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And if T have the gift of prophecy and comprehend all mysteries and all knowledge;
if I have all faith so as to move mountains but do not have love, I am nothing.

The New American Bible, 1 Cor 13, 2.
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ABSTRACT

Prada, Daniele. Ph.D., Purdue University, December 2016. A Hybridizable Discontin-
uous Galerkin Method for Nonlinear Porous Media Viscoelasticity with Applications
in Ophthalmology. Major Professor: Giovanna Guidoboni.

The interplay between biomechanics and blood perfusion in the optic nerve head
(ONH) has a critical role in ocular pathologies, especially glaucomatous optic neu-
ropathy. Elucidating the complex interactions of ONH perfusion and tissue structure
in health and disease using current imaging methodologies is difficult, and mathe-
matical modeling provides an approach to address these limitations.

The biophysical phenomena governing the ONH physiology occur at different
scales in time and space and porous media theory provides an ideal framework to
model them. We critically review fundamentals of porous media theory, paying par-
ticular attention to the assumptions leading to a continuum biphasic model for the
phenomenological description of fluid flow through biological tissues exhibiting vis-
coelastic behavior. The resulting system of equations is solved via a numerical method
based on a novel hybridizable discontinuous Galerkin finite element discretization that
allows accurate approximations of stresses and discharge velocities, in addition to solid
displacement and fluid pressure. The model is used to theoretically investigate the
influence of tissue viscoelasticity on the blood perfusion of the lamina cribrosa in the
ONH. Our results suggest that changes in viscoelastic properties of the lamina may
compromise tissue perfusion in response to sudden variations of intraocular pressure,

possibly leading to optic disc hemorrhages.



1. INTRODUCTION

Glaucoma is an optic neuropathy characterized by progressive death of retinal gan-
glion cells (RGCs) and irreversible vision loss. Glaucoma is the second leading cause
of blindness world-wide [2], and yet its etiology and treatment remain unclear. The
main modifiable risk factor in glaucoma patients is elevated intraocular pressure
(IOP) [3-7]; however, a high percentage of individuals with elevated IOP (a con-
dition called ocular hypertension) never develop glaucoma [8], and many glaucoma
patients continue to experience disease progression despite lowering [IOP to target
levels or have no history of elevated IOP - a condition called normal tension glau-
coma [9]. Thus, it has been hypothesized that different individuals may have different
susceptibilities to glaucomatous damage for the same IOP level. The identification of
the factors determining IOP susceptibility is one of the main open questions in the
field [10].

In glaucoma the location of damage to nerve cells is hypothesized to be predomi-
nantly in the ONH (see Figure 1.1) [11]. Elevated IOP may induce mechanical damage
on the RGCs (mechanical hypothesis) and/or alterations in ocular circulation (hemo-
dynamical hypothesis), compromising the functionality of the RGCs and their axons
and progressively leading to vision loss. It is reasonable to expect that mechanical
deformations of a living tissue would affect blood flow within the tissue. On the other
hand, alterations in blood flow might lead to structural changes in the tissue that
would alter its mechanical properties.

Elucidating the complex interactions of ONH blood perfusion and tissue structure
in health and disease using current imaging methodologies is difficult, and mathe-
matical modeling provides an approach to address these limitations. One of the main
difficulties lies in the fact that the biophysical phenomena governing the ONH phys-

iology occur at different scales in time and space. For example, the ocular perfusion



Superficial Prelaminar Laminar Retrolaminar
nerve fiber layer region region region

OPTIC NERVE Posterior

ciliary
arteries

Central
___retinal
artery
and vein

Retina Choroid Sclera

Figure 1.1. Anatomy and vascular supply of the optic nerve head (ONH).
The ONH includes the superficial nerve fiber layer, the prelaminar region,
the laminar region, and the retrolaminar region [1].
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Figure 1.2. Zoom of the laminar region [1].

pressure (OPP), which is the pressure available to drive blood through the intraoc-
ular vasculature [12], undergoes significant changes within one cardiac cycle (= 1s),
whereas the biomechanically induced remodeling of the collagen network in the ONH
takes several months or years. Different space scales are also involved: blood perfu-
sion of the lamina cribrosa in the ONH ranges over at least 3 orders of magnitude as
we progress from the capillaries running within the laminar beams (~ 1 x 107%m) to
the dimensions of the optic nerve canal (~ 1 x 1073 m) [1].

Porous media theory [13] provides an ideal framework to model materials with
several components characterized by a variety of spatial scales. Within this theory,
the complex composition and geometrical arrangement of the components are ho-
mogenized, so that physical quantities, such as velocity, stress, and fluid pressure are
averages of the individual molecular counterparts. We use this approach to describe

the blood perfusion of the lamina cribrosa in the ONH, whose complex structure is



depicted in Figure 1.2. The lamina is treated as a poro-viscoelastic material, where
blood vessels are viewed as pores in a solid matrix. This model provides a theoretical
description of the coupling between lamina biomechanics and hemodynamics.

There is a huge literature about numerical methods for solving poro-elastic mod-
els, whereas less works focus on the poro-viscoelastic case. Typically, the Backward
Euler method has been adopted for time discretization, whereas various techniques,
including finite difference schemes [14] and finite element methods [15], have been
proposed for spatial discretization. Within the context of finite element methods,
two main strategies have been investigated. For a fluid-solid mixture under the as-
sumption of full saturation, the first strategy consists in formulating the problem in
terms of the displacement of the solid phase u and the fluid pressure p, which are
then approximated using the Taylor-Hood finite element space [16]. This approach
is also called a two-field formulation. The second strategy consists in formulating
the problem in terms of the original pair (u,p), as well as the total stress tensor a
and the discharge velocity v, which are usually variables of primary interest, espe-
cially within the context of biomechanical applications. This approach is also called
a four-field formulation. In the four-field formulation, the Taylor-Hood finite element
space is still used to approximate u and p, whereas the Raviart-Thomas finite element
space [16] is chosen to approximate the pair (g, v). Yet another finite element ap-
proach is proposed by Phillips and Wheeler [17,18], where v and p are approximated
by Raviart-Thomas elements, and the displacement u by a family of discontinuous
Galerkin methods.

In this work, we adopt the Backward Euler method for time discretization and
the four-field finite element approach for spatial discretization. We extend the four-
field approach using hybridizable discontinuous Galerkin (HDG) methods [19], thus
approximating all the variables at optimal convergence with respect to the choice of
approximating spaces. HDG methods require less degrees of freedom in the solution of

the global system than other discontinuous Galerkin methods of comparable accuracy.



This thesis is organized as follows. In Chapter 2, we critically review fundamentals
of porous media theory. We pay particular attention to the assumptions leading to a
continuum biphasic model for the phenomenological description of fluid flow through
biological tissues exhibiting viscoelastic behavior. In Chapter 3, we present the nu-
merical method for the solution of the resulting system of equations. In Chapter 4,
the model discussed in the two previous chapters is used to theoretically investigate
the influence of tissue viscoelasticity on the perfusion of the lamina cribrosa in the
ONH. Our results suggest that changes in viscoelastic properties of the lamina may
compromise tissue perfusion in response to sudden variations of IOP, possibly leading
to disc hemorrhages. Conclusions are outlined in Chapter 5. In Appendix A, we
show how the constitutive equation for the total stress tensor g can be formulated
in mixed form in the four-field method. In Appendix B, the poro-viscoelastic model
considered in this thesis is rewritten in terms of dimensionless variables. Error tables

for the validation tests discussed in Chapter 3 are given in Appendix C.



2. ELEMENTS OF POROUS MEDIA THEORY

In many areas of engineering, such as chemical engineering, material science, soil
mechanics, as well as biomechanics, materials can consist of several solid components.
These solid components can contain closed and open pores, such as ceramics and soils.
The pores can be filled with fluids, which may interact with the solid components.
Modeling these interactions is a delicate subject.

Whenever the exact description of the location of the pores and the thermody-
namics of the components down to the microscale is not accessible, or even redundant,
the heterogeneous composition of the mixture can be described through a homoge-
nization approach. This approach led to the theory of porous media. There is plenty
of literature about porous media theory and its application to different areas of engi-
neering. In this chapter, we will provide few fundamental concepts that will be used
throughout this thesis. The main references used for this chapter are the works of de

Boer [13], Coussy [20], Whitaker [21], and Markert [22].

2.1 The Averaging Approach

In the theory of porous media, an arbitrary volume element dv is associated with
every point in space identified by the position vector x with respect to a Cartesian
reference frame whose origin is denoted by 0 and the directions of the orthogonal
axes are denoted by ey, e; and e3. Such a volume can be thought of as a statistically
representative of the material in the neighborhood of x. In general, its characteristic
dimension should be much smaller than the characteristic dimension of the problem
being modeled, and larger than its largest micro-structural dimension [23]. Unlike

classical continuum mechanics, where a volume element is assumed to consist of one



Classical continuum mechanics

€ €1

Porous media theory

€ €

Figure 2.1. Comparison between arbitrary volume elements dv in classical
continuum mechanics (top) and in the theory of porous media (bottom).
In classical continuum mechanics, dv is assumed to be made of one mate-
rial only, whereas, in the theory of porous media, dv has its own complex
micro-structure. In the bottom figure, dv is assumed to consist of a solid
and a fluid constituents.

material only, in the theory of porous media dv is not uniform, in general, consisting

of various materials with different properties and shapes (see Figure 2.1).



The geometrical characterization of the pore structure and the exact location of
the individual components of the body are disregarded in the averaging approach:
the components are spread over the space that is shaped by the porous solid, so that
each spatial point is simultaneously occupied by all the constituents. In the following,
the terms control space or domain will be used to refer to the space shaped by the
porous solid, interchangeably.

For a fixed point in space x, homogenized, or averaged, quantities can be obtained
by integrating a microscopic quantity over the region of an elementary volume dv
centered at x. Let r describe the position of a constituent within dv, x the position
vector at the center of dv (see Figure 2.1), and t the time. First, we introduce an

indicator function y, for each constituent «

1 forr € dv,,
Xa = Xa(r7 t) = ) 5 7é «,
0 forr € dvg

where the partial volume occupied by constituent «, dv,, is given by

dua (3, 1) — / Yolr, 1) dr.
dv

The volume fraction n, is defined as the ratio between the partial volume dv, and
the total volume dv
dv,, 1

na(x, t) = % = % . Xa<r,t) dr. (21)

In this work, we will assume that the control space shaped by a porous medium
is completely filled by its x constituents. This saturation constraint can be expressed

as
> na=1. (2.2)
a=1

The indicator function y,, allows to derive average macroscopic quantities from mi-
croscopic quantities. For example, let the microscopic true density of the constituent

materials be denoted by

par = Par(T,1).



The corresponding macroscopic field is

1
Par(X,t) = %/d Par (T, t)Xa(r, ) dr. (2.3)

The quantity p,r represents the real density of a constituent a averaged over the real

volume it occupies inside dv. Another important quantity is

palt) = o / perr (£, £)xa(r, 1) dr. (2.4)

which is called partial density and represents the averaged reduced density of a con-
stituent after being smeared over the volume element dv. The macroscopic real and

partial densities, denoted by p,r and p,, respectively, are related by

Pa(X, 1) = na(X, 1) par(X,t). (2.5)

The idea of deriving macroscopic quantities from microscopic quantities is some-
what similar to the continuum hypothesis in continuum mechanics. In the continuum
hypothesis we assume that we can replace the discrete particles by a continuous dis-
tribution of matter, so that kinematic quantities such as acceleration, velocity and
displacement are the averages of the individual molecular counterparts. Similarly, in
porous media theory, we introduce distributed masses and forces that are function
of the position vector x and, due to the volume fraction concept, can be interpreted
as the integral average values of the real quantities (see equations (2.3), (2.4) and

Figure 2.2).

2.2 Mixture Kinematics and Deformation

Kinematics in porous media theory is based on two fundamental assumptions:

Assumption 1. Each spatial point of the actual placement is simultaneously occu-
pied by material points of all x constituents at time t. The material points

proceed from different reference positions X, at time ¢t = .

Assumption 2. Each constituent is assigned an independent state of motion.
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Component 1: blood motion, strain, stress, etc.

Component 1: smeared blood

volume averaging

Statistical
averaged

Capillaries filled by blood and values

surrounding tissue volume averaging

Component 2: smeared tissue

Component 2: tissue motion, strain, stress, etc.

Figure 2.2. Illustration of the statistical distribution of a binary porous
medium consisting of living tissue and blood.
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To account for an independent state of motion for each constituent, we need to in-
troduce a function ¢, from its reference configuration By, to the actual placement
B, sometimes called a deformation map. The position x at time t is given by the

continuous map

Pa- BOa X [OaT) — B
(2.6)
(X, t) = x = pa(Xq,t),

with By, C R*, B C R3. In the following, ¢, (X, ) will also be denoted by x(X,, t).
The position vector x is an element of the control space of the porous solid at time t.
If we consider a porous medium made by two phases, precisely one solid phase and

one fluid phase, Assumption 1 implies

X = QOS(XSat) = SOF(XFat)a

as depicted in Figure 2.3. In the last equation, the current position is treated as a
function of the original position. This is called a Lagrangian or material description.
Any other field is also treated as a function of the original position. In general, it is
not necessary to require that the initial configurations of the solid and fluid phases
be the same (see Figure 2.3). If there is no relative motion among the components
«, than all ¢, are the same and all By, are the same. However, if there is relative
motion among the components of the mixture, then ¢, and By, will be different for
each a.

On physical grounds, we expect that matter cannot be destroyed and matter does
not interpenetrate. A deformation map will be consistent with these conditions if it
is one-to-one and the Jacobian of the mapping remains nonzero. The Jacobian of the

mapping is the determinant of the tensor

Fo: Boa x [0,T) = R* x R?
0x

Xaat Fa: afa = G~
(Xa,t) = Lo =Voga = 53—

which is called deformation gradient. It describes the mapping from reference line

elements to deformed line elements. The operator V, denotes partial differentiation
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Figure 2.3. Representation of the motion of a solid phase and a fluid phase
in a porous medium.
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with respect to the coordinates X, in the reference configuration of constituent a.

Its components are given by

Pl ox!
o aX

for I,J € {1,2,3}.
Our physical constraints demand that
Jo = det F, # 0, (2.7)

at each position x = ¢,(X,,t) and time ¢. Even more, we require J, > 0, which
ensures that material lines preserve their relative orientations: a constituent cannot
deform into its mirror image. If equation (2.7) is satisfied, then a (local) inverse
mapping can be constructed that gives the reference position of constituent o as a

function of the current position

¢t B x[0,T) = By
(2.8)
(x,1) — X, = o (x,1).
In equation (2.8), the current position is the independent variable and this is called
Eulerian or spatial description. In the Eulerian description, we observe the changes
over time at a fixed point in the physical space. In the following, ¢ '(x,t) will also
be denoted by X, (x,1).

The change in position of a material point of a constituent o between configura-

tions By, and B is given by the displacement vector field
U, =U,(X,,t) =x(Xq, ) — X,. (2.9)

In equation (2.9), the displacement is treated as a function of the Lagrangian coordi-

nates X,. It can also be expressed from the Eulerian viewpoint as follows
u, = u,(x,t) =x — X,(x,1). (2.10)

The velocity of a material point of a constituent « in the Lagrangian representation
is given by

0U, (X, t 0(x(X,,t) — X,
Va(Xaat) = (at ) = ( ( at) )
Xa

0x(Xq, t)
ot

Xa

. (211)
Xa
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where X, is held fixed during differentiation. In the Eulerian framework, the velocity
must be defined as a function of a specific fixed point in space. Hence, the Eulerian
velocity must be calculated by finding the material coordinate of component o that

occupies the spatial location x at time ¢, namely

Xo = @;1(X> t)a
so that
Ju,(x,t 0
valx, t) = QB OX] e 0),0),
ot x. Otlx,
The acceleration in the Lagrangian representation is given by
OV (Xy,t 0*U,(X,,t 0*x(X,,t
AyX, t) = NaXat)) - TUuXat))_ Ix(Xal))
ot X., ot? X, ot? X..

In the Eulerian framework, the velocity of a constituent « at a fixed point in space can
change either because: (i) the material velocity changes with time or (ii) the material

point is carried past the fixed point in space. Hence, the Eulerian acceleration is

given by
t X, t),t
au(x,1) = ov(x,t) _ ov(x(Xy, t),t) .
ot |x, ot X,
After application of the chain rule, the above equation becomes
Ova
an(x,t) = % +Va - VVa. (2.12)

The symbol V denotes differentiation with respect to x, as it clearly appears from
the component form . .

al (x,t) = % + vi%

We use the Einstein summation convention according to which any index that appears
twice represents a sum over all values of that index. The first term dv, /0t corresponds
to mechanism (i) mentioned above, whereas the second term v, - Vv, corresponds

to mechanism (ii). The quantity Vv, is called the spatial velocity gradient and is

defined as
Lo: Bx[0,T) - R*x R®

(x,1) — Lo = Vva(x,1).
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The argument used to determine the acceleration can be used to define the rate of
change of any property associated with the continuum. As the individual constituents
follow, in general, different motions, different rates of change must be introduced. In
the Lagrangian framework, for a scalar field I'(X,,t) = v(x(Xq,t),t) the material
time derivative, following the motion of constituent «, is

e = g—g- (2.13)

In the Eulerian framework, using again the chain rule

oy Oy 0% 0Oy 0 0
/ K

_ 77 — 2! L =27 - V. 2.14
o= "ok ot ~at " gek ot Ve VT (2:14)
Observe that the material derivative satisfies the usual product and chain rules for
derivatives. From equation (2.11), the material velocity gradient of the constituent «

is given by

1J
(Ba)s = VaVa, or (Fy, = 2La” _ 2(

(2.15)

ox' (X4, 1)\ OV
ot Ot

ox; - oX)

The spatial velocity gradient is connected to the material velocity gradient by
(Fa)o = LoFa, (2.16)

as it follows from equation (2.15) and the chain rule

, VD VI(X,(x,t)) 0z Ol 9K

IJ
(Fa™)a = oxJ Oxk 0XJ  0xKoXJ]

«

The spatial velocity gradient L, can be decomposed into the sum of its symmetric

part D, and its skew-symmetric part W,

La = Qa +&o¢>

with

1 1
azé(La +£§)7 Eazi(éa_ég).

>

In order to quantify the deformation of a porous solid, we use line elements in the
reference and actual placements (see Figure 2.4). Let dX, be a line element connect-

ing two material points in the reference configuration By,, and dx the corresponding



€

Pa

an dx

Xa + dXa X(Xo + dXo. 1)

B(Ja
x(Xq, t)
€3

\

Figure 2.4. The reference configuration By, is mapped to the current
configuration B by the mapping ¢, which carries the material point X, €
By to the point x(X,,t) € B and the material point X, +dX,, to x(X, +
dX,,t). The undeformed line element dX,, is carried to the deformed line
element dx.

16
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line element in the actual configuration. Assuming that the norm of dX, is very

small, from Taylor’s theorem we get
dx = F,dX,. (2.17)
Using the Kronecker delta §77 defined as

L it 1 =J,

0 if I # J,
a measure of whether the line element has changed in length is given by
dx - dx — dX, - dX, = FFaX FEdx) —daxFdxX
= (PPN — 5155 axlax ] 218
= (€3 = o")dXd X,
where the tensor (', is called the right Cauchy-Green deformation tensor and is
defined as

Cu: Boa X [0,T) — R* x R?
- (2.19)
(X, t) — Co = F1(Xa, 1) Fa(Xa, 1).

Its components represent the square of the lengths of the deformed material line
elements relative to the undeformed ones, i.e., from the Lagrangian viewpoint. If the

length of the line element does not change, then C1/ — §77 = 0 for all I,.J. To keep

track of this, the Green-Lagrange strain tensor is introduced

E,: Boo x [0,T) — R® x R?
- ] (2.20)
(X, ) = Bo = 5(Ca(Xa:t) = 1),

where I, is the identity tensor defined on By, x [0,T). From equation (2.9), the

deformed position x can be written as
x =X, + U,.
Using Taylor’s theorem as in (2.17), we get

dx ~ Vo(Xo + Uy) dX, = (L + V,U,) dX,,
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which, compared to (2.17), provides

F,=1+V,U,. (2.21)
By (2.19), (2.20) and (2.21), the Green-Lagrange strain tensor becomes
E.=5(Ca=1) = 5 (EEa— ]
= %((i +VaUa) (L+V,U,) — 1) (2.22)
= S (VIUL 4+ VU + (VIUL) (VaUL)).
From the Eulerian viewpoint, using Taylor’s theorem as before, we have
dX, =~ H,dx,
where the tensor g o 1s defined as
H,: Bx[0,T) - R®x R’
(x,1) — H, = VX, (x,t) = F ' (x,1).
Thus, the Eulerian equivalent of equation (2.18) is
dx - dx — dX, - dX, = de®da®™ — H¥ do' HX dz’
= (K187 — HETHETYdo da” (2.23)

= (6" — cMydx'dx’
where the tensor C,, is called the Cauchy deformation tensor and is the defined as
Co: Bx[0,T) - R* xR’
(x,t) = Ca=HIH, = FTF" = (EED) ™
The components of C,, represent the square of lengths of the undeformed line elements
relative to the deformed lengths, i.e. from the Eulerian viewpoint. The corresponding
strain tensor is called the Almansi strain tensor and is defined as
Ay Bx[0,T) = R® x R?
(f) = Ae= (T Calx),
where Z is the identity tensor defined on B x [0, 7). The components of A, represent

the change in lengths of material line elements from the Eulerian viewpoint.
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Incompressible grain
(microscopic domain of the FsRmicro) # L
real solid phase)

=

XSR(micro)
€3

XS R(micro)

Macroscopic volume element Xs

Actual placement

Reference placement e

€

Figure 2.5. Illustration of motivation for a multiplicative decomposition of
the deformation gradient of the solid phase. The position vectors X and
x represent the centroids of the volume elements in the reference and the
actual placements, respectively, whereas Xgg(micro) and Xgr(micro) denote
all the possible points in the volume elements.

2.2.1 Describing Material Compressibility and Incompressibility in De-

formable Porous Media

In conclusion of this section, we will spend few words about how to describe the
compressibility and incompressibility of materials within porous media theory. This is
particularly important when it comes to constitutive modeling, as it will be described
in later sections.

For example, let us consider a macroscopic volume element filled with a granular
solid phase, and a gas, as depicted in Figure 2.5. The solid grains are supposed to

be incompressible, which means that a hydrostatic stress state in the grains does
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not change their volume. Although the grains are incompressible, forces acting on
the porous medium can cause a change of the pore structure, leading to an overall
change in volume of the control space (see Figure 2.5). Hence, the incompressibility
condition cannot be expressed by the deformation gradient Fg of the partial solid
constituent, which is a macroscopic quantity associated with the smeared solid phase.
Instead, the compressibility condition must be expressed by physical quantities at the
microscale. In principle, one could introduce a function pgg describing the motion of

the real solid material at the microscale

PSR- BOS X [07T) — B
(2.24)

(X5 R(micro)s t) = X5 R(micro) = PSR (micro) (XS R(micro), 1),

where Xgr(micro) and Xgpr(micro) are the position vectors of the real solid material at
the level of the microscale in the reference and the actual placements, respectively
(see Figure 2.5). The incompressibility condition could be formulated by requiring
the determinant Jsgr(micro) Of the deformation gradient g SR(micro) t0 be 1. However,
the motion function ¢ggr(micro) is Unknown and cannot be determined by the porous
media approach, which works with microscopic averaged quantities. Thus, it is nec-
essary to transfer the microscopic deformation behavior of the real solid phase to the
macroscale. To this end, the deformation gradient Fg is decomposed into the product
of two tensors

Fs=FsnEsr,

where F'gp is the part reflecting the microscopic deformations of the real solid material
at the macroscale, whereas I'sy describes the remaining part of the deformation of
the porous medium, namely the change of the pores in size and shape.

Within porous media theory, the multiplicative decomposition

Fo = FonEag, (2.25)

is introduced for each constituent a.. In the case of homogeneous deformations, this

decomposition leads to an intermediate state (see Figure (2.6)).
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Intermediate placement

Reference placement
=) Actual placement

€1

Figure 2.6. Representation of the multiplicative decomposition of the
deformation gradient for homogeneous deformations.
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From continuum mechanics [24], the relationship between the volume elements in
the reference and the actual placements for constituent «a (dvg, and dv, respectively)
is given by

dv = J,dvy,. (2.26)

Using the multiplicative decomposition (2.25), we get
dv = J(XN‘]OCRdUOOH

where Jon = det Fon, Jor = det Fug. Then, a differential volume di,, at a material
point X, of a local intermediate placement is related to the volume elements in the

reference placement and the actual placement by
dv,, = Jar dvga, dv = Jon dig,. (2.27)

We interpreted F'or as that part of the deformation gradient that includes the whole
deformation of the real material of the constituent «. Thus, its determinant must
represent the volume strain of the real material. If the constituent « is incompressible,

it means that do, = dvy,. Equation (2.27) hence implies

Jur = 1. (2.28)

2.3 Balance Equations and Entropy Inequality

According to Truesdell [25], each constituent « can be described by individual
balance equations accounting for interactions between them by additional production
terms. The balance equations of the whole mixture are obtained as the sum of the
balance equations of each constituent and must formally become the corresponding
balance equations of a one-component body.

Let fo: B — R and f,: B — R3 be volume-specific scalar- and vector-valued

densities of a physical quantity to be balanced associated with constituent «. Follow-
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ing Truesdell [25] and classical continuum mechanics of a one-component body, the

general balance equations of constituent « read:

(/ fadv> :/ gads+/hadv+/fadu, (2.29)

Q o o0 Q Q

(/ fadv> :/ gadS+/hadv+/fadv, (2.30)
Q a o0 Q Q

e (-)!, denotes the material derivative following the motion of constituent «;

where:

Q) is an arbitrary volume in the actual configuration B;

go and g, are the surface densities per unit current area representing the bound-

ary fluxes of the physical quantity over the surface 0€2;

h. and h, are volume densities describing the external source of the physical

quantity;

fa and £, represent the productions of the physical quantity due to the coupling

of constituent o with the other constituents.

Balance relations of mass, linear momentum, angular momentum, and energy have
the same form as equations (2.29) and (2.30) for appropriate choices of the partial
(i.e. smeared) quantities f,, fa, da, 8as Pas Da, fa, and £,.

From (2.29) and (2.30), it follows that, in order to formulate balance relations in
local (differential) form, we need to take the time derivative of integrals over material
volumes in the reference (undeformed) and the actual (deformed) configurations. Let

I' be a scalar function defined in the reference configuration By,
[': Boo x[0,T7) - R
(X, t) —I'=T(X,,1t),
and )y be any volume inside By,. The material derivative of the integral of I' over

Q, following the motion of constituent «, is

(/ deOa) .
Qo a
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Since the undeformed volume 2 is fixed, we can take the time derivative under the

integral, and so, from equation (2.13), it follows

/
r
(/ deoa) = / (F)/a dUOa = a—dv()a.
Qo a Qo Qo ot

Now take a function v defined on the actual configuration

v: Bx[0,T)— R (2.31)

(x,1) — v =v(x,1).

and consider the material derivative of its integral over a volume 2 C B

</ny dv)la. (2.32)

In order to take the time derivative inside the integral, we have to take into account
that both v and the domain of integration 2 depend on time. In such situations, the

Reynolds transport theorem is used [24]:

Theorem 2.3.1 (Reynolds transport theorem) Given a function v defined on
the actual configuration, the material derivative of its integral over a volume €2 C B,

following the motion of constituent o, can be rewritten as
!/
(/ v dv) = /((7); +V - v,) dv. (2.33)
Q o Q
Proof This theorem proceeds as follows:

1. the material volume (2 is mapped to the equivalent volume €y, in the reference

configuration for constituent «;

2. due to the previous step, the domain of integration €2y, is now fixed and the

time derivative is taken inside the integral;

3. the integral is transformed back to the material volume (2.

Observe that steps 1-3 are equivalent to taking the derivative under the integral
in (2.32) and applying it to the volume element dv as well. In fact, with the help of
the following transport theorem [20]

(dv)., =V - v dv, (2.34)
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and by the product rule for derivatives, we get

(/97 dv)la = /Q(de); = /ﬂ((v)’a dv 4+ y(dv).) = /S)((V);JFVV-VQ)dv,

which coincides with equation (2.32). In the following, we will be using this second

approach to take the material derivative of integrals over material volumes. 0

2.3.1 Balance of Mass

In accordance with de Boer [13], we assume that, for each constituent «, the rate
of change of its mass M, equals a supply term fQ Pa dv, possibly caused by the other
constituents, where p, describes mass exchange between the constituents and €2 is any

material volume in the space shaped by the porous solid in the actual configuration.

(M), = ( /Q o dv); - /Q P do. (2.35)

The mass supply term p,, will have to be described by a constitutive law satisfying the

Thus, we get

saturation constraint (2.2) and the Second Law of Thermodynamics, i.e. the entropy

inequality. Comparing (2.29) and (2.35), it appears that we made the following choices
fo = Pas o =0, he =0, fo = Pa- (2.36)

In particular, this means that we are neglecting boundary mass fluxes (g, = 0) and
there is neither injection nor sequestration of mass from the outside (h, = 0). These
assumptions allow to model a wide range of phenomena. For example, in order to
model transport of solutes in standard continuum mechanics, boundary fluxes of mass
must be included in the balance of mass, leading to Fick’s law [23]. In porous media
theory, instead, the transport of solutes is accounted for by appropriate constitutive
laws for the interaction terms in the balance of linear momentum, rather than by

including boundary fluxes in the balance of mass [26].
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In equation (2.35), the material time derivative can be taken under the integral
provided that we use the transport theorem (2.34) to account for the fact that the

integration volume is not fixed. Hence:

</Q Pa dv>; = /Q(pa dv), = /Q ((Pa)ndv + pa(dv)y,)

= [ ((pa)s + paV Vo) dv = | podo.
/. /

Q

The equation must be satisfied for any arbitrary choice of €2, which means that the

integrand is zero and we have the Eulerian expression for the balance of mass

. 0pa _
(Po)e + PV * Vo = fa | or T4V (paVa) = fal (2.37)

If all mass exchanges are excluded, relation (2.35) becomes

(/ﬂpadv);zfﬂmadv);:o,

whose local form is
(padv)l, =0 or padv = constant = p°* dvg,.

The quantities dvg, and p?* represent the volume element and the partial density
of the constituent a (subscript index) in the reference placement at the position
X, (superscript index), respectively. From equation (2.26), we get the Lagrangian

expression for the conservation of mass

Pada dvge = pgo‘ dvge, Pa = gf‘JOjl. (2.38)

2.3.2 Balance of Linear Momentum

The balance equation of linear momentum states that the material derivative with
respect to constituent « of the linear momentum P, is equal to the resultant force
Fa

(Po)y = Fa- (2.39)
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The linear momentum P, for the constituent « is defined by

Pa:/pavadv.
Q

Applying the product rule for the material derivative and the transport theorem (2.34)

(R%=<AMMMO;=AWJMM;

= /(pava):x dv + pava(dv);
Q

gives

= [ (aivat a3l puva¥ V) do
Q

= /Q(paaa + ((Pa)o + PaV - Va) Va ) dv,

where a, = (v,)/, is the Eulerian acceleration (2.12). By the balance of mass (2.37),

the above expression becomes

(P.). = / (Padie + fava) du. (2.40)
Q
The resultant force F, can be due to:

e Faternal forces acting on the exposed surface of the constituent o: these forces
are due to contact between bodies and are composed by a tangential friction
and a normal pressure. If t, is the force per unit area of the deformed surface
0B acting on constituent «, the corresponding resultant force on the volume €2

is

FS = / to dS.
oN

e Faternal body forces acting throughout the region under consideration: body
forces include gravity, electromagnetic forces and the fictitious forces that result
from writing the balance equations in a rotating frame. A body force is usually
expressed as a force density per unit mass, b,, or a force density per unit
volume, p,b,. Hence, the resultant external body force acting on constituent
« is

]-"X:/pabadv.
Q
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e Body forces coming from the interaction with the other constituents: if p is the

interaction force per unit volume, the corresponding resultant force on volume

Q is
Fl = / Pa dv.
Q

The resultant force F, is then

]:a:]:g+-7:o‘j+fa[:/ tadS+/pabadv+/13adv. (2.41)
0 Q Q

Thus, the balance of linear momentum has the same structure as equation (2.30),

with
fa = PaVa, 8o = taa ha = pabom f‘a = Pa-

By Cauchy’s theorem [24]
t! =T nt, (2.42)

where T/ is called the Cauchy stress tensor and represents the force per unit area
of the actual (deformed) configuration decomposed with respect to the basis vectors
associated with the Eulerian coordinate x. Vector n is the unit normal at the sur-
face of the deformed volume 2. The components of the stress tensor could also be
represented in the basis vectors associated with the Lagrangian coordinates X, in
the deformed position, yielding the so called body stress tensor. Yet other alternative
forms of the stress tensor are formed by considering the force per unit area in the
reference (undeformed) configuration. This leads to the definition of the first and
second Piola-Kirchhoff stress tensors, respectively [24].

By equations (2.39), (2.40), (2.41), (2.42), and the divergence theorem [24], we

get the balance equation for the linear momentum in local form

I

0T
ada ~o¢ a — — aba ~o¢7 2.43
padat+ faVa = 57 + paba + D (2.43)

where T! is the Ith row of the Cauchy stress tensor. Observe that, in the last

equation, the divergence operator is applied to T, row wise. In the next section, we
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will show that T, is symmetric for non polar materials. Thus, in equation (2.43),
the divergence operator could also be applied to T, column wise without altering the

result.

2.3.3 Balance of Angular Momentum

The balance of angular momentum states that the material time derivative of the
angular momentum H? about a fixed point z is equal to the resultant torque L%
about the point z

(HZ), = L7, (2.44)

The total angular momentum of the deformed volume €2 about the point z is assumed

to be given by
H? = /(x —Z) X P Ve du. (2.45)
Q

The resultant torque £% is assumed to be due to:

e surface traction exerting a net torque on the body about the point z
L£%% = / (x — z) X todS; (2.46)
o9
e torques due to body forces
L=V = / (x — 2) X pabg dv, (2.47)
Q
e torques due to linear momentum coupling terms p,,

L=V = /(x —2) X Do du. (2.48)
Q

Thus, the balance of angular momentum (2.44) has the same structure as equa-

tion (2.30) with:

f,=(xX—12) X paVa, 8o = (X —2) X tg, (2.49)

ha = (X — 2) X paba, = (x — 2) X Pa. (2.50)
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Equations (2.49)—(2.50) are valid only for non-polar materials. Polar materials re-
spond to spin inertia, as well as surface and body torques. The body of work that
includes these effects is called Cosserat theory or the theory of micro-polar materi-
als [27]. Tt encompasses anisotropic fluids, liquid crystals with rigid molecules, rigid
suspensions, magnetic fluids, clouds with dust, muddy fluids, biological fluids, animal
blood with rigid cells, chopped fiber composites, bones, concrete with sand. For these

materials, equations (2.49), (2.50) become:

f, = (x—2) X paVa + PaBOaWa, g, = (x —2z) X t, + M,, (2.51)

h, = (x — 2) X puba + paca, f, = (x — 2) X Py + Mg, (2.52)
where:

e O, and w, are the partial tensor of inertia and angular velocity about the axis

of rotation;
e M, is a surface torque;
e c, is a body torque per unit mass;

e m, is an angular momentum coupling due to the interaction with the other

constituents.

Considering non-polar materials, from equations (2.44)—(2.48), it follows that

(H2)! = (/ (X — 2) X paVa dv) = L% =L 4 L%V + EZ"7
Q

[0}

:/ (x—z)xtadS—F/(x—z)x(paba+f)a)dv.
o9 0

The vector z is a constant so it can be taken outside all integrals to yield

/
(/xxpavadv) —/ thadS—/Xx(paba—l—f)a)dv
Q o 80 Q
/
=z X {(/pavadv) —/ tadS—/(pabaqu)a)dv}
Q o a0 Q
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The term in square brackets is zero from the linear momentum balance in integral

form (2.44) and hence

/
(/xxpavadv) —/ xxtadS—/xx(paba—i-f)a)dv:O. (2.53)
Q a Py Q

By applying the product rule for the material derivative and the transport theo-

rem (2.34), we have

/
(/xxpavadv> :/(Xxpavadv)’a
Q o Jo

- /((x X PaVa ) dv + (X X pava)(dv)l,)
Q

= /(pava X Vo + X X (paVa)h + X X pa(V - Va)va) dv.
Q

By the definition of vector product v, x v, = 0, so

(/ X X PaVa dv) = /(X X (PaVa)y + X X pa(V - Vo) Ve ) dv
Q Q

«

= /Q(xx ((Pa)ayVa + Pada) + X X pa(V - Vo) Ve ) dv
= [ %5 (a+ ()it 007 va) ) v )

Using the balance of mass (2.37), we obtain

/
(/ X X PaVa dv) = / X X (pada + PaVea) dv. (2.54)
Q o Q

Now let us focus on the surface integral in equation (2.53). Let ey, for I,J, K €
{1,2, 3}, denote the Levi-Civita symbol, whose components are defined as

(
0  when any two indices are equal;

€ryk = § +1 when I, J, K is an even permutation of 1,2, 3; (2.55)

—1 when I, J, K is an odd permutation of 1,2, 3.
\

Using ejyk, the I-th component of the cross product of x and t,, can be expressed as

[x X to]r = ergr 2’ tX,
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and, by Cauchy’s theorem (2.42)

X X t,|r = ek JZJ TLKTLL.
«

Introducing the tensor A = e; i 7 TOfK, we can then write

/ X X to]; dS = / A pLqs.
o0 oN

By the divergence theorem [24]

aALI
LI L _
mA n dS—/Q Ol dv.

Unfolding the definition of ALY and denoting by TZ the Lth row of the Cauchy stress

LK
tensor 1%, we get

aALl

to)rdS = d
/ag[x X bl o Ozt §
aTLK
elJK—T +erkx’ ) dv (2.56)

/ (GIJK.’E TofK)d’U
or L

ue L
[ (e o 7] Y
o

oTL
e[JKT + |:X>< a$g:| ) dv.
I

Combining equations (2.53), (2.54

OTL
/ |:X X (paaa + laozvoe - a_g - paba - f’a):| dv = / €IJK TO{K dv.
Q T T Q

The left-hand side vanishes by the linear momentum balance in its local form (2.43),

, and (2.56) gives, in component form,

SO
/ GIJKTO{KCZU = 0.
Q

The equation must be valid for any volume €2, which implies that the integrand is

Z€ero

eryx T = 0. (2.57)
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Expanding the Einstein convention and rearranging the terms in the sums gives

3

3 3
JK
ergr 1 = g E E €IJKTa
=1

J=

—
—

K=

= €111 Tctl + e112 TO%Q + €113 Tf + €191 TC%l + €199 To%? 4o
+ €331 T2 + €330 T + €333 1"

=i Ttil + €121 Togl + €131 Tagl + €112 Ta’u + €122 TO%Q + ...

13 23 33
+e3131," + eso 1" + ess3 T,

3 3 3
KJ
= E €IKJ Ta
I=1 J=1 K=1
IKJ
=erxjl),

Hence, equation (2.57) can be rewritten as
1
e TJX = §(€IJK T + e TH) = 0,

and using the antisymmetry property of the Levi-Civita symbol, we have

1
56[JK (TEX]K - TO{(J) = 0.

It follows that the Cauchy stress tensor must be symmetric

T/K =TE7| (2.58)

As a consequence of (2.51), (2.52), the balance of angular momentum for micro-polar
materials does not lead to (2.58). Thus, the Cauchy stress tensor is not symmetric. In
this work, only non-polar materials will be considered. For extensions of the balance

equations for mixtures to micro-polar materials, the interested reader is referred to
the work of Ehlers [28].
2.3.4 Balance of Energy

The balance of energy (first law of thermodynamics) expresses the notion of con-

servation of energy and states that the sum of the material time derivatives of the
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internal and kinetic energies equals the sum of the rates of the heating and the
mechanical work of the surface and body forces. This principle is applied to each

individual constituent

(Bo)y + (Ka)p = Wo + Qo + /Q o dv, (2.59)

where FE,, K,,W,, and ), are the internal energy, the kinetic energy, the rate of
mechanical work and the rate of heating of constituent «, respectively. The term P
is an energy supply per unit volume to « caused by all the other constituents. The

internal energy is
E, = / Paba dv, (2.60)
Q

where ¢, = ¢ (X,t) is the partial (averaged reduced) energy density per unit mass.
From the transport theorem (2.34) and the balance of mass (2.37) it follows that

£, = ([ ot dv)/ = [usatot = [ ((unlido-+ pusataot)

[0}

- /Q ((pa)sba + pa(ba)l + pada¥ - va ) dv

(2.61)
= [0+ 02V V)bt () o
= /Q(ﬁa(rba + pa(@a)y) dv.
The kinetic energy is defined as
K, = / lpava -V dv. (2.62)
Q2

From the transport theorem (2.34) and the balance of mass (2.37) it follows that

1 ! 1 ! 1
(Ka)y = (/ §pava * Vo dU) = / <<§pava . Va) dv + §pava . Va(dv)’a>
Q o Q «

1 1
§(pa);Va " Vo Padq * Va + §pava : ch(v ' Voz)) dv

1
<_ ((Pa)la + pav : Va) Va ' Va T Padq Va) dv

—PaVa * Va + Paq - Va) dv.

(2.63)
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The rate of work of the surface forces and the body forces is

W, = / Vo * Paba dv —I—/ Vo -t dS. (2.64)
Q a0

From Cauchy’s theorem (2.42), and using Einstein summation convention, we obtain

W, = / Vo * Paba dv +/ viTO{JnI ds. (2.65)
Q o0
The divergence theorem applied to the vector P! = vJTL/ gives

PI
Wa:/va-pabadv+ a—dv
Q

Q 827[
ovl oTt’
— /Q(va - paba + @Ta” + v ™ ) dv, (2.66)

TI
=/ (va- (paba + e ?) +Lf{]Ti") dv,
Q 8ZU

where LYY = 0v/ /02" is the spatial velocity gradient. Let DI/ and W!’/ be the
symmetric and the antisymmetric parts of L/ respectively. By the symmetry of the

Cauchy stress tensor (2.58), we get
1 1
WIJT]J — LIJ o LJI TIJ _ LIJTIJ _LJITJI =0.
Given two tensors A and B, their contraction A : B is the operation defined by
A:B=A"B". (2.67)
From the previous equation we get

Lo Lo = (Da+Wa): Lo =Da:La+0=Da:La (2.68)

The total rate of heating is

QaZ/pamdv—/ qo - ndS, (2.69)
Q o

where 1, = 1,(X,t) is the partial heat supply per unit partial mass, and q, = qa(x, ?)

the partial heat flux vector. The negative sign is chosen so that heat flows into the
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body, —q. - n > 0, when the flux vector q, is also directed into the body. From the

divergence theorem it follows that

Qa = /Q(para -V qa) dv. (270)

From (2.59), (2.60), (2.62), (2.64), (2.69), it follows that the balance of energy has

the same form of equation (2.29) with

1 - -
fa:paqsa—i_épava'vm 0o = Vo ta— a0, hy =V, paba + para, fo = da-

Combining equations (2.59), (2.61), (2.63), (2.66), and (2.70), we get the local state-

ment

1
ﬁagba + pa(¢a)ix + _ﬁava “ Vo + Vg Padq

2
OT! ~
=Vqu - (paba—i_aTIa) +£a:2a+paro¢_v'qa+¢av

or, equivalently,

N 1.
pa¢a + pa((ba)/a + §pava * Vo

0
= Vao- (paba + O

I ~
}X—paaa> +£a :Qa+para_v'qa+¢a'

By the balance of momentum (2.43), we obtain

N 1.
pa¢o¢ + Pa(?ba); + Epavoa * Vo
= Vuo- (ﬁava _f)a) +£o¢ :Qa _l'pozra - v'qa_‘_qgon

and finally

- 1. - -
pa¢a + pa<¢a>,a = §pava *Va — Va ' Pa + ga : Qa + PaTo — % Qo + ¢O¢ . (271)

2.3.5 The Entropy Inequality

The entropy inequality (second law of thermodynamics) tells that there is a phys-
ical limit to the rate at which heat can be absorbed by a body, but no limit to the
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rate at which it can be released. In classical continuum mechanics, for a body made

of a single material, the law states that
Q<B, (2.72)

where () is the net heating of the body and B is its least upper bound. For a body
at uniform temperature, denoted by 6, a quantity called entropy, denoted by H, is
introduced, such that

H = —, (2.73)
0
where ()" denotes the material derivative in classical continuum mechanics for bodies

made of a single constituent. The rate of change of entropy represents the ability of

a particular material to absorb heat. Combining (2.72) and (2.73) gives
OH > Q.
More generally, for a continuum body, we assume that there exists a specific entropy

H z/pndv.
Q

Also, we suppose that the rate of change in total entropy is greater than or equal to

7 such that

the net heating per unit temperature

/ pr q-n
H 2/—d’0—/ —dS,
o 0 oo 0

which is known as the Clausius-Duhem inequality. This inequality is transferred
to the individual constituents in porous media theory. The assumption that the
entropy inequality has to be satisfied for every single constituent « is a sufficient,
but too restrictive, condition. A necessary and sufficient condition to describe the
thermodynamics of a porous medium is that the sum of all the individual entropy

inequalities has to be fulfilled

K

S (Ha), > azl (/Q pg:“ dv —/8 Qo dS) . (2.74)

a=1 Q2 90‘
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In equation (2.74), we consider the same volume of integration 2 for all the compo-
nents. With the help of the transport theorem (2.34), the balance of mass (2.37), and

the divergence theorem applied to the vector field q, /0., we get

K K

S =Y / (paa dv),

a=1 a=1

=5 [ o+ i), + eV )

= Z /Q(pa(na)/a + /5047704) dv

- Pala Qo -1 . PaTa (O
> — — v (3 _
=3 (e [ es) = [ (v ()

By linearity of the integral and sum operators, as well as the assumption that the

domain of integration 2 is the same for every constituent, it follows that

- ~ al'o qa
/Z(pa(na)gﬂana—pg +V- (6—» dv > 0.
Q oa=1 (e [e

If the integral must be non-negative for any volume 2, no matter how small, then the

integrand must be non-negative

K

/ ~ oo qa
Z (Pa(na)a + Palla — pe + V : <9_>) 2 0.

a=1

Expanding the divergence term and factoring 1/6,,, we obtain

"1 1
Z 0_ (paQOL(T]a),a + ﬁaeana — PaTla + v Qo — G_CIa : VHOL) Z 07
a=1 "% o
or
"1 1
Z o (Da — 5 Qa- vga) Z 07 (275)
a=1 00‘ 90‘
where

Doz - pa9a<na)/a + ﬁaeana — Pala +V. qa

- pozga(noa):y + /N)ozeoc/r/oc - (para -V qa)
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is called the internal dissipation of constituent o per unit deformed volume. The
internal dissipation is the net increase in specific entropy that is not due to net

heating. From the conservation of energy (2.71), we can rewrite the dissipation as

Da = paea(na):x + ,5049017]04

1 ~ (2.76)
- (ﬁa¢o¢ + pa(¢a)iy - Eﬁava “Vo + Ve f)a - ga : 204 - ¢a) .
It is convenient to introduce the Helmholtz free energy per unit partial mass
Vo (X, 1) = Po(X, 1) — Na(x, )0, (X, t). (2.77)

To have an idea of what the Helmholtz free energy represents, consider a non-
dissipative system (i.e. D, = 0), with no supply terms (i.e. g, = 0, po = 0, Po = 0),

at constant temperature. Then

(Ya)a = (da)a = Oalna)a,
and
Dy = 0= paba(na)y = PolPa)e + Lo : Da,
which together imply
Pa(¥a)a = Lot Da.
Hence, the Helmholtz free energy is the energy available to do mechanical work in
a non-dissipative system, with no supply terms, at constant temperature. In other

words, it is some sort of potential energy. Using definition (2.77) in (2.75) and (2.76),

the entropy inequality can be rewritten as

Z Qi (_pa(z/}a)/a - pa(ea)/ana — Pa <¢a - %Va : Va>

a=1

(2.78)

~ 1
—Va  Pa+ La :2a+¢a—0—qa-vea> > 0.

2.4 Constitutive Modeling

Based on the theory presented in the preceding sections, several different multi-

phasic models can be defined. In view of the applications in ophthalmology presented
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in Chapter 4, a general mixture model with one solid phase and one fluid phase will
be presented. Hence, here, o = S, F'. This binary model is subject to the following

assumptions:

1. Saturated solid-flurd mizture: the control space shaped by the porous solid is
completely filled by the solid and the fluid constituents. Hence, the solid and

fluid volume fractions have to satisfy the saturation constraint

ng +np = 1. (2.79)

2. Materially incompressible solid and fluid constituents: we will be assuming that
both the solid and the fluid phases cannot undergo volume changes at the
microscale. As discussed in Section 2.2, the microscopic deformation behavior
of a real constituent is transferred to the macroscale by the tensor Eor. The
incompressibility constraint of constituent « is then expressed by requiring the
determinant J,r of Fur to be 1. Moreover, it is assumed that any exchange of
mass between the two constituents does not happen between the real materials,
but rather it is accommodated through a change in the partial volume fractions.
This means that the real mass of a constituent is conserved, or, equivalently, its
total mass M, remains constant under the mapping F'or between the reference
and the intermediate placements

My = | pardis = / P2 dvgg,
Ba Boa
where By, is a control volume in the reference placement at the position X, and
B, is the corresponding domain in the intermediate placement in the tangent

space. Proceeding similarly to Section 2.3.1 gives
pCtR = 10304 J;}%a

and, since J,g = 1, we obtain that the incompressibility constraint for phase «
can be expressed by

Par = P2 = constant. (2.80)
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w

. Viscous pore fluid streaming through a viscoelastic solid skeleton: we are inter-
ested in studying the role played by viscoelasticity in the modeling of biological
tissues. In Chapter 4, we will be discussing about influences of tissue viscoelas-

ticity on the optic nerve head perfusion.
4. Uniform body force: b, = b.
5. Quasi-static conditions: solid and fluid accelerations are neglected, that is
a, = 0. (2.81)

This choice will be motivated in Chapter 4 in the context of mathematical

modeling of the optic nerve head perfusion.

6. Isothermal process:

0, = 6 = constant.
7. Constraints on the source/sink terms:
ps +pr =0, ps +pr =0, s = or = 0.

The system is isothermal, which means that there can be no external sources of
heat and the boundary of the porous medium is insulated. Therefore, r, = 0,q, =
0. Under these assumptions, and neglecting energy supply terms, it follows that
the balance of energy equation (2.71) is not independent of the linear momentum
equation (2.43), even if accelerations are not neglected. In fact, if r, = 0,q4 = 0,

and ¢, = 0, the balance of energy (2.71) simplifies to

_ 1. _
pa¢a + pa((ba)/a = ipava *Va = Vo * Pa +£a : Qa-

Integrating over a generic control volume €2 gives

/(ﬁa¢a + palPa)l,) dv = / <%,6ava Vo — Vo PatLa: 2a> dv. (2.82)
Q )

The integral on the left hand side is the material time derivative of the internal

energy F, (see equation (2.61)). By the balance of energy in integral form (2.59),
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the material derivative of E, is given by W, — (K, )., which represents the net rate
of work, i.e. the total power exerted by external forces that is not used to produce

motion. From equations (2.63) and (2.65), we get

1
= / Vo - pabdv +/ viTC{Jn[ ds — / <—,5ava “ Vo + Paa -Va) dv.
Q a0 o \2

(2.83)

Comparing equations (2.82) and (2.83) gives

1
/ Vo - pabdvu + / viTé‘]nI dS — / (—ﬁava “ Vo + Paq va) dv
Q a0 o \2

1
:/ <_ﬁava'va_va'ﬁa+za:2a) dv.
o \2 -

Equation (2.84) follows immediately from the balance of linear momentum (2.43).

(2.84)

Taking the dot product of equation (2.43) with the velocity v,, we obtain

ort
/(8 Vs T4 pab Vo + Pa - va> dv:/(paaa-va+,5ava-va)dv. (2.85)
Q

The first term on the left hand side can be integrated by parts using the divergence

theorem on the vector T!/v/

oTl N [ (9T
) = (% - )

700
= / T vInt ds — /
o0 © oxt
By equation (2.68), we have

/ T;ngnde—/T;Ja 5 dv _/ Ti"vinldS—/TO{JLi‘]dv
aQ Ox a0 Q

- / T Inl dS — / T D dy
[2)9] Q

Hence, equation (2.85) becomes

/ T yInl dS + / (pab + Vo + Pa - Vo — T2 D) du
o0 Q

:/<paaa'va+ﬁavo¢'va)dva
Q
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and, after few manipulations,

1
/ Ti"vinl dS + / pab - vy dv — / (—ﬁava “ Vo + padq - va> dv
EY) Q o \2

= /Q (%ﬁava~va — P Vot 1, :Qa) dv,
which coincides with (2.84).

Thus far we have formulated four balance equations, an entropy inequality, and
a collection of kinematic relationships. The overall set of governing equations for a
binary porous media model satisfying assumptions 1-7 is shown in Table 2.1. This
Table shows that there are more unknown variables than equations. Hence, additional
equations are required to close the system. These additional equations are called
constitutive equations and describe the nature of the continuum under consideration
by characterizing its responses, such as stress and Helmholtz free energy, in terms of
the kinematics of the porous medium.

There is not a unique approach to formulate constitutive equations. One approach
could be starting from a simplified description of the molecular behavior and then
averaging over all possible configurations to obtain the behavior at the macroscopic
(continuum) level. Alternatively, one could use phenomenological models based on
experiments. No matter how we obtain a constitutive model, it is important to be
aware of the assumptions behind it and which regime of motion it is valid over.

Two basic principle that constitutive equations should always fulfill are:

Principle 1. They should be objective (i.e. not influenced by superimposed rigid
body motions).

Principle 2. They should not violate the laws of thermodynamics.

2.4.1 Principle of Material Objectivity

The behavior of a material should not be influenced by superimposed rigid body

motions of the observer. A quantity that is not affected by the observer is called
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objective or material frame independent. According to Principle 1, constitutive laws
need to be formulated in terms of objective quantities.

In classical continuum mechanics, relativistic effects are neglected, and, thus, any
observer must measure the same spatial distances and time intervals. Consider an
observer measuring spatial position and time by the pair (x = ¢, (X,,1),t), where x

is given by
Yo' Boa X [0,T) — B
(Xa, t) = X = o (Xa, t),
and another one by (X, ), where X is given by

(.,bai BOa X [—to,T) — é

v, U,

(X, 1) = X = pa(Xa, 1),

and £ = t — tg, to being a constant time shift. Since ¢ and ¢ differ only by a con-
stant amount and a change of (Eulerian) observer does not affect the Lagrangian
coordinates, the material (total) derivative with respect to ¢ and £, i.e. (-)/, and (-)%,

respectively, coincide. More precisely, given an FEulerian function

f(X7t) = f(i(x)’ 5)7

we have
(o = (i

The most general transformation between the two observers is a rigid body motion
X = Q(t)x +c(t), (2.86)

where Q: [0,7) — R? x R? is an orthogonal matrix, and c: [0,7) — R? a translation
vector.
Given a scalar function w(x,t) = w(X(x, t), ), its value must not change due to a

superimposed rigid body motion, that is

w(x, 1) = w(x,t). (2.87)
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Hence, w is invariant under an Eulerian observer transformation, i.e., it is observer
mvariant.

For a vector u, to be objective, its length must not change under the
observer transformation
a-a=u-u

Writing vector u as a difference of two points in space, u = x —y, we get

U=Xx-y=Qx+c—-Qy—c
and then

a

J,J

‘U= leﬂ] = Q[JU,IQ[KUK = Q?;IQ[KUJ’LLK = (stUJ’LL =u U =u-u,

because () is orthogonal. Thus, a vector u is observer independent (or objective in
the Eulerian sense) if

u = Qu. (2.88)
From equation (2.88), for a tensor of order two, A, to remain invariant under observer
rigid motions, it must be

At = Q(Au),

that we can rewrite as

Hence, in order to be objective in the Eulerian sense, A must obey the following
transformation rule

A=QAQ".

(2.89)
The transformations for the velocity and the acceleration are obtained by taking the

material derivative of equation (2.86). Since, the material derivatives ()

)5 and ()
coincide, as observed before, we have, for the velocity

Vo = (%) = (@x + )y = (Qx + Q) + (), = Qv + (Qx + (e,

[0}

and, for the acceleration

Ay, =

(Vo) = (@ + (@1x + (), )l
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Hence, the velocity and acceleration do not transform according to (2.88) unless @
and c are both constant. Thus, they are not objective and depend on the motion of
the observer.

The deformation gradient tensor I, transforms via

FIJ_ alv.l _ 0 (QIK(t) K+ I(t))—QIKFKJ
© T X 0X] CorewER e

or

F,=QF., (2.90)

so that the deformation gradient tensor is not objective, as it does not transform
according to equation (2.89). The right Cauchy-Green tensor is invariant under a

change of observer as

v

Co=FlF,=(QF.)"QF, = FIQ"QF, = FIF, = C.,, (2.91)

Therefore, the same holds for the Green-Lagrange strain tensor

g 1 . v 1 ¢ Y 1
By =5(Ca—1) = 5(Ca—D = 5(Coa— D =Ea, (2.92)

= 2
where we used the fact that Z = I since the Lagrangian identity tensor I: Boo — Boa
is invariant under an Eulerian observer transformation. Thus, ', and E,, which are
based on the Lagrangian coordinates, do not transform according to (2.89), so they
are not observer independent. Rather, they are observer invariant, or objective in

a Lagrangian sense. The Eulerian (Almansi) strain tensor is based on the Eulerian

coordinates and does transform objectively. In fact, from equation (2.90) and since

Qt):B— B, Q"(t): B— B,

Q) =Q" (1),

we obtain
o= S(I-C) = 5(QQ"~FLTELY) = H(QQ7 - QE,"E Q") = QA.Q". (293)

The spatial velocity gradient L, does not transform objectively. In fact, by equa-

tions (2.16), (2.90), and the remark about the material derivatives (-)k, (-).,, we get
La = (Ea)/oizgl = (%a)ix(Q_Ea)_l
= ((Q)Lﬁa + g(£a>;>£;12T = (Q),agT + __La2T~

(2.94)
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The symmetric part of L,, the Eulerian rate of deformation tensor D, transforms
objectively. In order to prove this, take the material derivative of the identity tensor
Z = QQ" to get

0= (QQ"): = (Q.Q" + QIQLT".
which shows that

(@.Q" =-QlQ)]" (2.95)

Hence, from equations (2.94) and (2.95), we have

Da = 5(La+ L) = 5(Q4Q" + QL.Q" + QUQYLIT + QLIQ")
- - - - = = - = (2.96)

(Lo + LD)Q" = QDaQ",

so D, transforms according to (2.89). Conversely, the antisymmetric pat of Lo, W,

does not transform objectively

W = (L~ L) = J(Q1Q7 +QL.Q" ~ QUQ)LI" ~ QLIQ")
= QL. ~ INQ" + (@,Q" = QW.Q" + (Q)Q"

Let us summarize this section about the principle of material objectivity. We

found that constitutive laws should be formulated using:

e cither quantities objective in a Lagrangian sense, i.e. observer invariant, like
the Cauchy-Green tensor €, and the Green-Lagrange strain tensor £, together

with its material time derivative (E,);, (see equations (2.91), (2.92));

«

e or quantities objective in the Eulerian sense, i.e. observer independent, like the
Almansi strain tensor A, and the Eulerian rate of deformation tensor D, (see

equations (2.93), (2.96)).

2.4.2 The Saturation and Incompressibility Constraints

As described in Section 2.3.5, the entropy inequality is a constraint on the evolu-

tion of a physical system. Its essence is that there is a physical limit to the rate at
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which heat can be absorbed by a body, but no limit to the rate at which it can be
released. The entropy inequality can be used to gain restrictions for the constitutive
equations, according to Principle 2.

There are many possibilities to satisfy this inequality. Some evaluations may be
less restrictive than others. The entropy inequality has to be manipulated in order
to include fundamental physical phenomena known from experience, test observa-
tions, and theories. Similarly to what is done in constraint optimization theory in
finite [29] and infinite [30] dimensional problems, all additional constraints, like the
saturation (2.79) and the incompressibility (2.80) conditions, have to be put in a
stress-power like form by taking their material derivative and multiplying each of
them by a Lagrange multiplier, and finally added to the entropy inequality. A con-
straint is then formulated is such a way that its stress-power like form provides an easy
and physical meaningful interpretation of its Lagrange multiplier. We will illustrate
this last point in the following.

Differentiating the saturation constraint (2.79) with respect to the solid phase
gives

0= (ns)s + (nr)s,

which, using the definition of the total derivatives (-),,a = S, F, as well as adding

and subtracting Vnp - vp, can be rewritten as

0= (ns)s + (nr)s
’ 8np
= (n5)5+W—FVHF-VS—FVTLF-VF—VHF-VF

= (ns)s + (np)y — Vnp - (v — vg),

or, equivalently

0= —(ns)fg — (TLF)/F + Vnp . (VF — Vs) . (297)
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The same result can be obtained by taking the derivative with respect to the fluid

phase

0= (ns)p + (nr)p

on
:a—ts—i—VnS-VFqL(nF)'F—I—VnS-VS—VnS-VS

= (ns)s + (nr)p + Vng - (vr — vg).

Taking the gradient of the saturation constraint gives
Vng = V(l - nF) = —VHF,

which, together with the previous equation, implies (2.97). Observe that the unit of
measure of each term in equation (2.97) is [s7!]. Multiplying (2.97) by a Lagrange
multiplier A and comparing it with the units of the entropy inequality in Table 2.1 ([N-
m~2-s71]), reveals that \ has the same units of a pressure [N-m~2|. In fact, since the
saturation constraint in the rate formulation restricts the rates of volumetric changes
of both the solid and fluid phases, its multiplier A is understood as an unknown
hydrostatic interface pressure acting on both the constituents. Hence, we expect the
evaluation of the entropy inequality to provide us with two constitutive equations for
A, one containing properties of the smeared solid constituent, and another one with
properties of the smeared fluid constituent.

From the incompressibility constraints
pPsr = constant, prr = constant,

we get
(psr)s = (prr)F = 0. (2.98)

Rather than using equation (2.98), multiplied by an appropriate Lagrange multiplier,

in the evaluation of the entropy inequality, we rewrite it with the help of the balance of
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mass (2.37). Using the definition of the partial density p, = napar in equations (2.37)
and (2.98), we have

Po = (Pa)y + PaV - Va
= (na);paR + N (paR)/a + paV - vy
= (na);paR + pav *Va,

and, dividing through by p,r, we obtain

~O( a (67 NOC
(el + 10V Vo = f_R .o S+ V- (nava) = pp—R S (2.99)

Let us stress that equation (2.99) is the incompressibility constraint (2.98) rewritten
with the help of the balance of mass. This form can now be readily used in the
evaluation of the entropy inequality. In fact, its units are [s7!], so that its Lagrange
multiplier A, has the same units of a pressure, i.e. [N-m™2], similarly to the case
of the saturation constraint. Thus, A,z can be interpreted as an hydrostatic pressure
reflecting the incompressibility of the real (not the smeared) material.

Finally, observe that the divergence of the velocity field v, can be written as the
contraction (see equation (2.67)) of the identity tensor Z with the Eulerian rate of
deformation tensor D,

I
_ dv,, I
ozl e

Vv, =Z:D,.

Now we are ready to start manipulating the entropy inequality. Multiply equa-
tions (2.97) and (2.99) by their corresponding Lagrange multipliers, A\, Agg, and Apg,
respectively, and add them to the entropy inequality in Table 2.1 to obtain

> (—pawa); ~ fo (wa - Ve va) + Lot Do = o va)

a=S,R

+ A —(ns)s — (np)p + Vg (Vi —vs))

+ Asr ((ns)fg +ngV -vg — ﬂ)
PSR

+ )\FR ((TLF)/F —+ nFV *Vp — p—F) Z 0.
PFR
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Manipulating the last inequality and using the constraint pg + pr = 0 in Table 2.1,

we obtain

— ps(s)s — pr(Vr)p

. 1 A . 1 A
—pPs (ws——VS'VS‘i‘ﬁ) — PF (wF——VF'VF+ﬂ)
2 PSR 2 PFR (2.100)

+ (gs + )\SRnsg) : Ds + (zp + )\FRTLF%) :Dp

— (Pr = AVnp) - (vi = vs) = (ns)s(A = Asr) — (np)p(A = Apr) 2 0.
To concisely rewrite the above inequality, it is common practice [13] to define the

chemical potential functions

1 Ao
flo = 0 — =V - Vo + 2. (2.101)
2 PaR

and the effective or extra field quantities

T = T4 + AarnaZ, PE = Pr — A\Vnp. (2.102)

The word effective is used to denote the total stress tensors T, and interaction term
pr minus the effects of the hydrostatic pressure A. This is in full agreement with the
classical concept of effective stress, which presumes that the effective soil stress in a
geophysical consolidation problem is determined by the total stress minus the excess
pore pressure [13,31]. With the help of pq,T%, and pg, and using the constraint

pr + ps = 0 from Table 2.1, we can rewrite (2.100) as follows

— ps(¥s)s — pr(Wr)p — pr (ur — ps) + L5 : Ds + TF : Dp

—pr - (v —vs) — (ns)s(A = Asg) — (np)p(A — Apg) > 0.

(2.103)

In the following, we will introduce constitutive relations for zg ,zg, pE s, p, and
pr. This will allow us to close the poro-visco-elastic system of equations listed in

Table 2.1.

2.4.3 Constitutive Variables and Evaluation of the Entropy Inequality

The goal of this section is to provide constitutive relations for the quantities

R = {L§, L% Pp: s, Uk, pr}, (2.104)
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in order to close the system of equations shown in Table 2.1. Since porous media
theory proceeds from the assumption that each point of the space shaped by the
porous solid is occupied by both the fluid and solid phases simultaneously, the re-
sponse functions (2.104) may depend on a common set U of constitutive or process

variables (see [13,22,32]):
U= {ns, Es,VsEs,{Q5, Vs Q& 1, Vi — Vs, Dr } (2.105)
The choice of process variables is justified as follows:

e The solid volume fraction ng affects the unknown hydrostatic pressure A\, which
is the Lagrange multiplier of the saturation constraint in the rate formulation,
see equation (2.97). Observe that ng does not appear in U as it is coupled to
ns via the saturation constraint (2.79). Being a scalar function, ng is observer

invariant (see equation (2.87)).

e The partial solid Green-Lagrange strain tensor £g and its gradient VsEs, to-
gether with the internal state variables Q% and their gradients V ¢Q% represent
the deformations of the partial solid. The solid free energy g is a scalar func-
tion and must be invariant under a change in Eulerian observer in order for the
material behavior to be objective (see equation (2.87)). Since ¥g depends on the
deformation measure d, d must also remain invariant under a change in Eule-
rian observer, i.e. d = d. From this argument, the choice of the Green-Lagrange
strain tensor follows, since we know it is observer invariant, as shown in Sec-
tion 2.4.1. The internal state variables {Q%}™_ | are variables that represent
the memory of the material, and are introduced to characterize the viscoelas-
ticity of the solid phase [33,34]. A viscoelastic solid material exhibits both
elastic and viscous, i.e. rate-dependent, material responses, so that the current
state of stress (or strain) depends on the whole strain (or stress) history [35,36].

n=1

Therefore, { Q2}_, need to be observer invariant variables defined via evolution

equations

(Q8)s = G.(U), n=1,...,N.
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e The velocity difference vy — vg and the symmetric part of the fluid velocity
gradient tensor, Dp, govern dissipative effects in the fluid. In fact, if there
is relative motion between the solid and fluid phases (vp — vg # 0), we can
expect boundary layers at the wall of the pore channels to occur and lead to
dissipation. Also, shear stresses in the fluid lead to dissipation. These stresses
develop when the fluid is in motion; thus, we expect them to be a function
of the Eulerian rate of deformation tensor Dr. Observe that Dr is objective,
whereas vy — vg is not, as shown in Section 2.4.1. This is not an actual issue,
as we will show that vy — vg is not an independent constitutive variable, so it

can be removed from the set ¢ (2.105).

We are now ready to use the entropy inequality to gain restrictions for constitutive
equations. This procedure is known as evaluation of the entropy inequality. The
analysis will be performed in the case of small deviations from the equilibrium state

of the mizture [13,32].
Definition. The equilibrium state of a mizture is the state characterized by

3 n n 3 N
U= {ns, Es,VsEs = 0,{Q5 Vs Qs = 0}y, v — vs = 0, Dp = 0} ,
(2.106)

3
where (-) denotes a tensor of order 3, i.e. a tensor with 3 associated directions (for

example, the Levi-Civita symbol defined in (2.55) is a tensor of order 3).

Thus, considering small deviations from the equilibrium state refers to small values
of VsEs, Vs 25, vr — Vg, Dp. The evaluation of the entropy inequality around the
mixture equilibrium state is described in great details by de Boer [13] and Bowen [32].
The main results of their analysis are the following functional dependencies for the

solid and fluid free energies

Vs = Ys(ng, Es, {gg}ﬁf:l), 1 = constant. (2.107)

In equation (2.107), the free energy 1, of a given constituent v only depends on the

variables included into the process by the respective constituent (actually, ¢p is a
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constant in our case, so this observation is trivially true for ¢r). This situation is
also known as principle of phase separation [37]. Rather than repeating the extremely
detailed analysis of Bowen [32] and de Boer [13], we will illustrate the evaluation of
the entropy inequality giving the functional dependencies (2.107) for granted.

Using the chain rule on (2.107), the material time derivatives of g and ¥ are

oY , O , o o
(¥s)s = anj (ns)s + 6—22 (Es)s + ; a—gsg (W), (2.108)
(¥r)p =0. (2.109)

From the definition of the Green-Lagrange strain tensor £, (2.20) and equation (2.16),

it follows that
1

S((FETYGF + FEU(FEY))

1
= S (LM Fg" ) Fg + F& (L5 FS')),

1
(E'Ys = 5 (FETFE = 57)s =

=5 )/:%( IJ) :1%
OEs =5 T QE VTS /S T 9 pEL

(FMI 81%‘ Fé(‘]) L?M 1 (FKI 81&5 FMJ) LKM
2

(LM F L + FEILEY )

5 oEY 2\ oY "" (2.110)
1(. Os L (1 Ovs |
— (EsaE FT) Li+= <FsaE Fg) : Ls
s T\ .
(FSaTF ) : Ds,
where Dy is the symmetric part of Ls. Inserting (2.108), (2.109), and (2.110)
N
Vs Ns | n .
(zg—Pstaz Ft 'Qs-ﬂsnzjlaggi (98)s — pr (up — ps) + T : Dp
~ E / a¢s !
—Pr- (VP —vs) = (ns)s | A — Asr + P Bns ) (nr)r(A = Arr) >0,
(2.111)

which has to be true for all valid thermodynamic processes. These processes are

identified by all possible combinations of the variables

25; (Qn)sn 1 MF - MSy 2F7 Vp — Vg, (nS){S’a (nF),F (2112)
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One such process is the instantaneous elastic deformation of the real solid material,
which is represented by an arbitrary change in Dg, whereas all the other variables

in (2.112) are fixed. Inequality (2.111) is then satisfied only if

%ng =0], or |I§= psgs%Fg : (2.113)

TE — psF
=S pszsagsz 8£S:

In addition, considering a process that only involves a change in the volume fractions,

either (ng)s or (ng)p, independently, we deduce that

0 0
/\—)\SR—l-Psa—:ﬁj:m or /\:ASR_pS%@Z)Z : (2.114)

and

B=en=0} o [\=dral 2119

As expected, we gain two expressions for the interface pressure A, because \ acts
on both the solid and fluid constituents. Equation (2.115) implies that, within the
assumptions we made to develop our constitutive model, A coincides with the La-
grange multiplier of the fluid incompressibility, Apg, which is understood as the fluid
pressure, in analogy with classical fluid mechanics.

The remainder of the entropy inequality (2.111), the so-called residual inequality
is

N

) , ) )
—ps Y agz :(Q8)s + Th: Dp — pr(pr — ps) — P - (ve — vs) > 0. (2.116)
n=1 =

This inequality cannot be further reduced because the following variables

{(gg)g’}ﬁfzb QFa Up — s, Vp —Vg
are not free, i.e. they cannot assume arbitrary values independently from one another:

e The rates of the internal variables {(Q%)s}Y | have to be defined by evolu-
tion equations associated with the intrinsic dissipation mechanisms of the solid

phase.
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e According to classic continuum mechanics, the stress for a general fluid does de-

pend on the rate of deformation. In other words, Dr cannot vary independently

of T'%.

e The chemical potentials pur and ug are related to the fluid and solid velocities,

vp and vg, respectively.

e The velocity difference vp — vg is coupled to the free variables (np)% and (ng)’

via equation (2.97), so it is not an independent variable.

Comparing inequality (2.116) with the definition of equilibrium state of the mix-
ture (2.106), we get that (2.116) represents the irreversible or dissipative parts re-

sponsible for the non-equilibrium states of the binary model. Constitutive laws for

{(gg)g}i\;l? zgﬂ ﬁF? IN)ga

can be obtained assuming that each expression of the residual inequality (2.116) yields
a positive definite quadratic form, which can accomplished by assuming the following

proportionalities

s

N pSaQn > (gg)/s’ E x Dp, pr o< —(ur — ps), pr o< —(vp —vs). (2.117)
e

2.4.4 Linear Viscoelastic Models for the Solid Constituent

The goal of this section is to provide constitutive laws for the effective stress tensor
T £ of the solid constituent. The main references used here are the books of Fung [35]
and Findley et al. [36].

Many materials, included the living tissues our bodies are made of, exhibit both
elastic and viscous behaviors in response to applied loads. When stressed, elastic ma-
terials undergo instantaneous deformation, whereas viscous materials exhibit time-
dependent strain effects. Materials that exhibit both these behaviors are called wis-
coelastic, and, as such, have strain rate effects in response to applied loads. These

time-dependent phenomena may have a considerable effect on the stress and strain
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distributions. In this section, few basic concepts of linear viscoelasticity will be pro-
vided within a one dimensional framework, which yields a mathematically tractable
representation for stress-strain-time relationships and leads to reasonably simple mod-
els for the biomechanical applications we are interested in. Linear viscoelasticity is

based on the Boltzmann superposition principle:

Proposition 2.4.1 (Boltzmann superposition principle) The sum of the strain
outputs resulting from each component of stress input is the same as the strain output

resulting from the combined stress input [36].

The behavior of most materials is linear, or approximately linear, under small strain
and stress levels. Three dimensional linear viscoelastic behavior will be described
by formal extension of the governing scalar equations. Finally, these findings will
be brought in accordance with the entropy inequality (2.111), in order to formulate
constitutive laws for the effective stress tensor T'¢.

There are some phenomena that are common to many viscoelastic materials, as

illustrated in Figure 2.7:

e [nstantaneous elasticity: the material instantaneously deforms in response to

an applied load and instantaneously recovers once the load is removed.

e Creep under constant stress: if the material is suddenly stressed and then the

stress is maintained constant afterwards, the body continues to deform.

o Stress relaxation under constant strain: when a body is suddenly strained and
then the strain is maintained constant afterwards, the corresponding stresses

induced in the body decrease with time.

e Delayed recovery: following stress removal, the material does not recover im-

mediately, but rather at a decreasing rate.

e Permanent set: following recovery, a permanent nonzero strain remains in the

material.
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Figure 2.7. Phenomena common to many viscoelastic materials. For each
row, the graph on the left represents a particular stress (o) or strain
(¢) input, whereas the graph on the right represents the corresponding
strain or stress output: (first row) instantaneous elasticity; (second row)
instantaneous elasticity (a) and creep (b) under constant stress; (third
row) instantaneous elasticity (¢) and stress relaxation (d) under constant
strain; (fourth row) instantaneous elasticity (e), creep (f), instantaneous
recovery (g), delayed recovery (h), and permanent set (7).
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Figure 2.8. Behavior of a linear spring.

e Hysteresis: if the material is subject to a cyclic loading, the stress-strain rela-
tionship in the loading process is usually different from that in the unloading

process.

One Dimensional Models for Linear Viscoelasticity

Mechanical models are often used to discuss the viscoelastic behavior of materials.
These models are composed of combinations of linear springs with spring constant
E and linear dashpots with constant coefficient of viscosity n. A linear spring is
supposed to produce an instantaneous deformation proportional to the load (see Fig-
ure 2.8). If 0: [0,7) — R is the stress acting on a spring and ¢: [0,7) — R is the
induced strain, we have

o(t) = Be(t). (2.118)



61

99
S
2 g 0
7 -
o =ne
© oyt
B
0
t

Figure 2.9. Behavior of a linear dashpot.

A linear dashpot is supposed to produce a strain rate proportional to the load (see
Figure 2.9). Dashpots are commonly used in shock absorbers for cars and airplanes.

For a dashpot, we have

a(t) =ne'(t), (2.119)

where (-)" denotes time differentiation within the current one dimensional framework.

Equation (2.119) is equivalent to

Ui
According to (2.119), the strain rate £’(t) is proportional to the stress, i.e. the
dashpot will be deformed continuously at a constant rate when it is subject to a step
of constant stress (see Figure 2.9). On the other hand, if it was possible to impose a
step of constant strain on the dashpot, the strain rate ¢’(0), and so ¢(0), should have
an infinite value, whereas it would be €/(t) = 0 and o(¢) = 0 for ¢ > 0. This behavior

can be modeled by the so called Dirac measure at the origin, denoted by the symbol
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0. The Dirac measure is not a function in the usual sense of analysis; if it were, it

should have the following properties:

d(0) =00, 0(t) =0 for ¢t #0,
(2.120)
/(5(t) dt =1,

clearly incompatible with any concept of classical function or integral. A rigorous
definition of the Dirac measure requires the theory of generalized functions or distri-
butions [38]. Thus, the stress resulting from a step change in strain is indicated as

follows

Since an infinite stress is impossible in reality, it is impossible to impose any finite

deformation on a dashpot instantaneously.

Maxwell Model

The Maxwell model is a two-element model consisting of a linear spring and a
linear dashpot connected in series, as shown in Figure 2.10. In a Maxwell model, the

same stress o is transmitted from the spring to the dashpot. This stress produces a

strain
o
e1= 5 (2.121)
in the spring, and a strain rate
, O
el == (2.122)
2

in the dashpot. Since both elements are connected in series, the total strain ¢ is
€ =¢€1+ &9,

so that the total strain rate is

e =¢l +e5. (2.123)
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Figure 2.10. Behavior of a Maxwell model: (top) Maxwell model; (graphs
on the left) creep and recovery; (graphs on the right) stress relaxation.
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Substituting the time derivative of equations (2.121) and (2.122) into (2.123), we

obtain the following relationship between ¢ and e for the Maxwell model

+2 >0, (2.124)

Equation (2.124) can be solved for the strain €(¢) given a stress condition o(t), or for
the stress o(t) given a strain () input.
For example, applying a constant stress o = o(0) at ¢ = 0, equation (2.124)

becomes a first order differential equation for
g =— (2.125)

which describes the creep response of the Maxwell model. If the stress is suddenly
applied at t = 0, the spring will be suddenly deformed to £; = ¢(0)/FE, but the initial
dashpot deflection £9 would be zero, because there is no time to deform. Thus the

initial condition for (2.125) is

The solution of (2.125) is then

=(t) = o/(0) (é + %t) | (2.126)

which is represented in Figure 2.10. According to the last equation, the sudden
application of a load induces an immediate deflection by the elastic spring, which is
followed by creep of the dashpot. If the stress is removed at time ¢, the elastic strain
0(0)/E in the spring returns to zero at the instant the stress is removed (instantaneous
recovery), whereas o(0)t;/n is a permanent stress that does not go away. If the
Maxwell model is subject to a constant strain €(0) at time ¢ = 0, then equation (2.124)
becomes

, E

o =——0,

with initial condition ¢(0) = Fe(0), whose solution is

o(t) = Ee(0)e B | (2.127)
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which is represented in Figure 2.10. Equation (2.127) describes the stress relazation
phenomenon for a Maxwell model under constant strain. The initial stress rate of

change is
c(0)E
.
If the stress was decreasing linearly at this initial rate, the relaxation would follow

o' (t)l1=0 = =

the straight line
0)F
oty = -79E 4 5(0).
n

so that the stress would be zero when t = tg = n/F, which is called the relazation

time of the Maxwell model. The relaxation time is one of the viscoelastic properties
of the material. When ¢t = tg, most of the relaxation has already occurred, since

o(tr) = 0(0)/e ~ 0.370(0). Thus, about 37% of the initial stress remains at ¢t = tg.

Voigt Model

In the Voigt model, a linear spring and a linear dashpot are connected in parallel
(see Figure 2.11). Since they are connected in parallel, they undergo the same strain

€. The spring and the dashpot will produce stresses
op=Fe and oy =1¢, (2.128)
respectively. Since both elements are connected in parallel, the total stress o is
o =01+ 0s. (2.129)

Combining equations (2.128) and (2.129), we get the following relation between stress

o and strain €

E
dr—e=2 t>0]| (2.130)
o

The creep curve for the Voigt model can be obtained by solving (2.130) under a

constant stress o = ¢(0) applied at t = 0. A sudden application of a stress will
produce no immediate deflection, because the dashpot, arranged in parallel with the

spring, will not move instantaneously. Therefore, the appropriate initial condition is

£(0) = 0.
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Figure 2.11. Behavior of a Voigt model: (left) Voigt model; (right) creep

and recovery.
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The solution of equation (2.130) is then

e(t) = (1 - e~ Bt/my| (2.131)

As illustrated in Figure 2.11, the strain described by (2.131) decreases with a de-
creasing rate and approaches asymptotically the value o(0)/E. Initially, for the Voigt
model, a suddenly applied stress is carried entirely by the dashpot. Under the con-
stant stress o(0), the dashpot elongates and gradually transfers the load to the spring.
Finally, i.e. when e #%7 — 0 for t — oo, the entire stress is carried by the spring.
This behavior is called delayed elasticity.

The initial strain rate is

& (#)limo = @

If the strain ¢ increased linearly at this initial rate, it would cross the horizontal
asymptote at time t = tc = n/FE, called the retardation time. Most of the total strain
0(0)/E occurs before the retardation time, since

=20 (1-1) w072

Hence, after ¢ = to, only about 37% of the asymptotic strain remains to be ac-
complished. The recovery behavior of the Voigt model can be obtained from equa-
tion (2.131) and the superposition principle (Proposition 2.4.1) by considering that at
time t = ¢; a constant stress —c(0) is added. Therefore, the recovery strain e(t),t > ¢;

is the sum of two independent actions

e(t) = %(1 — e Bty — ﬂ(l — e~ Blt=t)/m)
= %G_Et/"(eml/” —1), t>t.

When t — oo, €(t) — 0: the Voigt model exhibits full recovery. In reality, some
materials show full recovery, whereas others only partial recovery.

The Voigt model cannot be used to study the stress relaxation phenomenon in
response to a step change in strain £(0). As noted above, a sudden application of

a strain cannot produce immediate deflection due to the dashpot, which is arranged
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in parallel with the spring. A step change in strain would correspond to an infinite
stress at t = 0. For ¢ > 0, due to the constant strain € = £(0), the stress carried by

the dashpot would immediately drop to zero
0a(t) =n(e) =0,

but a constant stress Ee(0) would remain in the spring. This can be modeled by

using the Dirac distribution d, heuristically defined in (2.120)

o(t) = 18(t) + B=(0)]. (2.132)

Neither the Maxwell nor the Voigt models are able to describe the behavior of all
possible viscoelastic materials. For example, the Voigt model does not exhibit instan-
taneous elasticity, and it cannot be used to study stress relaxation under constant
strain, as we just discussed, nor does it describe a permanent strain after unloading.
The Maxwell model does not show either time-dependent recovery or the decreas-
ing strain rate under constant stress that is typical of primary creep. Therefore,

sometimes, more complex mechanical models need to be formulated.

Kelvin model

The Kelvin model (also called the standard linear solid model) is shown in Fig-
ure 2.12, where a spring and a Maxwell model are connected in parallel. Since they
are connected in parallel, the strain € in the spring and the strain €; + €5 in the
Maxwell element are the same

€ =g+ &9. (2.133)

The total stress o is the sum of the stress oy from the spring and o from the Maxwell
element:

o =09+ 01, (2.134)

opg = E()E, (2135)

o1 = E1€1 = 7’}16/2. (2136)
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Figure 2.12. Behavior of a Kelvin model: (top) Kelvin model; (graphs on
the left) creep and recovery; (graphs on the right) stress relaxation.
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A constitutive equation between o and ¢ for the Kelvin model can be obtained in the

following way:

e Combine the time derivative of equation (2.133), ¢’ = &} + &}, with (2.136) to
get

5 :5'1—|—5’2:E—|—E. (2.137)

e Solve for o and its time derivative o/ from (2.134) and combine it with (2.135)

o1 =0—0¢=0 — Eye, oy =0 —oy =0 — Ey.

e Combine the last two equations with (2.137)

. a’—Eoe’+a—E05
E, m ’

which can be rewritten in the form

E
™ (].‘I’E?)g,‘f‘Eofzg—llO'/"‘O',

or, equivalently,

Eo(15 +¢) = 1.0" + 0, t>0] (2.138)

where

M Ey M
[ —— 1 - | e~ T -
T, Zy ( + ) T, 7,

For a suddenly applied stress o(0) and strain £(0), the initial dashpot strain 5 would
be zero, because there is no time to deform. Thus, the two springs have the same

strain € = £ = £(0), and the appropriate initial condition for equation (2.138) is

7(0) = Eoe(0) + Ere(0) = (Ey + E)e(0) = By 2e(0). (2.139)

Te

The creep behavior of the Kevin model under constant stress o = ¢(0) can be obtained

by solving (2.138) with initial condition (2.139), which gives

(=20 ( _ <1 _ _) /)

(2.140)
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which is illustrated in Figure 2.12. At t = 0, there is an instantaneous elastic response
from the two springs. Then, the dashpot starts elongating, transferring a greater and
greater portion of o7 to the spring Fy. As a result, the strain approaches o(0)/Ey
asymptotically. The recovery behavior can be obtained from equation (2.140) and the
superposition principle (Proposition 2.4.1) by considering that at t = ¢; a constant

stress 0 = —oy is added. Hence, the recovery strain e(t),t > t; is

e(t) = %(0)) (1 - (1 _ %) e—t/m)

e(t) = o) (1 — E) (e —1) e ™. (2.141)

To

or

Recovery is also shown in Figure 2.12. The recovery exhibits an instantaneous elastic
decrease (equal to (0(0)7.)/(Eo7,)), then tends towards zero as t — oo.

From equations (2.138) and (2.139), the stress relaxation behavior of the Kelvin
model can also be obtained

o(t) = Eye(0) <1 - (1 - T—") e-t/fs> : (2.142)

Te
which is illustrated in Figure 2.12. From (2.142), it follows that o(t) — Epe(0) as
t — oo, so that the Kelvin model prescribes a nonzero permanent stress from a
relaxation process with infinite duration.

In conclusion, the behavior of the Kelvin model shows similarities with both the
Maxwell and the Voigt models. Nevertheless, it cannot describe the behavior of many
viscoelastic materials. For example, from (2.141), it follows that it cannot be used
for those materials that exhibit partial recovery after stress unloading.

Another limitation of the Maxwell, Voigt and Kelvin models is that they have only
one relaxation or retardation time, whereas real materials often behave as if they have
several relaxation times. To deal with this situation and be able to describe more

materials, several complex models have been proposed.
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Figure 2.13. Generalized Maxwell model.

Generalized Linear Viscoelastic Models

In order to account for several relaxation mechanisms within a single body, each
of which characterized by a different relaxation time, several spring and dashpot
elements could be combined together. For example, several Maxwell models connected
in parallel with a spring, as shown in Figure 2.13, are able to represent instantaneous
elasticity, delayed elasticity with various retardation times, and stress relaxation with
various relaxation times. The generalized Maxwell model is rather convenient to
predict the stress associated with a prescribed strain variation, because the same
prescribed strain is applied to each individual element. The resulting stress o is the
sum of the individual contributions. Denoting by N the number of Maxwell elements,

constitutive equations of this model are:

_ e 7
g = En + €n,
N
oc=00+ ) on
n=1
oo = Eqe,
e 7 \/
On = ngn = nTL(gn) :

The order of the differential equation relating o and ¢ is increased by one for each

additional Maxwell branch [36]. Another generalized form of the basic models may
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Figure 2.14. Generalized Kelvin model.

be obtained by considering various Kelvin models in series with a spring as in Fig-
ure 2.14 [35].
The same stress o is transmitted to the spring Fy and to each Kelvin unit. In

analogy with (2.133)—(2.136), the constitutive equations of this model are:

_ 1 2
o=o0,+0,,
1

o, = Enen,

on = Exes, =n(c)).

The generalized Kelvin model (see Figure 2.14) is more convenient than the general-
ized Maxwell model (see Figure 2.13) for viscoelastic analysis in cases where the stress
history is prescribed. Because of the range of different relaxation times that can be
brought into play, both of these models permit a close description of real behavior
over a wider time span than with simpler models.

The most general formulation of a linear viscoelastic law is the integral representa-
tion due to Boltzmann (1844-1906). Let the origin of time be taken at the beginning

of motion and loading. We introduce two functions:
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e The creep compliance, J: [0,T) — R. For each t € [0,T), J(t) represents the

creep strain per unit of applied stress at time t.

e The relazation modulus, E: [0,T) — R. For each t € [0,T), E(t) represents the

stress per unit of applied strain at time ¢.

In general, J(t) and E(t) are different for each material. Also, let

1 ift>0,
H(t) = (2.143)

0 ift <0,
be the characteristic function of the interval [0, 00), known as the Heaviside function.
If a constant stress is applied at t = 71, then o(t) = 01 H(t—7) and the corresponding

strain will be

e(t) =0 J(t —m)H({t — 7).

If the stress input o(t) is variable with time, the strain output £(¢) can be expressed
using the superposition principle (Proposition 2.4.1). If the function o (t) is continuous
and differentiable, Taylor’s theorem can be used to write the increment of loading

do(T) in a small time interval d7 at time 7

This stress increment will induce a strain increment de

do(T)

dr.
dr T

de=J({t—T1)H({t —7)do(T)=J({t—7)H(t —T)

Thus, summing over the entire stress history, which is allowed under the superposition

principle (Proposition 2.4.1), we get

e(t) = /O J(t—T)H(t—T)dii(T)dT - /0 J(t—T)d‘;“)dT. (2.144)

T T

To get the last equality, we used the fact that H(t — 7) = 1, V7 € [0,¢]. Similar

arguments apply when arbitrary changes in strain are applied and the resulting change
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in stress is determined. Thus, the current stress o(t) due to a constant strain e;
applied at t = 11 is

O'(t) = E(t - 7'1)6(25) = €1E(t - TI)H(t - 7'1),

whereas, if the strain input £(¢) is variable with time, we have

o(t) = /0 E(t—T)H(t—T)dgd(:)dT - /0 E(t—T)dil(:)dT. (2.145)

Equations (2.144) and (2.145) are known as Boltzmann integral representation of (t)
and o(t), respectively. All the models examined so far, from the Maxwell model to
the generalized Kelvin model, are special cases of the Boltzmann formulation. For
example, from equations (2.126) and (2.127), we infer that the creep and relaxation

functions for the Maxwell model are given by

11
J(t) = %+ Et and E(t) = Be B/n,

respectively. These models have a relaxation function of the form

N
E(t) =) one ™, (2.146)
n=0

for a proper integer N, where «,, denotes the amplitude associated with the charac-
teristic frequency v,. Plotting a vertical line of length «,, at each v, on a frequency
axis, we obtain the discrete spectrum of the relazation function (2.146), as shown in
Figure 2.15.

Sometimes, for example in the case of a living tissue such as mesentery [35], a
discrete spectrum does not reproduce experimental results on relaxation accurately
enough. Thus, not even a generalized Maxwell or generalized Kelvin model with a
finite number of units would be appropriate. In these cases, a generalization to a

continuum spectrum has to be introduced.

Response of a Viscoelastic Material to a Harmonic Input

In order to characterize the mechanical behavior of a viscoelastic material and

choose the right model to fit the experimental data, the response to an oscillatory
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Figure 2.16. Oscillating stress o, strain € and loss angle 9.
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input should be considered, in addition to creep and relaxation experiments. Suppose

the material is subject to an oscillating stress o

0:[0,7) >R
(2.147)
t — o(t) = o¢ cos(wt).
Using Euler’s formula
™! = cos(wt) + isin(wt),
o can be represented by a complex number with magnitude oy and argument wt

o = ope™t.

The stress input will induce a strain € oscillating at the same frequency, but lagging

behind by a phase angle v (see Figure 2.16):
e:[0,7) =R
t — &(t) = gg cos(wt — ),

or, equivalently,

e = £oei@ ),

where g¢ is the strain amplitude. The phase angle v is often called the loss angle.
Both ¢y and « are functions of the internal friction of the material, which causes
energy dissipation. In general, the energy dissipated is different for each value of the
angular frequency w. Thus, £y and v depend on w.

Using the complex representation for o and e, the complex creep compliance J* is

the complex function defined as:

J"R—-C
w— J*(w),
with
. e eo(w)e@ @) go(w) o
Ty = £ = W S o
= fo(w) (cosy(w) — isiny(w)) (2.148)
0o

= Ji(w) — iJy(w) = [J*(w)|e™ ),



78

where:

e J; is called the storage compliance and is associated with the elastic behavior

of a material;
e J; is called the loss compliance and is associated with dissipation of energy;
e |J*| is the magnitude of the complex compliance.
Similarly, if the input is an oscillatory strain
£ = goe™", (2.149)

the stress response o will lead the strain by a phase angle v. Using the complex

representation, we can write
o = op(w)e @), (2.150)

The complex relaxation modulus E* is then the complex function defined as:

E"R—=C
w — E*(w)7
with
E*((JJ) _ E _ O'O(w)ei(wt-‘rV(w)) _ Uo(CU) ei’Y(w)
19 5Oeiwt €0 (2151)
— aog(w) (cosy(w) +isiny(w)) = Fy(w) 4+ iEy(w) = |E*(w)]e),
0
where:

e [ is called the storage modulus and, like J;, is associated with the elastic

behavior of a material;

e [y is called the loss modulus and, like .J5, is associated with dissipation of

energy;

e |E*| is the magnitude of the complex modulus.



79

Using the same values for oy and ¢( to define the complex compliance J* and complex
modulus E*, equations (2.148) and (2.151) imply that

Ey J

1
|J*| = —= and tan~y = B

| £
As an illustrative example, let us compute the relaxation modulus for the Kelvin
model. By plugging the complex representations for the strain (2.149) and the
stress (2.150) and their time derivatives into the constitutive equation of the Kelvin
model (2.138), we get

Ey(iwt,e +€) = iwT.0 + 0,
which, after few manipulations, provides

. o 1+ iwT, Ey 9 .
E*(w) = - = E, i =1 +w2762(1 + W', +iw(T, — T2)),

1 + w272 _
| = By | LE9Te tany = T2 —Te).
1+ w?7? 1+ w?r, 7.

In a similar manner, the complex relaxation modulus for any viscoelastic model can

with

be obtained. The quantities |E*| and tan~ are usually plotted against the logarithm
of w (see Figure 2.17).

Having determined the experimental curves of relaxation, creep, frequency re-
sponse, and internal friction of the material being studied, a scientist can compare
them with those of the theoretical models and choose the most appropriate model for

the problem at hand.

Reconciling Linear Viscoelastic Models with the Entropy Inequality

The goal of this section is to show that, under appropriate assumptions, linear
viscoelastic models can be brought in accordance with the entropy inequality (2.111),
and so can be used to describe the viscoelastic behavior of the solid phase. In the

following discussion, we shall eliminate both geometrical and material nonlinearities
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Figure 2.17. Magnitude of the complex modulus |E*| and internal damp-
ing tan o with a logarithmic scale for the frequency w for a Kelvin model.
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by assuming both that the deformations are infinitesimal and that constitutive laws
are linear. According to (2.9) and the hypothesis of infinitesimal deformations, the

current position x can be written as follows
x = Xy + Uy = X, + €, (2.152)
where € < 1 and the norm of 1, is O(1). We will also assume small mass production
|pal < 1. (2.153)

From (2.152) and (2.153), it follows that [22,24]:

1. There is little point making a distinction between Lagrangian and Eulerian
coordinates, that is between reference and current configurations. As a conse-
quence, partial derivatives with respect to the coordinates X, in the reference
configuration, denoted by V, are approximately the same as partial derivatives
with respect to the current position x, denoted by V. Thus we can replace V,
with V. Also, the material derivative (-)!, reduces to a partial derivative with

respect to time ¢, which we will denote by ()" or 9(-)/0t, interchangeably.

2. From equation (2.21) and point 1, the deformation gradient F,, is given by

Jies

o=1+Vu, =1+eVu,,

where [ denotes the identity tensor. It follows that the determinant J, of Fois
approximately equal to 1+ V - u,. In fact, using the definition of determinant,

we get

Jo = det Fy = det(L + Vu,) = det(L + eViy,)

oul ou? ou’
:1 «@ « @ O 2
+68x —i—an +€8z + O(€)
oul — oud  oud
~1+e + € + €

ox oy 0z
=14V-u,.

(2.154)
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3. From the assumption of small mass production (2.153), in accordance with the

conservation of mass in Lagrangian form (2.38), we get
ps = psJg’,

which, by the incompressibility assumption (2.80) and the relation between

partial and real densities (2.5), implies that
ng ~nJg? (2.155)

where ng is the volume fraction of the solid constituent in the reference con-
figuration. Note that, according to our remarks in point 1, we are not dis-
tinguishing between the reference configuration of the solid and fluid phases.
Equation (2.155) implies that ng is determined by the solid state of defor-
mation. Thus, ng can be dropped from the list of independent constitutive
variables (2.105) and the functional dependencies of the solid Helmholtz free
energy (2.107). Moreover, combining equations (2.154) and (2.155), it follows
that
ng ~n%(1+V-ug)™?,

and then, by the saturation constraint (2.79),

ns
14+V - ug
1+ V-us—nl

1+V-ug (2.156)
0
1+V'US

np=1—ng~1-—

0
%nF+v'uS,

where n% is the fluid volume fraction in the reference configuration.

4. The nonlinear term (VTua) (Vua) in the Green-Lagrange strain tensor L,
(see equation (2.22)) is negligible. Thus, E, is approximately equal to the

infinitesimal strain tensor g,, which is defined as follows:

€a: Bx[0,T) — R* x R?
B 1 (2.157)
(x,1) — Ea = E(Vua + V7u,).



33

According to point 1, the material derivative of g, is approximately equal to

the symmetric part D, of the spatial velocity gradient, that is

Moo
2
Q
I
2
Q
IS
Q

5. The Taylor expansions of all the stress tensors (e.g. the Cauchy stress tensor,
body stress tensor, first and second Piola-Kirchhoff stress tensors) about the
reference configuration coincide up to O(e). Therefore, there is no distinction
between them in linear viscoelasticity. In the following, we will denote the single
solid stress tensor by g. Moreover, we will assume that the solid phase is not
pre-stressed in the reference configuration, that is the O(0) term of the Taylor

expansion of gg is zero.

According to the above five points, the functional dependencies of the solid Helmholtz

free energy (2.107) can be reduced to

bs = Vs(es, {Qstnsr)- (2.158)

Moreover, the entropy inequality (2.111) can be rewritten as follows

0 , S OUsgy
n=1 =5 .

—pp - (vi —vs) — (ng)s(A = Asg) — (np)p(A — Apr) > 0,

where g denotes the linear solid effective stress tensor of the infinitesimal theory.
Linear viscoelastic models can be brought in accordance with (2.159). We will
show how this can be done for one of the viscoelastic models presented before, the
Voigt model, which has been analyzed by Bociu et al. [39] within the framework of
porous media viscoelasticity. In Chapter 3 of this thesis, a novel numerical method for
the solution of their poro-viscoelastic model is proposed. In Chapter 4, this method
will be used to theoretically investigate the perfusion of the optic nerve head, a region
of the eye that is believed to play an important role in ocular pathologies, including

glaucoma [11].



Figure 2.18. Extension of the Voigt model (see Figure 2.11) to three

dimensions.
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By formal extension of the constitutive equations (2.128) and (2.129) of the Voigt

model to three dimensions, we get (see Figure 2.18):

0§ =05+ 0%, (2.160)
4

o5 = Esres, (2.161)
4

0% =TsRES, (2.162)

where:
e g¢ and g5 have the same meaning as in (2.159).

e The spring and dashpot elements are connected in parallel, so they undergo the

same strain eg.

e o} is a stress due to the linear spring and so is determined by a linear elasticity
B 4
law with the positive definite fourth order elasticity tensor Egr. The subscript
SR refers to macroscopic real parameters of the solid phase. In the case of a

Hooke-type elasticity law, we have
L 4
o5 = Esres = 2u5pes + A5z(V - ug)L, (2.163)
where pGp and A¢p are the solid macroscopic real elastic parameters.

e g% is a stress due to the linear dashpot and so is determined by another linear
law with the positive definite fourth order wiscosity tensor #]SR. In the case of

. . . 4 . 4
isotropic tensor functions, 1 assumes a form similar to Egsg. Thus

4
o6 =nsr(es) = 2ubpes + Nop(V - ul) L,

with %, and A%, being the viscosity parameters and uy = vg, i.e. the velocity

of the solid phase.

In order to bring Voigt model (2.160)—(2.162), or any other viscoelastic model, in

accordance with (2.159), it is assumed that the Helmholtz free energy 1)g can be
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decomposed into the sum of an equilibrium part 1/1562 and a non equilibrium part

479 also known as pseudo-potential or dissipative potential (see [22,40])

s =g + g o (2.164)

The equilibrium part ng is exclusively associated with equilibrium stress states
obtained from a relaxation process with infinite duration at constant strain [41]. It
does not include strain rate effects. Hence, ¢§ @ can depend on the total solid strain
s, but not on the internal state variables 5, which represent strain rate effects.
Thus, we can have

E E
SQ = SQ(QS)-

The non equilibrium part 1/J]SVEQ is associated with strain rate effects causing dissipa-

tion in the material. Thus we can have

vs = g PU{ QL)

Observe that the terms

% and —8¢S
Ozs 09’
provide distinct contributions to the entropy inequality (2.159). Thus, following our
discussion about ngQ and wéVEQ, we can write
EQ NEQ
Ws _ 05~ g s _Ws (2.165)
Ozs  Ocs 0Qs  09%

Now we wish to find an expression for 1/15 ? and wéVEQ in the case of the Voigt
model. In every linear viscoelastic model, the internal variables Q' are identified
with deformations of dashpot elements, which, by definition, are not elastic. In the
Voigt model (see Figure 2.18), there is only one dashpot and, thus, only one internal
variable 25. Since the spring and the dashpot are in parallel, dashpot deformations

coincide with the total solid strain gg. It follows that

25 =€s, (2.166)
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and thus

§ 79 = yiPUQs) = v5 ™ es), gSQS — 7’2; . (2.167)

S - s

Moreover, as discussed at the beginning of this Section, the Voigt model cannot
undergo instantaneous elastic deformations when subject to a step change in stress
nor it can be used to study stress relaxation in response to constant strain (see

equations (2.131) and (2.132)). We can conclude that
2 =o. (2.168)

Observe that, due to (2.166) and (2.168), the evaluation of the entropy inequality will

be slightly different from what described in Section 2.4.3. Concerning wévEQ, since:

e the Helmholtz free energy is a form of potential energy (see the discussion in

Section 2.3.5 about the entropy inequality);
e cnergy can only be stored in the spring element;
e the deformation of the spring element coincides with &g;

we can write

1 4

NEQ B
- g ! SRES,
S st = =

and then

8 NEQ 1 4
Vs~ _ Egsres. (2.169)
0@9 PSR -

Combining (2.159), (2.165), (2.167), (2.168), and (2.169), we get

ps 3 ~
(UE — —SESR£S> 15— pr (np — ps) + L5« D

= Psk (2.170)

—Pp - (vi —vs) — (ns)s(A = Asr) — (np)p(A — Apgr) > 0.

Evaluation of the above inequality provides

A= )\SR and A= )\FRa (2171)
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i.e. the interface pressure A coincides with the Lagrange multiplier of the fluid in-
compressibility Agpg, which is understood as the fluid pressure, and the Lagrange

multiplier of the solid incompressibility Agg. The residual inequality is
4
(a§ — Esgs) - €5 — pr (pr — ps) + L% Dp — pp - (ve — vg) > 0.

4
where Fg is the partial macroscopic, i.e. smeared, elasticity tensor obtained as follows

4 4 4 4
&ESR = nspSRESR = nsESR = ES- (2172)

PSR PSR

In analogy with (2.117), in order to satisfy the residual inequality, we require
E_ 3 / ~ E - E
o5 —Eses xgg, proc—(up—ps), LpoxDp, ppo—(vp—vs). (2173)
Dimensional analysis reveals that the proportionality tensor in

4
E /
o5 — Eses x gg,

has the units of a viscosity parameter, i.e. [Pa -s]. Hence, denoting by 7%5 a partial

(smeared) positive definite fourth order viscosity tensor, we can write

4 4 4 4
o5 — Eg £5 = N5 &g or g? = Eses + 155, (2.174)

which coincides with the constitutive equations of the Voigt model (2.160)—(2.162).
We can finally conclude that the Voigt model provides a constitutive law for the
effective stress tensor gg of the solid constituent that allows to satisfy the entropy
inequality.

Let us stress that the elasticity tensor ég and the viscosity tensor 7%5 in (2.174)
are macroscopic partial quantities, i.e they represent average properties of the solid
constituent after being smeared over the volume shaped by the porous solid. However,
they are determined by physical quantities at the microscale. Similarly to what
we discussed in Section 2.2.1, in order to transfer the microscopic behavior of the
real solid phase to the macroscale, és and ?]5 should be expressed using quantities

representative of the real solid material and of the empty porous solid [20, 42-44].
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For example, in the case of a Hooke-type elasticity law like (2.163), the partial elastic
parameter \g can be expressed as

[ € 2 (&
Ag = Kg — 5#57

where K§ is the partial compression modulus that depends on the solid volume frac-
tion ng and the compression moduli K§p and K¢, of the real solid material and the

empty porous solid, respectively,

K¢ K¢
Kg = JS-SRESN, (2.175)
K§p + Ky
as described by de Boer [44]. In the case of incompressible solid phase,
Kgp — oo,
and therefore
K —ngKgy < 0. (2.176)

From (2.176), we get that, unlike classic linear elasticity, the hypothesis of solid
incompressibility does not cause the partial compression modulus K§ to blow up.
Four types of tests are commonly used to determine poroelastic parameters: drained,
undrained, jacketed, and unjacketed tests. A thorough discussion about these tests
is presented by Coussy [20], Terragni [42], and Detournay [43].

Here we conclude our discussion about constitutive laws for the viscoelastic solid
constituent. In the next section, we will be formulating constitutive laws for the

effective fluid stress tensor T’ and the fluid-solid interaction force pg; in (2.173).

2.4.5 Darcy Law for the Fluid Constituent

In accordance with the sufficient conditions (2.173), the following constitutive law

can be given for the effective stress tensor T'F

gg =2urDp + Ap(V - vp)L =2upDp + Ap trace(Dr) 1, (2.177)
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where up is the partial dynamic viscosity and Ag is the partial dilatational viscosity.
In equation (2.177), TF is linearly related to the rate of deformation Dp, just like
a Newtonian fluid. Concerning the interaction term pZ, in accordance with (2.173)
and the analysis of Whitaker for fluid flows in homogeneous porous media [21], it is
assumed that

pr = —(np)’Ky ' (Ve — vs) = —npKg'v, (2.178)

where:

o K }1 represents a positive definite inverse permeability tensor, which is a measure
of the capability of a porous material to transmit fluid. A constitutive equation
for Kr has to be provided and will depend on properties of both the fluid and
solid phases, in general. The components of K r can be calculated by considering
a representative unit cell in a spatially periodic model of the porous medium and
then solving a closure problem on such representative cell [21]. A constitutive
equation for K'r dependent on the local state of stress and strain is proposed

in Chapter 4 to study the ONH perfusion.
e v =np(vp —vg) is known as discharge (or Darcy) velocity.

According to the quasi-static approximation (2.81) and considering a uniform
body force b, the balance of linear momentum for the fluid phase (2.43) can be
rewritten as follows

ﬁFVF =V zF + ,OFb + IN)F. (2179)

By neglecting fluid accelerations in (2.179), we are assuming that fluid viscosity dom-
inates over inertial effects and the fluid flow is laminar [24,45]. By definition of the

effective quantities T'%, pf (2.102) and equation (2.171), we obtain

prvE =V -Tp+ prb+ pp
=V -TF—V(Anp)+ prb+Pp + AVnp

=V T% —npVA+ ppb + pg.
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Plugging (2.177) and (2.178) into the last equation gives
prvp =V - (QMFQF + Ap(V - VF)i) —npVA+ prb — 7’LF£E1V
=V (Ve + VIVE) 4 Ar(Y - ve)L) = np VA + prb — nplgly (2180)
= upV3ve + (up + Ap)V(V - Vi) = npVA + ppb — npgglv,
where we have assumed that pur and Arp do not depend on space. Applying the
procedure of length scale analysis by Whitaker [21], it is possible to prove that

e V2vE + (up + Ap)V(V - vi)|| < [InpKg'v]|. (2.181)

In (2.181), the term on the left hand side represents dissipative terms acting within
the fluid flow, whereas the term on the right hand side represents terms acting at
the fluid-solid interface. Thus, according to equation (2.181), we are assuming that
dissipation mainly occurs at the wall boundary layers of the pore channels, whereas

the fluid is almost inviscid at the pore interior, that is

I~

7~ 0. (2.182)
Inserting (2.181) and (2.182) into (2.180), we get the Darcy law
prve ~ —npVA+ ppb —npKp'v,

or, equivalently,

V= _KF (V)\ — pFRb + TpL_FVF> . (2183)
_ F

2.5 A Poro-Viscoelastic Model

In accordance with the residual inequality (2.172), we have determined constitu-
tive laws for g§ (2.174), T% (2.182), and py (2.178). From (2.173), it follows that a
constitutive law for the fluid mass supply pr is still needed. In this section, since a
discussion of possible constitutive laws for pg is outside the scope of this thesis, we

will assume such a law to be given in terms of the fluid chemical potential ppr and
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the solid chemical potential ug, defined in equation (2.101). The interested reader is
referred to, e.g., Ricken and Blum [46].

From the results of the previous sections, a model describing the coupled behavior
of a viscous fluid streaming through a viscoelastic solid constituent is obtained and
summarized in Table 2.2. Constitutive laws allowed us to close the system of governing
equations shown in Table 2.1.

The number of unknowns can be reduced by combining equations in Table 2.2.
Adding the balance of mass equations of the fluid and solid phases and using the
constraints

ng +np = 17 155 + ﬁF = 07 (2184)
together with the definition of discharge velocity
VvV = nF(VF — Vs)7

we get

-+ V . (nFVF —+ n5V5)

_ ( 1 1 ) d(ns +nr)
Ia — =
PFR PSR ot
=0+V- (TLFVF —NpVs + Npvg + TlSVS>
=V (VS -+ V),
which, assuming sufficient regularity of spatial and time derivatives so that they can

be interchanged, is equivalent to

(v-us)’+v-v=ﬁF<i—i>.

PFR PSR

The last equation represents the balance of mass for the overall mixture. As shown
in Section 2.4.4, under the hypothesis of small mass supply ps < 1, the balance of
mass for the solid phase and the incompressibility constraint can be manipulated to
obtain

nF:n%+V~u5.

Adding the balance equations of linear momentum and using

pr+ps =0,
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together with (2.184) and the constitutive equations

4
o5 = Eses +nses —nsAL,  Trp=—Anpl,

we get

4 4
pr(vp —vs) =V - (Esgs +nsgs — (np +ng)\) + (npprr + nspsr)b (2.185)
4 4 :
=V (Eses+nsgs — ML) + (npprr + (1 — np)psr)b.

Defining the total stress tensor ¢ and the mixture partial density p as
o=FEses+nses — AL, p=nrprr + (1 —np)psr,

respectively, equation (2.185) can be rewritten as

which represents the balance of linear momentum for the overall mixture. In accor-
dance with Section 2.4.5, combining the balance of linear momentum for the fluid

phase with the constitutive law
131]?: - _nF£;‘1V7
we obtain Darcy’s law
pr
VvV = _KF (V)\ — PFRb + —VF) .
= ng

To summarize, the coupled behavior of a viscous fluid streaming through a viscoelastic

solid is described by:

g= és gs(us) + f?sgs(ug) — L, (2.186)
p=npprr + (1 — np)psr, (2.187)
V-ag+pb= Z—};V, (2.188)
v=np(vp —uy) = —Kp (Vp — prrb + i—ivls) , (2.189)
ng =n%+V-ug, (2.190)

1 1
(V'Us)/—FV'V:ﬁF (———) ) (2191)
PFR PSR
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where the fluid pressure A has been denoted by p. Note that, in (2.186) and (2.191),
spatial and time derivatives have been interchanged, under the assumption of suffi-
cient regularity. The mass supply pr and the permeability tensor Kr are assumed
to be known functions of the other variables. Thus, equations (2.186)-(2.191) are a

system of 18 scalar equations in the 18 scalar unknowns
ng,p,us,p, VF7vag'

These equations have to be equipped by proper initial and boundary conditions in

order to be solved, as we will be discussing in Chapter 3.
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3. A HYBRIDIZABLE DISCONTINUOUS GALERKIN
METHOD FOR POROUS MEDIA VISCOELASTICITY

This chapter is concerned with the numerical treatment of the biphasic solid fluid
model (2.186)—(2.191) discussed in Chapter 2. We propose a novel numerical method
based on HDG finite elements for the direct approximation of the dual variables,
i.e. the total stress ¢ and the discharge velocity v, which involve gradients of the
primal unknowns, i.e. the solid displacement u and the fluid pressure p. Gradients
often represent quantities of primary interest in engineering, and, therefore, it is very
important to approximate them accurately. Numerical differentiation is a particularly
delicate procedure that usually suffers from a loss in approximation accuracy [47].
The HDG method proposed in this work computes both primal and dual variables
simultaneously with optimal order of accuracy. In other words, if polynomials of
degree k are used to approximate a variable and the variable itself meets sufficient
regularity requirements, then the approximation error behaves like O(h**1), where h
is the maximum diameter of a mesh.

The HDG methods can be understood as mixed finite element methods [16] stem-
ming from the Local Discontinuous Galerkin method, one of the many discontinu-
ous Galerkin (DG) schemes covered in a paper by Arnold, Brezzi, Cockburn and
Marini [48]. DG schemes are praised for their ability to handle all sorts of compli-
cated meshes and discontinuous data, to provide high-order accurate solutions, to
perform h/p adaptivity, and to retain very good scalability properties. However, they
have been criticized because, for the same mesh and same polynomial degree, the
number of globally coupled degrees of freedom is much larger than those of continu-

ous Galerkin methods.
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Certain DG methods, however, including the one proposed in this work, have
the key property of being hybridizable, i.e., the global system can be recast in terms
of (statically condensed onto) a single hybrid variable that represents the trace of
the solution on the boundaries of the mesh elements [49]. These form a family of
methods that are called the HDG methods [19]. The main guidelines for devising

these methods are:

e Use a characterization of the associated exact solution in terms of solutions of

Dirichlet boundary-value problems on each element of the mesh.

e Use DG methods to approximate the local Dirichlet problems. This can be done

in parallel over the mesh elements.

e Patch all the local problems together by weakly imposing transmission con-
ditions representing the continuity of normal flux and stress on inter-element
faces [50]. The hybrid variable we introduced before coincides with the Lagrange

multiplier associated with the transmission conditions.

The procedure just described is called hybridization or static condensation [19], and
creates a global linear system for the hybrid variable only, whose dimension is much
smaller than what it would be obtained from standard DG methods. After solving
the global system, the unknowns are recovered locally on each element, again in
parallel. This is similar to the hybridized implementation of mixed methods such
as the Raviart-Thomas elements (see [19,51]), except that the HDG method has
the very interesting feature of using different (and simpler) polynomial spaces and a
stabilization function (which does not need tuning) instead of a stable mixed finite
element pair.

Therefore, HDG methods retain all the advantages of DG methods and, thanks
to hybridization, become computationally competitive with traditional continuous
Galerkin approaches [52]. However, hybridization is not just an implementation trick.
Rather, it endows HDG methods with some attractive convergence properties that

allow to enhance the accuracy of the approximate solution by local postprocessing [53].
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Due to their attractive features, scientists are constantly pushing limits of ap-
plicability of HDG ideas to many problems in continuum mechanics and physics.
Below, an absolutely not exhaustive list of applications of HDG methods and related

references is given:
e steady-state diffusion [49];
e convection-diffusion [54-56];
e linear and nonlinear elasticity [57,58];
e Stokes flow [59];
e compressible and incompressible Navier-Stokes [60, 61];
e wave and Maxwell’s equations [62-64];
e fluid-structure interaction [65].

In this chapter, we present a novel numerical approach for solving porous media
viscoelasticity. The key feature of this approach is the use of a new HDG method for
spatial discretization of the poro-viscoelastic system, which is obtained by carefully
blending the approaches by Cockburn et al. [19] and Qiu et al. [55,57] for the diffusion
equation and linear elasticity with a fixed-point map for the nonlinear dependence of

the permeability on the volumetric solid strain.

3.1 Problem Setting

Let € C R? be an open subset of R? representing the spatial domain occupied by
the fluid-solid mixture with boundary 92 and let [0,7),7 > 0 be the time domain.
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The model problem we will be discussing in this chapter is a modified version of

system (2.186)—(2.191) presented at the end of Chapter 2, namely:

g =0.+00, —plL in Qx (0,7), (3.1)
V-g=F in Q% (0,7), (3.2)
v=—-K(V-u)Vp in Q2 x (0,7), (3.3)
(V-u)+V-v=>_5 in Q x (0,7), (3.4)

where o, and g, are the elastic and viscoelastic stress contributions, respectively, for

which Hooke-type laws are assumed:

I
eyl

Oe

£(u) = 2u°g(u) + A°(V - )L, (3.5)

S

Oy =

e(w) = 2u"e(u) + \°(V - )L, (3.6)

where ¢ and \¢ are the smeared elastic parameters, and p* and A” are the smeared

viscous parameters. The parameter § > 0 in (3.1) indicates the extent to which

the model includes viscoelastic effects for the solid constituent, with 6 = 0 corre-

sponding to the purely elastic case. In equations (3.1)—(3.4), with respect to the

poro-viscoelastic system presented at the end of Chapter 2, we have that:

e The subscript S has been dropped when referring to physical quantities of the

solid phase.

e In the balance of linear momentum for the overall mixture (3.2), the divergence

of the total stress V-g is set equal to F, which is assumed to be a given function.

e In the Darcy’s law (3.3), only the effect of the fluid pressure is retained. More-

over, the permeability tensor K is an isotropic tensor depending on the size

of the interconnected pore volume, which is represented by the fluid volume

fraction np:

Kp=kl, withk=r(np).
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From now on, ng will be simply denoted by n. Using equation (2.190), the

dependency of x(n) can be rewritten in terms of V - u as
k(n) =K(V -u), (3.7)
as it appears in (3.3).

e In the balance of mass for the overall mixture (3.4), the right hand side is

denoted by S and is assumed to be a given function.

Let 092 denote the boundary of 2. We consider two partitions of 9): one for the

solid phase
00 =TquUTy UTY UTy UTY UTLUTYUTY, (3.8)
with Fgﬂfg =0,i,7 € {D,N,xy,x2,yz,x,y,2}, i # j; and another one for the fluid

phase
00 =T, UTy, (3.9)

with T2 N T'% = (). We consider the following boundary conditions:

u=g? on I'Z, (3.10)
on =gy on I'Y, (3.11)
e -u=g¢, e -u=g e3-on=g on I'Y, (3.12)
e -u=gs), € gn=gg, €3 u=gg; on I'¢?, (3.13)
e -gn=gs;, € -U=gg, €3 U=gg; on I'YY, (3.14)
e -u=gg,, € 0oNn=gg, €3 on=gg, on I'g, (3.15)
e -on=gg,, € -U=gs, €3 0n=(s, on I'%, (3.16)
e -gn=g5;, € gn=gs, €3 U=gs, on I'g, (3.17)
p=gP on I'Y, (3.18)
v-n=gy on '}, (3.19)
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D N Yy Yz Yy ;o D N : :
where 85,85 {gs,ﬂ gg‘iu gS,i7 gg‘,iv gS,i? gg’,i? v = ]-) 27 3}7 9r,9gp are given functions of
space and time. In some cases, it may be useful to express Neumann boundary

conditions involving the total stress g or the discharge velocity v in the following way
an = gsn and vV.n=gp-n,

respectively. The HDG method proposed in this thesis does not require any simplify-
ing assumption on the boundary partitions (3.8) and (3.9) (i.e. we include cases when
Iy N F% # (), for any i, 7) and the associated boundary conditions. In the boundary
conditions (3.12)-(3.17), the solid displacement is specified along one or two coor-
dinate directions, whereas the total normal traction gn is specified along the other
one(s). A boundary condition of type (3.17) will be used in Chapter 4 to describe the
anchorage between the sclera and the lamina cribrosa in the ONH.

In order to specify the initial conditions, it is useful to distinguish between the
viscoelastic case, i.e. 6 > 0, and the purely elastic case, i.e. § =0. When § > 0, time
derivatives appear both in (3.1) and (3.4), requiring an initial condition on the whole

displacement field, namely
u=u’ inQ att=0 (case § > 0). (3.20)

When 6 = 0, only the divergence of the displacement V - u undergoes time differen-

tiation, see equation (3.4). Therefore, only a condition on V - u is required, namely

V-u=dy inQ att=0 (case 6 = 0). (3.21)

3.1.1 Existence of Solutions

Several theoretical approaches have been developed to study poroelastic sys-
tems [66-73]. However, Bociu et al. [39] present the first study that addresses the
solution of system (3.1)—(3.4), simultaneously accounting for non-zero, mixed bound-
ary data, nonlinear dependence of the permeability on the volumetric solid strain,
and elastic and viscoelastic effects in the solid constituent. Their existence results

are particularly relevant to our discussion and will be reported below.
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Let us begin by introducing some notations and conventions. Norms || - ||p are
taken to be L?(D) for a domain D. For functions u,v in L*(D) we write (u,v)p =
Jpuvdz if D is a domain of R® and (u,v)p = [, uvdz if D is a domain of R?. The
subscript denoting the domain in norms and inner products will be dropped where
the context does not lead to confusion. The Sobolev space of order s defined on a
domain D will be denoted by H*(D), with H§(D) denoting the closure of C§°(D) in
the H*(D) norm (which we denote by || - |

asp) or || - |ls,p). When s = 0, we may
further abbreviate the notation to || - || (as described above). We make use of the
standard notation for the trace of functions y[w] as the map from H'(D) to H'/2(0D).
We will make use of the spaces L*(0,T;U) and H*(0,T;U), where U is a topological
vector space. These norms (and their associated inner products) will be denoted with
the appropriate subscript, e.g., || - || 20,70

The principal spaces we consider are of the form

(@) = { re @) | 1], =0}

In this case we have H{ (Q) D H}(Q) for any I', € I’ = Q. The norms in these
spaces are inherited from H'(2). In this section, we will provide existence results
in the case of boundary conditions of type (3.10) with g& = 0, (3.11), (3.18) with

g2 =0, and (3.19), with no simplifying assumptions on the boundary partitions
00 =TgquUTy, and 0Q=T,UTp,

i.e. we include cases when FgﬂF{m # (), fori,7 = D, N. Let us introduce the following

bilinear forms

ac.(u, w) = \(V -1,V -w)q + p¢(Vu, Vw)g + p(Vu, Vw)g, (3.22)

a,(1, w) = X'(V -1, V- w)g + p’(Vu, Vw)g + 1 (Vu, Viw)q. (3.23)
In this notation, we utilize

(A, B)a = /Q(Az‘sz'j)dva
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sometimes also denoted by (A : B) (see equation (2.67)).

In both cases § > 0 (viscoelastic case, or VE) and § = 0 (elastic case, or E),
solutions will satisfy a weak form of (3.1)-(3.4), (3.10), (3.11), (3.18), and (3.19).
Bociu et al. [39] notion of an E-solution (6 = 0) follows that in [66] (and it is closely
related to the notion in [71]). For a VE-solution (6 > 0), they extend this notion in

a natural way as specified below.

Definition 3.1.1 [VE-Solution] A solution to (3.1)—(3.4), (3.10), (3.11), (3.18), and
(3.19) (with § > 0) is represented by the pair of functions u € H'(0,T;[H},(Q)])
S
and p € L*(0,T; H.p(2)) such that:
F

1. the following relations are satisfied for any w € [H.,(Q)°, ¢ € H.p (), and
S F
fe>=(0,T]):

5/0Tav(u’,w)fdt+/OTae(u,w)fdt—/OT(p,V-W)fdt
T T
:/ (gfgv,w>Fgfdt+/ (F,w)fdt, (3.24)
0 0
T T
/ (IC(V-u)Vp,Vq)de—/ (V-u,q)fdt
0 0
T T
— [ @ agpras [ Sofd @)
0 0

2. the initial conditions u(x,0) = u’ € [H.,(Q)]* and V - u(x,0) = dy € L*(Q)
S

are given, and we require V - u® = dy (in the L*(Q) sense).

Definition 3.1.2 [E-Solution] A solution to (3.1)—(3.4), (3.10), (3.11), (3.18), and
(3.19) (with 6 = 0) is represented by the pair of functions w € L*(0,T;[H},(Q)]°)
S
and p € L*(0,T; H.p(2)) such that:
F
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1. the following relations are satisfied for any w € [H.,(Q)]*, ¢ € H.p(Q), and
S F
feC((0,7)):

T T
/ ae(uv W)fdt _/ (pav ' W)fdt
0 0
T T
~ [ how s [ ®wisa (620
0 0
T T
| v vasa - [ (Vo
0 0
T T
— [tanysas [(Sara @
0 0

2. for every q € H}p(Q), the term (V - u(t),q) uniquely defines an absolutely
F
continuous function on [0,T] and the initial condition (V -u(0),q) = (do, q) is

satisfied.

Definition 3.1.3 [Energies/ Energy functionals for solutions are defined as follows:

E.(u() = 5 IV -l + pf Va4 (Tu V7] (3.28)
Eu(u(t) = 2 VIV u(o)l? + [ Vull +pt (Yo, V7w (3.29)
W(p(t)) = (K(V -u)Vp, Vp), (3.30)

where E, s the integrated elastic energy, F, s the integrated viscous energy, and

W is the integrated rate of change of fluid kinetic energy.
Let us consider the following assumptions on the domain {2 and the permeability &:
Assumption 3.1.1 We assume:

1. TL is a set of positive measure, so by Korn’s inequality [16] there exists a con-

stant Ckorn = Ckorn(§2) > 0 such that

Hg(w>|’[2L2(Q)]3><3 > CKomHVWH[zLQ(Q)]Bxg Vw e [Hrl,lsj (Q)]3 (331)

2. TP is a set of positive measure, so by Poincare’s inequality [38] there exists a

constant Cp = Cp(Q2) > 0 such that

lgllz2@) < CplI Va2 Vq € Hpp(Q). (3.32)
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3. The scalar function K : R — R is continuous on R. We assume K(s) > Kypin >

0 Vs € R, so there is a constant C,, such that

Ipll% o < CW (p(1)).
Additionally, we assume: K(s) < Kyax < 00 Vs € R.
4. The boundary I' is sufficiently regular [39).
We can now state the two main existence results [39].

Theorem 3.1.1 [Existence of VE-Solutions] Consider equations (3.1)—(3.4), (3.10),
(3.11), (3.18), and (3.19) with § > 0. Let Assumption 3.1.1 hold, and consider data

of the form:
F el <O,T; [LZ(Q)]?’) , S € L0, T; L*(Q)), (3.33)
g) € F(OTHPCYY), ¥ el (0.T:IATY).  (334)

Then, there ezists a VE-solution (in the sense of (3.24)—(3.25)) satisfying

sup [E.(u(t)) + 0 Eu(u(t))] + /O (B, (u) + 6E, (u,)] dt + /0 W (p) dt

te[0,7

<E[eT + 2T, (3.35)
where:
¢ = [CE.(u(0)) + CE,(u(0))] (3.36)
T
+C(ey, Op, K i) /0 [||F||8 + 1188 72y + SIS + 1197 120 | »

</45/1 = C(C,y, CKOI‘IU Mea )‘6)7 (337)
'%/2 = C(C'ya CKOHM ﬂva )‘U7 571)7 (338>

and cy, Ckom and Cp0 are the constants associated with the trace theorem [38], the

Korn’s inequality (3.31), and the Poincare’s inequality (3.32), respectively.
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Theorem 3.1.2 [Existence of E-Solutions] Consider equations (3.1)—(3.4), (3.10),
(3.11), (3.18), and (3.19) with § = 0. Let Assumption 3.1.1 hold, and consider data
of the form:

FeH (o,T; (LZ(Q))3> , S € L2(0,T; L*(Q)), (3.39)

gd € H' (0,T; (H'*(Y))?) gr € L* (0,T; LA(TY)) . (3.40)

Then there ezists an E-solution (in the sense of (3.26)—(3.27)) satisfying

T
sup Ee(u(t))—f—/ [W(p) + E.(u)]dt < €e”T, (3.41)
te[0,7] 0
where
% = C(cy, Ciom, 1% X°) E.(u(0)) (3.42)
+C(ex Cioms 1 A) sup (11 (8)] 22, + IF(DI3)
[OT}
+0ey Cr i) [ (183 oy + 188 ey + 192 ey
+Clen otk [ (IR + IR + 1s1E).
and
<%/ C(CW,OKorn,CP,M ¢ ’C;lm) (343)

and ¢, Ckom and Cp are the constants associated with the trace theorem [38], the

Korn’s inequality (3.31), and the Poincare’s inequality (3.32), respectively.

In Theorem 3.1.1 and Theorem 3.1.2, different time regularities of the volumetric
source of linear momentum F and the boundary source of traction g& are required,
namely L? time regularity for the viscoelastic case and H! for the elastic case. Inter-
estingly, numerical experiments described in Chapter 4 show that the Darcy velocity
and the related fluid energy might become unbounded in the purely elastic case if

data do not exhibit sufficient time regularity.
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3.2 Numerical Algorithm

In this section, we propose a novel numerical approach based on HDG finite el-
ements for the solution of system (3.1)—(3.6) in the computational domain © with
boundary 02 = I', subject to boundary conditions of the form (3.10)—(3.19) and ini-
tial conditions (3.20) (viscoelastic case, 6 > 0) or (3.21) (purely elastic case, § = 0).
Without loss of generality, we will present the method considering boundary condi-
tions of type (3.10), (3.11), (3.18), and (3.19), corresponding to the following parti-
tions of the boundary 052

00 =TquUTs =T, UTh.

Boundary conditions of mixed type (3.12)—(3.17) simply require a projection on the
coordinates axes. We define the computational time domain ¢ € (¢sart, tenda) of length
T = tena — tstart- Thus, in the space-time domain ¢ = Q X (tseart, tend), the following

system has to be solved:

g=2uc(u) + X(V-u)l+62u’c(a’) + \"(V-u')]) —pL  inQ, (3.44)
V.-g=F in Q, (3.45)
v =—k(n)Vp in Q, (3.46)
(V-u)+V.-v=_S in Q, (3.47)
n=V-u+n’ in Q, (3.48)
u=g? onTY,  (3.49)
on =gy on I'Y, (3.50)
p=gP onTp,  (3.51)
v-n=g¥ on 'Y,  (3.52)
subject to the following initial conditions:
u=u’ inQ att=tyu (case 0 > 0), (3.53)

V-u=dy inQ att=tgu (case 6 = 0). (3.54)
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Observe that we used equation (3.7) and (2.156) to rewrite the permeability coefficient
as a function of the fluid volume fraction n, i.e. x(n) = K(V -u). In (3.48), n°
represents the initial value of the fluid volume fraction.

The computational method proposed by Bociu et al. [39] for a one dimensional

version of system (3.44)—(3.48) is composed of three main steps:
1. Backward Euler method for discretization in time [47];

2. a fixed-point iteration for the nonlinearity in the permeability that couples

balance and constitutive equations (3.44)—(3.48);
3. a dual mixed finite element method for the discretization in space.

In this thesis, we extend their numerical approach to multidimensional geometries
and validate it against available data in a living tissue, i.e. the lamina cribrosa in the

ONH [1]. The details of each step are given in the following subsections.

3.2.1 Temporal Semi-Discretization

We divide [tgart, tena) into a finite number r > 1 of sub-intervals [, t'71],i =
0,...,7 — 1, of uniform length At = T'/r. For any smooth function (in time) J =
V(x,t), we let V' := Y(x,t%); otherwise, if ) is discontinuous (in time) at t = ', we
let V' := Y(x,t""). Using the Backward Euler method for the time discretization,
we get a sequence of r non linearly coupled boundary value problems, as shown in

Algorithm 3.2.1.

3.2.2 Fixed-Point Iteration

We adopt a Picard iteration to numerically deal with the nonlinear dependence
of the permeability x on n = V - u + n® in equation (3.57). This approach has
also been used by Cao et al. [73]. The complete fixed point iteration is described in
Algorithm 3.2.2. The limiter IT in equation (3.66) is a function IT: R — [fmin, Pmax)
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Algorithm 3.2.1 Temporal Semi-Discretization of system (3.44)—(3.52)

Input: u® and n°.

1: fort=0,...,r—1do

2: Given u’, solve the following nonlinear problem:
gH-l — 2Mve§(ui+l) 4 )\ve(v . ui+1)£
o : ‘ .
- () + X D) - L
v i+1 F’H—l
Vz‘+1 — _H<ni+1)vpi+1’

1 . . . 1 ,
— V- i+1 vV - i+1 Sz—l—l —v-u
ArY TV Tar

nz+1 — v . uz—f—l + n07

for x € 2, with:

uitl = gg,i+1 on F?,
giJrln _ gé\/,i+1 on F]g’
pi+1 _ g?,iﬂ on F?a
vitl.n = gg,’i-‘rl on Fg,

where p"¢ = p® + Aitu”, A% =\ + A%)\”.

3. end for

(3.55)
(3.56)
(3.57)
(3.58)
(3.59)
(3.60)

w
D
—_

—~ —~ —~ —~
(@) [@))
w \V)

~— ~— ~— ~—

w
D
g
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where 0 < Npin < Nmax < 1 are prescribed bounds on the fluid volume fraction n.
This step is important to ensure that n remains within its physical admissible range,
i.e. n € (0,1). We do not allow either n = 0 (no fluid phase) or n = 1 (no solid
phase). Several different choices are possible for II. However, it is important to let
IT be a sufficiently smooth mapping in order to avoid limit cycles in the iterative
method. For example, a mapping that is only only Lipschitz-continuous on R and

could lead to limit cycles is given below (see Figure 3.1):

;

Nin 1 7 < Ny,

MLip(n) = { n if if i < 1 < Npax,

Nmax  1f 7> Npax.
\

On the other hand, a C'(R) mapping that should be able to suppress limit cycles is
the following (see Figure 3.1):

(

hi(n) if n < npm + A,

er(n) =< n if i N + A < 1< Ny — A, (3.65)

ha(n) if n > ngpax — A,
\

where A = ¢(Nmax — Nmin) and 0 < ¢ < 1. The functions h;: R — R and hy: R - R

in (3.65) have to meet some reasonable criteria, such as:

lim hy(n) = Nmin,
n——o00

hl (77/) Z Nmin if n S Nmin + Aa

h'l (nmin + A) = Nmin A?

dh,y

- =1
dn ’

N=Nmin +A
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and, similarly,

lim he(n) = Nmax,
n—oo

ha(n) < Nmax if 7> Ny — A,
hZ(nmax - A) = Nmax — A

dhy
dn

Y

= 1.

N=Nmax—A

In this work, we let hy and ho be branches of hyperbolas satisfying the above condi-

tions:
_A2
h - min»
l(n) n — (nmin + QA) tn
—A2
ho(n) = + Nax-

Depending on the functional dependence of the permeability x on n, bounding
n also causes k to be bounded, thus ensuring that Assumption 3.1.1, introduced by
Bociu et al. [39] to prove the existence theorems 3.1.1 and 3.1.2, is satisfied.

Algorithm 3.2.2 is a semi-implicit variant of the staggered (or loosely coupled)
algorithm proposed and successfully used by Causin et al. [74] for the numerical study
of a problem similar to that considered in Chapter 4. Algorithm 3.2.2 is convergent

if the following map:

Htot : R — [nmina nmax]

R S Ut — I, (n9),

which is a composition of the limiter II introduced in (3.66) with the solution map
of system (3.55)—(3.64), admits a fixed point. In this work, we do not provide an
analytic study of the conditions under which this holds. Nevertheless, the sensitivity
analysis provided in Section 3.3.2 suggests that the convergence of Algorithm 3.2.2

is strongly affected by the physical and geometrical parameters characterizing the

problem.
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nmax
nmax — A k/'
Nmin T4 I HLip
"'min — HC1
o1 05 0 05 i 15 2

Figure 3.1. Examples of limiter functions that can be used in Algo-
rithm 3.2.2 to ensure that the fluid volume fraction n is within physical
limits, i.e. 0 < n < 1. The limiter Iy, is only Lipschitz continuous and
leads to limit cycles in the fixed-point iterations, whereas g1 is C1(R)
and does not cause such behavior.

Finally, the divergence of the solid displacement V - u/*! has to be updated, as
mentioned in line 4 of Algorithm 3.2.2. This point will be addressed in the next

section.

3.2.3 Spatial Discretization by the HDG Method

In many engineering applications, it is extremely delicate to choose a proper spatial
discretization. This is due to the fact that gradients often represent quantities of
primary interest. For example, stresses drive the non-uniform growth and remodeling
of the collagen within the lamina cribrosa [75], whereas discharge velocities are related
to the blood perfusion of the laminar tissue.

This thesis presents a novel numerical method for porous media viscoelasticity
based on HDG finite elements for the direct approximation of both the primal un-
knowns, i.e. the solid displacement u and the fluid pressure p, and the dual unknowns,

L.e. the total stress g and the discharge velocity v.
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Algorithm 3.2.2 Fixed-Point Iteration for the Nonlinear Problem (3.55)—(3.64).

Input: u® = v’ and n® =n?,j =0.

1: while termination criterion is not met do

2 Apply a limiter to the fluid volume fraction nt+1/2)

nUt1/2) — H(n(j)).

3: Solve the following linear problem:

g(j-&-l) _ 2Mve€(u(j+1)) + )\ve(v . u(j+1))£

— o 2ute(u’) + AU (V- u)]) - pU L

vty — —n(n(j+1/2))Vp(j+1),
1
At At

iv T A +V.- vt — git+l +

for x € Q, with

j+1) _ _Djitl
bt — g5
j N,i+1
Q(J-‘rl)n — g5 Jit
j+1) _  D,i+1
p( ) = 9r

j Nyi+1
vUtD . = 9F7Z+

4: Update V - uY*) by using equation (3.67).
5: Update the fluid volume fraction

plUt) — . U+ 1 0,
6 j=j+1

7. end while

D
on 'y,
N
onI'g,
D
on I'p,

N
on I'p.

(3.66)

(3.67)

(3.68)
(3.69)

(3.70)

~—~ — —~ —~
NN
W N

N— N— SN— S~—

(3.75)
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Similarly to other HDG methods devised for other applications, the approach
considered here has some very interesting features, partially inherited by DG methods,
which make it particularly well-suited for solving poro-viscoelastic models compared

to other finite element approaches, like those mentioned in Chapter 1:

e It can handle any type of mesh and basis functions and is ideally suited for

h/p-adaptivity [52].

e [t obtains optimal order of convergence for all the variables on stationary prob-
lems. In other words, if polynomials of degree k are used to approximate a
variable and the variable itself meets sufficient regularity requirements, then
the approximation error behaves like O(h**1), where h is the maximum diam-

eter of a mesh.

e [t has a stabilization mechanism that does not degrade its high order accuracy

and does not need any tuning.

e [t is obtained by discretizing a characterization of the exact solution written in
terms of many local problems, one for each element of the triangulation €2, of
the domain €2, with suitably chosen data, and in terms of a single global prob-
lem that actually determines them. This is what makes this method, like other
HDG methods, efficiently implementable since it inherits the above-mentioned
structure of the exact solution. With respect to other DG methods of compa-
rable accuracy, HDG methods require less degrees of freedom in the solution of
the global system, since this is written in terms of (statically condensed onto)
hybrid variables that represent the trace of the solution on the boundaries of

the elements.

Let us now describe the HDG discretization for system (3.67)—(3.74) in details.
The method we use combines Cockburn et al.’s [19] and Qiu et al.’s [55,57]. We will
then use their notation. Let €2 be a conforming triangulation of a polyhedral domain

Q c R?, d = 2,3, made of shape-regular polyhedral elements K. An interior face of



115

2y, is any set F of positive (d — 1)-Lebesgue measure of the form F' = KT NOK~ for
some two elements K+ and K~ of Q;,. We say that F' is a boundary face if there is an
element K € € such that F' = 0K NI and the (d — 1)-Lebesgue measure of F is not
zero. We recall that 0, = { 0K | K € y, }, and &, denotes the set of all faces I of
all the elements. Let also £ denote the set of interior faces of 2. If V(D) denotes
a space of scalar-valued functions defined on D, the corresponding space of vector-
valued functions is V(D) := (V(D))? and the corresponding space of matrix-valued
functions is V(D) := (V(D))™“. Finally, V(S, D) denotes the symmetric subspace
of V(D). We will also write

(v,w)g, = > (v,w)k, (1, Mo, = Y (1 Nox. (3.76)

KeQy, KeQy,

We seek an approximation (o, up, Qp, Vi, Pr, Pr) to

(GUHD 0D g+ GG+ pHD) G0,

in the finite dimensional space

u u U p p p
Vi X Wy x My x Vi x W' x My,

defined by:
Vii={m e LS,Q) | mlx € L(S,K) VK e}, (3.77)
v={ 1y € L’(Q) | pylx e P*(K) VK e, }, (3.78)
My = { ps € L*(&,) | uslr € PH(F) VF €&, }, (3.79)
Vi ={ s € L*(Q) | pslx € PH(K) VK e, }, (3.80)
WP ={ € L’(Q) | pulx € P¥(K) VKe,}, (3.81)
M = { g € L*(&,) | polr € PH(F) VFe&,}, (3.82)

where k* could be either k£ or k + 1 in equation (3.81). Observe that all the spaces
introduced above are element-wise, or face-wise, discontinuous. Moreover, by defini-

tion of V}, the symmetry of the stress tensor is imposed strongly, rather than in a

weak sense [76-78].
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For any discontinuous (scalar, vector or tensor) function w in Vi, W}, V', or W},
the trace u|p on an interior face F' = 0K N JK~ is a double value function, whose
two branches are denoted by (u|r)x+ and (u|g)k-. For any double-valued scalar (u),

vector (v), or tensor (w) function, we define the jump of its normal component across

an interior face F' by

[ulp = ug+ — ug-,
[[V]]F =Vg+ N+ + Vg- - Ng—,

[w]r = wr+ng+ + wr-ng-,
respectively. On any face F' of K lying on the boundary, we set
[vlF = vk - nk,
[[g]]F = WkNEk.
A Characterization of the Exact Solution
Let us rewrite system (3.67)—(3.74) in mixed form:

clg(j“) + co(tr g(jﬂ))é — g(u(jJ’l)) + PTp(j+1)£ = —cse(u’) —u(V-u')I,  (3.83)

V. gUth = Fit (3.84)

K (nUTYD) ) 4 gplith) = o, (3.85)
1 . . . 1 ,

il v ARSMCE S VUt — gt L © gyl .86

AtVu +V-v S +Atv u’, (3.86)

for x € Q, where trg = 0y, nUT/? depends on V - u¥) according to (3.66), (3.75),

and
1 \ve 1
=5, Cg = — = — :
21]6 2’062 ve ve 206
I 11Ve (207 4 3Ave) 2Mve(/l +3>
)\ve
O 2ptey) O (2ptes + NPy)
Cy = — c Cp = — c
A 1T A e )

PT201+302.
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In Appendix A, it is shown how equation (3.67) can be manipulated to obtain its
mixed form (3.83) and the functional expressions of coefficients ¢y, ¢, c3, and ¢.

Boundary conditions are:

it = gt on I'Z, (3.87)
ot n = gttt on 'Y, (3.88)
puth = it on I'Z, (3.89)
v = gNitt on I'Y, (3.90)

Four functions g, u, v, p are exact solutions of (3.83)-(3.90) if and only if they satisfy

the following conditions [19]:
e cquations (3.83)—(3.86) are satisfied on each element K of the mesh §2;

e transmission conditions are satisfied on each interior face F' € &

ﬂﬁ-el]]F:Q [[fl'eg]]pzo, [[ﬁ'@g,]]F:O, (391)
[¢]F =0, (3.92)
[plF =0, (3.93)
[V]r = 0; (3.94)

e boundary conditions:

il =gl e if Fely,
onlp = gJSV’iH|F if FeT¥,
Pl =g r if FeTk,
venlp =gVt e if Fely;

where u, ¢, p, and v are the traces of the displacement, the stress, the fluid pressure
and the discharge velocity on the boundary of the elements, respectively. The trans-

mission conditions (3.91)-(3.94) imply that @,dn,p, and v - n are single-valued on
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the interior faces of the mesh. In every mesh element K, we can obtain (g, u,v, p) in

terms of 01, p on K and u’, ! S by solving the following local Dirichlet problem

¢10 + ea(tro)l — g(u) + Prpl = —cse(u’) — es(V - u')1

V'g:Fi—H

K (Ut £ Vp =0

1 , 1 A
S v. v St L STy
Atv ut+V-v +Atv u
u=1u
p=p

in K, (3.95)
in K, (3.96)
in K, (3.97)
in K, (3.98)
on 0K, (3.99)

on OK. (3.100)

The functions @ and p can now be determined on &, as the solutions of the following

global problem:

[c]lr=0 if Feé&p, (3.101)
[V]r =0 if Feép, (3.102)
ilp =gs ™t r if Fer?, (3.103)
QD|F = gg’”lhw if Feld, (3.104)
Plr =g p if FeT?, (3.105)
venlp=gp Y p if Fery. (3.106)

The HDG method is obtained by constructing discrete versions of (3.95)—(3.106). In

this way, the only globally coupled degrees of freedom will be those of the global

formulations (3.101)—(3.106).
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The HDG Formulation
Using notation (3.76), equations (3.95)—(3.106) are discretized with:

(c1ahs 1)y, + (coatran, trpr)a, — <ﬁhagln>69h + (ap,V - ,l:h)Qh + (PTph,tl"gﬂQh =

—(esg(uh), n)e, — (ca(V - wj), tr i),

(3.107)

—(an, Vits)a, + (@nn, pa)oa, = (F py)a,, (3.108)

(K™'Va, 3)a, + (Prs i3 - 1)agy, — (Pr, V - p3)a, =0, (3.109)
Ait(v : uh>M4)Qh — (v, VM)Qh + (Vi -, N4>89h = (5i+1aﬂ4)ﬂh

+ Ai(v -y, fa)a,,  (3.110)

(gnn, N5>a§zh\rD = < >H5>Fga (3.111)

<ﬁhaﬂ5>FD (g Dl+1vﬂ5>rga (3.112)

(On -1, p6)ogure = (gr " He) ey (3.113)

<ﬁha,u6>FD (9 DZ+1,M6>1“Q’ (3.114)

for all (g1, poo, p3, pia, s, pis) € Vi x Wi x V7 x W' x M}, x My, where the numerical

normal fluxes 6, and v; are defined as:

ghn:ghn—Ts(PMuuh—ﬁh), on 8Qh, (3115)

Vi -0+ Tp(pp — Dn) if pu|x € P*(K),
\A/h N = on 8Qh (3116)

Vi - A Tp(Pyspn — Pr) - if pulx € PPY(K),
In (3.115), (3.116), Py« and Pyy» denote the standard L2-orthogonal projections from
L?(&,) onto MY and from L*(&,) onto MY, respectively. These projection operators
have been introduced by Lehrenfeld [79] to define the numerical normal fluxes for
diffusion problems. The parameters 7¢ and 77 are called stabilization parameters.

They only need to satisfy few requirements in order to get optimal convergence rates:
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e 75 is allowed to be double valued on &7, with two branches 75 = 7& > 0 and
4= T§(+ > 0 defined on the face F' shared by the elements K~ and K, such
that

75 = O(hh), ¢ = O(hih), (3.117)

where hg is the diameter of the K-th element. We can also let 79 be a fixed

positive number on all faces, with 7¢ = O(h™') [57].

e Similarly to 7g, 7 is allowed to be double valued on &;. However, its defi-
nition depends on the choice of the space W} for the fluid pressure (see equa-
tion (3.81)). If pu|x € P¥(K), i.e. k* = kin (3.81), 7 is a non negative function
that does not vanish identically on the boundary 0K of each element, that is
VK € O, 3F € K such that 75|p > 0 [54]. Instead, if p,|x € P (K), i.e.

k* =k +1in (3.81), 77 must be strictly positive on all the faces. In particular
T =0 ) >0, 715 =0(hg)>0. (3.118)

In this case, we can also let 7 be a fixed positive number on all the faces, with

= O(h™) [55).

Equations (3.111) and (3.113) combine the flux equilibrium on internal faces (3.101),
(3.102) and the Neumann boundary conditions (3.105), (3.106) written in weak form:

o Flux equilibrium: for all F € &, F = K~ N K™, we impose:

([2n], ms)r = ((@nm)l k- p5) P + ((@n00) [+ 1) P = 0, (3.119)

(IVal, m6yr = (¥ - 1)k, pie) P + (Vi - 1) it ) = 0. (3.120)

These last two equations also provide an intuitive explanation of the important
role played by the projection operators Py« and Py in the definition of the
normal numerical fluxes (3.115), (3.116). By (3.115) and (3.116), the (extension
by zero to &, of the functions) [64][ce and [Vi]lee belong to M} and My,
respectively. Thus, equations (3.119) and (3.120) are stating that

[o4]lee =0, [Villee = 0
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pointwise, i.e. the normal numerical fluxes gyn and v; - n are single-valued.
This means that 75, and v, are conservative numerical fluxes [19,48]. Without
the projections Pye and Pyp, by (3.119) and (3.120) the normal components

of g and Vv, are only weakly continuous across the interfaces.

e Neumann boundary conditions:

(onm, ps)r = (82", ps) VFery,
(Vi pe) = <g?’i+1, e) F VFeIX.

Dirichlet boundary conditions are represented by (3.112) and (3.114).

Note that equations (3.107)—(3.110) are completely local and, consequently, for
each element K € (1), the internal variables gy, uy, vy, and py, can be eliminated
in favor of 1y, p and the problem data, i.e. u},F™' and S“*'. The solutions of
the local problems can then be plugged into (3.111)—(3.114) to get a system whose
globally coupled degrees of freedom are those of the numerical traces 0y, and p,. This
elimination procedure is referred to as static condensation and is the fundamental
step that makes the hybridized method efficient and computationally competitive
with standard displacement-based approaches.

After solving problem (3.107)—(3.114), which corresponds to the spatial discretiza-
tion of the linear problem in Algorithm 3.2.2, the divergence of the solid displacement
has to be updated. By applying the trace operator to (3.83), we get the following

equation
cy trggﬂ) + 3¢y trggﬂ) —V- u,(ljﬂ) + 3PTp§lj+1) = —c3V - uﬁl —3c4V - uﬁl,
which can be solved for V - ugﬂ), yielding
A\ ugjﬂ) = (c1 + 3c2) trgﬁlﬂl) + SPTng) + (c3 4+ 3c4)V - U, (3.121)

We notice that the evaluation of (3.121) does not require numerical differentiation,
but only quantities that are directly computed by the HDG method. Thus it is
expected that the high accuracy provided by the HDG scheme in the approximation



122

of the stress, the solid displacement and the fluid pressure reflects into the evaluation

of V- u”l).

3.3 Numerical Experiments

In this section we provide experiments to numerically validate our HDG method.

For any function u(x,t), either scalar or vectorial, defined in the space-time domain

Q =0 x [tstarm tend]

we consider the norm
lullg == sup  [Ju(x,t)[|r2q)-
te [tst art atcnd

If u does not depend on time, we have

lulle = llu(x)l 2,

For any function w(x,t), either scalar or vectorial, defined on the set of faces &, of a

mesh, we consider

1/2
[wlln = sup [lw(x,t)][n, with |w(x,t)[n:= (Z [F[llw(x,1) ||F> '

te[tstart:tend} Feé'h

If w does not depend on time, we have

el := (Z Tale ||F) N

Feé&y
To estimate the accuracy of the HDG method on time dependent problems, the

following errors are computed

e = lla —anll, en=llu—wlle, e =I[v-villo, € =Ilp—pnllg, (3.122)
and
en=lu—twllo, & =lp—mnllo, er=Illu—tulln, € =Ilp—pulln, (3.123)
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Table 3.1
Data for the eight meshes used in the experiments.

Number of triangles 8 32 128 512 2048 8192 32768 131072

Number of edges 16 56 208 800 3136 12416 49408 197120

where 10y, pj, represent the local averages of the solid displacement and fluid pressure,

respectively. On stationary problems, relative errors are computed, instead:

e = Hg—gh!h’ o ||u—uh\|ﬂ’ . [V = villo. o ||p—ph||ﬂ’
’ llello ’ [ulle ’ [vlle " Iplle
(3.124)
L 18— wllo. P 1P = pulle i (o= nlls. . [P — Bnlln
’ lalle " 1Plq ’ [ul]n " |11
(3.125)

Estimates of the order of convergence for a generic quantity e, are computed using

the formula logy(ep/2/en).

3.3.1 Convergence Tests in 2D

In this section we reproduce in a two-dimensional setting the convergence tests
provided by Bociu et al. in the one-dimensional case for their dual mixed hybridized
method for poro-viscoelasticity [39]. We perform tests for several values of the degree
k of the local basis functions, £k = 1,2,3. The global coupled HDG system coming
from the flux equilibrium conditions (3.119), (3.120) is solved on 64 cores using the
SuperLU library, a general purpose library for the direct solution of large, sparse,

non-symmetric systems of linear equations [80,81].
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Validation Test Case 1

First, we consider a linear stationary test case with 6 = 0 in (3.44)—(3.52). We
take the domain € to be the square [0, 1] x [0, 1]. Boundary conditions (BCs) are as

follows:

e on 0 <z < 1,y = 0: Dirichlet BCs on both the displacement u and the fluid

pressure p;

e onz=1,0<y <1: Neumann BCs on the total stress ¢ and Dirichlet BCs on

p;

eon (0 < x <1,y = 1: Dirichlet BCs on u and Neumann BCs on the Darcy

velocity v;
e onzr =0,0 <y <1: Neumann BCs on both a and v.

The coarsest triangulation contains 8 elements. Seven nested refinements of this
partition are used. The main triangulation data are given in Table 3.1. We use a
constant permeability coefficient x = ko = 1 m?Pa~!s™! and choose the data so that

the exact solution is

u = Ut cos(mz) sin(ry) : p = Pessin(mz) sin(my),
sin(mx) cos(my)
with Uy = 1m, Py = 1Pa. We use the formulation with py|x € P*(K), for
K € Qy, and test for several values of the polynomial degree k on the eight meshes.
As shown in Tables C.1-C.3, the errors eg,re1>62762,re1762,re1 behave like O(hk*1)
whereas errors e . €h el € o behave like O(h*T2). The reduced convergence
rates for £k = 2,3 on the finest meshes are due to round-off errors. Hence, the
HDG method is able to achieve optimal convergence for both the dual variables,
oy and vy, and the primal variables, u, and p,. Note that due to the disparity

of polynomial degrees for the stress and displacement, and for the Darcy velocity

and fluid pressure, optimal convergence of this method yields the same quality of
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the solution as a postprocessed method based on a superconvergent scheme. This
is extremely important in any application where gradients have to be approximated

accurately and high order accuracy is also required for the primal variables.

Validation Test Case 2

Here, we consider a nonlinear test case. We consider the same domain, boundary
conditions and mesh data as in test case 1. The porosity n is now allowed to vary
according to

n=V-u+0.5, (3.126)

within the range [Nmin, Pmax|, Where 0 < Npin < Nmax, SO that the permeability &,

expressed by the Carman-Kozeny law [21]

3

n
H(n) = K}refm7 (3127)
satisfies
n3 ; n3
0< ‘e . mm < < Kre _max
P )2 Kn) < (1= N )?

We set Nimin = 0.1, max = 0.9, ket = 1m?Pa~!s™!. Figure 3.2 shows the graph of
k(n) for n € [Nmin, Mmax) = [0.1,0.9]. Observe that

K (Nmin) & 0.0012m*Pa™'s ™, K (Nmax) = 73 m*Pa~'s™!,
so that variations in x range over almost 5 orders of magnitude.

Data are taken so that the exact solution is

cos(mz) sin(my) . '
u = Uy : p = Pressin(mz) sin(my),
sin(mx) cos(my)

with Upes = 0.1/7m, P, = 0.1 Pa. The fixed point algorithm terminates when

U, — U ]|
H J _ J 1H (3128)
U1l
where ¢ = -1071% and Ijj and ﬂj_l are the vectors with all the Lagrange multipliers

1, p at the current and the previous fixed point iterations, respectively. Interestingly,
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Figure 3.2. Carman-Kozeny law for the permeability coefficient.
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the fixed point algorithm converges in 11 iterations for all the values of k£ on all the
meshes (besides the case k = 1 on the first mesh where convergence is achieved in 12
iterations).

Tables C.4-C.6 show that the errors ezyrel,e}’l,rel,eZﬁrel,e’,';rel behave like O(h*1)
whereas errors €}, ., €, o, €h rels ezrel behave like O(h**?). Again, the reduced conver-
gence rates for k = 2,3 on the finest meshes are due to round-off errors. Thus, even
in this nonlinear test case, the HDG method coupled with the fixed point algorithm
has the very interesting feature of achieving optimal convergence for both the dual

variables, g5 and vy, and the primal variables, u;, and py,.

Validation Test Case 3

Here we consider a time dependent version of test case 1. We consider prob-
lem (3.44)—(3.53) with 6 = 1 in the unit square Q = [0, 1] x [0, 1] and the time interval
[0, 7], with T" = 1s. A constant permeability coefficient k = s = 1m?Pa~ls7! is

used and data are taken so that the exact solution is

u = Uer cos(mz) sin(my) sin(2mt) , p = Prersin(mz) sin(my) sin(27t),
sin(mx) cos(my) sin(27t)
with U = 1 m, P = 1 Pa. We take the same meshes used in test case 1 and temporal
step sizes At = T'/r, with r € {5, 10, 20, 40, 80, 160, 320,640}. Tables C.7-C.9 show
the absolute errors. The approximate variables converge to the corresponding exact
ones with linear rate with respect to the mesh diameter h, spoiling the convergence
property of the HDG method achieved in the stationary test case 1. The degradation
of the convergence rate of the HDG method is due to the choice of the Backward
Euler method as time-advancing scheme, which is first-order accurate in time [47].

Observe that increasing the polynomial degree of the HDG spaces (p-refinement) is

effective in reducing the errors for any pair of mesh and time step.
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Validation Test Case 4

Here we consider a time dependent version of test case 2. Let us consider again
problem (3.44)—(3.53) with 6 = 1 in the unit square 2 = [0,1] x [0, 1] and the time
interval [0, 7], with 7' = 1s. Porosity and permeability are nonlinear functions of the
solution, as described in test case 2. Data are taken so that the exact solution is

cos(mz) sin(my) sin(27t)

u = Uref

, p = Persin(mz) sin(my) sin(27t),
sin(mx) cos(my) sin(27t)

with Upef = 0.1/7m, Poef = 0.1 Pa. We take the same meshes used in test case 2 and
temporal step sizes At = T'/r, with r € {5, 10, 20, 40, 80, 160, 320,640}. Tables C.10—
C.12 show the absolute errors. Unlike the stationary nonlinear case 2, the convergence
of the approximate variables reduces to linear rate due to the Backward Euler method.

Increasing the polynomial degree effectively reduces the errors also in this test case.

3.3.2 Sensitivity Analysis

The goal of this section is to determine how variations in the poro-visco-elastic
model parameters affect the performance of our HDG method. Variations in the

following physical parameters will be considered:
e permeability k;
e clastic and viscous parameters: \°, u® Y, u?;
e different scaling of the fluid pressure and the solid displacement;
e time step At.

In 2D, the sensitivity analysis is carried out by repeating the four validation test cases
with updated parameters on the first seven meshes in Table 3.1 with polynomial
degree k = 1. The results shown below illustrate that, in some cases, it may be

beneficial to scale problem (3.44)—(3.54) and reformulate it in terms of dimensionless
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variables in order to restore the accuracy provided by the HDG scheme. However,
care is needed when using this approach, as the choice of characteristic scales may
be a non trivial issue for the problem at hand [82]. In Appendix B, we show how

problem (3.44)—(3.54) can be reformulated in terms of dimensionless variables.

Effect of Permeability

e Solving the validation test case 1 in 2D for a smaller value of the permeability s
(k = Kot = 1 x 1074 m2Pa~!s7!), we observe a full order drop in the convergence
rate of pj, on the seventh mesh when using the formulation with p,|x € P (K).
Instead, when taking py|x € P¥(K), there is no convergence rate drop for py,
but errors for p; are one order of magnitude bigger, as expected. Using a
smaller value for the permeability £ (K = kr = 1 x 107°m?Pa!s71), the
errors for p, and p;, actually increase from the sixth to the seventh mesh with

il € PFY(K), whereas this does not occur with py,|x € P*(K).

e By setting rrf = 1 x 1072m?Pa~!s7! in the validation test case 2 in 2D, rel-
ative errors for the two different formulations for p;, exhibit a similar trend to
those obtained in test case 1 for kps = 1 x 107*m?Pa~'s™!'. Also, the num-

bers of fixed point iterations needed by both formulations to converge are not

affected. Conversely, when taking ks = 1 x 107*m?Pa~!s7!, the formulation
with pn|x € P*(K) does not converge within the maximum number of fixed
point iterations (500) on the last three meshes. The relative inf norm of the
increments defined in (3.128) oscillates between 1 x 1071 and 1 x 1072, With
| € PF(K), the algorithm converges in 11 iterations on every mesh (except
the first one where it takes 14 iterations to converge). By comparing relative

errors, we observe that the formulation with p|r € P*™(K) provides smaller

approximation errors, even if it does not always achieve convergence.

Working with the poro-viscoelastic equations in dimensionless form (see Appendix B)

may be beneficial in the following situations:
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e in test case 1, setting all the characteristic parameters but v, (the character-
istic Darcy velocity) equal to 1 and v. = kp./z., restores the accuracy of the

formulation with py,|x € P*(K).

I and all the other characteristic

e in test case 2, with v, = kpef = 1 X 1074 ms™
parameters set equal to 1, the fixed point algorithm converges in 11 iterations

on every mesh, and its accuracy is restored for p,|x € P*1(K).

Conclusion: the formulation with py,|x € P*(K) looks more stable when the per-
meability x gets small. On the other hand, the formulation with py|x € P (K)
always provides smaller errors on stationary problems as expected, even when it does
not converge. This may indicate that using too strict tolerances in the fixed point
algorithm is not beneficial or that a better alternative to the fixed point algorithm

should be used.

Effect of Elastic and Viscous Parameters

Here we consider three pairs of values for the elastic parameters ;¢ and A\

pué =5 x 10" Pa, \* = 1 x 10* Pa,
1é =3 x 107 Pa, \* = 2 x 10° Pa,

ué =6 x 10°Pa, \* = 1 x 10® Pa.

The first two pairs correspond to the elastic parameters used by Phillips to study
locking, or the nonphysical pressure oscillations, which sometimes arise in numerical
algorithms for poroelasticity [17]. The last pair is used in this work in a later section
to characterize the elastic behavior of the lamina cribrosa [83,84]. For stationary test

cases, we considered relative rather than absolute errors as in (3.122), (3.123).

e All the three pairs have similar effects on the performance of the HDG method
in the validation test case 1. The higher the elastic parameters, the bigger the

relative errors for u, and . Also, relative errors for p, are 1 to 2 orders of
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magnitude smaller when taking pp|x € P"™(K) rather than p|x € P*(K).
Interestingly, convergence rates for all the variables are just as expected (see

Table C.13), except for u,, which decreases much faster.

e Similar relative errors and convergence rates to those shown in Table C.13 are
found in the validation test case 2 as the elastic parameters get bigger. More-
over, with the first two pairs of elastic parameters, the fixed point algorithm
converges just in 4 iterations on each mesh, whereas, with the last pair, it fails
to converge on all the meshes but the two coarsest ones. The performance of
our method is still very good, as the relative inf norm of the increments defined

in (3.128) oscillates between 1 x 1072 and 1 x 1078.

Working with the poro-viscoelastic equations in dimensionless form (see Appendix B)

may be beneficial in the following situations:

e Setting the characteristic total stress o, = 2u¢ and all the other characteristic
parameters to 1 restores the accuracy of u, and 1, in test case 1 and 2, even
for the biggest pair of elastic parameters, u® = 6 x 10% Pa, \> = 1 x 108 Pa (see
Table C.14 and Table C.15). In test case 2, even with this last pair, the fixed

point algorithm converges in 4 iterations on all the meshes.

Conclusion: as the values of the elastic parameters increase, fine meshes might be
needed in order to get reasonable errors for the solid displacement. The HDG method
seems not to suffer from locking arising in linear elasticity for nearly incompressible
materials, as all the variables retain optimal convergence rates even for the biggest pair
of elastic parameters. The convergence of the fixed point method is affected by the
elastic parameters, but this could be tackled by working with dimensionless equations.
Taking pu|x € P*(K) provides smaller approximation errors than py|x € P*(K)

as expected.



Table 3.2

Combinations of U, and P, tested in the sensitivity analysis.

Pair Uref [m] Pref [Pa]

1 1 100
2 1 10000
3 0.01 1

4 0.0001 1

) 0.01 0.01
6 0.0001  0.0001

132
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Effect of Pressure and Solid Displacement Scaling

In this section, we consider the effect of changing the scaling of u, and p, by
tuning U,et and P, as shown in Table 3.2. Choosing P,et/User > 1 Pam™! is based on
the fact that the model proposed by Bociu et al. [39] is valid under the assumption
of small solid deformations and displacements, whereas the fluid pressure is allowed

to vary greatly.

e In the validation test case 1, as long as Pret/Us = 1 Pa m~!, the performance
of the HDG method is not affected and the same approximation errors corre-
sponding to Uyes = 1 m, P,o = 1 Pa are obtained (see Table C.1). Conversely, the
bigger the ratio Pet/Uset, the worse the effect on the convergence of the HDG
method. In particular, if Pret/User = 1 X 10* Pam™!, approximation errors for uy,
and uy, are 3 orders of magnitude bigger than the case Por/Uyer = 1 Pa m~! on all
the meshes (see Table C.16). Using py|x € P*(K) rather than py,|x € P*(K)

provides bigger errors, but with the same order of magnitude.

e In the validation test case 2, only the first 6 meshes shown in Table 3.1 were used.
Similarly to test case 1, as long as P,/U,es = 1 Pam™!, the accuracy of the HDG
method does not degrade and the same approximation errors corresponding to
Uiet = 1m, Pot = 1 Pa are obtained (see Table C.4). Instead, in the other four
cases shown in Table 3.2, the HDG method does not perform well. With the
third and the fourth pairs, the fixed point algorithm converges, even faster than
in the original test case 2, but errors show the same trend as in the linear test
case (see Table C.16). The first two pairs U, Prer shown in Table 3.2 have a
detrimental effect on the fixed point algorithm: there is no convergence on any
mesh, as the relative increments defined in equation (3.128) oscillate between
1x 1072 and 1 x 107!, Errors are several orders of magnitude bigger than
those in the original test case 2 and decrease very slowly (compare Table C.4

and Table C.17).
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The use of dimensionless equations (see Appendix B) is tested only for the first two
pairs (Uyes, Prer) shown in Table 3.2, as they involve scaling of the fluid pressure, not
of the displacement field. Conversely, when considering the third and the fourth
pairs, the displacement field u;, should be scaled, but this would be problematic in
the nonlinear test case 2, as V - u;, could become close to 1, thereby making the

Carman-Kozeny formula blow up. We take
pc:Prefy Uc:Prefy Uc:’ipc/mc:1'Pref/1:Pref'1msilPaila

and set all the other characteristic parameters to 1. Scaling is not very effective either
in test case 1 or 2, as there is only a slight improvement in the approximation errors
in test case 1 and the fixed point algorithm still fails to converge on any mesh in
test case 2. Looking at the definition of the total stress in dimensionless form (see
equation (B.1)) and observing that relative errors for uy,, @, are small on finer meshes
in Table C.16, we guess that it is necessary to take very small spatial step sizes in
order for the strain tensor g;(uj) to balance the scaling of the total stress and the
fluid pressure.

Conclusion: the relative scaling of the solid displacement u, and the fluid pressure
pr, has a strong effect on the performance of the HDG algorithm. Unlike the results
obtained in previous sections, scaling does not help here. This should warn the reader
against thinking that scaling is a panacea in any situation. Instead, our results
suggest that, depending on the regime of motion, it might be necessary to use a
different preconditioning strategy or a different iterative method than the fixed point

approach used in this work.

Effect of Time Step

We study the effect of reducing the time step At of the Backward Euler method
used to discretize test case 3 in time. We fix the triangulation (the fourth one in

Table 3.1), use temporal step sizes At = T'/r, with

r € {20, 40, 80, 160, 320, 640, 1280, 2560},
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and test for different values of the degree k of the local polynomial bases, k£ = 1, 2, 3, 4.
Interestingly, for £ = 1, the smaller the time step, the higher the approximation errors
(see Table C.18). Even more interestingly, higher order bases have a stabilization
effect on the errors: the higher the degree, the more stabilized the errors. For example,
for k = 2, errors start increasing only for At < 1/320s, whereas, for k = 4, errors
always decrease linearly with At (see Table C.19).

Conclusion: using a small temporal step size has a negative effect on the conver-
gence of the HDG method. However, this can be countered by using high order basis
functions, which the HDG method is ideally suited for.

3.3.3 The Problem of Locking

Phillips and Wheeler [85] provided evidence that numerical methods for poroe-
lasticity may suffer from locking, or nonphysical pressure oscillations. They used the
famous problem of Barry and Mercer as test case [86]. This problem has a couple
of interesting features: first, it provides an exact solution in 2D to the poro-elastic
system (3.44)—(3.52), (3.54), where viscous effects have been neglected (§ = 0); sec-
ond, both the dimensionless deformation and pressure solutions do not depend on the
dimensionless parameter m = 1 4+ \¢/u°.

Domain and boundary conditions are shown in Figure 3.3. We use a = b = 1m,
ro = 0.23m and yy = 0.22m. There is no source term in the balance of momentum,

whereas on the right side of the balance of mass (3.47), we have
s¢(t) = 2BF(Bt), (3.129)
with = a b7 (A + 2u)k = (A\° + 2u)k, and
F(s) = 6(x — w0,y — yo) sin(s),

0 being the Dirac delta function. Equation (3.129) represents an oscillating point

source. Denoting by P the i-th basis function for the approximate fluid pressure in
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Figure 3.3. Domain and boundary conditions for the Barry and Mercer

problem [86].
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element K € Qy,, the local contribution of s; to the discrete balance of mass (3.110)

1s
K., _ - K
/ spPrdx —/ 260(x — xo,y — yo) sin(Gt) P;* dx
K K
= 2 sin(ft) / §(z — 20,y — yo) P dx
K

— 28 sin(Bt) PX (20, y0).

Barry and Mercer provide a solution for the fluid pressure and the solid displace-

ment for this problem [86]. Let:

Vo = 0, Vg = qT, Vg = Vo + V2,

2 sin (v, o) sin . -

p(n,q,t) = — o 20) (ath) (Yng sin(Bt) — cos(Bt) + e 1mabty,

Vng + 1

. Y, . Y .

U’(”uQat) - _p(n7Q7t>a w(”ant) - _p(n7Q7t)
nq rynq

The solution is then:
plx,y,t) = —4(\° + 2u°) Z Zﬁ(n, g, t) sin(y,x) sin(v,y), (3.130)
n=1 ¢=1

ug(x,y,t) =4 Z Z w(n, q,t) cos(Vnx) sin(y,y), (3.131)
n=1 ¢q=1

uy(z,y,t) =4 Z Z w(n, q,t) sin(y,x) cos(v,y). (3.132)

1

3

Il

—
<

Il

We approximate the series in equations (3.130)—(3.132) with finite sums using the
first 30 x 30 terms. Taking more terms does not affect the values of p,u,, and wu,
noticeably.

We consider the same set of material parameters used by Phillips and Wheeler [17,
18,85] to numerically validate their scheme using continuous or discontinuous elements

for displacement and a mixed formulation for the fluid pressure

E =1 x 10° Pa, v=0.1, k=1x10"2m?*Pa's". (3.133)
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N

Figure 3.4. The problem of Barry and Mercer: dimensionless fluid pressure
computed by the HDG method at time t* = 7/2 (left) and t* = 37/2
(right), plotted on the deformed meshes. The solid displacement field has
not been amplified.

The HDG formulation with k = 1 and py,|x € P*(K) is applied to the dimensionless
form of the poro-elastic system (see Appendix B), where characteristic parameters

are chosen as follows:

.= 1m, U, = 1m, De = A+ 2u°, (3.134)
c c 1 1

o = 2u°, Ve = e _ Kpe - 1m™, t. = Ye _ = —. (3.135)
Te Ve KPc B

Let t* = t/t. = Bt be the dimensionless time. A normalized time step of At* =
0.17/2 is used for this test case. Figure 3.4 shows the HDG solution obtained for the
parameter set (3.133) at two relevant values of t*. At ¢t* = 7/2 (left), the source s;
is at a positive maximum; this fluid injection causes an expansion of the poro-elastic
medium. At t* = 37/2 (right), the source is at a negative minimum; the fluid is
withdrawing and this makes the medium contract.

Figure 3.5 illustrates the effect of element size on the errors of the normalized
pressure (top) and displacement (bottom). A smaller step size leads to a reduction in
error at most times. The initial overshooting of the errors for the displacement is also
reported by Phillips [17]. Taking smaller values for the permeability and the time
step, i.e. k=1 x 107m?Pa~ts™! and At* = 1 x 10757/2, Phillips and Wheeler [18]
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Figure 3.5. HDG errors in Barry and Mercer’s problem. The displacement
error contains a kink at the initial time step.
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Figure 3.6. Fluid pressure computed by the HDG method at the first
time step using the time interval At* = 0.17/2 and permeability x =
1 x 1072m2Pa~ts™!. The solution does not exhibit nonphysical oscilla-
tions.
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Figure 3.7. Fluid pressure computed by the HDG method at the first time
step using a short time interval At* = 1 x 10757/2 and low permeability
Kk =1x10"%m2Pa~!s™!. Pressure oscillations are suppressed to a very
good degree.

show that their numerical scheme using continuous elements for displacement suffers
from nonphysical pressure oscillations for the initial time step solution, whereas the
one using discontinuous elements suppresses them to a fair degree. Figure 3.7 shows
the HDG solution at the initial time step. The average fluid pressure at the red-
colored cell, where the fluid source is placed, is 2.934 x 107, whereas for all the
other cells the pressure is bounded between —1.754 x 107® and 1.691 x 10~%, more
than one order of magnitude smaller. Hence, also the HDG method is able to counter
pressure oscillations and combat locking.

Finally, we address the dependence of the HDG solution on the elastic parameters,
p¢ and A At the beginning of this section, we mentioned that the normalized
analytic pressure and deformation solutions are independent of m = 1+ \¢/u. Since
14+ X¢/p = 1/(1 — 2v), this implies an independence of Poisson’s ratio, v, over
its admissible range. To study whether this independence carries over to the HDG
method, we consider the parameter set (3.133) and take v = 0.1 in one case, and v =
0.49 in the other case. Characteristic parameters are chosen as in (3.134) and (3.135).
Figure 3.8 shows that the errors for the normalized pressure are not affected by v,

whereas the errors for the normalized displacement decrease as v gets bigger.
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Figure 3.8. Dependence of the HDG solution on the Poisson’s ratio in
Barry and Mercer’s problem.
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