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ABSTRACT

Carichino, Lucia PhD, Purdue University, August 2016. Multiscale Mathematical Model-
ing of Ocular Blood Flow and Oxygenation and Their Relevance to Glaucoma. Major
Professor: Giovanna Guidoboni.

Glaucoma is a multifactorial ocular disease progressively leading to irreversible blind-

ness. There is clear evidence of correlations between alterations in ocular hemodynamics

and glaucoma; however, the mechanisms giving rise to these correlations are still elusive.

The objective of this thesis is to develop mathematical models and methods to help elu-

cidate these mechanisms. First, we develop a mathematical model that describes the de-

formation of ocular structures and ocular blood flow using a reduced-order fluid-structure

interaction model. This model is used to investigate the relevance of mechanical and vas-

cular factors in glaucoma. As a first step in expanding this model to higher dimensions,

we propose a novel energy-based technique for coupling partial and ordinary differential

equations in blood flow, using operator splitting. Next, we combine clinical data and model

predictions to propose possible explanations for the increase in venous oxygen saturation in

advanced glaucoma patients. We develop a computer-aided manipulation process of color

Doppler images to extract novel waveform parameters to distinguish between healthy and

glaucomatous individuals. The results obtained in this work suggest that: 1) the increase

in resistance of the retinal microcirculation contributes to the influence of intraocular pres-

sure on retinal hemodynamics; 2) the influence of cerebrospinal fluid pressure on retinal

hemodynamics is mediated by associated changes in blood pressure; 3) the increase in ve-

nous oxygen saturation levels observed among advanced glaucoma patients depends on the

value of the patients’ intraocular pressure; 4) the normalized distance between the ascend-

ing and descending limb of the ophthalmic artery velocity profile is significantly higher in

glaucoma patients than in healthy individuals.
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1. INTRODUCTION

Glaucoma is a neurodegenerative disease affecting the eye and is the second cause of blind-

ness worldwide. Elevated intraocular pressure (IOP) has been known as a risk factor for

glaucoma for more than 150 years [1]. However, a high percentage of individuals with

elevated IOP never develop glaucoma [2], and many glaucoma patients continue to expe-

rience disease progression despite lowering IOP to target levels, condition called normal

tension glaucoma (NTG) [3]. This suggests that, in addition to elevated IOP, there are other

important risk factors associated with glaucoma onset and progression.

Ocular hemodynamics has been shown to contribute to the pathophysiology of glau-

coma [4–8]. Despite this evidence linking blood flow alterations with glaucoma, it is still

unknown whether vascular changes occur primary or secondary to vision loss. If primary,

vascular changes would lead to tissue damage with subsequent vision loss. If secondary,

vascular changes would be the result of tissue damage and vision loss.

Understanding the mechanisms relating alterations in retinal hemodynamics and vi-

sual function could lead to significant improvement in the clinical management of patients

and also aid the potential development of therapies targeting the modulation of ocular blood

flow [9]. Mathematical modeling can help elucidate these mechanisms via theoretical in-

vestigations and data analysis.

The overall objective of this thesis is to introduce new mathematical models and meth-

ods to study the vascular component in glaucoma. To provide context for those models, we

begin by describing the eye anatomy, defining glaucoma and the main challenges in mod-

eling ocular blood flow. Finally, we outline the main objectives that will be addressed in

Chapters 3, 4 and 5.
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1.1 Anatomy of the eye

The eye is a complex organ with a multi-layer structure: the sclera is the outer layer,

also called the white of the eye, the choroid is the middle vascular layer, that receives ap-

proximately 80% of the total ocular blood flow, and the retina is the inner layer, that is

light sensitive. The retinal ganglion cells are neurons located in the retina that are respon-

sible for the transmission of the visual information from the retina to the brain via the optic

nerve.

The ophthalmic artery (OA) is the primary source of blood to the eye and is located

close to the optic nerve, Figure 1.1. The central retinal artery (CRA) branches off the

OA and penetrates the optic nerve approximately 10 mm behind the globe. The CRA runs

within the central portion of the optic nerve canal parallel to the central retina vein (CRV).

Blood is supplied to the retina via the CRA and is drained by the CRV, as described below

• the CRA emerges from the optic nerve into the globe, at the optic nerve head (also

called optic disc), and branches into four major arteries, each of which supplies one

quadrant of the retina;

• the four retinal arteries branch into smaller arterioles, which branch into retinal cap-

illaries, to supply nutrients to the retinal tissue;

• the retinal blood is drained by four major retinal veins, one for each quadrant;

• the blood drains from the four retinal veins into the CRV, which exits the eye via the

optic nerve.

Retinal arteries, capillaries and veins together form the retinal microcirculation, which is

depicted in Figure 1.1.

The optic nerve tissue and the eye globe are a pressurized system; the pressure dif-

ference between the retrolaminar tissue pressure (RLTp) in the optic nerve tissue (baseline

value 7-10 mmHg) and the IOP inside the eye globe (baseline value 12-15 mmHg) is main-

tained by the lamina cribrosa (LC), a collagen structure that is pierced by the central retinal

vessels approximately in its center, Figure 1.1. The CRA and CRV are exposed to the RLTp
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Fig. 1.1.: Anatomy of the right human eye, adapted from [10].

in the optic nerve canal and are exposed to the IOP once they enter the eye globe. The vi-

sual information is transmitted via the retinal ganglion cell axons that extend from the eye

to the brain via the optic nerve, passing through the lamina cribrosa. For more details on

the eye anatomy and ocular blood flow, we refer to [11].

The eye, as well as many other organs in the body, has the capacity to maintain a

constant nutrient supply to the tissue despite changes in local parameters. This ability is

called autoregulation and is defined as the ability of vessels to change in diameter in order

to maintain a relatively constant blood flow despite changes in pressure, while meeting the

metabolic demands of the tissue, see Figure 1.2. The dilation or contraction of the vessels is

due to changes in smooth muscle tone in response to different signals, including pressure,

oxygen and carbon dioxide concentrations [12].
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Fig. 1.2.: Graph of retinal blood flow versus pressure in the presence of autoregulation

(solid line) and in the absence of autoregulation (dashed line).

The blood flow as well as the morphology and functionality of the vascular system

in the retina can be observed and measured non-invasively in humans in vivo utilizing

appropriate technologies, including fluorescein angiography, color Doppler imaging, laser

Doppler flowmetry, Doppler optical coherence tomography and retinal oximetry [11, 13–

15]. In particular, color Doppler imaging (CDI) is used to measure the time profile of

blood velocity in the OA, CRA and CRV, Figure 1.3(a), and retinal oximetry is used to

measure hemoglobin oxygen saturation and vessel diameter in the retina microcirculation,

Figure 1.3(b).

1.2 Glaucoma and ocular bood flow modeling

Glaucoma is characterized by the degeneration of the optic nerve and loss of retinal

ganglion cells, resulting in progressive and irreversible blindness. For more than 150 years

elevated IOP has been considered to be the main risk factor in glaucoma; however, NTG

patients continue to experience disease progression despite lowering IOP to target levels.

Recent studies have suggested that the difference between IOP and cerebrospinal fluid

pressure (CSFp) could be a relevant factor to be considered in glaucoma patients beyond
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(a) color Doppler imaging (b) retinal oximetry

Fig. 1.3.: Color Doppler image of the ophthalmic artery (a) and retinal oxygen saturation

image (b) in a healthy individual.

the value of IOP itself [16, 17]. The pressure difference between IOP and CSFp is usually

referred to as translamina cribrosa pressure difference (TLpD), assuming that the RLTp

and the CSFp are approximately equal [18]. Increased TLpD could be due to IOP elevation

and/or CSFp reduction. Recently, low CSFp has been identified as a relevant factor in

glaucoma [19–21].

Although pressure is an important risk factor in glaucoma, several studies and clinical

correlations have indicated a multitude of other risk factors, with ocular blood flow being

among the most important. Many factors influence the blood flow in the retina, including

the values of IOP and CSFp [22–24], and this makes the clinical interpretation of flow and

velocity measurements extremely challenging. Mathematical modeling could help quantify

the influence of changes in IOP and CSFp on retinal hemodynamics.

Building models of the eye is very challenging since it involves deformations of pres-

surized ambients, fluid-structure interactions, complex microvascular systems and vascu-

lar autoregulation. Several detailed models of the deformation of the optic nerve tissues,

including the lamina cribrosa, have been proposed in recent years [25–34]. However,
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only a few investigators have attempted to model the retinal vasculature and autoregula-

tion [35–40], and the models did not account for structural deformations.

Direct simulations of three-dimensional fluid-structure interaction problems in the oc-

ular circulation are limited by the complexity of the vasculature and by the numerical cost

of the simulations. To overcome this issue, which has also been encountered in modeling

other parts of the cardiovascular system [41–43], reduced-order models have been intro-

duced. These models can be adapted to simplify various aspects of the ocular vasculature,

leading to the coupling of multiscale mathematical models.

1.3 Aim of this thesis

The main objectives of this thesis are

1. To summarize the continuum mechanics assumptions used to derive the conservation

laws, to describe and compare one-dimensional and zero-dimensional reduced mod-

els for fluid-structure interaction in compliant vessels, and to discuss the challenges

in coupling the fluid flow in two or three-dimensional domains to zero-dimensional

reduced models (Chapter 2).

2. To develop the first multiscale mathematical model that combines the mechanical

deformation of the lamina cribrosa with the blood flow in the central retinal vessels

and in the retinal microcirculation (Chapter 3, Sections 3.1-3.4).

3. To estimate and quantify the mechanical factors that contribute to the influence of

IOP and CSFp on central retinal vessels and retinal hemodynamics, and to compare

the effect of changes in IOP and CSFp (Chapter 3, Sections 3.5-3.6).

4. To develop a stable energy-based technique for coupling systems of partial and ordi-

nary differential equations for blood flow simulations using operator splitting (Chap-

ter 4).
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5. To combine clinical data and mathematical predictions to propose possible explana-

tions for the increases in venous oxygen saturation observed in advanced glaucoma

patients (Chapter 5, Section 5.1).

6. To develop a computer-aided manipulation process of ophthalmic artery CDI images

that enables the extraction of a novel set of waveform parameters and study the sta-

tistical relevance of these parameters in characterizing the disease status in glaucoma

(Chapter 5, Section 5.2).
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2. MATHEMATICAL FOUNDATIONS

In this Chapter we provide a summary of the mathematical concepts and formulations used

in Chapters 3, 4 and 5.

In Section 2.1, we describe the motion and deformation of a continuum body in a gen-

eral curvilinear coordinates system, emphasizing the difference between Lagrangian and

Eulerian descriptions. We also define the conservations laws of mass, linear momentum

and angular momentum in Lagrangian and Eulerian descriptions, and the constitutive equa-

tions of a Newtonian viscous fluid and of a linear elastic solid. In Section 2.2, we study the

intrinsic behavior of the operators in the conservation laws of a Newtonian viscous fluid and

of a linear elastic solid from the energy point of view. In Section 2.3, we study the fluid-

structure interaction problem involving the coupling between a fluid inside a cylindrical

domain and a cylindrical structure surrounding it. Two models for the structure are con-

sidered: the linear elastic thick shell model and the linear elastic thin Koiter shell model.

In Section 2.4, we present and compare two one-dimensional modeling reduction tech-

niques for fluid-structure interaction problems in cylindrical domains: the cross-sectional

averaging technique and the dimensional analysis technique. In the comparison tests we

consider both shell models presented in Section 2.3. In Section 2.5, a zero-dimensional

reduced model for fluid-structure interaction based on the analogy between vascular beds

and electrical circuits is presented, together with the resistance formulas for rigid or com-

pliant vessels. In Section 2.6, we discuss the modeling and numerical challenges that arise

when coupling the fluid flow in a two or three-dimensional domain to a zero-dimensional

reduced model.
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2.1 Continuum mechanics

In this section, we summarize the main continuum mechanics concepts behind the

description of motion and deformation of a continuum body in a general curvilinear coor-

dinates system, emphasizing the difference between Lagrangian and Eulerian descriptions.

For further details we refer to [44, 45].

A body B ⇢ R3 is by definition a continuum if it fills the entire region of space it

occupies and its properties are continuously distributed in space. Precisely, let ⌦t ⇢ R3 be

the region occupied by B at time t � 0, and assume that its boundary @⌦t is smooth enough

to admit an outward normal unit vector at any point and at any time. Given a spatial point

in ⌦t, its position vector is denoted as r 2 ⌦t. Note that, in reality, we are assuming that r

is the position of the barycenter of an infinitesimal volume called material particle. Given

the position vector r of a material particle at time t in ⌦t, let R 2 ⌦0 be the position vector

of the same material particle at time t = 0. Then, the motion of the body B is determined

by a family of maps  (·, t) defined as

 (·, t) : ⌦0 ! ⌦t

R 7! r =  (R, t) ,
(2.1)

for every t � 0, Figure 2.1.

The body B is a continuum if

1. any macroscopic quantity that describes a property of B is an absolutely continuous

function on each material particle;

2. if  is a diffeomorphism, i.e.  is invertible and differentiable, and  �1
(r, t) = R

is differentiable as well.

Let V
R

a subset of ⌦0, then, at any time t > 0, the image of V
R

throughout the

diffeomorphism  (·, t) is V
r

⇢ ⌦t such that V
r

=  (V
R

, t), and it is called material

domain, Figure 2.1.



10

R

r V
r

V
R

⌦0

⌦t

 (·, t)

u

e2

e1

e3

Fig. 2.1.: Sketch of the motion of a continuum body that occupies the region ⌦0 at time

t = 0 and the region ⌦t at time t > 0. r 2 ⌦t is the position vector of a material

particle at time t, and R 2 ⌦0 is the position vector of the same material particle at time

t = 0, and they are related throughout the diffeomorphism  (·, t). V
R

is a subset of ⌦0

and V
r

=  (V
R

, t) is the corresponding material domain in ⌦t. u is the displacement of a

material particle moving from R to r.

2.1.1 Curvilinear coordinates

Let x =

�

x1, x2, x3
 

be the set of cartesian coordinates, and let e1, e2, e3 be the

standard basis vectors. Any vector w 2 R3 can be expressed as a linear combination of the

standard basis vectors as

w = ⌃

3
L=1w

LeL = wLeL, (2.2)

where w1, w2 and w3 are its components with respect to the standard basis. In (2.2), the

Einstein summation convention has been adopted, where summations over repeated indices

are implicitly assumed.

Introducing a set of curvilinear coordinates ⇠ =

�

⇠1, ⇠2, ⇠3
 

, we can define two other

bases for R3 beyond the standard basis

• the covariant basis vectors

g
i
:

=

@x

@⇠i
=

@xL

@⇠i
eL for i = 1, 2, 3; (2.3)
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• the contravariant basis vectors

gj
:

=

@⇠j

@x
=

@⇠j

@xL
eL for j = 1, 2, 3. (2.4)

Covariant and contravariant basis vectors are orthogonal since

g
i
· gj

=

@xL

@⇠i
@⇠j

@xL
= �ji :=

8

>

<

>

:

1 if i = j,

0 otherwise.
(2.5)

Note that the cartesian coordinates are a particular case of curvilinear coordinates where

covariant and contravariant basis vectors coincide, namely eL = eL, and are orthonormal,

namely eL · eK
= �KL . Here, we adopt the notation in which

• uppercase indices correspond to cartesian coordinates;

• lowercase indices correspond to covariant and contravariant coordinates.

Any vector w 2 R3 can be expressed as a linear combination of the standard basis vectors,

as in (2.2), and also of the covariant basis vectors and contravariant basis vectors as follows

w = wLe
L
= wLeL = wig

i
= wjg

j, (2.6)

where the wi are the covariant coordinates and wj are the contravariant coordinates, de-

fined as

wi
:

= w · gi and wj := w · g
j
. (2.7)

In the particular case of cartesian coordinates, since eL = eL, then wL = wL.

Given w,y 2 R3, the scalar product between w and y is defined as

w · y :

= wLyL = wiyi. (2.8)

Note that, even though the covariant and contarvariant basis vectors are not orthogonal

sets, they are, however, mutually orthogonal, see (2.5). Then the scalar product between

two vectors results in the sum of the products of covariant and contravariant coordinates.

The covariant, contravariant and mixed metric tensors are defined as



12

• covariant metric tensor gij := g
i
· g

j
=

@xL

@⇠i
@xL

@⇠j
;

• contravariant metric tensor gij := gi · gj
=

@⇠i

@xL

@⇠j

@xL
;

• mixed metric tensor gij := gi · g
j
= �ij .

All the three metric tensors are symmetric.

The covariant and contravariant metric tensors equations are used to pass from the

covariant components of a vector to the contravariant components and vice versa, since

gi
= gijg

j
and g

i
= gijg

j. (2.9)

Hence, given a vector w,

wi := gijw
j and wi

:

= gijwj. (2.10)

Let M 2 R3⇥3 be a second order tensor and consider the associated linear transformation

LM : R3 ! R3

y 7! w = M y.
(2.11)

Depending on the choice of coordinates for the vectors

w = wLeL = wig
i
= wig

i and y = yKeK = yjg
j
= yjg

j, (2.12)

we have that

wL = MLKyK , wi
= M i

jy
j, wi

= M ijyj, wi = M j
i yj, wi = Mijy

j, (2.13)

where MLK :

= eL ·M eK and

M i
j :=

@⇠i

@xL
MLK

@xK

@⇠j
, M ij

:

=

@⇠i

@xL
MLK

@⇠j

@xK
,

M j
i :

=

@xL

@⇠i
MLK

@⇠j

@xK
, Mij :=

@xL

@⇠i
MLK

@xK

@⇠j
.

(2.14)

Thus far, we have considered the differences between the scalar product and the

tensor-vector product in curvilinear coordinates with respect to cartesian coordinates. We
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can also study the differences in the derivative, gradient and divergence. Contrary to the

standard basis vectors, the vectors g
i

and gi do depend on the curvilinear coordinates ⇠i, as

shown by (2.3) and (2.4). Precisely, we can write

@g
i

@⇠j
= �

k
ijgk

and
@gi

@⇠j
= ��i

kjg
k, (2.15)

where �ijl :=
@2xL

@⇠i@⇠j
@xL

@⇠l
are the first kind Christoffel symbols and �k

ij := �ijlglk are the

second kind Christoffel symbols.

Now, let f be a scalar function f : R3 ! R, let f be a vector function f : R3 ! R3,

and let M be a second order tensor in R3⇥3, then

• the derivative of the scalar function f with respect to ⇠i can be written as

@f

@⇠i
=

@xL

@⇠i
@f

@xL
; (2.16)

• the derivative of the vector function f with respect to ⇠i can be written as

@f

@⇠i
= f l|igl

= fl|igl, (2.17)

where f l|j :=
 

@f l

@⇠j
+ �

l
ijf

i

!

is the covariant derivative and fl|j :=
✓

@fl
@⇠j

� �i
jlfi

◆

is the contravariant derivative. Note that fK |L = fK |L =

@fK

@xL
;

• the gradient of the scalar function f can be written as

rf =

@f

@xL
eL

=

@f

@⇠i
gi

=

@f

@⇠i
gijg

j
; (2.18)

• the gradient of the vector function f is a tensor and its components can be written as

⇣

rf
⌘

ij
= fj|i; (2.19)

• the divergence of the vector function f can be written as

r · f =

@fL

@xL
= f i|i; (2.20)
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• the divergence of the tensor M can be written as

r ·M =

@MKL

@xL
eK = M ji|jgi

, (2.21)

where

M ji|j =
 

@M ji

@⇠j
+ �

i
jkM

jk
+ �

k
kjM

ji

!

. (2.22)

Finally, we can generalize the Divergence Theorem to curvilinear coordinates.

Theorem 1 Divergence Theorem: Suppose that V ⇢ R3 is compact and has a piecewise

smooth boundary @V . If f is a continuously differentiable vector function defined on a

neighborhood of V , then
Z

V
r · fdV =

Z

V
f i|idV =

Z

@V
f inid (@V) =

Z

@V
f · nd (@V) , (2.23)

where n = nig
i is the outward unit normal to @V .

Example 1 Cylindrical coordinates.

Consider the change of coordinates from cartesian coordinates x = {x1, x2, x3} to

cylindrical coordinates ⇠ = {r, ✓, z}. We can express x as functions of ⇠ and vice versa as

8

>

>

>

>

<

>

>

>

>

:

x1
= r cos ✓,

x2
= r sin ✓,

x3
= z,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

r =

p

(x1
)

2
+ (x2

)

2,

✓ = tan

�1

 

x2

x1

!

,

z = x3.

(2.24)

Using these relationships and the definition of covariant and contravariant basis vectors, we

obtain

g
1

= cos ✓e1 + sin ✓e2,

g
2

= �r sin ✓e1 + r cos ✓e2,

g
3

= e3,

g1
= cos ✓e1 + sin ✓e2,

g
2

= �1

r
sin ✓e1 +

1

r
cos ✓e2,

g3
= e3.

(2.25)

Note that in cylindrical coordinates, not only are covariant and contravariant basis mutually

orthogonal, i.e. g
i
·gj

= �ji , but they are also orthogonal bases, i.e g
i
·g

j
= 0 and gi ·gj

= 0
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for i 6= j. However, the covariant and contravariant bases are not orthonormal, since the

vectors g
2

and g2 are not unitary, i.e. g
2
· g

2
= r2 and g2 · g2

=

1

r2
. Thus, the cylindrical

basis vectors er, e✓,ez are often introduced, where

er = g
1
, e✓ =

1

r
g
2
= rg2, ez = e3. (2.26)

This basis is now orthonormal.

For any vector w 2 R3, then w = wig
i
= wig

i and w = wrer +w✓e✓ +wzez

, where

wr = w1
= w1, w✓ = rw2

=

1

r
w2, wz = w3

= w3. (2.27)

As defined in Equations (2.18), (2.20) and (2.22), the gradient in cylindrical coordinates of

a scalar function f can be expressed as

rf =

@f

@r
g
1
+

1

r2
@f

@✓
g
2
+

@f

@z
g
3

=

@f

@r
g1

+

@f

@✓
g2

+

@f

@z
g3

=

@f

@r
er +

1

r

@f

@✓
e✓ +

@f

@z
ez,

(2.28)

the divergence of a vectorial function f in cylindrical coordinates can be expressed as

r · f =

@f 1

@r
+

1

r
f 1

+

@f 2

@✓
+

@f 3

@z

=

@fr
@r

+

1

r
fr +

1

r

@f✓
@✓

+

@fz
@z

=

1

r

@

@r
(rfr) +

1

r

@f✓
@✓

+

@fz
@z

,

(2.29)

and the divergence of a tensor M in cylindrical coordinates can be expressed as

r ·M =

 

1

r
M11 � rM22

+

@M11

@r
+

@M21

@✓
+

@M31

@z

!

g
1

+

 

2M12
+M21

r
+

@M12

@r
+

@M22

@✓
+

@M32

@z

!

g
2

+

 

1

r
M13

+

@M13

@r
+

@M23

@✓
+

@M33

@z

!

g
3

=

✓

Mrr �M✓✓

r
+

@Mrr

@r
+

1

r

@M✓r

@✓
+

@Mzr

@z

◆

er

+

✓

Mr✓ +M✓r

r
+

@Mr✓

@r
+

1

r

@M✓✓

@✓
+

@Mz✓

@z

◆

e✓

+

✓

Mrz

r
+

@Mrz

@sr
+

1

s

@M✓z

@✓
+

@Mzz

@z

◆

ez.

(2.30)
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Let us now consider the gradient of a vectorial function f (2.19), its components
⇣

rf
⌘

ij

can be expressed as

rf =

2

6

6

6

6

6

6

4

@f1
@r

@f2
@r

� 1

r
f2

@f3
@r

@f1
@✓

� 1

r
f2

@f2
@✓

+ rf1
@f3
@✓

@f1
@z

@f2
@z

@f3
@z

3

7

7

7

7

7

7

5

, (2.31)

and its components in the cylindrical orthonormal basis er, e✓,ez, can be expressed as

rf =

2

6

6

6

6

6

6

4

@fr
@r

@f✓
@r

@fz
@r

1

r

@fr
@✓

� 1

r
f✓

1

r

✓

@f✓
@✓

+ fr

◆

1

r

@fz
@✓

@fr
@z

@f✓
@z

@f3
@z

3

7

7

7

7

7

7

5

. (2.32)

Note that, in the second part of Equations (2.30) and (2.32), we have used the fact that

Mrr = M11
= M11, Mr✓ = rM12

=

1

r
M12, Mrz = M13

= M13,

M✓r = rM21
=

1

r
M21, M✓✓ = r2M22

=

1

r2
M22, M✓z = rM23

=

1

r
M23,

Mzr = M31
= M31, Mz✓ = rM32

=

1

r
M32, Mzz = M33

= M33.

(2.33)

2.1.2 Lagrangian and Eulerian description of motion

For the description of motion of a continuum body, given the existence of the diffeo-

morphism  between R 2 ⌦0 and r 2 ⌦t

1. we can choose to treat R and t as independent variables and express the current

position as a function of the original position at any time, i.e. r = r(R, t) =  (R, t).

This is called the Lagrangian or material description and it is commonly used in solid

mechanics;

2. we can choose to treat r and t as independent variables and express the original posi-

tion as a function of the current position at any time, i.e. R = R(r, t) =  �1
(r, t).
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This is called the Eulerian or spacial description and it is commonly used in fluid

mechanics.

We define now the time derivative, displacement, velocity and acceleration in the La-

grangian and Eulerian descriptions, and introduce curvilinear coordinates in both descrip-

tions.

Lagrangian description

In the Lagrangian description, the coordinates of a material point R do not change

in time. Thus, given a scalar function f(R, t) the derivative of f with respect to time at a

fixed position R, also called material derivative, is

Df(R, t)

Dt
:

=

@f

@t

�

�

�

�

R fixed

=

@f

@t
, (2.34)

which simply corresponds to the partial derivative of f with respect to time.

The displacement U is defined as the difference between the current position r and

the original position R, where the current position is expressed in terms of R and t

U (R, t) := r(R, t)�R. (2.35)

The velocity V of a material point R is the rate of change of the position vector r with

respect to time

V (R, t) :=
@r(R, t)

@t

�

�

�

�

R

=

@U (R, t)

@t

�

�

�

�

R

. (2.36)

The acceleration of a material point R is the rate of change of its velocity in time

A(R, t) :=
@V (R, t)

@t

�

�

�

�

R

=

@2r(R, t)

@t2

�

�

�

�

�

R

. (2.37)

Let ⇠ =

�

⇠1, ⇠2, ⇠3
 

be a set of Lagrangian curvilinear coordinates, let Gi :=
@R

@⇠i
be

the Lagrangian covariant basis vectors in the initial configuration, let

g
i
:

=

@r

@⇠i
=

@ (R+U )

@⇠i
= Gi +

@U

@⇠i
(2.38)
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be the Lagrangian covariant basis vectors in the current configuration, and let Gi and gi

be the corresponding contravariant bases. Then, in the Lagrangian description, any vector

w 2 R3 can be expressed as w = W jGj = wjg
j

and, similarly, its derivative with respect

to ⇠j is
@w

@⇠j
= W l|jGl = wl||jgl

, (2.39)

where W l|j is the Lagrangian covariant derivative, Equation (2.17), in the initial configu-

ration, and wl||j is the Lagrangian covariant derivative in the current configuration.

Eulerian description

In the Eulerian description, we focus our attention on a specific point in space; at any

instant in time, a different material particle will pass through that point. So, given a scalar

function f(r, t), to compute the derivative of f with respect to time for a fixed material

point R, we need to retrieve the current coordinates of the material point at every instant,

i.e. r = r(R, t). Hence, the material derivative of f in the Eulerian description is

Df(r, t)

Dt
:

=

@f(r(R, t), t)

@t

�

�

�

�

R

=

@f

@t

�

�

�

�

r

+

@r

@t

�

�

�

�

R

· @f
@r

�

�

�

�

t

=

@f

@t
+ v ·r

r

f, (2.40)

where r
r

f represents the gradient of f with respect to the spacial coordinates in the current

configuration.

The displacement u is defined as the difference between the current position r and the

original position R, where the original position is expressed in terms of the current position

r and t

u(r, t) := r �R(r, t). (2.41)

The velocity v of a material point R in the Eulerian description is the material derivative

of its displacement

v(r, t) :=
@r

@t

�

�

�

�

R

=

Du(r, t)

Dt
= V (R(r, t), t). (2.42)
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The acceleration a of a material point R in the Eulerian description is the material deriva-

tive of its velocity

a(r, t) :=
Dv(r(R, t), t)

Dt
=

@v(r(R, t), t)

@t

�

�

�

�

R

=

@v

@t
+ v ·r

r

v. (2.43)

Let ⇠ =

n

⇠
1
, ⇠

2
, ⇠

3
o

be a set of Eulerian curvilinear coordinates, let Gi :=
@R(r, t)

@⇠
i

be the Eulerian covariant basis vectors in the initial configuration, let

g
i
:

=

@r

@⇠
i = Gi +

@u

@⇠
i (2.44)

be the Eulerian covariant basis vectors in the current configuration, and let Gi and gi be the

corresponding contravariant bases. Then, in the Eulerian description, any vector w 2 R3

can be expressed as w = W
j
Gj = wjg

j
and, similarly, its derivative with respect to ⇠

j is

@w

@⇠j
= W

l|jGl = wl||jgl
, (2.45)

where W l|j is the Eulerian covariant derivative, Equation (2.17), in the initial configuration,

and wl||j is the Eulerian covariant derivative in the current configuration.

2.1.3 Deformation

The deformation gradient F measures how the distances between two material points

change in time; F is defined as the Jacobian of the map  

F :

=

@r

@R
=

@ (R, t)

@R
= r

R

 (R, t) . (2.46)

Let J be the determinant of the Jacobian of the map  , i.e. J = det(F ). The fact that  is

a diffeomorphism implies that J 6= 0. The deformation gradient can be also expressed in

terms of the displacement U using Equation (2.35)

F =

@r

@R
=

@ (U +R)

@R
= r

R

U + I, (2.47)

where I is the identity tensor.
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The Green-Lagrange strain tensor provides another measure of the evolution of dis-

tances between material points and is defined as

�ij :=
1

2

�

gij �Gij

�

. (2.48)

More precisely, this strain tensor is a measure of the difference between the Lagrangian

covariant metric tensor in the deformed configuration and the Lagrangian covariant metric

tensor in the reference configuration. It can be also expressed in terms of the displacement

U using Equation (2.38)

�ij =
1

2

⇣

Ui|j + Uj|i + Uk|iUk|j
⌘

, (2.49)

where U = U iGi = UiG
i.

Measures of deformation that do not depend on the choice of coordinate systems are

the strain scalar invariants

I1 := gii, I2 :=
1

2

⇣

giig
j
j � gijg

j
i

⌘

, I3 :=
det |gij|
det |Gij| , (2.50)

where gij and gij are the Lagrangian mixed and covariant metric tensors in the current con-

figuration and Gij is the Lagrangian covariant metric tensor in the original configuration.

The first invariant is a measure of stretch in the principal directions. The second invariant is

a measure of changes in orientation. The third invariant is a measure of volumetric changes,

since the changes in volume in the original configuration dV0 are related to the changes in

volume in the current configuration dVt as follows

dVt =

p

I3dV0. (2.51)

It can be specified that
p
I3 = J , thus leading to

dVt = JdV0. (2.52)

2.1.4 Stress tensors

The internal forces in an infinitesimal volume of a continuum body are represented by

the traction on its surface, and, by Cauchy’s postulate, the traction is assumed to depend
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only on the normal to the surface. Note that the traction is defined as a force per unit of

area. Given the normal to a surface, the traction can be expressed via the stress tensor.

Different stress tensors can be defined depending on whether the traction per unit of area

is expressed in the original or current configuration, and depending on whether the normal

vector is expressed in the basis for the original or current configuration. The Nanson’s

formula provides a relation between area elements in the current and original configuration.

Let d⌃ be an infinitesimal area in the original configuration, let d� be the corresponding

infinitesimal area in the current configuration, let N be the normal to d⌃ and let n be the

normal to d�, then Nanson’s formula can be expressed as

nd� = JF�TNd⌃. (2.53)

The different stress tensors are defined as

• the Cauchy stress tensor T ij represents the traction per unit of area in the current con-

figuration when the normal is expressed as a linear combination of Eulerian covariant

basis vectors g
j
;

• the body stress tensor T sl
=

@⇠s

@⇠
i T

ij @⇠l

@⇠
j represents the traction per unit of area in

the current configuration when the normal is expressed as a linear combination of the

Lagrangian covariant basis vectors g
j
;

• the first Piola-Kirchhoff stress tensor P jk
= JT

ij @⇠k

@⇠
i represents the traction per

unit of area in the original configuration when the normal is expressed as a linear

combination of the Eulerian covariant basis vectors g
j
;

• the second Piola-Kirchhoff stress tensor Skl
= P jk @⇠

l

@⇠
j = JT kl

= J
@⇠k

@⇠
i T

ij @⇠l

@⇠
j

represents the traction per unit of area in the original configuration when the normal

is expressed as a linear combination of the Lagrangian covariant basis vectors g
j
.

The Cauchy stress tensor, the body stress tensor, and the second Piola-Kirchhoff stress

tensor are symmetric, whereas the first Piola-Kirchhoff stress tensor is not.



22

2.1.5 Conservation laws

In this section we summarize the conservation laws for mass, linear momentum and

angular momentum in the Lagrangian and Eulerian descriptions. For the detailed derivation

of these laws we refer to [45]. The conservations laws reported below are derived in the

isothermal case, under the assumption that the mass body is preserved, i.e. there are no

body sinks or sources.

Lagrangian description

• Conservation of mass
⇢(R, 0) = ⇢0(R)

= J⇢(r(R, t), t);
(2.54)

• Conservation of linear momentum

⇢0
@V

@t
= r

R

·H + ⇢0F , (2.55)

or in component form in the basis Gi

⇢0
@V i

@t
= Hji|j + ⇢0F

i, (2.56)

where F is the resultant of external body forces per unit of volume and

HjkGj = P jkg
j

. (2.57)

Note that only in cartesian coordinates H = P ;

• Conservation of angular momentum

S = ST Skl
= Slk. (2.58)

Eulerian description

• Conservation of mass
D⇢

Dt
+ ⇢r

r

· v = 0, (2.59)
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or in component form in the basis g
i

@⇢

@t
+ vi

@⇢

@⇠
i + ⇢vi||i = 0; (2.60)

• Conservation of linear momentum

⇢
Dv

Dt
= r

r

· T + ⇢f , (2.61)

or in component form in the basis g
i

⇢

 

dvi

dt
+ vjvi||j

!

= T
ji||j + ⇢f

i
, (2.62)

where f is the resultant of external body forces per unit of volume;

• Conservation of angular momentum

T = T T T
ij
= T

ji
. (2.63)

2.1.6 Constitutive equation

As discussed in the previous section, a Lagrangian description of body motion is of-

ten used in solid mechanics, and an Eulerian description of motion is often used in fluid

mechanics. Constitutive equations of the stress tensors are necessary to close the system

of conservation laws summarized in Section 2.1.5. In this section we provide examples of

constitutive equations for a Newtonian viscous fluid and a linear elastic solid.

Newtonian viscous fluid

In the case of a Newtonian viscous fluid, we choose the Eulerian description and we

assume that the Cauchy stress tensor is the sum of two terms. The fist term is due to the

isotropic contribution of the fluid pressure p, and the second term is due to the viscous

dissipation of the fluid, namely

T :

= �pI + 2µD, (2.64)



24

where µ > 0 is the fluid viscosity and

D :

=

1

2

⇣

r
r

v +rT
r

v
⌘

(2.65)

is the symmetric part of the Eulerian velocity gradient tensor, also known as the rate-of-

strain tensor. T is symmetric by definition so that the conservation of angular momentum,

Equation 2.63, is satisfied. Component-wise Equations (2.64) and (2.65) can be written in

the Eulerian covariant basis vectors g
i

as

T
ij
=

⇣

�pgij + 2µD
ij
⌘

and D
ij
=

1

2

⇣

gkjvi||k + gkivj||k
⌘

. (2.66)

Moreover, if we assume that the fluid is homogeneous, i.e. the density ⇢ is constant

in space and time, namely ⇢(r(R, t), t) = ⇢0(R), then the conservation of mass (2.59)

becomes

r
r

· v = vi||i = 0. (2.67)

Let us introduce the Leibnitz transport Theorem.

Theorem 2 Leibnitz transport Theorem: Suppose that V
r

⇢ ⌦t is a compact material

domain and that f(r, t) is a scalar function in the Eulerian description of motion. If f is

• a Lebesgue-integrable function on V
r

at any time t;

• differentiable with respect to r at any time t and the derivative is Lebesgue-integrable;

then
d

dt

Z

Vr

f(r, t)dV =

Z

Vr

 

@f

@t

�

�

�

�

r

+r
r

· (fv)
!

dV . (2.68)

The volume of the fluid is defined as

vol =

Z

⌦t

d⌦t, (2.69)

and, using the Leibnitz transport Theorem (2.68), the body volume variation in time can be

expressed as
d (vol)

dt
=

d

dt

Z

⌦t

d⌦t =

Z

⌦t

r
r

· vd⌦t. (2.70)
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Hence, the constraint on the Eulerian velocity to have zero divergence, that follows from

the homogeneity of the fluid, implies that the fluid volume is constant, i.e. the fluid is

incompressible. In this case, the conservation of mass and the balance of linear momentum

for a homogenous Newtonian viscous fluid are

r
r

· v = 0, (2.71a)

⇢
@v

@t
+ ⇢

�

v ·r
r

�

v = r
r

· T + ⇢f , (2.71b)

where

r
r

· T = �r
r

p+ µr2
r

v, (2.72)

also called the Navier-Stokes equations. In the case of laminar flow, the convection term
�

v ·r
r

�

v is negligible, and (2.71) becomes

r · v = 0, (2.73a)

⇢
@v

@t
= r

r

· T + ⇢f , (2.73b)

also called Stokes equations.

Conversely, if we assume that the fluid is incompressible, then Equation (2.70) implies

that r
r

·v = 0, so that the conservation of mass (2.59) becomes
D⇢

Dt
= 0; hence the density

of a material point is constant in time. Note that this implies that the fluid is homogenous

at time t, only if it was homogeneous in the initial configuration.

Example 2 Navier-Stokes equations and Stokes equations in cylindrical coordinates.

Let us consider the cylindrical coordinates ⇠ = {r, ✓, z} with Eulerian curvilinear

coordinates and the cylindrical basis er, e✓ and ez, defined in Equation (2.26). To simplify
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the notation we omit the over-bar sign and the subscript to the gradient. Then, with respect

to the chosen basis and using (2.32), the components of D are

D =

2

6

6

6

6

6

6

6

6

6

4

@vr
@r

1

2

"

r
@

@r

✓

v✓
r

◆

+

1

r

@vr
@✓

#

1

2

✓

@vr
@z

+

@vz
@r

◆

1

2

"

r
@

@r

✓

v✓
r

◆

+

1

r

@vr
@✓

#

1

r

✓

@v✓
@✓

+ vr

◆

1

2

✓

@v✓
@z

+

1

r

@vz
@✓

◆

1

2

✓

@vr
@z

+

@vz
@r

◆

1

2

✓

@v✓
@z

+

1

r

@vz
@✓

◆

@vz
@z

3

7

7

7

7

7

7

7

7

7

5

,

(2.74)

the Navier-Stokes equations (2.71) can be written as
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1

r

@

@r
(rvr) +

1

r

@v✓
@✓

+

@vz
@z

= 0,

⇢

 

@vr
@t

+ vr
dvr
dr

+

v✓
r

@vr
@✓

+ vz
@vr
@z

� v2✓
r

!

= �@p

@r

+µ

✓

�vr � vr
r2

� 2

r2
@v✓
@✓

◆

+ ⇢fr,

⇢

✓

@v✓
@t

+ vr
@v✓
@r

+

v✓vr
r

+

v✓
r

@v✓
@✓

+ vz
@v✓
@z

◆

= �1

r

@p

@✓

+µ

✓

�v✓ � v✓
r2

+

2

r2
dvr
d✓

◆

+ ⇢f✓,

⇢

✓

@vz
@t

+ vr
@vz
@r

+

v✓
r

@vz
@✓

+ vz
@vz
@z

◆

= �@p

@z
+ µ�vz + ⇢fz,

(2.75)

and the Stokes equations (2.73) can be written as
8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

1

r

@

@r
(rvr) +

1

r

@v✓
@✓

+

@vz
@z

= 0,

⇢
@vr
@t

= �@p

@r
+ µ

✓

�vr � vr
r2

� 2

r2
@v✓
@✓

◆

+ ⇢fr,

⇢
@v✓
@t

= �1

r

@p

@✓
+ µ

✓

�v✓ � v✓
r2

+

2

r2
dvr
d✓

◆

+ ⇢f✓,

⇢
@vz
@t

= �@p

@z
+ µ�vz + ⇢fz,

(2.76)

where �(·) = 1

r

@

@r

✓

r
@(·)
@r

◆

+

1

r2
@2
(·)

@✓2
+

@2
(·)

@z2
.
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Linear elastic solid

In the case of a purely elastic material, we adopt the Lagrangian description and we

assume that there exists a strain energy function W that depends only on the strain tensor

�, such that

Sij
:

=

@W
@�ij

. (2.77)

Moreover, we assume that the dependence of W on the strain is through the scalar strain

invariants, i.e. W = W (I1, I2, I3).

Consider the case of infinitesimal deformations, also referred to as the small defor-

mation case, where there exists 0 < " ⌧ 1 such that r = R + U = r + "Ũ and Ũ is

O(1). Now, expanding the Green-Lagrangian strain tensor, Equation (2.49), in terms of "

and neglecting the terms multiplied by "2, we obtain

�ij ' 1

2

�

Ui|j + Uj|i
�

=

: Eij. (2.78)

Here,

E :

=

1

2

⇣

r
R

u+rT
R

u
⌘

(2.79)

is the linearized strain tensor and it is equal to the symmetric part of the Lagrangian dis-

placement gradient tensor. If we expand also J with respect to ", we obtain that J =

1 +O("). If we neglect the terms multiplied by ", then J ' 1 and this implies that

1. the solid is incompressible, since the deformation preserves the volumes, see Equa-

tion (2.52);

2. the solid is homogeneous, since the conservation of mass implies that ⇢ = ⇢0, see

Equation (2.54).

Moreover, if we expand the stress tensors defined in Section 2.1.4 with respect to ", we

obtain that all of them have the same leading terms, implying that S ' P ' T .

Finally, if we assume that the material has a linear elastic constitutive equation, namely

that W depends linearly on the strain tensor, we can write

S =

@W
@�ij

:

= � tr
⇣

�
⌘

I + 2µ�, (2.80)
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where � and µ are positive constants also known as Lamé parameters. That, in the case of

small deformations, becomes

S = � tr
⇣

E
⌘

I + 2µE. (2.81)

Under these assumptions, the Lagrangian conservation of linear momentum, Equa-

tion(2.55), for a linear elastic solid in the regime of infinitesimal deformations becomes

⇢0
@2U

@t2
= r

R

· S + ⇢0F , (2.82)

or, component-wise in the Lagrangian covariant basis Gi, we can write

⇢0
@2U i

@t2
=

⇣

�GjiEk
k + 2µEji

⌘

|j + ⇢0F
i. (2.83)

Note that the symmetry of E implies that S is also symmetric; hence the conservation of

linear momentum, Equation (2.55), is satisfied.

Example 3 Linear elastic solid in regime of small deformations in cylindrical coordinates.

Let us consider the cylindrical coordinates ⇠ = {s,#, ⇣} as Lagrangian curvilinear

coordinates and the cylindrical basis es, e# and e⇣ .Then, with respect to the chosen basis,

the components of the second Piola-Kirchooff stress tensor can be written as

S =

2

6

6

6

6

6

6

6

6

6

4

�r ·U + 2µ
@Us

@s
µ

 

s
@

@s

✓

U#

s

◆

+

1

s

@Us

@#

!

µ

✓

@Us

@⇣
+

@U⇣

@s

◆

µ

 

s
@

@s

✓

U#

s

◆

+

1

s

@Us

@#

!

�r ·U +

2µ

s

✓

@U#

@#
+ Us

◆

µ

✓

@U#

@⇣
+

1

s

@U⇣

@#

◆

µ

✓

@Us

@⇣
+

@U⇣

@s

◆

µ

✓

@U#

@⇣
+

1

s

@U⇣

@#

◆

�r ·U + 2µ
@U⇣

@⇣

3

7

7

7

7

7

7

7

7

7

5

,

(2.84)

where r · U =

1

s

d

ds
(sUs) +

1

s

dU#

d#
+

dU⇣

d⇣
, and the conservation of linear momentum,

Equation (2.82), can be written as
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

⇢0
@2Us

@t2
=

Sss � S##

s
+

@Sss

@s
+

1

s

@S#s

@#
+

@S⇣s

@⇣
+ ⇢0Fs,

⇢0
@2U#

@t2
=

Ss# + S#s

s
+

@Ss#

@s
+

1

s

@S##

@#
+

@S⇣#

@⇣
+ ⇢0F#,

⇢0
@2U⇣

@t2
=

Ss⇣

s
+

@Ss⇣

@s
+

1

s

@S#⇣

@#
+

@S⇣⇣

@⇣
+ ⇢0F⇣ .

(2.85)
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2.2 Energy identities

In this section we study the intrinsic behavior of the operators in the conservation laws

of a incompressible homogenous Newtonian viscous fluid and of a linear elastic solid from

the energy point of view. For simplicity, we present the results in cartesian coordinates, but

the same results hold in any curvilinear coordinates.

Fist of all, we list some definitions that will be used in the present and next sections,

where we consider ⌦ ⇢ Rd, for d = 2, 3.

Definition 1 Let f be a scalar function f :

⌦! R, define the L2 space as

L2
(⌦) =

(

f :

⌦! R
�

�

�

�

Z

⌦

f 2 d⌦ < 1
)

, (2.86)

with the norm

kfkL2(⌦) =

s

Z

⌦

|f |2d⌦. (2.87)

Let f be a vectorial function f :

⌦! Rd, for d = 2, 3, define

L2
(⌦) =

�

L2
(⌦)

�d
, (2.88)

with the norm

kfkL2(⌦) =

s

Z

⌦

|f |2d⌦ =

s

Z

⌦

f · f d⌦. (2.89)

Let A be a second order tensor A 2 Rd⇥d, define the norm

kAkL2(⌦) =

s

Z

⌦

A : A d⌦, (2.90)

where A : B = AIJBIJ .

Definition 2 Let f be a scalar function f :

⌦! R, define the H1 space as

H1
(⌦) =

(

f :

⌦! R
�

�

�

�

Z

⌦

⇣

f 2
+ |rf |2

⌘

d⌦ < 1
)

, (2.91)

with the seminorm

|f |H1(⌦) =

q

krfk2L2(⌦), (2.92)



30

and norm

kfkH1(⌦) =

q

kfk2L2(⌦) + |f |2H1(⌦). (2.93)

Let f be a vectorial function f :

⌦! Rd, for d = 2, 3, define

H1
(⌦) =

�

H1
(⌦)

�d
, (2.94)

with the seminorm

|f |H1(⌦) =

q

krfk2L2(⌦), (2.95)

and norm

kfkH1(⌦) =

q

kfk2L2(⌦) + |f |2H1(⌦). (2.96)

Definition 3 Let f be a scalar function f :

⌦! R, define the H2 space as

H2
(⌦) =

(

f :

⌦! R3

�

�

�

�

Z

⌦

⇣

f 2
+ |rf |2 +H(f) : H(f)

⌘

d⌦ < 1
)

, (2.97)

with the norm

kfkH2(⌦) =

q

kfk2L2(⌦) + krfk2L2(⌦) + kH(f)k2L2(⌦), (2.98)

where H(f) is the Hessian of f .

Definition 4 For functions depending on time and space, given a functional space V, de-

fine the following spaces

L2
(0, T ;V) =

8

<

:

h :

(0, T ) ! V

�

�

�

�

�

Z T

0

kh(t)k2V dt < 1
9

=

;

(2.99)

and

L1
(0, T ;V) =

8

<

:

h :

(0, T ) ! V

�

�

�

�

�

ess sup

t2(0,T )
kh(t)kV < 1

9

=

;

, (2.100)

where, depending on V, h is a scalar or a vectorial function in space.

We consider the case of homogenous Dirichlet boundary conditions in the absence of

body forces, this implies that the time evolution of the system is solely driven by a nonzero

initial condition. Under these assumptions, we identify two main types of energy identities.
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Case 1 Non-dissipative system
d

dt
E(t) = 0, (2.101)

where E(t) is a non-negative functional describing the energy of the system. In a

non-dissipative system, the energy is constant, i.e. E(t) = E(0) for all t 2 (0, T ), so

the energy is conserved. An example of a non-dissipative system is the motion of a

linear elastic solid.

Case 2 Dissipative system
d

dt
E(t) = �D(t), (2.102)

where E(t) and D(t) are non-negative functional describing the energy and the dis-

sipation of the system, respectively. The energy is dissipated, namely E(t)  E(0)
for all t 2 (0, T ). An example of a dissipative system is the flow of a incompressible

homogenous Newtonian viscous fluids.

2.2.1 Newtonian viscous fluid

Consider the Navier-Stokes Equations (2.71), in a fixed bounded domain ⌦ ⇢ R3,

and t 2 (0, T ), with a nonzero initial condition v(t = 0) = v0 and homogenous Dirichlet

boundary conditions v = 0 on @⌦. If we multiply the balance of linear momentum (2.71b)

by v in L2
(⌦), for every t

Z

⌦

⇢
@v

@t
· vd⌦+

Z

⌦

⇢ (v ·r)v · vd⌦ =

Z

⌦

⇣

r · T
⌘

· vd⌦. (2.103)

Since the fluid is homogeneous and ⌦ does not depend on time, the first term on the left-

hand side of Equation (2.103) yields
Z

⌦

⇢
@v

@t
· vd⌦ =

⇢

2

Z

⌦

@v2

@t
d⌦ =

1

2

d

dt

✓

⇢

Z

⌦

v2d⌦

◆

=

1

2

d

dt

⇣

⇢kvk2L2(⌦)

⌘

, (2.104)
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where
@

@t
represents the partial derivative, and

d

dt
the total derivative with respect to time.

Using the Divergence theorem (2.23), the incompressibility condition and the boundary

conditions, the second term on the left-hand side of Equation (2.103) is
Z

⌦

⇢ (v ·r)v · vd⌦ = ⇢

Z

⌦

vI
@vJ
@xI

d⌦ =

⇢

2

Z

⌦

vI
@
�

v2J
�

@xI
d⌦

=

⇢

2

Z

⌦

(v ·r)v2d⌦ =

⇢

2

Z

⌦

r · �v2 v
�

d⌦� ⇢

2�������Z

⌦

vr · vd⌦

=

⇢

2⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠Z

@⌦

v2 v · n d (@⌦) = 0,

(2.105)

and the term on the right-hand side of Equation (2.103) is
Z

⌦

⇣

r · T
⌘

· vd⌦ =

Z

⌦

@TIJ

@xJ
vId⌦ =

Z

⌦

@ (TIJvI)

@xJ
d⌦�

Z

⌦

TIJ
@vI
@xJ

d⌦

=

Z

⌦

vITIJnJ d⌦�
Z

⌦

TIJ (rv)IJ d⌦

=

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠Z

@⌦

v · T · n d (@⌦)�
Z

⌦

T : rv d⌦

= �
Z

⌦

T : rv d⌦.

(2.106)

Now, using the constitutive equation of the stress tensor for a incompressible homogenous

Newtonian viscous fluid (2.64)-(2.65), assuming that µ is constant, and using the fact that

D(v) is the symmetric part of rv, we obtain
Z

⌦

T : rv d⌦ = �
Z

⌦

pI : rvd⌦+

Z

⌦

2µD(v) : rvd⌦

= �
�������Z

⌦

pr · vd⌦+

R

⌦ 2µD(v) : D(v)d⌦

= 2µkD(v)k2L2(⌦).

(2.107)

Substituting Equations (2.104)-(2.107) in Equation (2.103), we obtain the energy iden-

tity for the Navier-Stokes equations (2.71)

d

dt

✓

⇢

2

kvk2L2(⌦)

◆

= �2µkD(v)k2L2(⌦). (2.108)

Hence, this is a dissipative system (2.102) where

E(t) = ⇢

2

kvk2L2(⌦) and D(t) = 2µkD(v)k2L2(⌦). (2.109)
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The energy functional E(t) corresponds to the fluid kinetic energy that comes from the

velocity contribution. The energy dissipates due to the viscous dissipation and depends on

the fluid viscosity µ.

2.2.2 Linear elastic solid

Consider a linear elastic solid in a fixed bounded domain ⌦ ⇢ R3, and t 2 (0, T ), with

a nonzero initial condition U (t = 0) = U 0 and homogenous Dirichlet boundary conditions

U = 0 on @⌦. If we multiply the balance of linear momentum, Equation (2.82), by
@U

@t
in

L2
(⌦) , for every t

Z

⌦

⇢
@2U

@t2
· @U
@t

d⌦ =

Z

⌦

⇣

r · S
⌘

· @U
@t

d⌦. (2.110)

Following a similar procedure to that one used to simplify Equations (2.104) and (2.106),

we obtain
d

dt

 

⇢

2

�

�

�

�

@U

@t

�

�

�

�

2

L2(⌦)

!

= �
Z

⌦

S : r
✓

@U

@t

◆

d⌦. (2.111)

Now, using the constitutive equation for linearly elastic materials (2.78) and (2.81), as-

suming that � and µ are constants, using the fact that ⌦ does not depends on time, and

assuming that U is smooth and regular enough so that the temporal and spatial derivatives

can be exchanged, then, the right-hand side of Equation (2.111), can be written as
Z

⌦

S : r
✓

@U

@t

◆

d⌦ = �

Z

⌦

r ·U r ·
✓

@U

@t

◆

d⌦+ 2µ

Z

⌦

E(U )

: r
✓

@U

@t

◆

d⌦

= �

Z

⌦

r ·U @

@t
(r ·U ) d⌦+ 2µ

Z

⌦

E(U )

:

@

@t
(rU ) d⌦

=

�

2

Z

⌦

@

@t
(r ·U )

2 d⌦+ µ

Z

⌦

@

@t

⇣

E(U )

: E(U )

⌘

d⌦

=

1

2

d

dt

⇣

�kr ·Uk2L2(⌦) + 2µkE(U )k2L2(⌦)

⌘

.

(2.112)

Substituting Equation (2.112) into Equation (2.111) we obtain the following energy

identity for a linear elastic material

d

dt

 

⇢

2

�

�

�

�

@U

@t

�

�

�

�

2

L2(⌦)

+

�

2

kr ·Uk2L2(⌦) + µkE(U )k2L2(⌦)

!

= 0, (2.113)
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This is a conservative system (2.101) where the energy of the system is given by

E(t) = ⇢

2

�

�

�

�

@U

@t

�

�

�

�

2

L2(⌦)

+

�

2

kr ·Uk2L2(⌦) + µkE(U )k2L2(⌦), (2.114)

that consists of a sum of a kinetic part, since the velocity is V =

DU

Dt
, and a potential part,

that depends on the elastic properties of the material, i.e. the Lamé parameters � and µ.

2.3 Fluid-structure interaction in a cylindrical domain

Modeling blood flow in blood vessels involves fluid-structure interaction problems,

where the fluid is represented by the blood passing through the vessel and the structure is

represented by the vessel wall that deforms due to the fluid motion inside it. In this section

we study the coupling between the fluid in a cylindrical domain and the structure occupying

a cylindrical shell around it. We adopt the Eulerian description for the fluid motion and the

Lagrangian description for the structure deformation, both in cylindrical coordinates.

Let x = (r cos ✓, r sin ✓, z) be a point in the fluid domain

⌦

f
(t) :=

�

x 2 R3|r 2 [0, �(✓, z, t)), ✓ 2 [0, 2⇡), z 2 (0, L)
 

, (2.115)

where {r, ✓, z} are the radial, azimuthal and axial Eulerian coordinates, respectively. L is

the length of the domain and � is the deformed radius, that might depend on ✓, z and time

t, see Figure 2.2. The boundary of ⌦f
(t) is the union of three different surfaces

@⌦f
= ⌃

f
0(t) [ ⌃f

L(t) [ ⌃f
lat(t), (2.116a)

where

• ⌃f
0(t) is the fluid inlet surface, defined as

⌃

f
0(t) :=

�

x 2 R3|r 2 [0, �(✓, z, t)), ✓ 2 [0, 2⇡), z = 0

 

; (2.116b)

• ⌃f
L(t) is the fluid outlet surface, defined as

⌃

f
L(t) :=

�

x 2 R3|r 2 [0, �(✓, z, t)), ✓ 2 [0, 2⇡), z = L
 

; (2.116c)
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Fig. 2.2.: Fluid-structure interaction in a cylindrical domain: fluid domain ⌦f in cylindrical

coordinates {r, ✓, z}. R is the reference radius of the domain, � is the deformed radius and

L is its length. ⌃f
0 , ⌃f

L and ⌃f
lat are the inlet, outlet and lateral surfaces of ⌦f , respectively.
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⇣
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⌦
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⌃
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0
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w
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w
int⌃

w
ext

Fig. 2.3.: Fluid-structure interaction in a cylindrical domain: vessel wall domain ⌦w in

cylindrical coordinates {s,#, ⇣}. R is the reference radius of the fluid domain and L is

its length, and h is the thickness of the wall. ⌃w
0 , ⌃w

L , ⌃w
ext and ⌃w

int are the inlet, outlet,

external and internal surfaces of ⌦f , respectively.

• ⌃f
lat(t) is the fluid lateral surface, defined as

⌃

f
lat(t) :=

�

x 2 R3|r = �(✓, z, t), ✓ 2 [0, 2⇡), z 2 (0, L)
 

, (2.116d)

that represents the fluid-structure interface in the Eulerian description.

Note that, since we have chosen the Eulerian description for the fluid motion, the domain

⌦

f
(t) and its boundary @⌦f

(t) change with time.

Let X = (s cos#, s sin#, ⇣) be a point in the wall domain ⌦w, which is defined as

⌦

w
:

=

�

X 2 R3|s 2 (R,R + h),# 2 [0, 2⇡), ⇣ 2 (0, L)
 

, (2.117)
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where {s,#, ⇣} are the radial, azimuthal and axial Lagrangian coordinates, respectively. R

is the reference radius of the fluid domain and h is the reference thickness of the wall, see

Figure 2.3. The boundary of ⌦w is the union of four distinct surfaces

@⌦w
= ⌃

w
0 [ ⌃w

L [ ⌃w
ext [ ⌃w

int, (2.118a)

where

• ⌃w
0 is the wall inlet surface, defined as

⌃

w
0 :

=

�

X 2 R3|s 2 (R,R + h),# 2 [0, 2⇡), ⇣ = 0

 

; (2.118b)

• ⌃w
L is the wall outlet surface, defined as

⌃

w
L :

=

�

X 2 R3|s 2 (R,R + h),# 2 [0, 2⇡), ⇣ = L
 

; (2.118c)

• ⌃w
ext is the wall external surface, defined as

⌃

w
ext :=

�

X 2 R3|s = R + h,# 2 [0, 2⇡), ⇣ 2 (0, L)
 

; (2.118d)

• ⌃w
int is the wall internal surface, defined as

⌃

w
int :=

�

X 2 R3|s = R,# 2 [0, 2⇡), ⇣ 2 (0, L)
 

, (2.118e)

that represents the fluid-structure interface in the Lagrangian description.

Note that, since we have chosen the Lagrangian description for the wall deformation, the

domain ⌦w and its boundary @⌦w are fixed in time.

Given a material point X = (R cos#, R sin#, ⇣) 2 ⌃

w
int, the corresponding spatial

point x = (� cos ✓, � sin ✓, z) 2 ⌃f
lat can be retrieved via the displacement

U = x�X = Uses + U#e# + U⇣e⇣ (2.119)

as follows

� = R + Us, ✓ = #+ U# and z = ⇣ + U⇣ . (2.120)
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�
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⌃
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U

Fig. 2.4.: A sketch of the coupling between x 2 ⌃f
lat(t) and X 2 ⌃w

int via the displacement

U = x�X . The projection of U on the s⇣-plane is sketched on the left, and the projection

on a cross section is sketched on the right. Us, U⇣ and U# are the radial, axial and angular

components of the displacement. R is the reference radius of the fluid domain and � is the

deformed radius of the fluid domain.

Figure 2.4 shows a sketch of the components of the displacement. The radial component

Us and axial component U⇣ of the displacement can be extracted by projecting U on the

s⇣-plane, Figure 2.4 (left). The angular component U# can be extracted by projecting U on

a cross section, i.e. for ⇣ fixed, Figure 2.4 (right).

The fluid motion in⌦f
(t) is coupled with the wall deformation in⌦w via the following

kinematic and dynamic interface conditions.

Kinematic condition: we impose the velocity of the fluid v at x 2 ⌃f
lat(t) to be equal to

the velocity of the wall V on the corresponding point X 2 ⌃w
int. Since, by definition

(2.36), the wall velocity is equal to the partial derivative of the displacement with

respect to time, the kinematic interface condition can be expressed as

v(x, t)
�

�

x2⌃f
lat(t)

=

@U (X, t)

@t

�

�

�

�

X2⌃w
int

, (2.121)

where x = U +X .

Dynamic condition: we impose continuity of forces on the fluid-structure interface. As

described in Section 2.1.4, the internal forces in a continuum are represented by the
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surface traction, that can be expressed with the stress tensor and the normal to the

surface. Let d⌃ be an infinitesimal area on ⌃w
int and let d� be the corresponding

infinitesimal area in ⌃f
lat(t), let N be the normal to d⌃ and let n be the normal to

d�; then, the equilibrium of forces on fluid-structure interface can be expressed as

S N d⌃ = T n d�. (2.122)

Using Nanson’s relation (2.53), the right-hand side of Equation (2.122) becomes

T n d� = T J F�T N d⌃. (2.123)

Moreover, substituting Equation (2.123) into Equation (2.122), the conservation of

forces can be expressed as

S N d⌃ = T J F�T N d⌃ 8 d⌃ ⇢ ⌃w
int, (2.124)

that simplifies to

S
�

�

�

X2⌃w
int

N = JT
�

�

�

x2⌃f
lat(t)

F�TN . (2.125)

We consider two mathematical models for the mechanics of the wall: a linear elastic

thick shell model and a linear elastic thin Koiter shell model. In the case of a thick shell,

Section 2.3.1, the thickness is not negligible, thus we study the deformation of the whole

three-dimensional domain. In the case of a thin shell, Section 2.3.2, the thickness is negli-

gible and the deformation of the shell can be approximated by the deformation of its middle

surface. Axial symmetry is assumed and thus the angular components of the fluid velocity

and solid displacement are null, namely v✓ = 0 and U# = 0, and there is no dependence

on ✓ and # of any other variable. Note that the axial symmetry assumption implies that the

cross-section of the fluid and wall domains remain circular at all times.

2.3.1 Linear elastic axially symmetric thick shell

Let us consider an incompressible homogenous Newtonian viscous fluid running through

⌦

f
(t) (2.115) and a linear elastic solid that occupies ⌦w (2.117). Under the assumption of
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axial symmetry, the Cauchy stress tensor (2.64) in the cylindrical basis er, e✓ and ez sim-

plifies to

T =

2

6

6

6

6

6

6

4

�p+ 2µf
@vr
@r

0 µf

✓

@vr
@z

+

@vz
@r

◆

0 �p+ 2µf
vr
r

0

µf

✓

@vr
@z

+

@vz
@r

◆

0 �p+ 2µf
@vz
@z

3

7

7

7

7

7

7

5

, (2.126)

where µf is the fluid viscosity. Similarly, the second Piola-Kirchhoff stress tensor (2.84) in

the cylindrical basis es, e# and e⇣ simplifies to

S =

2

6

6

6

6

6

6

6

4

�wr ·U + 2µw
@Us

@s
0 µw

✓

@Us

@⇣
+

@U⇣

@s

◆

0 �wr ·U + 2µw
Us

s
0

µw

✓

@Us

@⇣
+

@U⇣

@s

◆

0 �wr ·U + 2µw
@U⇣

@⇣

3

7

7

7

7

7

7

7

5

, (2.127)

where �w and µw are the wall Lamé parameters and r · U =

1

s

d

ds
(sUs) +

dU⇣

d⇣
. The

deformation gradient F can be expressed as

F = I +rU =

2

6

6

6

6

6

4

1 +

@Us

@s
0

@Us

@⇣

0 1 +

Us

s
0

@Us

@⇣
0 1 +

@U⇣

@⇣
.

3

7

7

7

7

7

5

. (2.128)

Thus, in the case of a thick linear elastic shell, the dynamic coupling condition (2.125) can

be written as
8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

�wr ·U + 2µw
@Us

@s
=

✓

�p+ 2µf
@vr
@r

◆✓

1 +

Us

s

◆✓

1 +

@U⇣

@⇣

◆

�µf

✓

@vr
@z

+

@vz
@r

◆✓

1 +

Us

s

◆

@Us

@⇣
,

µw

✓

@Us

@⇣
+

@U⇣

@s

◆

= µf

✓

@vr
@z

+

@vz
@r

◆✓

1 +

Us

s

◆✓

1 +

@U⇣

@⇣

◆

�
✓

�p+ 2µf
@vz
@z

◆✓

1 +

Us

s

◆

@Us

@⇣
.

(2.129)
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Fig. 2.5.: Fluid-structure interaction in a cylindrical domain: wall middle surface ⌃w
mid in

cylindrical coordinates {s,#, ⇣}, where ˆR is the radius of the middle surface, L is its length,

and h is the thickness of the wall.

2.3.2 Linear elastic axially symmetric thin Koiter shell

Let us consider the case of the thin shell model in which h/ ˆR ⌧ 1, where h is the

shell thickness and ˆR is the shell middle surface radius. Then, the wall mechanics can be

approximated by studying the deformation of the middle surface

⌃

w
mid =

n

X = (

ˆR cos#, ˆR cos#, z) 2 R3|# 2 [0, 2⇡), ⇣ 2 (0, L)
o

(2.130)

represented in Figure 2.5. The fluid occupies the same domain defined in Equations (2.115)-

(2.116) with R =

ˆR.

Below we list the main assumptions under which the linear elastic Koiter shell method

holds:

• thin shell, h/ ˆR ⌧ 1;

• small strains, although large deflection is allowed;

• approximately plane state of stress;

• linear elastic homogenous solid.

For a complete derivation of the Koiter shell model we refer to [46, 47].
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The forces in a thin shell are represented by the vector S, defined as the surface density

of the forces applied to the shell. Under the assumption of axial symmetry, the components

of S can be expressed as
8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

S⇣ :

= � hE

1� ⌫2

 

@2U⇣

@⇣2
+

⌫
ˆR

@Us

@⇣

!

+ ⇢wh
@2U⇣

@t2
,

Ss :

=

h3E

12(1� ⌫2
)

 

@4Us

@⇣4
� 2

⌫
ˆR2

@2Us

@⇣2
+

Us

ˆR4

!

+

hE
ˆR(1� ⌫2

)

✓

⌫
@U⇣

@⇣
+

Us

ˆR

◆

+ ⇢wh
@2Us

@t2
,

(2.131)

where

E =

µw(3�w + 2µw)

�w + µw
and ⌫ =

�w

2(�w + µw)
(2.132)

are the Young’s modulus and the Poisson’s ratio, respectively. In the regime of small de-

formations in the axial direction, namely |U⇣ | ⌧ 1,

S⇣ ' 0, (2.133a)

Ss = ⇢wh
@2Us

@t2
+ C0Us � C1

@2Us

@⇣2
+ C2

@4Us

@⇣4
, (2.133b)

where

C0 =
h
ˆR2

E

1� ⌫2

 

1 +

h2

12

ˆR2

!

, (2.134a)

C1 = 2

h3

12

ˆR2

E⌫

1� ⌫2
, (2.134b)

C2 =
h3

12

E

1� ⌫2
. (2.134c)

For a full derivation of S we refer to [42].

For a thin shell, the continuity of forces (2.125) at the coupling interface converts to

the continuity of surface density forces, that is imposed weakly as
Z

⌃w
mid

(S + PeN ) ·wd⌃ = �
Z

⌃f
lat(t)

⇣

T n
⌘

·wd�, (2.135)
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for any test w 2 H1
(0, L) ⇥H2

(0, L) and null on any clamped boundary. Pe(⇣, t) repre-

sents the external pressure acting on the shell. Using Nanson’s relation (2.53) and choosing

w = wses, Equation (2.135) can be written as

Z

⌃w
mid

(Ss + Pe)wsd⌃ = �
Z

⌃w
mid

0

@

(Tn)
�

�

x2⌃f
lat

· e
s

✓

1 +

Us

ˆR

◆

s

1 +

✓

@Us

@⇣

◆2
1

Awsd⌃,

(2.136)

which simplifies to

Ss + Pe =

⇣

pI � 2µfD
⌘

�

�

�

�

x2⌃f
lat

n · e
s

✓

1 +

Us

ˆR

◆

s

1 +

✓

@Us

@⇣

◆2

(2.137)

in the case of a homogenous incompressible Newtonian viscous fluid.

2.4 One-dimensional reduced model for fluid-structure interaction

To simplify the numerical simulations of fluid-structure interaction problems in vas-

cular beds, various modeling reduction techniques have been proposed. Even if reduced

models are derived under specific simplified model assumptions, they are able to capture

the main physical phenomena governing the system and, at the same time, can be studied at

a lower computational cost. In this section we consider two techniques of model reduction

1. the cross-sectional averaging technique;

2. the dimensional analysis technique.

In Section 2.4.1 and 2.4.2, we present the two modeling reduction techniques. In Sec-

tion 2.4.3 and 2.4.4, we compare the two techniques for the Stokes flow inside a linear

elastic thin Koiter shell (Test Case 1) or inside a linear elastic thick shell (Test Case 2). In

all the Test Cases we assume no body forces.

2.4.1 Cross-sectional averaging technique

The cross-sectional averaging reduction technique, presented in [48, 49], averages the

conservation equations on the domain cross-section to obtain a system of equations where
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the independent variables depend only on the axial coordinate. Thus, the problem is re-

duced from three-dimensions to one-dimension.

The main assumptions under which this reduction technique holds are

1. cylindrical domain;

2. axial symmetry;

3. viscous effects are relevant only near the boundaries;

4. constant fluid pressure in each cross-section, namely p = p(z, t);

5. radial component of the velocity vr negligible with respect to the axial component

vz, thus vr ' 0;

6. axial component of the velocity vz can be expressed as

vz(r, z, t) = v(z, t) s

✓

r

�(z, t)

◆

, (2.138)

where v is the mean axial velocity on the cross-section and

s

: R ! R

r 7! s

✓

r

�(z, t)

◆ (2.139)

is the velocity profile in the radial direction, also called the profile law, that is as-

sumed to be given a priori.

A possible form for the profile law is

s

✓

r

�(z, t)

◆

:

=

⌧ + 2

⌧

 

1�
✓

r

�(z, t)

◆⌧
!

, (2.140)

where the value of the parameter ⌧ > 0 defines the shape of the velocity profile in the radial

direction. For example, for ⌧ = 2 the velocity has the parabolic shape typical of Poiseuille

flow, and for ⌧ = 8, it has a flatter profile, see Figure 2.6.

Let P be the portion of the domain ⌦f
(t) between ẑ � dz/2 and ẑ + dz/2, with

ẑ 2 (0, L) and dz small enough so that ẑ � dz/2 > 0 and ẑ + dz/2 < L, as sketched in
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z

r

� ⌧ = 2 ⌧ = 4 ⌧ = 6 ⌧ = 8

Fig. 2.6.: Shape of the profile law s(r/�) for different values of the parameter ⌧ = 2, 4, 6, 8.

z

n

dz

ez

er

P

ẑ
ẑ + dz/2ẑ � dz/2

Fig. 2.7.: Sketch of the portion P of the domain ⌦f
(t) between ẑ � dz/2 and ẑ + dz/2,

with ẑ 2 (0, L) and dz small enough so that ẑ � dz/2 > 0 and ẑ + dz/2 < L.

Figure 2.7. The reduced model is derived by integrating the Navier-Stokes equations (2.71)

on P and then passing to the limit for dz ! 0, under the assumption that all the quantities

are smooth enough.

For any value of z 2 (0, L) and at any instant of time t, let us define

• ⌃(z, t) to be fluid domain cross-section;
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• A(z, t) to be the fluid cross-sectional area, expressed as

A(z, t) =

Z

⌃(z,t)

d� = ⇡�(z, t)2, (2.141)

since the assumption of axial symmetry ensures that the cross-section remains circu-

lar at any instant of time;

• Q(z, t) to be the average flow rate, expressed as

Q(z, t) =

Z

⌃(z,t)

vz(r, z, t)d� = v(z, t)A(z, t). (2.142)

Then, A, Q and p are the independent variables in the following reduced Stokes equations

obtained with the reduction method just described
8

>

>

<

>

>

:

@A(z, t)

@t
+

@Q(z, t)

@z
= 0

@Q(z, t)

@t
+

A(z, t)

⇢f

dp(z, t)

dz
+ kR

Q(z, t)

A(z, t)
= 0

z 2 (0, L), 8t, (2.143)

where ⇢f is the fluid density and

kR = �2⇡
µf

⇢f

ds

dr

�

�

�

�

�

r=�

. (2.144)

For a detailed derivation of the reduced model we refer to [48]. System (2.143) is a system

of two equations in three variables; thus, an additional condition is needed to close the

system.

In literature, this reduction technique has been usually adopted in the case of fluids that

are coupled with structures modeled as thin shells. If we consider the linear elastic Koiter

thin shell case, described in Section 2.3.2, system (2.143) is closed by condition (2.137),

that provides a relationship between A and p (see Section 2.4.3).

2.4.2 Dimensional analysis technique

The dimensional analysis technique for model reduction, presented in [42, 43], con-

sists of performing a dimensional analysis on the conservation equations based on the small
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parameter " =
R

L
, where R is the reference radius of the fluid domain and L is the reference

length.

The main assumptions under which this reduction technique holds are

1. cylindrical domain;

2. axial symmetry;

3. small ratio " =
R

L
⌧ 1;

4. radial component of the velocity vr is one order of magnitude less than the axial

component vz with respect to the asymptotic expansion in ".

Consider the Stokes equations in the fluid domain ⌦f
(t) (2.115); under these assump-

tions, the first step to derive the reduced conservation equations is to non-dimensionalize

the equations by introducing the relations

r = Rr̃, z = Lz̃, t = T ˜t,

vr = Vrṽr, vz = Vzṽz, p = P p̃, � = R�̃,
(2.145)

where the non-dimensional variables are denoted with a tilde and the characteristic quan-

tities are denoted with uppercase letters. Then, the non-dimensional form of the Stokes

equations in cylindrical coordinates (2.76) can be written as
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

VrL

VzR

1

r̃

@

@r̃
(r̃ṽr) +

@ ṽz
@z̃

= 0,

⇢fVr

T

@ ṽr
@˜t

+

P

R

@ p̃

@r̃
� µfVr

R2

✓

�r̃ṽr � ṽr
r̃2

◆

� µfVr

L2

@2ṽr
@z̃2

= 0,

⇢fVz

T

@ ṽz
@˜t

+

P

L

@ p̃

@z̃
� µfVz

R2
�r̃ṽz � µfVz

L2

@2ṽz
@z̃2

= 0,

(2.146)

for r̃ 2 [0, �̃) and z̃ 2 (0, 1), where �r̃(·) = 1

r̃

@

@r̃

✓

r̃
@(·)
@r̃

◆

.

Assumption 4 translates into the following relation between the radial and axial char-

acteristic velocities

Vr = "Vz. (2.147)



47

Similarly, we have to choose a relation between P , T and the other characteristic quantities.

These relations might vary depending on the mathematical model chosen for the mechanics

of the structure. We will discuss two possible choices for the scaling of P in Sections 2.4.3

and 2.4.4. For an example of scaling for T we refer to [42].

At this point, we expand the variables with respect to " as follows

vz = Vzṽz = Vz

�

ṽ0r + "ṽ1r + . . .
�

, vr = Vrṽr = "Vz

�

ṽ1r + . . .
�

,

p = P p̃ = P
�

p̃0 + "p̃1 + . . .
�

, � = R
�

�̃0
+ "�̃1

+ . . .
�

.
(2.148)

Note that, due to (2.147), the leading order of the expansion of vr with respect to " is one,

not zero, as for vz. Substituting these expansions in the non-dimensional Stokes equa-

tions (2.146), and neglecting the terms multiplied by any power of ", we obtain the reduced

0-th order Stokes problem.

In literature, this reduction technique has been adopted in the case of fluids that are

coupled with structures modeled both as thin or thick shells.

2.4.3 Test Case 1: linear elastic thin Koiter shell

In this section we will compare the two reduction techniques presented in Sections 2.4.1

and 2.4.2 in the case of Stokes equations (2.76) coupled with a linear elastic thin Koiter

shell model. Let us consider the stationary case, i.e. no dependence on time, and let us

assume that U⇣ ' 0, implying that ⇣ = z.

In the stationary case, the kinematic condition (2.121) on ⌃f
lat can be expressed as

vr = 0 and vz = 0 for r = �, z 2 (0, L). (2.149)

The dynamic condition (2.137) can be expressed as

Ss + Pe =

"

p� 2µf
@vr
@r

+ µf
dUs

dz

✓

@vr
@z

+

@vz
@r

◆

#

�

�

�

�

�

�

r=�

✓

1 +

Us

R

◆

, (2.150)

since the normal n to ⌃f
lat is

n =

 

1 +

✓

@Us

@z

◆2
!�1/2

✓

er �
@Us

@z
ez

◆

. (2.151)
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Using the expression of Ss for a stationary linear elastic thin Koiter shell (2.133b) and (2.134)

in Equation (2.150), the dynamic coupling condition becomes

C0Us � C1
d2Us

dz2
+ C2

d4Us

dz4
+ Pe =

"

p� 2µf
@vr
@r

+ µf
@Us

@z

✓

@vr
@z

+

@vz
@r

◆

#

�

�

�

�

�

�

r=�

✓

1 +

Us

R

◆

. (2.152)

Here, we assume that the external pressure Pe is constant.

Cross-sectional averaging technique

The stationary form of the reduced Stokes equations (2.143) is
8

>

>

<

>

>

:

@Q(z)

@z
= 0

A(z)

⇢f

dp(z)

dz
+ kR

Q(z)

A(z)
= 0

z 2 (0, L), (2.153)

where A, Q and kR depend on v(z) and on the profile law s(r/�) chosen, see (2.141), (2.142)

and (2.144).

As in [48], we consider the purely elastic dynamic interface condition

p(z)� Pe = C0Us(z) = C0

�

�(z)�R
�

, (2.154)

that can be obtained from (2.152) by neglecting all the axial derivatives and assuming that
✓

1 +

Us

R

◆

' 1. Since A = ⇡�2, the dynamic interface condition can be expressed as

p(z)� Pe = C0R
2
p
⇡

pA(z)�pAref

Aref
, (2.155)

where Aref = ⇡R2 is the reference cross-sectional area. This relationship between p and

A, together with the boundary conditions

p(0) = P0, v(0) = V0, (2.156)

close system (2.153).
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The solution of the reduced Stokes equations can be computed explicitly as

Q =

✓

(P0 � Pe)Aref

C0R2
p
⇡

+

p

Aref

◆2

V0, (2.157a)

A(z) =

 

✓

(P0 � Pe)Aref

C0R2
p
⇡

+

p

Aref

◆5

� 5

kR⇢fArefQ

�
z

!2/5

, (2.157b)

p(z) = Pe + C0R
2
p
⇡

pA(z)�pAref

Aref
, (2.157c)

�(z) =

r

A(z)

⇡
, (2.157d)

vz(r, z) =
Q

A(z)
s

✓

r

�(z)

◆

, (2.157e)

Us(z) =

r

A(z)

⇡
�R, (2.157f)

for z 2 (0, L) and r 2 [0, �).

Dimensional analysis technique

The stationary form of the non-dimensional Stokes equations (2.146) is
8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

1

r̃

@

@r̃
(r̃ṽr) +

@ ṽz
@z̃

= 0,

@ p̃

@r̃
� "

µfVz

RP

✓

�r̃ṽr � ṽr
r̃2

◆

� "
µfVzR

L2P

@2ṽr
@z̃2

= 0,

R2P

µfVzL

@ p̃

@z̃
��r̃ṽz � "2

@2ṽz
@z̃2

= 0,

(2.158)

for r̃ 2 [0, �̃) and z̃ 2 (0, 1), where we have already included the assumption that Vr = "Vz.

Let us define the non-dimensional variables for the Koiter shell as

s = Rs̃, ⇣ = z = Lz̃, Us = W ˜Us. (2.159)

and for the external pressure

Pe = P ˜Pe. (2.160)

We consider the small deformation regime, thus

� =
W

R
' O("). (2.161)
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Note that � = R + Us implies that

�̃ =

�

R
=

R +W ˜Us

R
= 1 + � ˜Us. (2.162)

The non-dimensional version of the dynamic interface condition (2.152) can be written as

˜Pe +
�

"

C0R2

PL
˜Us � �"

C1

PL

d2 ˜Us

dz̃2
+ �"

C2

PL3

d4 ˜Us

dz̃4
=

"

p̃� "
2µfVz

PR

@ ṽr
@r̃

+ �
µfVz

LP

@ ˜Us

@z̃

✓

"2
@ ṽr
@z̃

+

@ ṽz
@r̃

◆

#

⇣

1 + � ˜Us

⌘

, (2.163)

for r̃ = �̃ = 1 + � ˜Us.

In other to have a 0-th order coupling condition similar to that used for the other

reduction technique, i.e. Equation (2.154), we choose

P =

�

"

C0R2

L
. (2.164)

With this choice for the characteristic pressure P , the non-dimensional Stokes equations

(2.158) becomes
8
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<

>

>

>

>

>

>

>

:

1

r̃

@

@r̃
(r̃ṽr) +

@ ṽz
@z̃

= 0,

@ p̃

@r̃
� "2�

✓

�r̃ṽr � ṽr
r̃2

◆

� "3�
@2ṽr
@z̃2

= 0,

@ p̃

@z̃
� ��r̃ṽz � �"2

@2ṽz
@z̃2

= 0,

(2.165)

for r̃ 2 [0, 1 + � ˜Us) and z̃ 2 (0, 1), where

� =

µfVzL

PR2
. (2.166)

Assuming that 1 > � > O(") and following the procedure described in Section 2.4.2,

the 0-th approximation of the fluid-structure interaction problem is
8
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>

>

>

<

>

>

>

>

>

>

:

1

r̃

@

@r̃
(r̃ṽ1r) +

@ ṽ0z
@z̃

= 0

�@ p̃0

@r̃
= 0

�@ p̃0

@z̃
+ ��r̃ṽ

0
z = 0

for r̃ 2 [0, �̃0
), z̃ 2 (0, 1). (2.167)
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The fluid-structure coupling conditions

ṽ0z = ṽ0r = 0 and p̃0 � ˜Pe =
˜U0
s for r̃ = �̃0

= 1 + � ˜U0
s , (2.168)

together with the boundary conditions

p̃ =

˜P0 for z̃ = 0, (2.169a)

p̃ =

˜PL for z̃ = 1, (2.169b)

close system (2.167).

The dimensional solution for the 0-th oder problem can be computed explicitly as

p0(z) = C0(N �Mz)1/5 �RC0 + Pe, (2.170a)

�0
(z) = (N �Mz)1/5, (2.170b)

v0z(r, z) =
MC0

20µf
(N �Mz)�4/5

⇣

(N �Mz)2/5 � r2
⌘

, (2.170c)

v0r(r, z) = 0, (2.170d)

for z 2 (0, L) and r 2 [0, �0
), where

N =

✓

R +

P0 � Pe

C0

◆5

, M = �

✓

R +

PL � Pe

C0

◆5

�N

L
, (2.171)

P0 = P ˜P0 and PL = P ˜PL. For further details on the derivation of the 0-th order solution

we refer to [43]. Given the 0-th oder solution, we compute the flow as

Q0
=

Z

⌃f
lat

vzd� = 2⇡

Z �(z)

0

vrrdr =
⇡MC0

40µf
, (2.172)

the cross-sectional area as

A0
(z) = ⇡

�

�0
(z)
�2

= ⇡(N �Mz)2/5, (2.173)

and the radial displacement as

U0
s (z) = �0

(z)�R = (N �Mz)1/5 �R. (2.174)

The 1-st order correction of the radial velocity is obtained from (2.167) as

v1r(r, z) =
M2C0

100µf

h

r3(N �Mz)�9/5 � r(N �Mz)�7/5
i

. (2.175)
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Comparison between techniques of model reduction

The cross-sectional averaging technique, starts from a priori assumptions that are tai-

lored to the systems at hand, for example, the assumption that the pressure is constant on

each cross-section and that vr = 0. The dimensional analysis technique identifies a small

parameter " and performs a dimensional analysis of the equations to determine which terms

can be neglected. Note that the choice of scaling for the physical quantities, in particular

P , is critical in determining which terms can be neglected.

Using the dimensional analysis technique, with the appropriate scaling for Vz, Vr and

P , we obtain that the 0-th order pressure p0 is constant on each cross-section and that the 0-

th order radial component of the velocity v0r = 0. These are the same a-priori assumptions

that are made when using the cross-sectional averaging technique. Furthermore, using the

dimensional analysis technique

• we obtain that v0z has a parabolic profile in the radial direction, whereas, using the

cross-sectional averaging technique, the profile can be arbitrary (2.140);

• we retrieve that the radial velocity vr = "v1r is not zero, whereas, using the cross-

sectional averaging technique, vr = 0 a priori.

Different boundary conditions are necessary to close reduced models obtained with

different techniques. Using the cross-sectional averaging technique, pressure and velocity

have to be known at the inlet, whereas, using the dimensional analysis technique, only

pressure has to given at both inlet and outlet. Hence, depending on the specific application,

one reduced model might be more appropriate to use than the other.

In conclusion, the cross-sectional averaging technique seems to be more tailored to

the specific problem studied, due to the a priori assumptions. Conversely, the dimensional

analysis technique might be modified and extended to study different problems, as long as

we can identify a small parameter " that characterizes the problem.



53

2.4.4 Test Case 2: linear elastic thick shell

In this section we derive the reduced model for the case of stationary Stokes equa-

tions 2.76 coupled with a linear elastic thick shell using the dimensional analysis technique

presented in Section 2.4.2, and compare it to the linear elastic thin Koiter shell reduced

model derived in Section 2.4.3.

In the stationary case, the kinematic condition (2.121) on ⌃f
lat can be expressed as

vr = 0 and vz = 0 for r = �, z 2 (0, L). (2.176)

Moreover, the dynamic condition (2.129) is imposed for s = R and r = �. At the inlet

and outlet fluid domain, ⌃f
0 and ⌃f

L, we require that the flow enters and leaves the domain

parallel to the z axis and that the pressure are prescribed, namely

vr = 0, p = P0 for z = 0, (2.177a)

vr = 0, p = PL for z = L. (2.177b)

At the inlet and outlet of the solid domain ⌃w
0 and ⌃w

L , we require that the shell is clamped,

namely

Us = Us = 0 for s = R, ⇣ = 0, L. (2.178)

On the external boundary of the solid domain, we impose the external pressure Pe as fol-

lows

S N = �PeN for s = R + h, (2.179)

where N is the outward normal to ⌃w
ext. Here, Pe is assumed to be constant.

Similarly to the thin Koiter shell case, we define the non-dimensional variables for the

thick shell as

s = Rs̃, ⇣ = z = Lz̃, Us = W ˜Us, U⇣ = W ˜U⇣ (2.180)

and for the inlet, outlet and external pressures as

P0 = P ˜P0, PL = P ˜PL, Pe = P ˜Pe. (2.181)
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In the regime of small deformations, we assume that � =

W

R
' O("). Note that in this

case we are not assuming a priori that U⇣ is negligible.

To choose the scaling for the pressure P , we start from the non-dimensional form of

the balance of linear momentum in the direction z

R2P

µfVzL

@ p̃

@z̃
��r̃ṽz � "2

@2ṽz
@z̃2

= 0 (2.182)

and, following [43], we choose

P =

µfVzL

R2
. (2.183)

This choice will allow us to obtain, at the 0-th order, a Poiseuille type flow.

The non-dimesionalized Stokes equations (2.158) can be written as
8
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(2.184)

for r̃ 2 [0, �̃) and z̃ 2 (0, 1). Starting from Equations (2.85) and (2.127), we can derive the

non-dimensional form of the stationary balance of linear momentum for the linear elastic

solid
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(2.185)
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for s̃ 2 (1, 1 + h/R) and ˜⇣ 2 (0, 1), and, starting from Equation (2.129), we can derive the

non-dimensional form of the dynamic fluid-structure coupling condition
8
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(2.186)

for s̃ = 1 + h/R and r̃ = �̃.

The 0-th approximation of fluid equations is
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1

r̃

@

@r̃
(r̃ṽ1r) +

@ ṽ0z
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for r̃ 2 [0, �̃), z̃ 2 (0, 1), (2.187)

with the boundary conditions

p̃0 = ˜P0 ṽr = 0 for z̃ = 0,

p̃0 = ˜PL ṽr = 0 for z̃ = 1.
(2.188)

The 0-th approximation of thick shell equations is
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@

@s̃

✓

1

s̃

@

@s̃

⇣

s̃ ˜U0
s

⌘

◆

= 0

1

s̃

@

@s̃

 

s̃
@ ˜U0

⇣

@s̃

!

= 0

for s̃ 2 (1, 1 + h/R), ˜⇣ 2 (0, 1), (2.189)

with the boundary conditions

˜U0
s =

˜U0
⇣ = 0 for ˜⇣ = 0, 1, (2.190a)

✓

2 +

�w

µw

◆

@ ˜U0
s

@s̃
+

�w

µw

˜U0
s

s̃
= �PR

�µw

˜Pe for s̃ = 1 + h/R. (2.190b)
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They are coupled through the 0-th order kinematic interface conditions

ṽ0r = ṽ0⇣ = 0, (2.191)

and dynamic interface conditions
✓

2 +

�w

µw

◆

@ ˜U0
s

@s̃
+

�w

µw

˜U0
s

s̃
= �PR

�µw
�̃0p̃0, (2.192a)

�µw

RP

@ ˜U0
⇣

@s̃
= 0, (2.192b)

for s̃ = 1 and r̃ = �̃. Note that Equations (2.190a) and (2.192b) imply that ˜U0
⇣ = 0; hence,

since z = ⇣ + U⇣(R, ⇣), we have that

z̃ =

˜⇣ +
⇢

⇢
⇢⇢

"
�

R
˜U0
⇣ +O("2) ' ˜⇣. (2.193)

Following the same procedure described in [43], the dimensional solution of the 0-th

order problem can be computed explicitly as

p0(z) =
1� (N �Mz)�1/3

b2
, (2.194a)

�0
(z) = R(1� b1Pe)(N �Mz)1/3, (2.194b)

v0z(r, z) =
M

12µfb2
(N �Mz)�4/3

⇣

R2
(1� b1Pe)

2
(N �Mz)2/3 � r2

⌘

, (2.194c)

v0r(r, z) = 0, (2.194d)

for r 2 [0, �0
) and z 2 (0, L), where

N = (1� b2P0)
�3, M =

N � (1� b2PL)
�3

L
,

b1 =
�

R
(a2 + a3) , b2 =

�

R
(a1 + a3) ,

(2.195)

and

a1 =

PR

�µw

"

2h

R

✓

2 +

h

R

◆✓

1 +

�w

µw

◆

#�1

,

a2 = a1

✓

1 +

h

R

◆2

,

a3 = a1

✓

1 +

�w

µw

◆✓

1 +

h

R

◆2

.

(2.196)
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Given the 0-th oder solution, we compute the flow as

Q0
=

⇡MR4

24µfb2
(1� b1Pe)

4, (2.197)

the cross-sectional area as

A0
(z) = ⇡R2

(1� b1Pe)
2
(N �Mz)2/3, (2.198)

the displacement as

U0
s (z) = R(1� b1Pe)(N �Mz)1/3 �R,

U0
⇣ (z) = 0,

(2.199)

and the 1-st order correction of the radial velocity as

v1r(r, z) =
M2

36µfb2

h

r3(N �Mz)�7/3 � rR2
(1� b1Pe)

2
(N �Mz)�5/5

i

. (2.200)

Comparison between shell models

Contrary to Test Case 1, in Test Case 2 the shell deformation problem is not only

reduced to a 0-th order fluid-structure coupling condition (2.168), but the balance of lin-

ear momentum inside the shell are non-dimensionalized (2.185) and the 0-th order prob-

lem (2.189) is solved coupled with the 0-th order Stokes equations (2.187) and the 0-th

order fluid-structure coupling condition (2.192). Note that, when considering a thick shell

in Test Case 2, the contribution of the external pressure acting on the external surface of

the shell is treated separately as a boundary condition (2.190b) of the 0-th order structure

problem. Moreover, in Test Case 2 we obtain that U0
⇣ = 0, that corresponds to the a-priori

assumption made at the beginning of Section 2.4.3 in Test Case 1.

In the two Test Cases we made two different choices for the pressure scaling P , (2.164)

in Test Case 1 and (2.183) in Test Case 2. These different choices were driven by the

following reasons

• in Test Case 1, P was chosen in order to be able to compare the dynamic coupling

condition to that used in the cross-sectional averaging method;
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Test Case 1: thin Koiter shell & cross-sectional averaging technique
Test Case 1: thin Koiter shell & dimensional analysis technique
Test Case 2: thick shell & dimensional analysis technique

Fig. 2.8.: Comparison of the analytical solutions in Test Case 1 and Test Case 2. � is the

fluid domain deformed radius, p is the fluid pressure, vz(r = 0) is the axial fluid velocity

at the centerline.

• in Test Case 2, P was chosen in order to recover Poiseuille flow.

Despite this difference, in both 0-th order solution (2.170) and (2.194), we obtain that

v0r = 0, that the pressure is constant on each cross-section, and that v0z has a parabolic

profile in the radial direction.

Example 4 Comparison between Test Case 1 and Test Case 2.

Figure 2.8 and Figure 2.9 show the deformed radius �, fluid pressure p, axial ve-

locity vz and radial velocity vr obtained in Test Case 1, using the cross-sectional aver-

age technique (2.157) (solid line) or using the dimensional analysis technique (2.170)-

(2.175) (dashed line), and in Test Case 2, using the dimensional analysis technique (2.194)-

(2.200) (dotted line). The solutions are obtained for L = 0.1 m, R = 3.1 ⇥ 10

�3 m,

h = 0.9 ⇥ 10

�3 m, µf = 3.5 ⇥ 10

�3 kg/(m s), ⇢f = 1050 kg/m3, �w = 1.646 Pa,

µw = 3.354 Pa, P0 = 15990 Pa, V0 = 1 m/s and PL = Pe = 15698 Pa.
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Fig. 2.9.: Comparison of the analytical solutions in Test Case 1 and Test Case 2 of the axial

velocity vz and the radial velocity vr, evaluated at evaluated at z = L/2.

Comparing Test Case 1 and Test Case 2, Figure 2.8 and Figure 2.9 show that the choice

of shell model and the choice of model reduction technique have

• a strong influence on the profiles of � and vz along the axial direction z and the

profiles of vr along the radial direction r;

• a minimal influence on the profiles of p along z and the profiles of vz along r.

2.5 Zero-dimensional reduced model for fluid-structure interaction

In this section, we consider a zero-dimensional reduced model for fluid-structure in-

teraction based on the analogy between vascular beds and electrical circuits. In the elec-

trical circuit analogy model, electric potential corresponds to the fluid pressure p, current

corresponds to the flow rate Q, resistance corresponds to the vascular resistance R and ca-

pacitance corresponds to the elastic properties of the vessel, known as compliance C, which

is the capacity of the vessel to deform and to store fluid volume [50].
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Pp
Rp

⇧

C

Rd Pd

Fig. 2.10.: Three-element Windkessel model: Pp and Pd are the inlet and outlet fluid pres-

sures, set by a generator, ⇧ is the middle pressure, Rp and Rd are the proximal and distal

resistances, and C is a capacitance.

The three-element Windkessel model, sketched in Figure 2.10, is widely used in ap-

plications to approximate fluid-structure interaction problem in hemodynamics [51–53]. In

this model, a vascular segment is divided in two portions, the proximal portion and the

distal portion, so that a node in the middle of the vessel is introduced and a capacitance C is

connected to it. The fluid pressure in the middle node is denoted by ⇧. Pp and Pd represent

the inlet and outlet fluid pressures, respectively, and Rp and Rd represent the proximal and

distal resistances. Using Kirchhoff’s current law, the evolution of ⇧ in time is governed by

the ordinary differential equation

Cd⇧
dt

=

Pp � ⇧
Rp

� ⇧� Pd

Rd
. (2.201)

Note that Pp and/or Pd could be functions of time.

There are different methods to estimate the compliance and the resistance of a vascular

bed, for example, the compliance can be estimated as the product of its vascular volume

and distensibility [51, 54], and the resistance can be estimated using Poiseuille’s law. Here

we derive Poiseuille’s law and the resistance formulas for rigid and compliant vessels that

will be used in Chapter 3.

Consider the fluid-structure interaction problem described in Section 2.3, and assume

1. no time dependence, i.e. stationary flow;

2. negligible radial velocity, namely vr = 0;

3. axial symmetry, i.e. v✓ = U# = 0 and no dependence on ✓;
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4. fully developed flow, namely
@vz
@z

= 0;

5. infinitesimal displacement in the axial direction, i.e. U⇣ = 0, and constant displace-

ment in the radial direction Us;

6. constant inlet pressure Pp and outlet pressure Pd, and a linear decrease in pressure in

the axial direction z.

Under these assumptions, the Stokes equations in cylindrical coordinates (2.76) reduce to
8

>

>

>

<

>

>

>

:

@p

@r
= 0,

@p

@z
= µf

1

r

@

@r

✓

r
@vz
@r

◆

,
(2.202)

where µf is the fluid viscosity. Note that the conservation of mass is satisfied a priori under

these assumptions. The first equation of (2.202) implies that the pressure is constant on

each cross-section, i.e. p = p(z). Thus, assumption 6 implies that

@p

@z
=

dp

dz
=

Pd � Pp

L
. (2.203)

The second equation of (2.202) can be solved in terms of vz(r) and yields

vz(r) =
Pp � Pd

4µfL
(�2 � r2), (2.204)

where � = R + Us is the deformed radius, and it is constant due to assumption 5. The

corresponding flow rate Q, which is the integral of the normal component of the velocity

on the cross-section ⌃, is given by

Q =

Z

⌃

vzd� = 2⇡

Z �

0

Pp � Pd

4µf
(�2 � r2)rdr =

⇡�4

8µfL
(Pp � Pd), (2.205)

hence

�P = Pp � Pd =
8µfL

⇡�4
Q. (2.206)

Equation (2.206) is known as Poiseuille’s law and is analogous to Ohm’s law for electrical

circuits

�V = RI, (2.207)
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where V is the electric potential, R is the resistance and I is the current. Using this analogy,

we can estimate the resistance of a vascular bed of deformed radius � and length L as

R =

8µfL

⇡�4
. (2.208)

Using the Windkessel model, if we assume that the vessel is rigid, then � = R, where

R is the reference radius of the fluid domain, then Rp and Rd are constant and can be

approximated as

Rp = Rd and Rp +Rd =
8µfL

⇡R4
. (2.209)

Otherwise, if we assume that the vessel is not rigid, then the deformed radius � varies de-

pending on the transmural pressure difference, which is the difference between the pressure

inside the vessel and the pressure outside the vessel Pe. If the vessel walls are modeled as a

thin linear elastic thin Koiter shell and if the dynamic fluid-wall interface condition (2.152)

can be approximated as

⇧ =

˜C0Us + Pe, (2.210)

where
˜C0 =

hE

R2
(1� ⌫2

)

, (2.211)

then, the deformed radius � can be written as

� = R + Us = R +

⇧� Pe

˜C0

. (2.212)

Substituting Equation (2.212) into Equation (2.208), we obtain that Rp and Rd are variable

resistances and can be approximated as

Rp = Rd and Rp +Rd =
8µfL

⇡

 

R +

⇧� Pe

˜C0

!�4

. (2.213)

2.6 Multiscale coupling

When modeling a complex vasculature, such as that of the retina, it is interesting to

study in detail a specific segment of the vasculature. Thus, to reduce simulations costs,

a high-dimensional model can be used to simulate the segment of interest, while the rest
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⌃

⌦

Q

Pp
0D network

Fig. 2.11.: Sketch of multiscale coupling between a fluid domain ⌦ ⇢ R3 and a zero-

dimensional (0D) vascular network. ⌃ is the coupling surface, Pp is the nodal pressure of

the network on ⌃ and Q is the flow rate in the proximal branch of the vascular network.

of the vasculature is approximated using a reduced model, such as those described in Sec-

tions 2.4 and 2.5. In this section we discuss the modeling and numerical challenges that

arise when coupling the Navier-Stokes equations (2.71) in a two or three-dimensional do-

main to a zero-dimensional (0D) reduced model.

2.6.1 Coupling conditions

Consider a homogenous incompressible Newtonian viscous fluid in the domain ⌦ ⇢
Rd, with d = 2, 3. As described in Section 2.1.6, at any time t 2 (0, T ) the fluid motion is

described by the Navier-Stokes equations
8

>

<

>

:

r · v = 0

⇢
@v

@t
+ ⇢ (v ·r)v = r · T + ⇢f

in ⌦⇥ (0, T ), (2.214)

where T = �pI + 2µD and D =

⇣

rv +rTv
⌘

/2. Define ⌃ ⇢ @⌦ to be the interface

between the d-dimensional fluid domain and the zero-dimensional vascular network, and

Pp(t) to be the pressure of the vascular network at the corresponding node, as shown in

Figure 2.11 for d = 3.

The choice of appropriate coupling conditions on ⌃ is essential for developing a well-

posed problem that is able to reproduce the physical behavior of the system. From the

physical point of view, at the interface we impose continuity of mass and of pressure.
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The physical coupling conditions are translated into mathematical boundary conditions

for (2.214) as follows

• the continuity of mass translates into continuity of flow, leading to the following

condition on ⌃
Z

⌃

v · n d� = Q, (2.215)

where n is the outward unit normal to⌃ and Q is the flow rate in the proximal branch

of the vascular network;

• the continuity of pressure condition requires averaging, since we are comparing the

fluid pressure p, defined on ⌃ ⇢ Rd�1, with the nodal value of pressure Pp. However,

it has been shown in [55–57] that equating the average of the fluid pressure p on ⌃ to

the nodal pressure Pp, i.e.
1

|⌃|
Z

⌃

p d� = Pp, (2.216)

where |⌃| is the measure of ⌃, is not sufficient to define a well-posed problem.

To derive the boundary condition that allows us to impose continuity of pressure and,

at the same time, preserve the well-posedness of the Navier-Stokes equations, let us con-

sider the contribution of the term r ·T to the variational formulation of the Navier-Stokes

equations. For simplicity, let us assume that the boundary of ⌦ is the union of two parts,

namely @⌦ = � [ ⌃, and that Dirichlet boundary conditions are imposed on �, namely

v = g on �, (2.217)

with g a given vectorial function of time and space. Define

V = H1
�(⌦) =

⇢

w 2 H1
(⌦)

�

�

�

v = g on �
�

, (2.218)

and

V0 = H1
0,�(⌦) =

�

w 2 H1
(⌦) | v = 0 on �

 

. (2.219)
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For any w 2 V0 we can write

Z

⌦

⇣

r · T
⌘

·w d⌦ =

Z

@⌦

w T n d (@⌦)�
Z

⌦

T : rw d⌦

=

Z

⌃

w T n d� �
Z

⌦

T : rwd⌦

=

Z

⌃

w T n d� +

Z

⌦

pr ·w d⌦� 2µ

Z

⌦

D(v) : D(w)d⌦.

(2.220)

Based on (2.220), the natural condition to impose on ⌃ in order to impose continuity of

pressure is

T n = (�pI + 2µD)n = �Pp n on ⌃. (2.221)

Interestingly, it has been shown that this condition leads to a well-posed problem [55].

The variational formulation of the Navier-Stokes equations (2.214) satisfying the ini-

tial condition v(t = 0) = v0 and the boundary conditions (2.217) and (2.221) can be

expressed as:

Find v 2 L2
(0, T ;V) and p 2 L2

(0, T ;L2
(⌦)) such that for any t 2 (0, T )

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

⇢

Z

⌦

@v

@t
·w d⌦+ ⇢

Z

⌦

(v ·r)v ·wd⌦ �
Z

⌦

pr ·w d⌦+ 2µ

Z

⌦

D(v) : D(w)d⌦

= �Pp

Z

⌃

w · n d� + ⇢

Z

⌦

f ·wd⌦,

Z

⌦

qr · vd⌦ = 0,

(2.222)

for any w 2 V0 and any q 2 L2
(⌦).

Symmetric and non-symmetric formulation

In cartesian coordinates, using the incompressibility condition r · v = 0, and the

constitutive equation for a Newtonian fluid, the divergence of the stress tensor T can be

expressed as

r · T = r · (�pI + 2µD) = �rp+ µ�v, (2.223)



66

so the Navier-Stokes equations (2.214) can be rewritten in the form
8

>

<

>

:

r · v = 0

⇢
@v

@t
+ ⇢ (v ·r)v = �rp+ µ�u+ ⇢f

in ⌦⇥ (0, T ). (2.224)

To derive the natural boundary condition corresponding to this new formulation, for

any w 2 V0, consider

Z

⌦

(�rp+ µ�v) ·w d⌦ =

Z

⌃

w
⇣

�pI + µrv
⌘

n d�

+

Z

⌦

pr ·w d⌦� µ

Z

⌦

rv : rwd⌦.

(2.225)

Hence, using formulation (2.224), the natural condition on ⌃ to impose continuity of pres-

sure can be expressed as

(�pI + µrv)n = �Pp n on ⌃. (2.226)

Then, the variational formulation of the Navier-Stokes equations (2.224) satisfying the

initial condition v(t = 0) = v0 and the boundary conditions (2.217) and (2.226) is:

Find v 2 L2
(0, T ;V) and p 2 L2

(0, T ;L2
(⌦)) such that for any t 2 (0, T )
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>

>

>

<

>

>

>

>

>

>

>

>
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>

:

⇢

Z

⌦

@v

@t
·w d⌦+ ⇢

Z

⌦

(v ·r)v ·wd⌦ �
Z

⌦

pr ·w d⌦+ µ

Z

⌦

rv : rwd⌦

= �Pp

Z

⌃

w · n d� + ⇢

Z

⌦

f ·wd⌦,

Z

⌦

qr · vd⌦ = 0,

(2.227)

for any w 2 V0 and any q 2 L2
(⌦).

The variational formulation (2.222) is called symmetric formulation, since it includes

the symmetric part of the velocity gradient D, and, as a consequence, the formulation (2.227)

is called non-symmetric. The two formulations are equivalent at the continuous level, but

not necessarily at the discretized level, since the numerical solution is not exactly diver-

gence free. Moreover, the boundary conditions (2.221) and (2.226) can be interpreted in

different ways
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• the symmetric condition (2.221) has a physical interpretation, since it corresponds to

imposing continuity of the normal stress, or traction, on ⌃;

• the non-symmetric condition (2.226) has no direct interpretation from the physical

point of view, however, under specific assumptions, condition (2.226) is equivalent

to equating the average of the fluid pressure p on ⌃ to the nodal pressure Pp (2.216)

as follows. Let n be outward normal vector to ⌃, let ⌧ = (⌧ 1, . . . , ⌧ d�1) be d � 1

vectors such that (n, ⌧ ) is an orthogonal basis, and let

vn = v · n, v⌧ = v � vnn. (2.228)

Then, condition (2.226) can be expressed as
✓

�p+ µ
@vn
@n

◆

n+ µ
@v⌧

@n
⌧ = �Ppn, (2.229)

which simplifies to

� p+ µ
@vn
@n

= �Pp,
@v⌧

@n
= 0. (2.230)

By averaging the first equation of (2.230) on ⌃ we obtain that

1

|⌃|
Z

⌃

p d� = Pp +
µ

|⌃|
Z

⌃

@vn
@n

d�. (2.231)

If ⌃ is a perpendicular planar section of the domain ⌦, i.e. the angle between ⌃

and � is ⇡/2, then, using the relation r · v = 0, the second term on the right-hand

side of (2.231) vanishes and we obtain condition (2.216). This is not the case for the

symmetric condition (2.221), for further details we refer to [55, 57].

Here, we will use the non-symmetric formulation of the Navier-Stokes equations.
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Energy estimates

The energy identity that corresponds to the non-symmetric variational formulation (2.227)

can be derived using the same procedure as that in Section 2.2.1, and can be written as

d

dt

✓

⇢

2

kvk2L2(⌦)

◆

= �µkrvk2L2(⌦)

I
z }| {

�⇢

Z

⌃

|v|2
2

v · n d�

�Pp

Z

⌃

v · n d�
| {z }

II

+

Z

⌦

⇢f · vd⌦.
(2.232)

On the right-hand side, the first term corresponds to the viscous dissipation and the last

term correspond to the body forces f . The Neumann boundary condition on ⌃ introduces

two new terms in the energy identity

Term I: represents the flux of kinetic energy at the artificial boundary ⌃, whose sign is

not known a priori. Thus, this term is difficult to estimate and can be a source of

numerical instabilities in the case of backward flows, i.e. v · n < 0 [57–60];

Term II: depends on the network pressure Pp and can be bounded [57].

Possible solutions to Term I source of instability have been studied; below we sum-

marize some of them.

• If we consider the Navier-Stokes formulation that involves the total pressure, also

called Bernoulli pressure, defined as

ptot = p+
⇢

2

v2, (2.233)

then the formulation can be shown to be stable [57, 60]. However, in blood flow

application, the total stress is far from being constant on ⌃ [55];

• In the three dimensional case, in [60], the authors propose to insert a small three-

dimensional compartment in between ⌦ and the vascular network, where ad-hoc

modified Navier-Stokes equations are solved. The resulting system can be shown
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to be stable. However, in the artificial compartment the fluid is no longer incom-

pressible and the Navier-Stokes equations are modified using three fitted parameters

that mimic a three-element Windkessel model;

• If we consider the modified interface condition

(�pI + µrv)n = �Pp n� ⇢✓v (v · n)� on ⌃, (2.234)

where

(v · n)� =

8

>

<

>

:

�v · n if v · n < 0,

0 otherwise.
(2.235)

Then, for ✓ � 0.5, the new formulation can be shown to be stable [61]. Moreover,

if ✓ = 0.5 the flux of kinetic energy at the artificial boundary ⌃ during back-flows is

canceled and this could result in over-stabilizing physical back-flows [60].

• If using, operator splitting for the time discretization of the problem [62], the advec-

tion and diffusion terms of the Navier-Stokes equations can be solved in different

steps. The advection problem, that is the source of instability, can be solved using

the wave-like method, allowing it to be rewritten in a stable form. However, operator

splitting introduces a splitting error and the unconditional stability of the advection

problem is guaranteed only under some specific discretization assumptions.

2.6.2 Implicit and explicit coupling

In this section we summarize the main differences in treating the coupling between

the fluid in the domain ⌦ and the 0D network implicitly or explicitly. For semplicity, let

us consider the test case of Stokes flow in ⌦ coupled with the three-element Windkessel

model described in Section 2.5.

Starting from the energy identity for the Navier-Stokes equations (2.232), we obtain

that the energy identity of the Stokes flow in ⌦ can be expressed as

d

dt

✓

⇢

2

kvk2L2(⌦)

◆

= �µkrvk2L2(⌦) � Pp

Z

⌃

v · n d� +

Z

⌦

⇢f · vd⌦. (2.236)
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The energy identity for the Windkessel model can be written as

d

dt

✓C
2

⇧

2

◆

= �RpQ2 � 1

Rd
⇧

2
+ PpQ +

Pd

Rd
⇧. (2.237)

The identity (2.237) has been obtained by multiplying (2.201) by ⇧ and by using the con-

servation of flow condition

Q =

Z

⌃

v · n d� =

Pp � ⇧
Rp

. (2.238)

Thus, the total energy of the coupled system is obtained by adding equations (2.236)

and (2.237)
d

dt
E(t) = �D(t) + F(t), (2.239)

where

E(t) = ⇢

2

kvk2L2(⌦) +
C
2

⇧

2, (2.240)

D(t) = µkrvk2L2(⌦) +RpQ2
+

1

Rd
⇧

2, (2.241)

F(t) =

Z

⌦

⇢f · vd⌦+

Pd

Rd
⇧. (2.242)

E(t) is the energy functional, D(t) is the dissipation functional and F(t) is the functional

corresponding to the forcing terms. E(t) and D(t) are non-negative functions, while the

sign of F(t) is not known a priori. Note that, when adding (2.236) and (2.237), the second

term on the right-hand side of (2.236) cancels with the third term on the right-hand side

of (2.237).

In order to understand the differences between implicit and explicit coupling, let us

discretize the coupled problem in time and use a backward Euler method. Let �t be the

time step and define tn = n�t. Then the semi-discretized Stokes problem is:

Given v0
= v0 and ⇧0

= ⇧0, for any n > 0 find vn+1 2 V, pn+1 2 L2
(⌦) and ⇧n+1 such

that

⇢

�t

Z

⌦

vn+1 ·w d⌦�
Z

⌦

pn+1r ·w d⌦�
Z

⌦

qr · vn+1d⌦+ µ

Z

⌦

rvn+1
: rwd⌦

+

"

⇧

⇤
+Rp

✓

Z

⌃

v⇤ · n d�

◆

#

✓

Z

⌃

w · n d�

◆

=

Z

⌦

⇢fn+1 ·wd⌦+

⇢

�t

Z

⌦

vn ·w d⌦, (2.243)
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for any w 2 V0 and any q 2 L2
(⌦). Similarly, the semi-discretized Windkessel Equa-

tion (2.201) can be expressed as

C
�t
⇧

n+1
=

Z

⌃

v⇤ · n d� � ⇧

n+1 � Pd

Rd
+

C
�t
⇧

n. (2.244)

The coupling is implicit if

(·)⇤ = (·)n+1, (2.245)

leading to a monolithic approach, otherwise if

(·)⇤ = (·)n, (2.246)

the coupling is explicit.

From the energy point of view, if the coupling is implicit, the energy identity at the

continuous level (2.242) is preserved also at the discrete level [52]. Contrary to implicit

coupling, explicit coupling introduces an artificial uncontrolled term in the energy identity

at the discrete level, that does not guarantee stability [52,58]. Indeed, the implicitly coupled

problem is unconditionally stable, hence there are no restrictions on �t. Conversely, the

stability of the explicitly coupled scheme depends on �t via a Courant-Friedrichs-Lewy

(CFL) condition that depends on the values of resistances and compliances in the vascular

network [58].

Moreover, in the finite element framework, the following term of (2.243)

Rp

✓

Z

⌃

v⇤ · n d�

◆✓

Z

⌃

w · n d�

◆

(2.247)

has different contributions to the corresponding algebraic system in the case of explicit or

implicit coupling. In the explicit case, it contributes to the right-hand side of the algebraic

system, while in the implicit case, it changes the pattern of the matrix of the algebraic

system, namely the number of nonzero entries in each line is higher. This new matrix

structure could influence the behavior of direct and iterative solvers [63].

2.6.3 Operator splitting schemes

In this section, we summarize the details of operator splitting schemes, which are

designed to take advantage of linear decompositions of operators. This is the case for the
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multiscale coupled problems studied in Section 2.6, where the system can be decomposed

into two or more subproblems, one represented by the fluid flow in the domain ⌦ and one

represented by the zero-dimensional vascular network.

Consider the initial value problem
8

>

<

>

:

@�

@t
+A(�, t) = 0,

�(t = 0) = �0,
(2.248)

where A is an operator from a Hilbert space H to itself and � 2 H . Let us assume that A,

possibly nonlinear, can be nontrivially decomposed as A = A1 +A2. We present below a

splitting scheme that takes advantage of the decomposition of the operator A and is optimal

in the cases where A1 and A2 have different mathematical properties. For further details

on operator splitting schemes we refer to [62].

Consider the time discretization �t > 0 and let tn = n�t. The first-order operator

splitting scheme consists of sequentially solving two sub-steps as follow:

Given �0, for every n � 0

Step 1 given �n, solve the initial value problem
8

>

<

>

:

@�

@t
+A1(�, t) = 0

�(t = tn) = �n
in (tn, tn+1

) (2.249a)

and set �n+1/2
= �(tn+1

);

Step 2 given �n+1/2, solve the initial value problem
8

>

<

>

:

@�

@t
+A2(�, t

n+1
) = 0

�(t = tn) = �n+1/2
in (tn, tn+1

) (2.249b)

and set �n+1
= �(tn+1

).

Note that Step 1 and 2 are not discretized in time, hence a different time discretization

scheme and a different time step might be chosen in the interval (tn, tn+1
) for each sub-

step. If A1 and A2 are linear operators, independent of t and commutative, then the
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scheme (2.249) can be shown to be exact, otherwise it is, at most, first-order accurate

in time.

The splitting scheme presented above can be modified in order to reach second-order

convergence in time in the following way:

Given �0, for every n � 0

Step 1 given �n, solve the initial value problem
8

>

<

>

:

@�

@t
+A1(�, t) = 0

�(t = tn) = �n
in (tn, tn+1/2

) (2.250a)

and set �n+1/2
= �(tn+1

);

Step 2 given �n+1/2, solve the initial value problem
8

>

<

>

:

@�

@t
+A2(�, t

n+1/2
) = 0

�(t = 0) = �n+1/2
in (0,�t) (2.250b)

and set ˆ�n+1/2
= �(�t);

Step 3 given ˆ�n+1/2, solve the initial value problem
8

>

<

>

:

@�

@t
+A1(�, t) = 0

�(t = tn+1/2
) =

ˆ�n+1/2
in (tn+1/2, tn+1

) (2.250c)

and set �n+1
= �(tn+1

).

If the dependence of A1 and A2 on � and t is sufficiently smooth, and every subproblem is

discretized in time with second order schemes, then this operator splitting scheme can be

shown to be second order accurate in time. Since the operator A1 is solved twice, in Step 1

and 3, it should be chosen to be the easiest one to solve among the two operators.

The schemes presented in this sections can be easily extended to the case where the

operator A =

Pk
i=1 Ai for k > 2 [62]. This might be useful in the case of Navier-Stokes

equations in ⌦ coupled with a zero-dimensional vascular network, because, besides split-

ting the fluid flow in⌦ from the zero-dimensional network, we could also split the advective

term from the diffusive term in Navier-Stokes equations [62, 64–66].
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3. MATHEMATICAL MODELS OF CENTRAL RETINAL
VESSELS AND RETINAL HEMODYNAMICS

In this chapter we present a mathematical model that simulates the mechanical deformation

of the lamina cribrosa in combination with the blood flow through the vessels that supply

and drain the retina [67–69]. A schematic representation of the system described by our

mathematical model is depicted in Figure 3.1.

In Section 3.1, the lamina cribrosa is modeled as a weakly-nonlinear, homogeneous,

elastic circular plate of finite thickness, which deforms under the combined action of IOP,

RLTp, and tension from the sclera, in the same spirit of previous studies [25,26,28,29]. In

Section 3.2, the central retinal vessels (CRA and CRV) are modeled as a fluid-structure in-

teraction system, where blood flow is modeled as the stationary Stokes flow of a Newtonian

viscous fluid, and the arterial wall is modeled as a linear elastic cylindrical thick shell. The

walls of the CRA and CRV deform under the action of IOP, RLTp, and the presence of the

lamina cribrosa. In Section 3.3, the vessels upstream of the CRA, the vessels downstream

of the CRV, and the retinal microcirculation are modeled as zero-dimensional networks of

resistances via the electric analogy described in Section 2.5, as in [51]. In Section 3.5, the

predictions of the mathematical model are presented and validated using four different and

unrelated experimental and clinical studies. The model results elucidate the mechanisms

through which changes in IOP, CSFp and mean arterial pressure (MAP) affect the hemo-

dynamics in the central retinal artery and vein. In Section 3.6 the relevance of the model

predictions to the pathophysiology of glaucoma is discussed.
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IOP

RLTp

CRA CRV

LC

scleral
tension

scleral
tension

Pin

P0,CRA

PL,CRA

R1

Pc

R2 R3

PL,CRV

P0,CRV

R4

Pout

Fig. 3.1.: Schematic representation of the mathematical model that couples the deformation

of the lamina cribrosa (LC) with the hemodynamics in the central retinal artery and central

retinal vein (CRA and CRV). The lamina deformations are due to the intraocular pressure

(IOP), the retrolaminar tissue pressure (RLTp) and the tension of the sclera. The CRA and

CRV are connected to the arterial and venous systems, respectively, and to each other via a

network of resistances, R1, R2, R3 and R4. Pin and Pout are the input and output pressures

of the model (set by a generator), P0,i and PL,i are the inlet and outlet pressure of the central

retinal vessels for i = CRA, CRV , and Pc is the outlet pressure of the retinal capillaries.
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3.1 Lamina cribrosa model

The lamina cribrosa is modeled as a weakly-nonlinear, homogeneous, elastic circular

plate of radius RLC and finite thickness hLC . In the small deformations regime, the lamina

satisfies the balance of linear momentum (2.82)

r · S = 0 in ⌦LC ⇢ R3. (3.1)

In cylindrical coordinates, the domain ⌦LC can be written as

⌦LC =

(

(s cos ✓, s sin ✓, ⇣) 2 R3
: s 2 [0, RLC), ✓ 2 [0, 2⇡), ⇣ 2

✓

�hLC

2

,
hLC

2

◆

)

,

where {s, ✓, ⇣} denote the radial, azimuthal and axial Lagrangian coordinates, respectively.

A sketch of the domain is provided in Figure 3.2. We remark that our geometric represen-

tation of the lamina does not account for the central perforation which allows the passage

of the central retinal vessels. However, Sigal et al. showed that this perforation has no

significant effect on the stresses and strains within the lamina [30].

The elastic constitutive equation for the second Piola-Kirchhoff stress tensor (2.80)

for the lamina cribrosa is given by

S
⇣

�
⌘

= �LC tr
⇣

�
⌘

I + 2µLC � (3.2)

and incorporates

1. geometric nonlinearities: the strain tensor �, defined in (2.49), includes quadratic

terms in the derivatives of the displacement, and can be decomposed as the sum of a

linear part E and non-linear part N as follows

�(U ) = E(U ) +N (U ,U ), (3.3)

where U is the displacement and

E (W )

:

=

1

2

h

rW + (rW )

T
i

,

N (W ,Y )

:

=

1

4

h

(rW )

T rY + (rY )

T rW
i

.
(3.4)

Note that N is symmetric with respect to W and Y , namely

N (W ,Y ) = N (Y ,W ) ; (3.5)
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⇣

s

✓

IOP

RLTp

TT
hLC

RLC

⌦LC

⇣

sT
IOP

RLTp

DLC
-hLC

2

hLC
2

Fig. 3.2.: Schematic representation of geometry and boundary conditions of the elasticity

problem for the lamina cribrosa. The lamina cribrosa domain ⌦LC is a circular plate of

radius RLC and finite thickness hLC . The anterior surface (⇣ = hLC/2) is subject to the

intraocular pressure (IOP), while the posterior surface (⇣ = �hLC/2) is subject to the

retrolaminar tissue pressure (RLTp). The lateral surface (s = RLC) is connected to the

sclera and experiences the scleral tension T . Under the assumption of axial symmetry, the

domain can be restricted to the rectangular region DLC on the right.

2. material nonlinearities: the Lamé parameters �LC and µLC vary with the effective

stress �e [29, 70], as reported in Table 3.1. The effective stress is defined as

�e = f(S) =

v

u

u

t

3

2

tr

 

✓

S � 1

3

tr
⇣

S
⌘

I

◆✓

S � 1

3

tr
⇣

S
⌘

I

◆T
!

, (3.6)

and the formula

�LC =

µLC(ELC � 2µLC)

3µLC � ELC
(3.7)

is used to relate �LC , the Young’s modulus ELC , and the shear modulus µLC .

The anterior surface of the lamina cribrosa faces the eye globe and is subject to the

intraocular pressure, while the posterior surface faces the optic nerve canal and is subject to

the retrolaminar tissue pressure. As a result, we impose the following boundary conditions:

S N a = �IOPN a for ⇣ =

hLC

2

,

S N p = �RLTpN p for ⇣ = �hLC

2

,

(3.8)
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Table 3.1.: Values of the Young’s modulus ELC and shear modulus µLC in the model for

the lamina cribrosa as a function of the effective stress �e [29, 70].

ELC [MPa] µLC [MPa] Range of �e [MPa]

0.358 0.12 0.000 < �e < 0.008

0.656 0.22 0.008 < �e < 0.015

1.818 0.61 0.015 < �e

where N a = e⇣ and N p = �e⇣ denote the outward normal vectors to the anterior and

posterior surfaces, respectively. On its lateral surface, the lamina cribrosa is connected to

the sclera and experiences the scleral tension T , which results from the scleral inflation due

to the intraocular pressure. Following [26, 29], on the lateral surface we impose that

NT
l S N l = T and U⇣ = 0 for s = RLC , (3.9)

where N l = es is the outward normal vector to the lateral surface, and T is computed

using Laplace’s law

T =

IOP Rs

2hs
, (3.10)

where Rs and hs are the scleral radius and thickness, respectively. Here we assume that the

sclera can be modeled as a perfect sphere.

Taking advantage of the symmetry in the geometry and boundary conditions, the prob-

lem is simplified by assuming that its solutions are axial symmetric. This consists in as-

suming zero azimuthal displacement, i.e. U✓ = 0, and radial and axial displacements

independent of azimuthal angle ✓, i.e. Us = Us(s, ⇣) and U⇣ = U⇣(s, ⇣). Under these

assumptions, the equilibrium equations (3.1) reduce to

Sss � S✓✓

s
+

@Sss

@s
+

@Ss⇣

@⇣
= 0,

S⇣s

s
+

@S⇣s

@s
+

@S⇣⇣

@⇣
= 0,

(3.11)
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defined on the rectangular domain

DLC = (0, RLC)⇥ (�hLC/2, hLC/2) (3.12)

depicted in Figure 3.2 (right), with the boundary conditions

S⇣⇣ = �IOP, Ss⇣ = 0 for s 2 (0, RLC), ⇣ =

hLC

2

,

S⇣⇣ = �RLTp, Ss⇣ = 0 for s 2 (0, RLC), ⇣ = �hLC

2

,

Sss = T , U⇣ = 0 for s = RLC , ⇣ 2
✓

�hLC

2

,
hLC

2

◆

,

Us = 0,
@U⇣

@s
= 0 for s = 0, ⇣ 2

✓

�hLC

2

,
hLC

2

◆

.

(3.13)

The components Sss, S✓✓, Ss⇣ , and S⇣⇣ of the stress tensor can be written in terms of the

components of the linear and non-linear parts E and N of the strain tensor � as

Sss = 2µLC

�

Ess(U ) +Nss(U ,U )

�

+ �LC



tr
⇣

E(U )

⌘

+ tr
⇣

N (U ,U )

⌘

�

,

S✓✓ = 2µLC

�

E✓✓(U ) +N✓✓(U ,U )

�

+ �LC



tr
⇣

E(U )

⌘

+ tr
⇣

N (U ,U )

⌘

�

,

S⇣⇣ = 2µLC

�

E⇣⇣(U ) +N⇣⇣(U ,U )

�

+ �LC



tr
⇣

E(U )

⌘

+ tr
⇣

N (U ,U )

⌘

�

,

S⇣s = Ss⇣ = 2µLC

�

Es⇣(U ) +Ns⇣(U ,U )

�

,

(3.14)

where tr (·) = (·)ss + (·)✓✓ + (·)⇣⇣ ,

Ess(U ) =

@Us

@s
, E✓✓(U ) =

Us

s
,

E⇣⇣(U ) =

@U⇣

@⇣
, Es⇣(U ) =

1

2



@Us

@⇣
+

@U⇣

@s

�

,
(3.15)

and

Nss(W ,Y ) =

1

2



@Ws

@s

@Ys

@s
+

@W⇣

@s

@Y⇣

@s

�

, N✓✓(W ,Y ) =

1

2



Ws

s

Ys

s

�

,

N⇣⇣(W ,Y ) =

1

2



@Ws

@⇣

@Ys

@⇣
+

@W⇣

@⇣

@Y⇣

@⇣

�

, Ns⇣(W ,Y ) =

1

2



@Ws

@⇣

@Ys

@s
+

@W⇣

@⇣

@Y⇣

@s

�

.

(3.16)

Let us now introduce the following functional space

V =

⇢

W 2 �H1
(DLC)

�2
: W⇣

�

�

�

s=RLC

= 0, Ws

�

�

�

s=0
= 0

�

. (3.17)
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To obtain the variational formulation of the lamina cribrosa problem, we consider the L2

product between the balance of linear momentum (3.1) and a test function W = (Ws, Y⇣) 2
V

0 =

Z

DLC

⇣

r · S(U )

⌘

·W dD = �
Z

DLC

S(U )

: rW dD+

Z

@DLC

W ·S(U ) ·Nd(@D),

(3.18)

where N is the outward normal vector to the boundary of DLC .

Using the definition of S and its symmetry, the first term on the right-hand side of Equa-

tion (3.18) can be expressed as
Z

DLC

S(U )

: rW dD =

Z

DLC

�LC tr
⇣

E(U ) +N (U ,U )

⌘

I : rW dD

+2

Z

DLC

µLC

⇣

E(U ) +N (U ,U )

⌘

: rW dD

=

Z RLC

0

Z

hLC
2

�hLC
2

�LC tr
⇣

E(U ) +N (U ,U )

⌘

I : E(W ) s ds d⇣

+2

Z RLC

0

Z

hLC
2

�hLC
2

µLC

⇣

E(U ) +N (U ,U )

⌘

: E(W ) s ds d⇣,

(3.19)

and, using the boundary conditions (3.13), the second term on the right-hand side of Equa-

tion (3.18) can be expressed as
Z

@DLC

W · S(U ) ·Nd(@D) = �
Z RLC

0

IOPW⇣

�

�

�

⇣=hLC/2
s ds

+

Z RLC

0

RLTpW⇣

�

�

�

⇣=�hLC/2
s ds

+

Z

hLC
2

�hLC
2

RLC T Ws

�

�

�

s=RLC

d⇣.

(3.20)
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Then, we obtain the variational formulation of the lamina cribrosa problem:

Find U = (Us, U⇣) 2 V such that

Z RLC

0

Z

hLC
2

�hLC
2

�LC tr
⇣

E(U ) +N (U ,U )

⌘

I : E(W ) s ds d⇣

+2

Z RLC

0

Z

hLC
2

�hLC
2

µLC

⇣

E(U ) +N (U ,U )

⌘

: E(W ) s ds d⇣ =

�
Z RLC

0

IOPW⇣

�

�

�

⇣=hLC/2
s ds+

Z RLC

0

RLTpW⇣

�

�

�

⇣=�hLC/2
s ds

+

Z

hLC
2

�hLC
2

RLC T Ws

�

�

�

s=RLC

d⇣ 8W = (Ws, Y⇣) 2 V.

(3.21)

3.2 Central retinal vessels model

The central retinal vessels are modeled as a fluid-structure interaction system; the

same model is used for the central retinal artery and for the central retinal vein. The model

for the compliant wall of the vessel is described in Section 3.2.1, and the model for the

blood flow inside the vessel is described in Section 3.2.2, where the dimensional analysis

reduction modeling technique described in Sections 2.4.2 and 2.4.4 is used. The subscript

i = CRA,CRV used in the following sections corresponds to the central retinal artery

case and the central retinal vein case, respectively.

3.2.1 Vessel wall model

The reference configuration of the vessel wall is a hollow circular cylinder of internal

radius Ri, thickness hi and length L, see Figure 3.3, described by

⌦

w
i =

�

(⌘ cos�, ⌘ sin�, z) 2 R3
: ⌘ 2 (Ri, Ri + hi), � 2 [0, 2⇡), z 2 (0, L)

 

,

where {⌘,�, z} are the radial, azimuthal, and axial Lagrangian coordinates, respectively.

The superscript w indicates that the domain ⌦w
i represents the wall of the vessel, for i =

CRA,CRV . The central retinal artery and vein are assumed to have the same length L, as

reported in [11].
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L

Ri

hi

lamina
cribrosa⌘

z

Fig. 3.3.: Representation of the wall of the central retinal vessels (shaded). The reference

configuration of the vessel wall is a hollow circular cylinder of internal radius Ri and thick-

ness hi, for i = CRA,CRV . The vertical dashed lines indicate the location of the lamina

cribrosa with respect to the vessel axis.

The equilibrium equation for the arterial wall is reduced to

@

@⌘



1

⌘

@

@⌘
(⌘U⌘,i)

�

= 0 for (⌘, z) 2 (Ri, Ri + hi)⇥ (0, L), (3.22)

where U⌘,i = U⌘,i(⌘, z) denotes the radial displacement for i = CRA,CRV , under the

following assumptions

1. the deformation of the arterial wall obeys the linear theory of elasticity;

2. the axial displacement is negligible with respect to the radial displacement;

3. geometry, loading and solutions are axially symmetric.

Equation (3.22) necessitates boundary conditions for the external and internal cylindrical

surfaces located at ⌘ = Ri + hi and ⌘ = Ri, respectively.

On the external surface located at ⌘ = Ri+hi, as in (2.190b), we prescribe the normal

stress through the condition


�i
U⌘,i

⌘
+ (2µi + �i)

@U⌘,i

@⌘

�

⌘=Ri+hi

= �Pe,i(z), (3.23)
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where �i and µi are Lamé constants which are related to the Young modulus Ei and the

Poisson ratio ⌫i by

�i =
Ei⌫i

(1 + ⌫i)(1� 2⌫i)
and µi =

Ei

2(1 + ⌫i)
. (3.24)

The external pressure Pe,i(z) varies along the length of the vessel and accounts for the

action of the intraocular pressure, retrolaminar tissue pressure, and the presence the lamina

cribrosa. More precisely, we write Pe,CRA(z) as

Pe,CRA(z) =

8

>

>

>

>

>

<

>

>

>

>

>

:

RLTp for 0  z < zLC,c,

�Sss(0, t(z)) for zLC,c  z  zLC ,

IOP for zLC < z < L,

(3.25)

where Sss represents the compression exerted by the lamina cribrosa on the wall of the

central retinal artery, the coordinate z = zLC indicates the relative position of the anterior

surface of the lamina cribrosa with respect to the CRA axis, and the coordinate z = zLC,c

indicates the lower end of the compressive region in the lamina, as shown in Figure 3.4.

More precisely, we define zLC,c as

zLC,c = min{z 2 (zLC � hLC , zLC) : �Sss(0, t(z)) � RLTp}, (3.26)

where t(z) = z � zLC + hLC/2. Pe,CRV can be expressed as the reflection of Pe,CRA with

respect to the axis z =

L
2 , namely

Pe,CRV (z) = Pe,CRA(L� z) for z 2 [0, L]. (3.27)

Following [11, 71], the segments of the CRA and the CRV post lamina cribrosa for

zLC < z < L (3.28)

are approximately 1 mm long, thus zLC = L� 1 mm.

Note that the radial stress along the central axis of the lamina cribrosa is given by Sss

evaluated at s = 0. Radial compressive stress corresponds to negative values of Sss, which

translate into a positive contribution to the external pressures Pe,CRA and Pe,CRV (3.25)

and (3.27).



84

Pe

z
RLTp

IOP

0 LzLCzLC � hLC zLC,c

�Sss(0, t(z))

Fig. 3.4.: Representation of the external pressure Pe,CRA acting on the wall of the central

retinal artery. Pe,CRA varies along the length of the central retinal artery, accounting for the

intraocular pressure (IOP), retrolaminar tissue pressure (RLTp), and the compression from

the lamina cribrosa Sss(0, t(z)).

At the blood-wall interface ⌘ = Ri we impose the dynamic condition


�i
U⌘,i

⌘
+ (2µi + �i)

@U⌘,i

@⌘

�

⌘=Ri

= � i(z), (3.29)

where  i(z) is the function describing the action of blood flow on the vessel wall and is

defined in Equation (3.34).

3.2.2 Blood flow model

The domain ⌦b
i occupied by the blood inside the vessel is shown in Figure 3.5 and is

defined as

⌦

b
i =

�

(r cos�, r sin�, z) 2 R3
: r 2 [0, �i(z)), � 2 [0, 2⇡), z 2 (0, L)

 

,

where {r,�, z} are the radial, azimuthal, and axial Eulerian coordinates, respectively. Here

�i(z) describes the blood-wall interface in Eulerian coordinates for i = CRA,CRV and is

related to the radial displacement of the wall by

�i(z) = Ri + U⌘,i(Ri, z). (3.30)
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L

Ri �i(z)U⌘,i

lamina
cribrosa

r

z

Fig. 3.5.: Domain occupied by the blood flowing inside the central retinal vessels (shaded).

The function �i(z) describes the wall-blood interface in eulerian coordinates, Ri is the

reference radius of the vessel, and U⌘,i is the radial displacement of the vessel wall for

i = CRA,CRV . The vertical dashed lines indicate the location of the lamina cribrosa

with respect to the vessel axis.

We remark here that we are using the same azimuthal and axial coordinates � and z for both

the Lagrangian and Eulerian frameworks since we assume axial symmetry and neglect wall

displacement in the axial direction (see Section 2.4.4 and Equation (2.193)).

Under the assumptions that

1. the blood can be described as a Stokes flow of a Newtonian incompressible viscous

fluid;

2. the pressure depends only on z;

3. the radial velocity is negligible in the balance of axial momentum;

4. geometry, loading and solutions are axially symmetric;

the equations of conservation of mass and balance of axial momentum describing blood

flow in the central retinal vessels reduce to

1

r

@

@r
(rvr,i) +

@vz,i
@z

= 0, (3.31a)

µb,i
1

r

@

@r

✓

r
@vz,i
@r

◆

=

dpi
dz

, (3.31b)
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for (r, z) 2 [0, �i(z)) ⇥ (0, L), where vr,i = vr,i(r, z) and vz,i = vz,i(r, z) denote the

radial and axial components of the blood velocity, respectively, pi = pi(z) denotes the

pressure, and µb,i denotes the blood (effective) viscosity for i = CRA, CRV . Stokes flow

is assumed in the CRA and CRV because the Reynolds number is less than 5. The fluid

in the CRA is assumed to be Newtonian since a nearly parabolic profile is reported for the

blood velocity in retinal arteries of diameter larger than 100µm [72]. We also assume that

the fluid is Newtonian in the CRV.

System (3.31) must be completed with boundary conditions in both radial and axial

directions. At the inlet and outlet sections of the CRA and CRV, we prescribe

pi = P0,i for z = 0,

pi = PL,i for z = L,
for i = CRA,CRV. (3.32)

At the blood-wall interface, we impose the kinetic condition

vr,i = 0 and vz,i = 0 for r = �i(z), (3.33)

and the dynamic condition (3.29), where the function  i(z) is given by

 i(z) =
�i(z)pi(z)

Ri
. (3.34)

In (3.34) we assume that the effect of shear stress is negligible in comparison to pressure.

It is worth noticing that the function  i does not simply equal pi, but it involves the prod-

uct of pi and �i. This is due to the nonlinear coupling between Lagrangian and Eulerian

coordinates at the blood-wall interface.

3.2.3 Analytical solution

System (3.22)-(3.34) can be solved analytically following a procedure similar to the

one presented in [43] and implemented in Section 2.4.4. The main difference is that the

external pressure Pe,i, for i = CRA, CRV , varies along the axial coordinate.

The radial displacement of the arterial wall is computed as the solution of equation

(3.22) with the boundary conditions (3.23) and (3.29), leading to

U⌘,i(⌘, z) =
⇣

a1,i�i(z)pi(z)� a2,iPe,i(z)
⌘

⌘ +

✓

�i(z)pi(z)

Ri
� Pe,i(z)

◆

a3,i
⌘

, (3.35)
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where
a1,i =

1

2(�i + µi)

Ri

hi(hi + 2Ri)
,

a2,i = a1,i
(hi +Ri)

2

Ri
,

a3,i = a2,i

✓

1 +

�i

µi

◆

Ri(hi +Ri)
2.

(3.36)

Using the geometric relation (3.30), we obtain

�i(z) = Ri + U⌘,i(Ri, z)

=

⇣

1 + a1,i�i(z)pi(z)� a2,iPe,i(z)
⌘

Ri +

✓

�i(z)pi(z)

Ri
� Pe,i(z)

◆

a3,i
Ri

.

(3.37)

Solving (3.37) for �i(z) we obtain

�i(z) = Ri
1� b1,i Pe,i(z)

1� b2,i pi(z)
, (3.38)

where

b1,i = a2,i +
a3,i
R2

i

and b2,i = a1,iRi +
a3,i
R2

i

. (3.39)

Let us now consider the equations describing blood flow. By integrating equation (3.31b)

with respect to r, we obtain

vz,i(r, z) =
1

4µb,i

⇥

r2 � (�i(z))
2
⇤ dpi
dz

. (3.40)

By integrating equation (3.31a) with respect to r, using (3.33) and (3.40), we obtain

d

dz



(�i(z))
4dpi
dz

(z)

�

= 0. (3.41)

Now equations (3.38) and (3.41) form a system in the unknowns �i(z) and pi(z) that can

be solved to obtain

pi(z) =
1

b2,i

"

1�
✓

Ni �Mi

Z z

0

(1� b1,iPe,i(t))
�4dt

◆�1/3
#

, (3.42)

and

�i(z) = Ri

⇣

1� b1,iPe,i(z)
⌘

✓

Ni �Mi

Z z

0

(1� b1,iPe,i(t))
�4dt

◆1/3

, (3.43)
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where Pe,i(z) are given by (3.25) and (3.27) and the integration constants Mi and Ni can

be determined using the boundary conditions (3.32)

Mi =
Ni � (1� b2,iPL,i)

�3

Z L

0

(1� b1,iPe,i(t))
�4dt

and Ni = (1� b2,iP0,i)
�3. (3.44)

Moreover, the blood flow rate Qi can be expressed as

Qi = 2⇡

Z �i(z)

0

vz,i(r, z) r dr =
⇡MiR4

24µb,ib2,i
. (3.45)

3.3 Retinal circulation model

The vasculature upstream of the CRA and downstream of the CRV, and the retinal

vasculature inside the eye are modeled as a zero-dimensional network of resistances using

the electric analogy described in Section 2.5, Figure 3.1. Here we summarize the main

assumptions for the zero-dimensional model. For more details on the derivation we refer

to [51].

Vasculature upstream of the CRA: The vascular resistance between the ophthalmic artery

and the inlet of the CRA is defined as R1 and corresponds to the pressure drop from

the system inlet pressure (Pin) to the inlet pressure of the CRA (P0,CRA). Pin is

related to the MAP in the following way

Pin =

2

3

MAP. (3.46)

The factors of 2/3 accounts for the pressure drop from the brachial artery, where the

MAP is measured, to the eye [73]. R1 is assumed to be constant and its value is

estimated via Poiseuille’s law (2.209).

Retinal arterioles and capillaries: The vascular resistance of the retinal arterioles and

capillaries is defined as R2 and corresponds to the pressure drop from the outlet

pressure of the CRA (PL,CRA) to the outlet pressure of the capillaries (Pc). R2 is

assumed to be constant and its value is estimated using the retinal network model

proposed in [40] and Poiseuille’s law (2.209).
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Retinal venules: The vascular resistance of retinal venules is defined as R3 and corre-

sponds to the pressure drop from the outlet pressure of the capillaries (Pc) to the

inlet pressure of the CRV (P0,CRV ). The retinal venules are exposed to an exter-

nal pressure equal to the IOP. Thus, R3 is assumed to be a variable resistance:

R3 = R3(IOP, Pc, P0,CRV ). R3 is modeled using the retinal network model pro-

posed in [40] and Equation (2.213), where Pe = IOP and ⇧ =

Pc + P0,CRV

2

.

Vasculature downstream of the CRV: R4 represents the vascular resistance between the

outlet of the CRV and the venous systems, that corresponds to the pressure drop

from outlet pressure of the CRV (PL,CRV ) to the venous pressure (Pout). The venous

pressure can be approximated by 14 mmHg, since it is usually considered to be ap-

proximately equal to the intraocular pressure [74]. R4 is assumed to be constant and

its value is estimate via Poiseuille’s law (2.209).

The computed values of the constant resistances R1, R2 and R4 are reported in Table 3.2.

Note that, since we are considering the steady state regime, no capacitances are included in

the vascular circuit.

The application of Kirchhoff’s laws to the vascular network in Figure 3.1 leads to the

following system of nonlinear algebraic equations
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Pin � P0,CRA = R1QCRA,

PL,CRA � Pc = R2QCRA,

Pc � P0,CRV = R3(IOP, Pc, P0,CRV )QCRV ,

PL,CRV � Pout = R4QCRV ,

(3.47)

where QCRA and QCRV depend on the CRA and CRV velocities through Equation (3.45).

By the conservation of flow

QCRA = QCRV . (3.48)
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Table 3.2.: Values of the resistances in the retinal circulation model [51]: R1 represents the

vascular resistance upstream of the CRA, R2 represents the vascular resistance of retinal

arterioles and capillaries, and R4 represents the vascular resistance downstream of the CRV.

Parameter Values Unit

R1 2.25⇥ 10

4 [mmHg s/ml]

R2 2.25⇥ 10

4 [mmHg s/ml]

R4 5.74⇥ 10

3 [mmHg s/ml]

3.4 Solution Procedure

The model described in Sections 3.1, 3.2 and 3.3 is solved in three steps:

Step 1 solve system (3.11)-(3.13) to calculate the stress in the lamina cribrosa;

Step 2 determine Pe,CRA and Pe,CRV in (3.25) and (3.27), given the stress from Step 1;

Step 3 solve the systems for the CRA and the CRV (3.35)-(3.45) coupled with the system

of the retinal microcirculation (3.47)-(3.48) to calculate blood velocity, blood pres-

sure, radial deformation, deformed radius and blood flow in the central retinal artery

and central retinal vein.

A schematic representation of the solution procedure is reported in Figure 3.6, additional

details for Step 1 and Step 3 are given below.

Step 1

System (3.11)-(3.13) includes: material nonlinearities, as shown in Equation (3.6) and

Table 3.1, and geometric nonlinearities, as shown in Equations (3.3)-(3.5). To address these

nonlinearities, we designed the iterative algorithm described below.
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Given IOP and RLTp, let �0
e (and therefore �0

LC and µ0
LC) be given. For n � 1 proceed

as follows:

1. compute Un via the fixed point iterations:

let W 0 be given (equal to Un�1 if n > 1, equal to 0 otherwise), for j � 1:

(a) compute W j as the solution of the linearized variational problem (3.21)

Z RLC

0

Z

hLC
2

�hLC
2

�n�1
LC tr

✓

E
⇣

W j
⌘

+N
⇣

W j,W j�1
⌘

◆

I : E(Y ) s ds d⇣

+2

Z RLC

0

Z

hLC
2

�hLC
2

µn�1
LC

✓

E
⇣

W j
⌘

+N
⇣

W j,W j�1
⌘

◆

: E(Y ) s ds d⇣ =

�
Z RLC

0

IOPY⇣

�

�

�

⇣=hLC/2
s ds+

Z RLC

0

RLTpY⇣

�

�

�

⇣=�hLC/2
s ds+

+

Z

hLC
2

�hLC
2

RLC T Ys

�

�

�

s=RLC

d⇣ 8Y = (Ys, Y⇣) 2 V.

(3.49)

(b) test for convergence:

if
kW j �W j�1kL2(⌦)

kW jkL2(⌦)

< "1 set Un
= W j and go to point 2,

otherwise set W j�1
= W j and go back to point (a).

2. compute Sn
= �n�1

LC tr
⇣

E(Un
) +N (Un,Un

)

⌘

I+2µn�1
LC

⇣

E(Un
) +N (Un,Un

)

⌘

;

3. compute �n
e = f(Sn

) (3.6);

4. test for convergence:

if k�n
e � �n�1

e kL1(⌦) < "2 go to point 5,

otherwise set �n�1
e = �n

e , update �n
LC and µn

LC via Table 3.1 and Equation (3.7), set

�n�1
LC = �n

LC and µn�1
LC = µn

LC and go back to point 1.

5. set the solution of the system to be U = Un and S = Sn.

This algorithm has been implemented in FreeFem++, a Finite Element Method-based soft-

ware for the solution of PDEs [75], using quadratic finite elements on a regular and uniform
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given IOP, RLTp and MAP

Material nonlinearities
given �n�1

LC , µn�1
LC , �n�1

e and U

n�1; set W 0 = U

n�1

Geometric nonlinearities
given W

j�1, solve r · S = 0 where
S = �n�1

LC tr(E(W j) + N(W j ,W j�1))I + 2µn�1
LC (E(W j) + N(W j ,W j�1))

convergence test on W

update �n+1
LC , µn+1

LC , �n
e and U

n; convergence test on �e

Pe,i for i = CRA, CRV

LC

Iterations on P0,CRA, PL,CRA, Pc, P0,CRV and PL,CRV

at each step analytical solutions for CRA and CRV
U⌘,i, �i, pi, vz,i for i = CRA, CRV

CRA, CRV & 0D

Step 1

Step 2

Step 3

Fig. 3.6.: Sketch of the solution procedure for the lamina cribrosa, central retinal vessels

and retinal circulation coupled model.

50 ⇥ 100 triangulation, with "1 = "2 = 10

�5. We remark that the linearized variational

problem (3.49) holds since the non-linear part of the strain tensor N (W ,Y ) is symmetric

with respect to W and Y (3.4)-(3.5).

Step 3

The resolution of Step 3 has been implemented in MATLAB, a numerical computing

environment. Given the external pressures Pe,CRA and Pe,CRV from Step 2, the integrals

in Equations (3.42)- (3.44) are estimated using the trapezoidal rule. Then, given MAP, the

system (3.35)- (3.45), for i = CRA, CRV , coupled with system (3.47)- (3.48), is solved

using the non-linear solver fsolve.
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3.5 Results

In this section we present and validate the predictions of the mathematical model using

three different and unrelated experimental and clinical studies. The aim of the simulations

presented here is to elucidate the mechanisms through which changes in IOP, CSFp and

MAP affect the hemodynamics in the central retinal artery and vein.

3.5.1 Lamina cribrosa deformation and stresses

The displacement of the lamina cribrosa predicted by our mathematical model for

different values of IOP and retrolaminar tissue pressure has been compared with the ex-

perimental data obtained by Morgan et al [76]. Here, the anterior chamber and lateral

ventricles of the eyes of eight mixed-breed dogs were cannulated to sequentially increase

IOP and CSFp.

Confocal scanning laser tomography was performed at each level of IOP and CSFp

to measure the depth of the optic disc surface, which reflects the underlying anterior lam-

inar movement. Starting from baseline (corresponding to IOP= 15 mmHg and CSFp=

0 mmHg), IOP was elevated up to an average of 32 mmHg, via steps between 3 and

5 mmHg. A second set of experiments were performed in which, starting from baseline,

CSFp was elevated up to an average of 12 mmHg, via steps between 2 and 4 mmHg. Mor-

gan et al. report their results using the quantity �MaxD, which represents the difference

in the maximum disc depth with respect to baseline. Experimental data are shown in Fig-

ure 3.7.

In order to compare the predictions of our mathematical model with the experimental

data, we used the following linear relation between CSFp and RLTp (in mmHg), derived

by Morgan et al. in a previous work [18]

RLTp =

8

>

<

>

:

0.07CSFp + 2.9200 for CSFp  1.33,

0.82CSFp + 1.9225 for CSFp > 1.33.
(3.50)
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Fig. 3.7.: Comparison between model predictions and experimental measurements of the

anterior lamina displacement. Increments of maximum disc depth �MaxD with respect to

the baseline IOP-CSFp= 15 mmHg are reported as a function of the IOP-CSFp difference.

The predictions of the mathematical model (solid line) are compared with experimental

data by Morgan et al. [76].

Then, we solved Step 1, described in Section 3.4, with RLTp= 2.92 mmHg, which corre-

sponds to CSFp= 0 mmHg via Equation (3.50), and with IOP varying between 15 mmHg

and 32.5 mmHg. Next, we solved Step 1 with IOP= 15 mmHg, and with RLTp varying in

the range that corresponds to CSFp between 0 mmHg and 12 mmHg via Equation (3.50).

Since geometric and elastic properties of the eyes examined in [76] are not reported in the

article, we chose physiologically representative values, see Tables 3.1 and 3.3. The maxi-

mum disc depth�MaxD measured by Morgan et al. is compared with the anterior laminar

displacement computed via our mathematical model, namely U⇣ at s = 0 and ⇣ = hLC/2.

The comparison between model predictions and experimental data is reported in Figure

3.7.

The mathematical model is also used to calculate the radial stress component Sss

arising in the lamina cribrosa for different IOP values. The results are reported in Figure 3.8
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Table 3.3.: Values of the parameters in the model for the lamina cribrosa: RLC and hLC

are the lamina cribrosa radius and thickness, respectively, Rs and hs are scleral radius and

thickness, respectively.

Parameter Values Unit Source

RLC 0.75 [mm] [77]

hLC 0.2 [mm] [78, 79]

Rs 12 [mm] [78, 80]

hs 1 [mm] [79, 80]

and they show regions of radial compressive stress in the lamina cribrosa, corresponding to

negative values of Sss. These regions become more pronounced as IOP is elevated.

The value of Sss along the central axis of the lamina is of particular interest here,

since it affects the pressure acting on the external wall of the central retinal vessels via

Equations (3.25) and (3.27). Figure 3.9 shows the behavior of Sss for s = 0 as a function

of the axial coordinate ⇣ across the thickness of the lamina, for different IOP values. The

significance of compressive regions, corresponding to negative values of Sss, increases with

IOP both in terms of magnitude and depth penetration in the thickness of the lamina.

IOP elevation also induces an increase in scleral tension, as dictated by Laplace’s law

(3.10). This increase in scleral tension relieves some (but not all) of the radial compression

in the lamina cribrosa, as shown in Figure 3.10. The solid lines correspond to the case

where the scleral tension varies with IOP according to Laplace’s law, while the dashed

lines correspond to the case where the scleral tension is held constant at its value for IOP =

20 mmHg.
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(f) IOP = 40 mmHg

Fig. 3.8.: Lamina cribrosa radial stress Sss [mmHg]. Distribution of the radial stress in the

lamina cribrosa for different IOP values. Regions of radial compressive stress correspond

to negative values of Sss.

3.5.2 Effect of IOP elevation on CRA hemodynamics

The IOP-induced reduction in the CRA blood velocity predicted by our mathematical

model has been compared to the clinical data reported by two independent studies, namely

Harris et al [22] and Findl et al [23]. Since the studies do not report geometrical and

material properties of the central retinal artery, we have used physiologically representative

values summarized in Table 3.4.

In the study by Harris et al., the IOP was artificially elevated in eleven healthy individ-

uals using suction opthalmodynamometry, from a baseline near 14 mmHg to approximately

45 mmHg in 3-4 increments. At each IOP level, peak systolic and end diastolic velocities
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Fig. 3.9.: Effect of IOP elevation on the lamina cribrosa radial stress Sss. The radial stress

Sss along the central axis of the lamina (s = 0) is reported as a function of the axial

coordinate ⇣ across the thickness of the lamina, for different IOP values.
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Fig. 3.10.: Effect of the scleral tension on the lamina cribrosa radial stress Sss. The radial

stress Sss along the central axis of the lamina (s = 0) is reported as a function of the axial

coordinate ⇣ across the lamina’s thickness, for different IOP values and with the scleral

tension increasing with IOP via the Laplace law (solid lines) or with scleral tension held

constant at its value for IOP=20 mmHg (dashed lines).
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Table 3.4.: Values of the parameters in the model for the CRA and CRV.

Parameter CRA CRV Unit

Value Source Value Source

radius, R 87 [81] 119 [40, 51] [µm]

thickness, h 40 [82] 12 [83] [µm]

length, L 10 [11] 10 [11] [mm]

Young’s modulus, E 0.3 [84–86] 0.9 [87] [MPa]

Poisson’s ratio, ⌫ 0.49 [84–86] 0.49 [51] [1]

blood viscosity, µb 3.0⇥ 10

�3 [86, 88] 3.2⇥ 10

�3 [40, 51] [Pa s]

(PSV and EDV) were measured in the central retinal artery using Color Doppler Imaging.

The measurements were performed approximately 3 mm behind the optic disc.

We solve the model by setting MAP = 93.33 mmHg, RLTp = 7 mmHg, and varying

IOP between 15 and 40 mmHg. We remark that MAP is defined as

MAP =

2

3

DP +

1

3

SP, (3.51)

where DP and SP are the diastolic and systolic blood pressure at the level of the brachial

artery. The baseline value of MAP is obtained from the baseline values of DP= 80 mmHg

and SP= 120 mmHg.

The lamina is approximately 1 mm behind the optic disc [11] and the segment of the

central retinal artery that runs through the lamina is very narrow, namely hLC/L = 0.02

using the physiological representative values reported in Tables 3.3 and 3.4. Considering

the measurement error and the high variability among individuals, the clinical CRA blood

velocities reported in [22] are compared to the model predicted CRA blood velocity at the

centerline right before the lamina at z = zLC � hLC (pre LC) and right after the lamina

cribrosa at z = zLC (post LC) in Figure 3.11. Even though our stationary model provides

only a mean value of the velocity, the model predictions fall nicely in the band between

the values of peak systolic and end diastolic velocities measured in vivo. Both model
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Fig. 3.11.: Effect of IOP elevation on the peak systolic velocity (PSV) and end diastolic

velocity (EDV) of the blood flow in the CRA. Comparison between in vivo measurements

by [22](black) and model predictions obtained before (blue, dashed line) or after (blue,

solid line) the lamina cribrosa.

predictions of CRA velocity before and after the lamina cribrosa show similar behavior as

the measurements, with a noticeable decrease in velocity as IOP increases from 15 to 40

mmHg. Thus, we will compare the clinical results in [22,23] with the CRA velocity before

the lamina cribrosa.

In order to assess whether or not the radial compressive stress in the lamina cribrosa

and the variable venular resistance R3 are contributing to the observed decrease in CRA

blood velocity, we simulate in four different cases

a) No LC effect and R3 constant: the radial compressive stress of the lamina on the

CRA and CRV is not taken into account and effect of IOP on the retinal venules is

not taken into account;
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Fig. 3.12.: Comparison between in vivo measurements by [22] (black) and model predic-

tions obtained by taking (cases b) and d)) or not taking into account the lamina compression

on the CRA (cases a) and c)), and by taking (cases c) and d)) and not taking into account

the effect of IOP on R3 (case a) and b)).

b) LC effect and R3 constant: the radial compressive stress of the lamina on the CRA

and CRV is taken into account and effect of IOP on the retinal venules is not taken

into account;

c) No LC effect and R3 variable: the radial compressive stress of the lamina on the

CRA and CRV is not taken into account and effect of IOP on the retinal venules is

taken into account;

d) LC effect and R3 variable: the radial compressive stress of the lamina on the CRA

and CRV is into account and effect of IOP on the retinal venules is not taken into

account.

Figure 3.12 shows the CRA blood velocity predicted by our mathematical model compared

to the clinical data reported by Harris et al [22] in cases a), b), c) and d). In cases b)

and d), where the radial compressive stress has been taken into account, Pe,CRA vary as
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in Equation (3.25), and, in cases a) and c), where the radial compressive stress has not

been taken into account, Pe,CRA = RLTp up to zLC . In all the cases, the IOP is acting

directly on the post-laminar segment of the CRA, since Pe,CRA = IOP for z > zLC , and

Pe,CRV (z) = Pe,CRA(L � z). In cases c) and d), where the effect of IOP on the retinal

venules has been taken into account, the venular resistance varies with IOP as described in

Section 3.3, namely R3 = R3(IOP, Pc, P0,CRV ). In cases a) and b), where the effect of

IOP on the retinal venules has not been taken into account, the venular resistance is constant

and equal to R3 = 6.22 ⇥ 10

3 mmHg s/ml. Its value has been estimated via Poiseuille’s

law (2.209) in [51]. The model predictions obtained by taking into account the effect of

IOP on the retinal venules (cases c) and d)) show a similar behavior as the measurements,

with a noticeable decrease in velocity as IOP increases from 15 to 40 mmHg. The decrease

is not present in the other cases.

In the study by Findl et al. [23], the CRA blood velocity was measured by Doppler

sonography on 10 healthy individuals, while IOP was elevated artificially using a suction

cup. In each subject, the IOP was increased by 10 mmHg and 20 mmHg with respect to

its baseline value, and the mean velocity of the CRA blood flow was measured at approx-

imately 3 mm behind the optic disc surface. This study reported a decrease in the CRA

blood flow velocity following IOP elevation. The decrease was �5 ± 3% at +10 mmHg

and �14± 5% at +20 mmHg (p < 0.005).

In order to compare the predictions of our mathematical model with the data by Findl

et al., we solve the model setting MAP = 93.33 mmHg, RLTp = 7 mmHg, and for IOP

equal to 11.3 mmHg (mean value of the baseline IOP in Findl et al.), 21.3 mmHg and

31.3 mmHg, in cases a), b), c) and d). Figure 3.13 shows the comparison between the

percent change of the centerline CRA velocity predicted by our mathematical model (blue

and red histograms) and measured in vivo by Findl et al. (gray histograms). If the effect of

IOP on the retinal venules is taken into account, our model predicts a significant decrease

in the CRA velocity. Otherwise, if only the radial compressive stress of the lamina on the

CRA and CRV is taken into account, the CRA velocity decrease is infinitesimal (less than

0.1%).
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Fig. 3.13.: Comparison of percent decrease in the mean CRA centerline velocity with

IOP elevation. Comparison between in vivo measurements by Findl e al. [23] (gray) and

model predictions obtained by taking (cases b) and d)) or not taking into account the lamina

compression on the CRA (cases a) and c)), and by taking (cases c) and d)) and not taking

into account the effect of IOP on R3 (case a) and b)).

3.5.3 Effect of CSFp alteration on central retinal vessels hemodynamics

The CSFp-induced variations in the CRA and CRV blood velocities predicted by our

mathematical model have been compared to the clinical data reported by Querfurth et al.

[24]. Since the study does not report geometrical and material properties of the CRA and

CRV, we have used physiologically representative values summarized in Table 3.4.



103

co
nt

ro
l

1

5

�
2

2

2

2

�
3

0

3

0

�
3

7

3

7

�
4

4

0

2

4

6

8

10

12

CSFp [mmHg]

m
ea

n
ve

lo
ci

ty

CRA
CRV

Fig. 3.14.: In vivo measurements reported by Querfurth et al. [24] of CSFp and mean CRA

and CRV blood velocities in healthy individuals (control) and ICH patients

In the study by Querfurth et., the CSFp was measured by standard lumbar puncture in

healthy individuals and chronic intracranial hypertension (ICH) patients. Healthy individ-

uals represent the control group and ICH patients were divided into groups depending on

their CSFp. None of the subjects in the study had an IOP greater than 20 mmHg. The mean

central retinal artery and central retinal vein blood velocities were measured using Color

Doppler Imaging at approximately 2 mm behind the optic disc. This study reported a bi-

modal behavior in the CRA and CRV blood velocities as CSFp increases, compared to the

control group. In particular, there is a first decrease in velocity, followed by an unexpected

increase in velocity, see Figure 3.14.

In order to compare the predictions of our mathematical model with the data by Quer-

furth et al., we solve the model by setting MAP= 93.33 mmHg, IOP = 15 mmHg, varying

CSFp from 1 to 44mmHg and assuming RLTp'CSFp. Figure 3.15 shows the centerline
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Fig. 3.15.: Model predictions of CRA and CRV velocity at the centerline before (dashed

line) and after (solid line) the lamina cribrosa as CSFp varies.

CRA and CRV blood velocities predicted by our mathematical model right before the lam-

ina (pre LC) and right after the lamina cribrosa (post LC). The predicted velocity before

the lamina, in CRA and CRV, shows an increase as CSFp increases, and, conversely, the

predicted velocity after the lamina in CRA and CRV shows a decrease as CSFp increases.

In Table 3.5 are reported the percentage variations of CRA and CRV velocities, with re-

spect to the control group, measured in vivo [24] and predicted by our mathematical model,

before and after the lamina.

Model predictions are in qualitative agreement with the clinical data, as shown in Ta-

ble 3.5; the quantitative agreement is not obtained. Note that in [24], CRA and CRV blood

velocities were not measured in the same patients while CSFp was artificially elevated.

Rather, CRA and CRV velocities and CSFp were measured in healthy individuals and ICH

patients, and then the velocities measurements were divided in groups depending on their

corresponding CSFp value. The differences between measured and predicted values re-
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Table 3.5.: Percentage of CRA and CRV blood velocities variations with respect to the

control group measured in vivo [24] and predicted by our mathematical model, before and

after the lamina.

% variation CRA velocity % variation CRV velocity

CSFp Measured Predicted Measured Predicted

[mmHg] pre LC post LC pre LC post LC

15� 22 �15% +1.6% �0.2% �20% +0.6% �0.2%

22� 30 �34% +2.0% �0.7% +2% +2.0% �0.8%

30� 37 �18% +3.5% �1.3% +23% +3.4% �1.4%

37� 44 +33% +4.6% �2.0% +16% +4.6% �2.2%

ported in Table 3.5 might be due to the influence of MAP on hemodynamics, neglected

here since MAP measurements were not reported in [24]. This motivates the investigation

presented in Section 3.5.4, which combines the interaction among IOP, CSFp and MAP.

3.5.4 Combined effect of IOP, CSFp and MAP on central retinal vessels hemody-

namics

In this section we use the mathematical model presented in Sections 3.1-3.3 to esti-

mate, quantify and compare the influence of changes in IOP, CSFp and MAP on retinal

hemodynamics [69], under the assumption that RLTp ' CSFp.

The model predicted values of the blood velocity in the pre-laminar segment of the

CRA and CRV, denoted by

VCRA = vz,CRA(r = 0, z = L/2), VCRV = vz,CRV (r = 0, z = L/2), (3.52)

respectively, and the flow rate Q are compared for different theoretical cases where IOP

and CSFp vary independently or in association with changes in MAP as described below.

Case 1 : IOP and CSFp vary independently
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(1a) IOP varies in the range from 15 to 50 mmHg, and CSFp is constant, equal to

the baseline value of 7 mmHg;

(1b) IOP is constant, equal to the baseline value of 15 mmHg, and CSFp varies

between 1 and 15 mmHg;

(1c) IOP is constant, equal to the baseline value of 15 mmHg, and CSFp varies

between 15 and 60 mmHg;

while MAP is constant, equal to the baseline value of 93.33 mmHg.

Case 2 : IOP and CSFp change with MAP

(2a) MAP varies from 62.22 to 108.89 mmHg, CSFp varies as a function of MAP

via

CSFp = 0.324
MAP
7

+ 8.6 mmHg, (3.53)

and IOP is constant, equal to the baseline value of 15 mmHg;

(2b) MAP varies from 62.22 to 108.89 mmHg, CSFp varies as a function of MAP

via Equation (3.53) and IOP varies as a function of MAP via

IOP = 0.243
MAP
7

+ 11.76 mmHg. (3.54)

The relations between CSFp and MAP in Equation (3.53), and between IOP and MAP

in Equation (3.53) have been extracted from the clinical measurements reported in [20]

and [89], respectively. The values of geometric and elastic properties of the CRA and CRV

are summarized in Table 3.4 and the values of the constant resistances in Table 3.2.

Figure 3.16 shows the variations of velocities VCRA and VCRV in the pre-laminar seg-

ment and variations of retinal blood flow Q as a function of the absolute value of the

TLpD, for the cases (1a), (1b) ad (1c). The model predicts that, for a given value of the

trans-laminar pressure difference TLpD, IOP affects retinal blood flow more than CSFp.

For example, for |TLpD| = 33 mmHg (solid black line), when IOP = 40 mmHg and

CSFp = 7 mmHg (case (1a) red curve) the flow rate Q is reduced by 38% compared to

baseline, whereas for IOP = 15 mmHg and CSFp = 48 mmHg (case (1c) blue curve) Q is
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Fig. 3.16.: Variations of CRA and CRV mean velocity VCRA (a) and VCRV (b) in the pre-

laminar segment, and variations of retinal blood flow Q (c) as functions of the absolute

value of TLpD in cases (1a), (1b) and (1c). The black dashed line corresponds to the

baseline case IOP = 15 mmHg and CSFp = 7 mmHg, and the black solid line corresponds

to an absolute value of TLpD equal to 33 mmHg.

only reduced by 4% compared to baseline. Interestingly, flow rate reductions correspond to

reductions in VCRA and VCRV in case (1a) and to increases in VCRA and VCRV in case (1c).

Figure 3.17 shows the variations of velocities VCRA and VCRV in the pre-laminar seg-

ment and variations of retinal blood flow Q as a function of CSFp, for case (2a) and (2b).

The predictions in case (1b) are reported as baseline values. The model predicts that a

decrease in CSFp from 13.64 to 11.48 mmHg due to MAP variations induces a decrease

in VCRA, VCRV and Q of 55%, 57% and 57%, respectively. The differences between the

model predictions corresponding to cases (2a) and (2b) are minimal (less than 2%).
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Fig. 3.17.: Variations of CRA and CRV mean velocity VCRA (a) and VCRV (b) in the pre-

laminar segment, and variations of retinal blood flow Q (c) as functions of CSFp in case

(2a) and (2b). Case (1b) is reported as reference.

3.6 Discussion

The models results presented in Figures 3.8, 3.9 and 3.10 suggest the presence of a

compressive region in the lamina cribrosa, which gets more pronounced as IOP increases.

The presence of compressive regions in the lamina cribrosa has been suggested previ-

ously [18,90–92]. Nevertheless, the question of whether or not compressive stress arises in

vivo in the lamina cribrosa of humans for some IOP levels is still controversial since stress

distributions in the ocular tissues cannot be measured directly.

The agreement between model predictions and experimental measurements [22,23] is

satisfactory when the effect of IOP on the retinal venules is taken into account, Figures 3.12

and 3.13. The mathematical model suggests that regions of radial compressive stress in the

lamina cribrosa may indeed increase the vascular resistance of the central retinal vessels.

However, this increase in vascular resistance is not enough to explain the decrease in the
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CRA blood velocity induced by IOP elevation measured in vivo in humans by Harris et

al. [22] and Findl et al. [23]. Instead, the model suggests that this decrease might be due to

the IOP-induced increase in vascular resistance of the retinal venules.

The model results presented in Figures 3.15 suggest that CRA and CRV blood ve-

locities in the pre-lamina and post-lamina segments behave differently as CSFp increases.

Precisely, the predicted velocity in the pre-lamina segment shows an increase as CSFp

increases, and, conversely, the predicted velocity in the post-lamina segment shows a de-

crease as CSFp increases. However, the agreement between model predictions and exper-

imental measurements [24] is only qualitative (Table 3.5). This might be due to influence

of MAP on CSFp and on retinal hemodynamics, neglected here.

The theoretical investigation of the effect of IOP and CSFp on central retinal vessels

hemodynamics (Figure 3.16 assuming RLTp ' CSFp), suggests that the relationship be-

tween measurements of blood velocity in the central retinal vessels and total retinal blood

flow could have a different interpretation depending on whether IOP or CSFp is altered.

Moreover, the mathematical model predictions suggest that changes in IOP have a stronger

effect on retinal hemodynamics than changes in CSFp, even though these changes lead to

the same TLpD. This might be due to the fact that, unlike CSFp, IOP acts directly on the

intraocular retinal vessels, i.e. retinal venules resistance R3, thereby altering the vascular

resistance of the microcirculation. Our model also suggests that the CSFp influence on

retinal hemodynamics might be mediated by associated changes in MAP, see Figure 3.17.

The model is based on numerous simplifying assumptions. In particular, the lamina

cribrosa is assumed to be homogeneous and the central perforation allowing the passage

of the central retinal vessels is neglected. Also, the sclera affects the lamina cribrosa via

the lateral tension computed by Laplace’s law, but the sclera is not affected by the presence

of the lamina. Similarly, the lamina cribrosa affects the CRA and CRV via the radial

compression acting on a portion of the vessels external walls, but the lamina is not affected

by the presence of the vessels. Moreover, one-dimensional and zero-dimensional reduced

models have been used to study the hemodynamics in the central retinal vessels and in the

retina, where the vessels walls have been assumed to be linear elastic thick shells and in
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the regime of small deformations, and the effect of IOP on retinal arterioles and capillaries

has been neglected.

To assess the validity of such assumptions, we have used experimental and clinical

studies. The model for the lamina cribrosa has been validated against the data obtained in

dogs by Morgan et al. [18, 76]. The model for the coupling between the lamina cribrosa,

the CRA, CRV and retina hemodynamics has been validated against three different sets of

clinical data, namely those by Harris et al. [22], those by Findl et al. [23] and those by

Querfurth et al. [24]. The agreement between the model predictions and the experimen-

tal/clinical data from these three different and unrelated studies is satisfactory, as shown in

Figures 3.7, 3.12, 3.13 and Table 3.5, and this provides a good validation of our model.
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4. OPERATOR SPLITTING APPROACH FOR MULTISCALE
COUPLED SYSTEMS

As a first step in expanding the model presented in Chapter 3 to account for a three-

dimensional description of the central retinal vessels, we derive in this Chapter a novel

technique based on operator splitting for the time discretization of coupled systems of

partial and ordinary differential equations. This technique allows to solve potential non-

linearities in separate steps and ensures overall stability of the numerical method, giving,

at the same time, flexibility in choosing the numerical method and discretization approach

of each sub-step.

In Section 4.1 the general multiscale coupled problem is presented. We consider a

non-stationary Stokes flow in a rigid domain ⌦ ⇢ Rd, with d = 2, 3 coupled with a zero-

dimensional network via a RC buffer, as in [56]. In Section 4.2 the energy based operator

splitting scheme is presented, and its solution procedure is described in Section 4.3. Stabil-

ity and convergence of the scheme are tested in Section 4.4 in the case of ⌦ ⇢ R2, and the

numerical results are discussed in Section 4.5.

4.1 Coupled problem

Consider a non-stationary Stokes flow in a rigid domain ⌦ ⇢ Rd, with d = 2, 3,

coupled with a 0D network via a RC buffer composed by a resistor characterized by a

constant resistance Rp and by a capacitor characterized by a constant capacitance Cp, as

depicted in Figure 4.1 for the case d = 3. Let

@⌦ = ⌃0 [ ⌃w [ ⌃L, (4.1)

where ⌃0 represents the inlet surface, ⌃w the lateral surface and ⌃L the outlet surface.
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Fig. 4.1.: Sketch of a coupled problem between a fluid flow in ⌦ and a zero-dimensional

(0D) network. The coupling occurs via a RC buffer of resistance Rp and capacitance Cp. Pp

is the nodal pressure at the interface ⌃L between ⌦ and the RC buffer and ⇧ is the pressure

at the interface between the RC buffer and the 0D network.

4.1.1 Stokes flow

We can write the Stokes equations (2.73) in ⌦ as

r · v = 0 in ⌦⇥ (0, T ), (4.2a)

⇢
@v

@t
= �rp+ µ�v + ⇢f in ⌦⇥ (0, T ), (4.2b)

where p is the fluid pressure, v is the fluid velocity, ⇢ and µ are positive constants repre-

senting the fluid density and viscosity, respectively, and f are given body forces per unit

of mass. Note that we are considering the non-symmetric formulation of Stokes equations

(for more details about the difference between symmetric and non-symmetric formulation

please refer to Section 2.6.1). This system is equipped with the initial condition

v(t = 0) = v0 in ⌦ (4.3)

and the boundary conditions

v = 0 on ⌃w ⇥ (0, T ), (4.4a)
⇣

�pI + µrv
⌘

n = �pn on ⌃0 ⇥ (0, T ), (4.4b)

where I is the identity matrix, n is the outward unit normal vector and p = p(t) is a

given function of time. Note that, contrary to Section 2.6.1, we are considering Neumann
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boundary conditions on the surface ⌃0, since in many application it is more natural to

impose a pressure rather than a velocity profile. However, other choices may be possible as

required by the specific application. On the coupling interface ⌃L, we impose continuity

of flow and pressure, as discussed in 2.6.1, namely

⇣

�pI + µrv
⌘

n = �Ppn on ⌃L ⇥ (0, T ), (4.5a)
Z

⌃L

v · nd� =

Pp � ⇧
Rp

in (0, T ), (4.5b)

where Pp = Pp(t) and ⇧ = ⇧(t) are the unknown pressures at the nodes of the RC buffer

that couple the Stokes flow with the flow in the 0D network.

4.1.2 Zero-dimensional network

The application of Kirchhoff’s law to the RC buffer and the 0D network can be ex-

pressed as the following system of ordinary differential equations

dy

dt
= N (y, t) + r(y, t) in (0, T ), (4.6)

where y is the vector of state variables, N is a matrix and r is a vector, which both might

depend on y and on time t.

Here, we focus on the particular case in which y can be expressed as

y = C ⇧ = C

2

6

4

⇧

P

3

7

5

, (4.7)

where ⇧ 2 Rm+1 is the column vector of unknown pressures at the nodes of the RC buffer

and the 0D network, P 2 Rm is the column vector of the unknown pressures at the m

nodes of the 0D network and C 2 R(m+1)⇥(m+1) is the matrix that represents capacitive

connections in the RC buffer and the 0D network. Then, Equation 4.6 can be reformulated

as follows
d
⇣

C ⇧
⌘

dt
= �R(⇧)⇧+ (Pp � ⇧)h+ g(⇧, t) in (0, T ). (4.8)
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The matrix R 2 R(m+1)⇥(m+1) represents the resistive connections in the RC buffer and

the 0D network; R might include a nonlinear dependence on ⇧. The vector h 2 Rm+1 is

defined as

h =

"

1

Rp
,0

#T

2 Rm+1, (4.9)

and the vector g 2 Rm+1 contains the forcing terms of the 0D network. Moreover, we

assume that C can be expressed as

C =

2

6

4

Cp 0T

0 C

3

7

5

2 R(m+1)⇥(m+1), (4.10)

where C 2 Rm⇥m is the matrix representing the capacitive connections in the 0D network.

In particular, (4.10) implies that no other capacitors, except for Cp, are connected to the RC

buffer. System (4.8) is equipped with the initial condition

⇧(t = 0) = ⇧0 = [⇧0,P0]. (4.11)

4.1.3 Energy identity

The energy identity of the Stokes problem can be obtained by considering the L2 prod-

uct of the conservation of linear momentum in (4.2b) and v, as in Sections 2.6.1 and 2.6.2.

Utilizing the divergence free condition, the boundary conditions (4.4) and the interface

conditions (4.5), we obtain

d

dt

✓

⇢

2

kvk2L2(⌦)

◆

+µkrvk2L2(⌦) = �p

Z

⌃0

v·n d��Pp

Z

⌃L

v·n d�+

Z

⌦

⇢f ·nd⌦. (4.12)

The energy identity of the RC buffer and the 0D network can be obtained by multiplying

Equation 4.8 by ⇧, yielding

1

2

d

dt

⇣

⇧TC ⇧
⌘

+⇧TR ⇧+Rp

 

Z

⌃L

v · n d�

!2

= Pp

Z

⌃L

v · n d� + g ·⇧. (4.13)

Now adding Equations (4.12) and (4.13), we obtain the following energy identity of

the coupled problem
d

dt
E(t) +D(t) = F(t) in (0, T ), (4.14)
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where
E(t) =

⇢

2

kvk2L2(⌦) +
1

2

⇧TC ⇧,

D(t) = µkrvk2L2(⌦) +⇧TR ⇧+Rp

 

Z

⌃L

v · n d�

!2

,

F(t) = �p

Z

⌃0

v · n d� +

Z

⌦

⇢f · nd⌦+ g ·⇧.

(4.15)

E(t) is a non-negative functional describing the energy of the coupled system and is given

by the sum of the kinetic energy of the fluid in ⌦ and the potential energy stored in the ca-

pacitors of the RC buffer and the 0D network. D(t) is a non-negative functional describing

the dissipation of the coupled system and is given by the sum of the viscous dissipation

of the fluid in ⌦ and the resistive dissipation in the RC buffer and the 0D network. The

functional F(t) does not have a definite sign a priori and is given by the sum of the cou-

pled problem forcing terms. If all the forcing terms are zero, then the coupled system is a

dissipative system, as described in Section 2.2, namely

E(t)  E(0) 8t 2 (0, T ). (4.16)

4.2 Splitting scheme

In this section we describe a splitting scheme for the coupled problem presented in

Section 4.1. The scheme is based on the first-order operator splitting scheme described in

Section 2.6.3. Consider the time discretization �t and let tn = n�t. Given

v0
= v(t = 0) = v0 and ⇧0

= ⇧(t = 0) = ⇧0, (4.17)

for any n � 0, compute vn+1 and ⇧n+1 as follows

Step 1 Given vn and ⇧n, solve

r · v = 0 in ⌦⇥ (tn, tn+1
), (4.18a)

⇢
@v

@t
= �rp+ µ�v + ⇢f in ⌦⇥ (tn, tn+1

), (4.18b)

C
d⇧
dt

= (Pp � ⇧)h in (tn, tn+1
), (4.18c)
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with initial conditions

v(tn) = vn in ⌦, (4.18d)

⇧(tn) = ⇧n, (4.18e)

boundary conditions

v = 0 on ⌃w ⇥ (tn, tn+1
), (4.18f)

⇣

�pI + µrv
⌘

n = �pn on ⌃0 ⇥ (tn, tn+1
), (4.18g)

and interface conditions

⇣

�pI + µrv
⌘

n = �Ppn on ⌃L ⇥ (tn, tn+1
), (4.18h)

Z

⌃L

v · nd� =

Pp � ⇧
Rp

in (tn, tn+1
). (4.18i)

Set

vn+ 1
2
= v(tn+1

), ⇧n+ 1
2
= ⇧(tn+1

), (4.18j)

pn+1
= p(tn+1

) P n+1
p = Rp

Z

⌃L

v(tn+1
) · nd� + ⇧(tn+1

). (4.18k)

Step 2 Given vn+ 1
2 and ⇧n+ 1

2 , solve

⇢
@v

@t
= 0 in ⌦⇥ (tn, tn+1

), (4.19a)

C
d⇧
dt

= �R(⇧)⇧+ g(⇧, t) in (tn, tn+1
), (4.19b)

with initial conditions

v(tn) = vn+ 1
2 in ⌦, (4.19c)

⇧(tn) = ⇧n+ 1
2 . (4.19d)

Set

vn+1
= v(tn+1

), ⇧n+1
= ⇧(tn+1

). (4.19e)
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Note that each step of the splitting scheme is not discretized in time and space, however it is

solved in the discrete time interval (tn, tn+1
). Hence, the splitting scheme described above

allows for different choices for the numerical scheme and discretization approach used in

each sub-step. In Step 2, Equation (4.19a) implies that the velocity v is not updated, namely

vn+1
= vn+ 1

2 . (4.20)

Note that, in Step 2, also p and Pp are not updated. Here, we have considered the forcing

term g as part of Step 2. However, depending on what is more convenient for the particular

0D network, g can be included either in Step 1 (4.18c) or in Step 2 (4.19b).

The scheme presented here is, at most, first-order in time, provided that in each sub-

step the numerical method used to discretize the time derivative is al least of first order. In

the next section we will study the stability of the scheme by looking at the energy identities

of the sub-steps.

4.2.1 Energy identities

Following the same steps as in Section 4.1.3, the energy identities in each sub-step of

the splitting scheme can be obtained.

Step 1 The energy identity of Step 1 can be expressed as

d

dt
E1(t) +D1(t) = F1(t) in (tn, tn+1

), (4.21a)

where

E1(t) = ⇢

2

kvk2L2(⌦) +
1

2

⇧TC ⇧, (4.21b)

D1(t) = µkrvk2L2(⌦) +Rp

 

Z

⌃L

v · n d�

!2

, (4.21c)

F1(t) = �p

Z

⌃0

v · n d� +

Z

⌦

⇢f · nd⌦. (4.21d)

Step 2 The energy identity of Step 2 can be expressed as

d

dt
E2(t) +D2(t) = F2(t) in (tn, tn+1

), (4.22a)
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where

E2(t) = ⇢

2

kvk2L2(⌦) +
1

2

⇧TC ⇧, (4.22b)

D2(t) = ⇧TR ⇧, (4.22c)

F2(t) = g ·⇧. (4.22d)

In the absence of forcing terms F1 = F2 = 0, it follows that

E1(tn+1
)  E1(tn) and E2(tn+1

)  E2(tn) 8n � 0. (4.23)

Due to the choice of initial conditions for the sub-steps, we have that

E2(tn+1
)  E2(tn) = E1(tn+1

)  E1(tn) 8n � 0, (4.24)

from which it follows that our scheme is unconditionally stable in time. This implies that

the choice of numerical methods and discretization in each sub-step will affect only the

accuracy of the solution, but it will not affect the stability of the scheme. Note that the

stability of the scheme does not depend on whether g is included in Step 1 or in Step 2.

4.3 Solution procedure

Here we describe the solution procedure implemented to obtain the results presented

in Section 4.4. Precisely, we describe the approach utilized for the discretization in time

and space and for the assembly of the matrices in the algebraic system.

Step 1

Let

V = H1
⌃w

(⌦) =

�

w 2 H1
(⌦) | v = 0 on ⌃w

 

. (4.25)
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For any n � 0, the variational formulation in Step 1 (4.18) is:

Find v 2 L2
(tn, tn+1

;V), p 2 L2
(tn, tn+1

;L2
(⌦)) and ⇧ 2 ⇥C1

(tn, tn+1
)

⇤m+1, i.e. the

space of continuos vectorial function in (tn, tn+1
), such that

⇢

Z

⌦

@v

@t
·w d⌦�

Z

⌦

pr ·w d⌦�
Z

⌦

qr · vd⌦+ µ

Z

⌦

rv : rwd⌦

+Rp

 

Z

⌃L

v · n d�

! 

Z

⌃L

w · n d�

!

+ ⇧

Z

⌃L

w · n d�

= �p

Z

⌃0

w · n d� + ⇢

Z

⌦

f ·wd⌦

8w 2 V 8q 2 L2
(⌦) 8t 2 (tn, tn+1

), (4.26a)

Cpd⇧
dt

=

Z

⌃L

v · n d� 8t 2 (tn, tn+1
), (4.26b)

Let us define the following linear and bilinear variational forms:

a : V ⇥V ! R

(v,w) 7! a(v,w) = µ

Z

⌦

rv : rwd⌦,

b : L2
(⌦)⇥V ! R

(p,w) 7! b(p,w) = �
Z

⌦

pr ·wd⌦,

for i = 0, L di : V ! R

w 7! di(w) =

Z

⌃i

w · n d�,

e : V ⇥V ! R

(v,w) 7! e(v,w) = RpdL(v)dL(w),

m : V ⇥V ! R

(v,w) 7! m(v,w) = ⇢

Z

⌦

v ·wd⌦.

(4.27)

Then, Equation (4.26a) can be expressed as

m

✓

@v

@t
,w

◆

+ b(p,w) + b(q,v) + a(v,w) + e(v,w) + ⇧dL(w)

= �pd0(w) +m(f ,w), (4.28)
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and Equation (4.26b) can be expressed as

Cpd⇧
dt

= dL(v). (4.29)

For a fixed n � 0, consider the time discretization �t1 for the time interval (tn, tn+1
)

and let tk = tn + k�t1. Then the semi-discretized version of Step 1 (4.26) can be written

as:

Given v0
= v(tn), p0 = p(tn) and ⇧0

= ⇧(tn), for any k find vk+1 2 V, pk+1 2 L2
(⌦)

and ⇧k+1 such that

1

�t1
m
⇣

vk+1,w
⌘

+ b(pk+1,w) + b(q,vk+1
) + a(vk+1,w) + e(vk+1,w)

+ ⇧

k+1dL(w) = �pk+1d0(w) +m(fk+1,w) +

1

�t1
m
⇣

vk,w
⌘

8w 2 V 8q 2 L2
(⌦), (4.30a)

Cp
�t1

⇧

k+1 � dL(v
k+1

) =

Cp
�t1

⇧

k, (4.30b)

where a backward Euler method has been used to discretize the time derivatives. Note

that equations (4.26a) and (4.26b) have been coupled implicitly in order to avoid possible

instabilities, as discussed in Section 2.6.2.

Let us now consider the spatial discretization of ⌦ and let Th be a regular triangulation

of ⌦, where h is defined as

h = max

K2Th

hK , (4.31)

where K is any triangle in Th and hK is its diameter. Let Vh ⇢ V and Qh ⇢ L2
(⌦) be two

finite element spaces of dimensions

Nv = dimVh < 1, Np = dimQh < 1. (4.32)

Let
n

 
j

oNv

j=1
be a vectorial basis for Vh and let {�i}Np

i=1 be a scalar basis for Qh. Then, vh

and ph can be expressed as

vh =

Nv
X

j=1

vj j
, ph =

Np
X

i=1

pi�i. (4.33)
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Then, the Galerkin problem corresponding to (4.30) can be expressed as:

Given v0
h, p0h and ⇧0, for any k, find vk+1

h 2 Vh, pk+1
h 2 Qh and ⇧k+1 such that

1

�t1
m
⇣

vk+1
h ,wh

⌘

+ b(pk+1
h ,wh) + b(qh,v

k+1
h ) + a(vk+1

h ,wh) + e(vk+1
h ,wh)

+ ⇧

k+1dL(wh) = �pk+1
h d0(wh) +m(fk+1,wh) +

1

�t1

⇣

vk
h,wh

⌘

8wh 2 Vh 8qh 2 Qh, (4.34a)

Cp
�t1

⇧

k+1 � dL(v
k+1
h ) =

Cp
�t1

⇧

k. (4.34b)

Now, if we substitute (4.33) into the Galerkin problem (4.34) and we choose wh =  
j

and qh = �i we obtain the following algebraic system
2

6

6

6

6

6

6

6

6

6

6

4

1

�t1
M +A+E B dL

BT 0 0

�dT
L 0T Cp

�t1

3

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

4

V k+1

P k+1

⇧

k+1

3

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

4

�pk+1d0 + F +

1

�t1
M V k

0

Cp
�t1

⇧

k

3

7

7

7

7

7

7

7

7

7

7

5

,

(4.35)

where V k+1,V k 2 RNv are the column vectors of the components of vk+1
h and vk

h in the

basis
n

 
j

oNv

j=1
, respectively, and P k+1 2 RNp is the column vector of the components of

pk+1
h in the basis {�i}Np

i=1. The elements of the matrices M ,A 2 RNv⇥Nv are defined as

Mij =

⇣

 
j
, 

i

⌘

=

Z

⌦

 
j
· 

i
d⌦, Aij = a

⇣

 
j
, 

i

⌘

, (4.36)

the elements of the column vectors d0,dL 2 RNv are defined as

d0,j = d0( j
), dL,j = dL( j

), (4.37)

the matrix E 2 RNv⇥Nv is defined as

E = dL dT
L, (4.38)

and the elements of the matrix B 2 RNv⇥Np are defined as

Bji = b(�i, j
). (4.39)
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On the right-hand side of (4.35), the elements of the column vector F 2 RNv are defined

as

Fj = m
⇣

fk+1, 
j

⌘

. (4.40)

As discussed in Section 2.6.2, the choice of an implicit coupling changes the pattern of the

global algebraic matrix in (4.35). Indeed, the global matrix has more non-zero entries than

the explicit case and it is not symmetric. For more details on the Galerkin finite element

method we refer to [93].

Step 2

For a fixed n � 0, consider the time discretization �t2 for the time interval (tn, tn+1
)

and let tl = tn + l�t2. Then the discretized version of Step 2 (4.19) can be written as:

Given ⇧0
= ⇧(tn), for any l find ⇧l+1 such that

1

�t2
C ⇧l+1

+R(⇧⇤
)⇧l+1

= g(⇧l+1, tl+1
) +

1

�t2
C ⇧l (4.41)

where (·)⇤ might be equal to (·)l+1 or (·)l, depending on how we choose to treat nonlinear-

ities. Recall that in Step 2 (4.19) the fluid velocity v is not updated.

4.4 Results

Here we will the splitting scheme introduced in Section 4.2 and the solution procedure

presented in Section 4.3 in three test cases

Test 1: stationary Stokes flow coupled with a resistor, to test the effect of the matrix E

in (4.35) on the order of convergence of the finite element discretization;

Test 2: non-stationary Stokes flow coupled with the RC buffer, to test the stability of the

solution procedure of Step 1;

Test 3: non-stationary Stokes flow coupled with a non-linear 0D network via a RC buffer,

to test the stability and convergence of the splitting scheme proposed.
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⌦

x

y

0 L

H
2

�H
2

e1

e2

Fig. 4.2.: Sketch of the two-dimensional rectangular Stokes flow domain ⌦ of height H

and length L.

The splitting scheme has been implemented in FreeFem++ [75] and the algebraic systems

have been solved using the UMFPACK library with a tolerance of 10�12.

In all the test cases we consider the two-dimensional domain ⌦ sketched in Figure 4.2

and defined as

⌦ = (0, L)⇥
✓

�H

2

,
H

2

◆

⇢ R2. (4.42)

The Stokes equations are written as

r · v = 0 in ⌦⇥ (0, T ), (4.43a)

⇢
@v

@t
+rp� µ�v = +⇢f in ⌦⇥ (0, T ), (4.43b)

and are equipped with the initial condition

v(t = 0) = v0 in ⌦, (4.43c)

the boundary conditions

v = 0 for y = ±H

2

, t 2 (0, T ), (4.43d)
⇣

�pI + µrv
⌘

e1 = �pe1 for x = 0, t 2 (0, T ), (4.43e)
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and the interface conditions
⇣

�pI + µrv
⌘

e1 = �Ppe1 for x = L, t 2 (0, T ), (4.43f)
Z H/2

�H/2

v · n��
x=L

dy =

Pp � ⇧
Rp

for t 2 (0, T ). (4.43g)

For each test case, we compute an exact solution that can be used for comparison with

the numerical results. We look for an exact solution where the fluid velocity v(x, y, t) =

v1e1 + v2e2 can be written as

v1(x, y, t) = s(t)V (y), v2(x, y, t) = 0, (4.44)

and the fluid pressure can be written as

p(x, y, t) = s(t)P(x). (4.45)

Therefore, in order to have (4.44) and (4.45) as a solution of (4.43), the body forces

⇢f(x, y, t) = f1e1 + f2e2 must satisfy

f1(x, y, t) = ⇢
ds(t)

dt
V (y)� µs(t)

d2V (y)

dy2
+ s(t)

dP(x)

dx
, (4.46)

f2(x, y, t) = 0. (4.47)

Note that, under these assumptions, and due to the fact that we are using the non-symmetric

formulation of Stokes equations, conditions (4.43e) and (4.43f) can be written as

p(x = 0) = p, p(x = L) = Pp. (4.48)

They imply that p and Pp satisfy

p(t) = s(t)P(0), Pp(t) = s(t)P(L). (4.49)

If we consider condition (4.43g), the left-hand side can be expressed as
Z H/2

�H/2

v · n��
x=L

dy = s(t)

Z H/2

�H/2

V (y)dy = ↵s(t), (4.50)

where ↵ is a constant, equal to the integral of V . If we solve (4.43g) for ⇧ and use (4.50),

we obtain the following expression for ⇧

⇧(t) = s(t)
�

P(L)� ↵Rp

�

. (4.51)
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⌦

Pp

x

y

L

H
Rp

⇧

Fig. 4.3.: Test 1: stationary Stokes in ⌦ coupled with a resistor Rp. Pp is the nodal pressure

at the interface x = L and ⇧ is the pressure at the end of the resistor, set by the generator.

4.4.1 Test 1

In Test 1 we consider the case of stationary Stokes flow in ⌦ coupled with a resistor

Rp (Figure 4.3). Let

V (y) = V0 cos
2

✓

⇡

H
y

◆

, P(x) = a0 exp(�kx) + a1, (4.52)

where V0, a0, a1 and k are all positive constants, and let s(t) = 1 since the problem is

stationary. This implies that

↵ =

V0H

2

. (4.53)

Given (4.52) and (4.53), the following expressions for f1, p, Pp and ⇧ can be derived

using (4.46)-(4.51)

f1 = 2µV0

✓

⇡

H

◆2

cos

✓

2⇡

H
y

◆

� ka0 exp(�kx), (4.54a)

p = a0 + a1, (4.54b)

Pp = a0 exp(�kL) + a1, (4.54c)

⇧ = a0 exp(�kL) + a1 �Rp
V0H

2

. (4.54d)

Figure 4.4 shows the order of the spatial discretization error in Test 1 as a function of

the mesh size h. The results presented are obtained in the case of H = 2 cm, L = 10 cm,

P2/P1 Taylor-Hood elements for velocity and pressure, a regular n⇥m triangular mesh of

⌦, where

n = 5(2

i
), m = 5 ⇤ n i = 1, 2, 3, 4, (4.55)
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mesh size h
10-2 10-1 100

er
ro

r

10-5

10-4

10-3

10-2

10-1

100

 ||v-vh||L2                    slope = 2.9959
| v -vh|H1 + ||p-ph||L2  slope = 1.9987

Fig. 4.4.: Test 1: logarithmic plot of the norm of the discretization error as a function of

the mesh size h.

µ = 1 g/(cm s), Rp = 100 g/(cm3 s), V0 = 10 cm/s, a0 = 10 Pa, a1 = 2 Pa and

k = 0.01 cm�1. We are able to achieve the following orders of convergence

kv � vhkL2(⌦) ⇠ O(h3
), (4.56)

|v � vh|H1(⌦) + kp� phkL2(⌦) ⇠ O(h2
). (4.57)

The results obtained are confirmed by literature, since the same orders of convergence have

been proven to hold in the case of two-dimensional Stokes flow with homogenous Dirichlet

boundary conditions and approximated by P2/P1 Taylor-Hood elements [94]. Figure 4.5

shows the numerical solution of pressure and velocity using a regular 40 ⇥ 200 triangular

mesh of ⌦. Note that v2 is not exactly equal to zero, however, it is really small, of the order

of 10�6.

4.4.2 Test 2

In Test 2 we consider the case of non-stationary Stokes flow coupled with the RC

buffer, see Figure 4.6. Problem (4.43) is coupled with Kirchhoff’s law
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Fig. 4.5.: Test 1: numerical solution of fluid pressure p and velocity v in ⌦ using P2/P1

Taylor-Hood elements and a regular 40⇥ 200 triangular mesh. v1 is the horizontal compo-

nent of the velocity and v2 is the vertical components of the velocity.
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Fig. 4.6.: Test 2: non-stationary Stokes in ⌦ coupled with a RC buffer of resistor Rp and

capacitor Cp. Pp is the nodal pressure at the interface x = L and ⇧ is the pressure at the

node in between the resistor and the capacitor.
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Cpd⇧(t)
dt

=

Pp � ⇧
Rp

, (4.58)

that is just a particular case of (4.8), where m = 0, C =

⇥Cp
⇤

, ⇧ = [⇧], h =

⇥

1/Rp

⇤

and

g = [0].

In this case the function s(t) cannot be chosen a priori, because using Equations (4.58),

(4.43g) and (4.50), we obtain that

Cpd⇧(t)
dt

= Cpds(t)
dt

�

P(L)� ↵Rp

�

=

Pp � ⇧
Rp

= ↵s(t). (4.59)

As a consequence, s(t) has to satisfy the following differential equation

ds(t)

dt
=

↵

Cp
�

P(L)� ↵Rp

�

= �s(t), (4.60)

meaning that it can only be an exponential function of t

s(t) = s0 exp(�t), (4.61)

where s0 is an arbitrary constant. Let us consider in Test 2 the same expressions for V and

P as in Test 1. Using (4.52)-(4.53) and (4.61), the following expressions for f1, p, Pp and

⇧ can be derived from (4.46)-(4.51)

f1 = s0 exp(�t)

"

⇢�V0 cos
2

✓

⇡

H
y

◆

+ 2µV0

✓

⇡

H

◆2

cos

✓

2⇡

H
y

◆

� ka0 exp(�kx)

#

,

(4.62a)

p = s0 exp(�t) (a0 + a1) , (4.62b)

Pp = s0 exp(�t)
�

a0 exp(�kL) + a1
�

, (4.62c)

⇧ = s0 exp(�t)

✓

a0 exp(�kL) + a1 �Rp
V0H

2

◆

. (4.62d)

Figure 4.7 shows the comparison between the exact solutions of Pp(t) and⇧(t) and the

corresponding numerical solutions for t 2 (0, 4] for two time steps �t = �t1 = 0.1, 0.01.

The following normalized errors are computed

errv(�t) = max

tn2(0,4]

kv(tn)� vn
hkH1(⌦)

kv(tn)kH1(⌦)
(4.63a)

errp(�t) = max

tn2(0,4]

kp(tn)� pnhkL2(⌦)

kp(tn)kL2(⌦)
, tn = tn�1

+�t (4.63b)

err0D(�t) = max

tn2(0,4]

|⇧(tn)� ⇧n|
|⇧(tn)| (4.63c)
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Fig. 4.7.: Test 2: comparison between the exact solution of Pp(t) and ⇧(t) and the corre-

sponding numerical approximation for t 2 (0, 4] for two time steps �t1 = 0.1, 0.01.

Table 4.1.: Test 2: normalized errors for two different time steps.

�t1 errv errp err0D

0.1 7.3⇥ 10

�3
8.2⇥ 10

�8
3.3⇥ 10

�3

0.01 3.5⇥ 10

�3
0.2⇥ 10

�8
0.3⇥ 10

�3

and reported in Table 4.1 for the two different time steps considered. The results presented

are obtained in the case of H = 2 cm, L = 10 cm, P2/P1 Taylor-Hood elements, a regular

40 ⇥ 200 triangular mesh of ⌦, ⇢ = 1 g/cm3, µ = 1 g/(cm s), Rp = 100 g/(cm3 s),

Cp = 0.01 (cm3 s2)/g, V0 = 10 cm/s, a0 = 50 Pa, a1 = 400 Pa, k = 1 cm�1, s0 = 1 and

� = 1/3 s�1.

4.4.3 Test 3

In Test 3 we consider the case of a non-stationary Stokes flow coupled with a non-

linear 0D network via a RC buffer, as depicted in Figure 4.8.



130

⌦

Pp

x

y

L

H Rp

⇧

Cp
R1

P1

C1
R2

P2

C2
Rd

Pd

0D network

Fig. 4.8.: Test 3: non-stationary Stokes in ⌦ coupled with a non-linear 0D network via

a RC buffer. Rp, Cp and ⇧ are the resistance, capacitance and nodal pressure in the RC

buffer, and R1, R2, Rd, C1, C2, P1, P2 and Pd are the resistances, capacitances and nodal

pressures in the 0D network.

Problem (4.43) is coupled with Kirchhoff’s laws

Cpd⇧
dt

=

Pp � ⇧
Rp

� ⇧� P1

R1(⇧)
, (4.64a)

C1dP1

dt
=

⇧� P1

R1(⇧)
� P1 � P2

R2
, (4.64b)

C2dP2

dt
=

P1 � P2

R2
� P2 � Pd

Rd
, (4.64c)

where the resistance R1 depends on the pressure ⇧. This system of ordinary differential

equations can be expressed in the general form (4.8) for m = 2, P(t) = [P1(t),P2(t)]T ,

⇧(t) = [⇧(t),P(t)]T 2 R3,

C =

2

6

6

6

6

4

Cp 0 0

0 C1 0

0 0 C2

3

7

7

7

7

5

, R(⇧) =

2

6

6

6

6

4

1
R1(⇧) � 1

R1(⇧) 0

� 1
R1(⇧)

1
R1(⇧) +

1
R2

� 1
R2

0 � 1
R2

1
R2

+

1
Rp

3

7

7

7

7

5

, (4.65)

b =



1

Rd
, 0, 0

�T

and g(t) =



0, 0,
Pd(t)

Rd

�T

. (4.66)

Using (4.46)-(4.51) and (4.64), let us derive the expression for the pressures of the network.

If we solve Equation (4.64a) for P1, we obtain

P1(t) = R1(⇧(t))

✓

Cpd⇧(t)
dt

� ↵s(t)

◆

+ ⇧(t). (4.67)
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Hence, given the expression for ⇧ in (4.51), we can differentiate it and find the expression

for P1 using (4.67). Recursively, P2 can be derived from P1 and its derivative by solving

Equation (4.64b) for P2

P2(t) = R2

✓

C1dP1(t)

dt
� ↵s(t) + Cpd⇧(t)

dt

◆

+ P1(t), (4.68)

and Pd can be derived from P2 and its derivative by solving Equation (4.64c) for Pd

Pd(t) = Rd

✓

C2dP2(t)

dt
� P1(t)� P2(t)

R2

◆

+ P2(t). (4.69)

Note that, since R1 is nonlinear, P2 and Pd depend on its time derivatives.

In this test case we do not have constraints on the choice of s(t), so we consider the

periodic function

s(t) = s0 sin (!t) + s1, (4.70)

where s0, s1 and ! are positive constants. We assume that R1 varies as function of ⇧ via

the sigmoidal function

R1(⇧) = R1 +
b0

1 + b1 exp(�b2⇧(t))
, (4.71)

where R1, b0, b1 and b2 are positive constants. Let us consider in Test 3 the same expres-

sions for V and P as in Test 1 and 2. Using (4.52)-(4.53) and (4.70)- (4.71),f1, p, Pp, ⇧

and Pd can be derived from (4.46)-(4.51) and (4.67)-(4.69).

In Test 3, given the periodic function s(t), the coupled systems is solved in time until

periodicity is reached. Once the periodicity is reached, the following normalized errors are

computed

errv(�t) = max

tn2 period
kv(tn)� vn

hkH1(⌦)

kv(tn)kH1(⌦)
(4.72a)

errp(�t) = max

tn2 period
kp(tn)� pnhkL2(⌦)

kp(tn)kL2(⌦)
tn = tn�1

+�t. (4.72b)

err0D(�t) = max

tn2 period
|⇧(tn)�⇧n|

|⇧(tn)| (4.72c)

Figure 4.9 shows the order of convergence of the errors defined in (4.72). A first-

order convergence in time is obtained for every error considered. Figure 4.10 shows the
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Fig. 4.9.: Test 3: logarithmic plot of the errors defined in (4.72) as a function of the time

step.

comparison between the exact solution and the numerical solution over one period, once

periodicity has been reached. The numerical solution is reported for two different time

steps �t = 0.1, 0.01. The results presented are obtained in the case of H = 2 cm, L =

10 cm, P2/P1 Taylor-Hood elements for velocity and pressure, a regular 20⇥100 triangular

mesh of ⌦, and the time discretization �t1 = �t and �t2 = �t/20. Moreover, the

parameter values used in the simulations are ⇢ = 1 g/cm3, µ = 1 g/(cm s), Rp = R2 =

Rd = 10 g/(cm3 s), Cp = 0.01 (cm3 s2)/g, C1 = C2 = 0.001 (cm3 s2)/g, V0 = 10 cm/s,

a0 = 300 Pa, a1 = 50 Pa, k = 0.1 cm�1, s0 = 1, s1 = 2, ! = ⇡ rad/s, R1 = 10 g/(cm3 s),

b0 = 10 g/(cm3 s), b1 = 1, b2 = 0.001 Pa�1.

4.5 Discussion

In this Chapter we have studied Stokes equations in truncated domains coupled with

a 0D network via a RC buffer, as previously considered in [56]. We have proposed a new

energy-based operator slipping scheme that is stable, like the coupling schemes presented

in [41, 52, 56], and, moreover,
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Fig. 4.10.: Test 3: comparison between the exact solution and the numerical approximation

of ⇧ in (a), (b) and (c), and comparison between the computed variable resistance R1 and

its exact expression in (d). Two different time steps are considered �t = 0.1, 0.01.

1. allows to solve in a separate step potential nonlinearities in the 0D network;

2. is flexible on the choice of the numerical method and discretization for each sub-step;

3. is unconditionally stable, independently on the numerical method and discretization

chosen in each sub-step.
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The results in Section 4.4 confirm that the stability of the splitting scheme does not depend

on the time step, see Figures 4.7 and 4.10, and that the first-order convergence in time is

obtained in the case of a nonlinear 0D network, see Figure 4.9.

The first-order splitting scheme proposed here can be easily extended to

• a second-order scheme, as discussed in Section 2.6.3. We recall that the second-order

convergence in time can be achieved only if the numerical methods used for the time

discretization of each sub-step are at least of second-order;

• Navier-Stokes equations, non-Newtonian fluids equations and fluid-structure interac-

tions in⌦ by combining the proposed scheme with other operator splitting techniques

already developed [62, 64–66];

• the case of Stokes flow in between two 0D networks, namely where both ⌃0 and ⌃L

in Figure 4.1 are coupled to a 0D network via a RC buffer, by solving in one step the

Stokes equations and the two RC buffers, in the same fashion as in Step 1 (4.18), and

by solving in a separate step the two 0D networks together, in the same fashion as in

Step 2 (4.19);

• more general 0D networks were the vector of state variables y in (4.6) does not

necessarily correspond to the column vector of pressures at the nodes, and were also

capacitances might depend nonlinearly on pressure.
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5. PATIENT-SPECIFIC THEORETICAL INTERPRETATION OF
CLINICAL DATA

In this Chapter we present two studies in which mathematical models and numerical meth-

ods are used in synergy with clinical data and statistical methods to elucidate the mech-

anisms behind clinical correlations and to provide new explanations for clinical observa-

tions. These methods are able to identify new clinical markers than can help to distinguish

between healthy individuals and glaucoma patients.

In Section 5.1, we combine clinical data and mathematical predictions to propose

possible explanations for the increase in venous oxygen saturation observed in advanced

glaucoma patients. In Section 5.2, we propose a computer-aided manipulation process that

enables the extraction of a novel set of waveform parameters to help to characterize the

disease status in glaucoma patients.

5.1 Oximetry data in advanced glaucoma patients

5.1.1 Introduction

Despite evidence linking blood flow alterations with glaucoma, it is still unknown

whether vascular changes occur primary or secondary to retinal ganglion cell loss. In [95–

97], patients with advanced glaucoma (visual field mean defect (MD) � 10 dB) exhibited

higher venous oxygen saturation levels compared with healthy individuals and mild glau-

coma patients (MD  5 dB). These observations led to the hypothesis that the decreased

arteriovenous difference in the advanced glaucoma group could be due to a decrease in reti-

nal oxygen consumption, hence suggesting that the observed increase in venous saturation

is likely a secondary effect of glaucomatous atrophy and not a primary cause of glaucoma.
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Additional methods are needed before definitive conclusions can be made relating blood

oxygen saturation changes and the severity or type of glaucoma.

Here, we apply a previously developed theoretical model of retinal vascular wall me-

chanics [35] to a set of clinical oximetry data obtained from healthy individuals and glau-

coma patients [96] to propose possible explanations for the increase in venous oxygen

saturation observed in advanced glaucoma patients. The combined mathematical and clin-

ical approach is used to calculate theoretical changes in blood oxygen saturation in retinal

arterioles, capillaries and venules and to compute patient-specific levels of tissue oxygen

demand or Krogh tissue width (herein referred to as tissue width) that would yield the mea-

sured values of venous oxygen saturation given values of MAP, IOP and arterial oxygen

saturation from patients [98].

5.1.2 Methods

Experimental data

The methods of performing retinal oximetry and obtaining baseline measurements of

factors such as IOP and blood pressure in glaucoma patients and healthy individuals has

previously been described in detail [96]. In short, measurements from 89 healthy individ-

uals and 74 glaucoma patients of age 40 years or older were collected. Glaucoma was

defined based on the characteristic optic disc damage and on the corresponding visual field

defects. Of all of the glaucoma patients considered, 45 were diagnosed with primary open

angle glaucoma (POAG) and 29 were diagnosed with NTG. A diagnosis of POAG was

defined by an untreated IOP > 21 mmHg. Patients with IOP measurements consistently

 21 mmHg were classified as having NTG. All glaucoma patients underwent automated

perimetry. A patient was defined as having mild glaucoma if the visual field MD was  5

dB and was defined as having advanced glaucoma if the visual field MD � 10 dB. Of the

45 POAG patients, 20 were diagnosed with mild glaucoma and 12 were diagnosed with

advanced glaucoma. Of the 29 NTG patients, 13 were diagnosed with mild glaucoma and
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9 were diagnosed with advanced glaucoma. Some patients were under active treatment at

the time of measurement.

Mathematical model

To determine possible explanations for measured changes in venous oxygen saturation

in POAG and NTG patients [96], a simplified mathematical model of the retinal vascula-

ture, previously developed by Arciero et al. [35], is used. The retinal vasculature down-

stream of the CRA and upstream of the CRV is modeled as a representative segment net-

work, where five vessel compartments for the large arterioles (LA), small arterioles (SA),

capillaries (C), small venules (SV) and large venules (LV) supplying and draining the retina

are connected in series; each compartment consists of identical segments arranged in paral-

lel (see Figure 5.1). All compartments are assumed to experience the same hemodynamic

and metabolic conditions. A summary of the model equations, along with its input values

and output values, is provided in Table 5.1. The subscripts used in Table 5.1 indicate if

the quantity is evaluated either at the inlet (in, i), midpoint (mp, i) or outlet (out, i) of the

ith compartment, where i =LA, SA, C, SV, LV. The values of the model parameters are

listed in Tables 5.2, 5.3 and 5.4. In the following, the main features of the model are dis-

cussed, which are leveraged to perform the simulations reported in the Section 5.1.3. For a

complete description of the model we refer to a previous study by Arciero et al. [35].

Blood flow and oxygen saturation throughout the network are predicted according to

hemodynamic and mechanical principles. Retinal flow is assumed to follow Poiseuille’s

law (2.206), in which flow through each vessel is proportional to the fourth power of the

vessel diameter. The complex blood rheology is accounted for by assigning different values

of the apparent viscosity µ to vessels in each compartment according to an experimental

in vivo relationship [99](Table 5.3). The total tension Ttotal,i generated in the vessel walls

of the vasoactive compartments i= LA, SA follows the law of Laplace and is modeled as

the sum of passive and active tension, denoted by Tpassive,i and Tmax.active,i, respectively, as

detailed in Table 5.1(b). Tpassive,i results from the structural components of the vessel wall,
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Fig. 5.1.: The retinal vasculature, as depicted in the oximetry image (top), is modeled as

a representative segment network (bottom) consisting of five compartments of parallel-

arranged vessels connected in series downstream of the central retinal artery (CRA) and

upstream of the central retinal vein (CRV): large arterioles/arteries (LA), small arterioles

(SA), capillaries (C), small venules (SV) and large venules/veins (LV).

and Tmax.active,i is generated by the contraction and dilation of smooth muscles in the LA

and SA. Smooth muscle tone in LA and SA is described by the activation function Atotal,i,

which ranges from 0 to 1. The product of Tmax.active,i and the activation Ai yields the

active tension generated in the vessel wall. Changes in Atotal,i are dictated by the stimulus

function Stone,i which results from a linear combination of four autoregulatory mechanisms

1. myogenic mechanism, related to the wall tension Ti computed via the law of Laplace.

Details are provided in Table 5.1(c), where �Ptot represents the total pressure drop
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Table 5.1.: Summary of model [35] variables and equations (sections b-f), including input

(section a) and output (section g) data.

Input
(a) Pin,LA =

2
3MAP � 20mmHg, Pout,LV = IOP , S(x = 0) = arterial oxygen saturation,

M0, d, bCO2(x = 0) = 50%, C(x = 0) = 0.5µM

Equations
8

>

>

<

>

>

:

dDi

dt
=

2�i

⌧d

�

Ti � Ttotal,i

�

dAi

dt
=

1

⌧a

�

Atotal,i � Ai

�

i =LA,SA

(b)

Ttotal,i = Tpassive,i + AiTmax.active,i Tpassive,i = Cpass,i exp

h

C 0
pass,i

�

Di/D0,i � 1

�

i

Tmax.active,i = Cact,i exp

(

�


⇣

Di/D0,i � C 0
act,i

⌘

/C 00
act,i

�2
)

Atotal,i = 1/
�

1 + exp(�Stone,i)
�

Stone,i = Cmyo,iTi � Cshear,i⌧i � Cmeta,iSCR,i � CCO2,iSCO2,LV + C 00
tone,i

Ti = (Pmp,i � IOP )Di/2 i =LA,SA,C,SV,LV

(c) Myogenic �Ptot = QtotRtot = Pin,LA � Pout,LV Rtot =
P

i Ri Qtot = niQi

�Pi = QiRi = Pin,i � Pout,i Ri = (128µiLi)/(⇡D4
i ni) Pmp,i = Pin,i +

1
2�Pi

(d) Shear stress ⌧i = (32µiQi)/(⇡D3
i ) i =LA,SA,C,SV,LV

SCR,i =

Z xend,i

xmp,i

exp

h

� �y � xmp,i

�

/L0

i

C(y)dy i =LA,SA

C(x) = ↵ + �(x� xin,i) + exp

⇥

�(xin,i � x)
⇤ �

C(xin,i)� ↵
�

(e) Metabolic ↵(x) = HTR0

⇥

Di(1�R1S(xin,i))� (1�HD)R1q(x)/(⇡c0HDkd)
⇤

/4kd

�(x) = (DiHTR0R1q(x))/(4Qic0HDkd) � = kd⇡Di/[(1�HD)Qi]

q(x) = M0⇡(r2t,i � r2v,i) rv,i =
1
2Di rt,i = rv,i + di

S(x) = S(xin,i) + q(x)(xin,i � x)/(Qic0HD)

PO2(x, r) = PO2(x, rv,i) +M0

h

(r2 � r2v,i)/4 + r2t,i ln
�

rv,i/r
�

/2
i

/k

SCO2,LV = f(PCO2LV , Qtot)

(f) Carbon dioxide PCO2LV = g(tCO2(xmp,LV )) tCO2(x) = bCO2(x)(1� (�0.115Qtot + 0.23))

bCO2(x) = bCO2(xin,i)� 0.81q(x)(xin,i � x)/(Qic0HD)

Output
(g) Pi, �Pi, Ri and Qi i =LA,SA,C,SV,LV, C(x), S(x), PO2(r, x), tCO2(x), bCO2(x)
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Table 5.2.: Parameter values for passive tension, active tension, and vascular smooth mus-

cle activation equations in the large arterioles (LA) and small arterioles (SA).

Constant Value Unit

LA SA

Cpass 361.48 197.01 [dyn/cm]

C 0
pass 53.69 17.60 [1]

Cact 2114.2 3089.6 [dyn/cm]

C 0
act 0.93 1.02 [1]

C 00
act 0.11 0.20 [1]

Cmyo 0.0092 0.025 [cm/dyn]

Cshear 0.0258 0.0258 [cm2/dyn]

Cmeta 200 200 [1/(µM cm)]

CCO2 8⇥ 10

�4
1.31⇥ 10

�4 [1/mmHg]

C 00
tone 159.26 62.27 [1]

D0 135.59 73.9 [µm]

� 0.0457 0.0604 [1/mmHg]

Table 5.3.: Parameter values describing vessel network geometry and viscosity.

Parameter Value Unit

LA SA C SV LV

number of segments, n 4 39 111360 39 4 [1]

segments length, L 0.807 0.583 0.088 0.583 0.807 [cm]

viscosity, µ 2.28 2.06 10.01 2.09 2.44 [cP]
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Table 5.4.: Time constants for the model equations (Table 5.1(b)) and parameter values for

the metabolic response (Table 5.1(e)).

Parameter Value Unit

time constant for diameter, ⌧d 1 [s]

time constant for activation, ⌧a 60 [s]

tube hematocrit, HT 0.3 [1]

discharge hematocrit, HD 0.4 [1]

rate of ATP degradation, kd 2⇥ 10

�4 [cm/s]

maximum rate of ATP release, R0 1.4⇥ 10

�9 [mol s�1 cm�3]

effect of oxygen saturation on ATP release, R1 0.891 [1]

oxygen capacity of red blood cells, c0 0.5 [cm3O2/cm3]

oxygen tissue diffusion coefficient, k 9.4 [cm3O2/(cm mmHg s)]

length constant for SCR, L0 1 [cm]

along the retinal network from the outlet of the CRA to the inlet of the CRV, and�Pi

represents the pressure drop along each segment of the i th compartment. Similarly,

Qtot represents the total blood flow along the network and Qi represents the blood

flow in each segment of the i th compartment, and Rtot represents the resistance

to flow offered by the whole retinal network and Ri represents the resistance to flow

offered by a single segment of the i th compartment. The resistances Ri are computed

according to Poiseuille’s law;

2. shear stress mechanism, related to the wall shear stress ⌧i computed according to

Poiseuille’s law. Details are provided in Table 5.1(d);

3. metabolic mechanisms, related to the signal SCR,i. Details are provided in Table 5.1(e),

where the signal SCR,i depends on the adenosine triphosphate (ATP) concentration
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at each position x along the network C(x), which itself depends on the blood oxygen

saturation at each point in the network S(x);

4. carbon dioxide mechanism, related to the signal SCO2,LV . Details are provided in

Table 5.1(f), where the signal SCO2,LV is given by the nonlinear function f of the

partial pressure of carbon dioxide in the tissue (PCO2) and of the total retinal blood

flow (Qtot). The tissue carbon dioxide content (tCO2) is converted into PCO2 via

carbon dioxide dissociation curves, represented by the function g. The tissue carbon

dioxide content and the blood carbon dioxide content (bCO2) are assumed to be

linearly related [100].

Arciero et al. [35] showed that the metabolic and carbon dioxide responses contribute

most significantly to blood flow autoregulation, leading to a nearly constant blood flow over

a wide range of intraluminal pressures. In the model, autoregulation is achieved through

changes in the diameters Di in the LA and SA segments, which should be interpreted as the

new equilibrium state attained by the system as the input data are altered. In Section 5.1.3

simulations are also performed in the case of impaired autoregulation (IA) corresponding

to the case in which metabolic and carbon dioxide mechanisms are switched off.

Since we aim to compare model-predicted and clinically measured venous saturation

levels, details for the oxygen saturation model calculations are provided. Other details of

flow, diameter and smooth muscle activation calculations are given previously [35] and are

outlined here in Table 5.1. By the conservation of mass, the change in oxygen flux must be

equal the rate of oxygen consumed by the retinal tissue

d

dx

⇥

Qic0HDS(x)
⇤

= �q, (5.1)

where x is the distance along the network, Qi is the blood flow in each compartment i, c0

is the oxygen carrying capacity of red blood cells at 100% saturation, HD is the discharge

hematocrit, S(x) is the blood oxygen saturation and q is the tissue oxygen consumption

per vessel length. Since the clinical data set considered does not include patient-specific

hematocrit values, HD is assumed to be constant, as specified in Table 5.4.
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Oxygen consumption in the tissue is calculated using a Krogh cylinder model, in

which each oxygen-delivering vessel is assumed to provide oxygen via diffusion to a cylin-

drical region of tissue surrounding it (see Figure 5.2(a)). In the present model, oxygen is

assumed to be delivered by the large and small arterioles and capillaries; no oxygen ex-

change is assumed in the venules. At each position x in the retinal vascular network, the

oxygen is delivered to the nearest tissue via diffusion according to

k

"

1

r

d

dr

✓

r
dPO2(x, r)

dr

◆

#

= M0, (5.2)

where k is the diffusion coefficient, PO2 is the partial pressure of oxygen at a radial dis-

tance r within the tissue cylinder and M0 is the tissue oxygen demand per tissue volume

(assumed here to be constant). The degeneration of the retinal ganglion cells is modeled

indirectly by varying the tissue oxygen demand M0; retinal ganglion cells degeneration

would correspond to a decrease in M0. Given the architecture of this model, it is important

to note that the M0 defined here is primarily representative of the oxygen demand of the

retinal ganglion cells in the inner retina [101].

The partial pressure of oxygen in the tissue along the radial direction r for a fixed

position in the network x is given by

PO2(x, r) = PO2(x, rv,i) +
M0

k

"

r2 � r2v,i
4

+

r2t,i
2

ln

✓

rv,i
r

◆

#

, (5.3)

where the subscript i indicates the vessel compartment, rt,i denotes the radius of the tissue

region and rv,i denotes the vessel radius, as depicted in Figure 5.2(c). Figure 5.2(b) depicts

a sample solution for two positions xin,SA = 0.81 cm (blue curve) and xend,SA = 1.39 cm

(black curve) in the small arterioles for PO2(xin,SA, rv) = 67.53 mmHg, PO2(xend,SA, rv) =

66.67 mmHg, M0 = 1.65 cm3 O2 · 100 cm�3 min�1, k = 9.4 cm3 O2 cm�1 mmHg�1 s�1,

rv = 23.6 µm, and rt = 38.6 µm.

For a constant value of M0, the tissue oxygen consumption per vessel length q is

computed as

q =

Z rt,i

rv,i

2⇡rM0dr = ⇡M0

⇣

r2t,i � r2v,i

⌘

. (5.4)
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Fig. 5.2.: A Krogh cylinder model is used to predict oxygen diffusion in retinal tissue. (a)

Representation of a Krogh cylinder model in which vessels (red) run along the center axis

of a tissue cylinder (gray). (c) Depiction of a single vessel (red) supplying a cylindrical

region of tissue (gray) with oxygen, where r is the radial coordinate, x is the distance along

the network, rt is the radius of the tissue region, rv is the radius of the vessel, d is the

tissue width and L is the vessel length. (b) Distribution of the partial pressure of oxygen

PO2(x, r) in the tissue surrounding the small arterioles in the radial direction at two fixed

positions xin,SA = 0.81 cm and xend,SA = 1.39 cm.



145

The width of tissue surrounding each vessel is defined as

di = rt,i � rv,i. (5.5)

Here, it is assumed that di is equal to the same value d for each oxygen-delivering vessel

i=LA, SA, C and that di = 0 for the SV and LV compartments. Thus, the oxygen con-

sumption rate q depends on both the tissue volume surrounding the vessel and on the level

of functional activity of the retinal ganglion cells represented by the tissue oxygen demand

M0. In turn, changes in the oxygen consumption rate q will induce changes in the oxygen

saturation within the vessel as dictated by the balance of mass in Equation (5.1).

Given the model inputs listed in Table 5.1 section (a), the steady-state values of the

diameters Di and of the vascular smooth muscle activations Ai in the LA and SA com-

partments are determined by integrating the system of ordinary differential equation in

Table 5.1(b) until equilibrium is reached. It is important to note that the system also in-

volves the quantities Ti, Ttotal,i and Atotal,i which, as detailed in Table 5.1, are functions of

the unknowns Di and Ai. The use of a steady state model is justified since the variation in

the clinical measurements of oxygen saturation due to the cardiac cycle are not large [102].

Model reference state

A reference state is defined to represent conditions typical of a healthy retina. For

example, the reference state values of IOP, MAP and arterial and venous oxygen saturation

are set equal to the average values of these factors measured in all of the healthy indi-

viduals in [96](see Table 5.5). The reference state value of tissue width is chosen to be

dref = 15 µm, which corresponds to an experimental measurement of retinal intercapillary

space of 30 µm [103]. In the reference state, the proportion of the tissue occupied by cap-

illary lumens is about 2.7%, in good agreement with 2.5% measured in histological speci-

mens [104]. Given the reference values of IOP, MAP, tissue width, and arterial oxygen satu-

ration, the model is used to calculate the value of tissue oxygen demand (M ref
0 = 1.65 cm3

O2 · 100 cm�3 min�1) that will yield the reference venous oxygen saturation level of 54%,
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as measured in healthy patients. This calculated rate of oxygen demand in the reference

state is close in magnitude to oxygen demand levels observed experimentally [105–107].

Model simulations

The mathematical model presented is used to conduct the following simulations.

1. Theoretical investigation: the model is used to predict the theoretical effect of the

artificial variation of the model inputs (Table 5.1(a)) on the computed outputs (Ta-

ble 5.1(g));

2. Theoretical interpretation of clinical data: the model is used to estimate patient-

specific values of oxygen demand (simulation 2A) or tissue depth (simulation 2B)

that would yield the clinically-measured value of venous oxygen saturation when

patient-specific inputs are considered.

The details of the algorithms implemented to perform these novel, patient-specific simula-

tions are provided below.

Algorithm for simulation 2A : for any individual included in the experimental study pro-

ceed as follows

i. set the patient-specific input values for Pin,LA, Pout,LV and S(x = 0) (Ta-

ble 5.1(a)) given the clinical measurements of MAP, IOP and arterial oxygen

saturation;

ii. set the input tissue depth equal to the reference state value dref (Table 5.1(a));

iii. set the initial guess for the input oxygen demand to M0
0 (Table 5.1(a)), for any

k � 0

a) solve the model described in Table 5.1(b)-(f);

b) compute the output of the model (Table 5.1(g)), which includes oxygen

saturation Sk
(x);
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c) test for convergence:

if
| measured - predicted venous oxygen saturation |

| measured venous oxygen saturation |  5 · 10�2

set M0 = Mk
0 , otherwise set Mk+1

0 = Mk
0 + �M and return to point a);

Algorithm for simulation 2B : for any individual included in the experimental study pro-

ceed as follows

i. set the patient-specific input values for Pin,LA, Pout,LV and S(x = 0) (Ta-

ble 5.1(a)) given the clinical measurements of MAP, IOP and arterial oxygen

saturation;

ii. set the input oxygen demand equal to the reference state value M ref
0 (Table 5.1(a));

iii. set the initial guess for the input tissue depth to d0 (Table 5.1(a)), for any k � 0

a) solve the model described in Table 5.1(b)-(f);

b) compute the output of the model (Table 5.1(g)), which includes oxygen

saturation Sk
(x);

c) test for convergence:

if
| measured - predicted venous oxygen saturation |

| measured venous oxygen saturation |  5 · 10�2

set d = dk, otherwise set dk+1
= dk + �d and return to point a).

In step iii(c) of simulations (2A) and (2B), the values of �M and �d are determined via the

MATLAB algorithm fsolve, which is a nonlinear least-squares algorithm. For each of the

algorithms (2A) and (2B), two sets of simulations are performed corresponding to the cases

of functional or impaired autoregulation.

5.1.3 Results

Experimental data

Figure 5.3 shows the scatter plot of the venous saturation data collected from healthy

individuals, advanced POAG patients and advanced NTG patients [96]. Four healthy indi-
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Fig. 5.3.: Venous oxygen saturation clinical data collected from healthy individuals (n=85),

advanced POAG patients (n=12) and advanced NTG patients (n=8) [96] (blue dots). Black

bars represent the mean and standard deviation of each group.

viduals and one advanced NTG patient were excluded since no record of MAP measure-

ment was reported. Data for mild glaucoma patients are not included in the figure since

Olafsdottir and Vandewalle et al. [96] found no statistical difference in retinal oxygen ar-

terial and venous saturation between healthy individuals and mild glaucoma patients. The

black bars represent the average value of each group and the corresponding standard devi-

ation. In both the advanced POAG and advanced NTG patient groups, the average value

of venous oxygen saturation is higher than in healthy individuals, and the average value

of arteriovenous difference is lower than in healthy individuals. No statistical difference

was reported in retinal oxygen saturation when mild POAG and mild NTG patients were

compared, nor when advanced POAG and advanced NTG patients were compared. The av-

erage values of IOP, MAP and oxygen saturation measured in healthy individuals, advanced

POAG patients and advanced NTG patients are also reported in Table 5.5.
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Table 5.5.: Clinical average values of intraocular pressure (IOP, in mmHg), mean arterial

pressure (MAP, in mmHg), ocular perfusion pressure (OPP, in mmHg), retinal arterial oxy-

gen saturation and retinal venous oxygen saturation measured in healthy individuals, ad-

vanced (visual field MD� 10 dB) primary open-angle glaucoma (POAG, IOP > 21 mmHg)

patients and advanced normal tension glaucoma (NTG, IOP21 mmHg) patients [96]. Ref-

erence state parameter values are highlighted in bold.

Healthy Advanced Advanced

(n=85) POAG (n=12) NTG (n=8)

IOP [mmHg] 15 ± 3 15 ± 3 10 ± 3

Clinical MAP [mmHg] 102 ± 12 99 ± 10 109 ± 11

data OPP [mmHg] 53 ± 8 51 ± 8 62 ± 6

Arterial oxygen saturation [%] 93 ± 4 95 ± 2 94 ± 3

Venous oxygen saturation [%] 54 ± 6 58 ± 5 58 ± 6

Reference M ref
0 [cm3 O2 · 100 cm�3 min�1] 1.65

values dref [µm] 15

Theoretical investigation

Figure 5.4 shows the scatter plot of the venous oxygen saturation data collected from

healthy individuals as a function of ocular perfusion pressure (OPP), defined as

OPP =

2

3

MAP � IOP. (5.6)

The clinical data (blue dots) are compared to the mathematical model prediction (solid

curve) of venous saturation as OPP is varied. Reference state values of IOP, MAP, arterial

oxygen saturation, M ref
0 and dref are used to produce the model simulated curve. Since the

model predictions generated by varying MAP and holding IOP constant or by varying IOP

and holding MAP constant are nearly identical, only one curve is shown as OPP is varied.
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Fig. 5.4.: A scatter plot of the venous saturation clinical data (blue dots) collected from

healthy individuals is compared with theoretical predictions (solid black curve) as OPP is

varied. Here, a range of OPP values is generated by holding IOP constant at its reference

state value (15 mmHg) while varying MAP between 67 and 130 mmHg.

Since the clinical data [96] show an increase in venous saturation in advanced glau-

coma patients, the mathematical model is used to theorize three possible explanations for

increased venous saturation:

Case 1 A decrease in tissue oxygen demand M0: if less oxygen is consumed by the tissue,

higher levels of venous oxygen saturation are predicted;

Case 2 An impairment of blood flow autoregulation: if the most influential autoregula-

tion mechanisms (conducted metabolic and/or local carbon dioxide response mech-

anisms) are impaired, higher levels of venous oxygen saturation are predicted for

certain ranges of OPP;

Case 3 A decrease in tissue width d: if the volume of tissue supplied by each capillary or

arteriole is decreased, higher levels of venous oxygen saturation are predicted.
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As shown in Figure 5.5(a), the model predicts a decrease in venous oxygen saturation as

oxygen demand is increased provided that all other factors (MAP, IOP, d, arterial blood

saturation and functionality of autoregulation) are not altered. Figure 5.5(b) depicts case 1

in which venous oxygen saturation is shown as a function of OPP for two different values

of M0

M ref
0 = 1.65 cm3 O2 · 100 cm�3 min�1 (5.7)

for the blue curve and

M0 = 1.32 cm3 O2 · 100 cm�3 min�1 (5.8)

for the red curve. These curves show the effect of a 20% decrease in oxygen demand on

the model predictions of venous saturation. It is interesting to observe that this decrease

in oxygen demand causes variable increases in venous oxygen saturation depending on the

value of OPP.

Figure 5.5(c) provides evidence for case 2, namely that an increase in venous oxy-

gen saturation can also occur over a certain range of OPP values when autoregulation is

impaired. In this case, M ref
0 = 1.65 cm3 O2 · 100 cm�3 min�1 for both curves, but the

metabolic and carbon dioxide autoregulation mechanisms are impaired (i.e., absent) in the

black dashed curve.

Figure 5.5(d) shows that a decrease in tissue width supplied by each arteriole or capil-

lary in the Krogh cylinder model can also lead to an increase in venous oxygen saturation,

as outlined in case 3. Decreasing the tissue width leads to a decrease in the total tissue

volume supplied by the retinal vasculature. Figure 5.5(d) depicts the effect of decreasing

tissue width from dref = 15 µ m (blue curve) to d = 13 µ m (green curve).

Theoretical interpretation of clinical data

Figure 5.6 summarizes the model predicted values of oxygen demand (gray) or tissue

width (blue) that will yield the clinically observed venous saturation levels (Figure 5.3) for

each individual in the healthy, advanced POAG and advanced NTG populations. Model
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(a) (b)

(c) (d)

Fig. 5.5.: (a) Decrease in venous oxygen saturation as tissue oxygen demand M0 is in-

creased, given constant reference state values of MAP, IOP and arterial oxygen saturation.

The remaining panels highlight the three-part theoretical investigation of the effects of (b)

oxygen demand M0, (c) impaired autoregulation (IA) and (d) tissue width d on model pre-

dictions of venous oxygen saturation as OPP is varied. Each scenario is compared with the

model prediction of the reference state (blue curve) in which M ref
0 = 1.65 cm3 O2 · 100

cm�3 min�1, dref = 15 µm, and autoregulation is functional.



153

Fig. 5.6.: Model predicted levels of tissue oxygen demand M0 and tissue width d that yield

the venous saturation clinical data collected from each individual in the healthy, advanced

POAG and advanced NTG populations [96]. Model predictions are also provided when

autoregulation is impaired (IA) in advanced POAG and NTG patients. Black bars represent

mean and standard deviation of each group.

predictions for mild POAG and NTG patient groups are not included since the venous sat-

uration levels did not differ from healthy individuals. The model predicts that the observed

increase in venous saturation in advanced POAG patients is accompanied by a decrease

in oxygen demand, whereas no change in oxygen demand is predicted in advanced NTG

patients. A slightly lower tissue width is predicted in POAG patients to yield increased ve-

nous saturation but not in NTG patients. These trends are observed regardless of whether

autoregulation is functioning or impaired. Table 5.6 lists the mean and standard deviation of

the oxygen demand and tissue width model predictions depicted in Figure 5.6. All clinical

measures were used except for a few cases in which the tolerance of the optimization pro-

cedure employed to find M0 (2 healthy patients, 1 advanced POAG patient and 1 advanced

NTG patient) and d (2 healthy patients and 1 advanced NTG patient) was not achieved.

It is important to note that the average values of oxygen demand and tissue width

calculated for the healthy population (reported in Table 5.6) are not equal to the reference
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Table 5.6.: Model predicted levels of tissue oxygen demand M0 and tissue width d that yield

the venous saturation clinical data collected from healthy, advanced POAG and advanced

NTG patients [96].

Healthy Advanced Advanced Advanced Advanced

POAG POAG (IA) NTG NTG (IA)

M0 1.98 1.58 1.48 1.99 2.03

[cm3 O2 · 100 cm�3 min�1
] ±0.77 ±0.64 ±0.53 ±.67 ±0.48

d 15.66 14.79 13.94 16.36 16.94

[ µm ] ±1.66 ±1.72 ±2.85 ±1.90 ±2.40

state values of oxygen demand and tissue width (reported in Table 5.5). In Table 5.5, the

values M ref
0 and dref are computed from average values of IOP, MAP and arterial saturation

obtained from the healthy population. In Table 5.6, the values of M0 and d are computed

using the MAP, IOP and arterial saturation from each individual and then averaging the

resulting values in each population.

Based on the model predictions summarized in Figure 5.6 and Table 5.6, Figure 5.7(a)

shows the model predicted curves of venous oxygen saturation for M0 = 1.98 cm3 O2 ·100
cm�3 min�1 (blue curve) and decreased M0 = 1.52 cm3 O2 ·100 cm�3 min�1 (black curve)

as well as the average clinical values of venous saturation and OPP in healthy individuals

(asterisk) and advanced POAG patients (square). In Figure 5.7(b), M0 = 1.98 cm3 O2 · 100
cm�3 min�1 and dref = 15 µ m are fixed for both curves, but autoregulation is assumed to

be impaired for the black dashed curve. These model predictions are compared with aver-

age clinical values of venous saturation and OPP measured in healthy individuals (asterisk)

and advanced NTG patients (square).
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(a) (b)

Fig. 5.7.: Model predicted curves of venous oxygen saturation as OPP is varied are shown

with average values of venous oxygen saturation and OPP measured clinically. (a) The

observed increase in the average venous saturation in healthy individuals (blue asterisk)

and in advanced POAG patients (black square) is compared with model predicted levels

of venous saturation for decreased levels of tissue demand. (b) The observed increase in

the average venous saturation in healthy individuals (blue asterisk) and advanced NTG

patients (black square) is compared with model predicted levels of venous saturation when

autoregulation is impaired (IA).

5.1.4 Discussion

Experimental data

Retinal vessel oxygen saturation was measured in healthy individuals and glaucoma

patients using a non-invasive retinal oximeter. The measurements indicated that patients

with advanced glaucoma (both POAG and NTG patients) exhibited higher venous oxygen

saturation (and consequently a lower arteriovenous difference in oxygen saturation) com-

pared with healthy individuals. Other studies [108,109] have confirmed these findings, and
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it has been previously hypothesized [96] that the observed increase in venous saturation is

likely a secondary effect of glaucomatous atrophy and not a primary cause of glaucoma,

citing the absence of hypoxia in advanced glaucoma patients as supporting evidence. How-

ever, the number of advanced glaucoma patients in these studies (including the current one)

was rather small, and many patients were under active ophthalmological care. Thus, addi-

tional studies, ideally progressive in nature and conducted in patients with very high IOP

and very low OPP, are needed in order to draw more definitive conclusions.

Theoretical investigation

Here, we have implemented a theoretical model based on fundamental hemodynamic

and mechanical principles to predict venous oxygen saturation levels given patient-specific

values of MAP, IOP and arterial oxygen saturation. The model predictions using the ref-

erence state values of these factors align well with the observed venous saturation levels

collected from healthy individuals (Figure 5.4).

A Krogh cylinder model is used to describe the diffusion of oxygen into tissue; this

Krogh model is applied in the classical sense in which the oxygen-supplying vessel runs

along the central axis of a tissue cylinder. However, such an assumption may not be the

most appropriate for retinal tissue, since the majority of the tissue that retinal vessels feed

is typically located ”below” the vessels [110]. Some mathematical models have described

oxygen diffusion through the retinal tissue layers [111–114] but did not consistently include

a description of blood flow and autoregulation in the retinal vasculature. It would be an

interesting research direction to enhance the model to include a more realistic geometric

arrangement of vessels and tissue.

Theoretical interpretation of clinical data

We have used a mathematical model to offer possible explanations for the observed

trends in oximetry data collected in healthy individuals and glaucoma patients. Specifically,

the model shows that a decrease in oxygen demand, an impairment of autoregulation or a
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decrease in tissue width can all lead to increased venous saturation levels. It is important to

note that although the model predictions offer each of these scenarios as a possible explana-

tion, not all of them are physiologically relevant when describing the details of glaucoma.

For example, suggesting a decrease in the Krogh cylinder tissue width as an explanation

for the increased venous saturation levels observed in glaucoma is not consistent with the

reduced vascularization observed in some glaucoma patients [104,115–117]. However, the

interconnection of tissue width and retinal atrophy suggests that future insight could be

gained by using the model to assess the effects of altering multiple factors at once.

The patient-specific model optimizations presented (Figure 5.7) suggest that there

might be different explanations for the increased venous saturation levels observed among

advanced POAG patients and advanced NTG patients. Specifically, a decrease in oxygen

demand may be more relevant to the increase in venous saturation observed in advanced

POAG (Figure 5.7(a)), while impaired autoregulation mechanisms may be more relevant to

the increase in venous saturation observed in advanced NTG (Figure 5.7(b)). This finding

also suggests that vascular changes might occur primary to glaucomatous damage in NTG

patients. Of note, the relation found between NTG patients and the impairment of blood

flow autoregulation has been proposed previously [118,119]. Importantly, impaired blood

flow autoregulation could play a role in all advanced glaucoma patients, but to varying

extents, as suggested by Figure 5.6. Additional theoretical investigations, ideally coupled

with statistical methods and conducted on a wider set of glaucoma patients, are needed to

confirm the model findings.

5.2 Color Doppler images in healthy individuals and glaucoma patients

5.2.1 Introduction

CDI is a consolidated noninvasive technique to measure blood velocity profile in dif-

ferent medical fields, such as radiology [120, 121], cardiology [122–125], obstetrics [126,

127] and ophthalmology [128–131]. Interestingly, since the arterial waveform changes as
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we move along the arterial tree, various waveform parameters (WPs) have been proposed

in the scientific literature.

Typical WPs utilized in ophthalmology are PSV, EDV and resistive index (RI) [132].

Here we further advance the analysis of CDI measurements by proposing a computer-aided

manipulation process of ophthalmic artery CDI images that enables the extraction of a

novel set of WPs that might help better characterize the disease status in glaucoma [133].

5.2.2 Methods

CDI images obtained form healthy individuals and glaucoma patients are considered.

50 CDI images acquired by 4 different operators on 9 healthy individuals were collected

at the University Eye Clinic, Foundation IRCCS, Policlinico San Matteo, Pavia, Italy, and

CDI images of 38 glaucoma patients within the Indianapolis Glaucoma Progression Study

were collected at the Eugene and Marilyn Glick Eye Institute, Indiana University School

of Medicine, Indianapolis, IN, USA. The baseline characteristics of the study group are

described in Table 5.7. The PSV, EDV and RI raw data are obtained directly from the

ultrasound machine as an average of the values measured over at least three cardiac cycles.

An ad-hoc semi-automated image processing code was implemented in MATLAB to

analyze the CDI images, detect the digitalized OA velocity waveforms and extract the WPs,

Figure 5.8. The image processing consists of several steps

1. the CDI image in red-green-blue (RGB) color scale is converted into grayscale for-

mat;

2. the resulting grayscale image is analyzed to extract the time scale, velocity scale,

cardiac cycle period and height of PSV (all of them measured in terms of image

pixels);

3. the original grayscale image is cropped, using the previously extracted pixels values,

to contain only one cardiac cycle;

4. the Sobel method [134, 135] is used to detect waveform edges;
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Table 5.7.: Baseline characteristics of the healthy individuals and glaucoma patients in-

cluded in the study.

Healthy Glaucoma

Number of patients 9 38

Females 5 19

Males 4 19

Age 24± 2 70± 13

Years of glaucoma diagnosis at the time of the visit - 17± 10

Intraocular pressure [mmHg] 14± 3 16± 4

Heart rate (HR) [bpm] - 67± 12

Systolic pressure (SP) [mmHg] 117± 7 138± 21

Diastolic pressure (DP) [mmHg] 70± 8 84± 11

Mean arterial pressure (MAP) [mmHg] 86± 7 102± 13

Systolic ocular perfusion pressure (SOPP) [mmHg] 103± 8 77± 15

Diastolic ocular perfusion pressure (DOPP) [mmHg] 56± 8 41± 8

Mean ocular perfusion pressure (MOPP) [mmHg] 43± 5 53± 10

Ocular medications - 25(66%)

Systemic medications - 22(58%)

Peak systolic velocity (PSV) raw [cm/s] 40± 7 26± 10

End diastolic velocity (EDV) raw [cm/s] 8± 2 6± 3

Resistive index (RI) raw[-] 0.80± 0.05 0.78± 0.7

5. the waveform edges are smoothed via local regression using weighted linear least

squares and a first degree polynomial model;

6. the resulting waveform profile is then scaled from pixel units to physical units.
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Once the OA waveform digitalized profile is constructed, the following WPs are extracted

(Figure 1)

• PSV;

• dicrotic notch velocity (DNV);

• EDV;

• RI, defined as

RI =
PSV � EDV

PSV
; (5.9)

• period of a cardiac cycle (T );

• first systolic ascending time (PSV time);

• difference between PSV time and DNV time (Dt);

• subendocardial viability ratio (SEVR) between the diastolic time interval (DTI) and

the systolic time interval (STI) [136];

• area under the wave (A);

• area ratio (�) defined as

� =

Aw

Abox
=

Aw

PSV Dt
; (5.10)

• normalized distance between ascending and descending limb of the wave at two

thirds of the difference between PSV and EDV (DAD/T) [137].

The Shapiro-Wilk test was used to test the normal distribution of quantitative vari-

ables: as all quantitative variables were normally distributed, the results are expressed as

the mean value and standard deviation (SD) were reported. Qualitative variables are sum-

marized as counts and percentages. An analysis of concordance is performed to compare

the raw values of PSV, EDV and RI with the corresponding values extracted from the

digitalized OA profile using the image manipulation process detailed previously. The con-

cordance correlation coefficient (CCC) determines how far the data deviate from the line of
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Fig. 5.8.: A summary of the semi-automated image manipulation process used to extract the

ophthalmic artery waveform parameters. Starting from the CDI image (top), the digitalized

OA velocity waveform is detected (center) and the corresponding waveform parameters are

extracted (bottom).
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perfect concordance, combining measures of precision and accuracy [138]. CCC ranges in

values from 0 to 1. A CCC value of 0 indicates that most of the error originates from differ-

ences in measurements between operators. As CCC values approach 1, the measurement

differences between the different operators are becoming negligible and more consistent.

Inter-observer agreement was classified as poor (0.00 to 0.20), fair (0.21 to 0.40), moderate

(0.41 to 0.60), good (0.61 to 0.80), excellent (0.81 to 1.00) [139]. CCCs are reported to-

gether with theirs 95% Confidence Interval (CI). To investigate the WPs differences among

glaucoma patients with respect to gender and ocular medications, and between healthy sub-

jects and glaucoma patients, a two-sample t-test for independent data is used. Moreover,

the differences between healthy subjects and glaucoma patients are adjusted for age and

gender fitting multivariable linear regression models. The Pearsons correlation coefficient

r is computed to explore the associations among WPs and age, year of diagnosis and clin-

ical measurements in glaucoma patients. A p-value p < 0.05 was considered statistically

significant. All tests were two-sided. The data analysis was performed with the STATA

statistical package (release 14.0, 2015, Stata Corporation, College Station, Texas, USA).

5.2.3 Results

When considering all individuals included in the study, i.e. healthy individuals and

glaucoma patients, the analysis showed an excellent concordance on PSV (CCC = 0.85;

95% CI 0.77 - 0.93), a good concordance on EDV (CCC = 0.63; 95% CI: 0.49 - 0.78)

and a fair concordance on RI (CCC = 0.33; 95% CI: 0.14 - 0.52). When considering only

glaucoma patients, the analysis showed a good concordance on PSV (CCC = 0.80; 95%

CI: 0.69 - 0.91), a good concordance on EDV (CCC = 0.62; 95% CI: 0.46 - 0.78) and a fair

concordance on RI (CCC = 0.30; 95% CI: 0.09 - 0.52). When considering only healthy

individuals, the analysis showed an excellent concordance on PSV (CCC = 0.99; 95% CI:

0.97 - 1.00), a moderate concordance on EDV (CCC = 0.45; 95% CI: 0.15 - 0.74) and a

moderate concordance on RI (CCC = 0.58; 95% CI: 0.31 - 0.85).
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When compared to male glaucoma patients, female glaucoma patients showed sta-

tistically higher values of the ratio DAD/T (p = 0.002), and statistically lower values of

SEVR (p = 0.031). No statistical difference was found in the remaining WPs when com-

paring glaucoma patients of different gender. Glaucoma patients taking ocular medications

showed significantly higher values of T (p = 0.005) and SEVR (p = 0.002) when com-

pared to glaucoma patients not taking ocular medications. No statistical difference was

found in the remaining WPs when comparing glaucoma patients taking ocular medications

with glaucoma patients not taking ocular medications.

Glaucoma patients age is positively correlated with RI (r = 0.52; p < 0.001) and

negatively correlated with EDV (r = �0.35; p = 0.030). No statistical correlation was

found among the remaining WPs and glaucoma patients age. The years of glaucoma diag-

nosis at the time of the visit is negatively correlated with T (r = �0.41; p = 0.015) and

SEVR (r = �0.36; p = 0.038). No statistical correlation was found among the remain-

ing WPs and glaucoma patients years of diagnosis at the time of the visit. Among the set

of clinical measurements of heart rate (HR), SP, DP, MAP, IOP, systolic ocular perfusion

pressure (SOPP), diastolic ocular perfusion pressure (DOPP) and mean ocular perfusion

pressure (MOPP), HR is the only parameter that showed statistical correlations with some

of the WPs in glaucoma patients: HR is negatively correlated with T (r = �0.65), PSV

time (r = �0.41), SEVR (r = �0.39), � (r = �0.35).

When compared to healthy individual, glaucoma patients showed significantly higher

values of � (p < 0.001) and DAD/T (p < 0.001), and statistically lower values of A

(p = 0.041), Dt (p = 0.008), PSV (p = 0.004) and EDV (p = 0.033), Figure 5.9.

If the comparison is adjusted by gender and age (fitting a multivariable linear regression

model), then, glaucoma patients showed significantly higher values of � (p < 0.001) and

DAD/T (p = 0.002), and significantly lower values of RI (p = 0.002) when compared with

healthy individuals. No statistical difference was found in the other WPs when comparing

glaucoma patients with healthy individuals.
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I

(a) healthy individual (b) glaucoma patient

Fig. 5.9.: Digitalized OA velocity profile of a healthy individual (a) and a glaucoma patient

(b).

5.2.4 Discussion

We investigated whether new approaches to analyzing WPs using computer-aided ma-

nipulation of OA-CDI images could distinguish between healthy subjects and glaucoma

patients. The OA-CDI images manipulation proposed here showed a higher concordance

between PSV raw data and extracted PSV data than on EDV and RI data. Note that the raw

PSV, EDV and RI values were obtained averaging over at least three cardiac cycles; instead

the corresponding parameters extracted via the OA-CDI manipulation process correspond

to just one of those cardiac cycles. Moreover, CDI PSV measurements have been found to

be more reproducible and accurate then EDV and RI measurements [140–142].

There now is strong evidence that glaucoma patients have a vascular contribution

to their disease [143]. We found that glaucoma patients had a statistically significant

higher DAD/T than did healthy subjects. This is interesting because when Oliva and Roz-

tocil [137] examined patients with obliterating atherosclerosis by Doppler ultrasound and

then analyzed the waveform to identify P/L, which is identical to DAD/T here, they found

that P/L identified the severity of the disease and the presence or absence of progression

based on the variability coefficients. We also found that glaucoma patients had a statis-
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tically significant higher area ratio � than did healthy individuals. Of note, � represents

another method to measure the shape of the wave in the systolic portion of the cardiac cycle

similar to that proposed by Oliva and Roztocil. The correlation between DAD/T, vascular

status, and glaucoma could prove to enhance the screening of glaucoma, and potentially

serve as a marker for progression.

It has long been debated whether men or women are at higher risk of glaucoma [144–

146]. We found a statistically significant increase in DAD/T in females when comparing

male and female patients with glaucoma whose average age was 70± 13. It is well known

that age is a risk factor for glaucoma [147]. We found that age correlated positively with RI

and negatively with EDV. These findings suggest that, similar to other vascular beds [148],

the OA is susceptible to the atherosclerotic effects of aging.

Although the correlation with DAD/T, glaucoma, and gender shows very promising

results, there were, however, several limitations to the study design. The difference in mean

age between healthy and glaucoma patients was 46 years. Due to the role of age on general

health and disease process, future studied comparing age-matched healthy and glaucoma

patients might provide closer evaluation between healthy subjects and glaucoma. The total

number of enrolled subjects was 47, with 9 healthy subjects. In future studies, analysis

of a larger population with equal numbers of healthy subjects and glaucoma patient would

provide greater insight into the potential role of DAD/T.
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6. CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis we developed mathematical models to investigate the relevance of mechanical

and vascular factors in the pathophysiology of glaucoma. Briefly,

• We have developed a mathematical model that combines the description of stresses

and strains in the lamina cribrosa with the blood flow in the central retinal vessels and

retinal microcirculation using reduced-order fluid-structure interaction models. We

have validated the model predictions using three different and unrelated experimental

and clinical studies.

• We have derived a novel energy-based technique for coupling partial and ordinary

differential equations in blood flow using operator splitting. We have shown that the

proposed splitting scheme is unconditionally stable independently of the choice of

numerical method and discretization approach in each sub-step. We have numerically

tested its stability and order of convergence in time in three theoretical test cases.

• We have used a previously developed model of the retinal microcirculation to predict

three possible explanations for the increases in venous oxygen saturation observed in

advanced glaucoma patients.

• We have proposed a novel computer-aided extraction process of ophthalmic artery

waveform parameters from CDI images. We have tested the concordance between

clinically measured and extracted parameters, and have identified a set of novel pa-

rameters that are statistically different between healthy subjects and glaucomatous

individuals.

Using this mathematical framework we were able to provide a preliminary answer to

the following open questions in ophthalmology
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Is there a region of compression in the lamina cribrosa? Stress distributions in ocular

tissues cannot be measured directly. The model results show regions of compressive

stresses in the lamina cribrosa, that become more pronounced as IOP is elevated.

The increase in scleral tension due to IOP elevation partially relieves some of the

compression in the lamina.

To confirm the model findings, it would be interesting to extend the lamina cribrosa

model to three-dimensional geometries, that are not necessarily axially symmetric.

What mechanism might explain the influence of IOP elevation on CRA blood veloc-

ity? The model suggests that the decrease in the CRA blood velocity induced by IOP

elevation measured in vivo in humans might be due to the IOP-induced increase in

vascular resistance of the retinal venules. Indeed, the model suggests that regions of

radial compressive stress in the lamina cribrosa cause an increase in the vascular re-

sistance of the CRA; however, this increase is minimal compared to the IOP-induced

increase in resistance of the retinal venules.

To confirm these findings, higher-order time dependent fluid-structure interaction

models for the CRA and CRV are needed. As a first step in this direction, we pro-

posed an energy-based multiscale coupling technique.

Is high translaminar pressure difference (TLpD) a risk factor in glaucoma? The model

predictions suggest that changes in IOP have a stronger effect on retinal hemodynam-

ics than changes in CSFp, even though these changes lead to the same TLpD. This

might be due to the fact that, unlike CSFp, IOP acts directly on the intraocular retinal

venules. Our model also suggests that the CSFp influence on retinal hemodynamics

might be mediated by associated changes in MAP.

Expanding the model to describe the CRV and the retinal venules as collapsible ves-

sels (using a Starling resistor) will help to quantify the effect of IOP and CSFp on

retinal blood flow and confirm the model findings.

Do blood flow alterations occur primary or secondary to glaucomatous damage? The

model results suggest that there might be different explanations for the increased ve-
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nous saturation levels observed among advanced POAG patients and advanced NTG

patients: a decrease in oxygen demand in advanced POAG, and impaired autoregula-

tion in advanced NTG. This finding also suggests that vascular changes might occur

secondary to the loss of retinal ganglion cells in advanced POAG patients, since

those cells would no longer require oxygen, and might occur primary in advanced

NTG patients, suggesting that impaired autoregulation might lead to tissue damage

with subsequent vision loss.

Additional theoretical investigations, ideally coupled with statistical methods and

conducted on a wider set of glaucoma patients, are needed to confirm the model

findings.

Can velocity profiles be used to characterize the disease status in glaucoma? The

computer-aided analysis of OA-CDI images suggests that glaucoma patients have a

statistically significant higher normalized distance between ascending and descend-

ing limb of the wave (DAD/T) than healthy subjects. Moreover, we found a statisti-

cally significant higher DAD/T in females than male glaucoma patients.

In future analyses, DAD/T should be examined in relationship to longitudinal data of

glaucoma patients to investigate the potential to predict severity and progression.

Is it possible to relate clinical measurements to the patient risk of developing glau-

coma? Glaucoma is a multifactorial disease, hence clinical interpretation of flow and

velocity measurements is extremely challenging. Statistical methods are widely used

to estimate correlations between clinical factors and retinal hemodynamics, such as

IOP and CSFp. However, the mechanisms behind these correlations are still elusive.

In this thesis, we have shown that mathematical modeling predictions, used in syn-

ergy with clinical data and statistical methods, help elucidate these mechanisms and

estimate the contribution of each factor, ultimately aiding the future development of

individualized medicine in glaucoma.
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