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ABSTRACT 

 

Ramy Refaat Habashy Malty 

 

Mechanisms of the downregulation of prostaglandin E2-activated protein 

kinase A after chronic exposure to nerve growth factor or prostaglandin E2 

 

Chronic inflammatory disorders are characterized by an increase in excitability of 

small diameter sensory neurons located in dorsal root ganglia (DRGs). This sensitization 

of neurons is a mechanism for chronic inflammatory pain and available therapies have 

poor efficacy and severe adverse effects when used chronically. Prostaglandin E2 

(PGE2) is an inflammatory mediator that plays an important role in sensitization by 

activating G-protein coupled receptors (GPCRs) known as E-series prostaglandin 

receptors (EPs) coupled to the protein kinase A (PKA) pathway. EPs are known to 

downregulate upon prolonged exposure to PGE2 or in chronic inflammation, however, 

sensitization persists and the mechanism for this is unknown. I hypothesized that 

persistence of PGE2-induced hypersensitivity is associated with a switch in signaling 

caused by prolonged exposure to PGE2 or the neurotrophin nerve growth factor (NGF), 

also a crucial inflammatory mediator. DRG cultures grown in the presence or absence of 

either PGE2 or NGF were used to study whether re-exposure to the eicosanoid is able to 

cause sensitization and activate PKA. When cultures were grown in the presence of 

NGF, PGE2-induced sensitization was not attenuated by inhibitors of PKA. Activation of 

PKA by PGE2 was similar in DRG cultures grown in the presence or absence of NGF 

when phosphatase inhibitors were added to the lysis and assay buffers, but significantly 

less in cultures grown in the presence of NGF when phosphatase inhibitors were not 

added. In DRG cultures exposed to PGE2 for 12 hours-5 days, sensitization after re-

exposure to PGE2 is maintained and resistant to PKA inhibition. Prolonged exposure to 

the eicosanoid caused complete loss of PKA activation after PGE2 re-exposure. This 

desensitization was homologous, time dependent, reversible, and insurmountable by a 

higher concentration of PGE2. Desensitization was attenuated by reduction of expression 

of G-protein receptor kinase 2 and was not mediated by PKA or protein kinase C.
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The presented work provides evidence for persistence of sensitization by PGE2 as well 

as switch from the signaling pathway mediating this sensitization after long-term 

exposure to NFG or PGE2. 

 

 

Michael R. Vasko, Ph.D., Chair 
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INTRODUCTION 

 

Biology of Nociception 

 

Pain as an important physiological function and as a disease 

 

Pain is the most common condition for which patients seek medical care. 

According to a study in 2003, 105 million people (35.5 percent of all US population) 

suffer from chronic pain. The cost of pain, whether it is the primary reason for seeking 

medical care, or secondary to another ailment, amounts to $100 billion annually 

(Melnikova, 2010). In a study from Europe, 46,000 subjects were interviewed and 19 

percent were found to suffer from chronic moderate to severe pain. Sixteen percent of 

these chronic pain sufferers reported that their pain is sometimes severe enough that 

they want to die1 (Tsuda et al., 2005). In addition to high prevalence of chronic pain, 

there are multiple drawbacks with available therapies including severe side effects, 

liability for abuse and most importantly, failure in alleviating patients’ suffering (Woolf, 

2010a). Moreover, treatment of chronic pain is currently conducted in the clinic on an 

empiric basis. This means that the physician has to prescribe different drugs at different 

dosing regimens till an effective agent and dose are found. All these factors significantly 

increase the cost of therapy and thus the burden on the health care system (Finnerup et 

al., 2007). 

It is important to differentiate pain as a symptom of an underlying disease versus 

pain as a disease. The former serves as a protective mechanism, while the latter serves 

no known function (Tsuda et al., 2005). Pain as a symptom serves a very important 

biological and evolutionary function; it helps the organism to identify noxious stimuli to 

avoid further harm and to accelerate healing and resolution of the injury. Reduced or lost 

ability to perceive pain results in severe and often life threatening conditions. Various 

studies on individuals who have mutations in genes encoding proteins that are essential 

for pain perception provide strong evidence for the importance of pain as a protective 

mechanism. These patients have total loss or severe reduction of the ability to perceive 

pain. Over time the afflicted individuals suffer severe undetected injuries due to the lack 

of the protective behavior initiated by pain sensation that can lead to death (Bejaoui et 

                                                
1 http://www.paineurope.com/healthcare-professional/pain-surveys/pain-in-europe-survey/key-
findings.html (accessed November 7, 2012) 
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al., 2001; Cox et al., 2006; Indo et al., 1996; Slaugenhaupt et al., 2001). As a disease, 

pain is highly prevalent. Chronic pain is a significant problem from the health care point 

of view. Not only do chronic pathological pain disorders cause physiological and 

psychological distress, but they can also be life threatening (Fertleman et al., 2006)2. 

 

Definition of pain, nociception, hypersensitivity, hyperalgesia, 

hypernociception, allodynia and nociceptive neuron 

 

Pain is defined as an experience involving both the sensation and the reaction 

that are initiated by a harmful stimulus whether that stimulus caused tissue damage or 

not (Merskey and Bogduk, 1994). According to this definition, pain involves affective and 

psychological aspects (Basbaum et al., 2009; Julius and Basbaum, 2001). Since there is 

no way for an experimental animal to communicate its affective state to the 

experimenter, the term pain is appropriate for use in clinical studies performed on 

humans only (Le Bars et al., 2001) whereas the term nociception is most accurate for 

experiments involving animal models (Vierck Jr, 2006). Nociception (literally means “to 

perceive harm”; derived from the Latin nocere, which means “to harm” and percipere 

which means “to seize”) is a general term that can be used when describing 

experimental results using animal models (Loring and Meador, 1999; Sherrington, 1906). 

Nociception can be defined as the neural process by which a noxious stimulus is 

encoded and processed (Loeser and Treede, 2008). A noxious stimulus is a stimulus 

that is capable of producing tissue damage in an organism (Loeser and Treede, 2008). A 

nociceptive neuron is a peripheral or central neuron that mediates nociception (Loeser 

and Treede, 2008). Increased responsiveness of these neurons is collectively known as 

sensitization (Basbaum et al., 2009). Since nociceptive neurons can be divided into 

peripheral or central neurons, their sensitization can also be classified into peripheral or 

central sensitization respectively (Loeser and Treede, 2008). Hypersensitivity is a broad 

term that can be applied to shift to the left of the stimulus-response curve of neuronal 

cultures, animal models of pain or human studies. On the other hand hyperalgesia, 

which is defined as increased sensitivity to painful stimulus (Loeser and Treede, 2008), 

is better reserved within the clinical context. Hypernociception, unlike hyperalgesia, can 

be used to describe increased sensitivity of any organism to a noxious stimulus, 

                                                
2
 (2001) Practice guideline for the treatment of patients with borderline personality disorder. 

American Psychiatric Association. Am J Psychiatry 158(10 Suppl): 1-52. 
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including experimental animals (Parada et al., 2003a). Allodynia is a type of 

sensitization, which is defined as pain in response to non-noxious stimulus (Loeser and 

Treede, 2008). As mentioned above, because pain properly describes the human 

experience, the term allodynia should best be reserved for the clinical setting. However, 

allodynia continues to be used in the context of experiments involving animal models. 

 

Dorsal root ganglia, classification of nociceptive neurons 

 

As mentioned above, nociception is mediated by peripheral and central 

nociceptive neurons. The cell bodies (soma) of the peripheral nociceptive neurons are 

located in dorsal root ganglia (DRG) which are groups of specialized neurons that are 

situated on both sides of the vertebral column, outside the spinal cord. The existence of 

these excitable cells, which were named neurons by  Heinrich Wilhelm von Waldeyer in 

1891 (Lopez-Munoz et al., 2006), that connect the peripheral tissues to the spinal cord 

was first proposed by Sherrington CS (Sherrington, 1906) and subsequently 

substantiated by Gasser and Erlanger and others using the bull frog sciatic nerve 

(Adrian, 1926a; Adrian, 1926b; Adrian and Zotterman, 1926a; Adrian and Zotterman, 

1926b; Gasser and Erlanger, 1922). DRGs contain two major classes of sensory 

neurons, low threshold sensory neurons (activated by touch, vibration, innocuous heat, 

innocuous cold, etc.) and high-threshold neurons. Peripheral sensory neurons (as well 

as other classes of sensory neurons located in the DRG) are pseudounipolar, i.e. they 

have a very short axon that bifurcates and branches into peripheral and central 

branches. The peripheral branch can be long and innervates peripheral tissues (skin, 

muscles, viscera, connective tissue, etc.). The central branch is relatively shorter and it 

projects to the dorsal horn of the spinal cord and there it relays the nerve impulses, 

through synapses, to spinal neurons.  

Peripheral nociceptive neurons communicate exogenous or endogenous noxious 

stimuli to the CNS. These stimuli can be thermal, mechanical or chemical (Julius and 

Basbaum, 2001). The type of noxious stimuli that the neuron is able to detect can be 

used as a means to classify nociceptive neurons into thermal and mechanical (McMahon 

and Koltzenburg, 2006). Other bases of classification of peripheral nociceptive neurons 

include axonal diameter and its status of myelination (Schmalbruch, 1986), soma size 

(Swett et al., 1991), conduction velocity (Harper and Lawson, 1985; Yoshida and 

Matsuda, 1979) and the assortment of proteins they express (Snider and McMahon, 
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1998). Evidence of such diversity in function existed as early as 1926 (Adrian, 1926a; 

Adrian, 1926b; Adrian and Zotterman, 1926a; Adrian and Zotterman, 1926b). 

As mentioned above, one way to classify peripheral nociceptive neurons is based 

on their status of myelination. Using this criterion, there are two classes of peripheral 

nociceptive neurons; the thinly myelinated Aδ fibers and the unmyelinated C fibers, 

which have medium and small diameter cell bodies, respectively. Both classes are 

activated at higher thresholds of stimulation than large-diameter DRG neurons that 

communicate touch and proprioception (McMahon and Koltzenburg, 2006). The small 

diameter neurons can be further classified into peptidergic and non-peptidergic. 

Peptidergic neurons express calcitonin gene related peptide (CGRP), substance P (SP), 

transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and 

tropomyosin receptor kinase A (TrkA) receptor. The non-peptidergic neurons also 

associate with an extracellular matrix (ECM) proteoglycan named versican which is able 

to bind isolectin B4 (Bogen et al., 2005) and hence these neurons often named IB4+ 

neurons (Silverman and Kruger, 1990; Streit et al., 1985). In rats, there is significant 

overlap between TRPV1-expressing and IB4+ neurons (Woodbury et al., 2004). This is a 

widely accepted classification of nociceptive neurons in an uninjured (normal) organism. 

The criteria of classifying nociceptive neurons become less clearly defined under 

pathological conditions. For example low-threshold sensory neurons that associate with 

the myelinated Aβ fibers express SP under inflammatory conditions (Neumann et al., 

1996). Also, IB4+ neurons were shown to express TRPV1 after induction of peripheral 

inflammation (Breese et al., 2005). 

Pain is generally classified into four basic categories; direct or acute pain 

(sometimes referred to as nociceptive pain because it involves activation of nociceptive 

neurons without detectable tissue damage), inflammatory pain (resulting from tissue 

damage and inflammation that spares the nerves), neuropathic pain (which results from 

nerve damage) and idiopathic pain (pain that is perceived without detectable noxious 

stimulus, tissue or nerve damage) (McMahon and Koltzenburg, 2006; Mogil, 2009; 

Woolf, 2010b). In the rest of this dissertation, I will focus on inflammatory pain. 

 

Acute nociception 

 

As mentioned previously, a noxious stimulus can activate the nociceptive neuron 

leading to the occurrence of what is known as acute or nociceptive pain. An example of 
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such noxious stimulus is brief exposure of glabrous skin of the hand to temperatures 

between 43-50°C (LaMotte and Campbell, 1978). Interestingly, heat applied in this 

manner does not lead to significant tissue damage or inflammation yet it is perceived as 

noxious (Caterina et al., 1997; Leffler et al., 2007). The main receptor responsible for 

this heat sensitivity is the well-known TRPV1. TRPV1 is a ligand-gated non-selective 

cation channel. It can be selectively activated by the compound capsaicin (the pungent 

ingredient in peppers), noxious heat that is at or above 43°C (Caterina et al., 1997), and 

by protons. There is a debate whether a number of lipids act as endogenous ligands of 

the TRPV1 channel. Metabolites belonging to the endocannabinoids (such as 

anadamide) are argued to be endogenous ligands for the activation of TRPV1 channel 

(Jordt and Julius, 2002; Zygmunt et al., 1999). Another group of oxidized heat-generated 

catabolites of linoleic acid was recently found to activate TRPV1 as well (Patwardhan et 

al., 2010; Patwardhan et al., 2009). When TRPV1 channel is activated, it allows an influx 

of cations, most notably calcium (Dray et al., 1990; Oh et al., 1996; Wood et al., 1988). 

The influx of cations leads to two major consequences: the first is depolarization of the 

neuronal membrane that is enough to fire action potentials and thus initiate a nerve 

impulse (Williams and Zieglgansberger, 1982), and the second is the release of 

neurotransmitters and hence communicating the stimulus to the CNS (Saria et al., 

1988). It is noteworthy that peripheral termini of sensory neurons can also release 

neurotransmitters due to propagation of retrograde action potentials from the cell body. 

This phenomenon is implication in neurogenic inflammation, the discussion of which is 

beyond the scope of this dissertation (Chiu et al., 2012). TRPV1-knockout mice 

(Caterina et al., 2000) have reduced sensitivity to noxious heat between 43°C and 49°C. 

However, these animals are not totally devoid of thermal sensation at lower or higher 

temperatures. This is due to the presence of many other channels that become activated 

at different temperatures providing a whole spectrum of thermal sensitivity (Dhaka et al., 

2006; Hardie, 2007; Nakagawa and Hiura, 2006). In addition to TRPV1, nociceptive 

neurons express many other TRP channels and receptors that enable them to detect 

and transduce a wide range of thermal, chemical and mechanical noxious (Basbaum et 

al., 2009; Gold and Gebhart, 2010; Julius and Basbaum, 2001; Ren and Dubner, 2010; 

Woolf and Ma, 2007). 
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Acute and chronic inflammatory hyperalgesia 

 

Tissue damage leads to production of a vast array of inflammatory mediators, 

which in turn sensitize nociceptive neurons. This sensitized state of nociceptive neurons 

can be relatively short lived, referred to as acute sensitization, or it can last for a long 

time, referred to as chronic sensitization (Reichling and Levine, 2009). Distinction 

between acute and chronic inflammatory sensitization is usually based on the time scale 

in which they occur. These time scales have been set without much scientific evidence 

or rationale other than the feasibility of classification. Due to the lack of clear 

demarcation between acute versus chronic sensitization, the accurate definition of these 

situations varies in different clinical settings as well as historically over time (Reichling 

and Levine, 2009). Acute inflammatory sensitization can be viewed as part of the 

adaptive function that nociception serves, but chronic inflammatory sensitization is 

considered to be maladaptive and serves no beneficial role. On the contrary, it is 

detrimental to the organism (Basbaum et al., 2009; Tsuda et al., 2005). 

 

Peripheral sensitization and mechanisms of maintenance of pain 

(signaling switch, plasticity, priming) 

 

Hyperalgesia and inflammatory mediators 

 

Sensitization or hypersensitivity of nociceptive neurons ensues when the 

responsiveness of the neuron to a given stimulus is increased or when the threshold of 

response to the stimulus is lowered. Sensitization is caused by inflammatory mediators 

that are released upon the occurrence of tissue damage, infection, disorder of the 

immune system or exposure to certain pain-producing xenobiotics known as algogens 

(Basbaum et al., 2009; Gold and Gebhart, 2010; Julius and Basbaum, 2001; Ren and 

Dubner, 2010; Woolf and Ma, 2007). Inflammatory mediators belong to a wide variety of 

chemical groups and include but are not limited to; amines (such as histamine and the 

catecholamine epinephrine), nucleotides (such as adenosine-5’-triphosphate [ATP] and 

adenosine), peptides (such as bradykinin, endothelins, CGRP and SP), lipid mediators 

(such as prostaglandins [including the most studied member, PGE2], leukotrienes, 

thromboxanes and hydroxyeicosatetraenoic acids [HETEs]), neurotrophins (such as 

nerve growth factor [NGF], glial derived neurotrophic factors [GDNF] and brain derived 
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neurotrophic factor [BDNF]), chemokines (such as monocyte chemotactic protein-1 

[MCP-1], stromal-derived factor-1 [SDF-1] and fractalkine), cytokines (such as tumor 

necrosis factor-α [TNF-α] and interleukin-1β [IL-1β]), complement components, enzymes 

(such as matrix metalloproteinases), free radicals such as nitric oxide (NO) and even 

protons (Klippel et al., 2001; Pezet and McMahon, 2006). These inflammatory mediators 

are produced by different kinds of cells; such as neutrophils, macrophages, mast cells, 

fibroblasts, epithelial and endothelial cells, keratinocytes, microglia, Schwann cells and 

activated sensory neurons themselves (Basbaum et al., 2009; Klippel et al., 2001). 

Different subpopulations of nociceptive neurons express one or more receptors for each 

of these inflammatory mediators (Gold and Gebhart, 2010; Ren and Dubner, 2010). 

One of the most important inflammatory mediators is NGF which is released 

during inflammation and can sensitize nociceptive neurons (Nicol and Vasko, 2007). 

One of the effectors of NGF-induced sensitization is the channel TRPV1. This channel 

has a unique role in development of sensitization because when it is knocked out in 

genetically modified mice, hypersensitivity caused by noxious high temperatures up to 

43°C is significantly reduced (Caterina et al., 2000). As detailed later in this thesis, NGF 

acutely sensitizes TRPV1 channels through phosphorylation by multiple kinases 

including protein kinase C (PKC) and extracellular signal related kinase (Erk) (Nicol and 

Vasko, 2007). NGF also increases sensitivity of sensory neurons to capsaicin through 

increasing the translocation of TRPV1 channel to the cell membrane. So, despite that 

the overall mRNA and protein levels of TRPV1 do not change rapidly, the expression of 

TRPV1 in the cell membrane is increased leading to enhanced sensitivity of the 

nociceptive neuron (Zhang et al., 2005b). 

NGF can also cause long-term (chronic) sensitization through increasing both the 

mRNA and protein expression of TRPV1 (Winston et al., 2001; Zhuang et al., 2004), 

TRPA1 (Diogenes et al., 2007), sodium channels (Fjell et al., 1999a; Fjell et al., 1999c; 

Gould et al., 2000), purinergic 2X receptors (Ramer et al., 2001), acid sensing ion 

channels (Mamet et al., 2003) and other ion channels. NGF also increases the 

expression of mRNA and peptide levels of CGRP and SP (Lindsay and Harmar, 1989; 

Lindsay et al., 1989). These and much more evidence indicate that NGF is an 

inflammatory mediator that can cause both acute and chronic sensitization via multiple 

mechanisms. 

NGF is only one of many inflammatory mediators that are released upon the 

occurrence of tissue damage. Different inflammatory mediators can be involved in 
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different phases of sensitization and through variety of mechanisms that lead to 

increased responsiveness of nociceptive neurons. 

 

The conundrum with chronic inflammatory pain 

 

One of the most important effects of chronic inflammatory diseases is the 

perpetuation of sensitization of nociceptive neurons leading to chronic inflammatory 

pain. In different models of chronic inflammation, relatively high amounts of various 

inflammatory mediators are produced (Feghali and Wright, 1997; Kidd and Urban, 2001). 

These inflammatory mediators acutely sensitize nociceptive neurons for a long period of 

time. Several lines of evidence support the notion that PGE2 is an important 

inflammatory mediator in sensitization of nociceptive neurons (Zeilhofer, 2007). 

Sequestration of PGE2 using a selective monoclonal antibody attenuates inflammation 

induced by carrageenan as well as in experimental adjuvant arthritis (Mnich et al., 1995; 

Portanova et al., 1996). Antagonists of the PGE2 receptor EP4 also diminish both 

carrageenan and adjuvant-induced hypersensitivity (Clark et al., 2008; Murase et al., 

2008; Nakao et al., 2007). Inhibition of synthesis of COX, the enzyme synthesizing 

PGE2, using non-steroidal anti-inflammatory drugs (NSAIDs) reduces sensitization in 

various models of inflammation (Anderson et al., 1996; Malmberg and Yaksh, 1992a; 

Malmberg and Yaksh, 1992b). In humans, NSAIDs are also able to alleviate chronic pain 

conditions (Chou et al., 2007; Lanas, 2002; Morlion, 2011; O'Dell, 2004; Sarzi- Puttini et 

al., 2010; Shah and Mehta, 2012b), which implies that prostaglandins maintain their 

ability to enhance the sensitivity of nociceptive neurons. 

Prostaglandins sensitize nociceptive neurons by activating a group of G-protein 

coupled receptors (GPCRs). However, homeostatic mechanisms that terminate activity 

of these receptors are known to exist. These mechanisms evolved to prevent excessive 

stimulation of the receptor and thus avoid deleterious effects on living cells (Shenoy and 

Lefkowitz, 2011b; Sibley et al., 1987; Sibley et al., 1988). The conundrum is how PGE2 

maintains its ability to cause sensitization, despite the built-in biological mechanisms that 

function to terminate receptor activation and hence the subsequent sensitization. 

One attempt to explain the persistence of PGE2-induced sensitization despite the 

receptor-downregulating homeostatic mechanisms is that prostaglandin receptors of the 

E-series (EP receptors) are atypical and that they are not subject to canonical 

desensitization. In order to study this possibility, Vasko and his co-workers showed that 
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induction of inflammation in the rat paw using CFA (complete Freund’s adjuvant) leads 

to downregulation of [H3]-PGE2 binding in membrane fractions prepared from the dorsal 

horn of the spinal cord where the central termini of nociceptive neurons end (Southall et 

al., 2002). This reduction in receptor binding was reversed by the intrathecal injection of 

ketorolac, a traditional NSAID (tNSAID). In a previous study, Vasko’s group showed that 

peripherally-induced inflammation using CFA significantly increased of Immunoreactive 

SP (iSP) and immunoreactive CGRP (iCGRP) release from the dorsal horn of the spinal 

cord, and that this augmentation of release was attenuated by intrathecal ketorolac 

injection (Southall et al., 1998). The conclusion from both studies is that peripherally 

induced inflammation causes increased synthesis of eicosanoids including PGE2 in the 

dorsal horn of the spinal cord. This increased synthesis is accompanied by increased 

binding to and activation of the receptor, and thus initiates hyperalgesia. The increased 

activation of the receptors also engaged the mechanisms that causes internalization of 

these receptors (Pierce et al., 2002). The same phenomenon was also observed in 

cultures of rat sensory neurons, after prolonged exposure to PGE2. This supports the 

notion that long-term exposure to PGE2 causes downregulation of the receptor in the 

membranes of sensory neurons. According to the canonical models of downregulation of 

receptor activity, the effects initiated by these receptors should also cease (Gainetdinov 

et al., 2004; Lefkowitz, 2004). However, from the work by Vasko’s group and others it is 

evident in experimental animals that behaviors associated with CFA-induced 

hypernociception persist for several days after induction of inflammation. Also, in vitro, 

PGE2-induced sensitization of bradykinin-evoked iSP release persists even after chronic 

exposure to PGE2 for 24-hour (Bolyard et al., 2000; Southall et al., 2002). Thus the 

conundrum is that expression of EP receptors in the cell membrane fraction 

downregulates after prolonged exposure to PGE2, and thus EP receptors behave as 

typical GPCRs, yet sensitization is maintained. 

Another potential explanation for the persistence of sensitization is that the 

differential expression profile of EP receptors in sensory neurons changes with 

inflammation, i.e., receptors involved with acute sensitization are downregulated while 

others are upregulated. Grubb and co-workers showed that the mRNA level of various 

EP receptors is decreased in CFA-injected rats DRGs 1 or 3 days post injection 

(Donaldson et al., 2001). On the other hand, Vasko and his group showed that mRNA 

level of all four subtypes of EP receptors do not change in adult rat DRG cultures after 

24 hours exposure to PGE2, TNF-α or IL-1β (Fehrenbacher et al., 2005). It is clear from 
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these studies that the argument that an increase of the level of expression of PGE2 

receptors may offset the receptor downregulation after long-term exposure is unlikely. 

A third potential mechanism for maintained PGE2-induced sensitization despite 

receptor downregulation is alteration in the level of expression of molecules in the PGE2 

signaling pathway. As will be explained later, PGE2 induces sensitization through 

activation of the Gαs/adenylyl cyclase/cAMP pathway (Ferreira and Nakamura, 1979; 

Hingtgen et al., 1995; Taiwo et al., 1989). It is possible that an increase in the level of 

expression of heterotrimeric G-protein or adenylyl cyclase may enhance signal 

amplification. Therefore, even after downregulation of cell surface receptors, signaling by 

the remaining fraction of receptors is amplified to a greater extent and thus sensitization 

persists. However this mechanism seems unlikely since there is no change in the 

expression and/or activity of Gαs and adenylyl cyclase (Southall et al., 2002). 

The phenomenon of spare receptors may explain resistance of EP receptors to 

desensitization after long-term exposure to PGE2 (Brodde, 1993; Pollet and Levey, 

1980). A cell possesses spare receptors to a particular ligand if occupancy of a 

submaximal fraction of these receptors produces a maximal effect. Spare receptors can 

constitute up to 99 percent of a specific population of a receptor in some cell types 

(Levitzki, 1984). Since maximal responses do not require occupancy of all receptors, it is 

possible that downregulation of receptors expressed on the cell surface does not reduce 

the biological activity associated with activation of these receptors. An example of this 

phenomenon was found with prostacyclin (PGI2) receptors (IP receptors) in the neuronal 

hybrid cell line NCB-20 (Leigh and MacDermot, 1985). In NCB-20 cells, 14 hours 

exposure to cPGI2 (a stable analogue of PGI2) caused an increase in the concentration 

of the drug needed to achieve half-maximum enzyme activity, while no change in affinity 

of the drug to IP receptors was observed. The observed effects appear to be secondary 

to loss of spare receptors. Similarly PGF2α is thought to have spare receptors in the cat 

iris (Sharif et al., 2008). However there was no evidence of spare receptors to PGE1 in 

rat liver membranes (Rice et al., 1981). Lack of spare receptors may explain why a 

particular ligand/receptor desensitizes when another does not. For example, in a 

hamster cell line, SK-N-MC, the pattern of desensitization of β-adrenergic receptor 

1(βAR1) differs from that of dopamine receptor 1 (D1R). The authors attributed that 

difference to the presence of spare βAR1 but the lack of spare D1R (Zhou et al., 1993). 

Also in in CHO cells, µ-opioid receptors desensitize relatively rapidly because of the 

absence of spare receptors (Pak et al., 1996). Overexpression of histamine H2R 
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receptor rendered U937 cells resistant to downregulation of cAMP signaling (Monczor et 

al., 2006). Monczor and his colleagues attributed this induced resistance to 

desensitization to the fact that overexpressed H2Rs act as spare receptors and 

occupancy of a small fraction of the receptors is sufficient to activate the signaling 

pathway. Therefore, even after downregulation, the remaining fraction is sufficient to fully 

activate signaling. From these studies, it is clear that spare receptors represent an 

important mechanism to account for persistence of sensitization, however, as I will 

demonstrate in the results section, a signaling pathway that mediates PGE2-induced 

sensitization is independent of PKA after long-term exposure to NGF or to PGE2. This 

also indicates that spare receptors cannot fully account for persistence of PGE2-induced 

sensitization in DRG neurons. 

 

Persistent hyperalgesia and hyperalgesic priming 

 

There is an emerging concept that chronic sensitization results from a 

phenomenon called persistent hyperalgesia or “hyperalgesic priming” (Hucho and 

Levine, 2007; Reichling and Levine, 2009). Priming of sensory neurons, such as by pre-

exposure to CFA, allows sensitization of sensory neurons by a lower concentration of a 

sensitizing agent and for more prolonged period of time. In the absence of a sensitizing 

agent, the threshold for activating nociceptive sensory neurons by noxious stimuli 

remains unaltered (Hucho and Levine, 2007). In other words, a primed nociceptive 

neuron will respond more vigorously and for a much more prolonged period of time to an 

inflammatory mediator, than a naïve (an unprimed) one (Aley et al., 2001; Khasar et al., 

1999a; Parada et al., 2003b; Parada et al., 2003c). 

Originally Ferreira and coworkers showed that daily intraplantar PGE2 injection 

for 14 days caused hyperalgesia that lasted for a month after cessation of injections, 

which they named persistent hyperalgesia. Dipyrone, but not indomethacin (both are 

tNSAIDs, dipyrone is not used clinically anymore), was able to attenuate the persistent 

hyperalgesia, but subsequent administration of a small dose of IL-1β or PGE2 reversed 

the effect of dipryone and restored it (Ferreira et al., 1990). The effect of dipryone is 

mediated by activation of the nitric oxide/PKG pathway that leads to opening of ATP-

sensitive potassium channels causing an increase of potassium currents and hence 

hyperpolarization of the cell membrane and restoration of its resting membrane potential 

(Sachs et al., 2004). 
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In work published by Levine and co-workers, hyperalgesic priming is induced by 

exposure to carrageenan, which induces acute hyperalgesia that resolves within a few 

hours to days. Subsequent injection of PGE2, 5-HT or epinephrine leads to stronger and 

much more prolonged hypersensitivity in the primed animals than the unprimed ones 

(Aley et al., 2000; Parada et al., 2005). This primed state persisted for weeks after the 

original carrageenan challenge. Carrageenan causes the increased production of a 

multitude of inflammatory mediators, including TNF-α, IL-1β and interleukin-6 (IL-6) 

(Loram et al., 2007). Levine’s group showed that injection of TNF-α or IL-1β were also 

able to induce hyperalgesic priming (Dina et al., 2008; Parada et al., 2003b). Thus the 

carrageenan-induced hyperalgesic priming is likely secondary to these cytokines. 

 

Potential mechanisms underlying persistent sensitization 

 

There are several potential mechanisms that may account for hyperalgesic 

priming. One such mechanism is the notion of a switch of the intracellular signaling that 

occurs upon prolonged stimulation of a given receptor by its cognate ligand. This 

prolonged stimulation leads to turning off the classical signaling pathway, while an 

alternative signaling pathway is activated. Presumably, this alternative signaling pathway 

remains activated for a longer duration and thus its activation leads to lasting changes in 

the nociceptive neuron function. This could result in a feed-forward mechanism that 

orevents the loss of hypersensitivity. There is extensive evidence to support the 

presence of a switch in signaling activated by GPCRs after prolonged exposure to their 

ligands. Lefkowitz and his group showed in their seminal work that the prolonged 

exposure to agonists leading to GPCRs desensitization also leads to recruitment and 

activation of a multitude of alternative signaling pathways (Shukla et al., 2011). These 

alternative signaling pathways remain active for longer duration than the pathway 

acutely activated by the receptor thus effectively switching and maintaining signaling by 

the GPCR. 

Of primary importance to receptor desensitization and signaling switch are two 

classes of molecules, G-protein coupled receptor kinases (Grks) and β-arrestins (Daaka 

et al., 1997; Lefkowitz, 1998; Lefkowitz et al., 1983). Recently, it was shown that Grks 

can mediate both desensitization and switch in signaling independent of β-arrestins 

(Penela et al., 2010; Penela et al., 2006; Penela et al., 2003; Ribas et al., 2007). 

Kavelaars and colleagues demonstrated that models of chronic inflammation show 
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downregulation of G-protein receptor kinase 2 (Grk2) (Eijkelkamp et al., 2010b; 

Lombardi et al., 1999). This reduction in expression of Grk2 was mimicked by 

developing and using heterozygous knockout mice. These genetically modified mice 

demonstrated a phenotype that is strikingly similar to that described under hyperalgesic 

priming phenomenon. Kavelaars’ work demonstrated that cell specific reduction of Grk2 

in nociceptive neurons or glial cells caused the hypersensitivity produced by either PGE2 

or epinephrine to significantly increase both in intensity and in duration. It was also 

demonstrated that the signaling pathway mediating PGE2-induced hypersensitivity is 

altered in these genetically modified mice (Eijkelkamp et al., 2010a; Eijkelkamp et al., 

2010b; Wang et al., 2011; Willemen et al., 2010). Collectively, this work provides the 

potential of Grk2 as a key mediator of the shift and perpetuation of PGE2-activated 

signaling. However the exact mechanism by which Grk2 mediates this switch is still not 

well understood. 

Overall, the literature supports the notion that PGE2-induced sensitization 

persists despite receptor downregulation and that a switch of the signaling pathway 

mediating this PGE2-induced sensitization is a possible mechanism for persistence of 

sensitization. Therefore the two questions that I addressed in the current dissertation 

are: 

1- Does long-term exposure to the inflammatory mediators PGE2 or NGF alter 

PGE2-activated PKA in adult rat sensory neuronal cultures? 

2- If such alteration exists, what are the mechanisms mediating it? 

In order to study the long-term effects of exposure to PGE2 and NGF, I will briefly review 

the current knowledge about the role of both autacoids as inflammatory mediators 

capable of sensitizing sensory neurons in the following sections of the introduction. I will 

also discuss in some detail the signaling pathway that mediates acute PGE2-induced 

sensitization including EP receptors and the rest of the components of the signaling 

pathway that were the basis for experiments performed in this work. 
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Eicosanoids 

 

Historic background 

 

Prostaglandins were first discovered in human seminal fluid as agents that cause 

contraction of human uterine muscles (Kurzrok and Lieb, 1930). The finding was 

independently confirmed and the compound dubbed prostaglandin since it was 

erroneously thought to be synthesized in the prostate gland (Goldblatt, 1933; von Euler, 

1934; von Euler, 1936). It was thought at the time that two different compounds existed, 

prostaglandin and vesiglandin, the latter being derived from seminal vesicles. Later it 

was discovered that seminal vesicles actually produce far larger concentrations of 

prostaglandins and thus the compound should more properly be named vesiglandin, but 

the misnomer persisted (Eliasson, 1959). Prostaglandins are derived from 

polyunsaturated fatty acids containing 20 carbon atoms. The fatty acid that contributes 

the most as a precursor for prostaglandins is arachidonic acid, chemically known as 5, 8, 

11, 14-eicosatetraenoic acid. Since both arachidonic acid and prostaglandins contain 20 

carbons, the family of compounds was collectively named eicosanoids (eicosa-, Greek 

for 20) (Bergström et al., 1962; Smith et al., 2000b). 

The second major discovery regarding prostaglandins was the finding that 

aspirin, one of the first chemically-synthesized drugs (Botting, 2010; Mahdi et al., 2006), 

exerts its analgesic, anti-inflammatory and antipyretic actions by inhibiting the synthesis 

of prostaglandins (Ferreira et al., 1971; Smith and Willis, 1971; Vane, 1971). 

 

Role of prostaglandins in hyperalgesia 

 

Another milestone in the history of prostaglandins is the finding that they are able 

to induce nociception by themselves at high doses in experimental animals (Collier et al., 

1968; Collier and Schneider, 1972). Of paramount importance prostaglandins of the E-

type (such as PGE2 and PGE1) were found to augment pain (cause sensitization) in 

humans at concentrations too low to produce pain by themselves, but high enough to 

induce inflammation (Ferreira, 1972; Ferreira et al., 1978). It was shown in independent 

studies that PGE1 did not cause pain by itself at doses up to 100 µg/ml, but sensitized 

bradykinin-induced pain sensation in human at 0.1 µg/ml (Horton, 1963). This fit 

remarkably well with the definition of a sensitizing agent; a substance that by itself does 
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not cause overt pain, but it sensitizes to the action of another pain producing substance. 

A causal relationship between PGE2 and hyperalgesia was further confirmed by the use 

of PGE2 selective sequestering antibodies. These anti-PGE2 antibodies were able to 

ameliorate CFA-induced hyperalgesia, inflammation and even IL-6 production in rats 

(Mnich et al., 1995; Portanova et al., 1996). Alternatively, it was found that IL-1β induces 

the expression of cyclooxygenase 2 (COX2) in the dorsal horn of the spinal cord (Samad 

et al., 2001) and both TNF-α and IL-1β induces COX2 expression in the dorsal root 

ganglion (Fehrenbacher et al., 2005). Prostaglandins were also found to directly 

sensitize second order neurons in the dorsal horn of the spinal cord, and thus also act as 

central sensitizing agents (Baba et al., 2001; Ferreira and Lorenzetti, 1996; Taiwo and 

Levine, 1988). Inhibition of COX enzymes in the dorsal spinal cord by intrathecal 

injection of NSAIDs attenuated second-phase hyperalgesia produced by formalin 

injection in the paw as well as thermal hyperalgesia caused by intrathecal SP and 

glutamate receptor agonists injections (Malmberg and Yaksh, 1992a; Malmberg and 

Yaksh, 1992b). Intrathecal injection of PGE2, but not PGI2, PGD3, PGF2α, was found to 

cause mechanical and thermal sensitization (Reinold et al., 2005). Also carrageenan-

induced hyperalgesia in the rats resulted in increased production of PGE2 for higher 

levels and longer durations than other eicosanoids (Guay et al., 2004). The studies 

described here are but a small representation of much research that provides 

overwhelming evidence for the important role of PGE2 as a sensitizing agent. 

 

Effectors mediating PGE2-induced sensitization 

 

One of the more commonly studied effectors that were shown to mediate the 

hyperalgesic effect of PGE2 is the TRPV1 channel (Lopshire and Nicol, 1997; Moriyama 

et al., 2005). Under normal conditions the TRPV1 channels are activated at 

approximately at 43°C. In the presence of PGE2, the channel can be activated at 35°C, 

lower than core body temperature. PGE2 also sensitizes DRG neurons via 

phosphorylation of and inhibition of potassium currents via the cAMP/PKA pathway 

(Evans et al., 1999). PGE2 also increases calcium conductance through its channels in 

avian DRG neurons (Nicol et al., 1992). Other effectors for PGE2-mediated sensitization 

are the tetrodotoxin-resistant sodium channels Nav1.8 and Nav1.9 (Akopian et al., 1999; 

England et al., 1996a; Gold et al., 1996; Rush and Waxman, 2004). PGE2 was also 

found to increase trafficking of the TTX-resistant Nav1.8 in DRG neurons (Liu et al., 
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2010a). In the spinal neurons of the superficial dorsal horn (second order neurons), 

PGE2 inhibits glycine receptors (neuronal inhibitory receptors) through activation of the 

EP2/Gαs/cAMP/PKA pathway (Ahmadi et al., 2002). This pathway inhibits glycine 

receptors by phosphorylating GlyRα3 subunits in the aforementioned spinal neurons 

(Harvey et al., 2004). It is also well known that PKA-mediated phosphorylation of 

synaptic vesicle proteins modulate neurotransmitter release (Dubois et al., 2002; Hansel 

et al., 2001; Sudhof, 2004). Some of these proteins are shown to be directly functionally 

involved with sensory neurons in simpler model organisms such as the Aplysia 

californica (Leenders and Sheng, 2005) as well as in rodent models of hyperalgesia 

(Schmidtko et al., 2005). PGE2 increases synthesis of BDNF, a well-known inflammatory 

mediator in DRG explants (Cruz Duarte et al., 2012). PGE2 also increases the synthesis 

and release of IL-6 in DRG neurons (Ma and Quirion, 2005; St-Jacques and Ma, 2011). 

This brief review of the different mechanisms by which PGE2 causes sensitization of 

peripheral sensory neurons demonstrates the importance of the eicosanoid as an 

inflammatory mediator and hence, as an attractive target for therapy. However, for over 

100 years, inhibition of prostaglandins synthesis has been the only mechanism used for 

therapies targeting eicosanoids, highlighting the need for discovery of novel therapeutic 

targets in the eicosanoid pathway causing sensitization. 

 

Synthesis 

 

The major precursor for synthesis of all eicosanoids is the essential fatty acid 

arachidonic acid, which contains 20-carbon atoms and four unsaturated (double) bonds 

and thus is named eicosatetr(5,8,11,14)aenoic acid (Samad et al., 2002). Arachidonic 

acid is liberated in a biphasic manner. An early acute burst is liberated by cytosolic 

phospholipase A2 (cPLA2) through hydrolysis of phospholipids on the inner leaflet of the 

cell membrane. A second delayed wave is mainly mediated by secreted PLAs (sPLA2) 

(Clark et al., 1991; Irvine, 1982; Kudo and Murakami, 2002; Ma and Quirion, 2005). 

Following the liberation of arachidonic acid, several enzymes catalyze the first 

committed (irreversible) step by converting arachidonic acid to an intermediate, PGH2 

(Smith et al., 2000b). The enzymes catalyzing this step are known as prostaglandin 

endoperoxide H synthases 1 and 2 (PGHS1 and 2) or cyclooxygenase 1 and 2 (Smith 

and Dewitt, 1996). It is thought that COX enzymes and PLA2 are coupled in a fashion 

that allows for the arachidonic acid released by PLA2 to be directly delivered to COX 
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(Funk, 2001). In general, COX1 is constitutively active while COX2 is inducible (Smith et 

al., 2000b). There are crucial exceptions to this simplification. One such exception is that 

in endothelial cells, PGI2 is synthesized mainly by COX2 the expression of which is 

increased after exposure of platelets to shear stress (Gimbrone et al., 2000). However, 

since blood platelets are constantly exposed to shear stress as they flow through blood 

vessels, COX-2 expression in them is viewed as being “static” (FitzGerald, 2003). 

PGHSs catalyze the synthesis of the intermediate product PGG2 which is then 

converted to another intermediate product known as PGH2 (Smith et al., 2000b). In the 

process of this catalysis, the enzyme undergoes suicide inactivation; i.e. undergoes 

covalent modification of the protein followed by degradation (Callan et al., 1996; Smith et 

al., 1996; Wu et al., 1999). However, the amount of PGHSs is in vast excess of the 

substrate enabling rapid accumulation of product when surges in production are needed 

for homeostatic processes (Gimbrone et al., 2000). 

PGH2 is then converted by a variety of enzymes to the different prostaglandins 

(Funk, 2001). The two prostanoids that are most important for sensitization of sensory 

neurons are PGE2 and PGI2, which are synthesized by microsomal PGE synthase 

(mPGES) and prostacyclin synthase respectively (DeWitt and Smith, 1983; Jakobsson et 

al., 1999). 

 

Transport, metabolism and bioactive metabolites 

 

It is noteworthy that PGE2 and other prostanoids are produced intracellularly, but 

they are transported out of the cell to act as first messengers binding to the extracellular 

portions of their receptors and thus A transporter belonging to the superfamily of organic 

anion transporters dubbed prostaglandin transporter (PGT) mediates this function of 

pumping PGE2 outside the cell membrane (Kanai et al., 1995; Schuster, 1998). 

Once released from cells producing them, prostanoids have short half-lives. 

PGE2 is almost totally eliminated by the kidney and liver (Gerkens et al., 1978). PGE2 is 

rapidly metabolized by an enzyme called prostaglandin dehydrogenase which is located 

intracellularly. Therefore in order for PGE2 to be metabolized it has to be transported 

back through the cell membrane via prostaglandin transporter (PGT, see below) 

(Nomura et al., 2004). On the other hand, prostacyclin (PGI2) has a shorter half-life 

compared to PGE2. It was reported that at pH of 7.4 and temperature of 25°C, 50 

percent of PGI2 degrades within 3-4 minutes (Stehle, 1982). This lead to the speculation 
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that the site of synthesis/secretion of prostanoids has to be closely associated with their 

site of action, i.e. the receptors (Funk, 2001). In fact, recent insights from literature about 

lysophosphatidic acids (LPA), a different group of lipid mediators, provide evidence on 

the existence of such tightly coupled production/action. It was found that the enzyme 

lysophospholipase D (LysoPLD), also known as autotaxin, which produced LPA 

extracellularly, is bound directly or indirectly to the GPCRs on which they act (Moolenaar 

and Perrakis, 2011; Nishimasu et al., 2011; Tabchy et al., 2011). It was found that the 

nascent LPA is delivered directly to the receptor binding site. This is of particular 

importance considering the rapidity with which LPA is broken down in the extracellular 

space (Albers et al., 2010). Despite the fact that cPLA2 and mPGES are intracellular 

molecules, one can imagine that some mechanism might exist to extrude the produced 

prostanoid in a site that is close or even coupled to the prostaglandin receptor. 

Several pathways mediate the breakdown of prostanoids, including spontaneous 

hydrolysis and breakdown of PGI2 and thromboxane A2 (TXA2) (Anggard et al., 1971), or 

enzymatic oxidation (Lands, 1979). As discussed above, prostaglandins are short-lived 

compounds that are rapidly eliminated, a property that evolved to allow for tight 

regulation of their function either on the very cells that synthesize them (autocrine 

action), or very closely associated ones (paracrine action) (Grunnet and Bojesen, 1976; 

Lin and Rao, 1977). In fact, abnormalities in prostanoid catabolism is believed to lead to 

diseases such as patent ductus arteriosus (Coggins et al., 2002) and colorectal cancer 

(Backlund et al., 2005; Myung et al., 2006). 

What complicates the matter, is the fact that prostanoid metabolites show 

biological activity (Nishigaki et al., 1996). It is thought that the increased production of 

PGE2 metabolites in certain tissues and organs cause desensitization of prostaglandin 

receptors. This leads to tonic desensitization of these receptors and thus low biological 

activity of the ligand (Anggard et al., 1971; Crutchley and Piper, 1975). Genetic ablation 

of EP4 receptors in experimental animals inhibits hyperalgesia in different experimental 

models (Lin et al., 2006; McCoy et al., 2002). Even if PGE2 metabolites contribute to 

sensitization, it is most likely that they would do so through the canonical EP receptors, 

thus the downstream signaling should be identical. However, it is known that different 

ligands to the same receptor might not activate the same signaling pathways due to the 

phenomenon known as biased agonism (for detailed discussion see below) (Rajagopal 

et al., 2010b). Indeed it was shown that different ligands of EP4 receptor show various 

degrees of biased agonism (Leduc et al., 2009). 
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An additional layer of complexity in prostanoid biology is whether prostaglandins 

or their metabolites can act as ligands for peroxisome proliferator-activated receptors 

(PPARs) (Forman et al., 1995; Kliewer et al., 1995; Narumiya and FitzGerald, 2001; 

Narumiya et al., 1987). However, it is unlikely that PPARs participate to a significant 

degree in PGE2-induced sensitization, since reduction of EP4 receptors using genetic 

techniques showed marked reduction in various models of sensitization, (Lin et al., 2006; 

McCoy et al., 2002). 

 

Receptor subtypes, their coupling and signaling pathways 

 

As mentioned earlier, receptors for E-series prostaglandins are termed EP 

receptors. EP receptors are seven-transmembrane receptors coupled to heterotrimeric 

G-protein under basal conditions (Sugimoto and Narumiya, 2007; Woodward et al., 

2011a). Four different isoforms of the receptor exist, namely EP1-4. 

As eluded to in the first section of this introduction, PGE2-induced sensitization 

persists despite cell-surface receptor downregulation and that this persistence is thought 

to be mediated by a partial switching of the signaling pathway downstream from EP3c 

and EP4 (see below) which, under acute conditions, is mainly the cAMP/PKA pathway. 

Therefore it is important to briefly discuss the current knowledge related to EP receptors 

and coupled signaling pathways and their components in order to study downregulation 

of PGE2-activated PKA and its underlying mechanisms. 

 

EP1 

 

EP1 receptors elevate [Ca2+]i in Chinese hamster ovary cells and Xenopus 

oocytes (Funk et al., 1993; Katoh et al., 1995; Watabe et al., 1993). In the extravillous 

trophoblasts cell line HTR-8/Svneo elevation of [Ca2+]i is achieved through coupling with 

Gαq (Nicola et al., 2005). Based on its coupling to Gαq, EP1 causes activation of 

phospholipase Cβ (PLCβ), hydrolysis of membrane phosphatidyl inositol-4,5-

bisphosphate (PIP2) into inositol-1,4,5-trisphosphate (IP3) and diacyl glycerol (DAG). 

DAG with calcium and phospholipids activate PKC, which phosphorylates various 

protein substrates. IP3 binds to IP3 receptors on the endoplasmic reticulum and causes 

release of calcium from intracellular stores. Both PKC-mediated phosphorylation and 
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IP3-mediated release of calcium are responsible for the biological effects of activation of 

EP1. 

EP1 is expressed in sensory neurons (Fehrenbacher et al., 2005; Nakayama et 

al., 2004) and initially it was thought that EP1 plays a role in mediating hypersensitivity. 

A selective EP1 antagonist attenuated incision-induced hyperalgesia (Omote et al., 

2001). The same EP1-selective antagonist also reduced carrageenan-induced 

hyperalgesia when perfused in the spinal cord (Nakayama et al., 2004; Nakayama et al., 

2002). These observations were supported by the use of an EP1-knockout mouse in 

which, stretching and writhing was reduced (Stock et al., 2001). Similar findings were 

observed in human subjects in whom acid-induced visceral pain hyperalgesia was 

attenuated by a selective EP1 receptor antagonist (Sarkar et al., 2003). However in 

collagen-induced arthritis model, EP1 knockout mice did not demonstrate any difference 

from wild-type littermates in sensitization of sensory neurons (Honda et al., 2006). Not 

only did several studies using EP1 knockout mice show the lack of role of EP1 in 

mediating hyperalgesia, but some even showed a hyponociceptive effect when EP1 was 

deleted (Hall et al., 2007; Hosoi et al., 1999). EP1 knockout mice did not show any 

alteration of pain-like behaviors in an experimental model of rheumatoid arthritis, 

consistent with the lack of a role of EP1 in chronic inflammatory hyperalgesia. Also 

multiple studies show that blocking the cAMP signaling pathway inhibits PGE2-induced 

sensitization (Evans et al., 1999; Hingtgen et al., 1995; Taiwo et al., 1989; Taiwo and 

Levine, 1991). EP1 is not known to couple to the cAMP pathway in sensory neurons. 

Therefore, overwhelming evidence suggests that the EP1 receptor does not contribute to 

PGE2-induced sensitization of sensory neurons. Attenuation of certain pain-like 

behaviors (such as stretching after intraperitoneal injection of acetic acid) observed in 

EP1 knockout mice, can be explained by the possible contribution of other EP1-

expressing cells, such as glial cells or some other cell type. For example, it was recently 

discovered that activation of EP1 receptors in murine astrocytes increased GDNF 

expression and release (Li et al., 2012). Therefore EP1 receptors on cells other than 

sensory neurons can indirectly mediate sensitization. 

 

EP2 

 

After cloning of EP2, it was found to couple to Gαs (Regan et al., 1994). This 

means that this receptor activates adenylyl cyclase and increases 3’,5’-cyclic adenosine 
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monophosphate (cAMP) concentration. cAMP activates PKA, exchange proteins directly 

activated by cAMP (Epacs) and hyperpolarization-activated cyclic nucleotide gated 

channels (HCN) (Beavo and Brunton, 2002; Kopperud et al., 2003; Seino and Shibasaki, 

2005). In the last decade, evidence accumulated that PKA is not the sole mediator of 

PGE2-induced hyperalgesia. The discovery that both Epacs and HCNs mediate PGE2-

induced sensitization in conditions of chronic or persistent sensitization at least partly 

along with PKA (Eijkelkamp et al., 2010b; Emery et al., 2011b; Hucho et al., 2005; Wang 

et al., 2007). However, it is generally thought that of the three cAMP effectors mentioned 

above, PKA is the dominant effector mediating acute sensitization. The current opinion 

holds that both PKA-dependent and independent signaling could be downstream from 

EP2 (as well as EP3C and EP4, which are EP receptor subtypes that are coupled to 

cAMP pathway, see below) in chronic sensitization, but only PKA in acute sensitization. 

EP2 receptors are expressed both in DRGs and in the dorsal horn of the spinal 

cord (Baba et al., 2001; Fehrenbacher et al., 2005; Kawamura et al., 1997; Kumazawa 

et al., 1996; Patwardhan et al., 2008; Zhao et al., 2007). There is significant evidence 

that the EP2 receptors mediate hyperalgesia by inhibiting glycine receptors on the 

second order spinal neurons in the dorsal horn of the spinal cord, leading to disinhibition 

of the pain pathway (Ahmadi et al., 2002; Harvey et al., 2004; Reinold et al., 2005). It is 

noteworthy though that EP2 is believed to mediate only the second phase of central 

sensitization, and not the peripheral component. Formalin test causes a biphasic 

hyperalgesic response in experimental animals. The immediate early short-lived phase 

is usually attributed to peripheral sensitization, while the second delayed and prolonged 

phase is thought to represent central sensitization. EP2 knockout mice showed reduction 

of the second but not the first phase  (Hösl et al., 2006). 

 

EP3 

 

EP3 is unique in that it is the first GPCR to show that alternatively spliced 

receptors can couple to different heterotrimeric G-proteins despite being derived from 

the same gene and despite sharing significant homology (Namba et al., 1993a). It is now 

known that there are as many as 8 different splice variants of EP3 in humans (Bilson et 

al., 2004), 6 in the mouse (Fujino et al., 2010) and 4 in the rat (Oldfield et al., 2001; 

Southall and Vasko, 2001). These receptors differ in the heterotrimeric G-protein to 

which they are coupled, the level of constitutive activity they show (Hasegawa et al., 
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1997; Negishi et al., 1996), their subcellular localization (Hasegawa et al., 2000), and 

their susceptibility to internalization after prolonged stimulation (Bilson et al., 2004). EP3 

splice variants can couple to Gαs/cAMP, Gαi/o, Gαq/11/PLC and Gα12/13/Rho (Woodward et 

al., 2011b). 

In rats, EP3C, but not EP3A or EP3B, is expressed in sensory neurons and their 

endings, both peripherally and centrally (Beiche et al., 1998; Nakamura et al., 2000; 

Southall and Vasko, 2001). The difficulty of studying the biology of EP3 stems from its 

alternative splicing. Genetic deletion means that the entirety of all the splice variants of 

EP3 will cease to be expressed, which means that studying one particular splice variant 

and not another is a lot more difficult using this technique and alternative genetic 

deletion techniques are needed. Therefore different methods such as RNAi-mediated 

reduction of expression of a particular splice variant must be adopted. EP3 knockout 

mice show reduced nociception using the acetic acid-induced writhing test, only when 

lipopolysaccharide (LPS) is administered first as a sensitizing agent (Ueno et al., 2001). 

Other examples of EP3-mediated sensitization include the human immunodeficiency 

virus glycoprotein 120 (HIV-gp 120) which causes tactile pain in humans through an 

interaction between opioid κ and EP3 receptors (Minami et al., 2003). As suggested 

above, alternative methods that can inhibit expression of one or more splice variants 

may be used. For example, selective knockdown of the splice variant EP3C and EP4, 

both of which are coupled to Gαs (Namba et al., 1993b), showed that both EP3C and 

EP4 mediate PGE2-induced sensitization of capsaicin-evoked iCGRP release in adult rat 

sensory neurons (Southall and Vasko, 2001). A selective ligand that can discriminate 

between different splice variants of EP3 exists (Zacharowski et al., 1999). Since at least 

one splice variant of EP3 receptor is coupled to Gαi/o, it is possible to assume that 

selective activation of this splice variant will inhibit cAMP-mediated signaling pathways, 

such as those activated by PGE2, leading to analgesia. Under acute conditions and 

using PGE2 which activates all EP receptors, only hyperalgesia occurs. However, this 

ligand was used recently to show that selective activation of a Gαi/o-coupled splice 

variant of EP3 can produce analgesia selectively after induction of knee-joint 

inflammation (Bar et al., 2004). This highlights the potential for selective activators of 

EP3 splice variants to act as analgesics only in patients with chronic inflammatory 

conditions. 
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EP4 

 

EP4 is the third member of the EP receptors family that is coupled to Gαs-coupled 

(the other two being EP2 and EP3C). EP4 is also expressed in sensory neurons 

(Fehrenbacher et al., 2005). EP4 is the largest of the EP receptors family; it has the 

longest C-terminus and third intracellular loop (Sugimoto and Narumiya, 2007). It 

significantly differs from EP2 in multiple ways. First, EP2 receptors are necessary for 

mediating PGE2-induced sensitization of superficial dorsal horn spinal neurons 

(postsynaptic second-order neurons) as mentioned earlier (Harvey et al., 2004; Reinold 

et al., 2005), but not necessary for development of hyperalgesia in animal models of 

chronic inflammation (McCoy et al., 2002). Also, EP2 knockout mice showed deficiency 

in the second prolonged phase of the formalin test, traditionally attributed to central 

hyperalgesia (Hösl et al., 2006). On the other hand, reduction of expression of EP4, but 

not EP2, receptor attenuates sensitization induced by CFA and collagen-induced arthritis 

in vivo (Lin et al., 2006; McCoy et al., 2002). In vitro, reduction of expression of both EP4 

and EP3C attenuates PGE2-induced sensitization of sensory neurons (Southall and 

Vasko, 2001). EP4-selective antagonists also attenuate hypernociception in 

experimentally-induced arthritis (Clark et al., 2008; Murase et al., 2008). Secondly, EP2 

receptors desensitize much slower than EP4 (Nishigaki et al., 1996). This difference was 

attributed to the larger C-terminus of EP4 (Bastepe and Ashby, 1997). Additionally, there 

is a greater propensity to internalization by EP4 receptors and relative resistance by EP2 

receptors (Desai et al., 2000). As it will be discussed later, the processes that regulate 

desensitization and internalization of GPCRs after long-term exposure to their cognate 

ligands also regulate switching to alternative signaling pathways. After long-term 

exposure to PGE2 which results in receptor phosphorylation, EP4, but not EP2 receptors 

couple to Gαi/o (Fujino and Regan, 2006). From these studies it becomes clear that 

although both EP2 and EP4 are coupled to Gαs under basal conditions, differences 

between both receptors, probably in the structure of the C-terminus, result in radically 

different downstream signaling. 

EP4 receptors are expressed in DRG neurons (Fehrenbacher et al., 2005; Oida 

et al., 1995). Numerous studies clearly illustrated the essential role that EP4 plays in 

mediating neuronal hypersensitivity. Vasko’s group was the first to demonstrate that EP4 

receptors, along with EP3C, are essential for sensitization of capsaicin-evoked iCGRP 

release from adult rat sensory neuronal cultures and PGE2-stimulated cAMP synthesis 



 

24 
 

(Southall and Vasko, 2001). Using shRNA-mediated knockdown of EP1-4, Woolf’s group 

showed that CFA-induced sensitization is inhibited by selective knockdown of EP4, as 

well as by a selective antagonist of the receptor (Lin et al., 2006; Murase et al., 2008; 

Nakao et al., 2007). More importantly, induction of hyperalgesia in collagen antibody-

induced arthritis was abolished in EP4 knockout animals. The collagen-induced arthritis 

model is believed to be more similar in its attributes to chronic inflammatory human 

diseases such as rheumatoid arthritis and osteoarthritis than CFA or carrageenan-

induced arthritis. EP4 also was shown to be the major PGE2 receptor subtype that is 

involved in hyperalgesia in the GRK2 heterozygous knockout model (Eijkelkamp et al., 

2010b). This work strongly suggests that EP4 antagonists might be useful therapeutic 

agents in arthritis patients (McCoy et al., 2002). Several antagonists of EP4 were 

synthesized and tested in animal models of chronic inflammatory hyperalgesia and 

showed promise as potential therapies for chronic inflammatory hypersensitivity, thus 

confirming previous studies (Clark et al., 2008; Murase et al., 2008).  
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Nerve growth factor, its receptors and signaling 

 

Historic background 

 

The first observation of a substance possessing growth-promoting activity of 

peripheral nerves was made in 1948 (Bueker, 1948). Tumors grown in the mouse were 

implanted in chick embryo and leading to growth of the lumbosacral peripheral nerves in 

the direction of the tumor. Later it was found that these tumors secrete NGF. Levi-

Montalcini and Hamburger and their co-workers confirmed that the tumor released a 

factor which stimulates the growth of peripheral sensory and sympathetic nerves (Levi-

Montalcini and Hamburger, 1951; Levi-Montalcini et al., 1954). The term “nerve-growth 

stimulating factor” was coined by Levi-Montalcini’s group when they first isolated this 

factor from the mouse tumors (Cohen et al., 1954). The factor was also found to be 

enriched in certain snake venoms (Cohen and Levi-Montalcini, 1956) as well as in the 

mouse salivary submaxillary gland (Cohen, 1960; Levi-Montalcini and Booker, 1960). 

For their discovery, Levi-Montalcini and Cohen were awarded the Nobel Prize in 

medicine in 1986. The DNA sequence coding for mouse NGF was isolated (Scott et al., 

1983), and subsequently mice lacking the gene were developed (Crowley et al., 1994). 

Homozygous NGF-knockout mice had severe loss of the small and medium diameter 

sensory neurons as well as sympathetic neurons. These mice demonstrated markedly 

decreased responsiveness to pain compared to their wild-type or heterozygous 

littermates. These findings corroborated the hypothesis that NGF is essential for the 

development of peripheral sensory and sympathetic neurons. 

Nerve growth factor acts through binding to two receptors, TrkA and p75NTR 

receptors. TrkA (also named neurotrophic tyrosine kinase receptor 1 [NTRK1]) was first 

discovered as a proto-oncogene that is constituted of fusion of two proteins;  

tropomyosin 3 and a tyrosine kinase receptor (Martin-Zanca et al., 1986). Later it was 

demonstrated that the TrkA receptor is essential for NGF high-affinity (Kd ≈ 10-11 M) 

binding with a slow (t1/2 ≈ 10 minutes) rate of dissociation (Hempstead et al., 1991). 

Nerve growth-promoting activities attributed to NGF were also found to be dependent on 

TrkA, since TrkA-knockout mice suffered from severe sensory and sympathetic 

neuropathies (Cordon-Cardo et al., 1991; Loeb et al., 1991; Smeyne et al., 1994). A very 

rare heritable mutation of the TrkA receptor causes afflicted patients to suffer loss of 

pain perception as well as temperature sensation and hence the ability to sweat. Thus 
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this condition was named congenital insensitivity to pain with anhidrosis (Indo et al., 

1996). The severe impairment of pain perception in patients confirmed the conclusion 

made from the studies using mice with mutated TrkA receptor gene that this receptor is 

essential for nerve growth promoting activities of NGF. As mentioned above, NGF binds 

with low affinity (Kd ≈ 10-9 M) and rapid (t1/2 ≈ 3 seconds) rate of dissociation to another 

receptor known as p75NTR. p75NTR encoding DNA sequence was first cloned in 1986 

(Johnson et al., 1986), and subsequently mice containing targeted mutation of the gene 

were generated (Lee et al., 1992). These mice demonstrated similar, but not identical, 

phenotype to TrkA-homozygous knockout mice. Mice with mutated p75NTR showed 

significant reduction of innervation of the skin by CGRP or SP-positive nerve fibers of, 

significant reduction of heat sensitivity, loss of hair on the paws as well as toenails loss 

with skin ulceration and infection. However, unlike TrkA mutated mice, p75NTR-mutated 

mice did not show alteration of sympathetic ganglia or sympathetic innervation of the iris 

and the salivary gland. Also, unlike TrkA receptor, p75NTR belongs to the TNF receptors 

family which are not tyrosine-kinase receptors (Nicol and Vasko, 2007). Instead p75NTR 

has an intracellular signaling domain that interacts with and activates different 

downstream signaling molecules and thus propagates the signal across the cell 

membrane (Gentry et al., 2004). 

I studied the effects of long-term exposure of cultured sensory neurons to NGF 

because much evidence supports an essential role for the trophic factor in chronic 

inflammatory conditions in humans as well as in animal models. In this section, a brief 

discussion of literature and evidence supporting such role of NGF is made. 

 

NGF production 

 

NGF is produced as a large precursor called pro-NGF, which is processed into 

smaller forms. There are two forms of mature NGF; 7S and 2.5S forms (S denotes 

Svedberg, the unit of sedimentation co-efficient), the former has a molecular weight of 

130 KDa while the latter has a molecular weight of 26 KDa (Scott et al., 1983; Yiangou 

et al., 2002). The 7S form of NGF consists of two molecules of each of α, β and γ 

subunits. The 2.5S (also known as βNGF) form is a homodimer of the β subunit only 

(Pezet and McMahon, 2006). Only the βNGF subunit of either 7S or the 2.5S forms of 

NGF possess nerve growth promoting activity (Varon et al., 1968). Many kinds of cells 

synthesize and release NGF including epithelial cells, smooth muscle cells and 
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fibroblasts (Bandtlow et al., 1987), Schwann cells (Matsuoka et al., 1991), mast cells 

(Leon et al., 1994) and lymphocytes (Santambrogio et al., 1994). The expression level of 

NGF is dynamic and increases in many different inflammatory conditions in different 

kinds of cells (Heumann et al., 1987; Raychaudhuri et al., 1998; Stanzel et al., 2008). It 

is noteworthy that the premature form of NGF, named pro-NGF, can be secreted (Lee et 

al., 2001). Interestingly pro-NGF has higher and more selective affinity to p75NTR than 

NGF (Pezet and McMahon, 2006), therefore it is possible that pro-NGF plays a role in 

pathological conditions. Indeed, pro-NGF was found to be the predominant form of NGF 

in isolates from brain tissues collected from patients with Alzeheimer’s dementia, 

neuropathic nerve tissue and retinas from animal models of degenerative retinopathies 

(Pezet and McMahon, 2006; Yiangou et al., 2002). 

 

NGF as an inflammatory mediator 

 

Studies using animals with gene mutations in either NGF or its receptors, 

demonstrated that sensory and sympathetic neurons depend on NGF for survival into 

adulthood (Crowley et al., 1994; Smeyne et al., 1994). However NGF is not needed by 

adult sensory neurons for survival (Lindsay, 1988), although NGF enhances axonal 

regeneration of sympathetic and sensory neurons after axotomy (Pettigrew et al., 2007; 

Ramer et al., 2000). 

Of greater importance to this dissertation is the role of NGF as an inflammatory 

mediator (Nicol and Vasko, 2007). In human beings, injection of NGF locally produces 

hyperalgesia that starts within minutes and lasts for hours, while systemic injections can 

cause generalized hyperalgesia for days (Svensson et al., 2003). 

Numerous studies showed that in various animal models of inflammatory pain as 

well as in clinical studies, the levels of NGF are increased. CFA injection in rat paw 

caused elevation of NGF extracted from skin of the hindpaws of adult the rat (Woolf et 

al., 1994). NGF was also markedly increased in exudate collected from blisters produced 

by the application of dry ice to the plantar skin of the hind paws of anaesthetized animals 

(Weskamp and Otten, 1987). In mouse models of allergic asthma, elevated levels of 

NGF were detected in broncho-alveolar lavage fluid and in serum (Braun et al., 1998). 

NGF was also significantly increased in patients with allergic diseases and asthma 

(Bonini et al., 1996). The mRNA levels of NGF were also elevated in gastrointestinal 

tissues collected from patients with Crohn’s disease and ulcerative colitis (di Mola et al., 
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2000). Seminal plasma collected from patients with chronic prostatitis also showed 

elevated levels of NGF (Miller et al., 2002). Most importantly, NGF levels were elevated 

in synovial fluid from arthritis patients (Aloe et al., 1992; Halliday et al., 1998). These 

studies clearly demonstrate that increased NGF levels are correlated with 

experimentally-induced inflammation in animal models as well as inflammatory diseases 

in patients. 

Acute administration of NGF induces hyperalgesia. In humans, injection of NGF 

into the masseter muscle caused mechanical hyperalgesia and allodynia (Svensson et 

al., 2003). In rats, intraplantar injection of NGF caused significant mechanical allodynia 

and heat hyperalgesia (Amann et al., 1996a; Lewin et al., 1993), while in mice, 

intravenous administration caused marked thermal hyperalgesia (Dellaseta et al., 1994). 

In genetically-altered mice that have increased or decreased expression of NGF in the 

skin showed marked hyperalgesia and hypoalgesia, respectively, to mechanical noxious 

stimulation (Davis et al., 1993). Mice with increased expression of NGF in the skin also 

showed marked thermal and mechanical neuronal hypersensitivity in C-fibers and Aδ 

fibers, respectively (Stucky et al., 1999). In adult rats, application of NGF to the urinary 

bladder caused sensitization of the innervating peripheral sensory neuronal fibers to 

mechanical distension of the bladder wall (Dmitrieva and McMahon, 1996). Collectively, 

these studies provide strong evidence supporting the ability of NGF to enhance pain-like 

behavior in animal models and humans. 

Multiple lines of evidence provide cause-effect relationship between NGF and 

various forms of hypersensitivity of peripheral sensory neurons. Several biological tools 

were used to perturb NGF and establish such relationships. For example, injection of 

anti-NGF antibodies attenuated hyperalgesic behaviors induced by inflammation in CFA-

injected animals (Woolf et al., 1994). On the other hand, these anti-NGF antibodies 

caused hypoalgesia as evidenced by reduction in acute nociceptive behaviors in the 

absence of sensitization (Urschel et al., 1991). A fusion molecule between the TrkA and 

immunoglobulin G (IgG) was also used to bind NGF (McMahon et al., 1995). The TrkA-

IgG fusion molecule acts like a false receptor that sequesters NGF and prevents its 

interaction with the native receptors. Not only did this molecule greatly attenuate 

carrageenan-induced hyperalgesia, but it also caused hypoalgesia in control animals, 

suggesting that NGF has a role in mediating physiologic nociception under normal 

conditions (McMahon et al., 1995). K252a is a small-molecular weight drug that inhibits 

tyrosine kinases, including the TrkA receptor. Under control conditions, capsaicin-
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activated TRPV1 currents exhibit rapid desensitization after the initial exposure to the 

vanilloid (Koplas et al., 1997). NGF also augments capsaicin-activated TRPV1 currents 

after the second exposure. Prevention of desensitization and augmentation of TRPV1 

currents was attenuated by k252a (Shu and Mendell, 1999b). There is growing interest 

among pharmaceutical companies in anti-NGF agents as therapeutic tools in treatment 

of chronic inflammatory conditions (Cattaneo, 2010; Hefti et al., 2006; Lane et al., 2010). 

 

Mechanisms of action of NGF as an inflammatory mediator 

 

NGF acts as an inflammatory mediator by a variety of mechanisms. NGF can act 

directly on nociceptive neurons through activating its TrkA and p75 receptors or it can 

act indirectly through activating these receptors on other cell types which in turn 

enhance neuronal sensitization via the release of a secondary wave of inflammatory 

mediators (Nicol and Vasko, 2007; Pezet and McMahon, 2006). 

 

Indirect actions of NGF 

 

Both TrkA and p75NTR NGF receptors are expressed on a variety of cell types, 

and some of the actions of NGF in hypersensitivity are mediated by activating these 

receptors on cells other than nociceptive neurons. For example, activation of mast cell 

TrkA receptors leads to their degranulation and release of inflammatory mediators, 

including NGF (Horigome et al., 1993). In this manner NGF acts as an autocrine 

messenger, enhancing its own release (Leon et al., 1994). In analogous manner, NGF 

acts on TrkA receptors expressed on keratinocytes to enhance its own release (Di 

Marco et al., 1993). 

NGF also has a direct action on neutrophils, whose viability, phagocytosis and 

superoxide anion production are enhanced by NGF (Kannan et al., 1991). Production of 

leukotriene B4 (LTB4) by neutrophils is also enhanced by NGF (Amann et al., 1996b) 

and inhibitors of 5-lipoxygenase, the enzyme that synthesizes leukotrienes, attenuate 

NGF-induced hyperalgesia (Bennett et al., 1998b). Neutrophil depletion by using an anti-

neutrophil serum almost completely prevented NGF-induced hyperalgesia. This 

indicates that NGF-induced sensitization of sensory neurons is, at least in part, indirectly 

mediated by its action on neutrophils (Bennett et al., 1998b). Interestingly, neutrophils 
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were essential for the development of joint inflammation and swelling in a mouse model 

of rheumatoid arthritis (Wipke and Allen, 2001). Collectively, these studies show that 

NGF acts on neutrophils to augment their ability to cause inflammation. 

NGF can cause hypersensitivity indirectly through the release of other 

inflammatory mediators known to sensitize nociceptive neurons. NGF increases TNF-α 

expression in the knee-joint of experimental animals (Manni and Aloe, 1998). NGF also 

increases the level of mRNA of several cytokines in mast cells, including TNF-α, IL-3, IL-

4 and IL-10 and macrophage colony stimulating factor (Bullock and Johnson, 1996). 

Other studies, however, reported that the cytokine TNF-α causes the release of IL-1β 

and then IL-1β induces the release of NGF (Safieh-Garabedian et al., 1995; Woolf et al., 

1997). The TNF-α/IL-1β/NGF cascade of cytokines delineated by Woolf and coworkers 

is also supported by the work of other groups (Cunha et al., 1992; Cunha et al., 2005; 

Hattori et al., 1993). The question remains as to whether cytokines increase NGF 

expression or vice versa, and thus future studies are required. However, the use of 

different experimental models could explain the discrepancies. 

It is evident that primary and secondary immune organs, such as lymph nodes, 

thymus, spleen, hematopoietic bone marrow, Peyer’s patches in the small intestine, and 

other lymphoid tissues are innervated by sympathetic neurons. Moreover it seems that 

immune cells in these organs form a synapse-like contact with sympathetic nerve fibers 

(Simone et al., 1999). Sympathetic nerve fibers strongly express TrkA receptors and are 

able to secrete NGF (Ciriaco et al., 1996). This suggests that there is structural and 

functional interaction between the immune and the nervous systems through 

sympathetic neurons (Simone et al., 1999). Indeed, intracerebral administration of NGF 

causes proliferation of lymphatic cells in the spleen (Sacerdote et al., 1996). NGF 

regulates synthesis and release of epinephrine, which strongly affects the function of 

lymphocytes (Muller and Unsicker, 1986). Therefore it is clear that NGF can affect the 

immune and the nervous system. On the other hand, the nervous system may also 

affect the function of NGF as a sensitizing agent. For example, hyperalgesia induced by 

administration of NGF or CFA is significantly reduced by surgical or pharmacological 

ablation of sympathetic neurons (Andreev et al., 1995; Woolf et al., 1996). Sympathetic 

denervation only delays the onset of CFA-induced hyperalgesia, which implies that 

sympathetic nerves mediate only the early phase (Nicol and Vasko, 2007). 
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Direct actions of NGF 

 

Numerous studies suggest that NGF can directly activate sensory neurons 

expressing TrkA and p75 receptors. Direct effects of NGF can be broadly classified in 

two categories; posttranslational modification of different effectors that mediate neuronal 

function and effects on expression levels of these various effectors (Nicol and Vasko, 

2007; Pezet and McMahon, 2006). 

To date, relatively few targets for the effects of NGF that are mediated via 

posttranslational modification. NGF increases the number of action potentials in small 

diameter sensory neurons of the young adult rat (Zhang et al., 2002). Binding of NGF to 

its receptors can result in phosphorylation of Nav1.7 channels and augment the channel 

expression or trafficking. Phosphorylation of Nav1.7 alters the gating properties of the 

channel in a way that makes the channel open at an elevated threshold potential; i.e. 

makes the channel easier to open and thus augments neuronal firing of action potentials 

(Stamboulian et al., 2010). A much more studied target of NGF-induced sensitization is 

the TRPV1 channel. NGF acutely increases capsaicin-activated current (Shu and 

Mendell, 1999a). NGF also augments heat-mediated currents in sensory neurons 

(Galoyan et al., 2003). Since NGF-induced sensitization of heat-activated currents 

occurs within 30 seconds and since it was attenuated by PLC inhibition, it is likely that 

post-translational modifications of the TRPV1 channel is the underlying mechanisms 

rather than changes in its trafficking or expression (Galoyan et al., 2003). 

NGF also increases the expression of many targets; emphasizing the “trophic” 

nature of NGF. NGF binds to TrkA on nerve endings in peripheral tissues, and the 

complex is then retrogradely transported to the cell bodies in the DRGs. In the cell body, 

the NGF/TrkA complex increases the expression of a multitude of proteins (Goedert et 

al., 1981; Hendry et al., 1974; Stoeckel et al., 1975). Early accounts of NGF-mediated 

upregulation of a protein that is involved in nociceptor function were made in 1980 when 

it was shown that NGF increases the expression of both iSP and iCGRP (Christensen 

and Hulsebosch, 1997; Goedert et al., 1981; Kessler and Black, 1980; Lindsay and 

Harmar, 1989; Otten et al., 1980; Winston et al., 2001). NGF increases the expression of 

the mRNA of TRPV1 (Winston et al., 2001) and TRPV1 protein as well as trafficking of 

the channel to the cell membrane (Zhang et al., 2005b). These increases in expression 

and trafficking augment hypersensitivity and thus are a likely mechanism for maintaining 

sensitization over time (Ji et al., 2002). The mRNA and protein of TRPA1 (transient 
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receptor potential ankyrin repeat 1) are upregulated by NGF which can contribute to cold 

hyperalgesia (Diogenes et al., 2007; Obata et al., 2005). Sodium channel expression, 

including Nav1.7 (Toledo-Aral et al., 1997), Nav1.8 (Dib-Hajj et al., 1998), is increased 

by NGF both in vivo and in sensory neuronal cultures (Fjell et al., 1999b; Gould et al., 

2000). Expression of acid sensing ion channel 3 (ASIC3) (Mamet et al., 2003), 

bradykinin receptor (Petersen et al., 1998), and P2X3, another ligand-gated cation 

channel, (Ramer et al., 2001) are also increased in response to NGF. Moreover, NGF 

increases the expression of mRNA and protein of another neurotrophic factor, BDNF 

(Apfel et al., 1996; Michael et al., 1997). All these molecules act as effectors of 

nociceptive neurons, and enhancement of their function by NGF contributes to enhanced 

excitability of neurons and thus their hypersensitivity. 

In summary, extensive literature clearly shows that NGF is a key inflammatory 

mediator that orchestrates the development and maintenance of hyperalgesia and 

sensitization of nociceptive neuron.  
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Signaling pathways mediating sensitization 

 

Cyclic AMP signaling pathway 

 

Discovery 

 

The discovery of cAMP and the conceptual development of second messengers 

are attributed to Sutherland and co-workers (Rall and Sutherland, 1958; Robison et al., 

1965; Sutherland et al., 1965). cAMP is celebrated as the first identified second 

messenger (Kresge et al., 2005; Robison et al., 1965; Sutherland et al., 1965) and it is 

serendipitous that it is the first signaling molecule to be identified as mediating 

hyperalgesia (Ferreira and Nakamura, 1979). 

One of the aims of the work presented in this dissertation is to determine whether 

cAMP/PKA signaling pathway, which mediates acute PGE2-induced sensitization, is 

altered after long-term exposure to the eicosanoid or to NGF. cAMP/PKA signaling 

pathway involves multiple proteins [including Gαs, AKAPs (A-kinase anchor proteins), 

adenylyl cyclases, PDEs (phosphodiesterases) and PKA itself] each of which has 

several isoforms. It is therefore essential to briefly review the current knowledge of these 

signaling proteins and different mechanisms for their regulation. 

 

Adenylyl cyclases 

 

Cyclic AMP is synthesized by the adenylyl cyclase family of enzymes (ACs) 

(Sutherland et al., 1962). There are 10 different isoforms of ACs (Bundey and Insel, 

2004; Cooper and Crossthwaite, 2006). Nine isoforms are membrane bound (AC1-AC9) 

and only one isoform is soluble (sAC). Soluble AC is insensitive to stimulation by Gαs and 

forskolin, but is activated by bicarbonate (Buck et al., 1999; Chen et al., 2000). The 

minimal active unit of AC is a dimer (Rodbell, 1980). Cyclic AMP synthesis by these 

enzymes is highly compartmentalized. ACs are compartmentalized through their 

interaction with various anchor proteins such as A-kinase anchor proteins (AKAP, see 

below) (Willoughby and Cooper, 2007). AKAPs act as scaffold proteins to anchor not 

only PKA, but ACs as well as many other enzymes that are essential in “sculpting” a 

cAMP microdomain in order to achieve a selective activation of a particular pool of PKA 

(Baillie et al., 2005). In this manner, cAMP can serve as a second messenger to a large 
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number of biological functions activated by various first messengers without spillover or 

cross talk. Other binding proteins also participate in establishing microdomains including 

snapin, a synaptic vesicle associated protein that helps organize a signaling 

compartment mediated by cAMP/PKA on the synaptic vesicles. This appears to be 

important in regulating transmitter release and its modulation by PKA activation (Chheda 

et al., 2001; Chou et al., 2004). Another unique and equally intriguing interaction exists 

between AC8 and protein phosphatase 2A catalytic subunit (PP2A) (Crossthwaite et al., 

2006). As mentioned above, ACs synthesize cAMP, which in turn activates PKA, Epacs 

as well as HCN channels. Phosphatases like PP2A remove the phosphate group from 

various targets and thus help to reset the signaling system and restore its homeostasis. 

Therefore, the existence of ACs, PKA and PP2A in a supramolecular complex serves to 

channel and integrate signaling (Dai et al., 2009). An interesting phenomenon is the fact 

that ACs localize differentially in membrane lipid rafts. Since certain receptors are also 

localized to lipid rafts, simultaneous presence of ACs in these lipid rafts will place them 

in the vicinity of these receptors and thus facilitate signal transduction. For example, it is 

known that AC is localized in the same membrane rafts to which β-adrenergic (βAR), but 

not EP2, receptors localize. This allows for a more robust cAMP synthesis in response to 

receptor stimulation by β-adrenergic receptor but not EP2 receptor agonists (Ostrom et 

al., 2001). ACs are also subject to extensive posttranslational modifications which 

regulate multiple facets of their activity (Cooper, 2003; Willoughby and Cooper, 2007). It 

is interesting to speculate that posttranslational modification might influence ACs 

enzymatic activity or targeting of the enzymes to various cell membrane compartments 

through modulation of their association with anchor proteins or with lipid rafts. 

 

Cyclic AMP/PKA pathway in sensory neuronal sensitization 

 

The effect of activating the cAMP signaling pathway on sensitization of sensory 

neurons has been demonstrated many times using different methods and end points. 

Ferreira and his group first speculated about the connection between adenylyl cyclase 

and hyperalgesia. In their seminal work, Ferreira and Nakamura used PGE2, 

isoprenaline, epinephrine and norepinephrine and demonstrated that these agents 

cause dose-dependent hyperalgesia (Ferreira and Nakamura, 1979). All of these 

compounds activate Gαs-coupled receptors. Two experiments initially suggested that the 

cAMP pathway was involved in PGE2-induced sensitization. The first experiment 
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involved the intraplantar injection of dibutyryl-cAMP, a metabolically-resistant analogue 

of cAMP. Ferreira and co-workers showed that dibutyryl-cAMP causes dose-dependent 

hyperalgesia. The second one showed that xanthines (caffeine and theobromine) 

enhance hyperalgesia caused by PGE2 and dibutyryl-cAMP. The xanthines are 

phosphodiesterase inhibitors and thus would be expected to increase cAMP 

concentration if PGE2 was coupled to the Gαs/cAMP pathway (Ferreira and Nakamura, 

1979). Levine and his group were the first to show that adenylyl cyclase activation using 

forskolin causes hyperalgesia (Taiwo and Levine, 1991). It is known now that cAMP has 

several intracellular effectors but at the time Ferreira and his group conducted this 

pioneering research, the only known effector was cAMP-activated protein kinase (PKA) 

(Walsh et al., 1968b). PKA is a heterotetramer made of two regulatory subunits and two 

catalytic subunits. There are four isoforms of the regulatory subunit (RIα, RIβ, RIIα and 

RIIβ) and two catalytic subunits (Cα and Cβ). One regulatory subunit binds one catalytic 

subunit. The two regulatory subunits are bound together to form the heterotetramer 

(Johnson et al., 2001; Taylor et al., 2005). As mentioned before, PKA-mediated signaling 

is highly compartmentalized, through interaction with multiple AKAPs. This interaction 

occurs between the regulatory subunits of PKA and the AKAP (Beene and Scott, 2007; 

Carnegie et al., 2009; Herberg et al., 2000; Welch et al., 2010). 

In a subsequent work by Levine and co-workers, a causal connection was made 

between PKA and hyperalgesia. They showed that inhibition of PKA using Rp-cAMPS (a 

competitive inhibitor of and an analogue of cAMP that prevents it from activating PKA) 

attenuated hyperalgesia caused by a several agents that elevate cAMP levels such as 

forskolin, PGE2, PGI2 and adenosine receptor A2 agonist  (Taiwo and Levine, 1991). 

Vasko and his group used cholera toxin (CTX) to irreversibly activate the heterotrimeric 

G-protein Gαs and thus increase adenylyl cyclase activity and elevate cAMP 

concentration (Northup et al., 1980). Vasko and co-workers demonstrated that locking 

the Gαs in the activated conformation in sensory neuronal cultures using CTX caused 

augmentation of bradykinin or capsaicin-evoked iSP and iCGRP (Hingtgen et al., 1995). 

They also showed that inhibition of adenylyl cyclase using 9-tetrahydro-2-furyl adenine 

abolished PGE2-induced augmentation of neuropeptide release (Hingtgen et al., 1995). 

In addition to the early experiments using animal behavior as an end-point for 

neuronal sensitization described above (Ferreira and Nakamura, 1979; Taiwo et al., 

1989; Taiwo and Levine, 1991), activation of the cAMP signaling pathway was also 

shown to stimulate neuropeptide release from DRG cultures (Hingtgen et al., 1995), 
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increase the number of action potentials generated by sensory neurons in response to 

an activator (Cui and Nicol, 1995), sensitize small unmyelinated sensory fibers to heat 

(Kress et al., 1996), increase TRPV1 channels activity (Npo, which is an integrates the 

total number of channels expressed on the cell membrane and the probability of opening 

of each channel) (Lopshire and Nicol, 1998), reduce potassium currents (Evans et al., 

1999), enhance calcium conductance (Nicol et al., 1992), increase sodium channel 

Nav1.8 trafficking to cell membrane (Liu et al., 2010b), and increase the tetrodotoxin-

resistant (TTX-R) sodium current  in sensory neurons (England et al., 1996b; Gold et al., 

1996). PKA produces these effects on sensitization via phosphorylation of different 

protein targets; TRPV1 channel (Bhave et al., 2002) and TTX-R sodium channels 

(Fitzgerald et al., 1999). PKA also phosphorylates and thus modulates synaptic vesicle 

proteins including cysteine ring protein, snapin, synapsin I and tomosyn which augments 

the rate at which synaptic vesicles fuse to the cell membrane and thus augments the 

release of neurotransmitters; i.e. sensitization of neurons (Chen et al., 2011; Chheda et 

al., 2001; Chou et al., 2004; Cousin and Evans, 2011; Evans and Morgan, 2003; 

Menegon et al., 2006). Evidence exists that PKA has a role in inflammatory hyperalgesia 

but not neuropathic hyperalgesia. As mentioned earlier, PKA-mediated signaling is 

highly compartmentalized through an interaction between regulatory subunit RI and 

AKAPs. Therefore mutation of RI subunit of PKA will cause the inability of a specific pool 

of PKA to localizes to the appropriate domains and thus inhibit the functions it mediate. 

Mice with a deletion of the neuronal selective isoform of RI subunit (RIβ) showed 

attenuated inflammatory but not neuropathic sensitization (Malmberg et al., 1997). This 

indicates that specific isoforms of PKA regulatory subunits mediate different functions in 

different types of chronic hyperalgesia. 

 

EPAC and HCNs 

 

Although it was thought that PKA-mediated phosphorylation was the only effector 

for cAMP, we now know that cAMP also can activate a group of G-protein exchange 

factors (GEFs), namely Epacs (de Rooij et al., 1998; Kawasaki et al., 1998). Epacs have 

multiple downstream effectors including the small G-proteins Rap, Ras and Rit (Lopez 

De Jesus et al., 2006; Roscioni et al., 2008). It is noteworthy that several groups 

reported that Rit is particularly important for Erk phosphorylation following stimulation of 

PC12 cells using NGF (Shi et al., 2006; Spencer et al., 2002). The most commonly 
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studied signaling protein downstream of Epacs is the small G-protein, Rap1 which in turn 

activates several signaling pathways (Roscioni et al., 2008). Recently, Epacs have been 

implicated in mediating persistent PGE2-induced hyperalgesia (Eijkelkamp et al., 2010b; 

Hucho et al., 2005; Wang et al., 2007). The small molecule inhibitor of PKA, H-89, did 

not completely abolish PGE2-induced hyperalgesia in models of chronic inflammation 

such as adjuvant-induced arthritis. Also 8-pCPT-2’-O-MecAMP, a cAMP analogue 

[colloquially known as 007 (Gloerich and Bos, 2010)] that selectively activates Epac but 

not PKA (Rehmann et al., 2003), was able to induce pain-like behavior in animal models 

of chronic hyperalgesia to a greater extent and for a more prolonged duration 

(Eijkelkamp et al., 2010b; Hucho et al., 2005). This is particularly exciting since these 

studies show that Epac is involved in the prolongation of the duration of 

hypernociception, but not in acute inflammatory pain. However none of these groups 

attempted to show a causal relationship between activation of Epac and chronic 

hyperalgesia, thus further studies are needed. To date, PKCɛ-mediated signaling is the 

most studied pathway downstream from Epac. However several other signaling 

pathways can be activated by Epac, thus meriting studying them. 

HCN channels are another group of cAMP effectors, that recently emerged as 

potentially important effector of sensitization (Emery et al., 2011a; Emery et al., 2012; 

Takasu et al., 2010; Weng et al., 2012) long after their initial discovery (Fesenko et al., 

1985). HCN2 was shown to mediate not only persistent inflammatory pain, but also 

neuropathic pain as well (Emery et al., 2011c). HCN2 represent an even more attractive 

target for development of potential therapeutic agents since selective inhibitors of the 

channel already exist (Shin et al., 2001). 

 

Phosphodiesterases 

 

The notion of the existence of cAMP phosphodiesterase (PDE) was first 

proposed by Rall and Sutherland in 1958 and the enzyme was subsequently isolated by 

Sutherland and his group (Butcher and Sutherland, 1962; Rall and Sutherland, 1958). In 

general, PDEs cleave the phosphodiester bond in both cAMP and 3’,5’-cyclic guanosine 

monophosphate (cGMP) into their corresponding non-cyclic forms (Beavo et al., 1994). 

PDEs comprise one of the most complex enzyme superfamilies with 21 genes encoding 

proteins that are grouped into 11 subfamilies. Different splice variants exist for multiple 

isoforms, leading to a total of 50 different proteins (Boswell-Smith et al., 2006; Conti and 
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Beavo, 2007; Lugnier, 2006). In addition to representing a diverse group of  enzymes 

that differ in their kinetics and sensitivity to various inhibitors, they are also localized in 

different subcellular compartments and are regulated by various signaling pathways 

(Houslay and Milligan, 1997). Cyclic AMP compartmentalization is not only linked to 

AKAPs, but also to PDEs. It is thought that PDEs help break down cAMP (and cGMP) in 

order to restrict its presence to a particular compartment and thus prevent the second 

messenger from activating effectors outside a specific microdomain and thus contributes 

to specificity of signaling (Baillie et al., 2005; Houslay, 2010). As described above, much 

evidence supports that cAMP mediates the signaling pathways causing hyperalgesia. 

Thus it seems logical that inhibition of cAMP breakdown, via inhibition of PDEs, would 

potentiate hyperalgesia. Indeed, rolipram which is a PDE4 inhibitor, potentiates 

hyperalgesia produced by a number of inflammatory mediators including PGE2, TNF-α, 

IL-1β, IL-6 and inflammagens such as carrageenan (Cunha et al., 1999). Inhibition of 

only PDE4, but not PDE3 or PDE5 potentiated hyperalgesia (Cunha et al., 1999). In 

contrast, rolipram produced anti-inflammatory effects in particular aspects of other 

models of inflammation in experimental animals. Specifically, rolipram reduced 

lipopolysaccharide-induced TNF-α production, swelling in carrageenan-induced paw 

edema and production of TNF-α and swelling in collagen-induced arthritis (Sekut et al., 

1995). The contradictory effects of rolipram may depend on the effect of elevating cAMP 

in different cell types. For example, elevation of cAMP in nociceptive sensory neurons is 

associated with their sensitization. On the contrary, cAMP elevation in immune cells 

results in their suppression which may explain reduction of release of TNF-α in the 

above mentioned study (Peters-Golden, 2009; Teixeira et al., 1997). When administered 

orally, rolipram attenuates hyperalgesia in chronic inflammation animal models 

(Francischi et al., 2000). This led to the speculation that selective PDE4 inhibitors might 

be an attractive path for developing novel therapies for chronic pain. 

 

A-kinase anchor proteins 

 

It is estimated that an average mammalian cell contains approximately 

1,000,000,000 protein molecules (Sims and Allbritton, 2007). Considering the enormity 

of this figure, the fact that cells respond specifically and differentially to various stimuli is 

an astonishingly remarkable feat. Over the past two decades, evidence accumulated 

showing that the level of complexity of signaling is possible because of, and regulated 
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by, compartmentalization (Scott and Pawson, 2009). In order for cells to be able to 

respond specifically to external stimuli, it is logical that proteins in a signaling cascade 

are coupled or held together through binding to a scaffold. Indeed, multiple scaffolding 

and anchoring proteins have been characterized and these proteins provide platforms 

for various components of a signaling pathway (Wong and Scott, 2004). Among the most 

famous of these anchoring proteins are the AKAPs. The human genome contains 20 

different genes encoding for AKAPs and there are multiple splice variants for many of 

these genes, which lead to the existence of approximately 75 different AKAP isoforms 

(Scott and Pawson, 2009). Compartmentalization by AKAPs is visualized in myocardial 

cells where gradients of cAMP can be visually detected using a fluorescent FRET 

reporter (Zaccolo and Pozzan, 2002). Furthermore cAMP compartmentalization occurs 

in invertebrate and mammalian neurons (Bacskai et al., 1993; Hempel et al., 1996a; 

Klauck et al., 1996) and appears to be essential for development of dendrites and axons 

in embryonic hippocampal neurons (Shelly et al., 2010). 

Multiple anchor proteins are expressed in sensory neurons including yotiao, 

AKAP12 (AKAP250, gravin), AKAP5 (AKAP79/150) and AKAP15/18 (Irmen et al., 2008; 

Rathee et al., 2002a; Schnizler et al., 2008). It was found that inflammatory mediators 

that activate Gαs-coupled GPCRs require an AKAP in order to produce sensitization. 

AKAP5 is essential for sensitization of TRPV1 by PGE2 in vitro (Schnizler et al., 2008) 

and in vivo (Jeske et al., 2008). AKAP5 is also essential for the development of 

sensitization by bradykinin through activation of PKC, ligand-mediated activation of 

TRPV1 in the absence of any sensitizing agents and trafficking of the channel to the cell 

membrane (Zhang et al., 2008). AKAP5 also binds PP2B (calcineurin) in sensory 

neurons and thus facilitates dephosphorylation of TRPV1 channels under resting 

conditions. This means that not only does AKAP5 mediate sensitization, but also it helps 

maintain TRPV1 channel from being sensitized under basal conditions (Zhang et al., 

2008). Other AKAPs, such as AKAP12 (AKAP250, gravin) (Irmen et al., 2008) and 

yotiao (Schnizler et al., 2008), also are expressed in DRG neurons and their functions 

are yet to be identified. AKAPs are also important for modulating the function of other 

types of neurons. For example dopamine modulates peak sodium currents through 

phosphorylation of sodium channels in hippocampal pyramidal neurons, and this 

phosphorylation requires AKAP15 (Few et al., 2007). In rat cortical neurons, AKAP5 was 

also important in keeping ASIC1a and ASIC2a channels quiescent through anchoring 

calcineurin which maintains ASIC channels in a dephosphorylated state. It is postulated 
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that anchoring calcineurin to ASIC channels by AKAP5 is of crucial importance during 

pathological conditions such as stroke. Intracellular [Ca2+] occurs during a stroke as well 

as acidosis. Increase in protons concentration due to acidosis leads to augmentation of 

ASIC channels activity which increases the current of positively charged cations flowing 

in the neurons leading to further depolarization and further increase in [Ca2+]i, eventually 

culminating in neuronal death (Chai et al., 2007). In heterologous expression systems, it 

was found that AKAP5 also targets PKA and calcium/calmodulin to potassium channels 

thus allowing modulation of the function of these channels by the anchored signaling 

modules (Bal et al., 2010; Dart and Leyland, 2001). These targets are expressed in 

sensory neurons (Huang et al., 1998; Julius and Basbaum, 2001; Lingueglia et al., 1997) 

but direct physical or functional interaction with AKAP is yet to be determined. 

 

Protein phosphatases 

 

The human genome contains over 500 kinases, roughly 400 are serine/threonine 

kinases while the rest are tyrosine kinases (Manning et al., 2002; Shi, 2009). Kinases 

derive their specificity from the diversity in their primary structure despite the high 

conservation of their kinase catalytic domain. Approximately 33 percent of all the 

proteins in any given eukaryotic cell are post-translationally modified by phosphorylation 

(Mann et al., 2002). Since post-translational modification often leads to alteration of the 

state of the cell in response to an environmental change, it is logical to assume that a 

built-in mechanism must exist to allow reversal of this phosphorylation; i.e. 

dephosphorylation through phosphatases. Thus an a priori logical assumption is that for 

each kinase there is a phosphatase to reverse its function and offer the same level of 

selectivity. This is true for protein tyrosine phosphatases (PTPs); there are roughly 107 

putative PTPs (Alonso et al., 2004). However, there are merely 30 serine/threonine 

protein phosphatases (PSPs) in the human genome (Shi, 2009). The imbalance in the 

number of the serine/threonine kinases and PSPs can be understood by the manner in 

which PSP holoenzymes are formed. PSPs catalytic subunits associate with an 

assortment of regulatory subunits, leading to formation of large number of holoenzymes 

that differ in their function dramatically (Shi, 2009). The holoenzyme undergoes the 

dephosphorylation and not the catalytic subunit. Therefore it is the combined diversity of 

the catalytic and regulatory subunits that determine the actual number of holoenzymes 

and thus the biologically functional phosphatase. For example PP1 consists of two 
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subunits, catalytic and regulatory. There are close to a 100 regulatory subunits and three 

catalytic subunits of PP1 (Shi, 2009). This means there are three hundred possible 

holoenzyme combinations. PP2A, on the other hand, is formed of three subunits, 

catalytic, regulatory and scaffolding subunits. Catalytic and regulatory subunits have two 

isoforms each. Moreover, regulatory subunit is made up of four families, each has 

several members, and some of the isoforms have multiple splice variants. This means 

there are potential 30-160 holoenzymes of PP2A. Thus, combinatorial association is the 

basis for diversity in phosphatases (Shi, 2009). This mechanism enables phosphatases 

to attain high selectivity utilizing relatively few phosphatase isoforms. At the same time, 

this is one of the reasons why the study of phosphatases is more challenging since there 

are few tools to functionally discriminate between these closely related holoenzymes 

(Sim and Ludowyke, 2002; Virshup and Shenolikar, 2009). 

Owing to this remarkable complexity of phosphatases, interactions with other 

proteins are difficult to study and delineate. It is thought that the known interactions with 

phosphatases is a tiny fraction of their actual interactome (Virshup and Shenolikar, 

2009). As mentioned above AKAP5 anchors calcineurin to ASIC channels which helps 

maintain them in the dephosphorylated state and keeps their activity low to protect 

cortical neurons from neuronal death subsequent to over-stimulation of ASIC channels 

(Chai et al., 2007). Calcineurin anchored through AKAP5 to TRPV1 channel helps 

desensitize the channel activation to repeated exposure to capsaicin (Zhang et al., 

2008). 

Protein phosphatases interact with AKAPs (Schillace and Scott, 1999) 

suggesting their involvement in the signaling complexes either by affecting other 

signaling molecules (for example PKA, PKC, ACs or PDEs), or by dephosphorylating 

substrates such as receptors or channels (Collas et al., 2004). 

Inhibition of PSPs by okadaic acid was found to augment neuropeptide release 

from embryonic sensory neuron cultures in vitro (Hingtgen and Vasko, 1994a). 

Calcineurin inhibition leads to attenuation of TRPV1 desensitization in adult rat DRG 

neurons (Docherty et al., 1996) and in vivo (Noda et al., 2008; Sato et al., 2007). It was 

found that calcineurin inhibition attenuated heterologous desensitization of TRPV1 by 

activating TRPA1 (Ruparel et al., 2008). Cannabinoids, which are purported to have 

analgesic properties, induce dephosphorylation and hence desensitization of TRPV1 

channel in a calcineurin dependent manner (Jeske et al., 2006; Patwardhan et al., 

2006). To sum up, phosphatase inhibition in sensory neurons causes sensitization, 
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presumably by preventing dephosphorylation and thus enhancing phosphorylation of 

various effectors. 

Phosphatase activity is important for axonal regeneration and sprouting, 

synaptogenesis and neuronal plasticity. Phosphorylation of tyrosine residues on Gαs by 

epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, increased its 

activity and enhanced cAMP synthesis by the coupled AC in the rat brain (Poppleton et 

al., 1996). It was found that PTP1B is essential for NGF mediated signaling (Shibata et 

al., 2008). Phosphatase and tensin homologue deleted on chromosome10 (PTEN), a 

phosphoinositide phosphatase as well as a PTP, was found to exert tonic inhibition of 

axons regeneration and neuronal plasticity in adult rat peripheral DRGs (Christie et al., 

2010). These data suggest that inhibition of PTEN might be a useful therapeutic 

approach to enhance peripheral axonal regeneration. On the other hand, during 

embryologic development, calcineurin is required for neurotrophin mediated axonal 

sprouting from the DRGs (Graef et al., 2003). Another PTP, PTP receptor T, was also 

found to enhance synapse formation in brain neurons, one of the standard definitions of 

neuronal plasticity (Lim et al., 2009). MAP kinase phosphatase1 (MKP1) was also found 

to be essential for BDNF-induced axonal branching in CNS neurons (Jeanneteau et al., 

2010). 

The effects of phosphatases on synaptic plasticity were extensively reviewed by 

Winder and Sweatt (Winder and Sweatt, 2001). GPCRs can interact both functionally 

and physically, with PP2A (Pitcher et al., 1995). Furthermore, the “metastasis 

suppressor” GPCR, GPR54, is coupled to PP2A (Evan et al., 2008), suggesting that 

PP2A may dephosphorylate critical signaling molecules and thus inhibit metastasis. 

Another mechanism by which phosphatases might interact with GPCRs is through the 

adaptor protein β-arrestin, which regulates the signaling outcome of PTEN activation 

(Lima-Fernandes et al., 2011). PKA phosphorylates and thus inactivates an inhibitor of a 

PP1 isoform, myosin light chain phosphatase (MLCP), thus leading to its activation 

(Aslam et al., 2010). PP2A also can be activated in a cAMP-dependent but PKA-

independent fashion via Epac in cell lines (Feschenko et al., 2002; Hong et al., 2008). 

Epac was also found to modulate the activation of MLCP (Roscioni et al., 2011). In the 

myocardium, Epac mediates cardiac myocyte hypertrophy through calcineurin (Metrich 

et al., 2008). Tyrosine phosphorylation enhances PP2A phosphatase activity (Chen et 

al., 1992). In the liver, this “PTP/PP2A axis” activates lipogenesis (Shimizu et al., 2003). 
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On the other hand agents that elevate cAMP or activate PKC signaling, activated the 

phosphatase activity of PTP (Brautigan and Pinault, 1991b). 

 

PKC 

 

It is generally accepted that PKC does not contribute to acute PGE2-induced 

sensitization of sensory neurons. However, some EP receptors are coupled to PKC-

mediated signaling pathway (see the section of Eicosanoids within this introduction for 

detailed discussion). Moreover, it was shown before that PKC can desensitize GPCRs 

(see section Receptor Desensitization for detailed discussion and examples). Therefore 

brief revision of the biology of PKC is essential. 

There are three different classes of PKC with 12 different isozymes (Newton, 

2001) and various PKCs mediate peripheral sensitization in inflammatory and 

neuropathic pain. Activation of PKC causes sensitization of adult DRG neurons in culture 

when activated by capsaicin (Barber and Vasko, 1996) and this is mediated in part by 

phosphorylation of TRPV1 channels leading to enhancement of channel activation 

(Bhave et al., 2003; Cesare and McNaughton, 1996; Crandall et al., 2002; Numazaki et 

al., 2002). PKC also can increase tetrodotoxin-sensitive (TTX-S) sodium currents (Costa 

and Catterall, 1984; Murphy and Catterall, 1992; Numann et al., 1991) and more 

substantially TTX-R sodium currents (Gold et al., 1998; Khasar et al., 1999b). It also is 

postulated that PKC activity may be essential for PKA modulation of these channels 

since selective peptide inhibitors of PKC impaired the ability of PKA to enhance TTX-R 

sodium channels activity (Gold et al., 1998). Involvement of PKC in hypersensitivity in 

animal models of inflammation has also been shown (Souza et al., 2002). PKC indirectly 

augments activation of NMDA receptors by its ligands in the central terminals of sensory 

neurons in the dorsal horn of the spinal cord. PKC phosphorylates a tyrosine protein 

kinase known as pyk2, which in turn phosphorylates and activates the tyrosine kinase 

src (Lu et al., 1999). Subsequently, src kinase phosphorylates a tyrosine residue on the 

NMDA receptor and increases its activation (Woolf and Salter, 2000; Yu et al., 1997). 

Several studies show that sensitization of sensory neurons by inflammatory mediators, 

including bradykinin, TNF-α and protease-activated receptor 2, is mediated by PKCɛ
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 (Amadesi et al., 2006; Cesare et al., 1999; Parada et al., 2003b). Levine and his group 

advanced the concept that development of persistent sensitization, which they labeled 

hyperalgesic priming, depends on PKCɛ (Hucho and Levine, 2007; Khasar et al., 1999a; 

Reichling and Levine, 2009).  
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Receptor desensitization 

 

As mentioned above, the aims of the work presented in this dissertation include 

determining whether there is desensitization of PGE2-activated PKA after long-term 

exposure to NGF or the prostanoid, and the mechanisms underlying such 

desensitization. Since PGE2 activates PKA through a family of GPCRs (see above in the 

section on Eicosanoids), I considered known mechanisms of desensitization of GPCRs 

for the desensitization of PGE2-activated PKA. The various mechanisms proposed for 

desensitization are discussed in this section. 

 

History of discovery of the role of Grks/β-arrestins to desensitization 

 

Following the exposure of any organism to a given stimulus, three events occur; 

1) the stimulus must evoke an adaptive response in the organism to enable it to cope 

with its environment, 2) excessive stimulation must be avoided to prevent a detrimental 

maladaptation and 3) the receptor and the signaling pathway coupled to it must return to 

the resting baseline state in order to restore the ability of the organism to respond to 

subsequent stimuli. Desensitization describes the processes of inactivating receptors 

and shutting off their coupled signaling pathways to avoid excessive stimulation. 

Resensitization describes the process by which the receptor and the signaling pathway 

regain their resting sensitivity (Grady, 2007; Lohse, 1993; Sibley and Lefkowitz, 1985). 

This section will focus on the process of receptor desensitization. 

GPCRs comprise a huge family of proteins; approximately 800 of known and 

unknown functions exist in the human genome (Lagerstrom and Schioth, 2008). These 

receptors serve as sensors for many different endogenous ligands such as 

neurotransmitters, hormones, and other intercellular signals, and thus it is not surprising 

that they are also the most commonly used targets for clinical applications (Ma and 

Zemmel, 2002). 

Desensitization is classified into homologous and heterologous desensitization 

(Lefkowitz, 2004). Homologous desensitization is the desensitization of single receptor in 

response to all the ligands that bind to and activate this receptor. On the contrary, 

heterologous desensitization is the indirect desensitization of a receptor through 

activation of a completely unrelated receptor with its respective ligand. Homologous 

desensitization is usually thought to be mediated by Grks, whereas heterologous 
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desensitization by second messenger-activated kinases such as PKA and PKC 

(Lefkowitz, 2004). 

The initial discoveries related to GPCR desensitization were first made using 

rhodopsin, a light-activated GPCR in the outer segments of rods in the retina which 

inhibits cGMP PDE when activated by its ligand, photons. In 1972 when Kuhn, Bownds 

and their co-workers discovered light-dependent phosphorylation of a protein isolated 

from membrane preparations from the outer segments of rods (Bownds et al., 1972; 

Kuhn and Dreyer, 1972). The phosphorylated protein was not conclusively identified as 

rhodopsin until six years later by Shichi and Somers who also isolated the kinase 

responsible for the observed phosphorylation (Shichi and Somers, 1978). Subsequently, 

Liebman and co-workers found that the ability of rhodopsin to inhibit cGMP PDE in 

membrane preparations from the outer segment of rod cells in the retina is significantly 

reduced after adding ATP to the isolated membranes of outer rods (Liebman and Pugh, 

1980). Molecular mechanisms of desensitization of GPCRs were also first discovered 

while studying β-adrenergic receptors (βARs) (Galas and Harden, 1996). Similar to 

rhodopsin, βARs were found to be phosphorylated by PKA in turkey erythrocytes 

(Benovic et al., 1985). The following year, a novel kinase, initially named β-adrenergic 

receptor kinase (βARK, also known as G-protein coupled receptor kinase [Grk]) that 

selectively phosphorylates agonist occupied βARs was discovered (Benovic et al., 

1986). Purified hamster lung βAR receptors reconstituted in phospholipid vesicles were 

first phosphorylated by Grk (βARK), which caused limited desensitization of the receptor. 

Then a novel protein, named β-arrestin, since it was homologous to visual arrestin,  was 

found to bind with high-affinity to the phosphorylated receptor and potently desensitized 

it (Benovic et al., 1987). β-arrestin is named after the visual arrestin, which is a protein 

that exerts the same function in the retinal photoreceptors (Wilden et al., 1986). Initially it 

was thought that the only mechanism, by which β-arrestin desensitizes βAR, is through 

sterically hindering the interaction between the receptor and its heterotrimeric G-protein 

(Freedman and Lefkowitz, 1996; Goodman et al., 1998; Krupnick and Benovic, 1998). 

Later it was also found that β-arrestin recruits PDE to the receptor and thus brings it in 

close proximity to degrade cAMP and facilitate signal termination (Baillie et al., 2003). 

Subsequent seminal work by Lefkowitz and his group delineated the specific aspects of 

Grks and β-arrestins in desensitization of βARs and subsequently many more GPCRs 

(Pitcher et al., 1998). The role of the Grk/β-arrestin machinery in receptor 

desensitization, internalization and downregulation from the plasma membrane was 
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subsequently examined using receptor types other than βARs and using different 

models (Ferguson, 2001). 

 

Grks/β-arrestins role in alternative signaling 

 

A major discovery was made when it was found that βAR phosphorylation by 

PKA caused it to shift its coupling from Gαs, to which it is “canonically” coupled, to Gαi/o. 

This pioneering work ushered the concept of signaling switching at the level of the 

receptor (Daaka et al., 1997). An even more important discovery is that the 

desensitization machinery, Grks/β-arrestins and their isoforms, also engage and couple 

to alternative and usually more temporally prolonged signaling pathways (Perry and 

Lefkowitz, 2002). β-arrestins were found to channel signals from the activated, ligand-

bound GPCR to a large variety of signaling pathways such as src kinases (Luttrell et al., 

1999), MAPKs (Luttrell et al., 2001; McDonald et al., 2000; Sun et al., 2002), 

phosphatidyl inositol-3 kinase (PI3K) and protein kinase B (PKB) (McDonald et al., 

2000), PP2A (Lin et al., 1997), and inhibitor of κB (IκB) (Lin et al., 1997). Several other 

interactions were also documented (Lefkowitz and Shenoy, 2005; Shenoy and Lefkowitz, 

2005). 

Interestingly, it was recently found that some pathogens utilize Grks/β-arrestins 

mediated internalization of GPCRs to cross cell membranes. For example Neisseria 

meningitidis, the bacterium responsible for causing meningitis in humans, crosses the 

blood-brain barrier and reaches the brain hijacking Grks/β-arrestins machinery. 

Meningitis-causing bacteria (meningiococci) possess a hair-like appendage called pilus 

which is made of a protein called pilin. It was found that meningiococcal type IV pili bind 

to β2AR and act as biased agonists (see below). This leads to selective recruitment of 

the Grk/β-arrestin machinery and receptor internalization along with the bound 

bacterium. Thus meningiococci traverse the blood-brain barrier and gain access to the 

meninges, their sites of infection (Coureuil et al., 2010; Tourret and Finlay, 2011). 

 

Grks/β-arrestins and desensitization of membrane-bound non-GPCR proteins 

 

The spectrum of membrane proteins that are desensitized by Grks/β-arrestins  

was expanded when it was discovered that several tyrosine kinase receptors such as 

insulin-like growth factor 1 (IGF1) receptor 1 (Lin et al., 1998), Na+/H+ exchanger 
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(Szabo et al., 2005) and TRPV4, a non-selective cation channel (Shukla et al., 2010) are 

desensitized by Grks/β-arrestins. Several other non-GPCR receptors and ion channels 

are also regulated by β-arrestins (Shenoy and Lefkowitz, 2011b). 

 

Grks/β-arrestins, biased agonism and receptor barcoding 

 

The concept of biased agonism of GPCRs was brought forth by Lefkowitz and 

co-workers through their work on Grks/β-arrestins (Rajagopal et al., 2010b). Biased 

agonism refers to the situation when a ligand/receptor pair which shows great 

preponderance to signal through heterotrimeric G-proteins versus Grks/β-arrestin-

mediated signaling and vice versa (Rajagopal et al., 2010b). Biased agonism could be 

due to biased ligand, biased GPCR or both. Biased ligands show greater tendency to 

activate one of multiple possible signaling pathways downstream from a GPCR more 

than the others, while unbiased or balanced ligands activate these downstream signaling 

pathways equally (Jarpe et al., 1998; Rajagopal et al., 2010b; Reiter et al., 2012). For 

example, carvedilol is a βAR antagonist and it inhibits canonical Gαs-mediated signaling. 

Yet it is capable of causing βAR receptor phosphorylation, β-arrestin recruitment and 

activation of the alternative MAPK signaling pathway (Wisler et al., 2007). This is one of 

the earliest examples of a ligand that is biased towards β-arrestin mediated signaling 

pathway. CXCL-12 is unique in that it is capable of behaving both as an unbiased and 

biased ligand. CXCL-12, a chemokine, can exist as monomer or dimer depending on its 

concentration under physiologic conditions (Ray et al., 2012; Veldkamp et al., 2005). 

The oligomerization state of the ligand determines which pathway will be activated upon 

receptor binding (Drury et al., 2011; Ray et al., 2012). Thus a single ligand is biased to 

activate two different pathways depending on whether it is a monomer or a dimer. 

Biased receptors are tonically biased towards one signaling pathway, irrespective 

of the ligand that binds and activates them (Rajagopal et al., 2010b). Obviously, GPCRs 

which are phosphorylated by Grks are biased towards Grk/β-arrestins mediated 

signaling. Under normal conditions, some receptors were found to be biased towards 

Grks/β-arrestins-mediated signaling. These receptors were referred to as “decoy” since 

they were able to bind their cognate ligand with high-affinity, however, this binding could 

not significantly activate heterotrimeric G-protein signaling (Rajagopal et al., 2010a). It is 

now known that some of these decoy receptors are not silent; they activate alternative 

signaling pathways that were not considered and hence not tested before. The 
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chemokine receptor CXCR7 is an example of these receptors (Rajagopal et al., 2010a). 

Recently it was shown that GPCR heterodimerization can cause an unbiased receptor to 

become biased. For example, α1 adrenergic receptor, which is Gαq/11-coupled under 

resting conditions, becomes biased towards Grk/β-arrestin-mediated signaling after 

heterodimerization with the chemokine receptor CXCR2 (Mustafa et al., 2012). 

There are 7 different isoforms of Grks (1-7). Grk isoforms 1 and 7 are referred to 

as visual Grks since they are exclusively expressed in the retinal rods. Grks 2, 3, 5 and 6 

are ubiquitously expressed, while Grk4 expression is restricted to the testes (Premont 

and Gainetdinov, 2007). Recently, Lefkowitz and his group found that different Grks 

phosphorylate different residues of βAR and that receptors phosphorylated on different 

residues recruit and activate different signaling pathways after long-term exposure to 

isoproterenol (Nobles et al., 2011). The phenomenon was termed “receptor barcoding” 

since the signaling outcome of receptor is dependent on phosphorylation of various sites 

by various Grks (Liggett, 2011; Nobles et al., 2011). 

The classical view of any receptor is that it exists in either an active or inactive 

conformation or states which exist in equilibrium. Agonists shift this equilibrium towards 

the active conformation, while antagonists shift it in the opposite direction. Partial 

agonists and mixed agonists-antagonists shift the equilibrium incompletely towards the 

activated conformation (Kenakin, 1997). Because of the extensive work by Lefkowitz and 

co-workers that was briefly described above, receptors are now viewed as 

microprocessors with “pluridimensional efficacies” (Kenakin, 2011; Kenakin, 2009). A 

receptor can be activated by different ligands some of which may be biased. Ligands 

that are more biased towards particular one or more downstream signaling pathways 

than others activate these pathways more. Unbiased ligands activate all downstream 

signaling pathways with equal efficiency. Different ligands with bias towards different 

pathways will produce different biological outcomes (Kenakin, 2011; Rajagopal et al., 

2010b). This novel view of GPCRs action shall deeply impact drug discovery. 

 

Grks-dependent β-arrestin independent actions 

 

Initially it was thought that the only function of Grks was to phosphorylate GPCRs 

and thus create high-affinity binding sites for β-arrestins which bind to and physically 

uncouple the GPCR from its heterotrimeric G-protein (Lohse et al., 1992). Thus it 

appears that Grks are needed but not sufficient for desensitization of GPCRs and 
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initiation of alternative β-arrestins-mediated signaling. However, as knowledge about 

Grks increase, it is clear that this notion is a drastic oversimplification of a complex and 

versatile signaling molecule. 

In 1999, it was found that kinase-negative mutants of Grks 2, 3 and 5 were able 

to desensitize parathyroid hormone receptors which are both Gαs and Gαq/11 coupled 

(Dicker et al., 1999). This observation was confirmed when it was found that these 

kinase-dead mutants of Grks 2, 5 and 6, were also able to desensitize GPCRs activated 

by follicle stimulating hormone (Reiter et al., 2001). Both of these studies clearly indicate 

that with certain receptors and in certain cell types, Grks are both necessary and 

sufficient for desensitization. Indeed a whole host of receptors were found to be 

desensitized in a β-arrestin independent but Grk-dependent fashion (Dhami et al., 2004; 

Freedman et al., 1997; Perroy et al., 2003; Willets et al., 2005; Willets et al., 2004). 

Not only are Grks necessary and sufficient for mediating desensitization and 

uncoupling, but also for mediating internalization. Hosey and co-workers found that 

muscarininc receptors can get internalized independent of β-arrestins (Lee et al., 1998; 

Pals-Rylaarsdam et al., 1997). It was also found that Grk2 contains a “clathrin-box” that 

is able to bind clathrin and promote βAR1 receptors internalization (Shiina et al., 2001). 

In this study it was also shown that phosphorylation of the receptor might not be required 

for internalization. This implies that the kinase function of Grks might not be necessary. 

A number of receptors and their cognate ligands that can internalize in an arrestin-

independent manner have since been identified (Bhatnagar et al., 2001; Fernandez et 

al., 2011; Giebing et al., 2005; Heding et al., 2000; Ribeiro et al., 2009; Zhang et al., 

1996). 

It was found that Grks can desensitize membrane proteins other than GPCRs, 

such as inward rectifying potassium channels(GIRK) (Raveh et al., 2010). In this study 

the authors showed that GIRK desensitize in a Grks/β-arrestins dependent manner if 

they were activated by stimulation of µ-opioid receptors. However, when stimulated by 

muscarinic cholinergic receptors, GIRKs desensitize in a β-arrestins-independent Grk-

dependent and non-enzymatic manner in hippocampal neurons (Dang et al., 2009; 

Raveh et al., 2010). 

  



 

51 
 

Possible mechanism of action of some of Grks functions that are 

β-arrestin-independent 

 

The literature review presented above clearly demonstrates that Grks can 

uncouple and mediate internalization of some GPCRs and that the kinase function of 

Grks is not always necessary for desensitization or internalization. Available evidence 

suggest that an important structural feature of Grks, the regulator of G-protein signaling 

homology (RH) domain is responsible for mediating these non-enzymatic functions of 

Grks (Shiina et al., 2001; Sterne-Marr et al., 2004). Grks contain three main domains, a 

central kinase domain, a C-terminus pleckstrin homology domain (which Gβγ dimers) and 

an N-terminus RH domain (Ferguson, 2007). It was initially found that Grk2 can bind 

Gαq/11 in bovine brain extracts as well as in live HEK293 and COS cells (Carman et al., 

1999). Subsequently, many studies showed that Grks can attenuate Gαq/11-coupled 

GPCRs signaling in a kinase-independent manner via their RH domain (Dhami et al., 

2002; Freedman et al., 1997; Sallese et al., 2000; Usui et al., 2000). Moreover, Gαs-

coupled GPCRs were also found to be regulated by RH domain of Grks such as the 

serotonin 5HT4 receptor and the histamine H2 receptor (Barthet et al., 2005; Fernandez 

et al., 2011). 
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MATERIALS AND METHODS 

 

Experimental animals 

 

The Animal Care and Use Committee at Indiana University School of Medicine, 

Indianapolis, IN approved all procedures used in these studies. 

 

Materials 

 

F-12 media, FBS, glutamine, penicillin-streptomycin, fungizone, NuPAGE Novex 

4-12 percent bis-tris bel (1.5 mm, 10 well), SeeBlue Plus2 pre-stained standard, 

NuPAGE LDS sample buffer, NuPAGE antioxidant, NuPAGE MES SDS running buffer, 

NuPAGE transfer buffer and Invitrolon PVDF/filter paper sandwiches were obtained from 

Invitrogen, Carlsbad, CA (cat nos. 21700-075, 16000-036, 25030-081, 15070-063, 

15290-018, NP0335BOX, LC5925, NP0007, NP0005, NP0002, NP0006-1, LC2005) and 

Normocin from InvivoGen (cat no. ant-nr-2, San Diego, CA). PKA inhibitor fragment 5-

24, the small molecule PKA inhibitor H-89 and its substrate kemptide (cat nos. P7739, 

B1427, K1127, respectively), Poly-D-lysine (cat no. P0899), laminin (cat no. L2020), 

collagenase (cat no. C9891), 5-fluoro-2’-deoxyuridine (cat no. F0503), uridine (cat no. 

U3750), capsaicin (cat no. M2028), sodium vanadate (cat no. S6508), 1-methyl-2-

pyrrolidinone (MPL, cat no. 494496), cholera toxin (CTX, cat no. C8052) and other 

routine chemicals were purchased from Sigma-Aldrich (St. Louis, MO). PGE2, cPGI2, 

L902688, PTP1B and cAMP EIA kit were purchased from Cayman Chemicals, Ann 

Arbor MI (cat no. 14010, 18210-1, 10007712-1, 10010896 and 581001-480 

respectively). Protease inhibitor cocktail Set III, EDTA free (cat no. 539134), 

phosphatase inhibitor cocktail set I (cat no. 524624), okadaic acid (cat no. 495604) and 

anti-AKAP 150 antibody (cat no. 07-210) were obtained from EMD Millipore, Darmstadt, 

Germany. IBMX was obtained from Tocris Bioscience, Minneapolis, MN (cat no. 2845). 

Mouse NGF 7S was obtained from Harlan (cat no. BT.5023). Calcineurin autoinhibitory 

peptide (cat no. 1891) and rat CGRP (cat no. 1161) were purchased from Tocris. 

(Tyr27)-α-CGRP (27-37) was acquired from Bachem (cat no. H-5504). AG 1-X8, P-4 

resins, Bio-Rad protein assay dye reagent concentrate and protein standard I (bovine γ-

globulin) were purchased from Bio-Rad (cat no. 140-1441, 150-4114, 500-0006, 500-

0005). Peroxidase-AffiniPure donkey anti-goat IgG (H+L) was purchased from Jackson 
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laboratories, Bar Harbor, ME (cat no. 705-035-003). Protein phosphatase inhibitor 1 (I-2) 

was purchased from New England Biochemicals (cat no. 50811860). Microcystin-LR 

(MCS-LR) was acquired from Enzolife (cat no. ALX-350-012). [γ-P32]-ATP, Na125I and 

Western lightning plus-ECL were purchased from Perkin-Elmer (cat no. Blu502A, 

NEZ033, NEL104001EA). Phosphatase assay kit was purchased from Sciencell 

Research Laboratory (cat no. 8108). The transfecting reagent, Lipofectamine RNAi/Max 

was acquired from Invitrogen. Rat AKAP5, AKAP12, EPs 1-4, Grks 2, 3, 5 and 6 gene 

expression assay (assay IDs Rn01786021_m1, Rn00588999_m1, Rn00565349_m1, 

Rn00579419_m1, Rn00562282_m1, Rn00583420_m1, Rn00562822_m1, 

Rn00563688_m1, Rn00578086_m1, Rn00581369_m1 respectively), GAPDH 

endogenous control (P/N 4352338E) and TaqMan Universal PCR Master Mix (P/N 

4304437) and other real-time PCR supplies were obtained from Applied Biosystems 

(Carlsbad, CA). Total RNA extraction kit PrepEase Spin Kit (P/N 78766) was purchased 

from Affymetrix (Santa Carla, CA). Whatmann P81 filter paper discs were acquired from 

Fisher Scientific, Hampton, NH (cat no. 05-717-2B) and ATP γ-P32 from PerkinElmer 

Waltham, MA (cat no. BLU502A001MC). B-plus full blue radiographic films were 

purchased from RPS imaging, Michigan City, IN (cat no. EBA45). Non-fat dry milk was 

purchased from LabScientific, Livingstone, NJ (cat no. M0841). Throughout the study, 

PGE2 was used at 1 µM except when mentioned otherwise. The vehicle for capsaicin, 

PGE2, okadaic acid, MCS-LR, cPGI2, L902688, BIM-I, IBMX and forskolin was MPL, for 

H-89, isoproterenol and sodium vanadate was phosphate-buffered saline and for CTX 

was a buffer consisting of 0.05 M Tris buffer salts, pH 7.5, 0.2 M NaCl, 0.003 M NaN3 

and 0.001 M sodium EDTA as per Sigma-Aldrich product information. 

 

Cell culture 

 

Preparation of sensory neuronal cultures was performed as described previously 

with few modifications (Burkey et al., 2004). Male Sprague-Dawley rats (140-145 g) were 

euthanized by placing them in CO2-filled chambers for no more than one minute followed 

by decapitation. Dorsal root ganglia (DRG) were harvested in Puck’s solution containing 

fungizone (250 µl fungizone / 40 ml Puck’s solution). Time taken from animal euthanasia 

to completion of harvest was kept ≈ 1 hour. Puck’s solution was removed by aspiration 

and replaced with 3 ml F-12 media containing collagenase for one hour at 37°C. DRG’s 

were centrifuged at low speed, collagenase-containing F-12 was aspirated and replaced 
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immediately with fresh F-12 containing normocin and with or without 30 ng/ml NGF. 

DRGs were mechanically dissociated using a fire polished glass pipette. Approximately 

30,000 cells were plated into each well of 12-well culture plates, or 60,000 cells into 35-

mm dishes, pre-coated with poly-D-lysine (overnight) and laminin (overnight). Cells were 

maintained with or without added NGF as indicated, in F-12 media containing normocin 

and supplemented with 10 percent horse serum, 2 mM glutamine, 100 µg/ml Normocin, 

50 µg/ml penicillin, 50 µg/ml streptomycin, 50 µM 5-fluoro-2’-deoxyuridine and 150 µM 

uridine in saturated humidity and 3 percent CO2-incubator at 37°C. 

 

Neuropeptide release 

 

Neuronal cultures were washed with HEPES buffer (25 mM HEPES, 135 mM 

NaCl, 3.5 mM KCl, 2.5 mM CaCl2, 1 mM MgCl2, 3.3 mM D-glucose, and 0.1 percent 

bovine serum albumin, pH 7.4) at 37°C. Afterwards, cultures were exposed to one 10-

min incubation in 0.4 ml HEPES in the presence and absence of vehicle or the drug. A 

second incubation to 0.4 ml of HEPES buffer included 30 nM capsaicin in the presence 

or absence of vehicle or the drug to stimulate peptide release. This concentration of 

capsaicin was chosen because it lies within the linear region of the capsaicin 

concentration vs. immunoreactive CGRP (iCGRP) release curve. A third incubation with 

HEPES for ten minutes was also performed to assure that after treatment(s) were used, 

neurons remained viable. At the end of each release, cells were hypotonically lysed by 

incubation for 10 minutes in 0.4 ml of 0.1 M HCl, to extract total remaining iCGRP in the 

culture. After each incubation, the buffer was removed, aliquoted, and assayed for 

iCGRP by radioimmunoassay. 

 

Iodination of CGRP for radioimmunoassay 

 

AG 1-X8 and P-4 resins were swollen for 24 hours in buffers containing 1 M 

acetic acid and 0.1 percent BSA and 2.19 M Na acetate, pH 5.0 respectively. The P-4 

resin was packed in a plastic column plugged with a small piece of glass wool to a height 

of 15 cm while the AG 1-X8 resin was packed in a Pasteur pipette plugged with a small 

glass bead to a height of 5 cm. P-4 column was washed and kept moistened by the 1 M 

acetic acid 1 percent BSA solution while the AG 1-X8 column was washed and kept 

moistened by a 200 mM Na acetate solution. At the time each column is used, the buffer 
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was allowed to flow through so that the surface of the resin was exposed. (Tyr27)-α-

CGRP (27-37) was dissolved in 1 ml water. In a glass tube, the following was combined; 

90 µl of 250 mM buffer pH 4.0, 10 µl reconstituted (Tyr27)-α-CGRP (27-37), 20 µl 4.4 

mM chloramine-T solution and 10 µl Na125I solution. After 40 seconds 40 µl of 26.3 mM 

Na2S2O5 to terminate the reaction. The reaction mixture is then loaded on the AG 1-X8 

resin column after all the buffer wetting it was allowed to flow through. This step removes 

the excess unreacted iodide by binding it to the anion-exchange AG 1-X8 resin. After the 

loaded reaction mixture is absorbed, the column is washed with 0.5 ml Na acetate four 

times and the flow through is collected every time. Radioactivity in aliquots each of 10 µl 

of the 4 collected fractions was counted. The fraction with the highest counts was loaded 

on the P-4 column after the entire wetting buffer on its top was allowed to flow through. 

This step further purifies the iodinated (Tyr27)-α-CGRP (27-37) from other reaction 

products. The P-4 column is eluted 16 times using 2 ml of 1 M acetic acid with 1 percent 

BSA solution and the eluate fractions are collected at 5 minutes intervals. A 10 µl of 

each of the 16 fractions is counted and the fraction with the highest counts and the two 

subsequent fractions are selected. Non-specific binding was tested for these three 

fractions. This was done by first diluting an aliquot from each fraction till it contains 

10,000 counts/100 µl using a buffer containing Tris base (2.42 g) BSA 0.1g and dextran 

(T70) 0.06 g in 100 ml, pH 7.4. A 100 µl aliquot of this solution is then added to 400 µl of 

the same buffer, 0.5 ml of 1 percent Norite charcoal suspension in 0.1 M phosphate 

buffer that also contains 50 mM NaCl and 1 percent BSA. Charcoal bound to CGRP 

peptide (radioactive or not) was centrifuged at 3000 rpm (≈2060 x g) for 15 minutes. The 

supernatant is decanted and counted along with the sediment. Fractions that had 

radioactivity remaining in the supernatant no more than 1 percent of the total 

radioactivity was diluted to 1,000,000 cpm/100 µl, aliquoted and stored at -20°C. 

Radioactive (Tyr27)-α-CGRP (27-37) aliquots can be used until maximum specific 

binding falls to approximately 30 percent of the total counts. 
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iCGRP radioimmunoassay 

 

iCGRP was assayed by radioimmunoassay (RIA) as described previously (Chen 

et al., 1996; Duarte et al., 2011). Briefly, CGRP (Tocris, cat no. 11671) for standard 

curve was reconstituted in 50 mM Tris-HCl buffer pH 4.0. Further dilutions were done in 

a buffer containing 0.2 mM Tris base, 0.1 percent BSA, 0.06 percent dextran (T70) at pH 

7.4. CGRP was diluted 0-250 fmol in duplicates. A new standard curve was prepared 

each time an experiment was conducted. An aliquot of 25 µl of 1:65,000 of anti-CGRP 

antibody (generous gift from M. Iadorola, NIH) were added to each tube of standard and 

sample and tubes were incubated at 4°C overnight. Another aliquot of 25 µl of 125I-

(Tyr27)-α-CGRP (27-37) containing approximately 3000 cpm was added to each tube of 

standard and sample and all tubes were incubated for another overnight at 4°C. 

Antibody-bound iCGRP was separated by adding charcoal (see above for recipe). 

Unbound peptide (radioactive or not) adsorbed to charcoal particles was separated by 

centrifugation at 3000 rpm (≈2060 x g) in a centrifuge with swinging bucket rotor. 

Supernatant containing antibody-bound peptide (radioactive or not) was then decanted 

in a fresh tube and radioactivity was quantified using gamma scintillation spectrometry. 

Values of unknown iCGRP released from cultures were calculated using the standard 

curve assayed alongside the experiment using four point non-linear least-squares 

regression analysis. 

 

Quantitative PCR 

 

Real-time quantitative PCR was done as described previously (Fehrenbacher et 

al., 2005). Briefly, 12-day old cultures were washed once in sterile PBS and total RNA 

was extracted using the PrepEase RNA Spin Kit according to manufacturer’s 

instructions. Two hundred and fifty nanograms RNA were converted to cDNA using 

iScript cDNA synthesis kit (cat no. 170-8891, Bio-Rad, CA). Quantitative real time PCR 

was performed using TaqMan Universal PCR Master Mix and TaqMan gene expression 

assays according to manufacturer’s instructions. The real time PCR reaction was run 

using 7500 fast Real-Time PCR System (cat no. 4351106, Applied Biosystems, CA). A 

validation experiment for the TaqMan gene expression assays was conducted by 

running standard curves for the all target transcripts versus GAPDH expression assays 

and efficiencies were determined. CT for GAPDH in sensory neuronal cultures did not 
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change significantly whether the cultures were grown in the absence or presence of 

NGF (19.49 ± 0.13, N = 3 and 19.45 ± 0.31, N = 3, respectively) or exposed to vehicle or 

1 µM PGE2 for 5 days (19.87 ± 0.03, N = 3 and 10.74 ± 0.08, N = 3, respectively). It was 

judged that ΔΔCT method (folds change of expression) is a valid and feasible method of 

analysis for relative quantification since differences between efficiencies of amplification 

of different target transcripts versus that of GAPDH, were within acceptable range (Livak 

and Schmittgen, 2001). Folds change of expression (ΔΔCT) was calculated as follows 

(Ling et al., 2012; Livak and Schmittgen, 2001; Schmittgen and Livak, 2008): 

 

ΔCT treated sample = CT gene of interest - CT GAPDH 

ΔCT control sample = CT gene of interest - CT GAPDH 

ΔΔCT = ΔCT treated sample - ΔCT control sample 

Folds change of expression = 2
-ΔΔCT 

 

Western Blot 

 

Cells were scraped in cold PBS using a cell scraper and centrifuged at 14,000 x 

g at 4°C for 10 minutes. The pelleted cells were resuspended in modified RIPA lysis 

buffer containing 50 mM Trizma base, 150 mM sodium chloride, 1 percent NP-40, 0.25 

percent sodium deoxycholate, 1 mM EDTA, 1 mM PMSF, 1 μg/ml pepstatin, 1 μg/ml 

leupeptin, 1 μg/ml aprotinin, 1 mM sodium vanadate, and 25 mM sodium fluoride. The 

cells were sonicated on ice for 10 seconds. The lysate was centrifuged at 14000 x g at 

4°C, and the pellet containing membrane fragments was discarded. The supernatant 

was assayed for protein content by the Bradford assay according to manufacturer’s 

instructions using bovine γ-globulin for standard curve (0-500 µg/ml). Approximately 50 

μg of the protein was loaded on precast bis-tris polyacrylamide gels and run at 200 mV 

for 30 minutes. The proteins on the gel were transferred to a PVDF membrane at 30 mV 

for 1 hr. The membrane with transferred proteins was washed once with ddH2O and 

blocked for 1 hour with 5 percent non-fat dry milk in tris-buffered saline containing 0.1 

percent tween-20. The membrane was incubated overnight at 4°C with a 1:500 dilution 

of the AKAP150 antibody in 5 percent non-fat dry milk in tris-buffered saline with 0.1 

percent tween-20. The blot was washed 3 times with tris-buffered saline with 0.1 percent 

tween-20, each time for 10 minutes. Next, the blot was incubated with a 1:10,000 dilution 

of a goat anti-donkey antibody coupled to horseradish peroxidase for 1 hour at room 
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temperature. After washing off the secondary antibody 3 times with tris-buffered saline 

with 0.1 percent tween-20 for 10 minutes per wash, the blot was incubated with Western 

Lightning chemiluminescent substrate solution, exposed to light sensitive radiographic 

film, and the film developed. 

 

Measurement of PKA activity 

 

When DRG cultures were grown in the absence of NGF and incubated for long 

period of time with a drug treatment (PGE2, L902688, forskolin or CTX), the media was 

initially replaced with drug-free fresh media for 20 minutes and cultures kept in the 

incubator at the time of doing the experiment. In experiments using cultures grown in the 

presence of NGF, this step was omitted. DRG cultures were exposed to different 

treatments at 37°C for 10 minutes, followed by two washes in ice-cold PBS. Cultures 

were lysed in ice-cold 250 µl lysis buffer that contains β-glycerophsophate 25 mM, 

EGTA 1.25 mM, MgCl2 10 mM, dithiothrietol 1 mM, protease inhibitors cocktail 2X, NaCl 

100 mM and triton-X 100 1 percent. Phosphatase inhibitors cocktail 2X was included 

both in lysis buffer and in PKA activity assay buffer in all experiments that does not 

examine the effects on NGF. In experiments involving the use of cultures grown in the 

presence of absence of NGF, phosphatase inhibitors cocktail 2X, or a single 

phosphatase inhibiting agent was included both in lysis and PKA activity assay buffers 

when indicated. Cells were scraped and snap-frozen in liquid nitrogen and then stored at 

-80°C and assayed 24 hours later. Cell lysates were briefly sonicated three rounds each 

of 10 one-second bursts at 60 percent of the power and for 60 percent of the time in cup 

horn sonicator followed by centrifugation for 30 minutes at the maximum speed and then 

the supernatants were separated. During and in between different manipulations cell 

lysates and supernatants were constantly kept on ice. Aliquots of 10 μl were added to 40 

µl aliquots of PKA activity assay buffer and the reaction was incubated at 30°C for 5 min. 

In this buffer, kemptide (10 µM), acts as a substrate that is selectively phosphorylated by 

PKA. At the end of the 5 minutes incubation, 20 μl of this reaction were spotted on P81 

filter paper discs, which were washed 5 times, each for 5 minutes, in dilute phosphoric 

acid and the bound radioactivity was measured. PKA activity was measured as follows; 

treatment-activated PKA was measured in the presence or absence of PKI (5 µM) and 

the difference represented selective PKA activation by that treatment. Total PKA activity 
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was measured also in the presence or absence of PKI (5 µM) after exposure to cAMP 

(10 µM) and the difference represented selective total PKA activity. PKA data are 

represented as the ratio of the former to the latter. The following equation describes the 

calculation. 

PKA activity = 
Treatment-activated PKA - its nonspecific activity [with PKI 6-24 (5 µM)]

Maximum PKA activity [with cAMP (10 µM)]-its nonspecific activity [with PKI 6-24 (5 µM)]
 

 

siRNA treatment 

 

At the time of treating DRG cultures with siRNA, F-12 media was removed and 

replaced with equal volume of Opti-MEM I. Meanwhile, siRNA-Lipofectamin complexes 

were prepared as described previously (Vasko et al., 2011). Briefly, siRNA (custom 

synthesized by Dharmacon) was dissolved in siRNA buffer at the concentration of 20 µM 

(cat no. B-002000-UB-100, Dharmacon), aliquoted and stored in -80 °C till the time of 

the experiment. Two solutions are to be prepared; siRNA-Opti-MEM I solution and 

Lipofectamine/RNAiMAX-Opti-MEM I solution. The siRNA solution in Opti-MEM I 

solution is composed of either 5 µl or 2.5 µl of the 20 µM siRNA stock solution and the 

volume q.s.ed to 50 µl with Opti-MEM I, to obtain a final concentration of 100 or 50 nM of 

siRNA in the 35 mm culture dish, respectively. The Lipofectamine/RNAiMAX solution 

was kept at 6 µl/50 µl Opti-MEM I. Then both solutions were combined into a one 100 µl 

mixture, which was left for 20 minutes at room temperature to form the siRNA-

transfecting agent complexes. When the siRNA complexes were ready, medium in the 

cultures grown in 35 mm dishes was replaced again with a 900 µl of fresh Opti-MEM I. 

The siRNA complexes suspension was added to these dishes and cells were returned to 

the incubator for 24 hours. At the end of the first 24 hours, the Opti-MEM I was replaced 

with regular F-12 media and cells were returned to the incubator for another 24 hours, 

before the second siRNA treatment was applied. It is noteworthy that the when Opti-

MEM I was used, Normocin was not added in accordance with the manufacturer’s 

instructions to avoid toxicity. The GRk2 siRNA sequences used is as follows: 5’-

GCAGGUACCUCCAGAUCUC-3’ [nucleotides 417-435 relative to start codon, accession 

no. NM_012776.1] (Morris et al., 2010). An overhanging 3’ dTdT was added on both 

complimentary strands. A control siRNA was obtained from Applied Biosystems (cat no. 

AM4611). 
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Assays of cAMP concentration and tyrosine phosphatase activity 

 

Cyclic AMP assay was done using 12-day old cultures exposed to vehicle of 1 

µM PGE2 for 5 days. Cyclic AMP was assayed using enzyme immunoassay kit obtained 

from Cayman Chemical. The assay procedures were carried out according to 

manufacturer’s instructions except that 50 µM IBMX was added to the lysis buffer. 

Tyrosine phosphatase assay was done using the ability of phosphatase to break down 

p-nitrophenyl phosphate into a colored product the concentration of which can be 

measured colorimetrically. The assay was done using a kit purchased from Sciencell 

according to manufacturer’s instructions. 

 

Data analysis 

 

Data are expressed as mean  the standard error of the mean for at least three 

independent experiments from separate harvests. Data were analyzed using one-way 

ANOVA followed by appropriate post hoc test to determine statistically significant 

differences between treatment groups or using student t-test as indicated. GraphPad 

Prism 4.02 was used to conduct the statistical analysis. A p < 0.05 was considered 

statistically significant in all experiments. 
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RESULTS 

 

Much evidence supports that acute sensitization of sensory neurons induced by 

PGE2 is mediated by the Gαs/cAMP/PKA pathway (Ferreira and Nakamura, 1979; 

Hingtgen et al., 1995; Taiwo et al., 1989). However, whether PGE2-induced sensitization 

is mediated by PKA under chronic inflammatory conditions was not directly investigated 

before. Moreover, direct measurement of activation of PKA in sensory neurons was 

never performed. PKA activation by PGE2 in sensory neurons was usually inferred from 

studies using inhibitors such as H-89 or PKI. 

Also, PGE2-induced sensitization in models of chronic inflammation was reported 

to be partially mediated by PKA (Hucho et al., 2005; Wang et al., 2007). However, in 

these studies, contribution of PKA-mediated signaling to PGE2-induced sensitization was 

inferred from usage of PKA inhibitors that can be non-selective depending on 

concentration. Because of this poor selectivity, attenuation of PGE2-induced sensitization 

by these PKA inhibitors can be attributed to non-selective inhibition of kinases other than 

PKA. 

Therefore the aims of the work presented in this dissertation are: 

1- To determine whether long-term exposure to NGF or PGE2 alters PKA activated 

by the eicosanoid. 

2- To determine the mechanism of such alteration. 

The studies outlined below can be divided in those involving DRG cultures grown in the 

presence of NGF and those involving cultures that were exposed to PGE2 for long-term. 

 

Characterization of PKA activity assay 

 

In order to use PKA-activity assay, I asked two questions; 1) whether the reaction 

conditions used allow for linear relationship between the duration of incubation of the 

substrate with PKA, and 2) whether phosphorylation of the substrate by PAK was 

selective. As mentioned earlier, PKA activity was measured as a function of 

incorporation of radioactive phosphate in kemptide, which is a peptide that is selectively 

phosphorylated by PKA (Demaille et al., 1979; Kemp et al., 1977). As shown in figure 1, 

purified bovine PKA catalytic subunit increased phosphorylation of kemptide by more 

than 650-fold and PKI, a specific PKA inhibitor, inhibited approximately 99 percent of 
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PKA-induced phosphorylation. Under the assay conditions used, PKA-induced 

phosphorylation exhibited linear relationship (r2 = 0.99) with duration for which the 

reaction was allowed to proceed (up to 10 minutes which is two times longer than the 

standard assay conditions used in all subsequent experiments involving PKA activity 

assay) (Fig. 2). This indicates that in the enzyme assay conditions used the substrates, 

ATP and kemptide, are in excess. Depletion of the substrates would cause the quantity 

of PKA-induced phosphorylation to reach a maximum and thus makes the reaction non-

linear and non-quantitative. Therefore, the conditions of the PKA activity assay used 

ensure linearity of the reaction and hence quantitation. 

Measurement of PKA activation by PGE2 in DRG cultures showed concentration-

dependence (Fig. 3). The duration of exposure of the culture to PGE2 was kept constant 

at 10 minutes to match the duration of exposure to the eicosanoid in release 

experiments. No significant PKA activation, compared to vehicle [1-methyl-2-

pyrrolidinone; (MPL)], was evident at 100 nM PGE2. However, 0.3, 1, 3 and 10 µM PGE2 

caused significantly increasing PKA activity. The extent to which PKA is activated by the 

aforementioned concentrations of PGE2 was significantly different from vehicle and from 

each other at all concentrations, except 10 µM PGE2 which activated PKA to a similar 

extent as 3 µM PGE2. The relationship between concentration of PGE2 and PGE2-

activated PKA was non-linearly fitted to the sigmoid curve and had an EC50 ≈ 0.8 µM 

PGE2. The correlation coefficient r2 was 0.95 showing strong positive correlation. 

The question that arises is whether this effect is selective for PGE2 or that other 

agents that activate PKA can do so in sensory neuronal cultures? To address this 

question, sensory neuronal cultures were exposed to such drugs and PKA activation 

was subsequently assayed. Since these drugs were dissolved in different vehicles, the 

data is presented normalized to vehicle (Fig. 4). Compared to vehicle, PGE2 (1 µM, non-

selective EP receptors agonist), L902688 (300 nM, selective EP4 agonist), cPGI2 (1 µM, 

stable selective IP agonist), forskolin (1 µM, adenylyl cyclase activator), cholera toxin 

(1.5 µg/ml, locks Gαs in the activated conformation) and isoproterenol (10 µM, selective 

βAR agonist) activated PKA 9.4, 8.9, 3.5, 5.3, 8.5 and 1.2 folds, respectively. It is 

noteworthy that isoproterenol at a relatively high concentration caused the least 

activation of PKA. This is a surprising finding since isoproterenol, a selective βAR 

agonist, is frequently used as a sensitizing agent in experimental animals (Hucho et al., 

2005; Khasar et al., 1999b; Levine et al., 1988). Attempts to establish concentration-PKA 

activation relationship were not successful, since a range of isoproterenol concentrations 
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from 1 µM - 100 µM activated PKA to a similar extent (the ratio of isoproterenol-activated 

PKA to total PKA activity were 0.063 ± 0.005, 0.119 ± 0.007, 0.100 ± 0.004, 0.108 ± 

0.009, 0.129 ± 0.011, 0.113 ± 0.003, for 1, 3, 10, 30 and 100 µM, respectively). A 

possible explanation for the lack of robust concentration-dependent PKA activation by 

isoproterenol is that βARs are expressed at a very low level in sensory neuronal cultures 

and hence the smallest isoproterenol concentration that I used is sufficient to saturate 

them and produce maximal PKA activation.  
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Figure 1. Phosphorylation of kemptide by bovine heart catalytic subunit is highly selective. The 
ordinate shows the number of β-particles emitted by P

32
 incorporated as phosphate group in the 

presence of vehicle, kemptide or kemptide and the specific PKA inhibitor, PKI. Each column 
represents the mean of two trials. 
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Figure 2. Phosphorylation of kemptide by bovine heart PKA catalytic subunit is highly linear under 
the conditions of the assay used. The ordinate shows the number of β-particles emitted by P

32
 

incorporated as phosphate group in kemptide. Under conditions of the assay used to determine 
PKA activity, sufficient substrates (kemptide and ATP) are present allowing the reaction to 
proceed with high degree of linearity for 10 minutes. Each point represents the mean of two trials. 
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Table 1. PGE2 activates PKA in a concentration-dependent manner in adult rat sensory neuronal 
cultures.  

 

 

Concentration of 

PGE2 (µM) 

Ratio of PGE2-activated PKA to vehicle-activated PKA, 

both normalized first to total PKA activity (mean ± 

standard error) 

n 

Vehicle 0.07 ± 0.02 4 

0.1 0.06 ± 0.01 6 

0.3 0.23 ± 0.04a,b 4 

1.0 0.48 ± 0.1a,b,c 4 

3.0 0.71 ± 0.05a,b,c,d 4 

10 0.78 ± 0.1a,b,c,d 4 

 

 

a
 signifiucanlt different from vehicle 

b
 significantly different from PGE2 0.1 µM 

c
 significantly different from PGE2 0.3 µM 

d
 significantly different from PGE2 1.0 µM 

 

Statistical analysis was performed by one-way ANOVA followed by Bonferroni’s post-test. 
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Figure 3. Concentration-response curve for PGE2-induced activation of PKA. Each point represents mean ± SEM 
of PKA activity after 10-minutes exposure to PGE2 normalized to total PKA which is measured after exposure to 
cAMP 10 µM. The abscissa shows the log concentration of PGE2. PKA activity at each concentration is 
significantly different from all others, p < 0.05, except that 3 and 10 µM are not significantly different. Statistical 
analysis was performed by one-way ANOVA followed by Bonferroni’s post-test. 
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Figure 4. Treatments-induced activation of PKA normalized to its respective vehicle. Each column represents mean ± SEM of PKA activity after 
10-minutes exposure to the indicated treatment at the various concentrations stated. PKA activity was normalized to total PKA which is 
measured after exposure to cAMP 10 µM. An asterisk indicates a statistically significant difference between PKA activation by each treatment 
compared to its respective vehicle using student’s T-test. 
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Inhibition of PKA reversed acute prostaglandin-induced 

sensitization of adult rat sensory neurons grown without NGF 

 

As discussed in detail in the introduction, acute PGE2-induced sensitization, as 

measured by hypernociception, is mediated by PKA (Ferreira and Nakamura, 1979; 

Taiwo and Levine, 1991). The question that presents itself is whether inhibition of PKA in 

sensory neuronal cultures, attenuate PGE2-induced sensitization? This was confirmed in 

experiments conducted by Chunlu Guo in which PGE2 (1 µM) augmented capsaicin-

evoked iCGRP release from 10.5 ± 1.34 to 15.56 ± 1.44 as percent of total content. H-89 

(10 µM), the PKA inhibitor, attenuated acute PGE2-mediated augmentation of capsaicin-

evoked iCGRP release, thus confirming previous findings (Fig. 5). 

It is noteworthy that H-89 had no direct effects on basal release of iCGRP when 

compared to basal release in the presence of vehicle (3.4 ± 0.65 versus 2.1 ± 0.58 

iCGRP released as percent of total content, respectively) nor did it alter release evoked 

by 30 nM capsaicin when compared to capsaicin-evoked release in the presence of 

vehicle (32.8 ± 4.2 versus 33.0 ± 3.2 iCGRP released as percent of total content, 

respectively). This substantiates the role of PGE2 as an agent that sensitizes sensory 

neuronal response to an algogen (capsaicin) rather than a direct activator as well as the 

role PKA plays in augmentation of evoked but not basal iCGRP release. 

It is possible that H-89 at 10 µM may inhibit kinases other than PKA (for review of 

H-89 selectivity, refer to the discussion section). However, it was found that the only 

receptors that are important for PGE2-induced sensitization are coupled to PKA (Southall 

and Vasko, 2001). Therefore this data strongly suggests that acute PGE2-induced 

sensitization is mediated by PKA.  
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Figure 5. The PGE2-induced increase of capsaicin-evoked iCGRP release from sensory neurons 
is attenuated by H-89. Each column represents the mean ± SEM of iCGRP release as percent of 
total iCGRP content. Open columns indicate basal release whereas closed columns represent 
capsaicin-evoked iCGRP release. An asterisk indicates a statistically significant difference 
between capsaicin-evoked iCGRP release after exposure to vehicle versus after a 20 minute 
exposure to PGE2 (1 µM) using one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
Experiment was performed by Chunlu Guo, MD. 
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Acute PGE2-induced sensitization is not attenuated by PKA 

inhibition in adult rat sensory neurons are grown in the presence of 

NGF 

 

Growing adult rat sensory neuronal cultures in the presence or absence of the 7S 

form of NGF for 12 days was used as a model of chronic inflammation, since NGF is 

produced in humans with chronic inflammatory pain disorders as well as in animal 

models of chronic inflammatory hyperalgesia (see introduction, section on Nerve Growth 

Factor and discussion). 

Surprisingly, when DRG cultures were grown in the presence of NGF for 12 days 

(30 ng/ml), augmentation of capsaicin-evoked iCGRP release by PGE2 was resistant to 

attenuation by 10 µM H-89 (Fig. 6). In the absence of H-89, capsaicin-stimulated iCGRP 

release was augmented by PGE2 (1 µM) from 109.3 ± 12.09 to 207.5 ± 22.52 

fmol/well/10 min. PGE2 also augmented iCGRP release from 171.1 ± 19.44 to 250.9 ± 

24.8 fmol/well/10 min even with 10 µM H-89 was included in the release buffer. H-89 by 

itself did not cause significant augmentation of capsaicin-evoked iCGRP release (109 ± 

12.9 and 171 ± 19.4 fmol/well/10 min in the absence or presence of 10 µM H-89, 

respectively). Thus, in sensory neuronal cultures grown in the presence of NGF, PGE2-

induced augmentation of capsaicin-evoked iCGRP release was not attenuated by H-89. 

It is possible that PKA still mediates PGE2-induced sensitization after chronic 

NGF but the activity of the kinase is increased so that full inhibition by 10 µM H-89 is not 

achieved. Total specific PKA activity (measured by adding 10 µM cAMP) was not 

statistically different in neurons grown for 12 days in the presence or absence of NGF 

(30 ng/ml) suggesting that exposure to NGF does not increase PKA activity (Fig. 7). This 

cAMP concentration was chosen to ensure activation of all the PKA available in lysates 

from the DRG cultures since cAMP concentration was a supramaximal one (higher than 

the concentration sufficient to maximally activate PKA) (Smales and Biddulph, 1985; 

Walsh et al., 1968a). Another possibility is that PKA no longer mediates PGE2-induced 

sensitization due to a signaling switch caused by growing sensory neurons in NGF. 

Thus, in neurons grown in the presence of NGF, PKA inhibition does not 

attenuate PGE2-induced sensitization and there is no increase in the activity of the 

kinase, suggesting a signaling switch.  
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Figure 6. The PGE2-induced augmentation of capsaicin-evoked iCGRP release from adult rat 
sensory neuronal cultures grown in the presence of added NGF is not attenuated by H-89. Each 
column represents the mean ± SEM of iCGRP release as fmol/well/10 minutes. Open columns 
indicate basal release whereas closed columns represent capsaicin-evoked iCGRP release. An 
asterisk indicates a statistically significant difference between capsaicin-evoked iCGRP release 
after exposure to vehicle versus after 20 minute exposure to PGE2 (1 µM) using one-way 
ANOVA followed by Bonferroni’s post-test, p < 0.05. Experiment was performed by Chunlu Guo, 
MD. 
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Figure 7. NGF does not alter total PKA activity in adult rat sensory neuronal cultures. 
Each column represents mean ± SEM of specific total PKA activity calculated after 
exposure to 10 µM cAMP. No statistical significance was detected using one-way 
ANOVA. 
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NGF does not reduce mRNA levels of AKAP, β-arrestins or Grks 

 

PKA signaling is directly coupled to A-kinase anchor proteins (AKAPs), which 

localizes PKA and relevant (partner) signaling molecules (such as Gαs, adenylyl cyclases 

and PDEs) to signaling compartments important for mediating effects of PGE2 (Zhang et 

al., 2008). Therefore, it is possible that reduction in the expression of the anchor protein 

would cause uncoupling of PKA from Gαs/adenylyl cyclase in compartments specifically 

important for PGE2 signaling. To investigate the validity of this hypothesis, I measured 

mRNA levels of AKAP5 and 250 which were shown to be expressed in sensory neurons 

and/or mediating PGE2-induced sensitization (Fan et al., 2001; Irmen et al., 2008; Jeske 

et al., 2008; Rathee et al., 2002b; Schnizler et al., 2008; Tao et al., 2007; Willoughby et 

al., 2006; Zhang et al., 2008). Relative levels of mRNA of Akap5 (AKAP79/150) and 

Akap12 (AKAP250, gravin) did not change in DRG neurons grown in the presence of 

NGF compared to control cultures (Fig. 8). This suggests that the loss of the function of 

PKA in mediating PGE2-induced sensitization after chronic exposure to NGF does not 

depend on changes in mRNA levels of these AKAPs. 

As discussed in the Introduction, GPCR desensitization machinery is based on β-

arrestins 1 and 2 as well as Grks2, 3, 5 and 6. These molecules play pivotal role not only 

in desensitization of GPCRs, but also in recruitment of alternative non-canonical 

signaling pathways. Alteration of the level of expression of these molecules is correlated 

with rheumatoid arthritis, hypertension, schizophrenia and other pathological conditions 

(Bychkov et al., 2011; Gros et al., 1997a; Gros et al., 2000; Kleibeuker et al., 2008b; von 

Banchet et al., 2011; Vroon et al., 2004; Wu et al., 2012). It is plausible that NGF 

switches PGE2 signaling by altering the level of expression of one or more of β-arrestins 

or Grks. However, as shown in figure 8, NGF has no effect on the level of expression of 

the mRNA of β-arrestins or Grks. 

Levels of mRNA do not always correlate very well with the proteins they encode 

(for detailed review of the topic, see the discussion). Despite the lack of statistically 

significant effect of growing sensory neuronal cultures in the presence of absence of 30 

ng/ml NGF on the levels of mRNA for genes of interest when (Fig. 9), there is a 

possibility that the protein levels of these genes are more strongly modulated by NGF. In 

data presented in figure 8 AKAP5 seems a likely case where the above scenario takes 

place. Therefore, Chunlu Guo conducted an experiment in which the protein level of 

AKAP 5 was measured using western blot. Surprisingly, growing adult rat sensory 
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neuronal cultures in 30 ng/ml NGF reduced the expression of AKAP 5 significantly by 

more than 50percent. Therefore, one such possible mechanism by which NGF reduces 

PKA mediated signaling is reducing AKAP 5 which anchors PKA in the proper 

compartment to allow receptor-bound ligand to activate it through Gαs/adenylyl cyclase. 

These data suggest that the loss of mediation of PGE2-induced sensitization by 

PKA is not caused by alterations in the mRNA levels of the AKAPs, β-arrestins or Grks 

expressed in sensory neurons. 
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Figure 8. NGF does not alter the relative mRNA level of AKAPs, β-arrestins or Grks in adult rat sensory neuronal cultures. Each 
column represents the mean ± SEM of the relative level of mRNA normalized to that of control cultures. Grey columns represent 
sensory neuronal cultures grown in the presence of added NGF (30 ng/ml) for 12 days while the dotted line indicates control cultures 
grown in the absence of NGF. There was no statistical significance using one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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Figure 9. NGF reduces expression of AKAP 5 in adult rat sensory neuronal cultures. Each column represents the mean ± SEM of the ratio 
of the densitometry values of AKAP 5 protein to that of actin, normalized to control cultures. Open and closed column represents values 
from sensory neuronal cultures grown in the absence or presence of added NGF (30 ng/ml) for 12 days, respectively. An asterisk 
indicates a statistically significant difference between AKAP 5 in cultures grown in the presence or absence of 30 ng/ml NGF, using 
student t-test, p < 0.05. Experiment was performed by Chunlu Guo, MD. 
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Attenuation of PGE2-induced activation of PKA in sensory neuronal 

cultures grown in NGF is dependent on phosphatase inhibition 

 

Since inhibition of PKA had no effect on PGE2-mediated augmentation of iCGRP 

release from sensory neurons grown in the presence of NGF, it is intriguing to determine 

whether PGE2 activates PKA in neurons grown in NGF versus those grown without NGF. 

As evident from the literature, PKA activity has not been directly measured in DRG 

neurons in response to stimulation by PGE2. Rather, the role of PKA in mediating PGE2-

induced sensitization is inferred from the ability of inhibitors to attenuate PGE2-induced 

sensitization. I asked whether PGE2 activates PKA in cultured sensory neurons after 

acute exposure. To this end, PKA activation was assayed after exposure to PGE2 (1 µM) 

for 10 minutes in sensory neuronal cultures grown in the presence or absence of NGF 

(30 ng/ml). As described in the materials and methods section, PKA activity is expressed 

as the ratio between treatment-activated PKA to total PKA. In order to measure PKA 

activity, a cocktail of phosphatase inhibitors was included in the lysis buffer and the PKA-

activity assay buffer. Under these conditions, PKA activity in cultures that were exposed 

to vehicle for 10 minutes (basal PKA activity) was not significantly different whether the 

cultures were grown in the absence or presence of NGF (0.16 ± 0.03 and 0.16 ± 0.02 of 

treatment-activated PKA/total PKA activity, respectively). After a 10 min exposure to 1 

µM PGE2, PKA became significantly activated to a similar extent (approximately 3 folds 

when compared to vehicle) in cultures grown in the presence or absence of 30 ng/ml 

NGF (0.53 ± 0.06 and 0.45 ± 0.04, Fig. 10). In cultures grown with or without NGF, PGE2 

at 100 nM noticeably, although not significantly, increased PKA activity (0.2 ± 0.02 and 

0.2 ± 0.03, respectively) compared with vehicle (0.16 ± 0.03 and 0.16 ± 0.02, 

respectively). 

As mentioned in the methods section, kinase activity was measured by 

quantifying the amount of radioactive phosphate incorporated into a peptide substrate 

(kemptide) that was selectively phosphorylated by PKA. Since the quantity of a 

phosphorylated substrate in a given cell lysate is determined by the balance of addition 

of the phosphate by kinases and removal of phosphate by phosphatases, it is important 

to inhibit phosphatases in order to study kinases. This way, phosphatase activity is 

minimized while kinase activity is left uninhibited allowing it to be quantified without 

interference. As described in the previous experiment, when phosphatases were 
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inhibited using a cocktail of inhibitors, PKA activation by PGE2 was not directly altered by 

growing sensory neuronal cultures in NGF. Because of this observation, it is reasonable 

to assume that removal of phosphatase inhibition will allow any differences in 

phosphatase activity to be observed. When the cocktail of phosphatase inhibitors was 

left out of the lysis and assay buffers and the PKA activity assay was repeated, the 

impact of phosphatase activity on PKA-induced phosphorylation became evident (Fig. 

11). Under these conditions, basal PKA activity (after 10 minutes exposure to vehicle) 

was reduced to approximately one third of its value when phosphatases were inhibited in 

cultures grown in the absence or presence of NGF (0.05 ± 0.01 and 0.04 ± 0.003, 

respectively). Importantly, activation of PKA induced by 1 µM PGE2 was significantly less 

in cultures grown in the presence of NGF (0.16 ± 0.024) than in cultures grown in the 

absence of NGF (0.28 ± 0.037). Therefore NGF indirectly attenuates PKA activation by 

PGE2 in a phosphatase-dependent manner.  
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Figure 10. In the presence of phosphatase inhibitors cocktail, PGE2-induced activation of 
PKA is NGF-independent. Each column represents the mean ± SEM of the treatment-
induced PKA activity normalized to total PKA activity measured after exposure to 10 µM 
cAMP. The left panel represents PKA activity from cells grown in the absence of added 
NGF while the right panel represents PKA activity from cells grown in the presence of 
added NGF (30 ng/ml) for 12 days. Open columns represent cells treated acutely with 
vehicle, while closed columns represent cells exposed to PGE2 (1 µM) for 10 minutes. 
Asterisks indicate statistically significant differences from vehicle, while daggers 
represent significant difference from 100 nM PGE2 using one-way ANOVA followed by 
Bonferroni’s post-test, p < 0.05. 



 

81 
 

 

  

0.0

0.1

0.2

0.3

*

NGF (30 ng/ml)

Vehicle PGE2

(100 nM)

PGE2

(1 M)

Vehicle PGE2

(100 nM)

PGE2

(1 M)

No added NGF

†

* † ‡

N = 6

T
re

a
tm

e
n
t-

s
ti
m

u
la

te
d

P
K

A
/T

o
ta

l 
P

K
A

 a
c
ti
v
it
y

Figure 11. In the absence of phosphatase inhibitors cocktail, PGE2-induced activation of PKA is 
NGF-dependent. Each column represents the mean ± SEM of the treatment-induced PKA 
activity normalized to total PKA activity measured after exposure to 10 µM cAMP. The left panel 
represents PKA activity from cells grown in the absence of added NGF while the right panel 
represents PKA activity from cells grown in the presence of NGF 30 ng/ml for 12 days. Open 
columns represent cells treated acutely with vehicle, while closed columns represent cells 
exposed to PGE2 1 µM for 10 minutes. Asterisks indicate statistically significant differences from 
vehicle, while daggers represent significant difference from 100 nM PGE2 and  a double dagger 
represents significant difference from cells grown in the absence of added NGF and acutely 
treated with PGE2 (1 µM) for 10 minutes using one-way ANOVA followed by Bonferroni’s post-
test, p < 0.05. 
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Protein tyrosine phosphatases inhibition using sodium vanadate 

does not reverse in NGF-induced attenuation of PGE2-induced 

activation of PKA 

 

Since the absence of phosphatase inhibitors results in significant attenuation of 

PGE2-inuduced PKA activation, I next attempted to determine which phosphatases 

account for this action. There are two major classes of protein phosphatases, protein 

tyrosine phosphatases (PTPs) and protein serine/threonine phosphatases (PSPs). PTPs 

can be selectively inhibited by sodium vanadate (Swarup et al., 1982). When added to 

both the lysis and PKA-activity assay buffers, sodium vanadate (10 µM) did not reverse 

NGF-induced attenuation of PGE2-activated PKA (Fig. 12). Ten-minute exposure to 1 

µM PGE2-activated PKA in sensory neurons grown in the absence of NGF significantly 

higher than in neurons grown in the presence of NGF (0.13 ± 0.01 versus 0.08 ± 0.01, 

respectively). It is worth noting that baseline PKA activities in the presence of sodium 

vanadate, were similar to those obtained in the absence of phosphatase inhibitors (0.05 

± 0.004 and 0.03 ± 0.006 in cultures grown in the absence or presence of NGF 

respectively). This finding suggests that PTPs do not exert significant effect on baseline 

PKA activity. 

Interestingly, in the absence of phosphatase inhibitors, PGE2-activated PKA was 

more than 2 fold higher than PGE2-activated PKA when sodium vanadate was included 

(0.28 ± 0.037 versus 0.13 ± 0.01, Fig. 8 and Fig. 9 respectively). One potential 

explanation is that sodium vanadate inhibits PKA activity. However, previous work 

demonstrated that sodium vanadate does not inhibit purified PKA catalytic subunit 

activity (Pluskey et al., 1997). One form of vanadate, named decavanadate, can inhibit 

PKA activity by binding to kemptide, the peptide substrate selectively phosphorylated by 

PKA. Nevertheless, formation of this form of vanadate is significant only at pH ≤ 5.5, 

which is far below the pH of the buffer used here (Goddard and Gonas, 1973). 

In order to confirm that the sodium vanadate was effective in inhibiting tyrosine 

phosphatase under the experimental conditions employed, the purified protein tyrosine 

phosphatase PTP1B was used. As shown in figure 13, 10 µM sodium vanadate inhibited 

purified PTP1B by 91 ± 2.3 percent, yet it had no effect on NGF-mediated attenuation of 

PGE2-activated PKA signaling as mentioned above. 

Collectively, these experiments suggest that PTPs do not mediate the 

attenuation of PGE2-activated PKA by NGF. Also, data presented in figures 11 and 12 
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(in comparison with data from figures 8 and 9) suggest that PTPs play a role in 

regulating PGE2-activated PKA. The mechanisms and purpose of such modulation are 

beyond the scope of this thesis.  
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Figure 12. Sodium vanadate does not reverse NGF-induced attenuation of PGE2-stimulated PKA 
activation. Each column represents the mean ± SEM of the treatment-induced PKA activity 
normalized to total PKA activity measured after exposure to 10 µM cAMP. The left panel 
represents PKA activity from cells grown in the absence of added NGF while the right panel 
represents PKA activity from cells grown in the presence of added NGF 30 ng/ml for 12 days. 
Open columns represent cells treated acutely with vehicle, while closed columns represent cells 
exposed to PGE2 (1 µM) for 10 minutes. Asterisks indicate statistically significant differences from 
vehicle, while daggers represent significant difference from 100 nM PGE2 and  a double dagger 
represents significant difference from cells grown in the absence of added NGF and acutely 
treated with PGE2 (1 µM) for 10 minutes using one-way ANOVA followed by Bonferroni’s post-
test, p < 0.05. 
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Figure 13. Sodium vanadate inhibits purified PTP1B activity. Each column 
represents mean ± SEM of phosphatase activity normalized to vehicle. An 
asterisk indicates statistically significant difference from vehicle using one-
way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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Calcineurin does not mediate NGF-induced attenuation of PGE2 

activation of PKA 

 

The most well studied members of PSPs include PP1, PP2A, PP2B (calcineurin), 

PP2C, PP4 and PP6 (Virshup and Shenolikar, 2009). Calcineurin plays a role in multiple 

functions in sensory neurons, including mediating the desensitization of TRPV1 channel 

(Docherty et al., 1996). Calcineurin also regulates NGF-mediated activation of the 

transcription factor nuclear factor of activated T-cells (NFAT) in sensory neurons (Groth 

et al., 2007). Therefore it is possible that calcineurin mediates the ability of NGF to 

reduce PKA-activation by PGE2. To investigate this possibility, I used the selective 

inhibitor calcineurin autoinhibitory peptide. Dephosphorylation of peptide substrates was 

prevented by calcineurin autoinhibitory peptide with an IC50 ≈ 10 µM (Hashimoto et al., 

1990). When 40 µM of calcineurin autoinhibitory peptide was included in the lysis and 

PKA assay buffers. This concentration was chosen since it was reported to inhibit 

calcineurin-induced modulation of threshold stimulus (stimulus at which at the axons of 

cortical neurons) (Chen et al., 2008). Under these conditions, calcineurin autoinhibitory 

peptide did not reverse NGF-induced attenuation of PGE2-activated PKA (0.26 ± 0.04 in 

grown in the absence of NGF versus 0.12 ± 0.03 in cultures grown in the presence of 

NGF, Fig. 14). This suggests that calcineurin (PP2B) does not mediate the reduction of 

PGE2-activated PKA by NGF. 

It also is noteworthy that basal PKA activity (after 10-minute exposure to vehicle) 

measured with calcineurin inhibitor is very similar to that measured without phosphatase 

inhibitors (0.05 ± 0.008 in cultures grown without NGF and 0.02 ± 0.001 in cultures 

grown in the presence of NGF). This suggests that calcineurin does not contribute to 

PKA signaling under basal conditions. Since calcium is essential for activation of 

calcineurin, it is to be expected that its phosphatase activity is low in cells under resting 

conditions, since intracellular calcium is maintained at very low concentrations. When 

the lysis and PKA activity assay buffers contained calcineurin inhibitory peptide, PGE2-

induced PKA activity after 10 minute exposure was also similar to values obtained in the 

absence of phosphatase inhibitors altogether (see discussion of Fig. 11), suggesting that 

calcineurin does not contribute to PKA signaling even after stimulation with PGE2.  
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Figure 14. Calcineurin autoinhibitory peptide does not reverse NGF-induced attenuation of PGE2-
stimulated PKA activation. Each column represents the mean ± SEM of the treatment-induced 
PKA activity normalized to total PKA activity measured after exposure to 10 µM cAMP. The left 
panel represents PKA activity from cells grown in the absence of added NGF while the right panel 
represents PKA activity from cells grown in the presence of added NGF 30 ng/ml for 12 days. 
Open columns represent cells treated acutely with vehicle, while closed columns represent cells 
acutely exposed to PGE2. Asterisks indicate statistically significant differences from vehicle, while 
a dagger represents significant difference from 100 nM PGE2 and  a double dagger represents 
significant difference from cells grown in the absence of added NGF and acutely treated with 
PGE2 (1 µM) for 10 minutes using one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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The non-selective ser/thr phosphatase inhibitor okadaic acid, but 

not the specific PP1 inhibitor-2, reverses NGF-induced attenuation 

of PGE2-induced activation of PKA 

 

The remaining serine/threonine phosphatases include several members such as 

PP1, PP2A, PP2C, PP4, PP5, PP6 and PP7. Unfortunately, there are no selective 

inhibitors of these phosphatases. However, by employing multiple inhibitors, it is 

possible to narrow down candidate phosphatases (Swingle et al., 2007) that may 

contribute to the observed attenuation of PGE2-activated PKA by NGF. 

Okadaic acid is a potent but only somewhat selective serine/threonine 

phosphatase inhibitor. At relatively high concentration (2 µM), okadaic acid inhibits most 

serine/threonine phosphatases including PP1 (IC50 ≈ 15-50 nM), PP2A (IC50 ≈ 0.1-0.3 

nM), PP4 (IC50 ≈ 0.1-0.3 nM), PP5 (IC50 ≈ 3.5 nM) (Swingle et al., 2007) and PP6 (IC50 ≈ 

0.1-0.3 nM) (Prickett and Brautigan, 2006). As shown in figure 15, at this concentration 

okadaic acid mitigates the NGF-induced attenuation of PKA activation induced by 1 µM 

PGE2 (0.16 ± 0.01 in cultures grown with NGF versus 0.21 ± 0.02 in control cultures). 

At a lower concentration (low nanomolar range), okadaic acid is more selective 

for PP2A, PP4 and PP6 than PP1 (Swingle et al., 2007). As shown in figure 16, when 

okadaic acid was added to both lysis and PKA-activity assay buffers at 2 nM, the effect 

of NGF on activation of PKA signaling by 1 µM PGE2- was also attenuated (0.164 ± 

0.028 in cultures grown with NGF versus 0.231 ± 0.028 in control cultures). Collectively, 

the experiments using high- and low-concentration okadaic acid, point to the possibility 

that the observed NGF-mediated attenuation of PGE2-activated PKA signaling is 

mediated by (a) phosphatase(s) that is sensitive to inhibition by okadaic acid in the low 

nanomolar range. The ability of low concentration of okadaic acid to attenuate the effect 

of NGF suggests that this phosphatase may belong to the PP2A/PP4/PP6 family, 

although PP1 cannot be affirmatively ruled out. 

It is noteworthy that at 2 µM, okadaic acid affected baseline PKA activity as well 

as PKA activation by 100 nM PGE2 in the presence or absence of NGF. Baseline PKA 

activity (after exposure to vehicle for 10-minutes) was significantly increased from 0.06 ± 

0.005 to 0.09 ± 0.007 in cultures grown in the absence of NGF and also increased but 

without significance from 0.04 ± 0.009 to 0.06 ± 0.007 in cultures grown in the presence 

of NGF. More importantly, PKA activation by 10-minutes exposure to 100 nM PGE2 was 

nearly significantly doubled from 0.08 ± 0.017 to 0.14 ± 0.02 in cultures grown in the 
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absence of NGF and from 0.06 ± 0.008 to 0.1 ± 0.01 in cultures grown in the presence of 

NGF (Fig. 15 and Fig. 16). This may be explained by the fact that PP1, which is more 

strongly inhibited by the higher concentration of okadaic acid, is more active while the 

cells are in the baseline unstimulated state. This is not surprising as PP1 was originally 

thought to exert a braking effect on cellular signaling and this prevents aberrant 

phosphorylation and the subsequently activated signaling (Roadcap et al., 2007). 

To further investigate whether PP1 mediates the NGF effect on PGE2-activated 

PKA, I added 100 nM of inhibitor-2 (I-2) to the lysis and assay buffers. I-2 is a highly 

selective inhibitor of PP1 and 100 nM was shown to inhibit approximately 95 percent of 

the phosphatase activity of purified PP1 (Park and DePaoli-Roach, 1994). Another 

advantage is that unlike inhibitor-1, another PP1 inhibitor, I-2 does not require prior 

phosphorylation to activate its inhibitory properties (Oliver and Shenolikar, 1998). As 

shown in figure 17, I-2 (100 nM) was unable to reverse NGF-induced attenuation of 

PGE2-activated PKA. This is analogous to the results obtained with low-concentration 

okadaic acid (Fig. 16) and supports the notion that PP1 does not influence the action of 

NGF on PGE2-activated PKA (0.136 ± 0.017 in cultures grown with NGF versus 0.219 ± 

0.036 in control cultures). 

Baseline PKA activity was not significantly different in lysates obtained from 

cultures grown in the absence of NGF without phosphatase inhibitors compared to when 

100 nM I-2 was added (0.05 ± 0.012 vs 0.03 ± 0.002). In lysates from cultures grown in 

the presence of NGF, however, PKA activity was significantly lower when I-2 was added 

(0.037 ± 0.003 vs 0.027 ± 0.002). Despite that PP1 represents > 90 percent of the total 

serine/threonine phosphatase activity in cells in general (Shi, 2009; Virshup and 

Shenolikar, 2009), PP1 does not appear to play a significant role in inhibiting baseline 

phosphorylation by PKA in sensory neuronal cultures grown in the absence of NGF. 

Surprisingly, PP1 seems to enhance baseline PKA signaling in sensory neuronal 

cultures grown in the presence of NGF. 

Collectively, the experiments using okadaic acid and I-2 suggest that the 

observed effect of NGF is mediated, at least in part, by a serine/threonine protein 

phosphatase, which is insensitive to I-2 and is sensitive to okadaic acid at low 

concentration, possibly a member of the PP2A/PP4/PP6 family of phosphatases.  
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Figure 15. Okadaic acid (2 µM) reverses NGF-induced attenuation of PGE2-stimulated PKA 
activation. Each column represents the mean ± SEM of the treatment-induced PKA activity 
normalized to total PKA activity measured after exposure to 10 µM cAMP. The left panel 
represents PKA activity from cells grown in the absence of added NGF while the right panel 
represents PKA activity from cells grown in the presence of added NGF 30 ng/ml for 12 
days. Open columns represent cells treated acutely with vehicle, while closed columns 
represent cells acutely exposed to PGE2. Asterisks indicate statistically significant 
differences from vehicle, while a dagger represents significant difference from 100 nM PGE2 
using one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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Figure 16. Okadaic acid (2 nM) reverses NGF-induced attenuation of PGE2-stimulated PKA 
activation. Each column represents the mean ± SEM of the treatment-induced PKA activity 
normalized to total PKA activity measured after exposure to 10 µM cAMP. The left panel 
represents PKA activity from cells grown in the absence of added NGF while the right panel 
represents PKA activity from cells grown in the presence of added NGF 30 ng/ml for 12 days. 
Open columns represent cells treated acutely with vehicle, while closed columns represent cells 
acutely exposed to PGE2. Asterisks indicate statistically significant differences from vehicle, while 
daggers represent significant difference from 100 nM PGE2 using one-way ANOVA followed by 
Bonferroni’s post-test, p < 0.05. 
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Figure 17. I-2 does not reverse NGF-induced attenuation of PGE2-stimulated PKA activation. 
Each column represents the mean ± SEM of the treatment-induced PKA activity normalized to 
total PKA activity measured after exposure to 10 µM cAMP. The left panel represents PKA 
activity from cells grown in the absence of added NGF while the right panel represents PKA 
activity from cells grown in the presence of added NGF 30 ng/ml for 12 days. Open columns 
represent cells treated acutely with vehicle, while closed columns represent cells acutely 
exposed to PGE2. Asterisks indicate statistically significant differences from vehicle, while 
daggers represent significant difference from 100 nM PGE2 and  a double dagger represents 
significant difference from cells grown in the absence of added NGF and acutely treated with 
PGE2 (1 µM) for 10 minutes using one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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Microcystin- LR reverses NGF-induced attenuation of PGE2-induced 

activation of PKA 

 

As mentioned above okadaic acid has a potent inhibitory effect on several 

serine/threonine phosphatases. Microcystin-LR (MCS-LR) is a potent inhibitor of 

serine/threonine phosphatases PP1, PP2A, PP4, PP5 and PP6 (IC50 ≈ 0.3-1, < 0.1-1, 

0.15 and 1 nM, respectively) (Honkanen et al., 1990). As shown in figure 18, MCS-LR 

(100 nM) completely reversed the attenuation of PGE2-activated PKA caused by growing 

adult rat sensory neuronal cultures in NGF (0.2 ± 0.02 in cells grown without NGF versus 

0.2 ± 0.03 in cells grown in 30 ng/ml NGF). 

MCS-LR did not significantly increase basal PKA activity in lysates obtained from 

cultures grown in the absence of NGF when compared to those without phosphatase 

inhibitors (0.07 ± 0.004 compared to 0.05 ± 0.01). However, when grown in the presence 

of NGF, basal PKA activity in the lysates is significantly higher when MCS-LR is added 

(0.06 ± 0.007 versus 0.04 ± 0.003). Therefore NGF increases the activity of a MCS-LR-

sensitive phosphatase that appears to reduce PKA-mediated phosphorylation in sensory 

neuronal cultures. These experiments suggest that NGF indirectly attenuates PGE2-

induced activation of PKA signaling via a MCS-LR sensitive serine/threonine 

phosphatase, possibly a member from the PP2A/PP4/PP6 family. 
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Figure 18. MCS-LR reverses NGF-induced attenuation of PGE2-stimulated PKA activation. 
Each column represents the mean ± SEM of the treatment-induced PKA activity normalized 
to total PKA activity measured after exposure to 10 µM cAMP. The left panel represents PKA 
activity from cells grown in the absence of added NGF while the right panel represents PKA 
activity from cells grown in the presence of added NGF 30 ng/ml for 12 days. Open columns 
represent cells treated acutely with vehicle, while closed columns represent cells acutely 
exposed to PGE2. Asterisks indicate statistically significant differences from vehicle, while 
daggers represent significant difference from 100 nM PGE2 using one-way ANOVA followed 
by Bonferroni’s post-test, p < 0.05. 
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Prostaglandin-induced sensitization of adult rat sensory neurons 

becomes PKA-independent after long-term exposure to PGE2 

 

Previously, it was shown that PGE2-induced sensitization of sensory neurons 

was mediated mainly by the GPCRs, EP3c and EP4 (Southall and Vasko, 2001). 

Classical GPCR activation is associated with desensitization and internalization, which 

are multistage phenomena, involving uncoupling of the receptor from its downstream 

signaling cascade (Ferguson, 2001; Gainetdinov et al., 2004; Pierce and Lefkowitz, 

2001) and altering signaling (DeWire et al., 2007; Ferguson, 2001; Lefkowitz and 

Shenoy, 2005). However, it is well known that prostaglandins continue to sensitize 

sensory neurons under chronic inflammatory conditions, suggesting no physiological 

downregulation (Morlion, 2011; Sarzi- Puttini et al., 2010; Shah and Mehta, 2012b). To 

confirm the ability of PGE2-induced sensitization to persist after chronic exposure to the 

eicosanoid, I exposed adult rat sensory neurons to PGE2 (1 µM) from day 7 to day 12 in 

culture (total 5 days) and assayed capsaicin-evoked iCGRP release as a measure for 

sensitization. At the time of the experiment, the cells were washed twice with normal 

release buffer. The cultures were sequentially exposed to plain buffer, buffer containing 

PGE2 or vehicle, buffer containing capsaicin with PGE2 or vehicle and buffer alone for 10 

minutes each. Cultures were then hypotonically lysed in 0.1N HCl. I observed that 

sensitization of capsaicin-evoked iCGRP release by re-exposure to PGE2 is maintained 

even after continuous 5-day exposure to the prostanoid (Fig. 19). Indeed, in sensory 

neurons exposed to vehicle for 5 days capsaicin-evoked release was increased by 

approximately 49 percent when 1 µM PGE2 was included in the buffer (from 10.5 ± 0.33 

to 15.6 ± 0.5 percent of total content). Similarly, when exposed to 1 µM PGE2 for 5 days, 

capsaicin-evoked iCGRP release increased by approximately 54 percent due to PGE2-

induced augmentation (from 10.9 ± 0.46 to 16.7 ± 0.47 percent of total content). This 

suggests that dissociated DRG cultures faithfully reproduce the phenomena observed in 

vivo in animal models of chronic inflammatory hyperalgesia and human clinical studies. 

As mentioned earlier, the second fraction of buffer collected from DRG neurons 

contained vehicle or 1 µM PGE2. In cells exposed to vehicle for 5 days, then re-exposed 

to 1 µM PGE2 at the time of the experiment, second basal fraction contained significantly 

larger iCGRP (1.6 ± 0.08 percent of total content) when compared to iCGRP in first 

basal fraction collected from same cells (1.0 ± 0.1 percent) or when compared to the 

iCGRP contained in the second basal fraction collected from cells exposed to vehicle for 
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5 days then re-exposed to vehicle once more at the time of the experiment (0.9 ± 0.06 

percent of total content). When cells were exposed to 1 µM PGE2 for 5 days, iCGRP in 

the second basal fraction (1.12 ± 0.07 percent of total content) was significantly higher 

than iCGRP in the second basal fraction collected from cells exposed only to vehicle (0.8 

± 0.06 percent of total content) but not significantly higher than iCGRP from its 

corresponding first basal fraction (1.1 ± 0.09). It was shown previously that 

neurotransmitter release occurs in the absence of clear stimulation of synapses of CNS 

neurons (Chavez-Noriega and Stevens, 1994a; Chavez-Noriega and Stevens, 1994b; 

Maximov and Sudhof, 2005; Otsu and Murphy, 2003; Sara et al., 2005). It also was 

shown that this basal spontaneous release can be enhanced by activation of adenylyl 

cyclase or PKA (Chavez-Noriega and Stevens, 1994a; Maximov et al., 2007). The 

significant PGE2-induced increase in iCGRP outflow in the absence of stimulation by 

capsaicin (basal outflow) may result from direct enhancement of spontaneous random 

fusion of neurotransmitter-containing synaptic vesicles in sensory neuronal endings. 

It was previously reported exposure to 100 µM dimethyl-PGE2 (a PGE2 analogue) 

caused significant increase in total CGRP content (Ma, 2010). In this experiment total 

iCGRP content in naïve cultures exposed to vehicle for 5 days (497.5 ± 67.8 and 486.4 ± 

57.5 fmol/well in cells exposed acutely to vehicle or PGE2 respectively) was not 

significantly different from that in cultures exposed to 1 µM PGE2 for five days (515 ± 74 

and 540 ± 66.6 fmol/well in cells exposed acutely to vehicle of PGE2 respectively). 

I then asked if H-89 attenuates PGE2-induced sensitization of sensory neurons 

after long-term exposure to the eicosanoid akin to the attenuation of the acute 

sensitizing actions of PGE2 by H-89. In sensory neuronal cultures grown in the absence 

of NGF and exposed to 1 µM PGE2 for 5 days, re-exposure to the eicosanoid at the 

same concentration augmented capsaicin-evoked iCGRP release from 6.2 ± 0.4 to 11.6 

± 0.6 percent of total content and from 8.5 ± 0.7 to 11.3 ± 0.5 percent of total content 

with and without 10 µM H-89, respectively (Fig. 20). Since it is possible that H-89 in 

these cells is not inhibiting PKA, the ability of H-89 to inhibit this kinase was confirmed 

using purified bovine PKA catalytic subunit under the same assay conditions used 

throughout the dissertation. At 1 and 10 µM, H-89 inhibited 82.63 percent and 96.23 
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percent respectively of the total PKA activity of the control (Fig. 21). These findings 

suggest that PGE2 induced-sensitization is not mediated by PKA after long-term 

exposure to the prostanoid therefore providing the first clue in my work for the existence 

of a signaling switch.  
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Figure 19. PGE2-induced augmentation of capsaicin-evoked iCGRP release is maintained after 
long-term exposure to the prostanoid. Each column represents the mean ± SEM of iCGRP 
release as percent of total content. Left panel represents release from cells exposed to vehicle for 
5 days, while right panel represents release from cells exposed to PGE2 (1µM) for 5 days. Open 
columns indicate basal release whereas closed columns represent capsaicin-evoked iCGRP 
release. Asterisks indicate statistically significant difference as indicated between vehicle-treated 
versus PGE2-treated cells (1 µM). Statistical analysis was done using one-way ANOVA followed 
by Bonferroni’s post-test, p < 0.05. 
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Figure 20. PGE2-induced augmentation of capsaicin-evoked iCGRP release is not attenuated by 
H-89 after long-term exposure to the prostanoid. Each column represents the mean ± SEM of 
iCGRP release as percent of total content from sensory neuronal cultures treated with 1 µM 
PGE2 for 5 days. Left panel represents release from cells exposed to vehicle for 5 days, while 
right panel represents release from cells exposed to PGE2 (1µM) for 5 days. Open columns 
indicate basal release whereas closed columns represent capsaicin-evoked iCGRP release. 
Asterisks indicate statistically significant difference as indicated between iCGRP released from 
vehicle-treated versus that from PGE2-treated cells (1 µM). Statistical analysis was done using 
one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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Figure 21. H-89 inhibits purified PKA catalytic subunit activity in a concentration-dependent 
manner. Each column represents mean ± SEM of PKA catalytic subunit activity normalized to 
vehicle. An asterisk represents statistically significant difference from vehicle, whereas a dagger 
represent statistically significant difference from 1 µM H-89 using one-way ANOVA followed by 
Bonferroni’s post-test. 
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Long-term exposure to PGE2 inhibits PKA 

 

It is possible that PKA does not mediate PGE2-induced sensitization of sensory 

neurons after long-term exposure to the eicosanoid, since the observed sensitization 

was not attenuated by H-89. Consequently, I asked whether re-exposure to PGE2 

activated PKA after long-term exposure to the prostanoid. As shown in figure 3, acute 

exposure of sensory neuronal cultures to PGE2 causes concentration-dependent 

activation of PKA. After 5-days exposure to 1 µM PGE2, re-exposure to the eicosanoid 

failed to activate PKA (PKA activities were 0.06 ± 0.003 and 0.52 ± 0.1 for cultures 

exposed acutely to vehicle and PGE2 respectively, in cells not pre-treated with PGE2 and 

0.07 ± 0.0003 for culture exposed acutely to PGE2 after pre-exposure to the eicosanoid 

for 5 days, Fig. 22). Total specific PKA activity was not altered after 5-day exposure to 1 

µM PGE2 (Fig. 23). A higher concentration of PGE2 (10 µM) did not activate PKA after 

long-term exposure to 1 µM of the eicosanoid. In naïve neurons that were exposed to 

vehicle for 5 days, 1 µM PGE2 stimulated PKA activity to 0.57 ± 0.08, while in neurons 

exposed to 1 µM PGE2 for five days, PKA activated by re-exposure to 10 µM PGE2 was 

0.14 ± 0.01 (Fig. 24). Thus the observed desensitization cannot be overcome by 

increasing the ligand concentration.  
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Figure 22. Five-day exposure to PGE2 inhibits PKA activation by re-exposure the eicosanoid. Each 
column represents the mean ± SEM of the treatment-stimulated PKA activity normalized to total PKA 
activity measured after exposure to 10 µM cAMP. The left panel represents PKA activity from cells 
exposed to vehicle for 5 days while the right panel represents PKA activity from cells exposed to 
PGE2 (1 µM) for 5 days. Open columns represent cells treated acutely with vehicle, while closed 
columns represent cells acutely exposed to 1 µM PGE2. An asterisk indicates statistically significant 
difference from vehicle using one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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Figure 23. Five-day exposure to PGE2 (1 µM) does not alter total PKA activity in adult rat 
sensory neuronal cultures. Each column represents mean ± SEM of total specific activity of 
PKA calculated after exposure to 10 µM cAMP. No statistical significance was detected using 
one-way ANOVA. 
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Figure 24. Exposure to 10 µM PGE2 does not overcome inhibition of PKA 
activation after five-day pre-exposure to the eicosanoid. Each column 
represents the mean ± SEM of the treatment-stimulated PKA activity 
normalized to total PKA activity measured after exposure to 10 µM cAMP. 
The left panel represents PKA activity from cells exposed to vehicle for 5 
days while the right panel represents PKA activity from cells exposed to 
PGE2 (1 µM) for 5 days. Open column represents cells treated acutely with 
vehicle, while closed and hatched columns represent cells acutely exposed 
to PGE2 as indicated. An asterisk indicates statistically significant difference 
from vehicle using one-way ANOVA followed by Bonferroni’s post-test, p < 
0.05. 
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PGE2-induced cAMP synthesis is inhibited after long-term exposure 

to the prostanoid 

 

Historically, PKA activity was correlated with an increase in cAMP synthesis. 

Therefore, I asked whether the loss of PKA activation by PGE2 after long-term exposure 

to the eicosanoid, is accompanied by reduction or loss of cAMP synthesis (Fig. 25). In 

experiments done by Djane B. Duarte, PhD, cAMP synthesis was increased from 68 ± 

6.8 to 183 ± 40 pmol/ml after 10-minutes exposure of naïve sensory neuronal cultures to 

1 µM PGE2. In cultures exposed to PGE2 (1 µM) for 5 days, however, re-exposure to 

PGE2 did not significantly increase cAMP synthesis compared to vehicle (61.3 ± 4 and 

76 ± 10.3 pmol/ml for vehicle and PGE2, respectively). This indicates that EP receptor-

mediated cAMP synthesis was lost after long-term exposure to 1 µM PGE2 for 5 days. 

Reduction in cAMP synthesis can be caused by several mechanisms, one of which is 

reduction of adenylyl cyclases expression or activity (El-Haroun et al., 2004; Matsumoto 

et al., 2005). Forskolin-activated cAMP synthesis was not significantly different in 

cultures exposed for 5 days to vehicle (530 ± 34 pmol/ml) or 1 µM PGE2 (501 ± 46 

pmol/ml). Thus, despite the loss of PGE2-induced cAMP synthesis, adenylyl cyclase 

activity remained unchanged.  
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Figure 25. Five-day exposure to PGE2 inhibits cAMP synthesis by re-exposure the eicosanoid. 
Each column represents the mean ± SEM of the treatment-stimulated cAMP synthesis. The left 
panel represents cAMP synthesis from cells exposed to vehicle for 5 days while the right panel 
represents cAMP synthesis from cells exposed to PGE2 (1 µM) for 5 days. Open columns 
represent cells treated acutely with vehicle, gray columns represent cells treated acutely with 1 
µM PGE2, while closed columns represent cells acutely exposed to 1 µM forskolin. An asterisk 
indicates statistically significant difference from vehicle using one-way ANOVA followed by 
Bonferroni’s post-test, p < 0.05. Experiment done by Djane B. Duarte, PhD. 
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Desensitization of PGE2-activated PKA correlates with time of 

exposure to the eicosanoid and is reversible 

 

Previous experiments show that 5-day exposure to 1 µM PGE2 causes inhibition 

of PKA activation by the eicosanoid. However, the minimum duration needed to cause 

this inhibition of PKA activation by PGE2 cannot be determined from these previous 

experiments. Therefore I asked what the minimum duration necessary for significant 

inhibition of PGE2-activated PKA after long-term exposure to the eicosanoid is. In order 

to determine the time-course for the development of this observed desensitization, I 

measured PKA activation after exposure to PGE2 for various lengths of time. In sensory 

neuronal cultures derived from the same harvest, wells were exposed to vehicle for the 

last 5 days of the 12-day long duration of the culture. Other wells got exposed to 1 µM 

PGE2 for the last 3 hours, 6 hours, 12 hours, 72 hours or 5 days. All wells were 12 days 

old when the assay was conducted. Surprisingly, PKA desensitization was observed at 

all tested time points. Three-hour long exposure to PGE2 was sufficient to reduce PKA 

activation by approximately 48 percent of PGE2-activated PKA in naïve neurons. After 5 

days of exposure to PGE2, PKA activation was reduced by more than 94 percent of 

PGE2-activated PKA in naïve cultures (Fig. 26). 

Desensitization of PGE2-activated PKA after long-term exposure to the 

eicosanoid was reversible upon removal of PGE2 from the media. Briefly, some wells 

from the same cultures were exposed to either vehicle or 1 µM PGE2 for the last 36 

hours of the 12-day period for which the culture was kept. In the same cultures other 

wells were exposed to 1 µM PGE2 33, 24, or 12 hours and then to vehicle for 3, 12 or 24 

hours, respectively. After 12 and 24 hours of removal of PGE2, PKA activation by re-

exposure to the eicosanoid recovered to approximately 42 percent and 78 percent of 

PGE2-activated PKA in naïve cultures (Fig. 27). This indicates that PKA desensitization 

after long-term exposure to PGE2 is reversible and is not due to damage of neurons that 

is caused by prolonged exposure to the prostanoid. 
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Figure 26. Desensitization of PGE2-induced activation of PKA is correlated with the duration of 
exposure to the eicosanoid. (A) Protocol of long-term exposure to 1 µM PGE2. (B) Each column 
represents the mean ± SEM of the ratio of PGE2-induced PKA activation after pre-exposure as 
indicated normalized to neurons exposed to vehicle for 5 days. An asterisk indicates statistically 
significant difference between PGE2-treated sensory neuronal cultures and vehicle-treated 
cultures using one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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Figure 27. Resensitization of PGE2-induced activation of PKA is dependent on the length of 
withdrawal from exposure to the eicosanoid. (A) Time line of long-term exposure to and removal of 
1 µM PGE2. (B) Each column represents the mean ± SEM of the ratio of PGE2-induced PKA 
activation after pre-exposure and withdrawal as indicated to neurons pre-exposed to vehicle for 36 
hours. An asterisk indicates statistically significant difference between PGE2-treated sensory 
neuronal cultures and vehicle-treated cultures using one-way ANOVA followed by Bonferroni’s 
post-test, p < 0.05. 
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Homologous desensitization of PKA signaling after long-term 

exposure to PGE2 

 

To address the question whether PKA desensitization after long-term exposure 

to PGE2 is homologous or heterologous, I used different ligands that act on receptors 

known to be coupled to the Gαs/PKA pathway. I chose the stable prostacyclin analogue, 

carbaprostacyclin (cPGI2), because it activates its cognate Gαs-coupled receptor (IP 

receptor) which is expressed in sensory neurons (Hingtgen and Vasko, 1994b; Hingtgen 

et al., 1995). In sensory neurons grown in culture for 12 days in media alone, 1 µM 

cPGI2 activated PKA to the same extent as in 5-day PGE2 or vehicle treated DRG 

cultures (0.544 ± 0.04 and 0.475 ± 0.047, respectively) (Fig. 28). In contrast to cPGI2 

(Fig. 23), after cells were treated with 1 µM PGE2 for 5 days, subsequent acute exposure 

to PGE2 itself failed to activate PKA suggesting that the observed desensitization is not 

heterologous. 

I also used L902688, a selective agonist of EP4 receptor, which is also Gαs-

coupled. L902688 has an approximate 7,000-32,000 higher affinity of binding to EP4 

when compared to other EP receptor subtypes (Young et al., 2004). EC50 of PGE2 is 1 

µM in DRG cultures using PKA activation (Fig. 3). The EC50 for L902688 was not 

determined in DRG cultures. It was found, however, in EP4-expressing HEK293 cells, 

that the EC50s for PGE2 and L902688 were 3 and 0.6 nM, respectively (Young et al., 

2004). I decided to use L902688 at a concentration of 300 nM so that the ratio between 

the EC50 for PGE2 and L902688 is similar to that reported by Young et al, assuming that 

EP4 receptors in DRG cultures and in EP4-expressing HEK cells have similar affinities. 

As shown in figure 29, L902688 significantly increased PKA activity in naïve sensory 

neuronal cultures (0.12 ± 0.005 and 0.04 ± 0.007 for L902688 and vehicle respectively) 

and 5 day exposure to L902688 inhibited PKA activation by subsequent exposure to 

itself by approximately 92 percent (0.06 ± 0.01 and 0.06 ± 0.005 for L902688 and vehicle 

respectively). Similarly, long-term exposure to 1 µM PGE2 significantly inhibited 

L902688-activated PKA (0.06 ± 0.007 and 0.04 ± 0.01 for L902688 and vehicle 

respectively), a 72 percent inhibition compared to L902688-activated PKA  in naïve 

cultures (Fig. 30) Collectively, these results substantiate the model that long-term 

exposure to PGE2 causes desensitization of PKA activation that is homologous.  
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Figure 28. Five-day exposure to PGE2 does not inhibit PKA activation by cPGI2. Each column 
represents the mean ± SEM of the treatment-stimulated PKA activity normalized to total PKA 
activity measured after exposure to 10 µM cAMP. The left panel represents PKA activity from cells 
exposed to vehicle for 5 days while the right panel represents PKA activity from cells exposed to 
PGE2 (1 µM) for 5 days. Open columns represent cells treated acutely with vehicle, while closed 
columns represent cells acutely exposed to cPGI2 (1 µM). An asterisk indicates statistically 
significant difference from vehicle using one-way ANOVA followed by Bonferroni’s post-test, p < 
0.05. 
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Figure 29. Five-day pre-exposure to L902688 inhibits PKA activation by itself. Each column 
represents the mean ± SEM of the treatment-stimulated PKA activity normalized to total PKA 
activity measured after exposure to 10 µM cAMP. The left panel represents PKA activity from 
cells exposed to vehicle for 5 days while the right panel represents PKA activity from cells 
exposed to L902688 (300 nM) for 5 days. Open columns represent cells treated acutely with 
vehicle, while closed columns represent cells acutely exposed to L902688. An asterisk indicates 
statistically significant difference from vehicle using one-way ANOVA followed by Bonferroni’s 
post-test, p < 0.05. 
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Figure 30. Five-day exposure to PGE2 inhibits PKA activation by L902688. Each column 
represents the mean ± SEM of the treatment-stimulated PKA activity normalized to total PKA 
activity measured after exposure to 10 µM cAMP. The left panel represents PKA activity from 
cells exposed to vehicle for 5 days while the right panel represents PKA activity from cells 
exposed to PGE2 (1 µM) for 5 days. Open columns represent cells treated acutely with 
vehicle, while closed columns represent cells acutely exposed to L902688. An asterisk 
indicates statistically significant difference from vehicle using one-way ANOVA followed by 
Bonferroni’s post-test, p < 0.05. 
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Long-term exposure to PGE2 does not reduce mRNA levels of EP 

receptors or AKAPs 

 

One possible explanation for the loss of PKA activation after chronic exposure to 

PGE2 is reduction of the expression of EP receptors. As mentioned earlier, there are 4 

different isoforms of the receptors and EP3 has multiple different splice variants. Due to 

the potential of poor selectivity of antibodies against these receptors, I used real time 

PCR to examine the level of expression of receptor mRNA in sensory neuronal cultures 

after 5 days of exposure to vehicle or PGE2. As shown in figure 31, the mRNA levels of 

any of the EP receptors did not change after long-term exposure to PGE2. 

Because PKA signaling is intimately coupled to A-kinase anchor proteins 

(AKAPs), I also measured mRNA levels of AKAP5 and 250 which were shown to be 

expressed in sensory neurons and mediate PGE2-induced sensitization of TRPV1 (Fan 

et al., 2001; Irmen et al., 2008; Jeske et al., 2008; Rathee et al., 2002b; Schnizler et al., 

2008; Tao et al., 2007; Willoughby et al., 2006; Zhang et al., 2008). Theoretically, loss of 

PKA activation after long-term exposure to PGE2 could be mediated by reduction of 

expression of AKAP. Real time PCR was used to measure the mRNA levels of AKAP5 

and 250 and I did not observe any changes after long-term exposure to PGE2 (Fig. 4a). 

This suggests that PKA desensitization does not depend on changes in mRNA levels of 

AKAP5, AKAP12, EPs 1-4, Grks2, 3, 5 and 6 and β-arrestins 1 and 2. 
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Figure 31. Five-day exposure to PGE2 does not alter the relative mRNA level of AKAPs, EPs or Grks in adult rat sensory neuronal 
cultures. Each column represents the mean ± SEM of the relative level of mRNA normalized to that of control cultures. Grey columns 
represent cultures exposed to 1 µM PGE2 for 5 days, while the dotted line represents control cultures exposed to vehicle for 5 days. 
There was no statistical significance using one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 



 

116 
 

Cholera toxin-induced PKA activation is maintained after long-term 

exposure to PGE2 

 

Classical GPCR desensitization is mediated by receptor uncoupling from the 

cognate heterotrimeric G-protein and the downstream signaling pathway (Davies and 

Lefkowitz, 1983; Leeb-Lundberg et al., 1985; Sibley et al., 1986). In sensory neurons 

exposed to PGE2 for 5 days, it is possible that EP4 and EP3C receptors are no longer 

coupled to Gαs/adenylyl cyclase/PKA pathway. If this is true, a tool that is able to bypass 

the receptor and directly activate Gαs or adenylyl cyclase should be able to activate PKA 

even after long-term exposure to PGE2. Fortunately cholera toxin and forskolin can 

bypass the receptor and activate Gαs and adenylyl cyclase respectively (Gilman, 1984). 

Cholera toxin ADP-ribosylates Gαs and locks it in the activated state (Noel et al., 1993). 

Previously, Vasko and coworkers showed that 16-hour incubation with 1.5 µg/ml of 

cholera toxin ADP-ribosylates in excess of 95 percent of Gαs (Hingtgen et al., 1995). 

Overnight incubation with 1.5 µg/ml cholera toxin caused sensitization (twofold increase 

in iCGRP release from 10 ± 0.9 to 20.3 ± 0.8 percent of total content with or without 

cholera toxin, respectively). In neuronal cultures that were exposed to 1 µM PGE2 for 5 

days, cholera toxin also caused similar augmentation of capsaicin-evoked iCGRP 

release (97 percent increase from 9.8 ± 0.6 to 19.3 ± 0.7 percent of total content with or 

without cholera toxin, respectively) (Fig. 32). This finding supports the notion that 

activation of cAMP/PKA pathway, by cholera toxin, can still sensitize sensory neurons 

after long-term exposure to PGE2. 

I observed that PKA is similarly activated by the toxin even after long-term 

exposure to PGE2 (Fig. 33). In cultures exposed to vehicle for 5 days, cholera toxin 

increased PKA activation from 0.06 ± 0.007 (vehicle) to 0.46 ± 0.01, while in cultures 

exposed to PGE2 for 5 days cholera toxin increased PKA activity from 0.05 ± 0.003 

(vehicle) to 0.46 ±0.02. In total these results corroborate the idea that desensitization 

occurs at the receptor level because activation of the effector directly downstream from 

the receptor, Gαs, induced PKA activation to the same level as control cultures. 
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Figure 32. CTX-induced augmentation of capsaicin-evoked iCGRP release is not attenuated after 
five-day pre-exposure to PGE2. Each column represents the mean ± SEM of iCGRP release as 
percent of total content from sensory neuronal cultures. Left panel represents release from cells 
exposed to vehicle for 5 days, while right panel represents release from cells exposed to PGE2 
(1µM) for 5 days. Open columns indicate basal release whereas closed columns represent 
capsaicin-evoked iCGRP release. Asterisks indicate statistically significant difference as indicated 
between iCGRP release from vehicle-treated versus that from CTX-treated cells (1.5 µg/ml). 
Statistical analysis was done using one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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Figure 33. Five-day exposure to PGE2 does not inhibit PKA activation by CTX. Each column 
represents the mean ± SEM of the treatment-stimulated PKA activity normalized to total PKA 
activity measured after exposure to 10 µM cAMP. The left panel represents PKA activity from 
cells exposed to vehicle for 5 days while the right panel represents PKA activity from cells 
exposed to PGE2 (1 µM) for 5 days. Open columns represent cells treated acutely with vehicle, 
while closed columns represent cells acutely exposed to CTX (1.5 µg/ml). An asterisk indicates 
statistically significant difference from vehicle using one-way ANOVA followed by Bonferroni’s 
post-test, p < 0.05. 
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Long-term exposure to PGE2 does not alter the extent of forskolin-

activated PKA 

 

As mentioned above, downregulation of PKA activation after long-term exposure 

to PGE2 may be caused by uncoupling of the receptors EP3C and EP4 from the 

downstream signaling pathway. Forskolin can bypass the receptor and directly activate 

adenylyl cyclase (Gilman, 1984). Another possibility for the PKA desensitization after 

long-term exposure to PGE2 is the loss of adenylyl cyclase activity. To address both 

possibilities, I measured the indirect activation of PKA by forskolin after long-term 

exposure to PGE2. As shown in figure 34, long-term exposure to PGE2 does not reduce 

PKA activation after exposure to forskolin to increase cAMP. PKA activity after exposure 

to forskolin was 0.34 ± 0.03 in cultures exposed to vehicle for 5 days and 0.34 ± 0.02 in 

cultures exposed to 1 µM PGE2 for 5 days. This observation supports the previous 

findings that the uncoupling between PGE2 and the PKA signaling pathway occurs at the 

receptor level leading to downregulation of PGE2-activated PKA despite that the PKA 

signaling pathway itself remains functional.  
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Figure 34. Five-day exposure to PGE2 does not inhibit PKA activation by forskolin. Each 
column represents the mean ± SEM of the treatment-stimulated PKA activity normalized 
to total PKA activity measured after exposure to 10 µM cAMP. The left panel represents 
PKA activity from cells exposed to vehicle for 5 days while the right panel represents PKA 
activity from cells exposed to PGE2 (1 µM) for 5 days. Open columns represent cells 
treated acutely with vehicle, while closed columns represent cells acutely exposed to 
forskolin (1 µM). An asterisk indicates statistically significant difference from vehicle using 
one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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PKA and PKC do not mediate long-term induced desensitization of 

PKA activation by PGE2 

 

It is possible that second messenger-activated kinases, such as PKA or PKC, 

phosphorylate and uncouple GPCR from its downstream effectors (Hausdorff et al., 

1989; Hausdorff et al., 1990; Premont, 2005). For example, it was previously shown that 

βAR can be phosphorylated and desensitized by PKA in vitro (Benovic et al., 1985) and 

in vivo (Wang et al., 2009). In analogous manner, PKA or PKC can phosphorylate and 

uncouple EP3C and EP4 from downstream signaling pathways in sensory neurons after 

long-term exposure to PGE2. To investigate whether PKA or PKC mediate the observed 

downregulation of PGE2-activated PKA, I used the kinase inhibitors, H-89 (10 µM) and 

BIM-I (1 µM), respectively. As shown in figure 21, 10 µM H-89 inhibits purified catalytic 

subunit of PKA ≥ 90 percent. Previously, Vasko and co-workers showed that 100 nM 

BIM-I was sufficient to attenuate sensitization by ATP through the P2Y/Gαq/11/PKC 

pathway (Huang et al., 2003). It was also previously shown that classical, novel and 

atypical PKC isoforms  are inhibited by BIM-I, however, novel and atypical PKC isoforms 

were 10-20 fold and up to 100 fold more resistant to inhibition by BIM-I than the classical 

ones (IC50 ≈ 8-18, 100-200 and 5800 nM for classical, novel and atypical PKC isoforms 

respectively) (Martiny-Baron et al., 1993). Since some of the novel PKC isoforms are 

expressed in DRGs (e.g. PKCε), I chose to use BIM-I at 10-fold higher concentration to 

ensure total blockade of  classical and atypical PKC isoforms  (Khasar et al., 1999a; 

Zhang et al., 2012). I began by exposing sensory neuronal cultures to 10 µM H-89 or 1 

µM BIM-I for 5 days, but I found that exposure to these drugs in the manner described 

was toxic to sensory neuronal cultures (evidenced by the severe abnormal morphology 

of cell cultures and cell loss). Therefore, I exposed the cultures to the kinase inhibitors at 

the concentrations described along with PGE2 or vehicle for only 12 hours. I observed 

that neither H-89 nor BIM-I applied in this manner show observable toxicity in our 

cultures. Moreover, at the time of stimulating the cultures with PGE2, the media was 

replaced containing the kinase inhibitors was replaced with fresh media for 20 minutes, 

followed by exposure to vehicle or PGE2. As seen in figure 35, pre-exposure to the 

kinase inhibitors for 12 hours did not interfere with PKA activation after acute re-

exposure to PGE2, indicating that presence of the kinase inhibitors for long period does 

not interfere with acute PKA activation. Under these conditions, long-term exposure to 

PGE2 with or without the kinase inhibitors at the concentrations described above caused 
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downregulation of PKA activation by the re-exposure to the prostanoid. In naïve cultures 

exposed to vehicle, 10 µM H-89 or 1 µM BIM-I for 12 hours, acute 1 µM PGE2-activated 

PKA was 0.49 ± 0.04, 0.59 ± 0.04 and 0.53 ± 0.04, respectively. They were not 

significantly different from each other. In cultures exposed to 1 µM PGE2 alone, with 10 

µM H-89 or with 1 µM BIM-I, acute re-exposure to the eicosanoid caused PKA activity 

values of 0.14 ± 0.02, 0.19 ± 0.02 and 0.16 ± 0.2, respectively. These values were not 

significantly different from each other or from baseline PKA activity (acute vehicle 0.06 ± 

0.01) (Fig. 35). Atypical PKC isoforms, such as PKCζ, are known to be expressed in 

peripheral sensory neurons and also known to mediate sensitization of sensory neurons 

by NGF (Zhang et al., 2012). Despite the fact that no NGF was added in these 

experiments, possible downregulation of PGE2-activated PKA by atypical PKCs in 

sensory neurons after long-term exposure cannot be excluded with certainty at the 

concentration of BIM-I that I used. Other tools, such as reduction of expression of 

atypical PKC isoforms using RNAi, can be used. 

Subsequent to this finding, I employed an alternative approach to examine the 

potential involvement of PKA in the detected desensitization. Instead of inhibiting PKA, I 

asked whether long-term activation of PKA would cause PKA desensitization, in a 

manner analogous to its desensitization by long-term exposure to 1 µM PGE2. I used 

forskolin to elevate cAMP concentration which in turn would activate PKA. Long-term 

exposure to forskolin did not alter acute activation of PKA by PGE2 (0.46 ± 0.11 and 0.5 

± 0.1 in cultures exposed to vehicle of forskolin, respectively) which supports the 

conclusion that PKA does not mediate the observed desensitization (Fig. 36). These 

experiments demonstrate that in rat sensory neurons downregulation of PKA activation 

by EP receptors is mediated by PKA or PKC activity. 
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Figure 35. H-89 or BIM-I do not reverse desensitization of PGE2-induced activation of PKA caused by 12-hours pre-exposure to the 
eicosanoid. Each column represents the mean ± SEM of treatment-induced PKA activity normalized to total PKA activity measured after 
exposure to 10 µM cAMP. The left panel represents PKA activity from cells exposed to vehicle for 12 hours, while the right panel represents 
PKA activity from cells exposed to PGE2 (1 µM) for 12 hours and both groups were pre-treated at the same time with vehicle, H-89 or BIM-I as 
indicated. Open columns represent cells treated acutely with vehicle, while all other columns represent cells acutely exposed to PGE2 (1 µM). 
Asterisks indicate statistically significant difference in cells acutely-exposed to vehicle versus cells exposed to PGE2 (1 µM) for 10 minutes. A 
dagger represents statistically significant difference in cells pre-exposed for 12 hours to vehicle and kinase inhibitors as indicated then 
exposed acutely to PGE2 versus the corresponding groups in cells treated with PGE2 for 12 hours. Statistical analysis was performed using 
one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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Figure 36. Five-day exposure to forskolin does not inhibit PKA activation by PGE2. Each 
column represents the mean ± SEM of the treatment-stimulated PKA activity normalized to 
total PKA activity measured after exposure to 10 µM cAMP. The left panel represents PKA 
activity from cells exposed to vehicle for 5 days while the right panel represents PKA 
activity from cells exposed to forskolin (1 µM) for 5 days. Open columns represent cells 
treated acutely with vehicle, while closed columns represent cells acutely exposed to 
PGE2. An asterisk indicates statistically significant difference from vehicle using one-way 
ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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Grk2 mediates loss of PKA activation after long-term exposure to 

PGE2 

 

An important mechanism of termination of GPCRs activation is mediated by Grks 

which are Ser/Thr protein kinases that phosphorylate ligand-bound GPCRs (Ferguson, 

2001; Pierce and Lefkowitz, 2001; Shenoy and Lefkowitz, 2011a; Sibley and Lefkowitz, 

1985). Alteration of the level of expression of Grks is an important mechanism for long-

term modulation of its activity (Penn et al., 2000). I asked whether long-term exposure to 

1 µM PGE2 alters the level of expression of Grk2, 3, 5 or 6. Using real time PCR, I 

observed no change of the mRNA levels of any of Grks 2, 3, 5 and 6 (Fig. 31). 

Grks were shown to mediate desensitization of several GPCRs even in the 

absence of a change of the level of expression of Grks (Penn et al., 2000). As 

mentioned in the introduction of this dissertation, there is evidence that Grk2 modulates 

signaling pathway mediating PGE2-induced sensitization in sensory neurons in models 

of chronic sensitization (Eijkelkamp et al., 2010a; Eijkelkamp et al., 2010b). Therefore, I 

asked whether inhibition of Grk2 function can attenuate loss of PKA activation by PGE2 

after long-term exposure to the eicosanoid. Since there are no selective small-molecules 

that inhibit Grks I used RNAi to reduce the expression of Grk2. Real time PCR was used 

to confirm that the siRNA against Grk2 effectively and selectively reduced the mRNA 

expression of Grk2. Grk2 mRNA was significantly reduced by approximately 65 percent. 

Grk5 mRNA level also reduced by a modest reduction (≈ 25 percent) (Fig. 37). It is 

unlikely that such a small reduction of expression of Grk5 mRNA would have an effect 

on signaling. However, it is important to confirm this finding by using a different method 

such as a different siRNA that is more selective, or by performing an add-back 

experiment. Another interesting observation is that the level of expression of Grk6 

mRNA increased by approximately 36 percent after treatment with siRNA against Grk2. 

This could be a negative-feedback response by cells to compensate for the reduction of 

Grk2 expression. 

Importantly, inhibition of PKA activation after long-term exposure to PGE2 was 

partially prevented by the siRNA directed against Grk2 but not scramble siRNA (from 

0.06 ± 0.007 to 0.20 ± 0.02 in ScRNA and Grk2-siRNA treated cultures, respectively) 

(Fig. 38). This indicates that Grk2, at least in part, mediates desensitization of PKA 

signaling after long-term exposure to PGE2. Since level of expression of Grk5 mRNA 

was also reduced, albeit to a lesser extent (Fig. 37, and the discussion above), the 
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observed partial attenuation of downregulation of PGE2-induced PKA activation after 

long-term exposure to the eicosanoid can be also mediated by Grk5. Interestingly, I also 

found that PKA activation after acute exposure to PGE2 was significantly increased from 

0.28 ± 0.04 in untreated cultures to 0.49 ± 0.05 in Grk2-siRNA treated ones. This 

indicates that even under conditions where peripheral sensory neurons are exposed to 

PGE2 acutely, Grk2-mediated desensitization of receptors ensues and reduces the level 

of activated PKA. Therefore, Grk2 is not only responsible for partial downregulation of 

PGE2-mediated PKA activation after long-term exposure to the prostanoid, but also after 

acute exposure of naïve DRG cultures to the eicosanoid.   
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Figure 37. siRNA for Grk2 selectively reduces the level of expression of Grk2. Each column represents the mean ± SEM of the relative 
level of mRNA of different targets normalized to that obtained in vehicle-treated cultures. Open columns represent cells treated with 
control RNA (ScRNA), while closed columns represent cells treated with siRNA directed against Grk2 (siGrk2). The dotted line indicates 
vehicle only-treated cells. Real time PCR was performed for various Grk isoforms as indicated. Asterisks indicate statistically significant 
difference from ScRNA-treated cells using one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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Grk2-siRNA treated cells (siGrk2) as indicated. An asterisk indicates statistically significant difference from vehicle, a 
dagger represents statistically significant difference from cells exposed only to acute PGE2 (denoted by the closed 
column), while a double dagger represents significant difference from cells treated with ScRNA within the same 
panel. Statistical analysis was performed using one-way ANOVA followed by Bonferroni’s post-test, p < 0.05. 
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DISCUSSION 

 

Extensive evidence suggests that sensitization of sensory neurons is maintained 

in chronic inflammatory states. In addition, there are numerous studies that show that 

signaling pathways change under these pathological persistent inflammatory diseases. 

In this dissertation, data are presented to provide evidence that sensitization is 

maintained in sensory neuronal culture after long-term exposure to NGF or PGE2 in an 

analogous manner to what is observed in experimental animals and in humans. 

Evidence is also provided for the clear presence of a signaling switch from the canonical 

cAMP signaling pathway which mediates acute PGE2-induced sensitization to another 

pathway. Indeed, work presented here shows that PKA no longer mediates sensitization 

induced by PGE2 after long-term exposure to NGF or the prostanoid. 

Investigating the mechanisms of persistence of PGE2-induced sensitization is 

crucial since chronic pain is a substantial clinical problem (see introduction). Patients 

with chronic inflammatory painful conditions achieve only temporary relief by using 

classic NSAIDs or COX-2 selective ones (Holmes, 2012). Moreover, it is established that 

these drugs are not always effective, and suffer from severe gastrointestinal and renal 

toxicities (Buchanan, 1990; Long et al., 2001; Shah and Mehta, 2012a; Wolfe et al., 

1999). This prompted researchers to investigate the mechanisms by which chronic 

sensitization is maintained in hope to discover new specific and more effective drug 

targets. 

 

Use of isolated adult rat DRG cultures 

 

Cell cultures offer a number of advantages over use of in vivo animal models, 

and suffer from a number of shortcomings. Using isolated neurons in culture reduces 

interference from other unrelated cells that are present in the same or near-by tissue in 

the animal. This offers two important advantages; 1) studying signaling pathways in a 

cell-specific manner and 2) studying the effects of defined inflammatory mediators. 

These two crucial advantages are not realized with whole animal experiments, since 

several types of immune cells, glial cells and even fibroblast cells are involved in the 

process of inflammation. Furthermore signaling pathways coupled to a particular 

receptor may differ in different cell types (Popper, 1984; Yao et al., 2009) and thus 

traditional whole animal studies do not allow cell-specific examination of signaling 
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pathways (Merighi et al., 2008; Oliveira et al., 2007; Pezet and McMahon, 2006; Ren 

and Dubner, 2010). Methods that are commonly used for the induction of inflammation in 

animal models, such as intraplantar injection of carrageenan or CFA, cause the release 

of a many inflammatory mediators (Barnes et al., 1992; Cunha et al., 2005; Popper, 

1984; Woolf et al., 1997; Woolf et al., 1994). Therefore it is difficult to distinguish the 

effect of an individual inflammatory mediator on nociceptive neurons in classic animal 

models. 

Elucidating signaling pathways in sensory neurons is difficult in experiments 

involving animal models. For example, intraplantar injection of small molecular weight 

inhibitors of PKA attenuates sensitization caused by subsequent injection of PGE2, but 

the interpretation that the inhibition specifically affects neurons is difficult (Aley and 

Levine, 1999). At the site of injection, there are many different types of cells, including 

epithelial, adipose and connective tissues, smooth and skeletal muscles and endothelial, 

immune and glial cells. Because of the small molecular weight and the favorable 

hydrophilic-lipophilic balance of non-peptide PKA kinase inhibitors, they diffuse and 

cross cell membranes relatively freely, and thus could inhibit PKA in all of these cell 

types that are close to the site of injection. Therefore, it is difficult to conclude that PKA 

in a particular cell type mediates an observed effect. In contrast, adult rat DRG cell 

cultures contain few cell types (neurons, glial cells and fibroblasts). This  offers a means 

to reduce the number of possible cell types involved in PGE2-induced sensitization, and 

thus allows demonstrating that PGE2 directly sensitizes sensory neurons (Hingtgen et 

al., 1995). Other techniques such as electrophysiology and cell imaging offer an 

additional level of specificity in determining the exact cell type in which inhibition of PKA 

attenuates PGE2-induced sensitization (Evans et al., 1999). 

As mentioned earlier, methods used to induce chronic inflammation in animal 

models cause the release of inflammatory mediators, the quantity or identity of which 

cannot be controlled (Loram et al., 2007). Even when a single inflammatory mediator is 

injected, it results in the subsequent release of multiple other inflammatory mediators as 

evidenced by several studies (Cunha et al., 2005; Safieh-Garabedian et al., 1995; Woolf 

et al., 1997). Cell culture allows for a more precise control of the inflammatory mediators 

present and the quantity at which they are added. 

Augmentation of stimulus-evoked neuropeptide release from DRG cultures by 

inflammatory mediators is used as an endpoint to model sensitization. For example, 

PGE2 and cPGI2 (stable analogue of PGI2), were shown to enhance capsaicin or 
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bradykinin-evoked neuropeptide (iCGRP or iSP) release from adult and embryonic DRG 

neurons grown in culture (Hingtgen and Vasko, 1994b; Hingtgen et al., 1995; Vasko et 

al., 1994). Purinergic receptor agonists, such as the inflammatory mediator ATP, also 

cause sensitization of sensory neurons (Huang et al., 2003). Activation of the PKC 

signaling pathway, known to enhance sensitization, augments capsaicin-evoked peptide 

release from cultures as well (Barber and Vasko, 1996). Thus DRG cultures offer a 

controllable and faithful model of sensitization of DRG neurons. 

Using neurons in culture also has a number of limitations. For example, the effect 

of removal of sensory neurons and growing them in culture on signaling, excitability and 

response to inflammatory mediators is not precisely understood. Technically, harvested 

DRG neurons are axotomized and this has known pathological effects from studies in 

neuropathic pain models (Colleoni and Sacerdote, 2010). However, several studies 

showed that axotomy alone is not sufficient to maintain hypersensitivity in animal models 

beyond 6 days without the contribution of descending pain pathways from the rostral 

ventromedial medulla (Burgess et al., 2002; Gardell et al., 2003; Porreca et al., 2001). 

Therefore it is possible that in isolated DRG sensory neurons, axotomy enhances their 

sensitization only temporarily, and that this enhanced sensitization subsequently 

subsides due to the lack of the rostral ventromedial medulla descending pathways. 

Another aspect that changes the behavior of cells once removed from the animal and 

cultured, is the fact that cells interact with surrounding cells as well as with various 

components of the extracellular matrix (ECM) such as proteins or glycosaminoglycans 

(Abbott, 2003). Harvesting a particular tissue and preparing it for cell culture 

deconstructs (dismantles) its three-dimensional architecture and hence alters cells-ECM 

interactions. 

In the fields of cancer, stem cell and endothelial cell research it is clear that 

isolated cells behave differently when cultured in a three-dimensional system using 

matrigel, compared to cultures prepared in the traditional “two-dimensional” way (Bissell 

and Hines, 2011; Brafman et al., 2012; Discher et al., 2009; Kraehenbuehl et al., 2011; 

Kshitiz et al., 2012). There also is indirect evidence that ECM interactions with neurons 

in general affect multiple aspects of their physiology and properties (Dityatev et al., 

2010) and with peripheral sensory neurons in particular. ECM surrounding DRG neurons 

is modulated by these neurons. It was shown that a constrictive peripheral nerve injury 

altered immunostaining of the laminin ECMs surrounding DRG neurons (Dubovy et al., 

2006). In animal models, it was also shown that blocking integrins with monocloncal 
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antibodies [integrins are cell surface receptors that interact with the ECM (Cox et al., 

2010)] can attenuate persistent hyperalgesia (Dina et al., 2005; Dina et al., 2004). 

Integrin also binds NGF and may serve as a putative receptor for the neurotrophin 

(Staniszewska et al., 2008). Fibronectin, an ECM protein, was found to enhance tyrosine 

phosphorylation of TRPV1 channel in adult rat sensory neurons in culture and showed 

an increase of its translocation to the cell membrane. This leads to augmentation of 

capsaicin-evoked iCGRP release, TRPV1-mediated calcium accumulation and increase 

in the number of capsaicin responsive neurons (Jeske et al., 2009). 

DRG neurons are surrounded not only by ECM, but also by satellite glial cells 

and in very close proximity to other neurons. There is clear evidence that cell-cell 

interactions between sensory neurons and satellite glial cells in the whole ganglion (in 

situ) occur and affect their sensitization. For example, Huang and co-workers 

demonstrated that sensory neurons stimulate satellite glial cells by secreting ATP, which 

in turn causes these satellite glial cells to release TNF-α, and hence enhance neuronal 

excitability (Zhang et al., 2007). In addition, studies demonstrated that satellite glial cells 

also communicate with each other through gap junctions as indicated by diffusion of a 

fluorescent dye from one satellite glial cell to another (Huang et al., 2005). Induction of 

inflammation by intraplantar injection of CFA in the hind paw, enhances this 

communication, as evidenced by increased diffusion of a fluorescent dye (Dublin and 

Hanani, 2007). Reduction of expression of connexin 43, the protein that makes up the 

gap junction, results in reduction of nociception in animal models of neuropathic injury, 

and paradoxically enhances nociceptive behavior in control animals (Ohara et al., 2008). 

In the trigeminal ganglion, silencing of an inwardly-rectifying potassium channel 

Kir4.1 in satellite glial cells, to mimic its reduction of expression after nerve injury, results 

in pain like behavior in the absence of an actual nerve injury (Vit et al., 2008). These 

studies suggest that there is cross-talk resulting in reciprocal effects between neurons 

and the surrounding satellite glial cells. Therefore these findings must be always kept in 

mind and that dissociating DRGs may have unpredictable and unknown effects on 

findings. 

Another limitation of studying sensory neurons in culture is that they do not 

represent the rest of the nociceptive pathway in the whole organism. Therefore, care 

must be always taken when interpreting results. As mentioned earlier, central axons of 

DRG neurons relay their signals in the dorsal horn of the spinal cord. In particular 

nociceptive neurons synapse on spinal neurons in laminae I in primates and human [in 
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rodents, lamina II appears also to receive input from peripheral C-fibers (Craig, 2003)]. It 

is also noteworthy that spinal neurons in laminae IV, V, VII and VIII receive input from 

peripheral C fibers as well as A-β fibers, although the latter is not known to transduce or 

communicate nociceptive information under normal conditions (Dostrovsky and Craig, 

2006). Axons from these spinal neurons in laminae I, IV, V, VII and VIII ascend in the 

spinal cord in groups known as lateral and anterior spinothalamic tracts, spinobulbar 

tract and spinohypothalamic tract which terminate in the thalamus, brain stem and 

hypothalamus, respectively (Craig et al., 2002; Dostrovsky and Craig, 2006). In addition 

to these ascending pathways, there are descending pathways by which various higher 

brain centers modulate the processing of pain signals along the ascending pain pathway 

(Fields et al., 2006). 

Detailed discussion of central nervous system mediation and modulation of 

nociception is beyond the scope of this dissertation. However, it is clear that as 

important as the peripheral nociceptive neurons are to nociception in the whole 

organism, they are but one player of a complex, integrated and interconnected system. 

Therefore conclusions drawn from studies using cultures of peripheral neurons must be 

interpreted with care and restricted only to these peripheral neurons. An example is the 

case of EP receptors necessary for mediation of PGE2-induced pathological 

hypersensitivity of nociceptive neurons. It was shown by multiple groups that receptors 

EP4 and EP3c are essential for sensitization of peripheral sensory neurons (Lin et al., 

2006; Southall and Vasko, 2001). On the other hand, in spinal neurons EP2 receptors 

are essential for their sensitization (Ahmadi et al., 2002; Harvey et al., 2004; McCoy et 

al., 2002; Reinold et al., 2005). Also other groups showed that EP1 receptors mediate 

certain kinds of hypersensitivity such as acetic acid-0069nduced writhing (Sarkar et al., 

2003; Stock et al., 2001). The exact cell type mediating expressing EP1 and mediating 

effects of PGE2 in the latter study were not determined. It is thus clear that different 

findings can be obtained depending on what component of the nociceptive pathway is 

being studied. This affirms the need to cautious interpretation of findings from 

experiments done using DRG cultures. 

Collectively, DRG cultures are invaluable means to study sensitization of 

peripheral sensory neurons and the signaling pathways mediating this sensitization. 

However, great care must be taken when interpreting findings obtained from such 

studies. 
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Choice of PGE2 concentration 

 

Higgs and Salmon reported that after subcutaneous implantation of carrageenan-

impregnated sponges, the inflammatory exudate contained approximately 180 nM PGE2 

(Higgs and Salmon, 1979). In patients with untreated rheumatoid or psoriatic arthritis, 

synovial fluid collected from the knee joint contained approximately 4-25 nM PGE2 

(Bombardieri et al., 1981; Trang et al., 1977). Concentrations as small as 100 nM of 

PGE2 were able to augment bradykinin-evoked iCGRP release from rat sensory neurons 

in culture (Vasko et al., 1994). At 1 µM, PGE2 causes a 33 percent increase of the 

capsaicin-evoked iCGRP release without affecting the basal one (Vasko et al., 1994). It 

was later discovered that PGE2 causes a significant increase in cAMP synthesis at both 

100 nM and 1 µM (Hingtgen et al., 1995). 

The PGE2 concentration that is considered effective to increase cAMP production 

to 50 percent of its maximal value (EC50) in adult rat DRG cultures is approximately 1.2 

µM (Smith et al., 1998). In the experiments described in this dissertation, a concentration 

response curve showed that the EC50 is approximately 0.8 µM. Thus, EC50 obtained from 

the work described in this thesis, is close to previous literature (Smith et al., 1998). 

The EC50 value from the current work is approximately 10-fold higher than the 

values measured from arthritic or psoriatic patients and from experimental animals with 

inflammation (see above). There are multiple possibilities to explain the difference. It is 

possible that extracellular first messengers (inflammatory mediators and hormones) are 

not uniformly dissolved and distributed in the extracellular compartment, but rather exist 

in highly localized compartmentalized fashion similar to intracellular 

compartmentalization of second messengers. Precedent for this comes from a recent 

finding that an extracellular enzyme that synthesizes lysophosphatatidic acid (LPA) is 

bound to the GPCR that the ligand is activated by the product of the enzymatic reaction 

(Fulkerson et al., 2011; Hausmann et al., 2011; Tabchy et al., 2011). Moreover, inhibition 

of a metabolic enzyme that catabolizes LPA, lipid phosphate phosphatase, resulted in 

localized increase in LPA concentration and hence amplification of its signaling through 

LPA1 receptor (Aaltonen et al., 2012). Thus, it is possible that COX enzymes and 

organic anion transporting protein [OATP, the exporter that is thought to pump PGE2 

outside cells (Kanai et al., 1995)] are localized to the same microdomains as the EP 

receptors and thus creating a localized compartment of high concentration of PGE2 right 

next the receptor. It is known that PGE2 is released in a “polarized” fashion. Expression 
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of PGE2 transporter only on the apical membranes of canine kidney cell line and the 

transport of PGE2 to the basolateral side was increased by 100 fold (Endo et al., 2002). 

Endo and co-workers, the authors of this paper, suggested that this polarized transport 

of PGE2 may aim at driving PGE2 to stimulate a particular population of EP receptors on 

the basolateral membrane (Schuster, 2002). 

Another potential explanation is that PGE2 acts on some of the effectors of 

sensitization on their intracellular domains rather than through binding to an extracellular 

binding site on their cognate specific GPCR. Again, the precedent for this comes from a 

study on LPA. LPA acts as a sensitizing agent via activation of LPA receptors. However, 

recently, LPA was found to directly activate TRPV1 channel via its intracellular C-

terminal domain (Nieto-Posadas et al., 2012). This discovery indicates that LPA can 

sensitize sensory neurons by activating its receptor and the coupled signaling pathway 

or it can directly alter the activity of its effector. It is possible to speculate that PGE2 acts 

in a similar manner. If this was the case, PGE2 in the cytosol would be the deciding 

factor, the concentration of which is not frequently measured, but is expected to be much 

higher than the plasma one. Despite the controversy, it is thought that prostaglandins 

activate peroxisome proliferator-activated receptors, which are intracellular targets, 

similar to the direct activation of TRPV1 by LPA binding to its intracellular C-terminus. 

For example it was found that PGI2 can activate PPARδ at physiologically relevant 

concentrations (Gupta et al., 2000). 

A third explanation that may underlie the low values of PGE2 in biological 

samples from clinical or animal experiments is its degradation. It must be remembered 

that PGE2 is a short-lived inflammatory mediator that is synthesized and broken down 

relatively rapidly. Lysed cells and broken tissues contain large activity of prostaglandin 

dehydrogenase, a main PGE2-metabolizing enzyme. This means that the reported 

values of PGE2 from clinical and animal studies may underestimate the amount of PGE2 

present due to its rapid breakdown by the enzyme released from lysed cells and tissues 

(Bito and Baroody, 1975; Bito et al., 1977). 

Collectively, the EC50 for PKA activation by PGE2 in sensory neurons in the 

current study is similar to some findings in literature from clinical and animal 

experiments, but higher than others. It is possible that these differences are due to yet 

undiscovered properties of how PGE2 is released and its different sites of action. Further 

work is needed to uncover the mechanism by which PGE2 is released and whether the 
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synthesis/release mechanisms are localized to EP receptors, and the site of action of 

PGE2. 

 

Choice of NGF concentration 

 

Studies involving NGF employed it at the concentration of 30 ng/ml. This 

concentration was selected based on the following literature. NGF increases TRPV1-

mediated 45Ca2+ uptake in isolated adult DRG neurons after 6 days of exposure to the 

growth factor in a concentration dependent manner (Winter et al., 1988). The EC50 

reported by the authors of that work was 20 ng/ml. In a different study by Pasricha and 

coworkers, NGF increases the expression and release of iCGRP in a concentration 

dependent manner and although they did not perform non-linear regression and 

determine the EC50, it seems that 30 ng/ml is significantly higher than 1 ng/ml and 

significantly less than 300 ng/ml which indicates concentration-dependency (Winston et 

al., 2001). It is noteworthy that both of the studies by Lindsay and coworkers and by 

Pasricha and coworkers used 2.5S NGF while in all the work presented in this 

dissertation 7S NGF was used. Generally, it is considered that the 2.5S and 7S forms of 

NGF to be biologically equivalent, especially in sensory neurons (Pezet and McMahon, 

2006). Nevertheless, it has to be recognized that a difference might exist between the 

2.5S and the 7S forms of NGF that is still undiscovered. Currently, there is a single 

report in literature that actually showed a difference in the biological activity between the 

2.5S and the 7S forms of NGF. Neonatal  cerebellar, hippocampal and cortical 

astrocytes proliferate in response to 2.5S but not 7S NGF (Shao et al., 1993). 

As mentioned in the introduction, production of NGF is increased in inflammatory 

conditions. Various studies attempted to measure concentration of NGF in clinical or 

animal experimental setting. It was reported that NGF concentration was increased 

approximately 50 percent from 8 to 12 ng per hind paw (Safieh-Garabedian et al., 1995; 

Woolf et al., 1997). In another study NGF was increased more than 2 fold to 0.9 ng per 

gram wet weight in mouse knee joint injected with carrageenan (Manni and Aloe, 1998). 

In patients of various inflammatory disorders, it was reported that NGF levels increase 

between 2.4 fold as in urticaria and up to 30 fold as in vernal keratoconjunctivitis. In 

acute myelogenous leukemia patients who recently developed the disease, NGF in 

plasma peaked at approximately 50 pg/ml (Simone et al., 1999). 
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It is noticeable from the brief discussion of NGF concentrations reported from 

clinical studies in humans and those actually used in in vitro experiments using isolated 

sensory neurons that there is large concentration difference (compare 50 pg/ml in the 

study by Simone et al versus 30 ng/ml in the work by Winter et al and Winston et al 

(Simone et al., 1999; Winston et al., 2001; Winter et al., 1988). Simone and co-workers 

measured NGF in samples from patients with acute myelogenous leukemia and 

therefore it is possible that NGF concentration reaches higher levels in inflammatory 

conditions such as rheumatoid arthritis or osteoarthritis. Another possibility is that the 

concentration of NGF detected in plasma or in wet tissue or skin might not represent the 

concentration of NGF at the receptor. NGF concentration might be higher at or close to 

the receptor site than in plasma or whole tissue; i.e. NGF concentration is 

compartmentalized in the extracellular compartment. A precedent comes from the case 

of BDNF, another inflammatory mediator and neurotrophin. It was shown that when the 

glycosaminoglycan chondroitin sulfate, is sulfated in a particular pattern it becomes able 

to bind the growth factor and thus create a microdomain by definition. Since chondroitin 

sulfate exists extracellularly as a component of the ECM, it binds to and concentrates 

BDNF close to its receptor on the cell surface and thus enhances neurite outgrowth 

(Gama et al., 2006). Thus an ECM component effectively creates a compartment of 

higher BDNF concentration close to the cell membrane than the total extracellular fluid. 

This gradient or compartmentation effect is undetectable using conventional assay 

techniques since the tissue gets homogenized and all BDNF is extracted. The study by 

Gama and co-workers described above raised the possibility that other growth factors 

and mediators, including NGF, might also be compartmented in a manner that results in 

their much higher concentration at their cognate receptors than previously thought. This 

could explain the difference between NGF concentrations that are sufficient for 

producing biological effects experimentally from concentrations measured in the whole 

organism. 

 

Spare receptors 

 

In the introduction to this dissertation, spare (or reserve) receptors were 

suggested as a potential mechanism explaining persistence of PGE2-induced 

sensitization after long-term exposure despite the fact that there is a decrease in 

receptors available on the cell membrane both in vivo and in vitro. Spare receptors 
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enable biological effects of their cognate ligands to persist even after receptor 

desensitization. As mentioned earlier, it was shown before that the KD of EP receptors in 

DRG cultures does not change after 24 hours exposure to 1 µM PGE2 despite the 

reduction of the maximal receptor binding (Bmax) by approximately 40 percent (Southall 

et al., 2002). The concept of spare receptors describes the presence of a larger number 

of receptors than are needed to evoke the maximal effect. With an overabundance of 

receptors, those that get activated and downregulated are replaced by “naïve” receptors 

that initially were not activated by the ligand. Spare receptors have two consequences 

on the manner in which they propagate signaling; 1) responses to the ligand still activate 

the same signaling pathway that is coupled to the receptor after acute exposure and 2) 

the EC50 is significantly smaller than the actual KD (i.e. the amount if drug required to 

reach half maximal full effect is much lower than the amount of drug required to bind half 

the receptors available, since most receptors are spare). Multiple eicosanoid receptors 

act in accordance with spare receptors (see introduction). Thus spare receptors seem a 

plausible explanation for the persistence of PGE2-induced sensitization either in animal 

models (Aley and Levine, 1999; Aley et al., 2000; Southall et al., 2002; Southall et al., 

1998) or in isolated sensory neurons (Bolyard et al., 2000). However a closer look 

reveals a significant difference between the manner in which PGE2-induced sensitization 

persists and the typical spare receptors behavior. 

Much evidence presented in this dissertation as well as in literature suggest that 

signaling is switched after prolonged exposure to PGE2. This switch in signaling is 

uncharacteristic of spare receptors, because spare receptors maintain the same 

signaling pathway associated with them available for subsequent activation after 

prolonged exposure to the ligand. Moreover, as mentioned earlier, EC50 changes when 

spare receptors are removed from a population of receptors and shifts to the right 

(Brodde, 1993). Therefore further experiments are needed to determine the EC50 of 

PGE2-incuded sensitization of capsaicin-evoked iCGRP before and after long-term 

exposure to the eicosanoid or NGF. A rightward shift of EC50 would suggest the 

presence of spare receptors. These two arguments make the concept of spare receptors 

an unlikely mechanism for explanation of persistence of sensitization by PGE2 after long-

term exposure. 
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mRNA versus protein 

 

In multiple experiments in this dissertation real-time PCR was used to quantify 

relative expression level of different mRNAs encoding variety of targets essential for 

mediating PGE2-induced sensitization. There are several advantages of using real-time 

PCR including accuracy, the ability to quantify mRNA and specificity of the assay. There 

are also inherent disadvantages of analyzing mRNA using real-time PCR, namely that 

level of expression of mRNA does not always reflect level of expression of the encoded 

protein. Real-time PCR is able to detect transcripts levels over a dynamic range that is 

7-8 orders of magnitude wide (Morrison et al., 1998). Real-time PCR also is thousands 

of times more sensitive than other RNA quantification techniques such as RNase 

protection assay and dot blot hybridization (Malinen et al., 2003; Wang and Brown, 

1999). In some instances, real-time PCR can be optimized to detect a single copy of 

mRNA (Palmer et al., 2003). Real-time PCR is sensitive enough to discriminate changes 

in the expression of mRNA that are as small as approximately 25 percent (Gentle et al., 

2001). 

Specificity becomes of prime importance when studying one particular isoform of 

multiple highly homologous members of family of signaling molecules. For example, 

studying the change of the level of expression such a molecule as a result of exposure 

to a mediator or when attempting to reduce its level of expression using RNAi, it is 

important to use a tool that offers high level of specificity. Specificities of antibodies that 

are commercially available are seldom verified by the manufacturer since it is an 

extensive and laborious process and thus it is up to the researchers to validate the 

antibody properly (DeSilva et al., 2003). Therefore, it is clear that real-time PCR offers a 

highly specific and relatively feasible tool to conduct these studies. 

Despite the great advantages of real-time PCR discussed above, there is 

increasing evidence that mRNA levels may not reflect the corresponding protein levels 

(Maier et al., 2009). This was recently quantitatively demonstrated at genome-wide level 

in the study by Selbach and coworkers. In this work, the copy number of more than 5000 

unique mRNA and protein in NIH3T3 cells was accurately assayed and compared to 

each other (Schwanhausser et al., 2011). The correlation was found to be poor (R2 = 

0.41), indicating that the level of expression of mRNA does not accurately indicate the 

level of expression of the protein. 
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An important example of the lack of correlation between the level of mRNA and 

the corresponding protein is the change of expression of Grk2 caused by inflammation. 

As mentioned earlier, Grk2 is an important mediator of GPCR desensitization. 

Expression of Grk2 was reported to be reduced at the protein but not at the mRNA level 

previously (Lombardi et al., 1999). The authors of this study used northern blot to 

demonstrate that there is no change in the level of mRNA of Grk2. On the other hand, 

using western blot they showed that the level of iGrk2 is reduced. Clearly, these findings 

are represent an important example that warrants further experiments examining the 

protein level of Grk2 in rat DRG sensory neurons after long-term exposure to NGF or 

PGE2. However, these findings must be interpreted with care. Northern blot is not a 

highly sensitive or quantitative tool to measure mRNA levels. Also in northern blot 

analysis RNA samples are exposed to a greater risk of degradation during the procedure 

which may result in even more inaccurate quantification (Streit et al., 2009; Valasek and 

Repa, 2005; Wittwer et al., 2004). 

Historically, similar incorrect conclusions were made regarding effects of NGF on 

expression of TRPV1 channel mRNA and protein. Due to the usage of non-quantitative 

mRNA assay techniques it was concluded that NGF does not alter the level of 

expression of TRPV1 mRNA (Ji et al., 2002; Puntambekar et al., 2005). Subsequently, 

using real-time PCR other groups showed that expression of both TRPV1 protein and 

mRNA are increased by NGF (Kim et al., 2004; Obata et al., 2004; Simonetti et al., 

2006; Yang et al., 2007). 

As shown in figure 9, 30 ng/ml NGF significantly reduced the expression of 

AKAP5 protein despite the lack of clear statistically significant effect on the level of the 

mRNA. This illustrates the need to investigate effects of various experimental 

manipulations on the amount of protein present as well as its biological function in order 

to reach scientifically more accurate conclusions. 

Although real-time PCR offers a quantitative and highly selective tool to study the 

level of expression of mRNA of different targets, but further experiments to investigate 

the changes of expression on the level of protein are warranted. 
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PKA activity assay 

 

A significant portion of the work presented in this dissertation utilized an assay of 

PKA activity. There are multiple advantages for assaying PKA activity over cAMP 

synthesis, which is frequently used as a surrogate for activation of Gαs/adenylyl 

cyclase/PKA pathway. These advantages include the following; 1) the specificity of 

signaling downstream from cAMP (since cAMP can also activate Epacs and HCN), 2) 

more sensitivity due to signal amplification, 3) assaying PKA activity is a more selective 

way of implicating PKA than the use of kinase inhibitors (H-89 is of limited selectivity), 4) 

PKA activity represents the integrated activity of cAMP generation machinery which is 

highly regulated by complex interaction of PDEs, adenylyl cyclases, AKAPs and PKA 

itself, which makes interpretation of cAMP concentration data more difficult, 5) there are 

well developed tools to measure PKA activity in subcellular compartments using 

microscopy. 

Kinase inhibitors were frequently used to infer that PKA mediates PGE2-induced 

sensitization (Taiwo et al., 1989; Taiwo and Levine, 1991). H-89 is marketed as a 

selective inhibitor of PKA, while in fact its selectivity was largely unknown until relatively 

recently. For example, H-89, a commonly used inhibitor of PKA, is also able to inhibit 

ribosomal protein S6 kinase β-1 (S6K1), S6K2, PKBα (protein kinase B α), PKBβ, Rho-

associated coiled-coil-containing protein kinase 2 (ROCK2), protein kinase N2 (PRK2), 

PKCζ, protein kinase D1 (PKD1), mouse homologue of SNF-like kinase (MSK1), and 

maternal embryonic leucine-zipper kinase (MELK) (Bain et al., 2007; Davies et al., 

2000). In another high-throughput study, inhibition of 300 protein kinases by an array of 

178 known kinase inhibitors was tested (Anastassiadis et al., 2011). Up to 27 kinases 

were inhibited 40 percent or more by 10 µM H-89. Of these 27 kinases, 7 were more 

sensitive than PKA to inhibition by H-89. Some of these kinases are known to mediate 

sensitization such as several of the MAPK pathway (Hudmon et al., 2008; Ji et al., 2002; 

Obata and Noguchi, 2004; Stamboulian et al., 2010). PKCζ (and its N-terminus 

truncated isoform) was recently shown to mediate sensitization of sensory neurons by 

NGF (Zhang et al., 2012). ROCK is also thought to mediate LPA-induced sensitization in 

sensory neurons (Ahn et al., 2009; Inoue et al., 2004). This brief account demonstrates 

that H-89, like many small molecule drugs, has likely effects on signaling proteins other 

than PKA. The contribution of most of these signaling molecules to sensitization and to 
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the effect of PGE2 is unknown, thus necessitating experiments to demonstrate that PKA 

gets activated by PGE2, directly in sensory neuronal cultures. 

Another important advantage of the usage of PKA activity assay rather than 

cAMP, is that an increase in cAMP synthesis not only activates PKA, but other effectors, 

such as Epac and HCN channels. For over 40 years, the cAMP pathway has been 

implicated in mediating PGE2-induced sensitization (Ferreira and Nakamura, 1979). 

Several studies confirmed that interference with this signaling pathway inhibits PGE2-

induced sensitization both in vitro and in vivo (England et al., 1996b; Evans et al., 1999; 

Hingtgen et al., 1995; Taiwo et al., 1989; Taiwo et al., 1992). Studies also provided 

evidence that cAMP generation is induced by application of PGE2 to DRG sensory 

neuronal cultures (Hingtgen et al., 1995; Nakao et al., 2007; Smith et al., 2000a; Wise, 

2006). Historically, PKA was assumed to be activated when cAMP concentrations 

increase in response to a particular ligand. However, with the discovery of multiple other 

effectors of cAMP such as Epacs and cyclic nucleotide-gated channels, it became clear 

that there are several effectors through which cAMP may act to propagate the signal 

(Kopperud et al., 2003; Seino and Shibasaki, 2005). Distinguishing which cAMP effector 

is mediating sensitization has acquired special importance since the discovery that 

Epacs, in addition to PKA, mediate response to PGE2 and isoproterenol in conditions of 

chronic inflammation (Hucho et al., 2005; Wang et al., 2007). HCN channels, which also 

are activated by cAMP, mediate sensitization in conditions of chronic hyperalgesia 

(Chaplan et al., 2003; Emery et al., 2011a; Sun et al., 2005; Takasu et al., 2010; Weng 

et al., 2012). In embryonic DRG neurons, CREB (cAMP-response element binding 

protein) mediates sensory neuronal survival (Cox et al., 2008). In adult rat DRG neurons, 

PGE2 causes increase of expression of BDNF in a CREB-dependent pathway (Cruz 

Duarte et al., 2012). Inhibition of CREB phosphorylation by cannabinoid receptors was 

also showed to be analgesic, pointing to its potential role in mediating hyperalgesia (da 

Silva et al., 2011). These studies point to the fact that cAMP has multiple effectors that 

mediate different aspects of sensitization of sensory neurons. Therefore elevation of 

cAMP concentration must be supplemented by further investigation of the downstream 

effector that gets activated. 

Signal amplification may allow undetectable increases in cAMP concentration to 

be able to activate PKA and propagate signaling. It is now recognized that cAMP 

signaling is highly compartmentalized. Therefore it is possible that cAMP concentration 

increases in specific and localized compartments, which are below the detection limit of 
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commonly used cAMP assay methods, yet still enough to activate PKA in that 

compartment. Due to signal amplification, PKA activity might be detectable while 

increase in cAMP might not. 

Despite these clear advantages there are some disadvantages for measuring 

PKA activity in the manner described in this dissertation. A classic and reliable assay 

method used a peptide substrate, called kemptide, which is selectively phosphorylated 

by PKA (Demaille et al., 1979; Kemp et al., 1977). This assay is feasible, inexpensive 

and reliable. However one of its most important shortcomings is the lack of a good 

method to identify the cell in which PGE2 activates PKA. DRG cultures, as described 

earlier in the discussion do not contain one type of cells. Therefore assaying PKA activity 

in cell lysates does not eliminate the contribution of non-neuronal glial cells present in 

cultures. This is of particular importance since it was shown that EP and IP receptors 

activation increase cAMP concentration in whole DRG cultures and non-neuronal (glia-

only) cell cultures prepared from DRGs (Ng et al., 2011). It is noteworthy that the 

protocol for preparing DRG cultures in that study is different from the one I employed in 

the work presented in this dissertation. In addition to different type of media and mitotic 

inhibitors used to prevent non-neuronal cell growth, an important and noticeable 

difference is that cells were grown at 20-fold lower density than the cultures used in this 

dissertation. In the work by Ng and coworkers cells were seeded at a density of 

approximately 300 cells/ cm2, while throughout this dissertation cells were seeded at 

approximately 6,000 cells/cm2. The density at which DRG cultures are grown affects 

cAMP production greatly, the lower the density of cells in culture, the higher the maximal 

response to IP and EP agonists (Rowlands et al., 2001). Therefore the much-lower cell 

culture density in the study by Ng and coworkers might explain the significant cAMP 

levels obtained in non-neuronal cultures. Also in the study by Ng and coworkers, IBMX 

was used, which is a pan-PDE inhibitor, while in both the lysis or PKA activity assay 

buffers used in this thesis, no PDE inhibitors were used. 

Further work to measure PKA activity in a cell-specific manner is needed. Cell-

specific PKA activity assays would enable measurement of PKA in neurons only, and 

even in compartments of interest, such as the neurites. PKA fluorescence resonance 

energy transfer (FRET) reporters has been developed and even and multiple versions 

with enhanced dynamic response to PKA are available (Allen and Zhang, 2006; Zhang 

et al., 2005a; Zhang et al., 2001). Under normal conditions DRG neurons transduce 

stimuli into an orthodromic electric signal of action potentials generated in the peripheral 
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nerve endings, propagated along the axon to the central nerve endings. Electric signals 

in the central terminals stimulate the release of neurotransmitters and relay this signal to 

the second order neuron in the spinal cord. Antidromic electric signals can also occur in 

peripheral sensory neurons in some pathological conditions as in neurogenic 

inflammation, however its discussion is not within the focus of this dissertation (Willis, 

1999). Therefore it would be interesting to measure PKA activity in these compartments 

specifically as it was shown before that cAMP waves (and hence PKA activation) may 

not occur uniformly throughout the neuron (Bacskai et al., 1993; Hempel et al., 1996b). 

Multiple peptide signal sequences capable to trafficking proteins to axonal compartments 

in neurons are known (Francesconi and Duvoisin, 2002; Tiao et al., 2008). Some of the 

discovered targeting sequences were successfully used in DRG neurons (Babetto et al., 

2010). Furthermore, it is worth mentioning that Epac-based FRET reporters for 

measuring cAMP are also available (DiPilato et al., 2004; Nikolaev et al., 2004; 

Ponsioen et al., 2004). Thus, although cAMP was not the focus of the current work, it 

would be useful to monitor cAMP concentration in neurites to determine if EP receptor 

interaction with adenylyl cyclase is altered in specifically in these compartments. In 

summary, the above discussion considers the disadvantages of cAMP assays in the light 

of advantages of measuring PKA activity in order to elucidate the signaling pathways 

activated by PGE2 to mediate sensitization in sensory neurons. 

 

Design of PKA activity assay 

 

Endpoint PKA activity was measured after duration of exposure of the culture to 

various ligands for 10 minutes. The duration of exposure was chosen based on the fact 

that in experiments involving neuropeptide release, 10-minute exposures to an evoking 

stimulus (capsaicin or potassium) with or without PGE2 are used. Like all reversible 

reactions, if we considered phosphorylation by kinases to be the forward reaction, then it 

is counterbalanced by a reverse reaction by dephosphorylation by phosphatases. This 

serves the function of maintaining homeostasis and resetting the system after the cell 

responds appropriately to the stimulus initiating the signaling process. Traditionally, 

when measuring kinase activity, phosphatase inhibitors are used to prevent the reverse 

reaction from proceeding. In the PKA assay used in this dissertation, phosphatase 

inhibitors are included in our assay and lysis buffers, except when otherwise mentioned. 

However it is important to note that no phosphatase inhibitors were added to the media 
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during treatment; i.e. live cells were never exposed to phosphatase inhibitors. The 

rational for this is that kinases and phosphatases are themselves modified by 

phosphorylation and these modifications affect their activity, and hence the outcome. For 

example, enzymes that synthesize or breakdown cAMP, and hence affect PKA 

activation, are modulated by phosphorylation; PDE4D is phosphorylated by PKA leading 

to enhancement of its activity (Sette and Conti, 1996), while phosphorylation of the 

phosphodiesterase by Erk on a different residue inhibits its phosphodiesterase activity 

(Hoffmann et al., 1999). Also studies showed that adenylyl cyclases are phosphorylated 

and their activity is modulated by PKA in HEK293 cells (Bauman et al., 2006), although 

this observation was found to play a minimal role in adult rat cardiac myocytes (Rochais 

et al., 2004). Therefore, interfering with addition or removal of these posttranslational 

modifications would influence cAMP level and subsequent PKA activation. 

It is well known that the activation of the MAPK pathway involves stepwise 

phosphorylation of a cascade of kinases and its inactivation involves the reverse; i.e. 

dephosphorylation of various kinases to reset the system. The catalytic subunit of PKA, 

on the other hand, is constitutively phosphorylated during “maturation” of the enzyme 

(Cheng et al., 1998; Shoji et al., 1979; Steinberg et al., 1993; Toner-Webb et al., 1992). 

This phosphate group is exceptionally resistant to dephosphorylation and thus 

phosphorylation and dephosphorylation are not believed to be mechanisms for 

regulation of PKA activity (Bechtel et al., 1977; Humphries et al., 2005; Mei et al., 2002; 

Shoji et al., 1979; Toner-Webb et al., 1992). The catalytic subunit can still be 

dephosphorylated under some conditions, however, these conditions are drastic and 

difficult to encounter in experiments where living cells are used (Liauw and Steinberg, 

1996; Zakany et al., 2002). The regulatory subunit of PKA isoform II (abbreviated PKA-

RII) is phosphorylated, and this phosphorylation is responsible for its high-affinity binding 

to a cardiac anchor protein known as AKAP15 (Manni et al., 2008). Upon stimulation, 

mutants of PKA-RII that cannot be phosphorylated are not able to phosphorylate its 

effectors upon stimulation, such as ryanodine receptor and phospholamban. This could 

be due to improper localization leading to its inability to receive the signal from its 

upstream activators (adenylyl cyclase and the GPCR activating it) or due to mis-

localization in relation to its targets. 

Phosphorylation also is important for the regulation of phosphatases. Membrane 

bound PTPs activity was also increased in a PKA-dependent manner in African green 

monkey kidney CV-1 cells and inhibition of PSPs increased PTPs activity (Brautigan and 
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Pinault, 1991a). The PP2A regulatory subunit B56δ is also phosphorylated by PKA 

leading to activation of PP2A in Sf9 cells (Ahn et al., 2007). β-adrenergic receptor 

stimulation activates PP2A in human keratinocytes affecting their migration and 

consequently wound healing (Pullar et al., 2003). Regulation of phosphatases by 

phosphorylation and dephosphorylation is not only limited to serine/threonine residues, 

but posttranslational modification of tyrosine residues by phosphorylation can serve as a 

means of regulation as well. In mouse fibroblast cell line 10T/2, tyrosine phosphorylation 

of PP2A in response to growth stimulation regulates its activity (Chen et al., 1994). On 

the other hand, in mouse B-lymphocytes, phosphorylation of tyrosine phosphatases on 

serine/threonine residues by PKA (activated by β2-adrenergic receptor stimulation) 

increased PTP activity (McAlees and Sanders, 2009). 

It is noteworthy that culture media (which contained stimulating drugs), lysis 

buffer and assay buffer of the PKA activity assay used in this dissertation did not contain 

PDEs inhibitors. As mentioned above, PDEs (and adenylyl cyclases) can be 

phosphorylated as a way to modulate their activity. Once PKA becomes activated 

various positive and negative feedback loops are executed which modulate activities of 

PDEs, adenylyl cyclases, AKAPs and even PKA itself, eventually sculpting the cAMP 

compartment, its concentration and consequently PKA activation (Violin et al., 2008). 

Since the goal of PKA activity assay in this thesis is to have a reliable and faithful picture 

of its status in DRG cultures upon activation by PGE2, it was decided that it is best to 

avoid interference with the assay, by not adding inhibitors of various PDEs. 

Collectively, this discussion provides strong evidence for the presence of an 

extensive regulatory network between kinases, phosphatases, PDEs and adenylyl 

cyclases. Since assaying PKA activity is the most frequently used endpoint in this 

dissertation, it was judged that minimal interference with the processes underlying the 

activation of PKA would best reflect its status of activation within DRG cultures. 

Therefore, during the process of stimulating DRG cultures with PGE2, phosphatase 

inhibitors and PDE inhibitors were not used. 

 

Isoproterenol and sensitization of sensory neurons 

 

One interesting observation in the current work is that 10 µM isoproterenol only 

increases PKA activity modestly compared to 1 µM PGE2, cPGI2, forskolin, 1.5 µg/ml 

cholera toxin or 300 nM L902688 (Fig. 4) Moreover, in pilot experiments that are not 
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shown in this thesis, isoproterenol concentrations from 1-10 µM did not cause an 

appreciable difference between PKA activation, suggesting a lack of concentration-

response relationship.. This was a surprising finding since isoproterenol is used as a 

sensitizing agent (Hucho et al., 2005; Khasar et al., 1999b; Levine et al., 1988; Ouseph 

and Levine, 1995), presumably, acting through the cAMP pathway. Previous studies 

showed that activation of β-adrenergic receptors can lead to analgesia in some studies 

as well as hypersensitivity in others. Much of the work published about the effect of 

adrenergic stimulation and sensitization comes from whole animal experiments. 

Therefore, whether activation of β-adrenergic receptors causes hyperalgesia or 

analgesia may depend on the site of drug administration, the prior state of the animal 

(naïve or inflamed) and the concentration of the agonist. 

Adrenergic receptors are ubiquitously expressed on many different cell types, 

notably the immune cells, which contribute significantly to release of inflammatory 

mediators and thus to sensitization. There are two major subtypes of adrenergic 

receptors, α and β receptors. There are α1A, α1B and α1D, α2A, α2B, and α2C, and β1, 

β2 and β3 adrenergic receptors and selective agonists and antagonists are clinically 

used for several of them to treat a variety of diseases in humans (Pertovaara, 2006). 

Nicholson et. al published a study that provides evidence for the expression of mRNA of 

α1A, α1B and α2C, but none of the other receptors, including β-adrenergic receptors, in 

adult rat DRGs and in superficial dorsal horn of the spinal cord in situ (Nicholson et al., 

2005). Mizukami demonstrated using immunohistochemistry that β2-adrenergic 

receptors are expressed on nociceptive termini as well as spinal cord neurons in the 

dorsal horn of the spinal cord of rats (Mizukami, 2004). The conflicting results of these 

two studies may stem from the difference in techniques used to show receptor 

expression. It is possible that the immunoreactivity indicative of β2-adrenergic receptors 

in the study by Mizukami, was due to non-specific or off-target labeling due to antibody 

selectivity. RNA hybridization probes used for in-situ hybridization by Nicholson and co-

workers to investigate mRNA expression are much more specific. 

Functionally, 10 µM isoproterenol failed to augment capsaicin-evoked TRPV1 

currents in DRG neurons (Moriyama et al., 2005). In whole-cell and perforated-patch 

recordings from DRG neurons, activation of α1-adrenergic receptors caused 

depolarization of the membrane potential and increase in excitability. On the other hand 

activation of β-adrenergic receptors caused hyperpolarization, and thus rendered DRG 

neurons more resistant to depolarization (Pluteanu et al., 2002). In female adult rats, 
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hyperpolarization-activated current was inhibited in medium and large diameter neurons 

but a lot less frequently in small diameter neurons by application of clonidine, a selective 

α2 adrenergic receptor agonist (approximately 37 percent of small, 96 percent of 

medium and 100 percent of large diameter neurons). It is thought that inhibition of 

hyperpolarization-activated currents in DRG neurons enhances their sensitivity (Yagi 

and Sumino, 1998). Therefore, it seems that there is evidence to support that activation 

of α-adrenergic receptors, but not β-adrenergic receptors, sensitizes DRG neurons. It is 

not clear from literature how compounds acting on the β-adrenergic receptors produce 

hyperalgesia. However, from PKA activity assay data presented in this thesis as well as 

from evidence reviewed from literature it seems that isoproterenol is not a reliable 

activator of PKA in DRG neurons and hence it is not a useful positive control. 

 

PGE2 sensitizes sensory neurons 

 

As shown in figures 5, 6, 19, 20 and 32, acute exposure to PGE2 sensitizes 

sensory neurons in culture and that activation of the cAMP/PKA pathway is the likely 

pathway mediating this sensitizing effect of the prostanoid (Hingtgen and Vasko, 1994b; 

Hingtgen et al., 1995; Southall et al., 2002; Vasko et al., 1994). Furthermore, it has long 

been appreciated that PGE2 mediates inflammation-induced hypersensitivity in human 

(Collier and Schneider, 1972; Ferreira, 1972; Ferreira et al., 1973) and in animal models 

(Ferreira et al., 1978). One potential mechanism through which PGE2 augments 

capsaicin-evoked iCGRP release, is through enhancement of excitability by inhibition of 

potassium-currents in sensory neurons (Evans et al., 1999). 

 

PGE2-induced sensitization is persistent 

 

Persistent hyperalgesia is a significant clinical problem that necessitates 

investigating the mechanisms underlying its development. DRG neuronal cultures allow 

studying the effect of defined inflammatory mediator(s) on a more defined cell 

population. The question remains as to how to model persistent sensitization in cell 

cultures. One method to investigate mechanisms of chronic sensitization is by inducing it 

in animal models (such as by injection of carrageenan or CFA), and subsequently 

harvesting peripheral sensory neurons from these animals and studying them in vitro. A 

concern with this method is that once the DRG neurons are removed from the animal, 
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they likely revert back to their quiescent or baseline state and the pathological changes 

associated with persistent hyperalgesia might be abolished. For example, Bolyard and 

co-workers found that 24 hours - 7 days of continuous exposure of DRG neuronal 

cultures to forskolin or inflammatory cocktail caused sensitization (i.e. augmentation of 

potassium-evoked neuropeptide release). This sensitization does not desensitize and 

persists even after prolonged exposure to forskolin or inflammatory cocktail. However, 

one hour after removal of either agent, augmentation of potassium-evoked neuropeptide 

release was abolished. This indicates that DRG neurons can be sensitized in animal 

after creation of experimental inflammation. However, once the neurons are excised 

from the animal and maintained in culture they could revert to their baseline state 

presumably due to loss of inflammatory mediators in the extracellular milieu. An 

alternative method is to use a cocktail of inflammatory mediators (inflammatory soup) 

applied to the culture. For example, Vasko and co-workers showed that in DRG neuronal 

cultures grown in the presence or absence of NGF (Southall and Vasko, 2000), or after 

long-term exposure to “inflammatory cocktail” (Bolyard et al., 2000), or PGE2 (Southall et 

al., 2002), the ability of the prostanoid to induce sensitization persists. 

PGE2-induced sensitization in animal models also persists (Ferreira et al., 1990). 

In the case of using animal models of sensitization, it is difficult to rule out the 

involvement of inflammatory mediators other than PGE2 as it is known that PGE2 can 

cause the release of other inflammatory mediators. For example, PGE2 increases the 

expression of basic fibroblast growth factor mRNA in human fibroblasts (Sakai et al., 

2001), which in turn plays a role in maintenance of persistent sensitization (Ji et al., 

2006). PGE2 also increases the expression and release of matrix metalloprotease 9, an 

enzyme that is released in (Pavlovic et al., 2006) and contributes to inflammatory and 

neuropathic hyperalgesia (Kawasaki et al., 2008; Liu et al., 2010c; Liu et al., 2012). More 

importantly PGE2 increases BDNF synthesis and secretion from DRG cultures and 

explants (Cruz Duarte et al., 2012) and release of both BDNF and NGF from astrocytic 

cultures (Toyomoto et al., 2004). These released growth factors, enzymes and 

neurotrophins are known to contribute to persistence of sensitization (see introduction). 

Therefore, unlike the usage of cultured peripheral sensory neurons to study 

sensitization, when using in vivo models it is difficult to define and correlate persistence 

of sensitization to any particular inflammatory mediator(s). 

In another animal model of persistent hyperalgesia (hyperalgesic priming), prior 

injection of an inflammagen, such as carrageenan, results in more intense and 
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prolonged reaction to sensitizing agents such as PGE2 (Reichling and Levine, 2009). 

Similar to Ferreira’s model, intraplantar injection of carrageenan (and similar inducers of 

inflammation) causes the release of several inflammatory mediators (see introduction). 

Since intraplantar injection of carrageenan, or repeated PGE2 injection, cause the 

release of several cytokines, the augmented hyperalgesia could be replicated by 

injection of cytokines without having to inject the original agent. For example Ferreira’s 

group showed that TNF-α, IL-1β and IL-8 induce persistent hyperalgesia in an identical 

manner to the repeated injection of PGE2 (Sachs et al., 2002). Similarly, Levine and his 

group showed that IL-6 in skeletal muscle, produced hyperalgesic priming in adult rats 

(Dina et al., 2008). They also showed that TNF-α is capable of induction of hyperalgesic 

priming through its receptor 1 (Dina et al., 2008). Collectively, PGE2-induced 

sensitization persists both in vitro and in vivo and cytokines are capable of producing a 

persistent state of hyperalgesia even without prolonged exposure to PGE2 in vivo. The 

mechanism of action of these cytokines (TNF-α, IL-1β, IL-8) in producing persistent 

hypersensitivity is not understood. However, it was shown that these cytokines initiate 

cascades of release of various inflammatory mediators that culminate in increase of 

COX expression and consequently PGE2 synthesis and release (Cunha et al., 2005). 

Nevertheless, none of the above mentioned studies attempted investigating the 

mechanism by which PGE2 directly induces persistent hyperalgesia without the use of 

cytokines of agents that cause their release (e.g. carrageenan). 

Based on the above discussion, prolonged application of either NGF or PGE2 to 

adult rat DRG cultures was investigated as an in vitro model of persistent sensitization. 

NGF or PGE2 were applied individually, rather than a mixture of several inflammatory 

mediators (as opposed to inflammatory soup). As detailed in the introduction, these two 

inflammatory mediators were selected because of the extensive body of evidence 

supporting their immutable role in persistent hyperalgesia (see introduction). Data shown 

in this dissertation provide evidence that when adult rat DRG cultures are grown in the 

presence of NGF or after long-term-exposure to PGE2, sensitization induced by the 

eicosanoid is maintained (Fig. 6, 19 and 20). These data suggest that the use of adult rat 

DRG cultures as a model system to study persistent PGE2-induced sensitization is valid 

and that it faithfully reproduces maintained sensitization, the hallmark of in vivo models. 
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PKA inhibition does not attenuate PGE2-induced sensitization in 

DRG neurons grown in the presence of NGF or after long-term-

exposed to PGE2 

 

As mentioned earlier, acute PGE2-induced sensitization is mediated via EP3C 

and EP4, which are coupled to Gαs that activates adenylyl cyclase, which in turn 

increases cAMP synthesis and hence activates PKA which causes sensitization (Fig. 39 

and Fig.40). The data presented in this dissertation demonstrate for the first time that 

PKA does not mediate PGE2-induced sensitization in adult rat sensory neurons grown in 

the presence of 30 ng/ml NGF or after 5 days of exposure to 1 µM PGE2. H-89 is a well-

known PKA inhibitor and at the concentration of 10 µM it is able to completely inhibit 

PKA activity (this was confirmed as shown in Fig. 21). This is the first account of the 

effect of the interaction between NGF and PGE2 or the effect of long-term exposure to 

PGE2 on activation of PKA by the eicosanoid. This also suggests that the signaling 

pathway mediating PGE2-induced sensitization clearly switches from being a PKA-

dependent to a PKA-independent process after chronic exposure to NGF or PGE2. 

 

Possible mechanisms of signaling switch from PKA mediating the 

PGE2-induced sensitization after long-term exposure to NGF or the 

eicosanoid 

 

Multiple mechanisms could explain how PKA no longer mediates PGE2-induced 

sensitization after chronic exposure to either NGF or PGE2. These include; 1) alteration 

in EP receptors expression profile, 2) alteration of the level of expression of the 

heterotrimeric G protein subunit Gαs, 3) alteration of the activity/expression of adenylyl 

cyclase, 4) alteration of the expression of AKAPs, 5) switch in the signaling by either 

increase of the activity of phosphatases or by receptor desensitization and engaging 

alternative signaling through Grk2. These various possibilities will be discussed in detail 

throughout the remainder of this discussion. 
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Possible signaling switch mechanism: 1) Alteration of EP receptors 

expression profile 

 

One potential mechanism is that the expression profile of EP receptors changes 

such that a receptor that is not coupled to the PKA signaling pathway becomes 

responsible for mediating chronic PGE2-induced sensitization (Fig. 30 and 40). It was 

shown previously that the only two receptor subtypes that are important for PGE2-

induced sensitization acutely are EP3C and EP4 by multiple groups, effectively ruling out 

receptors EP1 and most splice variants of receptor EP3 (Lin et al., 2006; Murase et al., 

2008; Nakao et al., 2007; Southall and Vasko, 2001). Of particular importance is the 

study by McCoy and co-workers. In this study, it was clearly demonstrated that in 

genetically modified mice, only animals deficient in EP4 receptor were resistant to 

collagen-induced arthritis, indicating that this receptor is important for the development 

of this inflammatory disease (McCoy et al., 2002). However, the cell types in which EP4 

is important were not determined in this study. 

Few studies attempted to investigate changes in the expression profile of EP 

receptors in conditions that model chronic inflammation in isolated DRG cultures. 

Fehrenbacher and co-workers found that growing adult rat DRG cultures in the presence 

of NGF, TNF-α or IL-1β has no effect on the relative level of expression of mRNA of EP 

receptors (Fehrenbacher et al., 2005). In this dissertation, real time PCR data show that 

long-term exposure to PGE2 also did not affect the level of EP receptors mRNA in DRG 

cultures (Fig. 31). This indicates that change of the expression profile of EP receptors at 

the transcriptional level is an unlikely mechanism to account for the ability of PGE2 to 

activate PKA after chronic exposure to the eicosanoid. On the other hand, Ma found that 

in adult rat DRG explants exposure to dimethyl-PGE2, a stable form of PGE2, causes the 

modest increase in protein expression of EP1, EP3 and EP4, and reduction in 

expression of EP2 (Ma, 2010). Western blot detection of splice variants of the EP3 

receptor was not done. Consequently, unlike the lack of change in the level of 

expression of mRNA in the study by Fehrenbacher and co-workers, the study by Ma 

provides some evidence for increased expression of the protein. However, whether a 

modest increase in expression of a receptor is functionally relevant is not clear. It is 

essential to recognize that receptors amplify signaling when activated and thus the 

added effect of modest increase of expression is not well understood. Therefore 

functional evidence is crucial, meriting more experiments studying which receptor 
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subtype is essential for mediating PGE2-idnuced sensitization in DRG cultures grown in 

the presence of NGF or after long-term exposure to PGE2. 

 

Possible signaling switch mechanism: 2) Alteration of Gαs subunit 

activity/expression 

 

Experiments described in this thesis show that in neurons grown in the presence 

of NGF, PKA was activated to a similar level by 1 µM PGE2 (Fig. 9). This suggests that 

the pathway of activating PKA by PGE2, Gαs and adenylyl cyclase, remains intact. Also in 

neurons exposed to PGE2, over-night exposure to cholera toxin caused similar activation 

of PKA, suggesting that the pathway upstream from PKA also remains intact (Fig. 33). 

Previously, Southall and Vasko showed that expression of the heterotrimeric G-protein 

Gαs was not reduced in embryonic DRG cultures after 24 hours exposure to 1 µM PGE2. 

However, it is important to measure not only the expression, but also the activity of Gαs in 

adult rat DRG neurons grown in the presence of NGF or after 5-day exposure to PGE2. It 

is noteworthy that multiple receptors are coupled to Gαs. Measuring the expression of all 

the Gαs in DRGs might confound specific changes in the pool that is coupled to EP 

receptors. Hence measurement of activation of Gαs after growing DRG cultures in the 

presence of NGF or after long-term exposure to PGE2 would provide more functionally 

relevant answers. 

 

Possible signaling switch mechanism: 3) Alteration of adenylyl cyclase 

activity/expression 

 

As mentioned above, PKA activity was not different in neurons grown in the 

presence or absence of NGF, indicating that the signaling pathway upstream from PKA 

(including adenylyl cyclase) was not altered by growing neurons in NGF. However, 

exposing sensory neurons in the absence of NGF to PGE2 for 5 days resulted in 

inhibition of cAMP synthesis as shown in figure 25, and inhibition of PKA activation (Fig. 

22) suggesting that activation of adenylyl cyclase activity is impaired. However 

treatments that bypass EP receptors, such as cholera toxin or forskolin, activated PKA to 

the same degree, independent of pre-exposure to PGE2. Similarly, forskolin increased 

cAMP production by 1 µM PGE2 to the same extent even after long-term exposure to the 

eicosanoid. This can be interpreted that the loss of cAMP/PKA signaling occurs at the 
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receptor level rather than downstream signaling molecules. Previously, Fehrenbacher 

showed that when DRG cultures were grown in the absence of NGF and exposed to 1 

µM PGE2 for 24 hours then re-exposed to the eicosanoid acutely, cAMP synthesis was 

not different from vehicle; i.e. cAMP synthesis was inhibited. When the same paradigm 

was repeated, only this time with cultures grown the in the presence of 250 ng/ml NGF 

(but not 30 ng/ml NGF), cAMP synthesis significantly increased after exposure to 1 µM 

PGE2 (Fehrenbacher, 2005). Thus the results presented in this dissertation confirm 

Fehrenbacher’s findings. Fehrenbacher’s work also indicates that at relatively higher 

concentrations of NGF adenylyl cyclase expression or activation by PGE2 is altered, 

enabling it to overcome desensitization by long-term exposure to PGE2. Further work is 

warranted to study the interaction between long-term exposure to NGF and long-term 

exposure to PGE2 at the level of adenylyl cyclase activation. 

 

Possible signaling switch mechanism: 4) Alteration of AKAPs expression 

 

Alteration of expression of AKAPs by long-term exposure to NGF or PGE2 could 

underlie the loss of mediation of sensitization by PKA. AKAP150/79 was previously 

shown to be necessary for acute PGE2-induced sensitization of TRPV1 channel (see 

introduction for literature review). Also aberrant expression of AKAPs is known to 

underlie cancer, heart failure, arrhythmias and Alzheimer’s diseases and dwarfism (Aye 

et al., 2012; Chen et al., 2007; Chiriva-Internati et al., 2012; Jin et al., 2008; Kammerer 

et al., 2003; Proctor et al., 2011; Rauch et al., 2008; Soderling et al., 2007; Wirtenberger 

et al., 2007). Changes in the mRNA levels of AKAPs are used to predict ovarian cancer 

prognosis (Sharma et al., 2005). After growing DRG cultures in 30 ng/ml NGF or 

exposing them to 1 µM PGE2 for 5 days, no change in the level of expression of AKAP 

mRNA was detected using real-time PCR. As mentioned above, real-time PCR offers 

highly selective and quantitative means that is able to detect small changes in the level 

of expression of mRNA. However, this does not obviate the need to assay the protein 

level as changes in expression of protein may not be reflected in their cognate mRNA 

levels. 

Indeed when the protein level of AKAP5 was semi-quantitatively measured using 

Western blotting, NGF significantly reduced its expression by more than 50 percent (Fig. 

9), highlighting the necessity to measure the level of expression of the proteins of the 

mRNAs quantified in this dissertation using real-time PCR. However, it is not clear how 
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NGF-mediated reduction of expression of AKAP5 can contribute to loss of PKA-

mediated PGE2-induced sensitization. In the presence of phosphatase inhibitors, PGE2 

activated PKA similarly whether sensory neuronal cultures were grown in the presence 

or absence of NGF. This might be interpreted that reduction of AKAP5 protein 

expression occurs in compartments other than the ones that PGE2 utilize for PKA 

activation. Therefore, as mentioned below, further studies are needed to measure 

AKAP5 expression in cell-specific as well as subcellular compartments-specific manner 

using live-cell microscopy. 

Future experiments are also warranted to measure protein expression of the 

other AKAPs (AKAP12 as well as others) after chronic treatment with NGF or PGE2. 

Since AKAPs exist in pools or compartments associated with various signaling 

complexes or signalosomes (see introduction), it is important to study its level of 

expression in these relevant compartments, such as TRPV1-associated signaling 

complexes (see introduction for detailed literature review of this topic). Another 

dimension of regulation may exist by controlling how AKAPs are trafficked to their 

specific compartments. It is possible that by altering the mechanisms for regulating the 

trafficking of AKAPs, their function as organizers for signaling, and hence the 

downstream PKA function, can be regulated. For example, the AKAP5 is anchored to 

cell membranes through a domain that recognizes and binds phospholipids (Dell'Acqua 

et al., 1998) while AKAP12 is targeted to the cell membrane through a similar domain in 

addition to a myristoylation on the N-terminus (Malbon et al., 2004). In theory modulation 

of the enzymes that myristoylate AKAP12, can regulate targeting of this anchor protein 

to the cell membrane and thus affect activation of the PKA pool that it anchors (Farazi et 

al., 2001). 

 

Possible signaling switch mechanism: 5a) NGF inhibits PKA-mediated 

signaling by increasing phosphatase activity 

 

Experiments described in results section show that, in the absence of 

phosphatase inhibition, activation of PKA by 1 µM PGE2 is significantly lower in lysates 

obtained from DRG cultures grown in the presence of NGF (Fig. 10). This significant 

difference in PGE2-activation of PKA was not due to alteration of the level of total PKA 

activity, as PKA activated by 10 µM cAMP was not significantly different whether the 

cultures were grown in the presence or absence of NGF (Fig. 7). In order to identify the 
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phosphatase mediating this effect an array of phosphatase inhibitors was used. Sodium 

vanadate, a selective PTPs inhibitor, did not reverse the observed reduction of PKA 

activation by PGE2 in cultures grown in the presence of NGF (Fig. 12). Selective 

inhibition of PP1 and calcineurin also did not reverse the reduction of PGE2-activated 

PKA in cultures grown in NGF (Fig. 17 and Fig. 14, respectively). The difference of 

PGE2-activated PKA in lysates from DRG cultures grown in the presence or absence of 

NGF is totally abolished if lysates contain MCS-LR, a potent and nonselective PSPs 

inhibitor. MCS-LR is a toxic naturally occurring cyanobacterial cyclic heptapeptide. It is 

considered the most potent toxin in its family (Swingle et al., 2007). MCS-LR inhibits the 

PSPs PP1, PP2A, PP4, PP5, PP6 but not PP7 (Huang and Honkanen, 1998; Prickett 

and Brautigan, 2006; Swingle et al., 2007). Taken together, data presented in this thesis 

point to a MCS-LR-sensitive phosphatase that is responsible for the reduction of PGE2-

activated PKA in sensory neuronal cultures grown in the presence of NFG (Fig. 39). 

There are numerous examples of a kinase and a phosphatase having opposing effects 

on a given target. For example, a PTP antagonizes the effect of a tyrosine kinase in live 

cells derived from patients with chronic myelogenous leukemia (LaMontagne et al., 

1998). An similar example of the PSPs family is PP2A which antagonizes the effect of 

PKA on L-type calcium channel in rat cortical neurons (Davare et al., 2000). Numerous 

examples are further discussed in specialized reviews (Dai et al., 2009; Herzig and 

Neumann, 2000). 

Phosphatases were repeatedly shown to be involved in models designed to 

study sensitization of sensory neurons. For example, okadaic acid, but not its inactive 

structural analogue L-norokadaone, attenuated in a dose-dependent manner 

antinociception caused by clonidine and baclofen, but not by κ-opioid receptor agonists 

(Moncada et al., 2005). Also, as mentioned earlier, Hingtgen and Vasko showed that 

okadaic acid, by itself, can significantly potentiate capsaicin-evoked iCGRP release from 

embryonic rat sensory neurons (Hingtgen and Vasko, 1994a). Okadaic acid also 

attenuated prolongation of PGE2-induced hyperalgesia produced by rolipram, which 

indicates involvement of phosphatases in regulating the hypernociception signaling in 

animal models (Ouseph et al., 1995). The data presented in this dissertation point to 

another role of PSPs in NGF-mediated switching of the signaling pathway mediating 

PGE2-induced sensitization (Fig. 39). 
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Identity of the phosphatase mediating NGF-induced attenuation of PKA 

signaling 

 

Because MCS-LR is a potent but relatively non-specific PSPs inhibitor that is 

capable of inhibiting PP2A/PP4/PP6 as well as PP1/PP5 (Swingle et al., 2007), use of 

this drug cannot distinguish which PSP is critical in reversing desensitization of PGE2-

activated PKA by NGF (Fig. 39). I-2, a selective inhibitor of PP1, had no effect on NGF-

induced reduction of PGE2-activated PKA, suggesting that PP1 does not mediate the 

effect by NGF. Unfortunately, there are no small-molecule inhibitors of PP2A/PP4/PP6 

(the remaining MCS-LR-sensitive PSPs) that would allow discrimination among them 

(Swingle et al., 2007). Therefore alternative methods must be used to identify the critical 

phosphatases. Reduction of expression using RNAi can provide a means to conduct 

cause-effect studies to identify the possible phosphatase involved. One difficulty with 

knock-down experiments is that PSPs are composed of several subunits which exist in 

multiple isoforms, and thus redundancy is a problem. For example, PP1 is a heterodimer 

composed of catalytic and regulatory subunits. There are four isoforms of the catalytic 

subunit of PP1 (α, β, γ1 and γ2) and over 100 PP1 regulatory subunits (Shi, 2009; 

Virshup and Shenolikar, 2009). Consequently there are more than 400 possible PP1 

holoenzymes alone. PP2A is a heterotrimer that is composed of catalytic, regulatory and 

scaffolding subunits. Similarly, there are between 30 and 160 possible holoenzymes of 

PP2A (Shi, 2009; Virshup and Shenolikar, 2009). These subunits assemble in a variety 

of assortments to give rise to large number of holoenzymes that differ in their substrate 

specificity, subcellular localization, and regulation (Virshup and Shenolikar, 2009). The 

lack of a means to distinguish these isoforms or the lack of selective inhibitors makes 

studying the function of each of them a daunting task. Therefore, future experiments 

need to proceed by initially narrowing down the potential phosphatases involved. 

As mentioned before, ion channels are an important effector of the sensitizing 

actions of PGE2 (and other inflammatory mediators). Therefore, it might be useful to 

further identify which PSPs associate with the ion channels mediating the sensitization 

caused by PGE2. This can be done by immunoprecipitating these ion channels, then 

analyzing the associated PSPs subunits using mass spectrometry to determine which 

catalytic, regulatory and anchoring subunits are involved. Once the subunits are 

identified, additional tools could be employed to pinpoint the PSPs involved in the 

observed effect. 
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Although identifying whether NGF alters expression of PSPs subunits is useful, 

altering expression of any protein in a cell is only one way to modulate its effect. There 

are numerous examples showing that phosphatase activity is altered by post-

translational modification rather than altering the level of expression. In fact Paul 

Greengard was awarded the Nobel Prize (along with Eric Kandel and Arvid Carlsson) for 

his pioneering work on the effects of posttranslational modifications of several 

phosphatase regulatory proteins on learning and memory, including the well-studied 

DARPP-32 (Greengard, 2001). Mass spectrometry would be beneficial in identifying 

post-translational modifications as well, since it is possible to identify not only the 

molecular fingerprint, but also its mass and thus whether a post-translational 

modification occurs (Thelen and Miernyk, 2012). It is important to identify which 

phosphatase is mediating NGF-induced attenuation of PGE2-activated PKA, and the 

mechanism of modulating this phosphatase activity. This would help identify novel 

targets that might be useful in developing alternative safer and more effective therapies 

for alleviating chronic pain in patients. 
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Figure 39. Mechanism of switching PGE2-activated signaling from PKA to alternative signaling pathways by PSPs 
in adult rat sensory neurons grown in the presence of NGF 
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Possible signaling switch mechanism: 5b) Long-term exposure to PGE2 

causes Grk2-dependent homologous desensitization of PKA 

 

It has been suggested that there is a switch in signaling that mediates PGE2-

induced sensitization under chronic inflammatory conditions (Hucho et al., 2005; Wang 

et al., 2007). Controversy exists whether PKA still partially mediates PGE2-induced 

effects (Parada et al., 2005; Villarreal et al., 2009; Wang et al., 2007). For example using 

different behavioral and cellular models of sensitization, it was shown that in models of 

chronic hypersensitivity, dual inhibition of PKA and PKC is essential for total blockade of 

PGE2-induced sensitization (Hucho et al., 2005; Sachs et al., 2009; Wang et al., 2007). 

My results clearly show that PKA does not get activated after prolonged exposure of 

isolated rat sensory neurons to PGE2 and that H-89 lacks any inhibitory effect on PGE2-

induced sensitization after 5-day exposure to the eicosanoid. 

The difference between various studies and my work could be explained by the 

fact that some of the previous studies were done in vivo and thus it is possible that 

signaling in some of the cells that participate in hypersensitivity continues to be PKA-

dependent. As mentioned earlier in this discussion (see section “Use of isolated adult rat 

DRG cultures” in this discussion) different types of cells which have different roles 

contribute to hypernociceptive behavior in animal models. The behavioral response by 

the animal is integrated through the participation of different types of cells (such as 

immune cells, keratinocytes, fibroblasts, glial cells, endothelial cells, neurons and other 

cell types) and their respective signaling pathways. Therefore it is possible that in vivo, 

PKA-mediated signaling remains to be the conduit for processes important for 

hyperalgesia, in some of the non-neuronal cell subtypes but not in sensory neurons. The 

lack of cell specificity when studying signal transduction pathways in experimental 

animals highlights the importance of using either isolated cell cultures or animals that 

have cell-specific genetic modifications (such as by cell-specific overexpression or 

knockdown of different signaling molecules). 

Wang et al. (2007) showed that PKA alone mediates PGE2-induced sensitization 

of ATP-activated purinergic receptor currents in IB4+ sensory neurons harvested from 

naïve rats. However, in sensory neurons harvested from CFA-treated rats, both PKCε 

and PKA partially mediate PGE2-induced augmentation of ATP purinergic currents. In 

the work by Wang and co-workers, purinergic receptor currents were measured from 

isolated single cells (Wang et al., 2007). Therefore, in Wang’s work it cannot be argued 
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that other cell types were involved in PKA-mediated signaling that contributes to PGE2-

induced sensitization. A potential reason that might explain why PKA does not mediate 

PGE2-induced sensitization in my work while it partially does in the study by Wang et al. 

is that the signaling was studied in IB4+ sensory neurons, and that this signaling may be 

different from that in neuropeptide-containing neurons (Bennett et al., 1998a; Bradbury 

et al., 1998). Thus assaying PKA activity in cell lysates cannot detect a difference in 

different subpopulations of neurons that represent a fraction of all sensory neurons. 

Another explanation could be differences in the experimental model since Wang et al. 

used sensory neurons freshly dissociated from DRGs harvested from animals whose 

paws were inflamed by CFA injection, whereas I used sensory neurons harvested from 

naïve animals and kept in culture for 12 days (Wang et al., 2007). During the course of 

inflammation induced by CFA, multiple inflammatory mediators are released, including 

NGF. 

The interaction between these inflammatory mediators and their effect on PKA 

activation by PGE2 was not studied in detail in the current work. Of interest, however, is 

the observation that growing adult rat sensory neurons in 250 ng/ml NGF versus 30 

ng/ml resulted in PGE2-induced increase in cAMP in the former but not the latter even 

after 24 hours of pre-exposure to the eicosanoid (Fehrenbacher, 2005). This raises the 

possibility that in sensory neurons grown in the presence of NGF and PGE2, re-exposure 

to the prostanoid may still activate PKA. Since it is known that CFA causes increased 

production of NGF (see introduction), it is possible that neurons harvested from CFA-

injected animals have signaling pathways already altered and modulated by that 

exposure. 

 

Long-term exposure to PGE2 causes homologous desensitization 

 

Findings presented in this dissertation show that there is cross desensitization of 

activation of PKA by PGE2 and of that by L902688. There was a lack of similar 

interaction between desensitization of PGE2 and cPGI2-activated PKA. It was anticipated 

that PGE2 would be able to desensitize PKA activation by L902688, because both 

ligands activate EP4 receptors which are expressed on DRG neurons (Fehrenbacher et 

al., 2005). On the other hand, it was somewhat surprising that long-term exposure to 

PGE2 did not influence cPGI2-activated PKA in sensory neurons. As mentioned earlier, 

EP and IP receptors are both expressed on sensory neurons, they both cause neuronal 
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sensitization of sensory neurons and they share the same signaling pathway that 

mediates this sensitization (Hingtgen and Vasko, 1994b; Hingtgen et al., 1995). The 

finding that the desensitization of PGE2-activated PKA is homologous suggests the 

mechanisms mediating this desensitization because homologous desensitization of 

GPCRs is mediated by Grk and not by second messenger-activated kinases (Premont, 

2005). This finding also shows that long-term exposure to one eicosanoid will not result 

in desensitization to other ones. One might speculate that subsequent (and even 

cyclical) production of eicosanoids would help maintain sensitization. 

 

Second messenger kinases do not mediate loss of PKA-activation by 

long-term exposure to PGE2 

 

To study whether desensitization of PKA activation by PGE2 was mediated by 

PKA or PKC (second messenger-activated kinases), manipulations aimed at both these 

kinases were used. Neither H-89 nor BIM-I attenuated the loss of PKA activation after 

long-term exposure to PGE2. It was previously shown in HEK cells that PKA-mediated 

phosphorylation of the IP receptor is capable of desensitizing it (Lawler et al., 2001). 

There is no precedent, however, for an analogous phenomenon with the EP4 receptor. 

Furthermore, Ichikawa and co-workers showed that inhibition of PKA using PKI did not 

prevent EP4 receptor desensitization in CHO cells (Nishigaki et al., 1996). Although 

evidence of a role for EP1 (and the coupled PKC) in PGE2-induced sensitization of DRG 

sensory neurons is sparse, there are 2 reasons to examine whether PKC could mediate 

desensitization of PGE2-activated PKA. First, EP1 receptors are expressed in adult rat 

DRG cultures (Fehrenbacher et al., 2005) and some splice variants of the EP3 receptor 

are coupled to Gαq/11 and thus can activate the PKC pathway (Zeilhofer, 2007). Second, 

several studies showed that an eicosanoid receptor that is coupled to PKC can 

desensitize another PKA-coupled eicosanoid receptor in the same cells. For example, IP 

receptors can become desensitized by PKC-dependent phosphorylation as a result of 

activation of EP1 in isolated rabbit lungs (Schermuly et al., 2007). Also, activation of EP1 

receptors or PGF2α receptors causes heterologous PKC-dependent phosphorylation and 

desensitization of thromboxane A2 receptors α and β in HEK293 and renal mesangial 

cells (Kelley-Hickie and Kinsella, 2004). Thus it is possible that a similar mechanism 

occurs in sensory neuronal cultures after long-term exposure to PGE2. However, using 

the non-selective PKC inhibitor BIM-I at 1 µM, no evidence was found of PKC-dependent 
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desensitization of PGE2-activated PKA. BIM-I used at lower concentration blocks PKC-

mediated sensitization of sensory neurons in culture by P2Y receptor agonists (Huang et 

al., 2003). Collectively, data shown in this dissertation demonstrate that second 

messenger-activated kinases such as PKA and PKC do not mediate desensitization of 

PGE2-activated PKA after long-term exposure to the eicosanoid. 

 

Indirect PKA activation through activating Gαs is not changed 

 

Using cholera toxin to lock Gαs in the activated state shows that PKA activation 

via direct Gαs stimulation is not altered after long-term exposure to PGE2. This supports 

the notion that the integrated effect of activating Gαs and the adenylyl cyclase are not 

altered by chronic exposure to PGE2, and thus it is logical to infer that the changes that 

lead to loss of PKA activation are upstream from Gαs, i.e. the EP receptors themselves. 

This observation was confirmed using long-term exposure to forskolin, which also 

bypasses the receptors and activates adenylyl cyclase directly and thus, activates PKA 

without receptor activation. 

One of the limitations of using cholera toxin is that it will activate not only the Gαs 

that is coupled to EP receptors, but all the Gαs in DRG cultures. Therefore whether the 

PKA, activated indirectly by cholera toxin, belongs to the same pool activated by PGE2 

or not, remains unknown. This drawback of this experiment warrants further work to ask 

whether relevant EP receptors, i.e. EP3c and EP4 are able to activate Gαs when 

stimulated using selective agonists after long-term exposure to PGE2. Using long-term 

exposure of sensory neurons in culture to PGE2, it will be also possible to ask whether 

the coupling of EP3c and EP4 from Gαs to another heterotrimeric G protein is switched, 

akin to the switching of coupling of βARs from Gαs to Gαi/o (Daaka et al., 1997). It was 

previously shown that EP4 switches coupling from Gαs to Gαi/o in heterologous 

expression systems (Fujino and Regan, 2006; Neuschafer-Rube et al., 1997). It was 

also shown in HEK cells that prolonged activation of human EP4 receptors results in 

MAPK activation, a hallmark of switching signaling to Gαi/o (Desai and Ashby, 2001). 

Thus signaling mediating PGE2-induced sensitization could be switched from being 

Gαs/cAMP/PKA mediated to a different heterotrimeric G-protein, such as Gα11/q/PKC, 

Gα12/13/Rho/ROCK or Gαi/o. It also is now recognized that Gβγ subunits can mediate 

signaling (Albert and Robillard, 2002; Birnbaumer, 1992; Lin and Smrcka, 2011). 

Evidence for Gβγ-mediated signaling in neuronal tissues are also well described in 
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literature (Dev et al., 2001; Strock and Diverse-Pierluissi, 2004). Previously, it was 

observed that other GPCRs switch their coupling in sensory neurons. Levine and co-

workers argued that µ-opioid receptors switch signaling from Gαi/o to Gαs and PGE2 

receptors switch signaling from Gαs to Gαi/o in behavioral experiments using experimental 

animals (Dina et al., 2009; Joseph et al., 2010; Khasar et al., 2008). As mentioned 

earlier, it is difficult to identify the cell type in which these signaling changes occur from 

the in vivo experiments performed in these studies. In addition, there is no evidence in 

literature that Gβγ can mediate sensitization in sensory neurons. 

 

Long-term exposure to PGE2 does not alter the mRNA expression of β-

arrestins or Grks 

 

Previously it was shown that chronic Δ9-tetrahydrocannabinol treatment causes 

upregulation of Grk2, Grk4, β-arrestins 1 and 2 in multiple brain regions (Rubino et al., 

2006). In animal models of hypertension Grk2 activity and expression increase and this 

is described as one of the pathophysiological mechanisms underlying the disease (Gros 

et al., 1997b; Gros et al., 2000). In rheumatoid arthritis patients Grk2 activity and 

expression are reduced in leukocytes isolated from the systemic circulation (Lombardi et 

al., 1999). In DRG cultures IL-1β reduces the expression of Grk2 and thus reduces 

internalization of bradykinin receptors after prolonged exposure to the ligand (von 

Banchet et al., 2011). As mentioned earlier, these previous studies suggested the 

possibility that expression of the mRNA of the ubiquitously expressed forms of Grks 

(Grk2, 3, 5 and 6) or β-arrestins may change after long-term exposure to PGE2. Real 

time PCR showed that the relative level of mRNA for these molecules did not change, 

suggesting that PGE2 does not modulate their expression on the transcriptional level. 

Modulation of the level or activity of Grks or β-arrestins can happen on the level of 

translation and independent of transcription and mRNA levels. Therefore further studies 

on the level of protein expression of Grks and β-arrestins are warranted. Also activity of 

Grks can be modulated by post-translational modifications. So studies that examine the 

kinase activity of Grks might shed light on their modulation via signaling rather than level 

of protein expression. 
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Grk2-mediates desensitization of PKA activation 

 

Accumulating literature is providing evidence that Grks can act as the main 

component in desensitizing certain receptors and that this can occur independent of β-

arrestins. For example it was shown that histamine H2 receptors, which are Gαs-coupled, 

are desensitized in a Grk2 dependent manner in HEK cells (Fernandez et al., 2011). 

Interestingly this desensitization was independent of the kinase activity of Grk2, but 

required its RGS domain (regulator of G-protein signaling, a group of negative regulators 

of GPCRs). In the study by Fernandez and co-workers, H2 receptors desensitized by a 

“kinase-dead” mutant of Grk2 were unable to become internalized and consequently did 

not re-sensitize. This means that the kinase function, for H2 receptors, is not needed for 

desensitization, but it is essential for internalization and resensitization. This was 

observed with other receptors as well, such as the receptor for follicle stimulating 

hormone in rat Sertoli cells (Reiter et al., 2001) and dopamine D2 receptors in HEK cells 

(Namkung et al., 2009), which are coupled to Gαq/11 and Gαi/o respectively. In other 

examples, Grk was sufficient for both desensitization and internalization of the receptor 

due to presence of “clathrin-box” which allows for the binding of Grk and clathrin and 

subsequent internalization of the receptor (Mangmool et al., 2006; Shiina et al., 2001). 

Reduction of expression of Grk2 using RNA interference in experiments described 

herein will lead to reduction of the expression of the protein (Fig. 40). Consequently, 

whether Grk2 is mediating the observed desensitization through a phosphorylation-

dependent or independent mechanism cannot be determined. Future experiments that 

involve methods to inhibit the kinase activity of Grk2 would help delineating whether 

desensitization of PKA activation by PGE2 is dependent on phosphorylation. To date, no 

small molecules that are capable of selectively inhibiting Grk2 are available. 

Overexpression of “kinase-dead” mutants of Grk2 can be used. Alternatively, an aptamer 

that was recently developed that selectively inhibits Grk2 kinase activity can be also 

used (Mayer et al., 2008). Aptamers (Latin; to fit) are small nucleic acid or peptide 

molecules that are capable of selectively binding to and thus modifying the activity of 

variety of targets including receptors, enzymes and other molecules (Keefe et al., 2010). 

It is even possible to envision engineering a viral vector that is capable of cell-specific 

expression of the Grk2-selective inhibitor aptamer for in vivo use in animal models. 

Developing such tool would be relatively easy and highly selective. High-affinity peptide 

inhibitors known to stop Grk2 kinase activity are also available and similarly developing 
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viral vectors for cell-specific overexpression of these peptides is also relatively feasible 

(Winstel et al., 2005). 

It is noteworthy that reduction of expression of Grk2 only partially reversed 

desensitization by PGE2. This can be explained in terms of insufficient reduction of 

expression by the siRNA. Despite that siRNA against Grk2 used in this dissertation 

caused more than 40 percent reduction of expression of Grk2 mRNA, the remaining 

Grk2 might still be sufficient to desensitize EP receptors to some extent and hence 

prevent full  reversal of desensitization. It is also important to note that expression of 

Grk6 was significantly increased in DRG cultures after treatment with Grk2 siRNA. The 

increase was small (approximately 35 percent), however it may be sufficient to prevent 

total reversal of PKA desensitization after long-term exposure to PGE2. Finally, the lack 

of total reversal can be explained by the redundant nature by which Grks act; i.e. other 

Grk(s) might be involved as well. This was reported recently with β-adrenergic receptor 

(Nobles et al., 2011) where it was found that multiple Grks phosphorylate and 

desensitize βARs. It was named “bar-coding” since phosphorylation of βARs by different 

kinases resulted in activation of different alternative signaling pathways. 

Interestingly, expression of Grk2 in DRGs was shown to be only partially reduced 

by IL-1β on the protein level (Kleibeuker et al., 2008a; von Banchet et al., 2011). 

Expression of IL-1β is controlled by several inflammatory mediators in different chronic 

pathological painful conditions (Marchand et al., 2005; Schafers and Sorkin, 2008). 

Reduction of expression of Grk2 may lead to only partial desensitization of the EP 

receptors, which allows them to continue generating cAMP, which then activates other 

cAMP effectors such as the Rap-GEF Epac. Accumulating evidence from multiple 

groups suggests that Epac mediates an alternative signaling pathway that is implicated 

in the switch to chronic inflammation (Eijkelkamp et al., 2010b; Hucho et al., 2005; Wang 

et al., 2007). 

My work demonstrates for the first time in isolated DRG cultures that prolonged 

exposure to PGE2 leads to loss of PKA activation by the ligand despite persistence of 

sensitization, and that this loss is mediated at least in part by Grk2 (Fig. 40).
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Figure 40. Mechanism of switching signaling from PKA to alternative signaling pathways by Grk2 in adult rat sensory neurons after long-term 
exposure to PGE2  
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