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high incidence of over- and under-dosing. Inappropriate dosing can clearly cause severe 

adverse events such as withdrawal symptoms, respiratory depression, and 

electrocardiographic QT interval prolongation that can result in sudden cardiac death 

(Sims, Snow, and Porucznik 2007; Kharasch et al. 2009; Kalgutkar, Obach, and Maurer 

2007; Krantz et al. 2003). 

Although methadone has been used for more than seventy years, the metabolism 

of methadone in the human body is still not fully understood and the effective and safe 

dose among patients is highly variable. It is suspected that the variability in methadone 

clearance and the frequent under- or over-dosing are results of a wide distribution of the 

rate of methadone metabolism. The metabolism of methadone to its primary 

demethylated metabolite, EDDP, and then to its secondary metabolite, EMDP (Figure 

2.1), is well documented as the major metabolic pathway (Pohland, Boaz, and Sullivan 

1971; Sullivan and Due 1973), but the enzymatic route by which these reactions occur in 

the body is controversial (Shiran et al. 2009). Since understanding of the metabolic 

pathways responsible for drug interactions or environmental effects is incomplete 

(Weschules, Bain, and Richeimer 2008), it is difficult to predict methadone 

pharmacokinetics, and adverse events during methadone therapy are frequent. Patients 

taking methadone are often co-prescribed many other medications and are therefore 

vulnerable to drug-drug interactions (Weschules, Bain, and Richeimer 2008). Poorly 

understood drug-drug interactions may thus contribute to the notable increase in 

methadone-related deaths (Sims, Snow, and Porucznik 2007) that has attended the 

increase in the drug’s use over the past decade (Kharasch et al. 2009).  
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Figure 2.1. Dominant route of methadone metabolism.  

Methadone is N-demethylated to the primary metabolite, EDDP, and EDDP is further N-

demethylated to the secondary metabolite, EMDP. Source: drawn based on results from 

(Sullivan and Due 1973).  

 

There is a need to improve our understanding of methadone metabolic pathways.  

While potential interactions with methadone via CYP3A and CYP2B6 have been 

carefully studied in vitro (Iribarne et al. 1997; Foster, Somogyi, and Bochner 1999; Wang 

and DeVane 2003; Kharasch et al. 2004) and in vivo (Eap, Buclin, and Baumann 2002; 

Totah et al. 2008), it is clear that these enzymes cannot fully explain the large variability 

in methadone pharmacokinetics. Other potential routes of metabolism may be important. 

Previous studies suggested that placental aromatase may be responsible for the increased 

methadone clearance in pregnant women (Hieronymus et al. 2006; Nanovskaya et al. 

2004). However, drug interactions involving drugs that alter methadone clearance via 

aromatase have not been described or tested for. Patients with metastatic breast cancer 

who are in pain may often be co-prescribed methadone with a potent aromatase inhibitor, 

and may therefore be at risk for interactions between these two drugs. To better 

understand the role aromatase plays in methadone metabolism, I tested the hypothesis 

that aromatase is able to metabolize methadone to its primary metabolite, EDDP. 
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Results 

The ability of recombinant human aromatase to metabolize methadone was tested 

using microsomal incubations in vitro. The metabolism of methadone by pooled human 

liver microsomes (HLMs) was used as a positive control. Metabolism of methadone 

(1000 µM) to EDDP by both recombinant human aromatase and HLMs was observed 

(Figure 2.2). A selective aromatase inhibitor, letrozole, was used to completely block 

aromatase activity as a control. In human liver microsomes, letrozole (50 nM) lowered 

EDDP formation from methadone (10 µM) by ~ 7%, whereas in recombinant aromatase 

letrozole at this concentration reduced EDDP formation by ~ 65%. Most important of all, 

the enzyme in the recombinant aromatase microsomal preparation that converts 

methadone to EDDP was confirmed to be aromatase because the conversion of 

methadone to EDDP was completely inhibited by 1 µM of letrozole. 
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Figure 2.2. Both human liver CYP enzymes and aromatase can contribute to the 

primary metabolism of methadone. 

Percent of EDDP formation from methadone relative to controls without letrozole 

(Columns 1 and 3 from the left). Human liver or recombinant aromatase microsomal 

preparations were incubated with methadone (10 µM) for 30 min at 37 oC and the amount 

of EDDP generated was determined by LC-MS/MS. 

 

The logical next step was to characterize the metabolism of methadone by 

aromatase and these experiments were then carried out under conditions where secondary 

metabolism from EDDP to EMDP was not detected. Figure 2.3 depicts the rate of EDDP 

generation from methadone across a range of methadone concentrations (0 - 2000 µM). 

These data indicate metabolism of methadone to EDDP by recombinant human 
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aromatase with a Km of 314 µM and a Vmax of 7.6 pmol/min/pmol of P450. When the 

(R)- and (S)-enantiomers of methadone were separately tested, no stereoselectivity was 

observed (Figure 2.4). 

 

 

 

Figure 2.3. Michaelis-Menten kinetics of methadone metabolism by recombinant 

human aromatase. 

A range of racemic methadone concentrations was incubated with recombinant aromatase 

(0.05 µM) for 30 min, and the amounts of EDDP generated were determined using HPLC 

in three independent experiments. Individual points represent the mean of duplicate 

incubations. 
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 Figure 2.4. Metabolism of methadone by human aromatase was not stereoselective. 

A range of (R)-methadone (dark square) or (S)-methadone (open diamond) 

concentrations was incubated with recombinant aromatase (0.05 µM) for 30 min, and the 

amounts of EDDP generated were determined using HPLC. Individual points represent 

the mean of duplicate incubations. 

 

Discussion  

The effective use of methadone in the treatment of pain and heroin addiction is 

compromised by poor understanding of the metabolic routes involved in its disposition. 

One direct consequence is the inability to anticipate drug interactions in patient 

populations who are commonly co-prescribed multiple medications. For years, 

methadone metabolism has been widely attributed to CYP3A4 (Iribarne et al. 1997), and 
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this body of science is reflected in the current FDA-approved label for methadone, which 

states in part:  

“Since the metabolism of methadone is mediated primarily by the 
CYP3A4 isozyme, coadministration of drugs that inhibit CYP3A4 activity 
may cause decreased clearance of methadone. Thus, methadone-treated 
patients coadministered strong inhibitors of CYP3A4, such as azole 
antifungal agents (e.g., ketoconazole) and macrolide antibiotics (e.g., 
erythromycin), with methadone should be carefully monitored and dosage 
adjustment should be undertaken if warranted.”  
 

The scientific basis of this recommendation has been challenged by recent clinical data 

that provide strong and unambiguous evidence against the involvement of this enzyme 

(Kharasch et al. 2008; Kharasch et al. 2009). An assessment of clinical CYP3A activity 

and methadone clearance in normal volunteers showed that CYP3A inhibition by 

ritonavir (a potent CYP3A4 inhibitor that caused > 90% inhibition) had no effect on 

methadone plasma concentrations or clearance (Kharasch et al. 2008). Variability in 

CYP3A4 activity also had modest influence on the oral clearance of methadone and its 

enantiomers (Shiran et al. 2009). Most notably, there was no correlation between 

intravenous methadone clearance and hepatic CYP3A activity, and none between oral 

methadone apparent clearance and first-pass CYP3A activity (Kharasch et al. 2009). This 

in vivo evidence strongly supports the notion that the role of CYP3A in clinical 

methadone clearance is not critical and that other CYPs may be more important.  

In our study, aromatase has been demonstrated as an alternative enzyme that is 

able to metabolize methadone. We showed that human recombinant aromatase 

metabolized methadone to the dominant metabolites that are observed in humans and that 

this conversion can be completely blocked by the selective aromatase inhibitor letrozole. 

These data are consistent with the earlier reports that suggest methadone metabolism by 
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human placental aromatase (Nanovskaya et al. 2004; Hieronymus et al. 2006). This 

finding may be important. First, it is possible that aromatase contributes to the clearance 

of methadone in vivo. However, our observed Km value in the recombinant system is 

high compared to plasma methadone concentrations within therapeutic range in patients 

(Eap, Buclin, and Baumann 2002), the clinical relevance of aromatase and the extent to 

which aromatase metabolizes methadone in general is unclear. Second, the data showing 

that methadone metabolism by HLMs was not substantially inhibited by letrozole are 

consistent with the fact that aromatase is expressed at a low level in human liver (Carruba 

2009). However, aromatase does have high activity in many other tissues (Simpson et al. 

2002), and methadone has a high volume of distribution that varies from 1.0 to 8.0 L/kg 

(FDA label for methadone) reflecting its distribution to many tissues. Therefore, 

metabolism of methadone by aromatase in tissues where methadone accumulates in vivo 

would seem possible. Fourth, since withdrawal from methadone is often idiosyncratic and 

is poorly understood, the possibility of patients having variable aromatase activity that 

leads to different rate of methadone elimination deserves further studies. With that said, 

methadone metabolism by other liver CYP450 enzymes could be largely responsible for 

the variability seen in methadone clearance, and the role of aromatase might be important 

in patients who either have low liver metabolism of methadone or have relatively high 

aromatase activity. In addition, since the biochemical aromatization of testosterone by 

aromatase is initiated by the removal of a methyl group, and since aromatase is also able 

to remove methyl groups from methadone, cocaine (Osawa et al. 1997), and 

buprenorphine (Deshmukh, Nanovskaya, and Ahmed 2003), it is possible that aromatase 

is involved in the demethylation of other drugs. 
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In summary, this study has shown that aromatase is able to demethylate 

methadone in vitro. The clinical relevance of this metabolic pathway, its quantitative 

contribution to methadone clearance in humans, and the involvement of aromatase in 

overall methadone disposition are unclear, and further studies that are designed to address 

these questions are discussed in the next chapter. 

 

Methods 

Methadone metabolism in vitro by recombinant aromatase 

All incubations were carried out as described in “Chapter Ten: General Methods / 

Testosterone and methadone metabolism in vitro by recombinant aromatase”. 

 

Quantification of EDDP formation 

High performance liquid chromatography (HPLC) assays with ultraviolet (UV) 

detection were developed for the quantification of methadone conversion to EDDP as 

described in “Chapter Ten: General Methods / HPLC-UV assays for the quantifications 

of estradiol and EDDP formation”.  

 

Kinetic analyses 

Formation rates of metabolite at different substrate concentrations were fit to 

appropriate enzyme kinetic models using SigmaPlot (Version 10.0, Systat software, Port 

Richmond, CA). Data were best fit to a one site Michaelis-Menten equation.  

 

Note: The work described in this chapter has been published (Lu et al. 2010). 
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CHAPTER THREE 

Metabolism of Methadone by Aromatase in Humans 

 

Introduction  

Methadone is of particular value to patients who require long-term treatment of 

chronic pain and opioid addiction. Despite its acknowledged value, methadone is subject 

to highly variable pharmacokinetics (Weschules, Bain, and Richeimer 2008; Eap, Buclin, 

and Baumann 2002). As a result initial dosing requirements and subsequent adjustments 

are difficult to anticipate, and inappropriate dosing can clearly cause severe adverse 

events (Modesto-Lowe, Brooks, and Petry 2010; Corkery et al. 2004; Latowsky 2006; 

Krantz et al. 2003). A rational approach to methadone dose estimation or adjustment 

during therapy based on the understanding of the pathways of methadone disposition still 

needs to be developed. Improved understanding of methadone disposition requires 

knowledge of the enzymes involved in its metabolism in humans. Many enzymes have 

been proposed to be involved, including CYP1A2, CYP2B6, CYP2C8, CYP2C9, 

CYP2C19, CYP2D6, CYP3A and aromatase (Kharasch et al. 2008; Kharasch et al. 2009; 

Shiran et al. 2009; Totah et al. 2008; Chang et al. 2011; Wang and DeVane 2003; 

Hieronymus et al. 2006), but few of these has been definitively demonstrated to be 

involved in vivo. For example, CYP2B6 plays an important role in methadone 

metabolism (Totah et al. 2008; Crettol et al. 2005; Wang et al. 2011) but CYP3A does 

not (Kharasch et al. 2008; Kharasch et al. 2009); yet, it is equally clear that CYP2B6 

cannot explain all of the variability in methadone disposition and effects (Chang et al. 

2011; Crettol et al. 2005). For this reason, other possibilities have been explored and a 
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number of lines of evidence point to the involvement of aromatase (Chapter One, this 

dissertation), an enzyme previously thought to be involved exclusively in endogenous 

steroidogenesis.  

My previous work has shown that methadone can be metabolized by recombinant 

human aromatase in vitro (Chapter Two, this dissertation). The metabolic routes involved 

in methadone disposition are unclear and previous studies in vitro suggest that 

metabolism by aromatase may contribute (Km of 314 µM, Vmax of 7.6 pmol/min/pmol of 

P450; single-site Michaels-Menden model). These data were determined in a 

recombinant system. It is difficult to extrapolate in vitro binding affinity to clinical 

predictions, especially with drugs such as methadone that are concentrated in tissues 

(Inturrisi et al. 1987). The contribution, if any, of aromatase to the metabolism of 

methadone in clinical settings has not been determined. The possibility exists that 

aromatase contributes significantly to the metabolism of methadone, and that the inter-

individual variability seen in methadone pharmacokinetics may be explained in part by 

variability in aromatase activity. 

Aromatase activity is highly variable. It is the enzyme responsible for the 

conversion of endogenous androgens to estrogens, and its regulation and expression have 

been the subjects of intense study (Simpson et al. 2002; Simpson 2003; Czajka-Oraniec 

and Simpson 2010). The activity of the enzyme varies considerably between men and 

women (Labrie et al. 1997), with age (Grow 2002; Labrie et al. 1997), with the menstrual 

cycle (Sano et al. 1981) and with weight (Yousefi et al. 2011). In addition, its activity 

may be influenced by many extrinsic factors including herbal supplements (Wang et al. 

2009), and calcitriol (Krishnan and Feldman 2011). In order to address whether or not 
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aromatase can metabolize methadone in humans, the ability of aromatase to demethylate 

methadone in tissues should be examined. Since aromatase is present in many tissues 

including adipose tissue, breast, bone, brain, liver and blood vessels (Simpson et al. 

2002), it is difficult, if not impossible, to assess the overall contribution of this enzyme to 

systemic drug clearance using in vitro studies conducted in any individual tissue. For this 

reason, clinical studies are the ideal means with which to address the involvement of 

aromatase in the elimination of methadone in a quantitative manner.  

Aromatase is the target of the aromatase inhibitor class of drugs now routinely 

used to reduce circulating estrogens in the treatment of breast cancer and a number of 

other conditions. The availability of these potent and selective aromatase inhibitors 

presents a valuable opportunity to study the disposition of drugs that might be 

metabolized by aromatase. Our study was designed to use the clinically available 

aromatase inhibitor, letrozole, to test the hypothesis that the metabolism of methadone in 

humans is altered by essentially complete aromatase inhibition.  

We designed a clinical trial and then carried it out in a group of postmenopausal 

women. We chose to study postmenopausal women because aromatase activity in general 

is higher in women than in men and aromatase inhibitors do not fully block aromatase 

activity in premenopausal women, in whom the ovarian-pituitary feedback loop prevents 

effective suppression of enzyme activity (Pritts 2010). After analysis of blood and urine 

samples collected during this trial, I present here the resulting data on the effects of 

letrozole on the disposition of methadone in this group. 
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Results 

The effects of aromatase inhibition on single dose methadone pharmacokinetics (2 

mg, intravenous) were studied in 15 healthy, post-menopausal women. The subjects 

studied were all healthy female and post-menopausal, with a mean age of 54, a mean 

weight of 84 kg and BMI of 30 (Table 3.1). The mean QTc (Bazette) interval at screening 

before their participation in the study was 413 msec. All 15 subjects enrolled completed 

the study according to the protocol. No serious adverse events or significant changes in 

vital signs (blood pressure, pulse, respiratory rate and pulse oximetry) were recorded.  

 

Table 3.1. Demographics of study population (n = 15). 

 

 

A sequential design was employed, involving a control period followed by 

treatment with letrozole (2.5 mg/day, 10 days) in which each subject served as her own 

control (see “Methods” section). The disposition of methadone after intravenous 

administration (2.0 mg) was altered by the treatment of letrozole. Mean plasma 
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concentrations of methadone and its primary metabolite, EDDP, before and after 

letrozole treatment, are shown in Figure 3.1. The calculated methadone and EDDP 

pharmacokinetic parameters derived from these data are displayed in Table 3.2. 

Methadone systemic clearance, plasma AUC, elimination half-life, and the ratio of 

plasma AUC of methadone to plasma AUC of EDDP during letrozole treatment were all 

significantly different from those derived from the data obtained after the first dose of 

methadone, administered during the control period. In contrast, there was no appreciable 

change in the methadone distribution half-life, volume of distribution or its estimated 

apparent 0 - 12 h renal clearance between the control and letrozole-treated periods. When 

the metabolite data from the two periods were compared, no appreciable difference was 

observed in the AUC of plasma EDDP concentrations, or in its estimated apparent 0 - 12 

h renal clearance (Table 3.2). The secondary metabolite of methadone, EMDP, was 

present at concentrations at least ten-fold lower than that of EDDP, and was not 

consistently detected in all plasma samples and so pharmacokinetic parameters for this 

metabolite could not be calculated.  
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Figure 3.1. Effects of letrozole treatment on intravenous methadone disposition.  

Plasma methadone (A) and EDDP (B) concentrations in the control (open diamond, dash 

line) and letrozole (closed diamond, solid line) periods are shown as the mean ± SD (n = 

15) on a logarithmic scale (base 10). Subjects received 2.0 mg intravenous methadone 

HCl (1.8 mg free base) in both periods. Variation in the actual time of plasma sampling 

was less than 5%.  
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Table 3.2. Pharmacokinetic parameters in the letrozole-treated period compared to 

control. 

 

Note: Data are presented as mean ± SD (n = 15). CLIV, systemic clearance; AUC, area 

under the plasma concentration-time curve; t½, half life; Vd, volume of distribution; CLr, 

renal clearance; Cbaseline, plasma concentration at baseline before methadone dosing. *, 

significantly different from control; P values were calculated using paired t-test (control-

letrozole). 
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Plasma concentrations of methadone during letrozole treatment were higher than 

those during the control period, with significant differences being noted after 48 h (Figure 

3.1.A). The concentration of EDDP was notably lower than that of methadone itself at all 

time points. There was no appreciable difference in plasma concentrations of the 

metabolite EDDP, before and after letrozole treatment (Figure 3.1.B). Both methadone 

and EDDP concentrations appeared to have large inter-individual variability (up to 3.0-

fold for methadone AUC0-∞ and 4.7-fold for EDDP AUC0-72 h, Figure 3.1 and Table 3.2). 

The effect of letrozole on systemic methadone clearance was highly variable. 

While one subject actually experienced a 17% increase in methadone clearance during 

letrozole treatment, three out of fifteen subjects changed 3% or less, and the majority 

(eleven) experienced decreases in methadone clearance that ranged from 11% to 51% 

with a mean of 27% (Figure 3.2). On average, letrozole treatment significantly reduced 

methadone clearance by 22% (p = 0.001, Figure 3.2.B and Table 3.2). Methadone 

clearance during the untreated control period ranged from 0.45 to 2.42 ml kg-1 min-1 (a 

5.4-fold variation, Figure 3.2.B), but there was no appreciable relationship between this 

control methadone clearance and the magnitude of the treatment effect that was observed 

(data not shown).  
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Figure 3.2. Effects of letrozole treatment on methadone systemic clearance. 

 (A) Each column represents the percent change of methadone clearance for an individual 

subject during letrozole treatment. (B) Data representing individual subjects are shown as 

grey circles, with lines connecting the control and letrozole periods. The means are 

shown as black squares (n = 15). Methadone systemic clearance was significantly 

different between the two periods (P < 0.05, paired t-test).  
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Changes in methadone AUC0-∞ and elimination half-life observed during letrozole 

treatment were also highly variable (Table 3.2). The AUC0-∞ increased an average of 23% 

(p = 0.007) and the elimination half-life increased an average of 21% (p = 0.042, Table 

3.2). In these subjects, methadone elimination half-life during the control period ranged 

from as short as 34 h to as long as 124 h (a 3.7-fold variation). The largest effect brought 

about by letrozole on elimination half-life was a 2.2-fold increase in one subject, from 34 

to 77 h. 

Over the 72 hours after methadone administration, the plasma AUC of methadone 

increased significantly during letrozole treatment (p = 0.003), while the plasma AUC of 

EDDP did not change (Table 3.2). The ratio of plasma AUC0-72 h values (methadone / 

EDDP) increased significantly during letrozole treatment compared to control (p = 0.009, 

Table 3.2). There was also an increase on average in the methadone to EDDP ratio in the 

urine collected over the first 12 h after methadone administration, but the difference was 

not significant due to large interindividual variability (Table 3.2). When the observed 

change in the ratio of plasma AUC0-72 h values (methadone / EDDP) was plotted against 

the observed change in plasma methadone AUC0-∞, there was a linear relationship with a 

R2 value of 0.74 (Figure 3.3.A), suggesting an association between the decreased rate of 

methadone metabolism and its decreased systemic clearance. These data indicate that the 

metabolism of methadone to EDDP was diminished during letrozole treatment. In 

contrast, there was no obvious association between change in plasma methadone AUC0-∞ 

and change in apparent 0 - 12 h urinary methadone clearance (Figure 3.3.B), suggesting 

that alterations in renal elimination rate of methadone were not the primary cause of the 

observed decrease in methadone clearance. 
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Figure 3.3. Letrozole treatment decreased methadone clearance via inhibition of the 

metabolism of methadone to EDDP. 

 (A) Association (R2 = 0.74) between change in plasma methadone AUC0-∞ and change in 

the ratio of plasma methadone to EDDP (AUCmethadone, 0-72 h / AUCEDDP, 0-72 h). (B) No 

association between change in plasma methadone AUC0-∞ and change in apparent 0 - 12 

h urinary methadone clearance. 
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Plasma letrozole concentrations at baseline before the administration of the 

second methadone dose were measured. After taking 2.5 mg letrozole daily for 8 days, all 

subjects had letrozole concentrations within the expected range, indicating that no 

subjects were non compliant. The average plasma letrozole concentration was 157 ng/ml, 

with a minimum of 80 ng/ml and a maximum of 257 ng/ml (Table 3.2). There was no 

appreciable association between letrozole concentration and any of the observed changes 

in methadone pharmacokinetics (data not shown). 

 

Discussion  

In this study we observed a significant decrease in the clearance of methadone 

during the coadministration of letrozole. This decrease was accompanied by significant 

increases in the methadone AUC, in its half-life and in the parent to metabolite ratio in 

plasma. These effects are all consistent with a decrease in methadone metabolism brought 

about by letrozole. Since letrozole is a highly selective inhibitor of aromatase at the given 

dosage, these data are also consistent with the possibility that some fraction of methadone 

metabolism is mediated via aromatase. 

Aromatase has been implicated in the metabolism and specifically the 

demethylation of a number of drugs in vitro, including methadone (Chapter Two, this 

dissertation), buprenorphine (Deshmukh, Nanovskaya, and Ahmed 2003) and cocaine 

(Osawa et al. 1997), but the role that this enzyme plays in the metabolism of xenobiotic 

medications in humans has not been directly examined before in a clinical study. Our 

clinical trial presented here directly examined the involvement of this enzyme in 

methadone metabolism using selective aromatase inhibition as a tool. While aromatase is 
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already well recognized as being important in steroidogenesis, these data suggest for the 

first time a broader clinical role for this enzyme in the disposition of xenobiotic 

medications. Specifically, the ability of aromatase to catalyze N-demethylation of 

methadone in vivo suggests that it may be able to mediate the clearance of other drugs via 

a similar biochemical mechanism.  

Our data indicate that aromatase is responsible for ~ 22% of the clearance of a 2 

mg dose of methadone on average in a group of post-menopausal women (Table 3.2). 

Since aromatase may be a high capacity and low affinity enzyme for methadone 

metabolism, the quantitative contribution of aromatase to methadone disposition at higher 

doses remain unclear and deserves further studies. These findings suggest that breast 

cancer patients taking methadone who also take aromatase inhibitors may need 

appropriate dose adjustment to prevent methadone overexposure. Aromatase may also be 

important in the disposition of methadone in other populations, and may be in part 

responsible for the large and unpredictable variability in methadone clearance. Higher 

aromatase activity in premenopausal women may result in greater methadone clearance 

as a result. Men have less aromatase than premenopausal women and may consequently 

have lower clearance and higher exposure. Lastly, a quantitatively important role for 

aromatase in drug metabolism raises the possibility of clinically meaningful drug-drug 

interactions with aromatase inhibitors that would not otherwise have been anticipated. 

Such interactions might reasonably occur in patients taking aromatase inhibitors for a 

wide range of indications, including breast cancer, the treatment of infertility (Pritts 

2010) and their off-label use in testosterone augmentation regimes (Leder et al. 2004; 

Saylam, Efesoy, and Cayan 2011). 
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Alternative explanations for these findings exist. First, although letrozole is a 

potent and selective aromatase inhibitor at low concentrations, it is metabolized by 

CYP2A6 (Kamden et al. 2011) and has been shown to be able to inhibit CYP2A6 in vitro 

(Jeong et al. 2009). This inhibition has not been demonstrated in vivo. While it is possible 

that letrozole might inhibit CYP2A6 activity in vivo, a change in methadone metabolism 

due to inhibition of CYP2A6 seems unlikely because potent inhibition of CYP2A6 by 

coumarin in human liver microsomes did not inhibit methadone metabolism (Foster, 

Somogyi, and Bochner 1999). It seems unlikely that CYP2A6 plays a role in methadone 

metabolism in vivo. Second, it is possible that the effect of letrozole is not simply the 

result of direct inhibition of aromatase, but is rather the result of indirect transcriptional 

down regulation of either aromatase itself, or of CYP2B6 brought about via reductions in 

estrogen. Although CYP2B6 has been reported to be sensitive to estrogen-receptor 

dependent regulation in vitro, this has not been consistently reported across all cell lines 

(Lo et al. 2010; Mnif et al. 2007). It remains possible that CYP2B6 is down-regulated in 

the presence of low estrogen concentrations, and that this results in alterations in 

methadone pharmacokinetics, but this important possibility has not been investigated 

either in human hepatic preparations or in vivo.  

Of note, the effects of letrozole on methadone clearance were highly variable 

(Figure 3.2.A). Since aromatase activity varies among people, the variable response we 

observed may be in part due to variability in the contribution of aromatase to overall 

methadone metabolism. We also observed large variability in urinary methadone 

elimination (Figure 3.3.B). In particular, one subject who experienced a 17% increase in 

methadone systemic clearance during letrozole treatment also experienced a large 
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increase in urinary methadone elimination. Surprisingly, this subject had an increase in 

the parent to metabolite ratio in the urine, consistent with decreased metabolism. These 

data suggest that variability in both metabolism and urinary elimination contribute to the 

overall variability in methadone clearance.  

The data illuminate a number of possible underlying mechanisms. First, a number 

of mechanisms could contribute to variability in the inhibitory effects of letrozole on 

methadone metabolism. While variability in plasma letrozole concentrations could in 

theory bring about variability in inhibitory effect, our data indicate no relationship 

between letrozole plasma concentration and the extent of change in methadone 

pharmacokinetics. We would expect this to be the case given the documented high 

potency of letrozole. In addition, no relationship was observed between the initial 

methadone clearance during the control period and the extent of change observed, 

suggesting that the quantitative contribution of aromatase to methadone metabolism in 

individual subjects does not associate with the undisturbed metabolic rate. It is likely that 

there is a balance between aromatase and other enzymes suggested to be important in the 

metabolism of methadone, including particularly CYP2B6. This balance can vary among 

people, and therefore variability in the percent contribution of aromatase to overall 

methadone clearance might exist. It remains possible that the difference in response could 

be explained by pharmacogenomic variability in aromatase, or of CYP2B6 (Payne et al. 

2009; Mao et al. 2011; Ma et al. 2005; Ma et al. 2010; Crettol et al. 2005; Wang et al. 

2011). While the current study does not have sufficient power to ascertain the influence 

of such genetic factors, this possibility deserves further study.  
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Second, variability in urinary methadone elimination could be due to the well 

documented influence of urinary pH on the renal elimination of methadone (Nilsson et al. 

1982), but may also be the result of effects of letrozole on renal transporters as yet 

undescribed. In addition, both metabolic and renal clearance could also be influenced by 

the presence of other drugs or herbal medications taken by the subjects under study via 

mechanisms as yet unknown. Our current inability to predict methadone dose may thus 

be due to poor understanding of factors that influence a complex series of methadone 

elimination mechanisms, including at least two metabolic pathways: aromatase and 

CYP2B6 as well as variable renal elimination. 

Third, it is also possible that variability in the clinical disposition of drugs like 

methadone during concomitant treatment of aromatase inhibitors can be explained in part 

by genetic polymorphisms in the estrogen signaling pathways downstream of aromatase. 

Since estrogen is key to the regulation of the expression of a wide range of proteins, 

medications that directly affect estrogen synthesis by inhibiting aromatase may result in 

pharmacokinetic drug interactions via changes in proteins responsible for the absorption, 

distribution, metabolism and elimination of a specific drug, such as methadone. This 

estrogen-mediated influence on methadone disposition may be highly variable because of 

clinical effects of genetic polymorphisms in estrogen receptors and/or in the subsequent 

regulation of the expression of drug transporters, enzymes, binding proteins or drug 

receptors. The use of aromatase inhibitors therefore needs to be cautious not only in 

situations where alterations in direct metabolism of another drug by aromatase can 

happen. Indirect alterations in the expression of the proteome as the result of estrogen 

depletion may also lead to changes in drug clearance and exposure. 
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This trial has the following limitations. First, although methadone was given as a 

racemic mixture, we did not measure the individual (R)- and (S)-enantiomers. Although it 

is possible that changes in individual enantiomers may be obscured by this approach, our 

prior in vitro data using recombinant human aromatase clearly indicated that the 

metabolism of methadone by aromatase is not stereoselective, and we would therefore 

expect both enantiomers to be affected equally by the inhibition of aromatase in the 

subjects studied. Second, the urinary collection time was short (12 hours) relative to the 

long half-life of methadone, and this limits our ability to most accurately measure the 

urinary clearance of methadone or EDDP. While this is an important caveat, it does not 

compromise our ability to accurately determine the other pharmacokinetic parameters, all 

of which are internally consistent, and indicate a decrease in systemic clearance, and a 

prolongation of methadone half-life associated with reduced metabolism to EDDP. 

In summary, aromatase seems to account for ~ 22% of methadone clearance when 

the drug is given at a low dose in post-menopausal women. An involvement of aromatase 

in the metabolism of methadone suggests a broader role for this catalyst of endogenous 

steroid metabolism in xenobiotic drug disposition, and may help explain the difficulty in 

dosing methadone. Mechanisms underlying the variability in methadone clearance in 

response to letrozole treatment merit future studies. It is likely that human methadone 

metabolism is carried out by both aromatase and CYP2B6. Variability in methadone 

metabolism could thus be vulnerable to genetic factors that influence the activity or the 

regulation of either or both of these enzymes.  
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Methods 

Clinical protocol 

The study was approved by the Indiana University Institutional Review Board, 

and was conducted in the Indiana Clinical Research Center. All subjects signed informed 

consent before participation in the trial, and all procedures were conducted in accordance 

with the guidelines of the Declaration of Helsinki. Subjects enrolled in this clinical trial 

were healthy post-menopausal women 45 to 70 years of age who weighed at least 110 

lbs, and who agreed to avoid the use of alcohol during the period of the study. Potential 

subjects were excluded from the study if they had a history of intolerance or allergy to 

methadone or letrozole, had a known history of addiction to drugs, had a diagnosis of 

asthma, chronic obstructive pulmonary disease, cor pulmonale, severe obesity with a 

weight over 300 lbs, or sleep apnea syndrome. Subjects were also excluded if they were 

anemic (hematocrit below 30%), suffered from renal insufficiency (serum creatinine 

greater than 1.4) or had elevation of serum liver enzymes, had low serum potassium, a 

prolonged electrocardiographic QTc interval of more than 480 msecs (Bazette), were 

taking drugs know to prolong the QT interval or participated in a study within the last 

two months.  
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Figure 3.4. Clinical trial design and schedule of activities (n = 15). 

Blood samples (10 ml each) were collected before and at 1, 2, 4, 8, 12, 24, 48 and 72 

hours after every methadone dose. Urine samples were collected at baseline and over the 

first 12 hours after every methadone dose. 

 

The study protocol was a single-site, acute dose, 2-period sequential design with 

each subject as their own control (Figure 3.4, control period first). (1) Control period: 

Subjects were instructed to fast overnight for at least 8 hours before the first day of the 

study. On study day 1, following predose blood and urine sampling and the insertion of a 

forearm intravenous catheter, subjects were administered a single intravenous dose of 

methadone HCl (2.0 mg, 1.8 mg free base). Venous blood samples were collected over 

the next 72 hours from day 1 to day 4 according to the following schedule: 1, 2, 4, 8, 12, 

24, 48, and 72 hours after the dose. Plasma samples were immediately separated and 

stored at – 80 °C for later analysis. Continuous urine samples were collected over the first 

12 hours after the methadone dose, and stored at – 80 °C. Subject received a standard 

breakfast 2 hours after methadone and free access to food thereafter. (2) Letrozole-treated 

period: on study day 8, subjects began taking a daily oral dose of letrozole (2.5 mg/day) 

each morning at the same time, and continuing through study day 18. Before study day 
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15, subjects were instructed to fast overnight again. On study day 15, the same 

procedures as that on day 1 of the control period involving a single intravenous dose of 

methadone, pre- and post-dosing blood and urine pharmacokinetic sampling were 

repeated from day 15 to day 18. In order to assess patient compliance with daily letrozole 

dosing, the blood drawn immediately before the dose of methadone on study day 15 was 

used to measure plasma letrozole concentrations. Plasma methadone concentrations were 

also measured in these samples to ensure that no methadone remained in the blood before 

the second pharmacokinetic investigation done in the letrozole-treated period. More 

detailed clinical procedures are described in “Chapter Ten: General Methods / Protocol 

for clinical trial: effects of aromatase inhibition on methadone disposition”. 

 

Sample analysis  

HPLC with tandem mass spectrometry detection (LC-MS/MS) assays were 

developed for the quantification of plasma and urinary methadone and its major 

metabolites, EDDP and EMDP. All samples were analyzed as described in “Chapter Ten: 

General Methods / LC-MS/MS assays for plasma and urinary methadone, EDDP and 

EMDP”. Plasma letrozole concentrations were measured using HPLC assays with 

ultraviolet and fluorescence detection as described in “Chapter Ten: General Methods / 

HPLC-UV-fluorescence assays for plasma letrozole”. 

 

Pharmacokinetic analysis 

Data on methadone and its metabolites including area under the concentration-

time curve (AUC), half-life (t½), clearance (CL) and volume of distribution (Vd) were 
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estimated using a two-compartment model (Phoenix™ WinNonlin® 6.1, Pharsight 

Corporation, Cary, NC). Systemic clearance of intravenous methadone was CLIV = dose / 

AUC0-∞, t½ estimated based on the terminal elimination rate constant, volume of 

distribution based on the terminal phase was Vd = CLIV · t½ / 0.693, and apparent 0 - 12 h 

renal clearance of methadone and its primary metabolite EDDP was estimated as CLr, 0-12h 

= total amount excreted in urine during the first 12 hours / the corresponding AUC0-12 h.  

Note: Equations are quoted from (Rowland and Tozer 1995). 

 

Statistical analysis 

Differences between control and letrozole treatment periods for pharmacokinetic 

parameters including methadone AUC, t½, CLIV, and the ratios of methadone to EDDP 

both in plasma and in urine were analyzed by two-tailed paired t-test (Microsoft Office 

Excel 2007). Statistical significance was assigned at p < 0.05. Relationships between 

pharmacokinetic changes were evaluated by linear regression analysis. 

 

Note: The work described in this chapter has been submitted for publication (Lu, Thong, 

and Flockhart 2011).   
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CHAPTER FOUR 

Screening Select Xenobiotics for Aromatase Inhibition 

 

Introduction  

Studies presented in the last two chapters indicate that aromatase is able to 

metabolize methadone, suggesting that aromatase is not only involved in steroidogenesis, 

but is also a drug-metabolizing enzyme with potential important roles in drug disposition 

and drug interactions. Based on these findings, it is possible that aromatase interacts with 

a broad range of xenobiotic medication. These interactions may in turn affect aromatase 

activity.  

Important drug-metabolizing CYPs, such as CYP1A1, CYP1A2, CYP2B6, 

CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A, have been extensively 

studied for their involvements in drug interactions, and the knowledge resulted from 

these studies provides useful guidance for clinical prescription. In contrast, aromatase is 

much less studied. To date, due to the lack of understanding of its role in drug 

metabolism, the possibility of altered clinical drug disposition and the resultant adverse 

drug reaction via aromatase inhibition has not been widely considered. This 

understanding is important not only in the prediction and prevention of pharmacokinetic 

drug-drug interactions, but more so in the treatment of a critical disease that causes high 

fatality and heavy healthcare burden worldwide: breast cancer. The peripheral conversion 

of testosterone to estradiol by aromatase is the primary source of endogenous estrogen in 

post-menopausal women, and the inhibition of aromatase represents a key approach to 

the treatment of hormone-receptor positive breast cancer. The aromatase inhibitor class of 
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drugs is widely used and effective for this indication, but their use is compromised by 

side effects that result in non-compliance and poor quality of life of breast cancer 

patients. It follows that it is important to develop more tolerable aromatase inhibitors with 

improved therapeutic index. At present, most post-menopausal women at high risk are 

treated either with tamoxifen or raloxifene, both of which are indicated in the prevention 

of breast cancer (Chlebowski et al. 1999). However, it has recently become clear that 

many patients eligible for preventive therapy with tamoxifen either refuse to take it, or 

are non-adherent (McCowan et al. 2008). Aromatase inhibitors are also under study for 

this indication and a recent report showed that therapy with one of the available AIs, 

exemestane, was associated with a 65% relative reduction in the annual incidence of 

invasive breast cancer in postmenopausal women who were at moderately increased risk 

for breast cancer (Goss et al. 2011). Unfortunately, musculoskeletal pain compromises 

adherence to therapy with available aromatase inhibitors (Henry et al. 2008). Alternative 

aromatase inhibitors may allow greater compliance by bringing about fewer of the side 

effects. It is possible that novel aromatase inhibitors that allow greater compliance may 

therefore be of value in the prevention setting. For these reasons, and as a first step in 

obtaining better understanding of drug interactions with aromatase, I set out to study the 

effects of xenobiotics on aromatase activity. 

Since my prior work has showed that aromatase is able to metabolize methadone 

(Chapters Two and Three, this dissertation), I hypothesized that this enzyme may interact 

with a small group of drugs and/or their metabolites that I have selected based on the 

following criteria: 1) drugs that are cleared by metabolism via N- or O-demethylation, 

which are metabolic reactions similar to those that aromatase can carry out; 2) drugs that 



50 
 

are commonly prescribed to patients with breast cancer. Since understanding interactions 

between aromatase and xenobiotics may be important for the prediction and prevention of 

adverse drug interactions associated with the use of aromatase inhibitors, and since there 

is a need for developing more tolerable aromatase inhibitors with improved therapeutic 

window, I studied these selected xenobiotics for their ability to inhibit aromatase. 

 

Results and discussion 

Using carefully recorded medication data from trials of tamoxifen (Jin et al. 2005) 

and aromatase inhibitor (Henry et al. 2008) conducted by Dr. Flockhart and his 

collaborators in the Indiana University Cancer Center, we determined that selective 

estrogen receptor modulators (SERMs), antidepressants, non-steroidal anti-inflammatory 

drugs (NSAIDs) and opiates for pain control are commonly co-prescribed drugs. Drugs 

that satisfy both criteria include the SERMs, toremifene (Berthou et al. 1994) and 

tamoxifen (Desta et al. 2004); antidepressants, fluoxetine (Liu et al. 2001) and 

venlafaxine (Eap et al. 2003); the NSAIDs, naproxen (Miners et al. 1996) and ibuprofen 

(Hamman, Thompson, and Hall 1997); and the opiates, codeine (Yue et al. 1997), 

tramadol (Paar et al. 1997) and methadone (Sullivan and Due 1973; Chapters Two and 

Three, this dissertation). In addition, there are existing interests in understanding the 

effects of natural compounds that cause endocrine disruption by changing aromatase 

activity (Cheshenko et al. 2008; Sanderson 2006). Since the most clearly characterized 

and clinically important interaction between natural compounds and the cytochrome P450 

system so far is the reduction of CYP3A activity brought about by grapefruit juice 

(Guengerich and Kim 1990), it seems important to understand the effects of grapefruit 
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juice components on aromatase activity. Naringenin is an active component within 

grapefruit juice and therefore was also included in the selected compounds to be tested 

for their ability to inhibit aromatase.  

Each selected compound was tested using a fluorescent aromatase activity assay 

with microsomal incubations. Two of the current aromatase inhibitors: letrozole, a 

competitive inhibitor, and exemestane, a mechanism-based inhibitor, were used as 

positive controls. Since an important exemestane metabolite, 17-hydroxy exemestane, 

may contribute to the clinical effect of exemestane via a similar mechanism, its ability to 

inhibit aromatase was also tested in addition to the select group of compounds. The 

screening results are shown in Figure 4.1.  
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Figure 4.1. Screening selected compounds for their ability to inhibit aromatase. Data 

represent duplicate incubations for each tested compound. (A) The concentration of each 

tested inhibitor was 10 µM. Letrozole at 10 nM was used as a positive control. (B) The 

concentration of tested inhibitor was 10 µM, except that fluoxetine was tested at both 10 

and 20 µM. Letrozole at 20 nM was used as a positive control. (C) The concentration of 

tested inhibitor was 10 µM, except that naringenin was tested at 20 µM. The mechanism-

based inhibitor exemestane at 10 µM was used as a positive control. 

 

The effects of tested inhibitor on aromatase activity were measured with inhibitor 

concentrations set at 10 or 20 µM, and were presented as percent enzyme activity 

remaining compared to vehicle controls. Data showed that methadone metabolite EMDP, 

tamoxifen metabolites N-desmethyl-tamoxifen (NDMT) and endoxifen, fluoxetine, 
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naringenin and 17-hydroxy-exemestane were able to reduce aromatase activity at the 

concentration tested, while methadone and its metabolite EDDP, venlafaxine, ibuprofen, 

tamoxifen and its metabolite 4-hydroxy-tamoxifen, naproxen, toremifene, tramadol and 

codeine did not inhibit aromatase at the concentration of 10 µM.  

In order to better predict aromatase inhibitory effects of these drugs in breast 

cancer patients who are taking them, and to identify potential aromatase inhibitors within 

the current pharmaceutical armamentarium, I selected a few candidates for further studies 

to characterize their detailed inhibitory mechanisms. (1) Among the compounds that 

appeared to be active aromatase inhibitors, fluoxetine is a relatively weak inhibitor at 10 

and 20 µM, and therefore is not likely to bring about clinically meaningful aromatase 

inhibition via a reversible mechanism. However, whether or not aromatase interacts with 

fluoxetine via demethylation merits further studies. (2) The exemestane metabolite, 17-

hydroxy exemestane, is a steroid analogue like its parent drug exemestane. It is likely that 

17-hydroxy-exemestane inhibits aromatase via mechanism-based inhibition similar to the 

action of exemestane, and so it was not included for further characterization because 

aromatase inhibition is already expected when exemestane is given to patients, and the 

efficacy and toxicity profile of 17-hydroxy-exemestane may be close to that of 

exemestane due to their structure and mechanistic similarity. (3) The methadone 

metabolite EMDP is a secondary metabolite and present at relatively very low 

concentrations in patients taking methadone (Lu, Zhou et al. 2011). Since it only 

inhibited aromatase activity by ~ 25% at 10 µM, it is not likely that EMDP itself has 

substantial inhibitory effect on aromatase in vivo. With that said, since aromatase is able 

to metabolize methadone, it is clear that the enzyme interacts with methadone in humans, 
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and the possibility of either competitive inhibition or irreversible mechanism-based 

inhibition by methadone at a higher concentration cannot be ruled out and merits future 

studies. (4) Naringenin substantially reduced aromatase activity at 20 µM. The 

enantiomers of naringenin, (R)- and (S)-naringenin appeared to have different potency as 

aromatase inhibitors and were selected for further investigation, especially for their 

stereoselectivity on aromatase. (5) Most interestingly, NDMT and endoxifen inhibited 

aromatase activity by ~ 37% and ~ 57% respectively. Tamoxifen is an effective therapy 

in the treatment of breast cancer, but the aromatase inhibitory effects brought about by 

tamoxifen metabolites were not known before. Since these effects may contribute to the 

beneficial effects of tamoxifen in breast cancer patients, the ability of tamoxifen 

metabolites to inhibit aromatase deserve detailed studies.   

In summary, these data demonstrate that several xenobiotics interact with 

aromatase in vitro and this fact suggests potential clinical significance. Methadone and 

tamoxifen are common medications taken by breast cancer patients and these drugs, if 

they exert adequate aromatase inhibition in humans, might have beneficial effects that 

could prevent tumor growth and cancer recurrence. Naringenin is often ingested via fruit 

products such as grapefruit juice and therefore might also be protective for people with 

high breast cancer risk. These findings suggest that methadone, naringenin and tamoxifen 

metabolites are important candidates for further mechanistic studies. Moreover, these 

compounds are all structurally different from the known aromatase inhibitors. They might 

employ different kinetic actions on the target enzyme and/or have simultaneous actions 

on other receptors that result in improved risk/benefit profile as a therapy for breast 

cancer patients. Methadone, naringenin and tamoxifen metabolites require further study 
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to allow us to fully exploit their potential to serve as better aromatase inhibitors.  For this 

reason, studies aimed to address these questions were designed and conducted as 

described in detail in the next three chapters. 

 

Methods 

Fluorescent assay for inhibition of aromatase in vitro 

The activity of aromatase was determined by measuring the conversion rate of a 

fluorometric substrate, 7-methoxy-4-trifluoromethylcoumarin (MFC), to its fluorescent 

metabolite, 7-hydroxytrifluoromethylcoumarin (HFC) as described in “Chapter Ten: 

General Methods / Fluorescent assay for inhibition of aromatase in vitro”. 
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CHAPTER FIVE 

Mechanism-based Inhibition of Aromatase by Methadone 

 

Introduction  

Aromatase is able to metabolize methadone both in vitro and in vivo (Chapters 

Two and Three, this dissertation). However, the effects of methadone itself on aromatase 

have not been carefully studied and the effects of methadone on the metabolism of 

endogenous androgens have not been described or tested for. Although when tested at 10 

µM, methadone did not act as a competitive aromatase inhibitor in vitro (Chapter Four, 

this dissertation), it remains possible that methadone has inhibitory effect on aromatase at 

higher tissue concentrations in humans or act as a mechanism–based inhibitor when it is 

metabolized by aromatase.  

Auto-inhibition of methadone metabolism over time seen in some patients has 

been a concern in methadone use. Auto-inhibition during chronic methadone therapy 

might lead to unanticipated accumulation of methadone in patients with resultant 

potentially lethal consequences. A poor understanding of the effects of methadone on its 

own clearance over time also impedes our ability to dose accurately, to anticipate and 

manage withdrawal in clinical settings. Screening results described in the last chapter 

suggest that at least one methadone metabolite, EMDP, may have inhibitory effect on 

aromatase activity. Since it is clear that aromatase catalyzes metabolism of methadone, 

and since aromatase also interacts with methadone metabolites, it is possible that the 

aggregated effect of these interactions reduces the activity of aromatase in humans. In 

addition, this influence on aromatase activity might be in part responsible for methadone 
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action. Some side effects associated with methadone, such as bone loss, are reminiscent 

of estrogen withdrawal (Senay 1985; Backstrom 1995). It follows that the involvement of 

aromatase inhibition and the subsequent alterations in the downstream signaling 

pathways involving androgens and estrogens may help explain these side effects of 

methadone. Lastly, since there is a potential role of aromatase in the disposition of 

xenobiotic medications, methadone, an aromatase substrate, might have an effect on the 

pharmacokinetics of other exogenous substrates of aromatase. 

For these reasons, and as a first step in obtaining a more complete understanding 

of methadone’s interactions with aromatase, I tested the ability of methadone to inhibit 

aromatase under conditions in which either reversible or mechanism-based inhibition of 

the conversion of testosterone to estradiol by aromatase could be quantified.  

 

Results 

Testosterone metabolism by recombinant aromatase 

To measure the activity of aromatase, the rate of aromatization of testosterone to 

17-β-estradiol was used as a marker of enzyme activity. Aromatase was able to catalyze 

the generation of estradiol from testosterone with a Vmax of 9.1 pmol/min/pmol P450 and 

Km of 4.0 µM (pilot data not shown). Under the same incubation conditions, a 

concentration of testosterone at the Km was chosen to test for reversible, competitive 

inhibition of aromatase by methadone. At 50 µM testosterone, the rate of estradiol 

formation was at Vmax. This concentration was therefore chosen for experiments to test 

the mechanism-based inhibition of aromatase by methadone. The rate of estradiol 

formation was used as a measure of CYP activity. 
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No reversible inhibition of aromatase by methadone  

To test for reversible inhibition, racemic methadone was incubated for 30 min 

with testosterone at the Km (4 µM). Figure 5.1 shows the rate of estradiol formation from 

4 µM testosterone in the presence of a range of methadone concentrations from 0 to 2 

mM. No direct effect of methadone on the rate of metabolism of this probe for aromatase 

was observed under these conditions, even at the highest concentration of methadone 

used. The selective aromatase inhibitor letrozole (1 µM) used as positive control, on the 

other hand, was able was to completely block the formation of estradiol.  
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Figure 5.1. Methadone is not a reversible inhibitor of recombinant human 

aromatase.   

Testosterone (4 µM) was incubated with a range of racemic methadone concentrations 

and recombinant human aromatase for 10 min, and aromatase activity was determined by 

measuring the generation of estradiol from testosterone in three experiments. Bars 

represent the average rate of estradiol formation in duplicate samples at increasing 

concentrations of methadone or in the presence of 1µM letrozole (positive control). The 

dotted line indicates the average rate obtained in the absence of methadone.  

 

Mechanism-based inhibition of aromatase by methadone 

Since methadone metabolism to EDDP could be catalyzed by aromatase, pilot 

experiments were conducted to test the ability of methadone to inactivate aromatase 
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activity in a time dependent manner. When aromatase was pre-incubated in the presence 

of 1 mM methadone and then incubated with a Vmax concentration of testosterone (50 

µM), a log linear time-dependent loss of aromatase activity occurred (pilot data not 

shown). If enzyme was pre-incubated under the same conditions without methadone, no 

decrease in enzyme activity was observed and the Vmax activity of estradiol formation 

was maintained. This inactivation was also dependent on methadone concentration. When 

0 - 500 µM racemic methadone was pre-incubated for 25 min, inhibition of 50% of 

activity was seen at approximately 50 µM methadone, while 30% inhibition was brought 

about by the presence of 10 µM methadone (pilot data not shown). When the individual 

enantiomers (0 - 500 µM, over 5 - 20 min) were separately tested under the same 

conditions, no stereoselectivity was observed (data not shown). 

To estimate the kinetics of the interaction between methadone and aromatase 

during preincubation, a range of methadone concentrations and preincubation times were 

tested. Figure 5.2.A depicts the preincubation time and concentration dependence of the 

effect of methadone on aromatase activity. Control incubations were carried out in the 

presence of NADPH but without methadone. The rates of metabolism at zero 

preincubation time for each concentration were consistent with the Vmax activity of 

aromatase under these conditions. It was therefore possible to normalize the data at each 

concentration to the activity seen at 0 min of preincubation. Kinetic analyses of the rates 

of enzyme inactivation in the presence of methadone were carried out using 

NONMEM®, and predicted time curves for inactivation at each methadone concentration 

were obtained (Figure 5.2.A). The KI, and kinact values were calculated to be 40.6 ± 

2.8µM, and 0.061 ± 0.001min-1 respectively. A close correlation between observed and 
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predicted rates of aromatase was observed (Figure 5.2.B), indicating that the data are 

reliably represented by the model. 
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Figure 5.2. Kinetic analysis of mechanism-based inhibition of aromatase by racemic 

methadone.   

 (A) Time- and concentration-dependent inactivation. Methadone (MTD 10, 50, 100, 200, 

500 µM) was pre-incubated with human recombinant aromatase (0.1 µM) for 0, 5, 10, 15, 

or 20 min, and then activity of aromatase (0.01 µM) was assessed in incubations carried 

out in duplicate (n = 2). Individual data points (grey dot) were plotted as the percent of 

aromatase activity observed at 0 min of preincubation. The curve of each plot represents 

the line of best fit for the inactivation reaction at the concentration indicated using 

NONMEM®. (B) Correlation between observed and NONMEM® predicted values of 

percent aromatase activity remaining. The solid line represents the line of equality. A 

correlation coefficient (R2) of 0.99 was obtained.  
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Since methadone is metabolized by aromatase, I tested the possibility that 

inhibition of aromatase by methadone might be due to the metabolites formed. We 

directly tested its major metabolite, EDDP, in both reversible and irreversible 

experimental designs in the same way as described for methadone itself. Similar to the 

results for methadone, no competitive inhibition was observed when EDDP were tested at 

concentrations up to 100 µM (data not shown). When irreversible inhibition was tested, 

inactivation of aromatase was observed by both the primary metabolite, EDDP, and the 

secondary metabolite, EMDP, at concentrations as low as 10 µM (pilot data not shown). 

Figure 5.3 shows that the rate of inactivation by EDDP (100 µM) appeared equipotent as 

that by racemic methadone (100 µM), and the rate of inactivation by EMDP (100 µM) 

was relatively slower. 
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Figure 5.3. Mechanism-based inhibition of aromatase by racemic methadone, EDDP 

and EMDP. 

Methadone, EDDP and EMDP (100 µM) were pre-incubated with recombinant human 

aromatase (0.1 µM) for 0, 5, 10, 15, or 20 min, and then activity of aromatase (0.01 µM) 

was assessed in incubations carried out in duplicate (n = 2). Representative data were 

plotted as the value of log10 (% aromatase activity observed), when normalized to control 

at 0 min of preincubation. 
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Discussion   

Our data show that methadone is able to bring about time- and concentration-

dependent inhibition of aromatase. Since a 10-fold dilution after preincubation of 

aromatase with methadone could not recover the loss of aromatase activity during the 

subsequent incubation of aromatase with testosterone, and since our data also show that 

methadone does not inhibit aromatase in a competitive setting (Figure 5.2), the time- and 

concentration-dependent inhibition of aromatase by methadone we observed is consistent 

with the action of an irreversible inhibitor. Since methadone is also metabolized by 

aromatase (Chapters Two and Three, this dissertation), our data meet established criteria 

(Silverman 1988) for the involvement of methadone as a mechanism-based or “suicide” 

inhibitor of aromatase. Such inhibitory activity is dependent on the catalytic mechanism 

and activity of the enzyme itself, which must first bind the drug and then catalytically 

activate it (Jones et al. 1999). The activated moiety irreversibly alters the enzyme and 

removes it permanently from the pool of active enzyme.  

Because methadone can be metabolized by aromatase, it is possible that during 

preincubation, a portion of methadone is metabolized to its downstream metabolites by 

aromatase. My prior work has shown that the Km value of the conversion of methadone to 

EDDP by aromatase in our recombinant system in vitro is relatively high (314 µM, 

Chapter Two, this dissertation) and the amount of EDDP formation would be very low 

given the preincubation conditions. Since my data also show that the primary metabolite 

EDDP does not have reversible inhibitory activity on aromatase at concentrations up to 

100 µM, and secondary metabolite EMDP only inhibited aromatase activity by ~ 25% at 

10 µM (Chapter Four Figure 4.1.A), it is unlikely that the decreased aromatase activity 
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during incubation with testosterone was due to inhibition by the methadone metabolites 

formed via a reversible mechanism. However, it is possible that EDDP and EMDP 

generated from methadone can inhibit aromatase via an irreversible mechanism during 

preincubation and therefore contribute to the decreased aromatase activity observed when 

methadone was tested. In fact, when EDDP and EMDP were separately tested for their 

ability to irreversibly inhibit aromatase, both metabolites showed time-dependent 

inactivation of aromatase (Figure 5.3). With that said, the potency of these metabolites 

are similar to or lower than that for methadone, and the concentrations of these 

metabolites present in preincubation mixture should be much lower than methadone 

concentrations. As a result, the contribution of methadone metabolism to the observed 

inactivation of aromatase would be minimal.  

Our data indicate that methadone appeared to be a mechanism-based inhibitor of 

aromatase with an inactivation constant KI of ~ 40 µM. Mechanism-based inhibition can 

result from bioactivation of a reactive intermediate that interacts with the heme prosthetic 

group of a cytochrome P450, or that covalently modifies the apoprotein (Hollenberg, 

Kent, and Bumpus 2008; Kalgutkar, Obach, and Maurer 2007), and can involve the 

subsequent formation of a metabolite intermediate complex that inactivates the enzyme 

and takes it out of the active pool (Jones et al. 1999). Such inhibition brought about by 

the formation of a metabolite intermediate complex has been demonstrated for a number 

of N-demethylated drugs including diltiazem (Jones et al. 1999) and erythromycin (Ortiz 

de Montellano et al. 1981). Although my work presented here does not address the 

detailed biochemical interactions underlying the mechanism-based inhibition of 
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aromatase by methadone, it is clear that methadone can irreversibly inactivate aromatase 

in vitro. 

This irreversible inhibition by methadone might be important. Compared to 

reversible inhibition, irreversible inhibition more frequently results in unfavorable drug-

drug interactions as the inactivated P450 enzyme has to be replaced by newly synthesized 

protein (Kalgutkar, Obach, and Maurer 2007), and severe clinical consequences may 

result (Wilkinson 2005). However, the clinical relevance of our data is difficult to 

extrapolate from in vitro data for the following reasons: The concentration of aromatase 

used in our experiments was relatively high. A Km of 4 µM for the conversion of 

testosterone to estradiol was observed when 0.01 µM recombinant aromatase was used, 

while the Km previously reported for this reaction in human placental microsomes was 

0.2 µM (Zharikova et al. 2006). Furthermore, the KI (40 µM) observed here was obtained 

with an aromatase concentration of 0.1 µM, even ten times higher than that mentioned 

above. This relatively high enzyme concentration for preincubation was a limit of our 

studies, but it was chosen to insure accurate quantification of estrogen generation in the 

diluted incubation mixture. Therefore, although the observed KI was higher than the 

plasma concentrations of methadone seen in patients, it may be anticipated that a lower 

KI would be obtained if methadone acts as a mechanism-based inhibitor in the human 

placenta or other tissues due to the lower enzyme concentrations likely to be present in 

tissues in vivo. In addition, while (R)-methadone therapeutic concentrations observed in 

plasma at steady state are in the 0.5 - 1 µM range (Eap, Buclin, and Baumann 2002), the 

concentration of this highly hydrophobic drug in tissues and at the aromatase active site 

may be substantially higher (Levine et al. 1995). It remains possible that methadone 
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reduces local aromatase activity in human tissues where aromatase concentration is much 

lower than that was used in our studies. Thus, future investigation is required in order to 

address whether or not methadone inhibits aromatase in vivo. 

In addition, EDDP appeared to be as potent an irreversible inhibitor of aromatase 

as methadone itself, while EMDP appeared weaker, suggesting that methadone 

metabolites might be able to inhibit aromatase in vivo. However, this is not likely in 

patients taking methadone because these metabolites are present at much lower 

concentrations than methadone (Lu, Zhou et al. 2011; Kharasch et al. 2008). Of note, the 

conversion of EDDP to EMDP is a demethylation reaction. Whether or not aromatase is 

able to carry out this reaction has not been tested, but this possibility remains. 

A few clinical observations are consistent with inhibition of aromatase by 

methadone. Deceased aromatase activity leads to altered metabolism and disposition of 

endogenous testosterone and androstenedione. Lower concentrations of estradiol and of 

follicle-stimulating hormone have been documented in men taking methadone (Hallinan 

et al. 2009), and low bone mineral density that may be due to low estrogen concentrations 

has been documented in 83% of patients in a methadone maintenance treatment program 

(Kim et al. 2006). Conceivably, other side effects of methadone that include flushing, 

muscle pain and symptoms consistent with estrogen withdrawal (Senay 1985; Backstrom 

1995) may be explained in part by the drug’s action on aromatase. In addition, 

unexpected methadone accumulation over time occurs in some patients, and multiple 

factors may underlie the variability observed in methadone pharmacokinetics including 

auto-inhibition (Morton 2007). The inhibitory effects of methadone on its own 
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metabolism by aromatase may be a contributor to the auto-inhibition of methadone 

clearance. 

Overall, these studies have shown that methadone and its metabolites are 

irreversible inhibitors of aromatase in vitro. Since methadone itself is metabolized by 

aromatase, these interactions improve our understanding of possible mechanisms 

underlying variability in methadone clearance. While the clinical relevance of the 

inhibition of aromatase by methadone or its metabolites is not clear, the ability of these 

compounds to inhibit aromatase improves our understanding of aromatase. The 

irreversible mechanisms employed by these compounds could be further exploited for 

new ways to regulate aromatase activity for therapeutic purposes. 

 

Methods 

Testosterone metabolism in vitro by recombinant aromatase 

All incubations were carried out under the incubation conditions described in 

“Chapter Ten: General Methods / Testosterone and methadone metabolism in vitro by 

recombinant aromatase”. 

  

Quantification of estradiol formation 

High performance liquid chromatography (HPLC) assays with ultraviolet (UV) 

detection were developed for the quantification of testosterone conversion to estradiol as 

described in “Chapter Ten: General Methods / HPLC-UV assays for the quantifications 

of estradiol and EDDP formation”.  
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Reversible inhibition of recombinant aromatase 

Solutions of testosterone and tested inhibitor were mixed, and methanol was 

removed by drying in speed vacuum before the incubation. Incubations were then carried 

out in the same way as described in “Chapter Ten: General Methods / Testosterone and 

methadone metabolism in vitro by recombinant aromatase” except that the final 

testosterone and aromatase concentrations were 4 µM and 0.01µM, respectively. The 

inhibition of aromatase by methadone or letrozole was determined by measuring the 

conversion rate of testosterone to estradiol.  

 

Mechanism-based inhibition of recombinant aromatase 

Irreversible inhibition of recombinant aromatase was tested by preincubating 

aromatase with various concentrations of tested inhibitor as described in “Chapter Ten: 

General Methods / Mechanism-based inhibition of aromatase in vitro”. The extent of 

inactivation of aromatase was determined by measuring the conversion rate of 

testosterone to estradiol during incubation. 

 

Kinetic analyses 

Formation rates of estradiol at different testosterone concentrations were fit to one 

site Michaelis-Menten kinetic models using Prism version 5.01 for Windows (GraphPad 

Software Inc., San Diego, CA). 

The rates of metabolite formation from substrate probes in the presence of the test 

inhibitors were compared with those for control in which the inhibitor was replaced with 

vehicle. The inhibition data were fit to different models of enzyme inhibition 
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(competitive, non-competitive, and uncompetitive). The equations for kinetic and 

inhibition analyses of the data were constructed using NONMEM V v1.1 ® (ICON, 

Hanover MD and UCSF), utilizing the nonlinear regression functionality. The 

appropriateness of the fit was determined by visual inspection and by using the objective 

function, residual patterns, residual sums of squares, and precision of the parameter 

estimates. The correlation coefficient and its corresponding statistical significance were 

determined by conventional methods. 

 

Determination of kinact and KI 

KI and kinact values were estimated using an approach that involves a simultaneous 

fit of all the data. Data from experiments documenting the time course of inactivation 

were used for the calculation of inhibition kinetic parameters. Estradiol formation was 

expressed as pmol/min/pmol aromatase and the percentage of remaining activity was 

calculated as shown in the following equation: 

 

where Et is the enzyme activity expressed as estradiol  formation at time t, and E0 is the 

average estradiol formation at preincubation time zero (100%). The extent of inhibition 

was expressed as: 1 – % of remaining enzyme activity. 

The pseudo first-order rate constant for enzyme inactivation, λ, was estimated 

from the aggregation of all the data using equation:  
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The relationship between λ and inhibitor concentration was fit to the following equation: 

 

where kinact is the rate constant for inactivation, [I] is inhibitor or inactivator 

concentration, and KI is the inactivator concentration that produced half the maximal rate 

of inactivation, analogous to a Km. This equation assumes there was negligible change of 

[I] during the incubation period and that loss of enzyme was due to inactivation. As 

indicated above, all the data were fitted for each inhibitor concentration to obtain a single 

estimate for kinact and a single estimate for KI using these equations.  

Note: Equations are quoted from (Jones et al. 1999). 

 

Note: The work described in this chapter has been published (Lu et al. 2010). 
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CHAPTER SIX 

Stereoselective Inhibition of Aromatase by Naringenin 

 

Introduction 

There is existing interest in the effects of dietary factors on the cytochrome P450 

system in order to better understand food-drug interactions. Interactions between food 

and aromatase (CYP19) are also of interest due to potential influence on estrogen 

synthesis. Xenoestrogens are industrial or dietary compounds that can affect 

steroidogenesis and cause endocrine disruption by changing aromatase activity. Our 

preliminary results (Chapter Four, this dissertation) suggest that naringenin may be one 

of these xenoestrogens that can inhibit aromatase in vivo. Naringenin (Figure 6.1, 

Structure 1) is a chiral flavanone belonging to the flavonoid class. It is contained in some 

citrus species, in particular grapefruit, that contain large amounts of its 7-O-

neohesperidoside, naringin (Figure 6.1, Structure 2). Upon ingestion, naringin undergoes 

cleavage of the sugar moiety, leaving the free aglycone, naringenin in the gastrointestinal 

tract (Yanez and Davies 2005). Naringenin is known to reduce CYP3A activity in 

humans, but its effects on aromatase has not been carefully studied. My prior screening 

results (Chapter Four, this dissertation) indicate that naringenin substantially reduced 

aromatase activity at 20 µM and the enantiomers of naringenin, (R)- and (S)-naringenin, 

appeared to have different potency as aromatase inhibitors. These data suggest that fruit 

products containing naringenin might affect aromatase activity in vivo. 
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Figure 6.1. Structures of naringenin and naringin. 

Compound structure represents naringenin when R = H (1) or naringin when R = 

neohesperidosyl (2). Source: modified from structure figures provided by our 

collaborator Dr. Salvatore Caccamese at Università di Catania, Catania, Italy. 

 

The inhibition of CYP enzymes by flavonoids like naringenin may be of medical 

importance. Since the demonstration that grapefruit juice can inhibit the metabolism of 

the CYP3A substrate felodipine (Bailey et al. 1993), it has become widely appreciated 

that the ingestion of a number of fruit juices can slow drug metabolism (Bailey et al. 

2004), and thereby increase the concentrations of important medications such as 

cyclosporine (Lee et al. 2001) and methadone (Benmebarek et al. 2004). The biochemical 

basis for these interactions involves the interaction of flavonoids with specific CYP 

isoforms. In order to be aware of any potential clinically relevant interactions between 

naringenin and both endogenous and exogenous substrates of aromatase, it is therefore 

important to study interactions of naringenin with aromatase.  
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Naringenin has been reported to have a number of potential health related 

properties. In a previous study, naringenin was found to inhibit the CYP3A4-mediated 

oxidation of two dihydropyridine cardiodepressive drugs, more markedly than naringin 

(Guengerich and Kim 1990). Later, naringenin was found inter alia to inhibit the activity 

of CYP isoforms that activate the potent environmental carcinogen, nicotine-derived 

nitrosamine ketone (Bear and Teel 2000). Naringenin also inhibited quinine 3-

hydroxylation mediated by CYP3A4 (Ho, Saville, and Wanwimolruk 2001). It may also 

act as a potent immunomodulator in mice with pulmonary fibrosis (Du et al. 2009), and 

the antioxidant properties of naringenin and other polyphenols have been well studied 

(Manthey, Grohmann, and Guthrie 2001). 

Despite a volume of research over many years, the relevance of stereochemistry at 

the C-2 stereogenic centre of naringenin has not been carefully evaluated. It is well 

known that interactions between an enzyme system and a substrate are frequently 

stereospecific (Crossley 1992), and often influence the potency of, and the response to a 

single enantiomer (Hutt 2006). For example, quinidine is a clinically relevant and potent 

inhibitor of CYP2D6, while its diastereomer quinine is not (Muralidharan et al. 1991), 

(S)-lansoprazole is a more potent inhibitor of CYP2C9, CYP2C19, CYP2D6, CYP2E1 

and CYP3A4-mediated hydroxylation than (R)-lansoprazole (Liu et al. 2005) and many 

other chiral drugs have been well documented to exhibit enantioselective inhibition of 

P450-mediated metabolism (Carabaza et al. 1997; Shin, Kane, and Flockhart 2001; 

Dilmaghanian et al. 2004). Difficulties in separating enantiomers and the resulting 

absence of readily available pure enantiomers have limited research in this area until 

now.  
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In this study, we obtained purified (R)- and (S)- naringenin preparations together 

with the racemate, rac-naringenin, and tested for their ability to inhibit aromatase, with a 

focus on the enantioselectivity of the interaction. In addition, in order to obtain a better 

understanding of naringenin action on the CYP system, the effects of the (R)-, (S)- and 

rac-naringenin on other important human drug-metabolizing CYP isoforms, including 

CYP2B6, 2C9, 2C19, 2D6 and 3A, and their corresponding enantioselectivity were also 

tested. 

 

Results 

Dose-dependent inhibition of recombinant human aromatase by naringenin was 

demonstrated (Figure 6.2). When the enantiomers of naringenin were tested, 

stereoselective inhibition was shown. Specifically, the (S)-naringenin inhibited aromatase 

with an IC50 value of 1.4 (1.1, 1.7) µM, and was approximately 2-fold more potent than 

the (R)-naringenin, which had an IC50 value of 2.8 (2.4, 3.4) µM. The IC50 value for rac-

naringenin was 2.0 (1.7, 2.4) µM, between that for the (R)-enantiomer and that for the 

(S)-enantiomer (Figure 6.2).  
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Figure 6.2. Enantioselective inhibition of human aromatase by naringenin.  

A range of concentrations of rac-naringenin (open circle), (R)-naringenin (dark square), 

or (S)-naringenin (dark triangle) was incubated with recombinant human aromatase (7.5 

nM) and substrate MFC at 37 °C for 30 min and enzyme activity was determined in three 

independent experiments. Individual points represent the mean of duplicate incubations.  

 

Naringenin was also tested for its ability to inhibit a number of other important 

drug-metabolizing CYP isoforms. Data indicate that naringenin inhibited CYP2C9, 

CYP2C19, and CYP3A in an enantioselective way (Figures 6.3 - 6.5). While the (S)-

enantiomer was approximately 2-fold more potent than the (R)-enantiomer as an inhibitor 

of CYP2C19, the (R)-enantiomer was about 2-fold more potent as an inhibitor of 
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CYP2C9 and CYP3A (Table 6.1). In each case, the IC50 value for rac-naringenin was 

between that for the (R)-enantiomer and that for the (S)-enantiomer. No appreciable 

inhibition of CYP2B6 or CYP2D6 was observed at concentrations up to 10 µM (data not 

shown).  

Note: Experiments using human liver CYP3A were performed by my colleague Cong Xu 

in the Department of Pharmacology and Toxicology here at Indiana University. 

 

 

Figure 6.3. Enantioselective inhibition of human CYP2C9 by naringenin.  

A range of concentrations of rac-naringenin (open circle), (R)-naringenin (dark square), 

or (S)-naringenin (dark triangle) was incubated with recombinant human CYP2C9 (15 

nM) and substrate MFC at 37 °C for 45 min and enzyme activity was determined in three 

independent experiments. Individual points represent the mean of duplicate incubations.   
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Figure 6.4. Enantioselective inhibition of human CYP2C19 by naringenin.  

A range of concentrations of rac-naringenin (open circle), (R)-naringenin (dark square), 

or (S)-naringenin (dark triangle) was incubated with recombinant human CYP2C19 (7.5 

nM) and substrate CEC at 37 °C for 30 min and enzyme activity was determined in three 

independent experiments. Individual points represent the mean of duplicate incubations.  
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Figure 6.5. Enantioselective inhibition of human CYP3A by naringenin.  

A range of concentrations of rac-naringenin (open circle), (R)-naringenin (dark square), 

or (S)-naringenin (dark triangle) was incubated with pooled human liver microsomes 

(protein concentration 0.25 mg/ml) and probe substrate testosterone at 37 °C for 15 min 

and enzyme activity was determined in two independent experiments. Individual points 

represent the mean of duplicate incubations. Source: These experiments using human 

liver CYP3A were performed by my colleague Cong Xu. The study design and data 

analysis were carried out by me.  
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Table 6.1. IC50 values for enantioselective inhibition of multiple human CYP 

isoforms by naringenin. 

 

Note: IC50 values are expressed as mean (95% confidence interval). Source: Data on 

CYP19, 2C9 and 2C19 were from me, and data on CYP3A were generated in 

collaboration with my colleague Cong Xu. 

 

Discussion 

Many naturally occurring flavonoids and isoflavanoids exist as stereoisometric 

mixtures, in which one enantiomer predominates. These studies demonstrate the ability of 

naringenin to inhibit aromatase and several other CYP isoforms in vitro. Previous studies 

have shown that maximal plasma concentrations of naringenin after ingestion of 

grapefruit juice are ~ 6 µM (Erlund et al. 2001). The IC50 values of naringenin we 

observed all fall in the low micromolar range (Table 6.1). These data suggest that 

naringenin may have effects in vivo on the activity of multiple enzymes, including 

aromatase, CYP2C9, CYP2C19 and CYP3A. Such inhibitory effects might contribute to 

the clinically observed food-drug interactions brought about by grapefruit juice and other 

fruit products (Dresser and Bailey 2003). Our data are consistent with those reported on 

inhibition of CYP3A by grapefruit and other juices in humans (Bailey, Dresser, and Bend 
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2003; Bailey et al. 2004). However, fruit juices contain other components that might also 

inhibit CYP3A in vivo. The quantitative contribution of naringenin to the overall clinical 

effect is currently unclear. Whether or not interactions between naringenin and other 

CYP isoforms, including aromatase, carry similar clinical relevance must await further 

research. 

While a large literature exists on the effects of grapefruit and other juices on 

CYP3A, few attempts have been made to study their effects on other isoforms. Our 

studies have characterized for the first time the different pharmacologic properties of the 

enantiomers of naringenin on multiple enzymes. Studies with purified (R)- and (S)-

naringenin showed that the individual enantiomers had different affinities for every 

enzyme tested, indicating that naringenin is a pleiotropic and stereoselective inhibitor in 

vitro. While this stereoselective inhibition is clear, the potency difference between 

enantiomers was about two fold in every case. Whether or not this stereoselectivity 

represents clinical significance is unknown. Since the predominant enantiomer of 

naringenin in natural fruits is also unknown, the vulnerability of specific enzymes in vivo 

cannot be estimated yet. Nevertheless, our findings identify interactions between specific 

CYP isoform and naringenin that deserve further study in order to more precisely predict 

the potential risks for food-drug interactions. Such future studies are potentially important 

because interactions between naringenin and drugs that are substrates of CYP2C9 such as 

(S)-warfarin (Rettie et al. 1992), of CYP2C19, such as clopidogrel (Kreutz et al. 2010), 

and of aromatase, such as methadone (Chapters Two and Three, this dissertation) may 

exist. 
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Our data also shed light on the stereoselective preferences of specific CYP 

isoforms. Since other chiral flavonoids contained in fruits may also possess similar 

stereoselective pharmacologic and biological effects, this work improves our 

understanding of the susceptibility of individual CYP isoforms to inhibition by dietary 

factors. In particular, inhibition of aromatase by natural products might be therapeutically 

useful for breast cancer patients, and might be protective for people who are at risk. 

Although our in vitro results indicate that naringenin itself is not likely to serve as a 

selective candidate for this purpose because it inhibits several CYPs, the development of 

novel aromatase inhibitors from natural compounds that are more selective still 

represents a potentially important direction for future research. Of note, naringin, the 

natural precursor of naringenin, is present as (2S)- and (2R)-diastereomers in grapefruit, 

sour orange and pummelo with the (2S)-naringin being predominant, and the ratio (2S) / 

(2R) of the concentrations of the diastereomers markedly decreases during maturation 

(Caccamese, Manna, and Scivoli 2003; Caccamese, Bianca, and Santo 2007; Caccamese 

and Chillemi 2010). Since our data show that the inhibitory effect of natural compounds 

such as naringenin on aromatase can be stereoselective, the effects of fruit juices on 

aromatase may be affected by the degree of maturation of the fruits.  

Although the clinical relevance of these findings warrant further research, 

inhibition of aromatase by naringenin observed in vitro may be exploited to understand 

pharmacokinetic changes seen in vivo. The stereoselective properties exhibited by 

naringenin here could provide insight into the use of naringenin and other flavonoids as 

novel, selective therapeutic agents. 
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Methods 

Fluorescent assay for inhibition of aromatase in vitro 

The activity of aromatase was determined by measuring the conversion rate of a 

fluorometric substrate, 7-methoxy-4-trifluoromethylcoumarin (MFC), to its fluorescent 

metabolite, 7-hydroxytrifluoromethylcoumarin (HFC) as described in “Chapter Ten: 

General Methods / Fluorescent assay for inhibition of aromatase in vitro”. 

 

Inhibition of recombinant human CYP isoforms  

The activity of each recombinant human CYP isoform was determined by 

measuring the conversion rate of a fluorometric substrate to its fluorescent metabolite as 

described in “Chapter Ten: General Methods / Inhibition of recombinant human CYP 

isoforms”. 

 

Kinetic analyses 

The rates of metabolite formation from substrate probes in the presence of the test 

inhibitors were compared with those for control in which the inhibitor was replaced with 

vehicle. The extent of CYP inhibition was expressed as percent enzyme activity 

remaining compared to control. IC50 values were determined as the inhibitor 

concentration that brought about a 50% reduction in enzyme activity by fitting all the 

data to a one-site competition equation using Prism version 5.01 for Windows (GraphPad 

Software Inc., San Diego, CA). 

 

Note: The work described in this chapter has been published (Lu, Ferlito et al. 2011). 
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CHAPTER SEVEN 

Competitive and Non-competitive Inhibition of Aromatase by  

Tamoxifen Metabolites 

 

Introduction  

Prior screening results (Chapter Four, this dissertation) indicate that at least two 

tamoxifen metabolites can decrease aromatase activity when tested at 10 µM in vitro. 

Tamoxifen is a selective estrogen receptor modulator also used in the treatment of 

estrogen-sensitive breast cancer. The biochemical mechanism of action of tamoxifen in 

the treatment of breast cancer is widely understood to involve two active metabolites, 4-

hydroxy-N-desmethyl-tamoxifen (endoxifen) and (Z)-4-hydroxy-tamoxifen (4HT). The 

anti-estrogenic effects of tamoxifen were thought to be exclusively mediated via these 

active metabolites that bind to estrogen receptor and thereby modulate estrogen signaling. 

These metabolites are approximately 100 times more potent, relative to the parent drug, 

as antagonists of estrogen binding to the estrogen receptor and as inhibitors of estrogen-

stimulated growth in sensitive breast cancer cell lines (Furr and Jordan 1984; Kisanga et 

al. 2004; Jin et al. 2005). The discovery that the principal active metabolite, endoxifen is 

produced via metabolism from N-desmethyl-tamoxifen (NDMT), by a genetically 

polymorphic enzyme, CYP2D6 (Jin et al. 2005; Stearns et al. 2003), has led many 

clinical investigators to test the possibility that CYP2D6 genotype might be a useful 

biomarker of tamoxifen efficacy. These efforts have produced mixed results (Goetz et al. 

2005; Wegman et al. 2007; Higgins and Stearns 2010). While some investigators have 

shown a association between CYP2D6 poor metabolizer genotype and increased 
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recurrence of breast cancer in some settings (Goetz et al. 2005), other investigators, using 

different trial designs and alternative study approaches have either failed to show any 

association (Nowell et al. 2005), or have shown an association in the opposite direction 

(Wegman et al. 2007). As a result, the clinical utility of a CYP2D6 genotype guided 

approach to predicting response to tamoxifen has not been clearly demonstrated (Higgins 

et al. 2009). The closely related concept that endoxifen or 4HT concentrations in the 

blood might predict the outcome of tamoxifen therapy in individual patients has also not 

been validated in any clinical study. Similarly, predicting which patients are at risk for 

side effects of tamoxifen is also difficult. Many patients experience hot flashes (Mortimer 

et al. 2008; Henry et al. 2009), muscle aches (Fisher et al. 2005) and other symptoms that 

limit their compliance with treatment, and clearly result in increased rates of breast 

cancer recurrence (Thompson et al. 2010). Although it has been suspected that these side 

effects are caused by estrogen receptor antagonism, no relationship between the 

concentrations of the estrogen receptor modulating metabolites of tamoxifen and the 

incidence or severity of side effects has been reported. Furthermore, although CYP2D6 

genotype is clearly associated with the concentrations of these active metabolites (Jin et 

al. 2005), it has not been consistently shown to predict hot flashes experienced by 

patients taking tamoxifen (Goetz et al. 2005; Henry et al. 2009).  

One possible explanation for this lack of association may be the involvement of 

mechanisms discrete from the 2D6-dependent estrogen receptor antagonism. Tamoxifen 

has a complex metabolic profile involving many active and inactive metabolites (Desta et 

al. 2004). The estrogen receptor binding characteristics of a large number of these 

metabolites have been extensively documented in the search for novel SERMs 
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(Katzenellenbogen et al. 2000; Lim et al. 2005). In fact, a key, potent metabolite, 

endoxifen is under active clinical development (Ahmad, Ali et al. 2010; Ahmad, 

Shahabuddin et al. 2010). In contrast, the ability of many tamoxifen metabolites to exert 

anti-estrogenic effects via alternative mechanisms has not been studied. Among 

alternative mechanisms for tamoxifen action, the inhibition of aromatase seems possible 

because the aromatase inhibitor class of drugs bring about hot flashes and 

musculoskeletal pains similar to those experienced by patients taking tamoxifen (Howell 

et al. 2005; Zivian and Salgado 2008). The commonality of these side effects may reflect 

a shared biochemical mechanism. Consistent with a reduction in aromatase activity, 

tamoxifen significantly lowers estrogen in post-menopausal women (Lonning et al. 

1995).  

Tamoxifen and the AI class of drugs are both effective endocrine therapies for 

breast cancer, and they bring about some common side effects, but the effect of 

tamoxifen therapy on aromatase has not been studied until now. Since tamoxifen is 

metabolized via several pathways to various downstream molecules in humans, and since 

anti-estrogenic effects may be brought about not only by estrogen antagonism, but also 

by reduced estrogen synthesis. For these reasons, I hypothesize that the clinical effects of 

tamoxifen may be mediated in part by actions of tamoxifen or its metabolites as 

aromatase inhibitors. To investigate this possibility, I tested the ability of tamoxifen, its 

three major human metabolites and a number of its minor metabolites to inhibit the 

activity of aromatase in vitro.  
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Results 

Non-competitive inhibition of aromatase by endoxifen and NDMT 

Inhibition of aromatase by tamoxifen and its three major metabolites, 4HT, 

NDMT and endoxifen, was separately tested by measuring their effects on the rate of 

generation of a fluorescent metabolite from a fluorometric substrate, MFC, during 

incubation with aromatase. As shown in Figure 7.1, endoxifen and NDMT inhibited 

aromatase with higher potency than tamoxifen or 4HT. When substrate concentration was 

set at 25 µM, endoxifen and NDMT exhibited IC50 values of 6.1 µM and 20.7 µM, 

respectively, while tamoxifen and 4HT were estimated to have IC50s of 986 µM and 531 

µM, respectively (Table 7.1). Under the same conditions, letrozole was used as a positive 

control and had an IC50 of 5.3 nM. When the endogenous substrate of aromatase, 

testosterone, was included as a competing substrate, an IC50 of 0.33 µM was observed. 

 

Table 7.1. IC50 values of inhibitors of recombinant human aromatase.  

 

Note: IC50 values were determined when substrate MFC and aromatase concentrations 

were set at 25 µM and 7.5 nM respectively as describe in the “Methods” section. 
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Figure 7.1. Inhibition of aromatase by tamoxifen and its metabolites.  

Curves represent percent aromatase activity remaining in the presence of a range of 

concentrations of endoxifen (open circle), tamoxifen (dark triangle), NDMT (dark circle) 

and 4HT (open triangle). Individual points represent the mean of four independent 

incubations. 

 

To further explore the mechanism of the inhibition by endoxifen and NDMT, I 

tested inhibition by these metabolites across a range of fluorometric substrate 

concentrations. The data were plotted as Dixon and Eadie-Hofstee plots (Figures 8.2 and 

8.3). The profile of the lines on the resulting Dixon plots: straight lines intersecting at a 

common point on the x-axis, is consistent with non-competitive inhibition by endoxifen 

and NDMT (Figures 7.2.A and 8.3.A). The parallel relationship of the lines in the Eadie-
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Hofstee plots is consistent with decreasing maximum enzyme activity Vmaxi and 

unchanged substrate equilibrium dissociation constant KSapp as inhibitor concentration 

was increased (Figures 7.2.B and 8.3.B), observations that were also consistent with a 

non-competitive mechanism. The data indicate a Ki for endoxifen of 4.0 µM, and a Ki for 

NDMT of 15.9 µM. 
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Figure 7.2. Non-competitive inhibition of MFC metabolism by endoxifen.  

 (A) Dixon plot of inhibition of aromatase by endoxifen with MFC concentrations set at 

10 (open circle), 15 (dark circle), 20 (open square) and 25 (dark diamond) µM. (B) 

Eadie-Hofstee plot of inhibition of aromatase by endoxifen with increasing inhibitor 

concentrations: 0 (dark triangle), 1.56 (open circle), 3.13 (dark circle), 6.25 (open square) 

and 12.5 (dark diamond) µM. A range of MFC concentrations was incubated with 7.5 nM 

recombinant human aromatase for 30 min in the absence and presence of 1.56, 3.13, 6.25 

or 12.5 µM endoxifen. Individual points represent the mean of duplicate incubations. 
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Figure 7.3. Non-competitive inhibition of MFC metabolism by NDMT. 

(A) Dixon plot of inhibition of aromatase by NDMT with MFC concentrations set at 10 

(open circle), 15 (dark circle), 20 (open square) and 25 (dark diamond) µM. (B) Eadie-

Hofstee plot of inhibition of aromatase by NDMT with increasing inhibitor 

concentrations: 0 (dark triangle), 3.13 (open circle), 6.25 (dark circle), 12.5 (open square) 

and 25 (dark diamond) µM. A range of MFC concentrations was incubated with 7.5 nM 

recombinant human aromatase for 30 min in the absence and presence of 3.13, 6.25, 12.5 

or 25 µM NDMT. Individual points represent the mean of duplicate incubations. 

 

To study the inhibitory mechanism using an alternative approach, the same data 

were plotted using Lineweaver-Burke plots. The data obtained also indicate that both 
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endoxifen and NDMT decreased the apparent Vmax (Vmaxi), while leaving the apparent Km 

(KSapp) unchanged (Table 7.2), once more consistent with non-competitive inhibition. 

 

Table 7.2. Effect of endoxifen and NDMT on KSapp and Vmaxi of recombinant human 

aromatase. 

 

Note: KSapp and Vmaxi values were determined using Lineweaver-Burke plot as described 

in the “Methods” section. 

 

Furthermore, I tested the ability of the metabolites that inhibited MFC metabolism 

by aromatase to inhibit testosterone metabolism to estrogen. In order to confidently detect 

the generation of estrogen, I incubated a higher concentration of aromatase (50 nM) with 

multiple testosterone concentrations chosen to be within the linear range around the Km 

(4 µM). When a range of concentrations of endoxifen were incubated with testosterone 

and aromatase under these conditions, endoxifen inhibited the generation of estrogen with 
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a Ki of 178 µM, with kinetics examined using Dixon and Eadie-Hofstee plots that again 

indicate non-competitive inhibition (Figure 7.4). Equivalent experiments with NDMT 

indicated that NDMT was a weaker inhibitor than endoxifen (data not shown), but 

experiments for Ki determination could not be carried out due to its relative insolubility at 

higher concentrations which were desired. 
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Figure 7.4. Non-competitive inhibition of testosterone metabolism by endoxifen.  

 (A) Dixon plot of inhibition of aromatase by endoxifen with testosterone concentrations 

set at 1 (open circle), 2 (dark circle), 4 (open square) and 8 (dark diamond) µM. (B) 

Eadie-Hofstee plot of inhibition of aromatase by endoxifen with increasing inhibitor 

concentrations: 0 (open triangle), 50 (dark triangle), 100 (open circle), 200 (dark circle), 

400 (open square) and 600 (dark diamond) µM. A range of testosterone concentrations 

was incubated with 50 nM recombinant human aromatase for 10 min in the absence and 

presence of 0, 50, 100, 200, 400 or 600 µM endoxifen. Individual points represent the 

mean of duplicate incubations. 
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In order to further test whether these observations applied in a more 

physiologically relevant system, I tested the ability of tamoxifen, 4HT, endoxifen and 

letrozole to inhibit the conversion of MFC to HFC by human placental aromatase. Under 

the same conditions as used in MFC incubations with recombinant enzyme, and with the 

substrate concentration set at 25 µM, the selective inhibitor letrozole (20 nM) completely 

inhibited aromatase activity. Endoxifen was able to inhibit placental aromatase with an 

IC50 of 5 µM. Consistent with our previous data, NDMT inhibited placental aromatase 

with a weaker potency while tamoxifen and 4HT did not inhibit at concentrations up to 

50 µM (data not shown).  

Since the Ki for endoxifen determined at this higher enzyme concentration (50 

nM) using testosterone as substrate, was notably higher than that obtained at 7.5 nM of 

aromatase using MFC as substrate, I tested whether the experimental conditions used in 

the testosterone incubations, including in particular the increased enzyme concentration 

would result in an increase in the observed IC50 of endoxifen. Under the same conditions 

as those when an enzyme concentration of 50 nM was used, an IC50 of 95 µM for 

endoxifen was observed in inhibition of MFC metabolism (data not shown), which was 

15 to 16 fold higher in comparison to 6.1 nM as shown in Table 7.1.  

When tamoxifen, 4HT, NDMT or endoxifen was pre-incubated with aromatase 

for 5, 10, 15 and 20 min to test the possibility of irreversible inhibition, no decrease in 

MFC metabolism to HFC or testosterone metabolism to estradiol relative to control was 

observed (data not shown). These data suggest that the inhibition of aromatase observed 

with endoxifen and NDMT is a reversible process. 
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Competitive inhibition of aromatase by norendoxifen 

Pilot studies suggested that among a number of minor tamoxifen metabolites, a 

tertiary metabolite, N,N-didesmethyl-4-hydroxytamoxifen, might have the most potent 

inhibitory effects on aromatase activity (Chapter Eight Figure 8.1). Since N,N-

didesmethyl-4-hydroxytamoxifen is the demethylated product from endoxifen, we have 

named it norendoxifen. The effects of norendoxifen on aromatase activity were tested 

across a range of fluorometric substrate concentrations. The data were plotted as Dixon 

and Lineweaver-Burke plots. The lines on the resulting Dixon plot intersecting at a 

common point indicated a Ki of 35 nM (Figure 7.5.A). The profile of the lines on the 

resulting Lineweaver-Burke plot: straight lines intersecting at a common point on the y-

axis was consistent with a competitive mechanism of inhibition by norendoxifen (Figure 

7.5.B). In order to explore the stereoselectivity of norendoxifen, the potency of the 

purified (E)-enantiomer of norendoxifen was tested. Under the same experimental 

conditions, the IC50 values for (E)-norendoxifen and the unseparated mixture were both 

approximately 30 nM (data not shown). No obvious stereoselectivity was observed. 

A number of other minor tamoxifen metabolites were also found to be relatively 

weak aromatase inhibitors in vitro. The activities of these metabolites are described in the 

next chapter. 
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Figure 7.5. Competitive inhibition of aromatase by norendoxifen.  

A range of substrate (MFC) concentrations was incubated with 7.5 nM recombinant 

human aromatase for 30 min in the absence and presence of norendoxifen. (A) Dixon plot 

of inhibition of aromatase by norendoxifen with substrate (MFC) concentrations set at 10 

(open circle), 20 (dark circle), 30 (open square), 50 (dark diamond) and 100 (open 

triangle) µM. (B) Lineweaver-Burke plot of inhibition of aromatase with increasing 

norendoxifen concentrations: 0 (open square), 10 (dark circle), 25 (open circle), 50 (dark 

diamond) and 100 (open triangle) nM. Individual points represent the mean of duplicate 

incubations. 
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In order to test whether the inhibitory effect of norendoxifen on aromatase 

extends to other CYP enzymes, the ability of this compound to inhibit other important 

drug-metabolizing CYP enzymes was tested, including CYP2B6, CYP2C9, CYP2C19, 

CYP2D6 and CYP3A. When CYP2B6 and CYP2D6 were tested, no substantial 

inhibition by norendoxifen was observed at concentrations up to 1 µM. Three 

experimental systems were used to test inhibition of aromatase, CYP2C9, CYP2C19 and 

CYP3A by norendoxifen: drug incubations with recombinant CYP isoforms, pooled 

placental microsomes or pooled human liver microsomes. Initially, when recombinant 

CYP isoforms were used, norendoxifen inhibited aromatase, CYP2C9 and CYP2C19 

with IC50 values of 30, 95 and 61 nM respectively. These data did not suggest obvious 

CYP isoform selectivity. Since the enzyme concentrations and configurations present in 

recombinant systems may not represent the dynamic multi-enzyme system present in 

vivo, CYP3A was not tested in this system. Instead, the selectivity of norendoxifen was 

further characterized using pooled placental and pooled human liver microsomes under 

more physiologic conditions and with similar total protein concentrations. Norendoxifen 

inhibited placental aromatase with an IC50 value of 90 nM, while it inhibited human liver 

CYP2C9 and CYP3A with IC50 values of 990 and 908 nM respectively (Figure 7.6). 

Inhibition of human liver CYP2C19 by norendoxifen appeared even weaker, with less 

than 25% inhibition observed at concentrations up to 5 µM (Figure 7.6).  

Note: Experiments using human liver microsomes were performed by my colleagues 

Zifan Pei (CYP2C9) and Cong Xu (CYP2C19 and CYP3A) in the Department of 

Pharmacology and Toxicology here at Indiana University. 
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Figure 7.6. Selective inhibition of CYP isoforms by norendoxifen.  

In the presence of a range of norendoxifen concentrations, the remaining activity of 

human placental aromatase (dark circle), human liver CYP3A (open circle), human liver 

CYP2C9 (dark square) and human liver CYP2C19 (dark triangle) were determined by 

measuring the formation rates of metabolites from specific probe drugs and were 

expressed as percentage of control. Individual points represent the mean of three to four 

independent incubations. Source: Experiments using human liver microsomes were 

performed by my colleagues Zifan Pei (CYP2C9) and Cong Xu (CYP2C19 and CYP3A). 

The study design, experiments using placental aromatase and all data analysis were 

carried out by me.   
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Discussion  

These studies characterized inhibition of human aromatase in vitro by three 

tamoxifen metabolites: endoxifen, NDMT and norendoxifen. These findings have a 

number of implications. While the serum concentrations of endoxifen in humans are in 

the 10 - 150 nM range (Borges et al. 2006; Jin et al. 2005), tissue concentrations of 

endoxifen are higher, especially in breast tumors, where they appear to be 10 to 100 times 

more, i.e. about 1 - 15 µM (Lien et al. 1991). The inhibitory concentrations for endoxifen 

we observed in vitro (Ki of 4.0 µM) fall in the same range. Furthermore, in rats the ratio 

of endoxifen concentrations in uterus to those in serum has been reported to be at least 

20:1, and to be at least 500 : 1 between lung and serum (Lien, Solheim, and Ueland 

1991). NDMT concentration in human treated with tamoxifen is more than 10 times 

higher than that for endoxifen (Jin et al. 2005). These high tissue concentrations are 

consistent with the large apparent distribution volume for tamoxifen, the parent drug, 

which is about 50 to 60 L/kg in humans (Lien et al. 1989), indicating that most of the 

drug (99.9%) is present in peripheral compartments, and suggesting extensive tissue 

accumulation. This wide tissue distribution (Lien, Solheim, and Ueland 1991), and the 

relatively long apparent half lives of NDMT and endoxifen (~ 14 and 44 days 

respectively) (Jordan 1982; Johnson et al. 2004; Ahmad, Shahabuddin et al. 2010) in 

humans treated with tamoxifen are consistent with an extended period of tissue exposure. 

Sustained aromatase inhibition in vivo by these metabolites would therefore seem a 

possibility. 

Since the initial observations were carried out using an artificial, fluorometric 

substrate for aromatase, I examined the physiologic relevance of these data by testing the 
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ability of endoxifen to inhibit metabolism of the endogenous substrate of aromatase, 

testosterone. The inhibition of testosterone metabolism to estradiol was studied under 

conditions involving higher aromatase concentrations so that the generation of estradiol 

could be quantitatively monitored. A Ki of 178 µM for endoxifen was observed under 

incubation conditions that included a 6.7 fold higher enzyme concentration (50 nM). It is 

possible that endoxifen is less potent as an inhibitor of testosterone metabolism. An 

alternative explanation would be that this observed higher Ki is an artificial result of 

different experimental conditions. When I tested the latter possibility, two observations 

suggest that in conditions involving lower aromatase concentrations, testosterone 

metabolism may be inhibited by lower concentrations of endoxifen: (1) In the two 

experimental conditions tested, the IC50 of endoxifen for the same substrate, MFC, 

differed by 15 - 16 fold (6.1 µM at 7.5 nM aromatase, compared to 95 µM at 50 nM 

aromatase), suggesting a lower Ki at lower enzyme concentrations. (2) The Km for 

testosterone metabolism observed in this system was 4 µM, significantly higher than that 

(0.2 µM) reported in placental microsomes (Zharikova et al. 2006). It follows that under 

physiologic conditions, where the concentrations of aromatase and of testosterone in vivo 

are lower than those used in vitro, inhibition is likely to occur at relatively low inhibitor 

concentrations. 

Aromatase inhibition by endoxifen and NDMT was observed to be through a non-

competitive mechanism. This mechanism explains why it was possible for endoxifen to 

effectively inhibit testosterone metabolism, although the observed IC50 value for 

inhibition of MFC metabolism by testosterone was 19-fold lower than that of endoxifen 

(Table 7.1). A non-competitive mechanism means that there might be allosteric 
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interactions with aromatase. It is possible that endoxifen brings about non-competitive 

inhibition via a site remote from the substrate-binding site of aromatase, or that it could 

occur via interaction of two compounds that bind differently within the same catalytic 

site. The structure of the catalytic site of aromatase has been well studied through 

interactions between testosterone and this active site (Ghosh et al. 2010). Allosteric drug 

binding sites or regulatory regions of aromatase have not been considered until now. Of 

note, mutation of a site distant from the substrate-binding site has been shown to increase 

enzyme activity and reduce the susceptibility to inhibition of aromatase by 

aminoglutethimide (Payne et al. 2009). These observations raise the possibility that an 

allosteric mechanism might contribute to the pharmacologic regulation of aromatase and 

could be exploited to modulate aromatase activity for therapeutic benefit. 

Our studies also demonstrate that norendoxifen is a relatively potent and selective 

inhibitor of human aromatase with a Ki value in the nanomolar range, close to the 

potency of letrozole, which is the most potent aromatase inhibitor that is available for 

clinical use. Although norendoxifen is a known metabolite of tamoxifen in humans (Lien 

et al. 1991; Jin et al. 2005), little is known about its tissue concentrations or its 

contribution to tamoxifen effects. It is a minor metabolite of tamoxifen that exists at 

notably lower concentrations than the parent drug or its major metabolites, but our data 

make clear that it is a much more potent inhibitor of aromatase than the well-known 

metabolites, endoxifen and NDMT. In as much as these two major metabolites may 

contribute to tamoxifen action via aromatase inhibition, it is equally possible that 

norendoxifen contributes significantly to the clinical effects of tamoxifen. In addition, 

endoxifen itself is being developed as a drug (Ahmad, Ali et al. 2010; Ahmad, 
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Shahabuddin et al. 2010), and so the role of norendoxifen, the primary demethylated 

metabolite of endoxifen, in endoxifen action may be important for this reason. 

In this context it is important to note that endoxifen is a widely recognized and 

potent estrogen receptor modulator (Jin et al. 2005; Johnson et al. 2004; Jordan 2007). It 

follows that its demethylated metabolite, norendoxifen, may also act as an estrogen 

receptor ligand. However, the binding affinity of norendoxifen for estrogen receptors and 

the activity of norendoxifen at estrogen receptors, whether it is estrogenic or anti-

estrogenic, merit future studies. Tamoxifen therapy is known to have tissue-specific 

estrogen receptor modulation activities in humans. Such activities effectively limit 

estrogen signalling at breast tumors but preserve some estrogenic effects at other sites 

including the musculoskeletal and cardiovascular systems. Therefore, tamoxifen 

metabolites or their derivatives may therefore be valuable as alternative aromatase 

inhibitors that are able to mitigate the debilitating musculoskeletal toxicities experienced 

by breast cancer patients via tissue specific mechanisms. This possibility deserves further 

investigation.  

The metabolism of tamoxifen is complex (Johnson et al. 2004) and so its ultimate 

effects reflect the aggregation of the actions of multiple metabolites on the estrogen 

receptors, on aromatase and also possibly via other mechanisms that have been reported 

(Tian et al. 2009; da Rocha et al. 1999). The interpretation of these studies is limited by 

the difficulty of inferring drug concentrations at the effect site in vivo, given the 

acknowledged gradient between serum and tissue concentrations (Lien, Solheim, and 

Ueland 1991). As a result, the aggregated effect on aromatase activity in vivo and the 
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relative contributions of endoxifen, NDMT and norendoxifen to aromatase inhibition 

remain unclear. 

Our findings presented here could help explain a number of currently unexplained 

observations. (1) Inhibition of aromatase by tamoxifen metabolites in vitro is consistent 

with the observation that estrogen concentrations decreased on average in post-

menopausal women being treated with tamoxifen (Lonning et al. 1995). An alternative 

reason for such decrease would be effects downstream of estrogen receptor modulation 

by tamoxifen metabolites. (2) Inhibition of aromatase by tamoxifen metabolites might 

help explain why tamoxifen causes musculoskeletal pain, similar to that commonly 

experienced by patients taking aromatase inhibitors in some patients (Howell et al. 2005; 

Zivian and Salgado 2008). This side effect of tamoxifen appears debilitating and 

prominent in Asian women (Love et al. 1999). It is possible that, in the sub-population of 

post-menopausal women in whom musculoskeletal pain is a severe side effect of 

tamoxifen, aromatase inhibition by its metabolites is more prominent. Since 

musculoskeletal toxicities are less frequent in patients taking tamoxifen compared to AI 

therapies, aromatase inhibition by tamoxifen metabolites may not occur in every patient. 

(3) Aromatase inhibition by NDMT may help explain the inconsistency in observed 

associations between CYP2D6 genotype and outcomes in patients with breast cancer 

(Goetz et al. 2005; Wegman et al. 2007; Nowell et al. 2005). If aromatase inhibition 

contributes to the action of tamoxifen, then it is possible that this inhibition may 

confound simple associations between endoxifen concentrations and clinical outcomes. 

(4) Mechanistic studies that employ only 4HT, an estrogen receptor modulator that is not 

an aromatase inhibitor, may inadequately represent tamoxifen action in vivo.  
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Figure 7.7. Diagram of possible mechanisms underlying anti-estrogenic effects of 

tamoxifen and its metabolites based on in vitro data.  

NDMT, endoxifen and norendoxifen are able to act as aromatase inhibitors, while 4HT 

and endoxifen are the most potent antagonists at the estrogen receptor. 

 

Overall, our data identify a novel mechanism of tamoxifen action that may 

contribute to its efficacy in the treatment of breast cancer, and may help explain its side 

effects. Although the overall contribution of aromatase inhibition to tamoxifen action is 
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unclear at this point, the data emphasize that tamoxifen and endoxifen may have multiple 

pharmacologic effects that are mediated by their active metabolites. Most notably, a 

previously unrecognized active metabolite, norendoxifen, is a relatively potent and 

selective aromatase inhibitor. The balance between tamoxifen’s effects as an estrogen 

receptor modulator and as an aromatase inhibitor (Figure 7.7) may vary between 

individuals and across populations. This balance may contribute to the clinical effects of 

tamoxifen on serum and tissue estrogen concentrations, and may explain in part the 

variability in bone density, hot flashes, serum lipid concentration, severity of 

musculoskeletal pain and breast cancer recurrence observed in patients taking tamoxifen. 

Relationships between tamoxifen metabolite concentrations and clinical outcomes may 

be complex, and should be interpreted and studied with an open mind.  

 

Methods 

Fluorescent assay for inhibition of aromatase in vitro 

The activity of both recombinant and placental human aromatase was determined 

as described in “Chapter Ten: General Methods / Fluorescent assay for inhibition of 

aromatase in vitro”. 

 

Inhibition of testosterone metabolism by aromatase in vitro 

The activity of aromatase was determined by measuring the rate of conversion of 

testosterone to estradiol as described in “Chapter Ten: General Methods / Inhibition of 

testosterone metabolism by aromatase in vitro”. 
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Quantifications of estradiol formation 

High performance liquid chromatography (HPLC) assays with ultraviolet (UV) 

detection were developed for the quantification of testosterone conversion to estradiol as 

described in “Chapter Ten: General Methods / HPLC-UV assays for the quantifications 

of estradiol and EDDP formation”, with the modification that 25 μl of 25 µM letrozole 

was added to each sample as an internal standard. 

 

Inhibition of recombinant human CYP isoforms  

The activities of recombinant human CYP2C9, CYP2C19 and CYP2D6 were 

determined by measuring the conversion rates of their fluorometric substrates to the 

corresponding fluorescent metabolites as described in “Chapter Ten: General Methods / 

Inhibition of recombinant human CYP isoforms”. 

 

Inhibition of specific CYP isoforms using pooled HLMs 

Inhibition of CYP2B6, CYP2C9, CYP2C19 and CYP3A using pooled HLMs was 

determined by measuring the conversion rates of specific probe drugs to their metabolites 

as described in “Chapter Ten: General Methods / Inhibition of specific CYP isoforms 

using pooled HLMs”. The formation rates of 4-hydroxybupropion from bupropion, of 4-

hydroxytolbutamide from tolbutamide, of 5′-hydroxyomeprazole from omeprazole and of 

6-β hydroxytestosterone from testosterone served as markers of CYP2B6, CYP2C9, 

CYP2C19 and CYP3A activity respectively. 
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Kinetic analyses 

The rates of metabolite formation from substrate probes in the presence of the test 

inhibitors were compared with those for control in which the inhibitor was replaced with 

vehicle. The extent of aromatase inhibition was expressed as percent enzyme activity 

remaining compared to control. The percent of aromatase activity remaining at different 

inhibitor concentrations was used to estimate IC50 values when the substrate 

concentration was set at 25 µM. IC50 values were determined as the inhibitor 

concentration which brought about a 50% reduction in enzyme activity by fitting all the 

data to a one-site competition equation using Prism version 5.01 for Windows (GraphPad 

Software Inc., San Diego, CA).  

In order to estimate inhibition constants, formation rates of metabolite at different 

substrate concentrations were plotted as Dixon plots according to the following equation: 

 

where v is the velocity of reaction, [S] is the substrate concentration, [I] is the inhibitor 

concentration, Km is the Michaelis constant, and Vmax is the maximum reaction rate. The 

equilibrium dissociation constant of the inhibitor Ki was determined by estimating the 

corresponding value on the X-axis of the common intercept using linear regression.  

To further characterize the mechanism of inhibition, the same data were plotted as 

Eadie-Hofstee plots according to the following equation: 

 

where KSapp is the apparent Michaelis constant and  Vmaxi is the apparent maximum 

reaction rate in the presence of the inhibitor. The relationships between the slopes of 
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these lines generated by linear regression were used to determine the inhibitory 

mechanisms involved (Segel 1993).  

For non-competitive inhibition, in order to estimate KSapp and Vmaxi at different 

inhibitor concentrations, the same data were plotted as Lineweaver–Burk plots according 

to the following equation: 

 

Using linear regression, the intercepts on the X-axis were used to determine KSapp values 

and intercepts on the Y-axis were used to determine Vmaxi values.  

For competitive inhibition, all data on the formation rates of metabolite at 

different substrate concentrations were plotted as Lineweaver–Burk plots according to the 

following equation: 

 

Note: Equations are quoted from (Segel 1993). 

 

Note: The work described in this chapter has been published (Lu, Desta, and Flockhart 

2011; Lu, Xu et al. 2011).  
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CHAPTER EIGHT 

A New Conceptual Framework for Aromatase Inhibition 

 

Introduction 

To improve the treatment of breast cancer, there is a need to develop novel 

aromatase inhibitors (AIs) that have improved therapeutic window than those currently 

available. Improved AIs may bring about adequate aromatase inhibition, while limiting 

side effects. Since some of the tamoxifen metabolites can inhibit the activity of aromatase 

(Chapter Seven, this dissertation), these compounds represent important candidate 

structures in the search for novel and clinically useful AIs for three reasons. First, their 

structures are markedly different from any previously reported AIs, suggesting alternative 

biochemical mechanisms of action and also the possibility of improved benefit and 

toxicity profiles. Second, some of these compounds are able to bind to estrogen receptors. 

These metabolites may be able effectively reduce estrogen synthesis and at the same time 

modulate estrogen signaling by binding to estrogen receptors in a tissue-specific manner. 

Therefore, these structures or their derivatives may be valuable as alternative AIs that are 

able to mitigate the debilitating toxicities associated with estrogen depletion via tissue-

specific mechanisms. Third, these compounds are metabolites of a widely used drug, and 

many patients have already been exposed to them. To explore the ability of a range of 

structurally related tamoxifen metabolites to act as AIs, I tested and compared the activity 

of these compounds using recombinant human aromatase. Since these tamoxifen 

metabolites are structurally different from any known aromatase inhibitors, it would be 

important to understand the mechanism of action employed by these compounds. Thus, I 
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analyzed the structure-activity relationships of these compounds and estimated structure-

dependent interactions between these compounds and aromatase as a first step towards 

the development of lead candidates for novel inhibitors. 

Furthermore, in order to establish a lead optimization strategy, I collaborated with 

the laboratory of Professor Mark Cushman at Purdue University, and they used 

computerized molecular docking with the X-ray crystallographic structure of aromatase 

to describe possible biochemical interactions employed by tamoxifen metabolites, and 

also to explore other potential derivatives of the most potent inhibitor we identified as 

potential candidate structures. 

 

Results and discussion 

The ability of tamoxifen and its nine metabolites to inhibit recombinant human 

aromatase at an inhibitor concentration of 10 µM was tested and their activities were 

compared. While tamoxifen itself was not able to inhibit aromatase, many tamoxifen 

metabolites were capable of doing so. Figure 8.1 shows the relative potency of tamoxifen 

and its available metabolites as AIs. Among the primary metabolites, N-desmethyl-

tamoxifen, 4’-hydroxy-tamoxifen and tamoxifen-N-oxide were all relatively weak 

inhibitors. Among the secondary metabolites of tamoxifen, endoxifen and 4,4’-

dihydroxy-tamoxifen were more potent inhibitors than the primary metabolites. 

Interestingly, a tertiary metabolite, norendoxifen, was the most potent of all the inhibitors 

tested, and the only metabolite that completely inhibited enzyme activity at 10 µM. 

The inhibitory potency order of the tested compounds was as follows: 

norendoxifen >> 4,4’-dihydroxy-tamoxifen > endoxifen > N-desmethyl-tamoxifen, N-
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desmethyl-4'-hydroxy-tamoxifen, tamoxifen-N-oxide, 4'-hydroxy-tamoxifen, N-

desmethyl-droloxifene > 4–hydroxy-tamoxifen, tamoxifen. Consideration of the 

structure-activity relationships generated by these data makes clear that a number of 

consistent relationships exist. As methyl groups are progressively removed, inhibitory 

potency of a compound increases substantially, while the addition of a single hydroxyl 

group also increases potency (Figures 8.1 and 8.2). 
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Figure 8.1. Relative potency of tamoxifen and its primary, secondary and tertiary 

metabolites in the inhibition of aromatase.  

Test compounds (10 µM) were incubated with 7.5 nM recombinant human aromatase at 

37 °C for 30 min. Letrozole (0.1 µM) and vehicle (acetonitrile) were used as positive and 

negative controls respectively. Data are plotted as means of triplicate incubations with 

standard deviations. The dotted line represents 100 percent activity that was observed 

with the vehicle control.  
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Figure 8.2. Structure-function relationships: stepwise hydroxylation and 

demethylation of tamoxifen progressively increase the potency of aromatase 

inhibition.  

The horizontal open arrows represent the addition of a hydroxyl group. The vertical dark 

arrows represent the removal of a methyl group.  Available compounds tested were: (1) 

tamoxifen; (2) 4-hydroxy-tamoxifen; (3) 4’-hydroxy-tamoxifen; (4) 4,4’-dihydroxy-

tamoxifen; (5) N-desmethyl-tamoxifen; (6) N-desmethyl-4-hydroxy-tamoxifen  or 

endoxifen, (7) N-desmethyl-4'-hydroxy-tamoxifen; (8) N,N-didesmethyl-4-hydroxy-

tamoxifen or norendoxifen 
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Table 8.1. Calculated binding free energy for most stable docking poses (MM-

BPSA) and the experimental IC50 values of compounds. 

 

Note: *, IC50 values were determined when mixtures of unseparated (E) and (Z) isomers 

were tested. The data on experimental IC50 values were generated by me and the data on 

calculated binding free energy were from the Cushman Lab at Purdue University. 

 

Based on the structure-function relationships that I proposed, a series of molecular 

modeling studies were performed in collaboration with the Cushman Lab at Purdue 

University to study the biochemical mechanisms by which tamoxifen metabolites inhibit 

aromatase. These investigators docked proposed compounds into the active site of 

aromatase (PDB ID 3eqm) (Ghosh et al. 2010) using GOLD software (Verdonk et al. 

2003) and the energies of the complexes were minimized using the Amber force field and 

Amber charges. The binding free energies calculated by them are summarized together 

with my experimental aromatase IC50 values in Table 8.1. These estimated free energies 

appeared positively associated with the relative inhibitory potencies observed. They also 
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validated this docking and energy minimization procedure by reproducing the published 

crystal structure of aromatase-androstenedione complex by extracting the ligand structure 

and then docking it back into the aromatase active site, merging the highest-scored 

binding pose with the protein, and then minimizing the complex energy following the 

same protocol used with other tamoxifen metabolites. The root mean standard deviation 

between the structure of the newly generated complex derived from molecular modeling 

and the original crystal structure (PDB ID 3eqm) was 1.73 Å.  

In order to further characterize the activity of the most potent inhibitor--one that 

might represent a lead compound to guide future rational drug design--we studied the 

hypothetical binding modes of the norendoxifen isomers using computerized molecular 

docking models produced by our collaborators at Purdue University. Both isomers have 

similar binding modes, with the phenolic hydroxyl groups of both isomers bind to the 

carbonyl group of Met374 (Figures 8.3 and 8.4). The other oxygen atoms of both forms 

are calculated to exist near the iron atom; however, the ether oxygen atom of the E 

isomer was calculated to be 0.8 Å closer to the iron atom with better directionality for 

binding than the Z form. A hydrogen bond is apparent between the terminal aliphatic 

amino group in the E form and the carbonyl group of Ala306. A similar interaction is not 

predicted for the Z form, in which the terminal aliphatic amino nitrogen atom was 

calculated to at least 5 Å away from the closest atom that it could hydrogen bond to. 
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Figure 8.3. Hypothetical binding mode of (E)-norendoxifen in the human aromatase 

active site (PDB ID 3eqm).  

The ligands are gray, with oxygen depicted in red and nitrogen in blue. The protein is 

colored green, and the heme is colored magenta. Yellow dashed lines represent the 

distances between hydrogen bond donors and acceptors. The stereoview is programmed 

for wall-eyed (relaxed) viewing. Source: from the Cushman Lab at Purdue University. 
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Figure 8.4. Hypothetical binding mode of (Z)-norendoxifen in the human aromatase 

active site (PDB ID 3eqm).  

The ligands are gray, with oxygen depicted in red and nitrogen in blue. The protein is 

colored green, and the heme is colored magenta. Yellow dashed lines represent the 

distances between hydrogen bond donors and acceptors. The stereoview is programmed 

for wall-eyed (relaxed) viewing. Source: from the Cushman Lab at Purdue University. 
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Figure 8.5. Hypothetical binding mode of 4,4'-dihydroxy-tamoxifen in the human 

aromatase active site (PDB ID 3eqm).  

The ligands are gray, with oxygen depicted in red and nitrogen in blue. The protein is 

colored green, and the heme is colored magenta. Yellow dashed lines represent the 

distances between hydrogen bond donors and acceptors. The stereoview is programmed 

for wall-eyed (relaxed) viewing. Source: from the Cushman Lab at Purdue University. 

 

On the other hand, the unsubstituted phenyl ring and the ethyl moiety in both E 

and Z forms are surrounded by hydrophobic residues including Phe221, Leu477, Val370, 

Ile70, and the benzene ring of Trp224. In addition, the phenyl ring that contains the 

hydroxyl group is calculated to from a possible side-to-face stacking interaction with 

Phe134 in both isomeric forms. A comparison of the two complexes reveals that the ethyl 

and phenyl groups switch locations, but the two remaining phenyl rings that contain 

hydrogen bonding substituents maintain their positions.  
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In this study, a number of tamoxifen metabolites were shown to have activity as 

AIs with a wide range of potencies. Although these studies are limited to the 

commercially available tamoxifen metabolites, they are sufficient to allow the 

exploration of relationships between the structures of the compounds we tested and their 

function. The data indicate that stepwise hydroxylation and demethylation of tamoxifen 

both resulted in progressive increases in inhibitory potency (Figures 8.1 and 8.2). This is 

consistent with the collaborative data from Mark Cushman’s Lab: The activities of 4-

hydroxy-tamoxifen (Figure 8.2 Structure 2, IC50 530 µM), endoxifen (Structure 6, IC50 6 

µM), and norendoxifen (Structure 8, IC50 30 nM) show that sequential N-demethylation 

results in a very significant increase in aromatase inhibitory potency. The molecular 

models (Figures 8.3 - 8.5) document limited space available in the ligand binding site 

surrounding the amine, and the decrease in activity observed with the presence of more 

methyl groups can be attributed to steric factors. The models displayed in Figures 8.3 and 

8.4 indicate that the amino groups of both isomers are hydrogen bonded to the carbonyl 

oxygen atom of Ala306. This suggests that the loss of activity seen with the methylation 

of the amine may also result from a decrease in its capacity to act as a hydrogen bond 

donor toward the Ala306 carbonyl oxygen. The models displayed in Figures 8.3 and 8.4 

also indicate that the unsubstituted phenyl rings and ethyl groups of the double bond 

isomers of norendoxifen are buried in hydrophobic cavities. In the in vitro experimental 

data, the E and Z/E mixture of norendoxifen appeared to have the same enzyme 

inhibitory activities suggesting that the activities of the Z and E isomers are equal. The 

similar activities of the two isomers and the perspective offered by the molecular models, 

suggest that the locations of the phenyl and ethyl groups can be switched with no change 
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in activity. Of note, it is suggested by Dr. Mark Cushman that the ethyl and unsubstituted 

phenyl groups therefore appear to contribute to enzyme affinity through the presence of 

general hydrophobic and dispersion (van der Waals) interactions, as opposed to being due 

to specific interactions with particular amino acid side chains of the enzyme. Overall, the 

data suggest that the double bond stereochemistry in this series of AIs may not have a 

large impact on biological activity, although smaller effects remain possible, since in 

silico, the molecular models did indicate a greater calculated binding free energy for the 

Z isomer (Table 8.1). More research is needed in order to determine the precise 

enantioselectivity of this compound.  

Comparison of the activities of N-desmethyl-tamoxifen (Figure 8.2 Structure 5, 

IC50 20 µM) and endoxifen (Structure 6, IC50 6 µM) documents a positive contribution 

made by the 4-hydroxyl group. The molecular models suggest that this may reflect 

hydrogen bonding of the phenol with the carbonyl of Met374. Furthermore, comparison 

of the activities of 4-hydroxytamoxifen (Structure 2) and 4,4'-dihydroxy-tamoxifen 

(Structure 4) represented in Figure 8.1 indicates that the 4'-hydroxyl group makes a large 

positive contribution to the activity. The hypothetical model of the complex of human 

aromatase with 4,4'-dihydroxy-tamoxifen (Structure 4) suggests that the 4'-hydroxyl 

groups contribute to the affinity of the ligand through hydrogen bonding with the 

carbonyl oxygen of Asp309 (Figure 8.5).  

These results lead us to postulate that modifications to the basic triphenylalkene 

structure of tamoxifen (Figure 8.6) that preserve hydrogen bonding to the Ala306, 

Met374 and Asp309 residues might be a valuable approach in the development of the 

next generation of AIs. Of note, the specific interactions described here with Ala306 and 
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Met374 were also noted as being key to favorable interactions between aromatase and a 

series of other ligands (Punetha, Shanmugam, and Sundar 2011). In this context, since 

norendoxifen is a potent and selective inhibitor in vitro (Chapter Seven Figures 7.5 and 

7.6), it merits further investigation as a clinical AI, and may be able to serve as a lead 

compound for the rational design of new therapeutic agents for breast cancer.  
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Figure 8.6. The new structural basis for the development of improved aromatase 

inhibitors. 

This basic triphenylalkene structure was developed based on the structures of tamoxifen 

metabolites. The oxyalkylamine side chain on the phenyl group may have structural 

variants including: length in -(CH2)n-, n = 1, 2, 3, 4 or 5, such as CH2-CH2-, CH2-CH2- 

CH2-, CH2-CH2-CH2- CH2-and  CH2-CH2-CH2-CH2- CH2-, position on the phenyl group; 

position of oxygen in relation to -(CH2)n- chain; and oxyalkene composition of the side 

chain; R1 may be independently selected from the group consisting of H, CH3 and OH; R2 

and R3 are independently selected from the group consisting of H, CH3-, CH3-CH2-, CH3-

CH2-CH2-; R4 is selected from the group consisting of: H, CH3
-, CH3-(CH2)n-, hydroxy, 

methoxy, ethoxy; and n = 1, 2, 3, 4 or 5. 
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In summary, the range of structures tested in this study and their pharmacologic 

potencies provide a reasonable pharmacophore upon which to build novel aromatase 

inhibitors. Based on these findings, a series of compounds that have triphenylalkene 

structure with side chain(s) on the phenyl group(s) that are oxyalkanes or oxyalkenes and 

that terminate in an unsubstituted or mono-substituted amine (Figure 8.6) can be 

exploited as new inhibitors for aromatase. These structures may have the potential to 

provide benefit to patients who are treated with AIs for breast cancer and other conditions 

by expanding their treatment options with the goal of enhancing treatment efficacy and 

reducing toxicity. Most of all, norendoxifen may be able to serve as a potent and selective 

lead compound in the rational design of improved AIs.  

 

Methods 

Fluorescent assay for inhibition of aromatase in vitro 

The activity of aromatase was determined by measuring the conversion rate of a 

fluorometric substrate to its fluorescent metabolite as described in “Chapter Ten: General 

Methods / Fluorescent assay for inhibition of aromatase in vitro”. 

 

Computerized molecular modeling 

Computerized molecular docking with the X-ray crystallographic structure of 

aromatase was performed in collaboration with Mark Cushman Lab at Purdue University 

as described in “Chapter Ten: General Methods / Computerized molecular modeling”. 

 

Note: The work described in this chapter has been published (Lu, Xu et al. 2011).  
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CHAPTER NINE 

Conclusions and Future Directions 

 

Aromatase as a drug-metabolizing enzyme in humans 

The studies presented here are the first to directly test the effects of aromatase 

inhibition on drug disposition in humans and demonstrate that aromatase may be in part 

responsible for the metabolism of methadone. The data indicate that, on average, 

aromatase seems to account for ~ 22% of the clearance of a single dose of methadone (2 

mg) in a group of post-menopausal women (Chapter Three, this dissertation). The 

discovery of this new metabolic route for methadone improves our understanding of 

methadone clearance, and emphasizes that aromatase can serve as a drug-metabolizing 

enzyme, beyond its important role in catalyzing endogenous steroid synthesis.  

Our data also indicate that the decrease in methadone clearance brought about by 

aromatase inhibition is variable in the group of people studied, suggesting that there 

might be variability in the relative contribution of aromatase to overall methadone 

clearance in individual people. The balance between aromatase and other enzymes in 

contribution to methadone metabolism may be different among people. Mechanisms 

underlying the large variability in methadone pharmacokinetics may be complex and 

might involve factors that influence aromatase activity. 

The studies presented in this work also suggest a broader clinical role for 

aromatase in the disposition of xenobiotics. A quantitatively important role for aromatase 

in drug metabolism raises the possibility of clinically meaningful pharmacokinetic drug-

drug interactions with aromatase inhibitors that would not otherwise have been 
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anticipated, especially in patients taking aromatase inhibitors for a range of indications 

including breast cancer, the treatment of infertility and other off-label uses.  

 

A novel structural basis for the development of improved aromatase inhibitors 

There is a need for alternative aromatase inhibitors that bring about adequate 

enzyme activity inhibition, while limiting treatment side effects. By testing a carefully 

selected group of xenobiotics for their ability to inhibit aromatase, this work 

demonstrates that, in contrary to conventional wisdom, which holds that aromatase has 

strict ligand requirements, aromatase interacts with a structurally wide range of 

compounds other than the known endogenous substrates or the current inhibitors. These 

compounds include methadone and its metabolites EDDP and EMDP, tamoxifen and a 

number of its metabolites, fluoxetine, naringenin and 17-hydroxy exemestane. Among 

these compounds, a number of novel aromatase inhibitors that employ diverse kinetic 

mechanisms have been identified and characterized. Data indicate that methadone (KI of 

40.6 ± 2.8 μM; kinact of 0.061 ± 0.001 min-1) and its major metabolites are mechanism-

based inhibitors (Chapter Five Figure 5.2), naringenin (IC50s of 2.8 μM for (R)-

naringenin and 1.4 μM for (S)-naringenin) is a stereoselective inhibitor (Chapter Six 

Figure 6.2), endoxifen (Ki of 4.0 μM) and N-desmethyl-tamoxifen (Ki of 15.9 μM) are 

two non-competitive inhibitors (Chapter Seven Figures 7.2 and 7.3), and norendoxifen 

(Ki of 35 nM) is a relatively potent, selective, and competitive inhibitor (Chapter Seven 

Figures 7.5 and 7.6). These findings illuminate the biochemistry and pharmacology of 

aromatase. Of note, the biochemical mechanism of inhibition by some of these 

metabolites is allosteric, suggesting that there might be an alternative site that could be 
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exploited in the search for new therapies to modulate aromatase activity. The range of 

structures tested in this work and their different pharmacological properties provide a 

reasonable pharmacophore upon which to build improved aromatase inhibitors. 

In the search for better aromatase inhibitors, my work demonstrates that 

tamoxifen metabolites represent important candidate structures. They are a series of 

compounds that have triphenylalkene structure with side chain(s) on the phenyl group(s) 

that are oxyalkanes or oxyalkenes and that terminate in an unsubstituted or mono-

substituted amine (Chapter Eight Figure 8.6). Based on the observed various potencies of 

these compounds, several consistent structure-function relationships exist: stepwise 

demethylation and hydroxylation of tamoxifen both progressively increase the potency of 

the compound as an aromatase inhibitor (Chapter Eight Figures 8.1 and 8.2). My work 

also shows that the most potent inhibitor identified, norendoxifen, is a relatively selective 

aromatase inhibitor, when its inhibitory effects on clinically important cytochrome P450 

enzymes were tested and compared (Chapter Seven Figure 7.6). In addition, collaborative 

data generated using molecular modeling improve our understanding of possible 

biochemical mechanisms employed by norendoxifen to interact with the active site of 

aromatase. These findings, together with the structure-function relationships identified, 

suggest that modification to the basic triphenylalkene structure of tamoxifen that 

preserves hydrogen bonding to the Ala306, Met374 and Asp309 residues of the active 

site might be a valuable approach in the rational design of new and effective aromatase 

inhibitors that work by a similar mechanism. In this context, norendoxifen may be able to 

serve as a lead compound for the development of drugs with improved therapeutic index.  
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Clinical implications 

This work has a number of potentially important clinical implications. The new 

roles for aromatase in drug disposition and pharmacokinetic drug-drug interactions 

described herein may help optimize therapy and prevent toxicity. 

First, improved understanding of interactions between methadone and aromatase 

may help explain a few clinical observations. Methadone dosing is difficult to manage 

and unanticipated accumulation of methadone in patients can lead to high methadone 

concentrations with resultant potentially lethal consequences. Since methadone is both a 

substrate and a mechanism-based inhibitor of aromatase (Chapters Two and Five, this 

dissertation), methadone accumulation over time due to auto-inhibition of its own 

metabolism seen in some patients (Morton 2007) may be a result of the irreversible 

inhibition of aromatase by itself. Consistent with inhibition of aromatase by methadone, 

lower concentrations of estradiol and of follicle-stimulating hormone have been 

documented in men taking methadone (Hallinan et al. 2009), and low bone mineral 

density that may be due to low estrogen concentrations has been documented in 83% of 

patients in a methadone maintenance treatment program (Kim et al. 2006). This improved 

understanding of interactions between aromatase and methadone may help us develop 

new and rational strategies to prevent methadone overexposure. On the other hand, 

aromatase activity has large interindividual variability, and so the identification of a 

metabolic route for methadone via this enzyme may help to anticipate and manage 

withdrawal in multiple clinical settings where current predictive ability is low. These 

include the withdrawal that neonates of methadone-treated mothers’ experience (Serane 
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and Kurian 2008), methadone withdrawal that often occurs during pregnancy (Pond et al. 

1985), and that occurs in routine use of methadone to treat pain or heroin addiction.  

Second, tamoxifen is an important treatment for breast cancer, whose activity is 

known to be mediated via active metabolites, primarily by endoxifen which blocks 

estrogen binding to estrogen receptors. Our work demonstrates that some tamoxifen 

metabolites also act as aromatase inhibitors (Chapters Seven and Eight, this dissertation), 

suggesting that blockade of estrogen production may also contribute to the clinical effects 

of tamoxifen. This effect may explain the changes in serum and tissue estrogen 

concentrations seen in patients taking tamoxifen (Lonning et al. 1995). These data also 

improve our understanding of possible relationships between concentrations of active 

tamoxifen metabolites and clinical outcomes of tamoxifen therapy. For example, if 

aromatase inhibition contributes to the action of tamoxifen, then it is possible that this 

effect confounds a simple association between endoxifen concentration and clinical 

outcome. Aromatase inhibition mediated by multiple active tamoxifen metabolites may 

help explain the inconsistency in observed associations between CYP2D6 genotype and 

treatment outcome in breast cancer patients taking tamoxifen (Goetz et al. 2005; Nowell 

et al. 2005; Wegman et al. 2007). There may be a variable balance among patients 

between the blockage of estrogen production and the antagonism at estrogen receptors. 

This balance may therefore explain in part the variability in bone density, serum lipid 

concentrations, experience with hot flashes, severity of musculoskeletal pain and breast 

cancer recurrence observed in patients taking tamoxifen. 

Third, the novel aromatase inhibitors and their mechanisms of action identified 

here may contribute to the search for new approaches to breast cancer therapy both in the 
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treatment and prevention settings. For example, data suggest that medications, such as 

methadone and tamoxifen, are commonly taken by breast cancer patients, and may exert 

adequate aromatase inhibition beneficial in the prevention of tumor growth and cancer 

recurrence. Such effects may augment the treatment of breast cancer and may be 

therapeutically useful. Naringenin is often ingested via fruit products such as grapefruit 

juice and therefore might also be protective for people at risk for breast cancer. 

Lastly, inhibition of aromatase by the inhibitors identified in this work might 

occur in vivo and therefore may alter the metabolism of endogenous testosterone and 

androstenedione. As a result, side effects of these drugs, such as flushing, muscle pain 

and symptoms reminiscent of estrogen withdrawal (Senay 1985; Backstrom 1995), may 

be explained in part by the drugs’ action on aromatase.   

Overall, our findings have the potential to improve the use of methadone, 

tamoxifen and current aromatase inhibitors, all of which are commonly co-prescribed 

with a wide range of other drugs. These findings also improve our understanding of the 

potential clinical effects of the studied xenobiotic medications and dietary compounds on 

aromatase activity. As a result, it may be possible to more consistently treat patients, 

particularly in breast cancer, with current medications in ways that maximize efficacy, 

minimize side effects, better anticipate drug interactions and therefore improve the 

quality of life of patients. 

 

Future directions  

Based on the findings of my work, it would be valuable to further evaluate the 

following in the future: 
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(1) To investigate the influence of genetic variants of aromatase on methadone 

metabolism in humans. The results of the current study indicate that methadone is 

metabolized by aromatase in humans but the effect of aromatase inhibition on systemic 

methadone clearance is highly variable (Chapter Three, this dissertation). The relative 

contribution of aromatase and other enzymes suggested to be important in the metabolism 

of methadone, including particularly CYP2B6 (Crettol et al. 2005; Wang et al. 2011), 

may be influenced by genetic variants of aromatase and those of CYP2B6. This balance 

may be an important factor in the under- or over-dosing often seen in methadone patients. 

Future genetic studies both in vitro and in vivo that address the relationships between 

enzyme genotype and its quantitative contribution to overall methadone clearance should 

be performed. In the case of aromatase, several variants that influence its activity have 

been reported. The most widely studied is a tetranucleotide (TTTA)n tandem repeat 

polymorphism located in intron 4 of the human CYP19A1 gene, and it has been reported 

that the number of TTTA repeats is associated with estrogen levels (Somner et al. 2004), 

age at menarche (Xita et al. 2010), obesity (Hammoud et al. 2010), polycystic ovarian 

syndrome (Hao et al. 2010), risks for breast cancer (Ahsan et al. 2005; Kristensen et al. 

2000) and osteoporosis (Gennari et al. 2004; Masi et al. 2001). There have also been a 

few reports of a very rare autosomal recessive disease, human aromatase deficiency, 

caused by loss-of-function mutations in the CYP19A1 gene (Bulun 2000; Belgorosky et 

al. 2009; Rochira and Carani 2009). Interindividual variability in methadone dosage 

requirement has been shown to be polygenetic and cannot be explained by a single-gene 

effect (Hung et al. 2011). Demonstrating a clinically relevant relationship between 
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aromatase genotype and methadone clearance across multiple doses of the drug will help 

to achieve safer use of methadone. 

(2) To investigate the involvement of aromatase in the clinical disposition of other 

drugs. This work has shown that aromatase is responsible for methadone metabolism in 

humans. Placental aromatase has also been implicated in the metabolism and specifically 

the demethylation of buprenorphine (Deshmukh, Nanovskaya, and Ahmed 2003) and 

cocaine (Osawa et al. 1997) in vitro, it is therefore reasonable to directly examine the role 

that this enzyme plays in the metabolism of these drugs in clinical settings. Since the 

biochemical mechanism by which aromatase catalyzes the metabolism of either 

endogenous substrates or exogenous drugs involves the removal of a methyl group, it 

follows that other medications that are similarly metabolized may also be aromatase 

substrates. In particular, the results generated from screening compounds for aromatase 

inhibitors indicate that fluoxetine interacts with aromatase in vitro (Chapter Four Figure 

4.1.B). Fluoxetine is also a drug that primarily undergoes N-demethylation to 

norfluoxetine and aromatase might be involved in the biotransformation of this drug. This 

possibility deserves further study. 

(3) To further investigate the potential of norendoxifen as a clinically useful 

aromatase inhibitor. First, the current study has characterized norendoxifen as a potent 

and selective inhibitor in vitro (Chapter Seven Figures 7.5 and 7.6). The next step is to 

assess whether or not this action of norendoxifen is likely to happen in vivo. Although 

norendoxifen is a known metabolite of tamoxifen in humans (Lien et al. 1991; Jin et al. 

2005), little is known about its tissue concentrations or its contribution to tamoxifen 

effects. While norendoxifen is a tertiary metabolite of tamoxifen and its in vivo 



137 
 

concentration is probably at notably lower concentrations than the parent drug or its 

major metabolites, it is known that tamoxifen metabolites concentrate in tissue 

compartments. For example, the concentrations of endoxifen in breast tumors appear to 

be 10 to 100 times higher than its serum concentrations in humans (Lien et al. 1991). This 

serum-tissue gradient is more prominently shown by studies in rats. The ratio of 

endoxifen concentrations in tissue to those in serum can be as high as 500 : 1 (Lien, 

Solheim, and Ueland 1991). It follows that tissue accumulation of norendoxifen and 

thereby local aromatase inhibitions in vivo seem a possibility. In order to evaluate the 

contribution of norendoxifen to the therapeutic effects of its parent drug, tamoxifen or 

endoxifen, it is important to determine the serum and tumor concentrations of 

norendoxifen in people who undergo these therapies for breast cancer. The potency of 

this mechanism in vivo merits future studies. Second, it is important to note that 

norendoxifen is the metabolite of endoxifen and 4-hydroxy-tamoxifen, two widely 

recognized and potent estrogen receptor modulators (Jin et al. 2005; Johnson et al. 2004; 

Jordan 2007). It follows that norendoxifen may also act as an estrogen receptor ligand, 

that is able to modulate estrogen signaling. Studies should be carried out to determine the 

ability of norendoxifen to bind to estrogen receptors, and to assess its effects on estrogen 

signaling. The present studies demonstrate that norendoxifen is not only an aromatase 

inhibitor with potency close to letrozole, but that it also has the potential ability to 

mitigate the debilitating musculoskeletal toxicities experienced by breast cancer patients 

via tissue specific mechanisms involving estrogen receptor signaling. For example, a new 

aromatase inhibitor that is also an agonist at estrogen receptors in bone may prevent the 

high prevalence of vertebral fractures seen in breast cancer patients starting aromatase 
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inhibitor therapy (Bouvard et al. 2011). Norendoxifen and its derivatives may therefore 

be valuable candidates for a dual-mechanism therapy involving both aromatase inhibition 

and selective estrogen receptor modulation, which might be exploited in the development 

of alternative breast cancer therapies.  

(4) To investigate the influence of genetic variants of aromatase on its 

susceptibility to inhibition by different inhibitors. Aromatase inhibition has become the 

standard of care for ER-positive (~ 70% of all) breast cancer (Taylor and Muss 2010; 

Howell and Dowsett 1997). Although this therapy remains the most clinically effective 

treatment in preventing breast tumor growth and cancer recurrence, about 50% of all 

patients taking aromatase inhibitors in the adjuvant setting still recur within 5 years after 

surgery (Howell et al. 2005). There is a large variability in patients’ response to current 

aromatase inhibitors, both in efficacy and side effects. It is possible that genetic 

biomarkers such as aromatase genotype can help identify patients who benefit from this 

therapy and those who don’t. The reason for this difference is likely to be the influence of 

genetic variants on the 3-D structure of aromatase and therefore on its susceptibility to 

inhibition. Therefore, the susceptibility of aromatase variants to different inhibitors may 

be different, and it is possible to develop stratification strategies to identify the optimal 

aromatase inhibitor for individual breast cancer patients based on their genetic 

information. With the ongoing search for new aromatase inhibitors, a large number of in 

vitro aromatase inhibitors have been identified. These findings provide a pool of 

candidate compounds for in vitro testing on various aromatase variants. In this work, 

endoxifen and NDMT have been characterized as aromatase inhibitors via a non-

competitive mechanism, which is consistent with an allosteric interaction with aromatase 
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(Chapter Seven Figures 7.2 and 7.3). It is possible that this allosteric inhibition occurs via 

interactions at a site remote from the catalytic site of the enzyme, or that it occurs via 

interactions of two drugs that bind differently within the active site. Of note, mutation of 

a site distant from the substrate binding site of aromatase has been shown to increase 

enzyme activity and reduce the susceptibility to inhibition of aromatase by 

aminoglutethimide (Payne et al. 2009). These observations raise the possibility that 

allosteric mechanisms might contribute to the pharmacologic regulation of aromatase and 

could be exploited to modulate aromatase activity for therapeutic benefit. The knowledge 

of using selective aromatase inhibitors to overcome genetic influence will help develop 

diagnostic tests that could be used in a personalized approach to treat breast cancer. 

(5) To identify new biomarkers that can distinguish breast cancer patients who are 

destined to experience debilitating toxicity or benefit from treatment with aromatase 

inhibitors. Not all patients respond favorably to aromatase inhibition. In the long term, 

biomarker-guided individualization of therapy for cancer holds great promise to improve 

treatment outcomes. Breast cancer mortality is increasing rapidly in Asia while 

decreasing in Western countries (Aihara et al. 2010; Deapen et al. 2002). Many effective 

therapies, developed exclusively in Caucasians, have not been optimized for Asian 

patients despite the fact that there are many ethnic differences in breast cancer. These 

include the prevalence of molecular subtypes of the disease, genetic polymorphisms in 

pathways involved in estrogen biosynthesis and metabolism, vulnerability to debilitating 

side effects of anti-estrogenic therapies, pharmacokinetic-pharmacodynamic 

relationships, and effects of demographic factors (Toi et al. 2010; Miyoshi and Noguchi 

2003). As a result, personalized approaches guided by genomic and other biomarkers 
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seem particularly promising in improving breast cancer treatments, especially in Asian 

populations. It is well-known that in a subset of patients aromatase inhibition therapy is 

either ineffective or brings about musculoskeletal pain which results in poor quality of 

life and thereby non-compliance. In fact, 25 - 50% of women prescribed an aromatase 

inhibitor have been reported to stop taking the drug within 3 years (Ziller et al. 2009; 

Partridge et al. 2008; Hershman et al. 2010), and more than 50% of patients experience 

musculoskeletal pain, the principal reason for non-adherence (Zivian and Salgado 2008; 

Oberguggenberger et al. 2011; Aihara et al. 2010). In order to identify inherited 

pharmacogenetic variants that associate with treatment response, prospective and 

retrospective clinical studies can be designed and conducted using an informed genome-

wide association (GWA) approach. Genetic variants to be tested should include those 

suggested by prior broad GWA studies (Ingle et al. 2010), as well as variants in candidate 

genes involved in estrogen biosynthesis, metabolism and signaling pathways (Mao et al. 

2011). Clinical response can be assessed by measuring musculoskeletal toxicity using the 

Health Assessment Questionnaire (Thompson and Pegley 1991) and Visual Analogue 

Pain Rating Scale (Henry et al. 2010), and by analyzing data on cancer recurrence from 

patients’ medical records. These studies will identify novel biomarkers that can be 

combined in diagnostic tests and that inform future stratification of breast cancer therapy. 

 

Summary  

Cytochrome P450s in humans are enzymes responsible for the metabolism and 

elimination of the majority of therapeutic xenobiotics. One member of this class of 

enzymes, aromatase (CYP19), is less known for its interactions with xenobiotics. Our 
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studies presented here demonstrate potentially important roles for aromatase in drug 

disposition and pharmacokinetic drug-drug interactions. Specifically, this work discovers 

an involvement of aromatase in the metabolic pathways of methadone and improves our 

understanding of the pharmacologic action of tamoxifen. In addition, aromatase 

represents a key target in the treatment of a number of estrogen-related conditions 

including breast cancer. This work provides a new mechanistic framework for targeting 

aromatase by characterizing novel aromatase inhibitors that employ diverse kinetic 

actions. As a result, the range of tested structures and their attendant pharmacologic 

potencies provides a reasonable pharmacophore upon which to build novel aromatase 

inhibitors.  
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CHAPTER TEN 

General Methods 

 

Chemicals and reagents 

(R) / (–)-methadone and (S) / (+)-methadone were generously provided by the 

National Institute on Drug Abuse Drug Supply Program (Bethesda, MD). Methadone 

metabolites 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) iodide and 2-

ethyl-5-methyl-3,3-diphenylpyrroline (EMDP) hydrochloride were obtained from Alltech 

(Deerfield, IL). (R)-, (S)- and rac-naringenin were generously provided by Dr. Salvatore 

Caccamese at the Dipartimento di Scienze Chimiche, Università di Catania, Italy. 

Tamoxifen, all tamoxifen metabolites, bupropion, 4-hydroxybupropion, (R)-

hydroxyomeprazole, (R)-lansoprazole, norgestrol, nevirapine and letrozole were obtained 

from Toronto Research Chemicals Inc. (North York, ON, Canada). Racemic methadone 

hydrochloride, desmethyldiazepam, 17-β-estradiol, testosterone, (R)-omeprazole, 

tolbutamide, 4-hydroxytolbutamide, chloropropamide, β-NADP, glucose-6-phosphate 

dehydrogenase, and glucose-6-phosphate were purchased from Sigma-Aldrich (St. Louis, 

MO). Monobasic and dibasic sodium phosphate, monobasic potassium phosphate, 

magnesium chloride, HPLC-grade methyl tert-butyl ether, acetonitrile and methanol were 

purchased from Fisher Scientific (Pittsburgh, PA). Glycine (electrophoresis purity 

reagent) was obtained from Bio-Rad Laboratories (Hercules, CA, USA). All drug 

solutions were prepared by dissolving each compound in methanol or acetonitrile, and 

were stored at − 20 °C. Tamoxifen and its metabolites were prepared under dim light and 

in brown tubes to minimize photodegradation. 
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Baculovirus-insect cell-expressed human aromatase (with oxidoreductase) 

microsomal preparations, pooled human liver microsomes (HLMs) and the cytochrome 

P450 inhibitor screening kits for aromatase (CYP19), 2C9, 2C19 and 2D6 were 

purchased from BD Biosciences (San Jose, CA). Placental microsomal preparations were 

a generous gift from Dr. Mahmoud S. Ahmed at the University of Texas Medical Branch, 

Galveston. All microsomal preparations were stored at – 80 °C until used. 

Methadone for IV administration was obtained from Xanodyne (Newport, KY) as 

a 10 mg/ml solution.  Volumes of methadone used for each administration were recorded 

as 0.6 ml (6 mg). This dose was diluted in 50 ml of normal saline for IV infusion. The 

same lot number was used for each administration of methadone, and was prepared by 

the Indiana University Hospital Pharmacy, Investigational Drug Services. Letrozole pills 

(Femara® 2.5 mg tablets) were obtained from Novartis (Basel, Switzerland).  

 

Testosterone and methadone metabolism in vitro by recombinant aromatase 

All incubations were carried out using incubation times and protein 

concentrations that were within the linear range for reaction velocity. Testosterone and 

methadone were dissolved in methanol and diluted with the same solvent to the required 

concentrations. Any methanol in the incubation tubes was removed by drying in speed 

vacuum before the incubation. All incubations contained recombinant human aromatase 

in 100 mM sodium phosphate buffer (pH = 7.4), with a NADPH-generating system (1.3 

mM NADP, 3.3 mM glucose-6-phosphate, 3.3 mM MgCl2, and 0.4 U/ml glucose 6-

phosphate dehydrogenase) and various concentrations of aromatase substrate in a final 

volume of 250 μl. When inhibition of metabolism was tested, the tested inhibitor was 
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mixed with the substrate and was present at a range of concentrations during the 

incubation. The incubation mixture was prewarmed for 5 min at 37 °C, initiated by 

addition of the NADPH-generating system, and incubated at 37 °C. When testosterone 

was the substrate, final aromatase concentration used was 0.01 µM and the incubation 

time was 10 min. When methadone was the substrate, final aromatase concentration used 

was 0.05 µM and the incubation time was 30 min. All reactions were terminated by the 

addition of 20 µL of 60 % (w / v) perchloric acid, immediate vortex and then placing the 

tubes on ice. 

 

HPLC-UV assays for the quantifications of estradiol and EDDP formation 

All samples were extracted immediately after the incubation. First, 25 µL of 500 

µM norgestrol was added to each sample as an internal standard. The incubation mixture 

was centrifuged at 14,000 rpm for 5 min at room temperature. The supernatant layer was 

made alkaline by adding 500 µL of 1M glycine-NaOH buffer (pH 11.3) and extracted by 

adding 6 mL of ethyl acetate. This mixture was vortex-mixed for 10 seconds and then 

centrifuged at 26,000 rpm for 15 min. The organic layer was transferred to 13 × 100-mm 

glass culture tubes and evaporated to dryness. The resulting residue was reconstituted 

with mobile phase (50% 10mM monobasic potassium phosphate, 40% acetonitrile and 

10% methanol) and analyzed as described below immediately.  

High performance liquid chromatography (HPLC) assays with ultraviolet (UV) 

detection were developed for the quantification of testosterone conversion to estradiol 

and of methadone conversion to EDDP. The HPLC-UV system was comprised of a 

Waters (Milford, MA) model 510 HPLC pump and a Waters model 717 plus 



145 
 

autosampler, coupled with a Waters 486 tunable absorbance detector. The separation 

system consisted of a Zorbax SB-C18 column (4.6 × 150 mm, 3.5 µm particle size, 

Phenomenex, Torrance, CA), a Nova-Pak C18 Guard column (4 µm; Waters, Inc., 

Ireland). An isocratic elution was used to separate the compounds. The mobile phase 

consisted of 50% 10mM monobasic potassium phosphate, 40% acetonitrile and 10% 

methanol without PH adjustment. The eluate was introduced, at 0.8 ml/min to the UV 

detector with a run time of 25 min. Under these conditions, the retention times of 

letrozole, estradiol, EDDP, testosterone, methadone, norgestrol and EMDP were 

approximately 3, 8, 10, 12, 15, 20 and 35 min, respectively.  

Peak areas for each peak were obtained from an integrator, and peak area ratios 

with internal standard were calculated.  Standard curves were estimated by linear 

regression of peak area ratios. Quantification of samples was carried out by applying the 

linear regression equation of the standard curve to the peak area ratio.  The microsomal 

activity data represent individual data points or the mean of duplicate assays. The limit of 

quantification for estradiol was 2.5 pmol on column, with intra- and inter-day coefficients 

of variation of 2.4% and 5.3% respectively. The limit of quantification of EDDP was 5 

pmol on column, with intra- and inter-day coefficients of variation of 5.5% and 7.3% 

respectively.  

 

LC-MS/MS assays for plasma and urinary methadone, EDDP and EMDP  

HPLC with tandem mass spectrometry detection (LC-MS/MS) assays were 

developed for the quantification of plasma and urinary methadone and its major 

metabolites, EDDP and EMDP. Each plasma and urine sample (1 ml) was extracted by 
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adding 500 µL of 1M glycine-HCl buffer (pH 3.0) and 6 mL of methyl tert-butyl ether. 

Nevirapine (100 µl of 1 µg/ml) was added to each sample as an internal standard. This 

mixture was mixed on a reciprocal shaker (Eberbach, Ann Arbor, MI) for 5 min and then 

centrifuged at about 3,000 rcf for 15 min. The organic layer was transferred to 13 × 100-

mm glass culture tubes and evaporated to dryness. The resulting residue was 

reconstituted with mobile phase (50% 20 mM ammonium acetate and 50% acetonitrile 

without pH adjustment) and analyzed immediately. The LC-MS/MS assay was performed 

on an Applied Biosystems (Foster City, CA) model API 2000 triple-quadrupole mass 

spectrometer, coupled with a Shimadzu (Addison, IL) HPLC system consisting of a 

model LC-20AB binary solvent delivery pump and model SIL-20A HT autosampler. The 

separation system was composed of a Luna 3 μm C18-2 column (100 × 2.00 mm i.d.; 

Phenomenex, Torrance, CA) and a nitrile guard column (4 × 3.0 mm; Phenomenex). The 

eluate was introduced, without splitting, at 0.200 mL/min to the electrospray ionization 

source. The electrospray voltage was set at + 2500 mV and the dwell time at 100 ms per 

detection channel with unit mass resolution on the quadrupole 1 and 3 mass analyzers. 

Optimal gas pressures for all of the analytes were: nitrogen nebulizer gas 20.00 psi, 

turbo/heater gas 0.00 psi, curtain gas 20.00 psi and collision gas 2.00 psi. All data were 

collected in the positive ion mode with the temperature of the interface set at 450 °C. 

Under these conditions, nevirapine, methadone, EDDP and EMDP were detected at the 

retention times of approximately 3, 6, 5, and 10 min, respectively, and were quantified 

using m / z values (Q3 / Q1) at 226.0 / 267, 265.2 / 310, 234.1 / 278 and 220.2 / 264 

respectively. Peak areas for each peak were obtained, and peak area ratios with internal 

standard were calculated. Quantification of samples was carried out by applying the 
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linear regression equation of the standard curve to the peak area ratio. Each analytical run 

included calibration samples and quality control samples at the concentration range of 0.1 

- 200 ng/ml for methadone, EDDP and EMDP. Using these methods, the limits of 

quantification (LOQs) for methadone, EDDP and EMDP were 0.1, 0.2 and 0.1 ng/ml 

respectively, with intra-day and inter-day coefficients of variation of less than 5 % and 

less than 12 % respectively for all three compounds, when measured above the LOQs. 

 

HPLC-UV-fluorescence assays for plasma letrozole 

Plasma letrozole concentrations were measured using HPLC assays with 

ultraviolet and fluorescence detection as described below. Baseline plasma samples (200 

μl) were made alkaline by adding 500 µL of 1 M glycine-NaOH buffer (pH 11.3) and 

extracted by adding 6 mL of ethyl acetate. Desmethyldiazepam (100 μl of 1000 ng/ml) 

was used as internal standard. All samples were mixed, centrifuged and transferred as 

described above, and then reconstituted with mobile phase (70% 10 mM monobasic 

potassium phosphate, 30% acetonitrile, pH adjusted to 6.5) and analyzed immediately. 

The HPLC system was controlled by CLASS-VP version 7.1.1 SP1 Chromatographic 

Software (Shimadzu Scientific Instruments Inc., Columbia, MD) and included a 

Shimadzu solvent delivery module SCL-10A VP, an autoinjector SIL-10AD VP, a 

spectrofluorometric detector RF-10A XL (set at an excitation wavelength of 230 nm and 

emission wavelength of 295 nm), an ultraviolet detector SPD-10A VP (set at a 

wavelength of 234 nm, 0.1 AUFS) and a system controller SCL-10A VP (Shimadzu, 

Kyoto, Japan). The eluate was directed at 1 ml/min through a Zorbax SB-C18 3.5-μm C18 

column (150 × 4.6 mm i.d.; Agilent Technologies, Santa Clara, CA) coupled with a 
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Nova-Pak C18 Guard column (4 μm; Waters, Inc., Ireland) with a run time of 32 min. 

Under these conditions, the retention times of letrozole and desmethyldiazepam were 

approximately 17 and 27 min, respectively. The limit of quantification for letrozole was 

12.5 ng/ml, with intra-day and inter-day coefficients of variation of less than 4.3% and 

less than 8.1% respectively. 

 

Fluorescent assay for inhibition of aromatase in vitro 

The activity of recombinant human aromatase was determined by measuring the 

conversion rate of a fluorometric substrate, 7-methoxy-4-trifluoromethylcoumarin 

(MFC), to its fluorescent metabolite, 7-hydroxytrifluoromethylcoumarin (HFC). 

Experimental procedures were consistent with the methodology described for high-

throughput screening of a human cytochrome P450 inhibitor (Stresser 2004). All 

incubations were carried out using incubation times and protein concentrations that were 

within the linear range for reaction velocity. Experiments involving tamoxifen and its 

metabolites were carried out under dim light to minimize photodegradation. MFC and 

inhibitors were prepared in acetonitrile solutions. A series of concentrations of inhibitor 

in a volume of 4 µl were mixed with 96 µl of NADPH-Cofactor Mix (16.3 µM NADP, 

828 µM glucose-6-phosphate, 828 µM MgCl2, and 0.4 U/ml glucose 6-phosphate 

dehydrogenase), and prewarmed for 10 min at 37 °C. MFC and recombinant human 

aromatase were mixed with 0.1 M potassium phosphate buffer (pH 7.4), and then added 

to an Enzyme/Substrate Mix. Reactions were initiated by adding 100 µl of Enzyme / 

Substrate Mix to bring the incubation volume to 200 µl. Final MFC concentration was 

typically set at 25 µM. When multiple substrate concentrations were tested in order to 
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characterize detailed kinetics of enzyme inhibition, final MFC concentrations of 10, 15, 

20 and 25 µM were used. Final recombinant aromatase concentration was 7.5 nM. After 

incubation for 30 min at 37 °C, all reactions were stopped by adding 75 µl of acetonitrile 

/ 0.1 M tris base. When aromatase inhibition was tested using human placental 

microsomes, experimental conditions were the same as described above except that the 

final total protein concentration was 0.12 mg/ml. The generation of HFC was determined 

immediately by measuring fluorescence response (excitation 400 nm, emission 540 nm) 

using a BioTek (Winooski, VT) Synergy 2 fluorometric plate reader. The activity of 

placental human aromatase was determined using the same methods with the exception 

that final protein concentration was 0.06 mg/ml. Standard curves were constructed using 

fluorescent metabolite HFC standard. Quantification of samples was carried out by 

applying the linear regression equation of the standard curve to the fluorescence 

response. The limit of quantification for HFC was 0.02 µM in a final volume of 200 µl, 

with intra- and inter-day coefficients of variation of 6.2% and 8.4% respectively.  

 

Mechanism-based inhibition of aromatase in vitro 

Recombinant aromatase was preincubated with various concentrations of tested 

inhibitor. All preincubations contained tested inhibitor, 0.1 µM aromatase and 100mM 

sodium phosphate buffer (pH = 7.4), NADPH-generating system (1.3 mM NADP, 3.3 

mM glucose-6-phosphate, 3.3 mM MgCl2, and 0.4 U/ml glucose 6-phosphate 

dehydrogenase) in a final volume of 250 μl. Preincubations were initiated and carried out 

in the same way as described for the microsomal incubation conditions described above. 

After a period of time, each 250 μl preincubation mixture was diluted 10 times with a 
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solution containing testosterone, sodium phosphate buffer and NADPH-generating 

system to reach a final incubation mixture of 50 µM testosterone and 0.01 µM aromatase. 

The dilution was to eliminate competitive inhibition as a possible cause of the inhibitory 

effect. This incubation mix was then incubated at 37 °C for 10 min. The reaction was 

terminated the same way as described above. The extent of inactivation of aromatase, 

expressed as the percent activity remaining after preincubation, was determined by 

measuring the conversion rate of testosterone to estradiol.  

 

Inhibition of testosterone metabolism by aromatase in vitro 

The activity of aromatase was determined by measuring the rate of conversion of 

testosterone to estradiol. All incubations were carried out using incubation times and 

protein concentrations that were within the linear range for reaction velocity. 

Testosterone and the tested inhibitors were prepared in methanol. All experiments were 

performed under dim light and in brown, gall tubes to minimize photodegradation of 

tamoxifen and its metabolites.  

For reversible inhibition studies, testosterone and inhibitor were mixed at the 

appropriate concentrations, and methanol was removed by drying under speed vacuum 

before the incubation. All incubations contained recombinant human aromatase in 100 

mM sodium phosphate buffer (pH 7.4), with a NADPH-generating system (1.3 mM 

NADP, 3.3 mM glucose-6-phosphate, 3.3 mM MgCl2, and 0.4 U/ml glucose 6-phosphate 

dehydrogenase) in a final volume of 250 μl. The reaction was prewarmed for 5 min at 37 

°C, initiated by the addition of the NADPH-generating system, and incubated at 37 °C for 

10 min. Final aromatase concentration was 50 nM. Final testosterone concentrations of 1, 
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2, 4 and 8 µM were tested. All reactions were terminated by the addition of 20 μl of 60% 

(w / v) perchloric acid, followed by immediate vortexing and placement of the tubes on 

ice. The fluorometric substrate, MFC was tested under these same conditions in order to 

compare IC50 values of tested inhibitors with a different substrate. For studies designed to 

test for irreversible inhibition, experiments were carried out as described above in 

“Mechanism-based inhibition of aromatase in vitro”. 

 

Inhibition of recombinant human CYP isoforms  

The activity of each recombinant human CYP isoform was determined by 

measuring the conversion rate of a fluorometric substrate to its fluorescent metabolite. 

Aromatase and CYP2C9 activities were determined using the metabolism of 7-methoxy-

4-trifluoromethylcoumarin (MFC) to 7-hydroxytrifluoromethylcoumarin. CYP2C19 

activity was determined using the metabolism of 3-cyano-7-ethoxycoumarin (CEC) to 3-

cyano-7-hydroxycoumarin. CYP2D6 activity was determined using the metabolism of 3-

[2-(N,N-diethyl-N-methylamino)ethyl]-7-methoxy-4-methylcoumarin (AMMC) to 3-[2-

(N,N-diethylamino)ethyl]-7-methoxy-4-methylcoumarin. Experimental procedures were 

consistent with the published methodology (Stresser 2004). All incubations were carried 

out using incubation times and protein concentrations that were within the linear range 

for reaction velocity. Substrates and inhibitors were prepared in acetonitrile. A series of 

concentrations of inhibitor in a volume of 4 µl were mixed with 96 µl of NADPH-

Cofactor Mix (16.3 µM NADP, 828 µM glucose-6-phosphate, 828 µM MgCl2, and 0.4 

U/ml glucose 6-phosphate dehydrogenase), and prewarmed for 10 min at 37 °C. Enzyme 

/ Substrate Mix was prepared with fluorometric substrate, recombinant human CYP 
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isoform and 0.1 M potassium phosphate buffer (pH 7.4). Reactions were initiated by 

adding 100 µl of Enzyme/Substrate Mix to bring the incubation volume to 200 µl. The 

optimal final recombinant enzyme concentrations, substrate concentrations and 

incubation times were: 7.5 nM AROMATASE + 25 µM MFC for 30 min, 15 nM 

CYP2C9 + 150 µM MFC for 45 min, 7.5 nM CYP2C19 + 25 µM CEC for 30 min, and 

7.5 nM CYP2D6 + 1.5 µM AMMC for 30 min. All reactions were stopped by adding 75 

µl of acetonitrile / 0.1 M tris base. The generation of fluorescent metabolites was 

determined immediately by measuring fluorescent response using a BioTek (Winooski, 

VT) Synergy 2 fluorometric plate reader. Excitation - emission wavelengths were 400 - 

540 nm for the MFC metabolite or 400 - 460 nm for the CEC and AMMC metabolites. 

Standard curves were constructed using the appropriate fluorescent metabolite standards. 

Quantification of samples was carried out by applying the linear regression equation of 

the standard curve to the fluorescence response. The limits of quantification for the 

metabolites of MFC, CEC and AMMC were 4 pmol, 0.1 pmol and 0.8 pmol in a final 

volume of 200 µl respectively, with intra- and inter-assay coefficients of variation of less 

than 10%.  

 

Inhibition of specific CYP isoforms using pooled HLMs 

Inhibition of individual CYP isoforms was studied as previously described (Jeong 

et al. 2009) with the modification that the formation rates of 4-hydroxybupropion from 

bupropion, of 5′-hydroxyomeprazole from omeprazole and of 6-β hydroxytestosterone 

from testosterone served as markers of CYP2B6, CYP2C19 and CYP3A activity 

respectively. A single isoform-specific substrate concentration at the respective Km value 
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was incubated at 37 °C in duplicate with pooled HLMs and the a NADPH-generating 

system (1.3 mM NADP, 3.3 mM glucose-6-phosphate, 3.3 mM MgCl2, and 0.4 U/ml 

glucose 6-phosphate dehydrogenase) in the absence or the presence of tested inhibitors. 

The activity of specific CYP isoform was determined by measuring the formation rate of 

corresponding metabolite from probe drug in pooled HLMs. All incubations were carried 

out using incubation time and protein concentrations that were within the linear range for 

reaction velocity. An incubation mixture that consisted of substrate probes, HLMs, and 

100 mM phosphate reaction buffer (pH 7.4) was pre-warmed for 5 min at 37 °C. The 

reaction was initiated by the addition of the NADPH-generating system, and incubated at 

37 °C for 15 min. The final protein concentration of pooled HLMs was 0.25 mg/ml. All 

reactions were terminated by the addition of 500 μl of acetonitrile, followed by 

immediate vortex and placement of the tubes on ice. All samples were extracted 

immediately after the incubations were carried out. The quantification methods for 

metabolite formation were the same as those described in published papers (Jeong et al. 

2009; Lu, Ferlito et al. 2011; Lu, Xu et al. 2011). 

 

Computerized molecular modeling 

“All tamoxifen metabolite structures were constructed with Sybyl 7.1 software 

and their energies minimized to 0.01 kcal/mol by the Powell method, using Gasteiger-

Hückel charges and the Tripos force field. The energy-minimized structures were docked 

into the androgen binding pocket in aromatase after removal of the structure of the 

natural ligand. The parameters were set as the default values for protein-ligand docking 

program GOLD. The maximum distance between hydrogen bond donors and acceptors 
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for hydrogen bonding was set to 3.5 Å. After docking, the lowest-energy docking 

solutions of compounds of interest were merged into the ligand–free protein structure. In 

the case of (Z)-norendoxifen, the amino side chain was rotated manually to place the 

nitrogen atom within hydrogen bonding distance to the Ala306 carbonyl oxygen, which 

ultimately resulted in a more favorable calculated binding energy after energy 

minimization. The structures of the new ligand–protein complexes were subsequently 

subjected to energy minimization using the Amber force field with Amber charges. 

During the energy minimizations, the structures of the compounds of interest and a 

surrounding 10 Å sphere of the protein were allowed to move. The structure of the 

remaining protein was kept frozen. The energy minimizations were performed using the 

Powell method with a 0.05 kcal/(mol Å) energy gradient convergence criterion and a 

distance-dependent dielectric function.” Note: Described by co-investigators in Mark 

Cushman Lab at Purdue University; quoted from (Lu, Xu et al. 2011).  

 

Protocol for clinical trial: effects of aromatase inhibition on methadone disposition 

Specific Aim:  

To test the hypothesis that methadone is significantly metabolized by aromatase 

in vivo by measuring single dose methadone pharmacokinetics in healthy post-

menopausal female volunteers in the presence and absence of the selective aromatase 

inhibitor letrozole. 
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Research Design:  

This study will be conducted at the Indiana University School of Medicine 

Clinical Research Center (ICRC). This is a single-site, acute-dose and three-period design 

to determine the effect of the administration of the aromatase inhibitor letrozole given at 

a dose of 2.5 mg daily by mouth for 7 days, on single dose methadone pharmacokinetics. 

The specific procedures to be carried out and their sequence in time are detailed in Figure 

3.4. 

Letrozole specifically and potently reduces the activity of aromatase, with its 

maximal effect on serum estrogen concentration being evident after five days (FDA 

letrozole label). We therefore conservatively anticipate that aromatase will be completely 

inhibited after 7 days of treatment. 

Previous investigators studying drug interactions with methadone have 

successfully used a single dose of intravenous racemic methadone (6.0 mg, 5.4 mg free 

base) administered intravenously, followed by pharmacokinetic sampling for the 

measurement of serum methadone concentrations for 96 hours after the dose, using 

sampling at 30 min, and then 1, 2, 4, 8, 12, 24, 48, 72 and 96 hours after the dose in 

normal volunteers. Since the terminal elimination phase of methadone clearance can be 

accurately estimated by 72 hours, we will use a pharmacokinetic sampling strategy 

involving collections of blood between 0 and 72 hours. In this particular study we will be 

administering 2 mg of methadone IV.  After methadone has been cleared from the body, 

daily dosing of letrozole will begin on the 8th day after the first methadone dose. The 

same procedure involving a single intravenous dose of methadone will be repeated on the 

15th day of the study after pretreatment with letrozole for 7 days.  
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Patient Selection: 

A total of 15 normal volunteers who satisfy the inclusion and exclusion criteria 

below will be enrolled in this trial after a prescreening visit.  

Inclusion Criteria: 

1. Subjects must weigh at least 110 pounds. 

2. 45 - 70 years of age. 

3. Post-menopausal as defined by more than one year without menses, or after 

surgical oophorectomy. For women who have undergone a partial surgical 

hysterectomy and are age 55 or less, an estradiol level will be done to confirm 

post menopausal status. 

4. Subjects must be capable of satisfying protocol requirements and be able to 

provide written informed consent.  

5. Agree to avoid the use of alcohol during the period of the study. 

Exclusion Criteria: 

1. Subjects must not have a history of intolerance or allergy to the study drugs: 

methadone or letrozole.  

2. A diagnosis of asthma, chronic obstructive pulmonary disease or cor pulmonale, 

severe obesity with a weight over 300 lbs, or sleep apnea syndrome. 

3. Renal insufficiency as indicated by a serum creatinine greater than 1.4.  

4. Anemia as defined by a hematocrit of below 30%. 

5. Elevation of serum liver enzymes outside the normal range indicating clinically 

significant hepatic dysfunction.  

6. Subjects with low serum potassium and magnesium levels. 
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7. Have donated blood to the blood bank within the last 2 months. 

8. Have taken part in an investigational drug research study within the last 2 months. 

9. Increased electrocardiographic QT interval as measured by a QTc (Bazette) of 

more than 480 msecs.  

10. Subjects taking drugs that are known to possibly prolong the QT interval. 

 

Study Procedures: 

Screening: After a signed written informed consent is obtained from the subject, a 

detailed health history will be collected in addition to blood collection, vital signs and a 

12 lead electrocardiogram. 10 cc of blood will be collected for genotyping, CBC/diff/plts, 

Comprehensive Metabolic Panel and serum estradiol. Since methadone has been 

associated with prolongation of the QT interval when given at high doses intravenously, 

and there are clear FDA reports of torsades de pointes arrhythmia in patients treated with 

methadone, a resting electrocardiogram will be obtained to ensure that patients are not 

placed at risk for arrhythmia by a prolonged baseline electrocardiographic QT interval. 

The screening will be carried out no later than 4 weeks prior to the study. 

Period 1 (Control): Once the screening is completed, qualifying subjects will be 

admitted to the ICRC at about 7 AM for approximately 25 hours (day 1), after an 

overnight fast of at least  8 hours. 

Following predose blood and urine sampling, and the insertion of a forearm 

intravenous catheter, subjects will be administered 250 cc of normal saline and then will 

receive methadone 2.0 mg (5.4 mg free base) IV.  After methadone administration, eight 

samples of blood (~ 10 cc each) will be collected over the next 72 hours according to the 
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following schedule: 1, 2, 4, 8, 12, 24, 48, and 72 hours after the dose. After the 24 hour 

sample has been collected, patients will be discharged from the unit. Subjects will be 

instructed to return again at 48 and 72 hours after the dose for additional single blood 

draws. Upon return for the 48 and 72 hour blood draws, subjects will be asked to return 

within a window of plus or minus 2 hours from the assigned time. Similarly the 12 hour 

urine collection will be stopped at 12 hours after methadone dosing and the exact time of 

the last urine collection will be recorded. At the 72 hour visit, patients will be given an 11 

day supply of letrozole, to be taken daily starting on Day 8, and continuing through Day 

18. They will be instructed to take a single dose of letrozole (2.5 mg) each morning at the 

same time starting on Day 8, and to return to the ICRC at approximately 7 AM on Day 15 

for approximately 25 hours after an overnight fast of at least 8 hours. 

Methadone Washout: Patients will not return to the ICRC until Day 15. In the 

interim, they will simply begin talking letrozole tablets once daily beginning on Day 8. 

Period 2 (Letrozole Treatment):  The same procedures as described above for Day 

1 - 4 will be carried out on Day 15 - 18 of the study, except that patients will continue to 

take a single letrozole tablet every morning until Day 18, when the last dose of letrozole 

will be taken in the morning. Note: On Day 15, subjects will be asked to hold their 

letrozole dosing until their arrival to the ICRC and will then be given the letrozole an 

hour after the methadone dose that day. In order to assess patient compliance with daily 

letrozole dosing, the blood drawn immediately before the dose of methadone on Day 15 

will be used to measure letrozole serum concentrations. Since methadone has highly 

variable inter-individual clearance, serum methadone concentrations will also be 
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measured in the blood samples obtained on Day 15 to ensure that no methadone remains 

in the blood before the pharmacokinetic sampling done in period 2. 

Subjects who withdraw from the study or are terminated per investigator’s 

discretion will be replaced for a total of 15 normal volunteers who have completed all 18 

days of the study.   

Study Drugs: Methadone will be supplied by the Indiana University Hospital 

Inpatient Pharmacy. A single batch of letrozole 2.5 mg pills to be used for the whole 

study will also be purchased from the Indiana University Hospital Pharmacies.   

 

Statistics:  

Statistical comparisons between the 15 subjects at baseline and after letrozole 

administration for each of the following serum methadone pharmacokinetic indices will 

be carried out:  AUC, AUCinf, terminal elimination half life, clearance and clearance/kg 

will be compared between the two periods using a paired student’s t-test. The ratios of the 

urinary concentrations of EDDP and EMDP to urinary methadone will also be compared 

between the two periods using a paired student’s t-test.  

Power: Using this design with 15 patients, and a coefficient of variation of 40% in 

the AUC of this dose of intravenous methadone, and using a two-tailed paired-test, we 

will have 90% power to detect a change of 33% or more in the AUC of methadone, with 

an α of 0.05. Such a 33% change would indicate that aromatase is responsible for 33% of 

methadone clearance. 
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Procedures to Minimize the Potential Risks of This Study: 

1. An electrocardiogram will be performed as part of screening, and subjects with 

abnormal electrocardiograms will be excluded from the study. 

2. Phlebotomy will follow approved hospital and/or nursing policies and procedures. 

3. Trained personnel will perform blood and urine sampling. 

4. Prior to administration of methadone, subjects will be given 250 cc of normal 

saline. 

5. All subjects will be under close supervision by medical staff. 

6. Adverse events will be evaluated & treated immediately, if necessary. 

7. Parameters for Narcan adminstration will be included in the doctor’s orders which 

are different than Clarian’s standard Narcan policy,  These parameters will offer a 

more sensitive reaction to methadone overdose and will be specific only to this 

study.  They include: 

a. If RR <10, add O2 to keep O2 sats > 92%. 

b. If RR <8 or O2 sats < 90%, administer Narcan. 

c. If Narcan is administered, subject will be assessed by a physician at time 

of adminstration as well as every hour until stable. 

d. If Narcan is administered, continue VS every 10 minutes until stable. 

8. Although methadone does not meet Clarian’s definition of ‘conscious sedation’, 

we will initiate the ‘conscious sedation’ policy which includes continuous pulse 

ox monitoring as well as frequent VS assessments. 

9. Subject will be required to be seen and assessed by a physician prior to discharge. 
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10. Subjects will be required to spend the night on Day 1 and 15. Prior to discharge 

the next morning, subject will be assessed by a physician and then released to self 

per MD approval. 

11. Information in the study records will be kept confidential. Any reporting of data 

will not include subject names. This information will not be given to any 3rd party 

or used for other purposes without the written permission of the subject. 

Note: Modified from Indiana University IRB approved protocol which I co-wrote 

(Flockhart and Lu 2010). 

 

  



162 
 

APPENDIX 

Republication Permissions 

 

 
 

 

 

 



163 
 

 
 

 

 

  



164 
 

REFERENCES 

Abushahin, F., K. N. Goldman, E. Barbieri, M. Milad, A. Rademaker, and S. E. Bulun. 
2011. Aromatase inhibition for refractory endometriosis-related chronic pelvic pain. 
Fertil Steril. 

Adams, L. S., Y. Zhang, N. P. Seeram, D. Heber, and S. Chen. 2010. Pomegranate 
ellagitannin-derived compounds exhibit antiproliferative and antiaromatase activity in 
breast cancer cells in vitro. Cancer Prev Res (Phila) 3 (1):108-13. 

Ahmad, A., S. M. Ali, M. U. Ahmad, S. Sheikh, and I. Ahmad. 2010. Orally administered 
endoxifen is a new therapeutic agent for breast cancer. Breast Cancer Res Treat 122 
(2):579-84. 

Ahmad, A., S. Shahabuddin, S. Sheikh, P. Kale, M. Krishnappa, R. C. Rane, and I. 
Ahmad. 2010. Endoxifen, a new cornerstone of breast cancer therapy: demonstration of 
safety, tolerability, and systemic bioavailability in healthy human subjects. Clin 
Pharmacol Ther 88 (6):814-7. 

Ahsan, H., A. S. Whittemore, Y. Chen, R. T. Senie, S. P. Hamilton, Q. Wang, I. Gurvich, 
and R. M. Santella. 2005. Variants in estrogen-biosynthesis genes CYP17 and CYP19 
and breast cancer risk: a family-based genetic association study. Breast Cancer Res 7 
(1):R71-81. 

Aiginger, P., H. Kolbe, J. Kuhbock, J. Spona, and G. Geyer. 1981. The endocrinology of 
testicular germinal cell tumors. Acta Endocrinol (Copenh) 97 (3):419-26. 

Aihara, T., Y. Takatsuka, S. Ohsumi, K. Aogi, Y. Hozumi, S. Imoto, H. Mukai, H. Iwata, 
T. Watanabe, C. Shimizu, K. Nakagami, M. Tamura, T. Ito, N. Masuda, N. Ogino, K. 
Hisamatsu, S. Mitsuyama, H. Abe, S. Tanaka, T. Yamaguchi, and Y. Ohashi. 2010. Phase 
III randomized adjuvant study of tamoxifen alone versus sequential tamoxifen and 
anastrozole in Japanese postmenopausal women with hormone-responsive breast cancer: 
N-SAS BC03 study. Breast Cancer Res Treat 121 (2):379-87. 

Amir, E., B. Seruga, S. Niraula, L. Carlsson, and A. Ocana. 2011. Toxicity of Adjuvant 
Endocrine Therapy in Postmenopausal Breast Cancer Patients: A Systematic Review and 
Meta-analysis. J Natl Cancer Inst 103 (17):1299-309. 

Backstrom, T. 1995. Symptoms related to the menopause and sex steroid treatments. 
Ciba Found Symp 191:171-80; discussion 180-6. 

Bailey, D. G., J. M. Arnold, C. Munoz, and J. D. Spence. 1993. Grapefruit juice--
felodipine interaction: mechanism, predictability, and effect of naringin. Clin Pharmacol 
Ther 53 (6):637-42. 

Bailey, D. G., G. K. Dresser, and J. R. Bend. 2003. Bergamottin, lime juice, and red wine 
as inhibitors of cytochrome P450 3A4 activity: comparison with grapefruit juice. Clin 
Pharmacol Ther 73 (6):529-37. 



165 
 

Bailey, D. G., J. Malcolm, O. Arnold, and J. D. Spence. 2004. Grapefruit juice-drug 
interactions. 1998. Br J Clin Pharmacol 58 (7):S831-40; discussion S841-3. 

Bajetta, E., L. Ferrari, L. Celio, L. Mariani, R. Miceli, A. Di Leo, N. Zilembo, R. 
Buzzoni, I. Spagnoli, A. Martinetti, E. Bichisao, and E. Seregni. 1997. The aromatase 
inhibitor letrozole in advanced breast cancer: effects on serum insulin-like growth factor 
(IGF)-I and IGF-binding protein-3 levels. J Steroid Biochem Mol Biol 63 (4-6):261-7. 

Baselt, R. C., and L. J. Casarett. 1972. Urinary excretion of methadone in man. Clin 
Pharmacol Ther 13 (1):64-70. 

Bear, W. L., and R. W. Teel. 2000. Effects of citrus phytochemicals on liver and lung 
cytochrome P450 activity and on the in vitro metabolism of the tobacco-specific 
nitrosamine NNK. Anticancer Res 20 (5A):3323-9. 

Belgorosky, A., G. Guercio, C. Pepe, N. Saraco, and M. A. Rivarola. 2009. Genetic and 
clinical spectrum of aromatase deficiency in infancy, childhood and adolescence. Horm 
Res 72 (6):321-30. 

Benmebarek, M., C. Devaud, M. Gex-Fabry, K. Powell Golay, C. Brogli, P. Baumann, B. 
Gravier, and C. B. Eap. 2004. Effects of grapefruit juice on the pharmacokinetics of the 
enantiomers of methadone. Clin Pharmacol Ther 76 (1):55-63. 

Berthou, F., Y. Dreano, C. Belloc, L. Kangas, J. C. Gautier, and P. Beaune. 1994. 
Involvement of cytochrome P450 3A enzyme family in the major metabolic pathways of 
toremifene in human liver microsomes. Biochem Pharmacol 47 (10):1883-95. 

Borges, S., Z. Desta, L. Li, T. C. Skaar, B. A. Ward, A. Nguyen, Y. Jin, A. M. Storniolo, 
D. M. Nikoloff, L. Wu, G. Hillman, D. F. Hayes, V. Stearns, and D. A. Flockhart. 2006. 
Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: 
implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80 (1):61-
74. 

Bouvard, B., E. Hoppe, P. Soulie, M. Georgin-Mege, E. Jadaud, S. Abadie-Lacourtoisie, 
A. Petit Le Manac'h, A. Laffitte, R. Levasseur, M. Audran, D. Chappard, and E. Legrand. 
2011. High prevalence of vertebral fractures in women with breast cancer starting 
aromatase inhibitor therapy. Ann Oncol. 

Bulun, S. E. 2000. Aromatase deficiency and estrogen resistance: from molecular 
genetics to clinic. Semin Reprod Med 18 (1):31-9. 

Bulun, S. E., L. S. Noble, K. Takayama, M. D. Michael, V. Agarwal, C. Fisher, Y. Zhao, 
M. M. Hinshelwood, Y. Ito, and E. R. Simpson. 1997. Endocrine disorders associated 
with inappropriately high aromatase expression. J Steroid Biochem Mol Biol 61 (3-
6):133-9. 



166 
 

Bulun, S. E., S. Sebastian, K. Takayama, T. Suzuki, H. Sasano, and M. Shozu. 2003. The 
human CYP19 (aromatase P450) gene: update on physiologic roles and genomic 
organization of promoters. J Steroid Biochem Mol Biol 86 (3-5):219-24. 

Bulun, S. E., and E. R. Simpson. 2008. Aromatase expression in women's cancers. Adv 
Exp Med Biol 630:112-32. 

Burstein, H. J., A. A. Prestrud, J. Seidenfeld, H. Anderson, T. A. Buchholz, N. E. 
Davidson, K. E. Gelmon, S. H. Giordano, C. A. Hudis, J. Malin, E. P. Mamounas, D. 
Rowden, A. J. Solky, M. R. Sowers, V. Stearns, E. P. Winer, M. R. Somerfield, and J. J. 
Griggs. 2010. American Society of Clinical Oncology clinical practice guideline: update 
on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. 
J Clin Oncol 28 (23):3784-96. 

Caccamese, S., S. Bianca, and D. Santo. 2007. Racemization at C-2 of naringin in sour 
oranges with increasing maturity determined by chiral high-performance liquid 
chromatography. J Agric Food Chem 55 (10):3816-22. 

Caccamese, S., and R. Chillemi. 2010. Racemization at C-2 of naringin in pummelo 
(Citrus grandis) with increasing maturity determined by chiral high-performance liquid 
chromatography. J Chromatogr A 1217 (7):1089-93. 

Caccamese, S., L. Manna, and G. Scivoli. 2003. Chiral HPLC separation and CD spectra 
of the C-2 diastereomers of naringin in grapefruit during maturation. Chirality 15 
(8):661-7. 

Carabaza, A., F. Cabre, A. M. Garcia, E. Rotllan, M. L. Garcia, and D. Mauleon. 1997. 
Stereoselective inhibition of rat brain cyclooxygenase by dexketoprofen. Chirality 9 
(3):281-5. 

Carruba, G. 2009. Aromatase in nontumoral and malignant human liver tissues and cells. 
Ann N Y Acad Sci 1155:187-93. 

Chang, Y., W. B. Fang, S. N. Lin, and D. E. Moody. 2011. Stereo-selective metabolism 
of methadone by human liver microsomes and cDNA-expressed cytochrome P450s: a 
reconciliation. Basic Clin Pharmacol Toxicol 108 (1):55-62. 

Chen, S. 1998. Aromatase and breast cancer. Front Biosci 3:d922-33. 

Chen, S., S. R. Oh, S. Phung, G. Hur, J. J. Ye, S. L. Kwok, G. E. Shrode, M. Belury, L. 
S. Adams, and D. Williams. 2006. Anti-aromatase activity of phytochemicals in white 
button mushrooms (Agaricus bisporus). Cancer Res 66 (24):12026-34. 

Cheshenko, K., F. Pakdel, H. Segner, O. Kah, and R. I. Eggen. 2008. Interference of 
endocrine disrupting chemicals with aromatase CYP19 expression or activity, and 
consequences for reproduction of teleost fish. Gen Comp Endocrinol 155 (1):31-62. 



167 
 

Chlebowski, R. T., D. E. Collyar, M. R. Somerfield, and D. G. Pfister. 1999. American 
Society of Clinical Oncology technology assessment on breast cancer risk reduction 
strategies: tamoxifen and raloxifene. J Clin Oncol 17 (6):1939-55. 

Ciolino, H. P., Z. Dai, and V. Nair. 2011. Retinol inhibits aromatase activity and 
expression in vitro. J Nutr Biochem 22 (6):522-6. 

Ciolino, H. P., T. T. Wang, and N. Sathyamoorthy. 2000. Inhibition of aromatase activity 
and expression in MCF-7 cells by the chemopreventive retinoid N-(4-hydroxy-phenyl)-
retinamide. Br J Cancer 83 (3):333-7. 

Crettol, S., J. J. Deglon, J. Besson, M. Croquette-Krokkar, I. Gothuey, R. Hammig, M. 
Monnat, H. Huttemann, P. Baumann, and C. B. Eap. 2005. Methadone enantiomer 
plasma levels, CYP2B6, CYP2C19, and CYP2C9 genotypes, and response to treatment. 
Clin Pharmacol Ther 78 (6):593-604. 

Crew, K. D., H. Greenlee, J. Capodice, G. Raptis, L. Brafman, D. Fuentes, A. Sierra, and 
D. L. Hershman. 2007. Prevalence of joint symptoms in postmenopausal women taking 
aromatase inhibitors for early-stage breast cancer. J Clin Oncol 25 (25):3877-83. 

Crossley, R. 1992. The relevance of chirality to the study of biological activity. 
Tetrahedron 48:8155-8178. 

Cuzick, J., I. Sestak, M. Baum, A. Buzdar, A. Howell, M. Dowsett, and J. F. Forbes. 
2010. Effect of anastrozole and tamoxifen as adjuvant treatment for early-stage breast 
cancer: 10-year analysis of the ATAC trial. Lancet Oncol 11 (12):1135-1141. 

Czajka-Oraniec, I., and E. R. Simpson. 2010. Aromatase research and its clinical 
significance. Endokrynol Pol 61 (1):126-34. 

da Rocha, A. B., D. R. Mans, E. A. Bernard, C. Ruschel, A. F. Logullo, L. A. Wetmore, 
A. Leyva, and G. Schwartsmann. 1999. Tamoxifen inhibits particulate-associated protein 
kinase C activity, and sensitises cultured human glioblastoma cells not to etoposide but to 
gamma-radiation and BCNU. Eur J Cancer 35 (5):833-9. 

Deapen, D., L. Liu, C. Perkins, L. Bernstein, and R. K. Ross. 2002. Rapidly rising breast 
cancer incidence rates among Asian-American women. Int J Cancer 99 (5):747-50. 

Deshmukh, S. V., T. N. Nanovskaya, and M. S. Ahmed. 2003. Aromatase is the major 
enzyme metabolizing buprenorphine in human placenta. J Pharmacol Exp Ther 306 
(3):1099-105. 

Desta, Z., B. A. Ward, N. V. Soukhova, and D. A. Flockhart. 2004. Comprehensive 
evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 
system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 310 
(3):1062-75. 



168 
 

Dilmaghanian, S., J. G. Gerber, S. G. Filler, A. Sanchez, and J. Gal. 2004. 
Enantioselectivity of inhibition of cytochrome P450 3A4 (CYP3A4) by ketoconazole: 
Testosterone and methadone as substrates. Chirality 16 (2):79-85. 

Doering, I. L., and E. Richter. 2009. Inhibition of human aromatase by myosmine. Drug 
Metab Lett 3 (2):83-6. 

Dresser, G. K., and D. G. Bailey. 2003. The effects of fruit juices on drug disposition: a 
new model for drug interactions. Eur J Clin Invest 33 Suppl 2:10-6. 

Du, G., L. Jin, X. Han, Z. Song, H. Zhang, and W. Liang. 2009. Naringenin: a potential 
immunomodulator for inhibiting lung fibrosis and metastasis. Cancer Res 69 (7):3205-12. 

Eap, C. B., T. Buclin, and P. Baumann. 2002. Interindividual variability of the clinical 
pharmacokinetics of methadone: implications for the treatment of opioid dependence. 
Clin Pharmacokinet 41 (14):1153-93. 

Eap, C. B., E. Lessard, P. Baumann, M. Brawand-Amey, M. A. Yessine, G. O'Hara, and 
J. Turgeon. 2003. Role of CYP2D6 in the stereoselective disposition of venlafaxine in 
humans. Pharmacogenetics 13 (1):39-47. 

Early Breast Cancer Trialists' Collaborative Group, EBCTCG 2005. Effects of 
chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year 
survival: an overview of the randomised trials. Lancet 365 (9472):1687-717. 

Eng, E. T., J. Ye, D. Williams, S. Phung, R. E. Moore, M. K. Young, U. Gruntmanis, G. 
Braunstein, and S. Chen. 2003. Suppression of estrogen biosynthesis by procyanidin 
dimers in red wine and grape seeds. Cancer Res 63 (23):8516-22. 

Erlund, I., E. Meririnne, G. Alfthan, and A. Aro. 2001. Plasma kinetics and urinary 
excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange 
juice and grapefruit juice. J Nutr 131 (2):235-41. 

Ferlay, J., H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin. 2010. Estimates 
of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127 (12):2893-
917. 

Fisher, B., J. P. Costantino, D. L. Wickerham, R. S. Cecchini, W. M. Cronin, A. 
Robidoux, T. B. Bevers, M. T. Kavanah, J. N. Atkins, R. G. Margolese, C. D. Runowicz, 
J. M. James, L. G. Ford, and N. Wolmark. 2005. Tamoxifen for the prevention of breast 
cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 
study. J Natl Cancer Inst 97 (22):1652-62. 

Flockhart, D. A., and W. J. Lu. 2010. Inhibition of methadone metabolism by the 
aromatase (CYP19) inhibitor, letrozole. Clinical protocol approved by the Indiana 
University IRB. 



169 
 

Flockhart, D. A., T. Skaar, D. S. Berlin, T. E. Klein, and A. T. Nguyen. 2009. Clinically 
available pharmacogenomics tests. Clin Pharmacol Ther 86 (1):109-13. 

Foster, D. J., A. A. Somogyi, and F. Bochner. 1999. Methadone N-demethylation in 
human liver microsomes: lack of stereoselectivity and involvement of CYP3A4. Br J 
Clin Pharmacol 47 (4):403-12. 

Fredheim, O. M., K. Moksnes, P. C. Borchgrevink, S. Kaasa, and O. Dale. 2008. Clinical 
pharmacology of methadone for pain. Acta Anaesthesiol Scand 52 (7):879-89. 

Fuhr, U. 1998. Drug interactions with grapefruit juice. Extent, probable mechanism and 
clinical relevance. Drug Saf 18 (4):251-72. 

Furr, B. J., and V. C. Jordan. 1984. The pharmacology and clinical uses of tamoxifen. 
Pharmacol Ther 25 (2):127-205. 

Gennari, L., L. Masi, D. Merlotti, L. Picariello, A. Falchetti, A. Tanini, C. Mavilia, F. Del 
Monte, S. Gonnelli, B. Lucani, C. Gennari, and M. L. Brandi. 2004. A polymorphic 
CYP19 TTTA repeat influences aromatase activity and estrogen levels in elderly men: 
effects on bone metabolism. J Clin Endocrinol Metab 89 (6):2803-10. 

Ghosh, D., J. Griswold, M. Erman, and W. Pangborn. 2010. X-ray structure of human 
aromatase reveals an androgen-specific active site. J Steroid Biochem Mol Biol 118 (4-
5):197-202. 

Goetz, M. P., J. M. Rae, V. J. Suman, S. L. Safgren, M. M. Ames, D. W. Visscher, C. 
Reynolds, F. J. Couch, W. L. Lingle, D. A. Flockhart, Z. Desta, E. A. Perez, and J. N. 
Ingle. 2005. Pharmacogenetics of tamoxifen biotransformation is associated with clinical 
outcomes of efficacy and hot flashes. J Clin Oncol 23 (36):9312-8. 

Gonzalez, Frank J., and Robert H. Tukey. 2006. Drug Metabolism. In Goodman & 
Gilman’s The Pharmacological Basis of Therapeutics edited by L. L. Brunton: McGraw-
Hill. 75-77. 

Goss, P. E., J. N. Ingle, J. E. Ales-Martinez, A. M. Cheung, R. T. Chlebowski, J. 
Wactawski-Wende, A. McTiernan, J. Robbins, K. C. Johnson, L. W. Martin, E. Winquist, 
G. E. Sarto, J. E. Garber, C. J. Fabian, P. Pujol, E. Maunsell, P. Farmer, K. A. Gelmon, 
D. Tu, and H. Richardson. 2011. Exemestane for breast-cancer prevention in 
postmenopausal women. N Engl J Med 364 (25):2381-91. 

Grow, D. R. 2002. Metabolism of endogenous and exogenous reproductive hormones. 
Obstet Gynecol Clin North Am 29 (3):425-36. 

Guengerich, F. P., and D. H. Kim. 1990. In vitro inhibition of dihydropyridine oxidation 
and aflatoxin B1 activation in human liver microsomes by naringenin and other 
flavonoids. Carcinogenesis 11 (12):2275-9. 



170 
 

Hallinan, R., A. Byrne, K. Agho, C. G. McMahon, P. Tynan, and J. Attia. 2009. 
Hypogonadism in men receiving methadone and buprenorphine maintenance treatment. 
Int J Androl 32 (2):131-9. 

Hamman, M. A., G. A. Thompson, and S. D. Hall. 1997. Regioselective and 
stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem 
Pharmacol 54 (1):33-41. 

Hammond, M. E., D. F. Hayes, A. C. Wolff, P. B. Mangu, and S. Temin. 2010. American 
society of clinical oncology/college of american pathologists guideline recommendations 
for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. 
J Oncol Pract 6 (4):195-7. 

Hammoud, A. O., J. Griffin, A. W. Meikle, M. Gibson, C. M. Peterson, and D. T. Carrell. 
2010. Association of aromatase (TTTAn) repeat polymorphism length and the 
relationship between obesity and decreased sperm concentration. Hum Reprod 25 
(12):3146-51. 

Hao, C. F., N. Zhang, Q. Qu, X. Wang, H. F. Gu, and Z. J. Chen. 2010. Evaluation of the 
association between the CYP19 Tetranucleotide (TTTA)n polymorphism and polycystic 
ovarian syndrome(PCOS) in Han Chinese women. Neuro Endocrinol Lett 31 (3):370-4. 

Henry, N. L., J. T. Giles, D. Ang, M. Mohan, D. Dadabhoy, J. Robarge, J. Hayden, S. 
Lemler, K. Shahverdi, P. Powers, L. Li, D. Flockhart, V. Stearns, D. F. Hayes, A. M. 
Storniolo, and D. J. Clauw. 2008. Prospective characterization of musculoskeletal 
symptoms in early stage breast cancer patients treated with aromatase inhibitors. Breast 
Cancer Res Treat 111 (2):365-72. 

Henry, N. L., J. T. Giles, and V. Stearns. 2008. Aromatase inhibitor-associated 
musculoskeletal symptoms: etiology and strategies for management. Oncology (Williston 
Park) 22 (12):1401-8. 

Henry, N. L., J. A. Jacobson, M. Banerjee, J. Hayden, J. B. Smerage, C. Van Poznak, A. 
M. Storniolo, V. Stearns, and D. F. Hayes. 2010. A prospective study of aromatase 
inhibitor-associated musculoskeletal symptoms and abnormalities on serial high-
resolution wrist ultrasonography. Cancer 116 (18):4360-7. 

Henry, N. L., J. M. Rae, L. Li, F. Azzouz, T. C. Skaar, Z. Desta, M. J. Sikora, S. Philips, 
A. T. Nguyen, A. M. Storniolo, D. F. Hayes, D. A. Flockhart, and V. Stearns. 2009. 
Association between CYP2D6 genotype and tamoxifen-induced hot flashes in a 
prospective cohort. Breast Cancer Res Treat 117 (3):571-5. 

Hershman, D. L., L. H. Kushi, T. Shao, D. Buono, A. Kershenbaum, W. Y. Tsai, L. 
Fehrenbacher, S. Lin Gomez, S. Miles, and A. I. Neugut. 2010. Early discontinuation and 
nonadherence to adjuvant hormonal therapy in a cohort of 8,769 early-stage breast cancer 
patients. J Clin Oncol 28 (27):4120-8. 



171 
 

Hieronymus, T. L., T. N. Nanovskaya, S. V. Deshmukh, R. Vargas, G. D. Hankins, and 
M. S. Ahmed. 2006. Methadone metabolism by early gestational age placentas. Am J 
Perinatol 23 (5):287-94. 

Higgins, M. J., J. M. Rae, D. A. Flockhart, D. F. Hayes, and V. Stearns. 2009. 
Pharmacogenetics of tamoxifen: who should undergo CYP2D6 genetic testing? J Natl 
Compr Canc Netw 7 (2):203-13. 

Higgins, M. J., and V. Stearns. 2010. CYP2D6 polymorphisms and tamoxifen 
metabolism: clinical relevance. Curr Oncol Rep 12 (1):7-15. 

Ho, P. C., D. J. Saville, and S. Wanwimolruk. 2001. Inhibition of human CYP3A4 
activity by grapefruit flavonoids, furanocoumarins and related compounds. J Pharm 
Pharm Sci 4 (3):217-27. 

Hollenberg, P. F., U. M. Kent, and N. N. Bumpus. 2008. Mechanism-based inactivation 
of human cytochromes p450s: experimental characterization, reactive intermediates, and 
clinical implications. Chem Res Toxicol 21 (1):189-205. 

Howell, A., J. Cuzick, M. Baum, A. Buzdar, M. Dowsett, J. F. Forbes, G. Hoctin-Boes, J. 
Houghton, G. Y. Locker, and J. S. Tobias. 2005. Results of the ATAC (Arimidex, 
Tamoxifen, Alone or in Combination) trial after completion of 5 years' adjuvant 
treatment for breast cancer. Lancet 365 (9453):60-2. 

Howell, A., and M. Dowsett. 1997. Recent advances in endocrine therapy of breast 
cancer. BMJ 315 (7112):863-6. 

Hung, C. C., M. H. Chiou, B. H. Huang, Y. W. Hsieh, T. J. Hsieh, C. L. Huang, and H. 
Y. Lane. 2011. Impact of genetic polymorphisms in ABCB1, CYP2B6, OPRM1, 
ANKK1 and DRD2 genes on methadone therapy in Han Chinese patients. 
Pharmacogenomics. 

Hutt, AJ 2006. Drug chirality and its pharmacological consequences. In Introduction to 
the Principles of Drug Design and Action, edited by H. Smith. Boca Raton FL: CRC 
Press. 

Ingle, J. N., D. J. Schaid, P. E. Goss, M. Liu, T. Mushiroda, J. A. Chapman, M. Kubo, G. 
D. Jenkins, A. Batzler, L. Shepherd, J. Pater, L. Wang, M. J. Ellis, V. Stearns, D. C. 
Rohrer, M. P. Goetz, K. I. Pritchard, D. A. Flockhart, Y. Nakamura, and R. M. 
Weinshilboum. 2010. Genome-wide associations and functional genomic studies of 
musculoskeletal adverse events in women receiving aromatase inhibitors. J Clin Oncol 28 
(31):4674-82. 

Inturrisi, C. E., W. A. Colburn, R. F. Kaiko, R. W. Houde, and K. M. Foley. 1987. 
Pharmacokinetics and pharmacodynamics of methadone in patients with chronic pain. 
Clin Pharmacol Ther 41 (4):392-401. 



172 
 

Iribarne, C., Y. Dreano, L. G. Bardou, J. F. Menez, and F. Berthou. 1997. Interaction of 
methadone with substrates of human hepatic cytochrome P450 3A4. Toxicology 117 
(1):13-23. 

Jeong, S., M. M. Woo, D. A. Flockhart, and Z. Desta. 2009. Inhibition of drug 
metabolizing cytochrome P450s by the aromatase inhibitor drug letrozole and its major 
oxidative metabolite 4,4'-methanol-bisbenzonitrile in vitro. Cancer Chemother 
Pharmacol 64 (5):867-75. 

Jin, Y., Z. Desta, V. Stearns, B. Ward, H. Ho, K. H. Lee, T. Skaar, A. M. Storniolo, L. Li, 
A. Araba, R. Blanchard, A. Nguyen, L. Ullmer, J. Hayden, S. Lemler, R. M. 
Weinshilboum, J. M. Rae, D. F. Hayes, and D. A. Flockhart. 2005. CYP2D6 genotype, 
antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J 
Natl Cancer Inst 97 (1):30-9. 

Johnson, M. D., H. Zuo, K. H. Lee, J. P. Trebley, J. M. Rae, R. V. Weatherman, Z. Desta, 
D. A. Flockhart, and T. C. Skaar. 2004. Pharmacological characterization of 4-hydroxy-
N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 
85 (2):151-9. 

Jones, D. R., J. C. Gorski, M. A. Hamman, B. S. Mayhew, S. Rider, and S. D. Hall. 1999. 
Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate 
complex formation. J Pharmacol Exp Ther 290 (3):1116-25. 

Jongen, V. H., H. Hollema, A. G. Van Der Zee, and M. J. Heineman. 2006. Aromatase in 
the context of breast and endometrial cancer. A review. Minerva Endocrinol 31 (1):47-
60. 

Jordan, V. C. 1982. Metabolites of tamoxifen in animals and man: identification, 
pharmacology, and significance. Breast Cancer Res Treat 2 (2):123-38. 

Jordan, V. C. 2007. New insights into the metabolism of tamoxifen and its role in the 
treatment and prevention of breast cancer. Steroids 72 (13):829-42. 

Kalgutkar, A. S., R. S. Obach, and T. S. Maurer. 2007. Mechanism-based inactivation of 
cytochrome P450 enzymes: chemical mechanisms, structure-activity relationships and 
relationship to clinical drug-drug interactions and idiosyncratic adverse drug reactions. 
Curr Drug Metab 8 (5):407-47. 

Kamden, KL, Y Kreutz, L Li, and Z Desta. 2011. CYP2A6 genetic variants, body mass 
index and age are associated with letrozole plasma concentrations in postmenopausal 
women with breast cancer. Clinical Pharmacology & Therapeutics. 

Katzenellenbogen, B. S., I. Choi, R. Delage-Mourroux, T. R. Ediger, P. G. Martini, M. 
Montano, J. Sun, K. Weis, and J. A. Katzenellenbogen. 2000. Molecular mechanisms of 
estrogen action: selective ligands and receptor pharmacology. J Steroid Biochem Mol 
Biol 74 (5):279-85. 



173 
 

Kharasch, E. D., P. S. Bedynek, S. Park, D. Whittington, A. Walker, and C. Hoffer. 2008. 
Mechanism of ritonavir changes in methadone pharmacokinetics and pharmacodynamics: 
I. Evidence against CYP3A mediation of methadone clearance. Clin Pharmacol Ther 84 
(4):497-505. 

Kharasch, E. D., C. Hoffer, D. Whittington, and P. Sheffels. 2004. Role of hepatic and 
intestinal cytochrome P450 3A and 2B6 in the metabolism, disposition, and miotic effects 
of methadone. Clin Pharmacol Ther 76 (3):250-69. 

Kharasch, E. D., C. Hoffer, D. Whittington, A. Walker, and P. S. Bedynek. 2009. 
Methadone pharmacokinetics are independent of cytochrome P4503A (CYP3A) activity 
and gastrointestinal drug transport: insights from methadone interactions with 
ritonavir/indinavir. Anesthesiology 110 (3):660-72. 

Kim, T. W., D. P. Alford, A. Malabanan, M. F. Holick, and J. H. Samet. 2006. Low bone 
density in patients receiving methadone maintenance treatment. Drug Alcohol Depend 85 
(3):258-62. 

Kisanga, E. R., J. Gjerde, A. Guerrieri-Gonzaga, F. Pigatto, A. Pesci-Feltri, C. Robertson, 
D. Serrano, G. Pelosi, A. Decensi, and E. A. Lien. 2004. Tamoxifen and metabolite 
concentrations in serum and breast cancer tissue during three dose regimens in a 
randomized preoperative trial. Clin Cancer Res 10 (7):2336-43. 

Kleber, H. D. 2008. Methadone maintenance 4 decades later: thousands of lives saved but 
still controversial. JAMA 300 (19):2303-5. 

Krantz, M. J., I. B. Kutinsky, A. D. Robertson, and P. S. Mehler. 2003. Dose-related 
effects of methadone on QT prolongation in a series of patients with torsade de pointes. 
Pharmacotherapy 23 (6):802-5. 

Kremer, J. M., J. Wilting, and L. H. Janssen. 1988. Drug binding to human alpha-1-acid 
glycoprotein in health and disease. Pharmacol Rev 40 (1):1-47. 

Kreutz, R. P., E. J. Stanek, R. Aubert, J. Yao, J. A. Breall, Z. Desta, T. C. Skaar, J. R. 
Teagarden, F. W. Frueh, R. S. Epstein, and D. A. Flockhart. 2010. Impact of proton pump 
inhibitors on the effectiveness of clopidogrel after coronary stent placement: the 
clopidogrel Medco outcomes study. Pharmacotherapy 30 (8):787-96. 

Krishnan, A. V., and D. Feldman. 2011. Mechanisms of the anti-cancer and anti-
inflammatory actions of vitamin D. Annu Rev Pharmacol Toxicol 51:311-36. 

Kristensen, V. N., N. Harada, N. Yoshimura, E. Haraldsen, P. E. Lonning, B. Erikstein, 
R. Karesen, T. Kristensen, and A. L. Borresen-Dale. 2000. Genetic variants of CYP19 
(aromatase) and breast cancer risk. Oncogene 19 (10):1329-33. 

Labrie, F., A. Belanger, L. Cusan, J. L. Gomez, and B. Candas. 1997. Marked decline in 
serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen 
metabolites during aging. J Clin Endocrinol Metab 82 (8):2396-402. 



174 
 

Land, S. R., D. L. Wickerham, J. P. Costantino, M. W. Ritter, V. G. Vogel, M. Lee, E. R. 
Pajon, J. L. Wade, 3rd, S. Dakhil, J. B. Lockhart, Jr., N. Wolmark, and P. A. Ganz. 2006. 
Patient-reported symptoms and quality of life during treatment with tamoxifen or 
raloxifene for breast cancer prevention: the NSABP Study of Tamoxifen and Raloxifene 
(STAR) P-2 trial. JAMA 295 (23):2742-51. 

Leder, B. Z., J. L. Rohrer, S. D. Rubin, J. Gallo, and C. Longcope. 2004. Effects of 
aromatase inhibition in elderly men with low or borderline-low serum testosterone levels. 
J Clin Endocrinol Metab 89 (3):1174-80. 

Lee, M., D. I. Min, Y. M. Ku, and M. Flanigan. 2001. Effect of grapefruit juice on 
pharmacokinetics of microemulsion cyclosporine in African American subjects compared 
with Caucasian subjects: does ethnic difference matter? J Clin Pharmacol 41 (3):317-23. 

Levine, B., S. C. Wu, A. Dixon, and J. E. Smialek. 1995. Site dependence of postmortem 
blood methadone concentrations. Am J Forensic Med Pathol 16 (2):97-100. 

Lien, E. A., E. Solheim, O. A. Lea, S. Lundgren, S. Kvinnsland, and P. M. Ueland. 1989. 
Distribution of 4-hydroxy-N-desmethyltamoxifen and other tamoxifen metabolites in 
human biological fluids during tamoxifen treatment. Cancer Res 49 (8):2175-83. 

Lien, E. A., E. Solheim, and P. M. Ueland. 1991. Distribution of tamoxifen and its 
metabolites in rat and human tissues during steady-state treatment. Cancer Res 51 
(18):4837-44. 

Lien, E. A., K. Wester, P. E. Lonning, E. Solheim, and P. M. Ueland. 1991. Distribution 
of tamoxifen and metabolites into brain tissue and brain metastases in breast cancer 
patients. Br J Cancer 63 (4):641-5. 

Lim, Y. C., Z. Desta, D. A. Flockhart, and T. C. Skaar. 2005. Endoxifen (4-hydroxy-N-
desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency 
similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol 55 (5):471-8. 

Liu, K. H., M. J. Kim, J. H. Shon, Y. S. Moon, S. Y. Seol, W. Kang, I. J. Cha, and J. G. 
Shin. 2005. Stereoselective inhibition of cytochrome P450 forms by lansoprazole and 
omeprazole in vitro. Xenobiotica 35 (1):27-38. 

Liu, Z. Q., Y. Shu, S. L. Huang, L. S. Wang, N. He, and H. H. Zhou. 2001. Effects of 
CYP2C19 genotype and CYP2C9 on fluoxetine N-demethylation in human liver 
microsomes. Acta Pharmacol Sin 22 (1):85-90. 

Lo, R., L. Burgoon, L. Macpherson, S. Ahmed, and J. Matthews. 2010. Estrogen 
receptor-dependent regulation of CYP2B6 in human breast cancer cells. Biochim Biophys 
Acta 1799 (5-6):469-79. 

  



175 
 

Lonning, P. E., D. C. Johannessen, E. A. Lien, D. Ekse, T. Fotsis, and H. Adlercreutz. 
1995. Influence of tamoxifen on sex hormones, gonadotrophins and sex hormone binding 
globulin in postmenopausal breast cancer patients. J Steroid Biochem Mol Biol 52 
(5):491-6. 

Love, R. R., B. D. Nguyen, C. B. Nguyen, V. D. Nguyen, and T. C. Havighurst. 1999. 
Symptoms associated with oophorectomy and tamoxifen treatment for breast cancer in 
premenopausal Vietnamese women. Breast Cancer Res Treat 58 (3):281-6. 

Lu, W. J. , W.  Zhou, Y. Kreutz, and D. A. Flockhart. 2011. Methadone adverse reaction 
presenting with large increase in plasma methadone binding: a case series. Journal of 
Medical Case Report 5:513. 

Lu, W. J., R. Bies, L. K. Kamden, Z. Desta, and D. A. Flockhart. 2010. Methadone: a 
substrate and mechanism-based inhibitor of CYP19 (aromatase). Drug Metab Dispos 38 
(8):1308-13. 

Lu, W. J., Z. Desta, and D. A. Flockhart. 2011. Tamoxifen metabolites as active 
inhibitors of aromatase in the treatment of breast cancer. Breast Cancer Res Treat. 

Lu, W. J., V. Ferlito, C. Xu, D. A. Flockhart, and S. Caccamese. 2011. Enantiomers of 
naringenin as pleiotropic, stereoselective inhibitors of cytochrome P450 isoforms. 
Chirality. 

Lu, W. J., N. Thong, and D. A. Flockhart. 2011. Reduced methadone clearance during 
aromatase inhibition.  (submitted for publication). 

Lu, W. J., C. Xu, Z. Pei, A. S. Mayhoub, M. Cushman, and D. A. Flockhart. 2011. The 
tamoxifen metabolite norendoxifen is a potent and selective inhibitor of aromatase 
(CYP19) and a potential lead compound for novel therapeutic agents. Breast Cancer Res 
Treat. 

Ma, C. X., A. A. Adjei, O. E. Salavaggione, J. Coronel, L. Pelleymounter, L. Wang, B. 
W. Eckloff, D. Schaid, E. D. Wieben, and R. M. Weinshilboum. 2005. Human aromatase: 
gene resequencing and functional genomics. Cancer Res 65 (23):11071-82. 

Ma, X., X. Qi, C. Chen, H. Lin, H. Xiong, Y. Li, and J. Jiang. 2010. Association between 
CYP19 polymorphisms and breast cancer risk: results from 10,592 cases and 11,720 
controls. Breast Cancer Res Treat 122 (2):495-501. 

Manthey, J. A., K. Grohmann, and N. Guthrie. 2001. Biological properties of citrus 
flavonoids pertaining to cancer and inflammation. Curr Med Chem 8 (2):135-53. 

Mao, J. J., H. I. Su, R. Feng, M. L. Donelson, R. Aplenc, T. R. Rebbeck, F. Stanczyk, and 
A. Demichele. 2011. Association of functional polymorphisms in CYP19A1 with 
aromatase inhibitor associated arthralgia in breast cancer survivors. Breast Cancer Res 13 
(1):R8. 



176 
 

Marsh, E. E., N. D. Shaw, K. M. Klingman, T. O. Tiamfook-Morgan, M. A. Yialamas, P. 
M. Sluss, and J. E. Hall. 2011. Estrogen Levels Are Higher across the Menstrual Cycle in 
African-American Women Compared with Caucasian Women. J Clin Endocrinol Metab. 

Masi, L., L. Becherini, L. Gennari, A. Amedei, E. Colli, A. Falchetti, M. Farci, S. 
Silvestri, S. Gonnelli, and M. L. Brandi. 2001. Polymorphism of the aromatase gene in 
postmenopausal Italian women: distribution and correlation with bone mass and fracture 
risk. J Clin Endocrinol Metab 86 (5):2263-9. 

McCowan, C., J. Shearer, P. T. Donnan, J. A. Dewar, M. Crilly, A. M. Thompson, and T. 
P. Fahey. 2008. Cohort study examining tamoxifen adherence and its relationship to 
mortality in women with breast cancer. Br J Cancer 99 (11):1763-8. 

Miners, J. O., S. Coulter, R. H. Tukey, M. E. Veronese, and D. J. Birkett. 1996. 
Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-
demethylation of R- and S-naproxen. Biochem Pharmacol 51 (8):1003-8. 

Miyoshi, Y., and S. Noguchi. 2003. Polymorphisms of estrogen synthesizing and 
metabolizing genes and breast cancer risk in Japanese women. Biomed Pharmacother 57 
(10):471-81. 

Mnif, W., J. M. Pascussi, A. Pillon, A. Escande, A. Bartegi, J. C. Nicolas, V. Cavailles, 
M. J. Duchesne, and P. Balaguer. 2007. Estrogens and antiestrogens activate hPXR. 
Toxicol Lett 170 (1):19-29. 

Morales, L., P. Neven, D. Timmerman, M. R. Christiaens, I. Vergote, E. Van Limbergen, 
A. Carbonez, S. Van Huffel, L. Ameye, and R. Paridaens. 2004. Acute effects of 
tamoxifen and third-generation aromatase inhibitors on menopausal symptoms of breast 
cancer patients. Anticancer Drugs 15 (8):753-60. 

Mortimer, J. E., S. W. Flatt, B. A. Parker, E. B. Gold, L. Wasserman, L. Natarajan, and J. 
P. Pierce. 2008. Tamoxifen, hot flashes and recurrence in breast cancer. Breast Cancer 
Res Treat 108 (3):421-6. 

Morton, E. B. 2007. Methadone pharmacology. Ph.D. thesis, University of Adelaide, 
Adelaide, South Australia. 

Muftuoglu, Y., and G. Mustata. 2010. Pharmacophore modeling strategies for the 
development of novel nonsteroidal inhibitors of human aromatase (CYP19). Bioorg Med 
Chem Lett 20 (10):3050-64. 

Muralidharan, G., E. M. Hawes, G. McKay, E. D. Korchinski, and K. K. Midha. 1991. 
Quinidine but not quinine inhibits in man the oxidative metabolic routes of 
methoxyphenamine which involve debrisoquine 4-hydroxylase. Eur J Clin Pharmacol 41 
(5):471-4. 



177 
 

Nanovskaya, T. N., S. V. Deshmukh, I. A. Nekhayeva, O. L. Zharikova, G. D. Hankins, 
and M. S. Ahmed. 2004. Methadone metabolism by human placenta. Biochem Pharmacol 
68 (3):583-91. 

Nelson, D. R., D. C. Zeldin, S. M. Hoffman, L. J. Maltais, H. M. Wain, and D. W. 
Nebert. 2004. Comparison of cytochrome P450 (CYP) genes from the mouse and human 
genomes, including nomenclature recommendations for genes, pseudogenes and 
alternative-splice variants. Pharmacogenetics 14 (1):1-18. 

Nilsson, M. I., E. Widerlov, U. Meresaar, and E. Anggard. 1982. Effect of urinary pH on 
the disposition of methadone in man. Eur J Clin Pharmacol 22 (4):337-42. 

Nowell, S. A., J. Ahn, J. M. Rae, J. O. Scheys, A. Trovato, C. Sweeney, S. L. MacLeod, 
F. F. Kadlubar, and C. B. Ambrosone. 2005. Association of genetic variation in 
tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast 
cancer patients. Breast Cancer Res Treat 91 (3):249-58. 

Oberguggenberger, A., M. Hubalek, M. Sztankay, V. Meraner, B. Beer, H. Oberacher, J. 
Giesinger, G. Kemmler, D. Egle, E. M. Gamper, B. Sperner-Unterweger, and B. Holzner. 
2011. Is the toxicity of adjuvant aromatase inhibitor therapy underestimated? 
Complementary information from patient-reported outcomes (PROs). Breast Cancer Res 
Treat. 

Ortiz de Montellano, P. R., B. A. Mico, J. M. Mathews, K. L. Kunze, G. T. Miwa, and A. 
Y. Lu. 1981. Selective inactivation of cytochrome P-450 isozymes by suicide substrates. 
Arch Biochem Biophys 210 (2):717-28. 

Osawa, Y., T. Higashiyama, Y. Shimizu, and C. Yarborough. 1993. Multiple functions of 
aromatase and the active site structure; aromatase is the placental estrogen 2-hydroxylase. 
J Steroid Biochem Mol Biol 44 (4-6):469-80. 

Osawa, Y., T. Higashiyama, Y. Toma, and C. Yarborough. 1997. Diverse function of 
aromatase and the N-terminal sequence deleted form. J Steroid Biochem Mol Biol 61 (3-
6):117-26. 

Osborne, C. K., H. Zhao, and S. A. Fuqua. 2000. Selective estrogen receptor modulators: 
structure, function, and clinical use. J Clin Oncol 18 (17):3172-86. 

Paar, W. D., S. Poche, J. Gerloff, and H. J. Dengler. 1997. Polymorphic CYP2D6 
mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol 53 (3-
4):235-9. 

Partridge, A. H., A. LaFountain, E. Mayer, B. S. Taylor, E. Winer, and A. Asnis-
Alibozek. 2008. Adherence to initial adjuvant anastrozole therapy among women with 
early-stage breast cancer. J Clin Oncol 26 (4):556-62. 

  



178 
 

Payne, E. J., E. Ingley, I. M. Dick, S. G. Wilson, C. S. Bond, and R. L. Prince. 2009. In 
vitro kinetic properties of the Thr201Met variant of human aromatase gene CYP19A1: 
functional responses to substrate and product inhibition and enzyme inhibitors. J Clin 
Endocrinol Metab 94 (8):2998-3002. 

Pohland, A., H. E. Boaz, and H. R. Sullivan. 1971. Synthesis and identification of 
metabolites resulting from the biotransformation of DL-methadone in man and in the rat. 
J Med Chem 14 (3):194-7. 

Pond, S. M., M. J. Kreek, T. G. Tong, J. Raghunath, and N. L. Benowitz. 1985. Altered 
methadone pharmacokinetics in methadone-maintained pregnant women. J Pharmacol 
Exp Ther 233 (1):1-6. 

Pritts, E. A. 2010. Letrozole for ovulation induction and controlled ovarian 
hyperstimulation. Curr Opin Obstet Gynecol 22 (4):289-94. 

Punetha, A., K. Shanmugam, and D. Sundar. 2011. Insight into the enzyme-inhibitor 
interactions of the first experimentally determined human aromatase. J Biomol Struct Dyn 
28 (5):759-71. 

Rettie, A. E., K. R. Korzekwa, K. L. Kunze, R. F. Lawrence, A. C. Eddy, T. Aoyama, H. 
V. Gelboin, F. J. Gonzalez, and W. F. Trager. 1992. Hydroxylation of warfarin by human 
cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-
drug interactions. Chem Res Toxicol 5 (1):54-9. 

Rochira, V., and C. Carani. 2009. Aromatase deficiency in men: a clinical perspective. 
Nat Rev Endocrinol 5 (10):559-68. 

Romach, M. K., K. M. Piafsky, J. G. Abel, V. Khouw, and E. M. Sellers. 1981. 
Methadone binding to orosomucoid (alpha 1-acid glycoprotein): determinant of free 
fraction in plasma. Clin Pharmacol Ther 29 (2):211-7. 

Rowland, M., and T. N. Tozer. 1995. Clinical pharmacokinetics: concepts and 
applications. 3rd ed: Lippincott Williams & Wilkins. 

Sanderson, J. T. 2006. The steroid hormone biosynthesis pathway as a target for 
endocrine-disrupting chemicals. Toxicol Sci 94 (1):3-21. 

Sano, Y., K. Suzuki, K. Arai, S. Okinaga, and B. I. Tamaoki. 1981. Changes in enzyme 
activities related to steroidogenesis in human ovaries during the menstrual cycle. J Clin 
Endocrinol Metab 52 (5):994-1001. 

Santen, R. J., H. Brodie, E. R. Simpson, P. K. Siiteri, and A. Brodie. 2009. History of 
aromatase: saga of an important biological mediator and therapeutic target. Endocr Rev 
30 (4):343-75. 



179 
 

Saylam, B., O. Efesoy, and S. Cayan. 2011. The effect of aromatase inhibitor letrozole on 
body mass index, serum hormones, and sperm parameters in infertile men. Fertil Steril 95 
(2):809-11. 

Sebastian, S., and S. E. Bulun. 2001. A highly complex organization of the regulatory 
region of the human CYP19 (aromatase) gene revealed by the Human Genome Project. J 
Clin Endocrinol Metab 86 (10):4600-2. 

Segel, I. H. 1993. Enzyme kinetics: Wiley. 

Senay, E. C. 1985. Methadone maintenance treatment. Int J Addict 20 (6-7):803-21. 

Serane, V. T., and O. Kurian. 2008. Neonatal abstinence syndrome. Indian J Pediatr 75 
(9):911-4. 

Shin, J. G., K. Kane, and D. A. Flockhart. 2001. Potent inhibition of CYP2D6 by 
haloperidol metabolites: stereoselective inhibition by reduced haloperidol. Br J Clin 
Pharmacol 51 (1):45-52. 

Shiran, M. R., M. S. Lennard, M. Z. Iqbal, O. Lagundoye, N. Seivewright, G. T. Tucker, 
and A. Rostami-Hodjegan. 2009. Contribution of the activities of CYP3A, CYP2D6, 
CYP1A2 and other potential covariates to the disposition of methadone in patients 
undergoing methadone maintenance treatment. Br J Clin Pharmacol 67 (1):29-37. 

Silverman, R. 1988. Mechanism based inactivation: chemistry and enzymology. CRC 
Press, Boca Raton, FL. 

Simpson, E. R. 2003. Sources of estrogen and their importance. J Steroid Biochem Mol 
Biol 86 (3-5):225-30. 

Simpson, E. R., C. Clyne, G. Rubin, W. C. Boon, K. Robertson, K. Britt, C. Speed, and 
M. Jones. 2002. Aromatase--a brief overview. Annu Rev Physiol 64:93-127. 

Simpson, E. R., and S. R. Davis. 2001. Minireview: aromatase and the regulation of 
estrogen biosynthesis--some new perspectives. Endocrinology 142 (11):4589-94. 

Sims, S. A., L. A. Snow, and C. A. Porucznik. 2007. Surveillance of methadone-related 
adverse drug events using multiple public health data sources. J Biomed Inform 40 
(4):382-9. 

Smith, I. E., and M. Dowsett. 2003. Aromatase inhibitors in breast cancer. N Engl J Med 
348 (24):2431-42. 

Somner, J., S. McLellan, J. Cheung, Y. T. Mak, M. L. Frost, K. M. Knapp, A. S. 
Wierzbicki, M. Wheeler, I. Fogelman, S. H. Ralston, and G. N. Hampson. 2004. 
Polymorphisms in the P450 c17 (17-hydroxylase/17,20-Lyase) and P450 c19 (aromatase) 
genes: association with serum sex steroid concentrations and bone mineral density in 
postmenopausal women. J Clin Endocrinol Metab 89 (1):344-51. 



180 
 

Stearns, V., M. D. Johnson, J. M. Rae, A. Morocho, A. Novielli, P. Bhargava, D. F. 
Hayes, Z. Desta, and D. A. Flockhart. 2003. Active tamoxifen metabolite plasma 
concentrations after coadministration of tamoxifen and the selective serotonin reuptake 
inhibitor paroxetine. J Natl Cancer Inst 95 (23):1758-64. 

Stresser, David M. . 2004. High-throughput screening of human cytochrome P450 
inhibitors using fluorometric substrates. In Optimization in drug discovery: in vitro 
methods, edited by Z. Yan and G. W. Caldwell. 

Sullivan, H. R., and S. L. Due. 1973. Urinary metabolites of dl-methadone in 
maintenance subjects. J Med Chem 16 (8):909-13. 

Sun, B., J. Hoshino, K. Jermihov, L. Marler, J. M. Pezzuto, A. D. Mesecar, and M. 
Cushman. 2010. Design, synthesis, and biological evaluation of resveratrol analogues as 
aromatase and quinone reductase 2 inhibitors for chemoprevention of cancer. Bioorg Med 
Chem 18 (14):5352-66. 

Szeto, H. H., J. F. Clapp, 3rd, R. W. Larrow, J. Hewitt, C. E. Inturrisi, and L. I. Mann. 
1981. Disposition of methadone in the ovine maternal-fetal unit. Life Sci 28 (19):2111-7. 

Tahboub, R., and B. M. Arafah. 2009. Sex steroids and the thyroid. Best Pract Res Clin 
Endocrinol Metab 23 (6):769-80. 

Taylor, W. C., and H. B. Muss. 2010. Recent advances: adjuvant therapy for older 
women with breast cancer. Cancer J 16 (4):289-93. 

Thompson, A. M., A. Johnson, P. Quinlan, G. Hillman, M. Fontecha, S. E. Bray, C. A. 
Purdie, L. B. Jordan, R. Ferraldeschi, A. Latif, K. D. Hadfield, R. B. Clarke, L. Ashcroft, 
D. G. Evans, A. Howell, M. Nikoloff, J. Lawrence, and W. G. Newman. 2010. 
Comprehensive CYP2D6 genotype and adherence affect outcome in breast cancer 
patients treated with tamoxifen monotherapy. Breast Cancer Res Treat. 

Thompson, P. W., and F. S. Pegley. 1991. A comparison of disability measured by the 
Stanford Health Assessment Questionnaire disability scales (HAQ) in male and female 
rheumatoid outpatients. Br J Rheumatol 30 (4):298-300. 

Tian, F., H. Wu, Z. Li, N. Wang, J. Huang, C. Li, and F. Xie. 2009. Activated 
PKCalpha/ERK1/2 signaling inhibits tamoxifen-induced apoptosis in C6 cells. Cancer 
Invest 27 (7):802-8. 

Toda, K., T. Okada, C. Miyaura, and T. Saibara. 2003. Fenofibrate, a ligand for 
PPARalpha, inhibits aromatase cytochrome P450 expression in the ovary of mouse. J 
Lipid Res 44 (2):265-70. 

Toi, M., Y. Ohashi, A. Seow, T. Moriya, G. Tse, H. Sasano, B. W. Park, L. W. Chow, A. 
V. Laudico, C. H. Yip, E. Ueno, H. Ishiguro, and H. Bando. 2010. The Breast Cancer 
Working Group presentation was divided into three sections: the epidemiology, 
pathology and treatment of breast cancer. Jpn J Clin Oncol 40 Suppl 1:i13-18. 



181 
 

Totah, R. A., P. Sheffels, T. Roberts, D. Whittington, K. Thummel, and E. D. Kharasch. 
2008. Role of CYP2B6 in stereoselective human methadone metabolism. Anesthesiology 
108 (3):363-74. 

Vaz, A. D. N. 2003. Drug metabolizing enzymes: cytochrome P450 and other enzymes in 
drug discovery and development: FontisMedia. 

Verdonk, M. L., J. C. Cole, M. J. Hartshorn, C. W. Murray, and R. D. Taylor. 2003. 
Improved protein-ligand docking using GOLD. Proteins 52 (4):609-23. 

Wang, H., R. Li, and Y. Hu. 2009. The alternative noncoding exons 1 of aromatase 
(Cyp19) gene modulate gene expression in a posttranscriptional manner. Endocrinology 
150 (7):3301-7. 

Wang, J. S., and C. L. DeVane. 2003. Involvement of CYP3A4, CYP2C8, and CYP2D6 
in the metabolism of (R)- and (S)-methadone in vitro. Drug Metab Dispos 31 (6):742-7. 

Wang, Q., H. Zhao, Q. Xiang, H. Ju, S. M. Han, L. Y. Wang, and B. Xu. 2009. Effect of 
Yikun Neiyi Wan on the expression of aromatase P450, COX-2, and ER related receptor 
in endometrial cells in vitro from patients with endometriosis. J Tradit Chin Med 29 
(4):296-300. 

Wang, S. C., I. K. Ho, H. H. Tsou, J. N. Tian, C. F. Hsiao, C. H. Chen, H. K. Tan, L. Lin, 
C. S. Wu, L. W. Su, C. L. Huang, Y. H. Yang, M. L. Liu, K. M. Lin, C. Y. Chen, S. C. 
Liu, H. Y. Wu, H. W. Chan, M. H. Tsai, P. S. Lin, and Y. L. Liu. 2011. CYP2B6 
Polymorphisms Influence the Plasma Concentration and Clearance of the Methadone S-
Enantiomer. J Clin Psychopharmacol 31 (4):463-469. 

Wegman, P., S. Elingarami, J. Carstensen, O. Stal, B. Nordenskjold, and S. Wingren. 
2007. Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen 
response in postmenopausal patients with breast cancer. Breast Cancer Res 9 (1):R7. 

Weschules, D. J., K. T. Bain, and S. Richeimer. 2008. Actual and potential drug 
interactions associated with methadone. Pain Med 9 (3):315-44. 

Wilkinson, G. R. 2005. Drug metabolism and variability among patients in drug 
response. N Engl J Med 352 (21):2211-21. 

Xita, N., A. Chatzikyriakidou, I. Stavrou, Ch Zois, I. Georgiou, and A. Tsatsoulis. 2010. 
The (TTTA)n polymorphism of aromatase (CYP19) gene is associated with age at 
menarche. Hum Reprod 25 (12):3129-33. 

Yahiaoui, S., C. Pouget, J. Buxeraud, A. J. Chulia, and C. Fagnere. 2011. Lead 
optimization of 4-imidazolylflavans: new promising aromatase inhibitors. Eur J Med 
Chem 46 (6):2541-5. 

Yanez, J. A., and N. M. Davies. 2005. Stereospecific high-performance liquid 
chromatographic analysis of naringenin in urine. J Pharm Biomed Anal 39 (1-2):164-9. 



182 
 

Young, J., S. E. Bulun, V. Agarwal, B. Couzinet, C. R. Mendelson, E. R. Simpson, and 
G. Schaison. 1996. Aromatase expression in a feminizing adrenocortical tumor. J Clin 
Endocrinol Metab 81 (9):3173-6. 

Yousefi, M., W. Karmaus, L. M. Mudd, J. R. Landgraf, D. Mikucki, P. S. Haan, J. Zhang, 
and J. R. Osuch. 2011. Expression of CYP19 and CYP17 is associated with leg length, 
weight, and BMI. Obesity (Silver Spring) 19 (2):436-41. 

Yue, Q. Y., C. Alm, J. O. Svensson, and J. Sawe. 1997. Quantification of the O- and N-
demethylated and the glucuronidated metabolites of codeine relative to the debrisoquine 
metabolic ratio in urine in ultrarapid, rapid, and poor debrisoquine hydroxylators. Ther 
Drug Monit 19 (5):539-42. 

Zharikova, O. L., S. V. Deshmukh, T. N. Nanovskaya, G. D. Hankins, and M. S. Ahmed. 
2006. The effect of methadone and buprenorphine on human placental aromatase. 
Biochem Pharmacol 71 (8):1255-64. 

Ziller, V., M. Kalder, U. S. Albert, W. Holzhauer, M. Ziller, U. Wagner, and P. Hadji. 
2009. Adherence to adjuvant endocrine therapy in postmenopausal women with breast 
cancer. Ann Oncol 20 (3):431-6. 

Zivian, M. T. , and B.  Salgado. 2008. Side effects revisited: women’s experiences with 
aromatase inhibitors. San Francisco, CA: A report from Breast Cancer Action. 



CURRICULUM VITAE 
 

Wenjie Lu 
 
EDUCATION 
 
2007 – 2012  Ph.D. Pharmacology   
   Indiana University, USA  
 
2003 – 2007  B.S. Biological Sciences  

Peking University, China 
 
 
AWARDS AND HONORS 
 
10/2011 Featured Young Investigator in Pharmaceutical Technology, USA 
 
08/2011 Second Place Award in the 2011 Sigma Xi Graduate Biomedical 

Research Competition, Indiana University, USA 
 
07/2011 Graduate Student Symposium Award in Pharmacokinetics, 

Pharmacodynamics, and Drug Metabolism and Clinical 
Pharmacology and Translational Research, American Association 
of Pharmaceutical Scientists (AAPS), USA  

 
08/2007 – 07/2008 Indiana University Biomedical Gateway Fellowship, USA 
 
05/2005 – 04/2006 Undergraduate Research Fellowship, President’s Fund, Peking 

University, China 
 
09/2004 – 07/2005 Outstanding Student Honor, Department of Life Science, Peking 

University, China 
 
09/2003 – 07/2004 Outstanding Student Honor, Department of Chemistry and 

Molecular Engineering, Peking University, China 
 
05/2002 National Biology Olympiad Prize, China 
 
 
GRANT 
 
11/1/10 – 10/31/12 Department of Defense, USA  

Breast Cancer Research Program Predoctoral Traineeship Award    
Principle Investigator: Wenjie Jessie Lu  
Title: “A New Role for Aromatase (CYP19) in Drug Disposition in 
Breast Cancer”  



PUBLICATIONS 
 
Original research articles: 
 

1. Wenjie Jessie Lu, Cong Xu, Zifan Pei, Abdelrahman Salah Abbas Mayhoub, 
Mark Cushman, David A Flockhart. The tamoxifen metabolite norendoxifen is a 
potent and selective inhibitor of aromatase and a potential lead compound for 
novel therapeutic agents. Breast Cancer Research and Treatment, 2011. PMID: 
21814747 
 

2. Wenjie Jessie Lu, Valentina Ferlito, Cong Xu, David A Flockhart, Salvatore 
Caccamese. Enantiomers of naringenin as pleiotropic, stereoselective inhibitors of 
cytochrome P450 isoforms. Chirality, 2011. PMID: 21953762 
 

3. Wenjie Jessie Lu, Zeruesenay Desta, David A Flockhart. Tamoxifen metabolites 
as active inhibitors of aromatase in the treatment of breast cancer. Breast Cancer 
Research and Treatment, 2011. PMID: 21390495 
 

4. Wenjie Jessie Lu, Weidong Zhou, Yvonne Kreutz, David A Flockhart. 
Methadone adverse reaction presenting with large increase in plasma methadone 
binding: a case series. Journal of Medical Case Report, 2011, 5:513. PMID: 
21985665  
 

5. Wenjie Jessie Lu, Robert R Bies, Landry Kamden Kamden, Zeruesenay Desta, 
David A Flockhart. Methadone: a substrate and mechanism-based inhibitor of 
CYP19 (Aromatase). Drug Metabolism and Disposition, 2010 Aug; 38(8):1308-
13. PMID: 20410453  
 

6. Wenjie Jessie Lu, Nancy Thong, David A Flockhart. Reduced methadone 
clearance during aromatase inhibition. 2011 (submitted for publication)  

 
Abstracts: 
 

1. Wenjie Jessie Lu, Nancy Thong, David A Flockhart. “Reduced methadone 
clearance during aromatase inhibition”. The 32nd Annual Meeting of the Japanese 
Society of Clinical Pharmacology and Therapeutics (JSCPT) and the JSCPT-
KSCPT-ASCPT Joint Conference 2011, Hamamatsu, Japan, December 1, 2011. 
Abstract Nr 00008 
 

2. Wenjie Jessie Lu, Claire Xu, Zifan Pei, David A Flockhart. “A structural basis 
for inhibition of aromatase by tamoxifen metabolites”. The 2011 Annual Meeting 
and Exposition of the American Association of Pharmaceutical Scientists, 
Washington, DC, October 23-27, 2011  
 
 
 



3. Wenjie Jessie Lu, David A Flockhart, Salvatore Caccamese: “Stereoisomers of 
naringenin as pleiotropic, selective inhibitors of cytochrome P450 isoforms”. The 
2011 Annual Meeting of the Canadian Society of Pharmacology and 
Therapeutics. Montreal, Canada, May 24-27, 2011. Journal of Population 
Therapeutics and Clinical Pharmacology, 2011 May; 18(2):e349  
 

4. Wenjie Jessie Lu, Zeruesenay Desta, David A Flockhart: “Aromatase inhibition 
by active tamoxifen metabolites”. In: Proceedings of the 102nd Annual Meeting of 
the American Association for Cancer Research. Orlando, FL, April 2-6, 2011. 
Abstract nr 4460 

 
5. Wenjie Jessie Lu, Yvonne Kreutz, David A Flockhart.: “Case study of an 

adverse reaction to methadone during coadministration of letrozole”. The 112th 
Annual Meeting of the American Society for Clinical Pharmacology and 
Therapeutics. Dallas, TX, March 2-5, 2011. Clinical Pharmacology & 
Therapeutics. 2011 Feb; 89 (S1) S26 

 
6. Wenjie Jessie Lu, Landry Kamden Kamden, Zeruesenay Desta, David A 

Flockhart: “Methadone is a potent and mechanism-based inhibitor of metabolism 
by CYP19 (aromatase)”. The 8th Joint Conference of the American Association 
for Cancer Research and the Japanese Cancer Association: Cancer Genomics, 
Epigenomics, and the Development of Novel Therapeutics, Waikoloa, HI, 
February 5-9, 2010. Poster Section D 
 
 

IRB APPROVED CLINICAL PROTOCOL: 
 

• David A Flockhart and Wenjie Jessie Lu. Inhibition of methadone metabolism by 
the aromatase (CYP19) inhibitor, letrozole. Protocol #1001-13, approved by the 
Indiana University IRB on February 15, 2010 

 
 
PATENT:  
 

• Wenjie Jessie Lu and David A Flockhart. Materials for inhibiting aromatase and 
method of using the same to diagnose, treat and monitor breast cancer. March 
2011 (IURTC No. 11051, US patent application submitted) 

 
 
ORAL PRESENTATIONS: 
 

1. Wenjie Jessie Lu, Nancy Thong, David A Flockhart. “Reduced methadone 
clearance during aromatase inhibition”. The 32nd Annual Meeting of the Japanese 
Society of Clinical Pharmacology and Therapeutics (JSCPT) and the JSCPT-
KSCPT-ASCPT Joint Conference 2011, Hamamatsu, Japan, December 1, 2011 
  



2. Wenjie Jessie Lu. “A structural basis for inhibition of aromatase by tamoxifen 
metabolites”. Graduate Student Symposium in Pharmacokinetics, 
Pharmacodynamics, and Drug Metabolism and Clinical Pharmacology and 
Translational Research at the 2011 Annual Meeting and Exposition of the 
American Association of Pharmaceutical Scientists, Washington, DC, October 25, 
2011 
 

3. Wenjie Jessie Lu. “New roles of aromatase in xenobiotic metabolism and 
pharmacokinetic drug interactions”. The 2011 Sigma Xi Biomedical Research 
Day, Indiana University, Indianapolis, IN, August 8, 2011 

 
4. Wenjie Jessie Lu, David A Flockhart. “Studies on the mechanism of an adverse 

reaction to methadone during coadministration of letrozole”. Host: Neal Benowitz 
MD. Division of Clinical Pharmacology, Department of Medicine, University of 
California, San Francisco, CA, September 30, 2010 

 
 
SKILL SET 
 

• Measurement of molecules in biological matrices using a range of analytical 
techniques; pharmacokinetic and pharmacodynamic data analysis 

• Protein quantification and proteomic data analysis 
• Genetic variant identification, selection and pharmacogenomic genotype-

phenotype association analysis 
• Basic techniques in studying cellular systems  
• Techniques in the design, modeling and conduct of studies in rats and mice 
• Development of clinical trial designs that satisfy regulatory requirements 
• Fundamental and applied statistics 

 
 
PROFESSIONAL AFFILIATIONS 
 

• American Association of Pharmaceutical Scientists (AAPS) 
• American Association for the Advancement of Science  
• Business of Life Sciences Student Associate, Kelley School of Business, Indiana 

University, USA  
• American Association for Cancer Research (AACR) 
• American Society for Clinical Pharmacology and Therapeutics (ASCPT) 

 
 
 
 


	1
	Chemicals and reagents 142
	Testosterone and methadone metabolism in vitro by recombinant aromatase 143
	Mechanism-based inhibition of aromatase in vitro 149
	Inhibition of testosterone metabolism by aromatase in vitro 150
	Inhibition of specific CYP isoforms using pooled HLMs 152

	2
	Methadone metabolism in vitro by recombinant aromatase
	Inhibition of testosterone metabolism by aromatase in vitro
	Inhibition of specific CYP isoforms using pooled HLMs
	Chemicals and reagents
	Methadone for IV administration was obtained from Xanodyne (Newport, KY) as a 10 mg/ml solution.  Volumes of methadone used for each administration were recorded as 0.6 ml (6 mg). This dose was diluted in 50 ml of normal saline for IV infusion. The sa...
	Testosterone and methadone metabolism in vitro by recombinant aromatase
	Inhibition of testosterone metabolism by aromatase in vitro
	Inhibition of specific CYP isoforms using pooled HLMs
	Study Procedures:
	Study Drugs: Methadone will be supplied by the Indiana University Hospital Inpatient Pharmacy. A single batch of letrozole 2.5 mg pills to be used for the whole study will also be purchased from the Indiana University Hospital Pharmacies.

	3
	SKILL SET
	PROFESSIONAL AFFILIATIONS


