
Graduate School Form
30 Updated

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By  

Entitled

For the degree of 

Is approved by the final examining committee: 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation 
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), 
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of 
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s): 

Approved by:
Head of the Departmental Graduate Program Date

Daniele Prada

A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR POROUS MEDIA VISCOELASTICITY
WITH APPLICATIONS IN OPHTHALMOLOGY

Doctor of Philosophy

Giovanna Guidoboni Bernardo N. Cockburn
Chair

Luoding Zhu

Julia Concetta Arciero

Alon Harris

Giovanna Guidoboni

Evgeny Mukhin 12/3/2016



A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR

NONLINEAR POROUS MEDIA VISCOELASTICITY WITH APPLICATIONS IN

OPHTHALMOLOGY

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Daniele Prada

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2016

Purdue University

Indianapolis, Indiana



ii

And if I have the gift of prophecy and comprehend all mysteries and all knowledge;

if I have all faith so as to move mountains but do not have love, I am nothing.

The New American Bible, 1 Cor 13, 2.
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C.13 Effect of varying the elastic Lamé parameters in the validation test case
1 in 2D. Local bases of degree k = 1 have been used. The fluid pressure
ph|K was taken in P k+1(K). . . . . . . . . . . . . . . . . . . . . . . . . 227
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ABSTRACT

Prada, Daniele. Ph.D., Purdue University, December 2016. A Hybridizable Discontin-
uous Galerkin Method for Nonlinear Porous Media Viscoelasticity with Applications
in Ophthalmology. Major Professor: Giovanna Guidoboni.

The interplay between biomechanics and blood perfusion in the optic nerve head

(ONH) has a critical role in ocular pathologies, especially glaucomatous optic neu-

ropathy. Elucidating the complex interactions of ONH perfusion and tissue structure

in health and disease using current imaging methodologies is difficult, and mathe-

matical modeling provides an approach to address these limitations.

The biophysical phenomena governing the ONH physiology occur at different

scales in time and space and porous media theory provides an ideal framework to

model them. We critically review fundamentals of porous media theory, paying par-

ticular attention to the assumptions leading to a continuum biphasic model for the

phenomenological description of fluid flow through biological tissues exhibiting vis-

coelastic behavior. The resulting system of equations is solved via a numerical method

based on a novel hybridizable discontinuous Galerkin finite element discretization that

allows accurate approximations of stresses and discharge velocities, in addition to solid

displacement and fluid pressure. The model is used to theoretically investigate the

influence of tissue viscoelasticity on the blood perfusion of the lamina cribrosa in the

ONH. Our results suggest that changes in viscoelastic properties of the lamina may

compromise tissue perfusion in response to sudden variations of intraocular pressure,

possibly leading to optic disc hemorrhages.
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1. INTRODUCTION

Glaucoma is an optic neuropathy characterized by progressive death of retinal gan-

glion cells (RGCs) and irreversible vision loss. Glaucoma is the second leading cause

of blindness world-wide [2], and yet its etiology and treatment remain unclear. The

main modifiable risk factor in glaucoma patients is elevated intraocular pressure

(IOP) [3–7]; however, a high percentage of individuals with elevated IOP (a con-

dition called ocular hypertension) never develop glaucoma [8], and many glaucoma

patients continue to experience disease progression despite lowering IOP to target

levels or have no history of elevated IOP - a condition called normal tension glau-

coma [9]. Thus, it has been hypothesized that different individuals may have different

susceptibilities to glaucomatous damage for the same IOP level. The identification of

the factors determining IOP susceptibility is one of the main open questions in the

field [10].

In glaucoma the location of damage to nerve cells is hypothesized to be predomi-

nantly in the ONH (see Figure 1.1) [11]. Elevated IOP may induce mechanical damage

on the RGCs (mechanical hypothesis) and/or alterations in ocular circulation (hemo-

dynamical hypothesis), compromising the functionality of the RGCs and their axons

and progressively leading to vision loss. It is reasonable to expect that mechanical

deformations of a living tissue would affect blood flow within the tissue. On the other

hand, alterations in blood flow might lead to structural changes in the tissue that

would alter its mechanical properties.

Elucidating the complex interactions of ONH blood perfusion and tissue structure

in health and disease using current imaging methodologies is difficult, and mathe-

matical modeling provides an approach to address these limitations. One of the main

difficulties lies in the fact that the biophysical phenomena governing the ONH phys-

iology occur at different scales in time and space. For example, the ocular perfusion



2

zoom Central 
retinal 
artery 
and vein

Posterior 
ciliary 
arteries

Retina Choroid Sclera

OPTIC NERVE 
HEAD

Retrolaminar 
region

Laminar
region

Prelaminar
region

Superficial 
nerve fiber layer

Figure 1.1. Anatomy and vascular supply of the optic nerve head (ONH).
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Figure 1.2. Zoom of the laminar region [1].

pressure (OPP), which is the pressure available to drive blood through the intraoc-

ular vasculature [12], undergoes significant changes within one cardiac cycle (≈ 1 s),

whereas the biomechanically induced remodeling of the collagen network in the ONH

takes several months or years. Different space scales are also involved: blood perfu-

sion of the lamina cribrosa in the ONH ranges over at least 3 orders of magnitude as

we progress from the capillaries running within the laminar beams (≈ 1× 10−6 m) to

the dimensions of the optic nerve canal (≈ 1× 10−3 m) [1].

Porous media theory [13] provides an ideal framework to model materials with

several components characterized by a variety of spatial scales. Within this theory,

the complex composition and geometrical arrangement of the components are ho-

mogenized, so that physical quantities, such as velocity, stress, and fluid pressure are

averages of the individual molecular counterparts. We use this approach to describe

the blood perfusion of the lamina cribrosa in the ONH, whose complex structure is
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depicted in Figure 1.2. The lamina is treated as a poro-viscoelastic material, where

blood vessels are viewed as pores in a solid matrix. This model provides a theoretical

description of the coupling between lamina biomechanics and hemodynamics.

There is a huge literature about numerical methods for solving poro-elastic mod-

els, whereas less works focus on the poro-viscoelastic case. Typically, the Backward

Euler method has been adopted for time discretization, whereas various techniques,

including finite difference schemes [14] and finite element methods [15], have been

proposed for spatial discretization. Within the context of finite element methods,

two main strategies have been investigated. For a fluid-solid mixture under the as-

sumption of full saturation, the first strategy consists in formulating the problem in

terms of the displacement of the solid phase u and the fluid pressure p, which are

then approximated using the Taylor-Hood finite element space [16]. This approach

is also called a two-field formulation. The second strategy consists in formulating

the problem in terms of the original pair (u, p), as well as the total stress tensor σ

and the discharge velocity v, which are usually variables of primary interest, espe-

cially within the context of biomechanical applications. This approach is also called

a four-field formulation. In the four-field formulation, the Taylor-Hood finite element

space is still used to approximate u and p, whereas the Raviart-Thomas finite element

space [16] is chosen to approximate the pair (σ,v). Yet another finite element ap-

proach is proposed by Phillips and Wheeler [17,18], where v and p are approximated

by Raviart-Thomas elements, and the displacement u by a family of discontinuous

Galerkin methods.

In this work, we adopt the Backward Euler method for time discretization and

the four-field finite element approach for spatial discretization. We extend the four-

field approach using hybridizable discontinuous Galerkin (HDG) methods [19], thus

approximating all the variables at optimal convergence with respect to the choice of

approximating spaces. HDG methods require less degrees of freedom in the solution of

the global system than other discontinuous Galerkin methods of comparable accuracy.
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This thesis is organized as follows. In Chapter 2, we critically review fundamentals

of porous media theory. We pay particular attention to the assumptions leading to a

continuum biphasic model for the phenomenological description of fluid flow through

biological tissues exhibiting viscoelastic behavior. In Chapter 3, we present the nu-

merical method for the solution of the resulting system of equations. In Chapter 4,

the model discussed in the two previous chapters is used to theoretically investigate

the influence of tissue viscoelasticity on the perfusion of the lamina cribrosa in the

ONH. Our results suggest that changes in viscoelastic properties of the lamina may

compromise tissue perfusion in response to sudden variations of IOP, possibly leading

to disc hemorrhages. Conclusions are outlined in Chapter 5. In Appendix A, we

show how the constitutive equation for the total stress tensor σ can be formulated

in mixed form in the four-field method. In Appendix B, the poro-viscoelastic model

considered in this thesis is rewritten in terms of dimensionless variables. Error tables

for the validation tests discussed in Chapter 3 are given in Appendix C.
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2. ELEMENTS OF POROUS MEDIA THEORY

In many areas of engineering, such as chemical engineering, material science, soil

mechanics, as well as biomechanics, materials can consist of several solid components.

These solid components can contain closed and open pores, such as ceramics and soils.

The pores can be filled with fluids, which may interact with the solid components.

Modeling these interactions is a delicate subject.

Whenever the exact description of the location of the pores and the thermody-

namics of the components down to the microscale is not accessible, or even redundant,

the heterogeneous composition of the mixture can be described through a homoge-

nization approach. This approach led to the theory of porous media. There is plenty

of literature about porous media theory and its application to different areas of engi-

neering. In this chapter, we will provide few fundamental concepts that will be used

throughout this thesis. The main references used for this chapter are the works of de

Boer [13], Coussy [20], Whitaker [21], and Markert [22].

2.1 The Averaging Approach

In the theory of porous media, an arbitrary volume element dv is associated with

every point in space identified by the position vector x with respect to a Cartesian

reference frame whose origin is denoted by 0 and the directions of the orthogonal

axes are denoted by e1, e2 and e3. Such a volume can be thought of as a statistically

representative of the material in the neighborhood of x. In general, its characteristic

dimension should be much smaller than the characteristic dimension of the problem

being modeled, and larger than its largest micro-structural dimension [23]. Unlike

classical continuum mechanics, where a volume element is assumed to consist of one
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Figure 2.1. Comparison between arbitrary volume elements dv in classical
continuum mechanics (top) and in the theory of porous media (bottom).
In classical continuum mechanics, dv is assumed to be made of one mate-
rial only, whereas, in the theory of porous media, dv has its own complex
micro-structure. In the bottom figure, dv is assumed to consist of a solid
and a fluid constituents.

material only, in the theory of porous media dv is not uniform, in general, consisting

of various materials with different properties and shapes (see Figure 2.1).



8

The geometrical characterization of the pore structure and the exact location of

the individual components of the body are disregarded in the averaging approach:

the components are spread over the space that is shaped by the porous solid, so that

each spatial point is simultaneously occupied by all the constituents. In the following,

the terms control space or domain will be used to refer to the space shaped by the

porous solid, interchangeably.

For a fixed point in space x, homogenized, or averaged, quantities can be obtained

by integrating a microscopic quantity over the region of an elementary volume dv

centered at x. Let r describe the position of a constituent within dv, x the position

vector at the center of dv (see Figure 2.1), and t the time. First, we introduce an

indicator function χα for each constituent α

χα = χα(r, t) =

1 for r ∈ dvα,

0 for r ∈ dvβ
, β 6= α,

where the partial volume occupied by constituent α, dvα, is given by

dvα(x, t) =

∫
dv

χα(r, t) dr.

The volume fraction nα is defined as the ratio between the partial volume dvα and

the total volume dv

nα(x, t) =
dvα
dv

=
1

dv

∫
dv

χα(r, t) dr. (2.1)

In this work, we will assume that the control space shaped by a porous medium

is completely filled by its κ constituents. This saturation constraint can be expressed

as
κ∑

α=1

nα = 1. (2.2)

The indicator function χα allows to derive average macroscopic quantities from mi-

croscopic quantities. For example, let the microscopic true density of the constituent

materials be denoted by

ραT = ραT (r, t).
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The corresponding macroscopic field is

ραR(x, t) =
1

dvα

∫
dv

ραT (r, t)χα(r, t) dr. (2.3)

The quantity ραR represents the real density of a constituent α averaged over the real

volume it occupies inside dv. Another important quantity is

ρα(x, t) =
1

dv

∫
dv

ραT (r, t)χα(r, t) dr, (2.4)

which is called partial density and represents the averaged reduced density of a con-

stituent after being smeared over the volume element dv. The macroscopic real and

partial densities, denoted by ραR and ρα, respectively, are related by

ρα(x, t) = nα(x, t)ραR(x, t). (2.5)

The idea of deriving macroscopic quantities from microscopic quantities is some-

what similar to the continuum hypothesis in continuum mechanics. In the continuum

hypothesis we assume that we can replace the discrete particles by a continuous dis-

tribution of matter, so that kinematic quantities such as acceleration, velocity and

displacement are the averages of the individual molecular counterparts. Similarly, in

porous media theory, we introduce distributed masses and forces that are function

of the position vector x and, due to the volume fraction concept, can be interpreted

as the integral average values of the real quantities (see equations (2.3), (2.4) and

Figure 2.2).

2.2 Mixture Kinematics and Deformation

Kinematics in porous media theory is based on two fundamental assumptions:

Assumption 1. Each spatial point of the actual placement is simultaneously occu-

pied by material points of all κ constituents at time t. The material points

proceed from different reference positions Xα at time t = t0.

Assumption 2. Each constituent is assigned an independent state of motion.
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To account for an independent state of motion for each constituent, we need to in-

troduce a function ϕα from its reference configuration B0α to the actual placement

B, sometimes called a deformation map. The position x at time t is given by the

continuous map

ϕα : B0α × [0, T )→ B

(Xα, t) → x = ϕα(Xα, t),
(2.6)

with B0α ⊂ R3, B ⊂ R3. In the following, ϕα(Xα, t) will also be denoted by x(Xα, t).

The position vector x is an element of the control space of the porous solid at time t.

If we consider a porous medium made by two phases, precisely one solid phase and

one fluid phase, Assumption 1 implies

x = ϕS(XS, t) = ϕF (XF , t),

as depicted in Figure 2.3. In the last equation, the current position is treated as a

function of the original position. This is called a Lagrangian or material description.

Any other field is also treated as a function of the original position. In general, it is

not necessary to require that the initial configurations of the solid and fluid phases

be the same (see Figure 2.3). If there is no relative motion among the components

α, than all ϕα are the same and all B0α are the same. However, if there is relative

motion among the components of the mixture, then ϕα and B0α will be different for

each α.

On physical grounds, we expect that matter cannot be destroyed and matter does

not interpenetrate. A deformation map will be consistent with these conditions if it

is one-to-one and the Jacobian of the mapping remains nonzero. The Jacobian of the

mapping is the determinant of the tensor

Fα : B0α × [0, T )→ R3 × R3

(Xα, t) → Fα = ∇αϕα =
∂x

∂Xα

,

which is called deformation gradient. It describes the mapping from reference line

elements to deformed line elements. The operator ∇α denotes partial differentiation
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with respect to the coordinates Xα in the reference configuration of constituent α.

Its components are given by

F IJ
α =

∂xI

∂XJ
α

, for I, J ∈ {1, 2, 3}.

Our physical constraints demand that

Jα = detFα 6= 0, (2.7)

at each position x = ϕα(Xα, t) and time t. Even more, we require Jα > 0, which

ensures that material lines preserve their relative orientations: a constituent cannot

deform into its mirror image. If equation (2.7) is satisfied, then a (local) inverse

mapping can be constructed that gives the reference position of constituent α as a

function of the current position

ϕ−1
α : B × [0, T )→ B0α

(x, t) → Xα = ϕ−1
α (x, t).

(2.8)

In equation (2.8), the current position is the independent variable and this is called

Eulerian or spatial description. In the Eulerian description, we observe the changes

over time at a fixed point in the physical space. In the following, ϕ−1
α (x, t) will also

be denoted by Xα(x, t).

The change in position of a material point of a constituent α between configura-

tions B0α and B is given by the displacement vector field

Uα = Uα(Xα, t) = x(Xα, t)−Xα. (2.9)

In equation (2.9), the displacement is treated as a function of the Lagrangian coordi-

nates Xα. It can also be expressed from the Eulerian viewpoint as follows

uα = uα(x, t) = x−Xα(x, t). (2.10)

The velocity of a material point of a constituent α in the Lagrangian representation

is given by

Vα(Xα, t) =
∂Uα(Xα, t)

∂t

∣∣∣∣
Xα

=
∂(x(Xα, t)−Xα)

∂t

∣∣∣∣
Xα

=
∂x(Xα, t)

∂t

∣∣∣∣
Xα

, (2.11)
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where Xα is held fixed during differentiation. In the Eulerian framework, the velocity

must be defined as a function of a specific fixed point in space. Hence, the Eulerian

velocity must be calculated by finding the material coordinate of component α that

occupies the spatial location x at time t, namely

Xα = ϕ−1
α (x, t),

so that

vα(x, t) =
∂uα(x, t)

∂t

∣∣∣∣
Xα

=
∂x

∂t

∣∣∣∣
Xα

= Vα(Xα(x, t), t).

The acceleration in the Lagrangian representation is given by

Aα(Xα, t) =
∂Vα(Xα, t)

∂t

∣∣∣∣
Xα

=
∂2Uα(Xα, t)

∂t2

∣∣∣∣
Xα

=
∂2x(Xα, t)

∂t2

∣∣∣∣
Xα

.

In the Eulerian framework, the velocity of a constituent α at a fixed point in space can

change either because: (i) the material velocity changes with time or (ii) the material

point is carried past the fixed point in space. Hence, the Eulerian acceleration is

given by

aα(x, t) =
∂v(x, t)

∂t

∣∣∣∣
Xα

=
∂v(x(Xα, t), t)

∂t

∣∣∣∣
Xα

.

After application of the chain rule, the above equation becomes

aα(x, t) =
∂vα
∂t

+ vα · ∇vα. (2.12)

The symbol ∇ denotes differentiation with respect to x, as it clearly appears from

the component form

aIα(x, t) =
∂vIα
∂t

+ vJα
∂vIα
∂xJ

.

We use the Einstein summation convention according to which any index that appears

twice represents a sum over all values of that index. The first term ∂vα/∂t corresponds

to mechanism (i) mentioned above, whereas the second term vα · ∇vα corresponds

to mechanism (ii). The quantity ∇vα is called the spatial velocity gradient and is

defined as

Lα : B × [0, T )→ R3 × R3

(x, t) → Lα = ∇vα(x, t).
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The argument used to determine the acceleration can be used to define the rate of

change of any property associated with the continuum. As the individual constituents

follow, in general, different motions, different rates of change must be introduced. In

the Lagrangian framework, for a scalar field Γ(Xα, t) = γ(x(Xα, t), t) the material

time derivative, following the motion of constituent α, is

(Γ)′α =
∂Γ

∂t
. (2.13)

In the Eulerian framework, using again the chain rule

(γ)′α =
∂γ

∂t
+

∂γ

∂xK
∂xK

∂t
=
∂γ

∂t
+ vKα

∂γ

∂xK
=
∂γ

∂t
+ vα · ∇γ. (2.14)

Observe that the material derivative satisfies the usual product and chain rules for

derivatives. From equation (2.11), the material velocity gradient of the constituent α

is given by

(Fα)′α = ∇αVα, or (F IJ
α )′α =

∂F IJ
α

∂t
=

∂

∂t

(
∂xI(Xα, t)

∂XJ
α

)
=
∂V I

α

∂XJ
α

. (2.15)

The spatial velocity gradient is connected to the material velocity gradient by

(Fα)′α = LαFα, (2.16)

as it follows from equation (2.15) and the chain rule

(F IJ
α )′α =

∂V I
α

∂XJ
α

=
∂V I

α (Xα(x, t))

∂xK
∂xK

∂XJ
α

=
∂vIα
∂xK

∂xK

∂XJ
α

.

The spatial velocity gradient Lα can be decomposed into the sum of its symmetric

part Dα and its skew-symmetric part Wα

Lα = Dα +Wα,

with

Dα =
1

2
(Lα + LTα), Wα =

1

2
(Lα − LTα).

In order to quantify the deformation of a porous solid, we use line elements in the

reference and actual placements (see Figure 2.4). Let dXα be a line element connect-

ing two material points in the reference configuration B0α, and dx the corresponding
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Figure 2.4. The reference configuration B0α is mapped to the current
configuration B by the mapping ϕα which carries the material point Xα ∈
B0α to the point x(Xα, t) ∈ B and the material point Xα+dXα to x(Xα+
dXα, t). The undeformed line element dXα is carried to the deformed line
element dx.
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line element in the actual configuration. Assuming that the norm of dXα is very

small, from Taylor’s theorem we get

dx ≈ FαdXα. (2.17)

Using the Kronecker delta δIJ defined as

δIJ =

1 if I = J,

0 if I 6= J,

a measure of whether the line element has changed in length is given by

dx · dx− dXα · dXα = FKI
α dXI

αF
KJ
α dXJ

α − dXK
α dX

K
α

= (FKI
α FKJ

α − δKIδKJ)dXI
αdX

J
α

= (CIJ
α − δIJ)dXI

αdX
J
α ,

(2.18)

where the tensor Cα is called the right Cauchy-Green deformation tensor and is

defined as

Cα : B0α × [0, T )→ R3 × R3

(Xα, t) → Cα = F T
α(Xα, t)Fα(Xα, t).

(2.19)

Its components represent the square of the lengths of the deformed material line

elements relative to the undeformed ones, i.e., from the Lagrangian viewpoint. If the

length of the line element does not change, then CIJ
α − δIJ = 0 for all I, J . To keep

track of this, the Green-Lagrange strain tensor is introduced

Eα : B0α × [0, T )→ R3 × R3

(Xα, t) → Eα =
1

2
(Cα(Xα, t)− I),

(2.20)

where Iα is the identity tensor defined on B0α × [0, T ). From equation (2.9), the

deformed position x can be written as

x = Xα + Uα.

Using Taylor’s theorem as in (2.17), we get

dx ≈ ∇α(Xα + Uα) dXα = (I +∇αUα) dXα,
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which, compared to (2.17), provides

Fα = I +∇αUα. (2.21)

By (2.19), (2.20) and (2.21), the Green-Lagrange strain tensor becomes

Eα =
1

2

(
Cα − I

)
=

1

2

(
F T
αFα − I

)
=

1

2

((
I +∇αUα

)T (
I +∇αUα

)
− I
)

=
1

2

(
∇T
αUα +∇αUα +

(
∇T
αUα

)(
∇αUα

))
.

(2.22)

From the Eulerian viewpoint, using Taylor’s theorem as before, we have

dXα ≈ Hαdx,

where the tensor Hα is defined as

Hα : B × [0, T )→ R3 × R3

(x, t) → Hα = ∇Xα(x, t) = F−1
α (x, t).

Thus, the Eulerian equivalent of equation (2.18) is

dx · dx− dXα · dXα = dxKdxK −HKI
α dxIHKJ

α dxJ

= (δKIδKJ −HKI
α HKJ

α )dxIdxJ

= (δIJ − CIJα )dxIdxJ ,

(2.23)

where the tensor Cα is called the Cauchy deformation tensor and is the defined as

Cα : B × [0, T )→ R3 × R3

(x, t) → Cα = HT
αHα = F−Tα F−1

α = (FαF
T
α)−1.

The components of Cα represent the square of lengths of the undeformed line elements

relative to the deformed lengths, i.e. from the Eulerian viewpoint. The corresponding

strain tensor is called the Almansi strain tensor and is defined as

Aα : B × [0, T )→ R3 × R3

(x, t) → Aα =
1

2
(I − Cα(x, t)),

where I is the identity tensor defined on B× [0, T ). The components of Aα represent

the change in lengths of material line elements from the Eulerian viewpoint.
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(microscopic domain of the
Incompressible grain

real solid phase)

x
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JSR(micro) = 1
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e1
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XSR(micro)
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e3

Figure 2.5. Illustration of motivation for a multiplicative decomposition of
the deformation gradient of the solid phase. The position vectors XS and
x represent the centroids of the volume elements in the reference and the
actual placements, respectively, whereas XSR(micro) and xSR(micro) denote
all the possible points in the volume elements.

2.2.1 Describing Material Compressibility and Incompressibility in De-

formable Porous Media

In conclusion of this section, we will spend few words about how to describe the

compressibility and incompressibility of materials within porous media theory. This is

particularly important when it comes to constitutive modeling, as it will be described

in later sections.

For example, let us consider a macroscopic volume element filled with a granular

solid phase, and a gas, as depicted in Figure 2.5. The solid grains are supposed to

be incompressible, which means that a hydrostatic stress state in the grains does
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not change their volume. Although the grains are incompressible, forces acting on

the porous medium can cause a change of the pore structure, leading to an overall

change in volume of the control space (see Figure 2.5). Hence, the incompressibility

condition cannot be expressed by the deformation gradient F S of the partial solid

constituent, which is a macroscopic quantity associated with the smeared solid phase.

Instead, the compressibility condition must be expressed by physical quantities at the

microscale. In principle, one could introduce a function ϕSR describing the motion of

the real solid material at the microscale

ϕSR : B0S × [0, T ) → B

(XSR(micro), t)→ xSR(micro) = ϕSR(micro)(XSR(micro), t),
(2.24)

where XSR(micro) and xSR(micro) are the position vectors of the real solid material at

the level of the microscale in the reference and the actual placements, respectively

(see Figure 2.5). The incompressibility condition could be formulated by requiring

the determinant JSR(micro) of the deformation gradient F SR(micro) to be 1. However,

the motion function ϕSR(micro) is unknown and cannot be determined by the porous

media approach, which works with microscopic averaged quantities. Thus, it is nec-

essary to transfer the microscopic deformation behavior of the real solid phase to the

macroscale. To this end, the deformation gradient F S is decomposed into the product

of two tensors

F S = F SNF SR,

where F SR is the part reflecting the microscopic deformations of the real solid material

at the macroscale, whereas F SN describes the remaining part of the deformation of

the porous medium, namely the change of the pores in size and shape.

Within porous media theory, the multiplicative decomposition

Fα = FαNFαR, (2.25)

is introduced for each constituent α. In the case of homogeneous deformations, this

decomposition leads to an intermediate state (see Figure (2.6)).
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Figure 2.6. Representation of the multiplicative decomposition of the
deformation gradient for homogeneous deformations.
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From continuum mechanics [24], the relationship between the volume elements in

the reference and the actual placements for constituent α (dv0α and dv, respectively)

is given by

dv = Jαdv0α. (2.26)

Using the multiplicative decomposition (2.25), we get

dv = JαNJαRdv0α,

where JαN = detFαN , JαR = detFαR. Then, a differential volume dv̂α, at a material

point Xα of a local intermediate placement is related to the volume elements in the

reference placement and the actual placement by

dv̂α = JαR dv0α, dv = JαN dv̂α. (2.27)

We interpreted FαR as that part of the deformation gradient that includes the whole

deformation of the real material of the constituent α. Thus, its determinant must

represent the volume strain of the real material. If the constituent α is incompressible,

it means that dv̂α = dv0α. Equation (2.27) hence implies

JαR = 1. (2.28)

2.3 Balance Equations and Entropy Inequality

According to Truesdell [25], each constituent α can be described by individual

balance equations accounting for interactions between them by additional production

terms. The balance equations of the whole mixture are obtained as the sum of the

balance equations of each constituent and must formally become the corresponding

balance equations of a one-component body.

Let fα : B → R and fα : B → R3 be volume-specific scalar- and vector-valued

densities of a physical quantity to be balanced associated with constituent α. Follow-
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ing Truesdell [25] and classical continuum mechanics of a one-component body, the

general balance equations of constituent α read:(∫
Ω

fα dv

)′
α

=

∫
∂Ω

gα dS +

∫
Ω

hα dv +

∫
Ω

f̃α dv, (2.29)(∫
Ω

fα dv

)′
α

=

∫
∂Ω

gα dS +

∫
Ω

hα dv +

∫
Ω

f̃α dv, (2.30)

where:

• (·)′α denotes the material derivative following the motion of constituent α;

• Ω is an arbitrary volume in the actual configuration B;

• gα and gα are the surface densities per unit current area representing the bound-

ary fluxes of the physical quantity over the surface ∂Ω;

• hα and hα are volume densities describing the external source of the physical

quantity;

• f̃α and f̃α represent the productions of the physical quantity due to the coupling

of constituent α with the other constituents.

Balance relations of mass, linear momentum, angular momentum, and energy have

the same form as equations (2.29) and (2.30) for appropriate choices of the partial

(i.e. smeared) quantities fα, fα, gα, gα, hα, hα, f̃α, and f̃α.

From (2.29) and (2.30), it follows that, in order to formulate balance relations in

local (differential) form, we need to take the time derivative of integrals over material

volumes in the reference (undeformed) and the actual (deformed) configurations. Let

Γ be a scalar function defined in the reference configuration B0α

Γ: B0α × [0, T )→ R

(Xα, t) → Γ = Γ(Xα, t),

and Ω0 be any volume inside B0α. The material derivative of the integral of Γ over

Ω0, following the motion of constituent α, is(∫
Ω0

Γ dv0α

)′
α

.
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Since the undeformed volume Ω0 is fixed, we can take the time derivative under the

integral, and so, from equation (2.13), it follows(∫
Ω0

Γ dv0α

)′
α

=

∫
Ω0

(Γ)′α dv0α =

∫
Ω0

∂Γ

∂t
dv0α.

Now take a function γ defined on the actual configuration

γ : B × [0, T )→ R

(x, t) → γ = γ(x, t).
(2.31)

and consider the material derivative of its integral over a volume Ω ⊆ B(∫
Ω

γ dv

)′
α

. (2.32)

In order to take the time derivative inside the integral, we have to take into account

that both γ and the domain of integration Ω depend on time. In such situations, the

Reynolds transport theorem is used [24]:

Theorem 2.3.1 (Reynolds transport theorem) Given a function γ defined on

the actual configuration, the material derivative of its integral over a volume Ω ⊆ B,

following the motion of constituent α, can be rewritten as(∫
Ω

γ dv

)′
α

=

∫
Ω

((γ)′α + γ∇ · vα) dv. (2.33)

Proof This theorem proceeds as follows:

1. the material volume Ω is mapped to the equivalent volume Ω0α in the reference

configuration for constituent α;

2. due to the previous step, the domain of integration Ω0α is now fixed and the

time derivative is taken inside the integral;

3. the integral is transformed back to the material volume Ω.

Observe that steps 1–3 are equivalent to taking the derivative under the integral

in (2.32) and applying it to the volume element dv as well. In fact, with the help of

the following transport theorem [20]

(dv)′α = ∇ · vα dv, (2.34)



25

and by the product rule for derivatives, we get(∫
Ω

γ dv

)′
α

=

∫
Ω

(γ dv)′α =

∫
Ω

((γ)′α dv + γ(dv)′α) =

∫
Ω

((γ)′α + γ∇ · vα) dv,

which coincides with equation (2.32). In the following, we will be using this second

approach to take the material derivative of integrals over material volumes. �

2.3.1 Balance of Mass

In accordance with de Boer [13], we assume that, for each constituent α, the rate

of change of its mass Mα equals a supply term
∫

Ω
ρ̃α dv, possibly caused by the other

constituents, where ρ̃α describes mass exchange between the constituents and Ω is any

material volume in the space shaped by the porous solid in the actual configuration.

Thus, we get

(Mα)′α =

(∫
Ω

ρα dv

)′
α

=

∫
Ω

ρ̃α dv. (2.35)

The mass supply term ρ̃α will have to be described by a constitutive law satisfying the

saturation constraint (2.2) and the Second Law of Thermodynamics, i.e. the entropy

inequality. Comparing (2.29) and (2.35), it appears that we made the following choices

fα = ρα, gα = 0, hα = 0, f̃α = ρ̃α. (2.36)

In particular, this means that we are neglecting boundary mass fluxes (gα = 0) and

there is neither injection nor sequestration of mass from the outside (hα = 0). These

assumptions allow to model a wide range of phenomena. For example, in order to

model transport of solutes in standard continuum mechanics, boundary fluxes of mass

must be included in the balance of mass, leading to Fick’s law [23]. In porous media

theory, instead, the transport of solutes is accounted for by appropriate constitutive

laws for the interaction terms in the balance of linear momentum, rather than by

including boundary fluxes in the balance of mass [26].
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In equation (2.35), the material time derivative can be taken under the integral

provided that we use the transport theorem (2.34) to account for the fact that the

integration volume is not fixed. Hence:(∫
Ω

ρα dv

)′
α

=

∫
Ω

(ρα dv)′α =

∫
Ω

((ρα)′αdv + ρα(dv)′α)

=

∫
Ω

((ρα)′α + ρα∇ · vα) dv =

∫
Ω

ρ̃α dv.

The equation must be satisfied for any arbitrary choice of Ω, which means that the

integrand is zero and we have the Eulerian expression for the balance of mass

(ρα)′α + ρα∇ · vα = ρ̃α , or
∂ρα
∂t

+∇ · (ραvα) = ρ̃α . (2.37)

If all mass exchanges are excluded, relation (2.35) becomes(∫
Ω

ρα dv

)′
α

=

∫
Ω

(ρα dv)′α = 0,

whose local form is

(ραdv)′α = 0 or ραdv = constant = ρ0α
α dv0α.

The quantities dv0α and ρ0α
α represent the volume element and the partial density

of the constituent α (subscript index) in the reference placement at the position

Xα (superscript index), respectively. From equation (2.26), we get the Lagrangian

expression for the conservation of mass

ραJα dv0α = ρ0α
α dv0α, ρα = ρ0α

α J
−1
α . (2.38)

2.3.2 Balance of Linear Momentum

The balance equation of linear momentum states that the material derivative with

respect to constituent α of the linear momentum Pα is equal to the resultant force

Fα
(Pα)′α = Fα. (2.39)
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The linear momentum Pα for the constituent α is defined by

Pα =

∫
Ω

ραvα dv.

Applying the product rule for the material derivative and the transport theorem (2.34)

gives

(Pα)′α =

(∫
Ω

ραvα dv

)′
α

=

∫
Ω

(ραvα dv)′α

=

∫
Ω

(ραvα)′α dv + ραvα(dv)′α

=

∫
Ω

((ρα)′αvα + ρα(vα)′α + ραvα∇ · vα) dv

=

∫
Ω

( ραaα + ((ρα)′α + ρα∇ · vα) vα ) dv,

where aα = (vα)′α is the Eulerian acceleration (2.12). By the balance of mass (2.37),

the above expression becomes

(Pα)′α =

∫
Ω

(ραaα + ρ̃αvα) dv. (2.40)

The resultant force Fα can be due to:

• External forces acting on the exposed surface of the constituent α: these forces

are due to contact between bodies and are composed by a tangential friction

and a normal pressure. If tα is the force per unit area of the deformed surface

∂B acting on constituent α, the corresponding resultant force on the volume Ω

is

FSα =

∫
∂Ω

tα dS.

• External body forces acting throughout the region under consideration: body

forces include gravity, electromagnetic forces and the fictitious forces that result

from writing the balance equations in a rotating frame. A body force is usually

expressed as a force density per unit mass, bα, or a force density per unit

volume, ραbα. Hence, the resultant external body force acting on constituent

α is

FVα =

∫
Ω

ραbα dv.



28

• Body forces coming from the interaction with the other constituents: if p̃ is the

interaction force per unit volume, the corresponding resultant force on volume

Ω is

F Iα =

∫
Ω

p̃α dv.

The resultant force Fα is then

Fα = FSα + FVα + F Iα =

∫
∂Ω

tα dS +

∫
Ω

ραbα dv +

∫
Ω

p̃α dv. (2.41)

Thus, the balance of linear momentum has the same structure as equation (2.30),

with

fα = ραvα, gα = tα, hα = ραbα, f̃α = p̃α.

By Cauchy’s theorem [24]

tJα = T IJα nI , (2.42)

where T IJα is called the Cauchy stress tensor and represents the force per unit area

of the actual (deformed) configuration decomposed with respect to the basis vectors

associated with the Eulerian coordinate x. Vector n is the unit normal at the sur-

face of the deformed volume Ω. The components of the stress tensor could also be

represented in the basis vectors associated with the Lagrangian coordinates Xα in

the deformed position, yielding the so called body stress tensor. Yet other alternative

forms of the stress tensor are formed by considering the force per unit area in the

reference (undeformed) configuration. This leads to the definition of the first and

second Piola-Kirchhoff stress tensors, respectively [24].

By equations (2.39), (2.40), (2.41), (2.42), and the divergence theorem [24], we

get the balance equation for the linear momentum in local form

ραaα + ρ̃αvα =
∂TI

α

∂xI
+ ραbα + p̃α , (2.43)

where TI
α is the Ith row of the Cauchy stress tensor. Observe that, in the last

equation, the divergence operator is applied to Tα row wise. In the next section, we
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will show that Tα is symmetric for non polar materials. Thus, in equation (2.43),

the divergence operator could also be applied to Tα column wise without altering the

result.

2.3.3 Balance of Angular Momentum

The balance of angular momentum states that the material time derivative of the

angular momentum Hz
α about a fixed point z is equal to the resultant torque Lz

α

about the point z

(Hz
α)′α = Lz

α. (2.44)

The total angular momentum of the deformed volume Ω about the point z is assumed

to be given by

Hz
α =

∫
Ω

(x− z)× ραvα dv. (2.45)

The resultant torque Lz
α is assumed to be due to:

• surface traction exerting a net torque on the body about the point z

Lz,S
α =

∫
∂Ω

(x− z)× tα dS; (2.46)

• torques due to body forces

Lz,V
α =

∫
Ω

(x− z)× ραbα dv, (2.47)

• torques due to linear momentum coupling terms p̃α

Lz,Ṽ
α =

∫
Ω

(x− z)× p̃α dv. (2.48)

Thus, the balance of angular momentum (2.44) has the same structure as equa-

tion (2.30) with:

fα = (x− z)× ραvα, gα = (x− z)× tα, (2.49)

hα = (x− z)× ραbα, f̃α = (x− z)× p̃α. (2.50)
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Equations (2.49)–(2.50) are valid only for non-polar materials. Polar materials re-

spond to spin inertia, as well as surface and body torques. The body of work that

includes these effects is called Cosserat theory or the theory of micro-polar materi-

als [27]. It encompasses anisotropic fluids, liquid crystals with rigid molecules, rigid

suspensions, magnetic fluids, clouds with dust, muddy fluids, biological fluids, animal

blood with rigid cells, chopped fiber composites, bones, concrete with sand. For these

materials, equations (2.49), (2.50) become:

fα = (x− z)× ραvα + ραΘαωα, gα = (x− z)× tα + Mα, (2.51)

hα = (x− z)× ραbα + ραcα, f̃α = (x− z)× p̃α + m̃α, (2.52)

where:

• Θα and ωα are the partial tensor of inertia and angular velocity about the axis

of rotation;

• Mα is a surface torque;

• cα is a body torque per unit mass;

• m̃α is an angular momentum coupling due to the interaction with the other

constituents.

Considering non-polar materials, from equations (2.44)–(2.48), it follows that

(Hz
α)′α =

(∫
Ω

(x− z)× ραvα dv
)′
α

= Lz
α = Lz,S

α + Lz,V
α + Lz,Ṽ

α

=

∫
∂Ω

(x− z)× tα dS +

∫
Ω

(x− z)× (ραbα + p̃α) dv.

The vector z is a constant so it can be taken outside all integrals to yield(∫
Ω

x× ραvα dv
)′
α

−
∫
∂Ω

x× tα dS −
∫

Ω

x× (ραbα + p̃α) dv

= z×
[(∫

Ω

ραvα dv

)′
α

−
∫
∂Ω

tα dS −
∫

Ω

(ραbα + p̃α) dv

]
.



31

The term in square brackets is zero from the linear momentum balance in integral

form (2.44) and hence(∫
Ω

x× ραvα dv
)′
α

−
∫
∂Ω

x× tα dS −
∫

Ω

x× (ραbα + p̃α) dv = 0. (2.53)

By applying the product rule for the material derivative and the transport theo-

rem (2.34), we have(∫
Ω

x× ραvα dv
)′
α

=

∫
Ω

( x× ραvα dv )′α

=

∫
Ω

(
(x× ραvα)′α dv + (x× ραvα)(dv)′α

)
=

∫
Ω

(
ραvα × vα + x× (ραvα)′α + x× ρα(∇ · vα)vα

)
dv.

By the definition of vector product vα × vα = 0, so(∫
Ω

x× ραvα dv
)′
α

=

∫
Ω

(
x× (ραvα)′α + x× ρα(∇ · vα)vα

)
dv

=

∫
Ω

(
x× ( (ρα)′αvα + ραaα ) + x× ρα(∇ · vα)vα

)
dv

=

∫
Ω

x× ( ραaα + ( (ρα)′α + ρα(∇ · vα) ) vα ) dv.

Using the balance of mass (2.37), we obtain(∫
Ω

x× ραvα dv
)′
α

=

∫
Ω

x× (ραaα + ρ̃αvα) dv. (2.54)

Now let us focus on the surface integral in equation (2.53). Let eIJK , for I, J,K ∈
{1, 2, 3}, denote the Levi-Civita symbol, whose components are defined as

eIJK =


0 when any two indices are equal;

+1 when I, J,K is an even permutation of 1, 2, 3;

−1 when I, J,K is an odd permutation of 1, 2, 3.

(2.55)

Using eIJK , the I-th component of the cross product of x and tα can be expressed as

[x× tα]I = eIJK x
J tKα ,
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and, by Cauchy’s theorem (2.42)

[x× tα]I = eIJK x
J TLKα nL.

Introducing the tensor ALI = eIJK x
J TLKα , we can then write∫

∂Ω

[x× tα]I dS =

∫
∂Ω

ALInLdS.

By the divergence theorem [24]∫
∂Ω

ALInLdS =

∫
Ω

∂ALI
∂xL

dv.

Unfolding the definition of ALI and denoting by TL
α the Lth row of the Cauchy stress

tensor TLKα , we get∫
∂Ω

[x× tα]I dS =

∫
Ω

∂ALI
∂xL

dv

=

∫
Ω

∂

∂xL
(eIJK x

J TLKα ) dv

=

∫
Ω

(
eIJK

∂xJ

∂xL
TLKα + eIJK x

J ∂T
LK
α

∂xL

)
dv

=

∫
Ω

(
eIJK δ

JL TLKα +

[
x× ∂TL

α

∂xL

]
I

)
dv

=

∫
Ω

(
eIJK T

JK
α +

[
x× ∂TL

α

∂xL

]
I

)
dv.

(2.56)

Combining equations (2.53), (2.54), and (2.56) gives, in component form,∫
Ω

[
x×

(
ραaα + ρ̃αvα −

∂TL
α

∂xL
− ραbα − p̃α

)]
I

dv =

∫
Ω

eIJK T
JK
α dv.

The left-hand side vanishes by the linear momentum balance in its local form (2.43),

so ∫
Ω

eIJK T
JK
α dv = 0.

The equation must be valid for any volume Ω, which implies that the integrand is

zero

eIJK T
JK
α = 0. (2.57)
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Expanding the Einstein convention and rearranging the terms in the sums gives

eIJK T
JK
α =

3∑
I=1

3∑
J=1

3∑
K=1

eIJK T
JK
α

= e111 T
11
α + e112 T

12
α + e113 T

13
α + e121 T

21
α + e122 T

22
α + . . .

+ e331 T
31
α + e332 T

32
α + e333 T

33
α

= e111 T
11
α + e121 T

21
α + e131 T

31
α + e112 T

12
α + e122 T

22
α + . . .

+ e313 T
13
α + e323 T

23
α + e333 T

33
α

=
3∑
I=1

3∑
J=1

3∑
K=1

eIKJ T
KJ
α

= eIKJT
IKJ
α .

Hence, equation (2.57) can be rewritten as

eIJK T
JK
α =

1

2
(eIJK T

JK
α + eIKJ T

KJ
α ) = 0,

and using the antisymmetry property of the Levi-Civita symbol, we have

1

2
eIJK (T JKα − TKJα ) = 0.

It follows that the Cauchy stress tensor must be symmetric

T JKα = TKJα . (2.58)

As a consequence of (2.51), (2.52), the balance of angular momentum for micro-polar

materials does not lead to (2.58). Thus, the Cauchy stress tensor is not symmetric. In

this work, only non-polar materials will be considered. For extensions of the balance

equations for mixtures to micro-polar materials, the interested reader is referred to

the work of Ehlers [28].

2.3.4 Balance of Energy

The balance of energy (first law of thermodynamics) expresses the notion of con-

servation of energy and states that the sum of the material time derivatives of the
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internal and kinetic energies equals the sum of the rates of the heating and the

mechanical work of the surface and body forces. This principle is applied to each

individual constituent

(Eα)′α + (Kα)′α = Wα +Qα +

∫
Ω

φ̃α dv, (2.59)

where Eα, Kα,Wα, and Qα are the internal energy, the kinetic energy, the rate of

mechanical work and the rate of heating of constituent α, respectively. The term φ̃α

is an energy supply per unit volume to α caused by all the other constituents. The

internal energy is

Eα =

∫
Ω

ραφα dv, (2.60)

where φα = φα(x, t) is the partial (averaged reduced) energy density per unit mass.

From the transport theorem (2.34) and the balance of mass (2.37) it follows that

(Eα)′α =

(∫
Ω

ραφα dv

)′
α

=

∫
Ω

(ραφαdv)′α =

∫
Ω

(
(ραφα)′α dv + ραφα(dv)′α

)
=

∫
Ω

( (ρα)′αφα + ρα(φα)′α + ραφα∇ · vα ) dv

=

∫
Ω

( ((ρα)′α + ρα∇ · vα)φα + ρα(φα)′α ) dv

=

∫
Ω

(ρ̃αφα + ρα(φα)′α) dv.

(2.61)

The kinetic energy is defined as

Kα =

∫
Ω

1

2
ραvα · vα dv. (2.62)

From the transport theorem (2.34) and the balance of mass (2.37) it follows that

(Kα)′α =

(∫
Ω

1

2
ραvα · vα dv

)′
α

=

∫
Ω

((
1

2
ραvα · vα

)′
α

dv +
1

2
ραvα · vα(dv)′α

)
=

∫
Ω

(
1

2
(ρα)′αvα · vα + ραaα · vα +

1

2
ραvα · vα(∇ · vα)

)
dv

=

∫
Ω

(
1

2
((ρα)′α + ρα∇ · vα) vα · vα + ραaα · vα

)
dv

=

∫
Ω

(
1

2
ρ̃αvα · vα + ραaα · vα

)
dv.

(2.63)
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The rate of work of the surface forces and the body forces is

Wα =

∫
Ω

vα · ραbα dv +

∫
∂Ω

vα · tα dS. (2.64)

From Cauchy’s theorem (2.42), and using Einstein summation convention, we obtain

Wα =

∫
Ω

vα · ραbα dv +

∫
∂Ω

vJαT
IJ
α nI dS. (2.65)

The divergence theorem applied to the vector P I = vJαT
IJ
α gives

Wα =

∫
Ω

vα · ραbα dv +

∫
Ω

∂P I

∂xI
dv

=

∫
Ω

(vα · ραbα +
∂vJα
∂xI

T IJα + vJα
∂T IJα
∂xI

) dv,

=

∫
Ω

(
vα ·

(
ραbα +

∂TI
α

∂xI

)
+ LIJα T

IJ
α

)
dv,

(2.66)

where LIJα = ∂vJα/∂x
I is the spatial velocity gradient. Let DIJ

α and W IJ
α be the

symmetric and the antisymmetric parts of LIJα , respectively. By the symmetry of the

Cauchy stress tensor (2.58), we get

W IJ
α T IJα =

1

2
(LIJα − LJIα )T IJα =

1

2
(LIJα T

IJ
α − LJIα T JIα ) = 0.

Given two tensors A and B, their contraction A : B is the operation defined by

A : B = AIJBIJ . (2.67)

From the previous equation we get

Lα : Tα = (Dα +Wα) : Tα = Dα : Tα + 0 = Dα : Tα. (2.68)

The total rate of heating is

Qα =

∫
Ω

ραrα dv −
∫
∂Ω

qα · n dS, (2.69)

where rα = rα(x, t) is the partial heat supply per unit partial mass, and qα = qα(x, t)

the partial heat flux vector. The negative sign is chosen so that heat flows into the



36

body, −qα · n > 0, when the flux vector qα is also directed into the body. From the

divergence theorem it follows that

Qα =

∫
Ω

(ραrα −∇ · qα) dv. (2.70)

From (2.59), (2.60), (2.62), (2.64), (2.69), it follows that the balance of energy has

the same form of equation (2.29) with

fα = ραφα +
1

2
ραvα · vα, gα = vα · tα − qα · n, hα = vα · ραbα + ραrα, f̃α = φ̃α.

Combining equations (2.59), (2.61), (2.63), (2.66), and (2.70), we get the local state-

ment

ρ̃αφα + ρα(φα)′α +
1

2
ρ̃αvα · vα + vα · ραaα

= vα ·
(
ραbα +

∂TI
α

∂xI

)
+ Tα : Dα + ραrα −∇ · qα + φ̃α,

or, equivalently,

ρ̃αφα + ρα(φα)′α +
1

2
ρ̃αvα · vα

= vα ·
(
ραbα +

∂TI
α

∂xI
− ραaα

)
+ Tα : Dα + ραrα −∇ · qα + φ̃α.

By the balance of momentum (2.43), we obtain

ρ̃αφα + ρα(φα)′α +
1

2
ρ̃αvα · vα

= vα · (ρ̃αvα − p̃α) + Tα : Dα + ραrα −∇ · qα + φ̃α,

and finally

ρ̃αφα + ρα(φα)′α =
1

2
ρ̃αvα · vα − vα · p̃α + Tα : Dα + ραrα −∇ · qα + φ̃α . (2.71)

2.3.5 The Entropy Inequality

The entropy inequality (second law of thermodynamics) tells that there is a phys-

ical limit to the rate at which heat can be absorbed by a body, but no limit to the
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rate at which it can be released. In classical continuum mechanics, for a body made

of a single material, the law states that

Q ≤ B, (2.72)

where Q is the net heating of the body and B is its least upper bound. For a body

at uniform temperature, denoted by θ, a quantity called entropy, denoted by H, is

introduced, such that

H′ = B
θ
, (2.73)

where (·)′ denotes the material derivative in classical continuum mechanics for bodies

made of a single constituent. The rate of change of entropy represents the ability of

a particular material to absorb heat. Combining (2.72) and (2.73) gives

θH′ ≥ Q.

More generally, for a continuum body, we assume that there exists a specific entropy

η such that

H =

∫
Ω

ρη dv.

Also, we suppose that the rate of change in total entropy is greater than or equal to

the net heating per unit temperature

H′ ≥
∫

Ω

ρr

θ
dv −

∫
∂Ω

q · n
θ

dS,

which is known as the Clausius-Duhem inequality. This inequality is transferred

to the individual constituents in porous media theory. The assumption that the

entropy inequality has to be satisfied for every single constituent α is a sufficient,

but too restrictive, condition. A necessary and sufficient condition to describe the

thermodynamics of a porous medium is that the sum of all the individual entropy

inequalities has to be fulfilled

κ∑
α=1

(Hα)′α ≥
κ∑

α=1

(∫
Ω

ραrα
θα

dv −
∫
∂Ω

qα · n
θα

dS

)
. (2.74)
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In equation (2.74), we consider the same volume of integration Ω for all the compo-

nents. With the help of the transport theorem (2.34), the balance of mass (2.37), and

the divergence theorem applied to the vector field qα/θα, we get

κ∑
α=1

(Hα)′α =
κ∑

α=1

∫
Ω

(ραηα dv)′α

=
κ∑

α=1

∫
Ω

( (ρα)′αηα + ρα(ηα)′α + ραηα(∇ · vα) ) dv

=
κ∑

α=1

∫
Ω

(ρα(ηα)′α + ρ̃αηα) dv

≥
κ∑

α=1

(∫
Ω

ραrα
θα

dv −
∫
∂Ω

qα · n
θα

dS

)
=

κ∑
α=1

∫
Ω

(
ραrα
θα
−∇ ·

(
qα
θα

))
dv.

By linearity of the integral and sum operators, as well as the assumption that the

domain of integration Ω is the same for every constituent, it follows that∫
Ω

κ∑
α=1

(
ρα(ηα)′α + ρ̃αηα −

ραrα
θα

+∇ ·
(

qα
θα

))
dv ≥ 0.

If the integral must be non-negative for any volume Ω, no matter how small, then the

integrand must be non-negative

κ∑
α=1

(
ρα(ηα)′α + ρ̃αηα −

ραrα
θα

+∇ ·
(

qα
θα

))
≥ 0.

Expanding the divergence term and factoring 1/θα, we obtain

κ∑
α=1

1

θα

(
ραθα(ηα)′α + ρ̃αθαηα − ραrα +∇ · qα −

1

θα
qα · ∇θα

)
≥ 0,

or
κ∑

α=1

1

θα

(
Dα −

1

θα
qα · ∇θα

)
≥ 0, (2.75)

where

Dα = ραθα(ηα)′α + ρ̃αθαηα − ραrα +∇ · qα
= ραθα(ηα)′α + ρ̃αθαηα − (ραrα −∇ · qα)
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is called the internal dissipation of constituent α per unit deformed volume. The

internal dissipation is the net increase in specific entropy that is not due to net

heating. From the conservation of energy (2.71), we can rewrite the dissipation as

Dα = ραθα(ηα)′α + ρ̃αθαηα

−
(
ρ̃αφα + ρα(φα)′α −

1

2
ρ̃αvα · vα + vα · p̃α − Tα : Dα − φ̃α

)
.

(2.76)

It is convenient to introduce the Helmholtz free energy per unit partial mass

ψα(x, t) = φα(x, t)− ηα(x, t)θα(x, t). (2.77)

To have an idea of what the Helmholtz free energy represents, consider a non-

dissipative system (i.e. Dα = 0), with no supply terms (i.e. ρ̃α = 0, p̃α = 0, φ̃α = 0),

at constant temperature. Then

(ψα)′α = (φα)′α − θα(ηα)′α,

and

Dα = 0 = ραθα(ηα)′α − ρα(φα)′α + Tα : Dα,

which together imply

ρα(ψα)′α = Tα : Dα.

Hence, the Helmholtz free energy is the energy available to do mechanical work in

a non-dissipative system, with no supply terms, at constant temperature. In other

words, it is some sort of potential energy. Using definition (2.77) in (2.75) and (2.76),

the entropy inequality can be rewritten as

κ∑
α=1

1

θα

(
−ρα(ψα)′α − ρα(θα)′αηα − ρ̃α

(
ψα −

1

2
vα · vα

)
−vα · p̃α + Tα : Dα + φ̃α −

1

θα
qα · ∇θα

)
≥ 0.

(2.78)

2.4 Constitutive Modeling

Based on the theory presented in the preceding sections, several different multi-

phasic models can be defined. In view of the applications in ophthalmology presented
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in Chapter 4, a general mixture model with one solid phase and one fluid phase will

be presented. Hence, here, α = S, F . This binary model is subject to the following

assumptions:

1. Saturated solid-fluid mixture: the control space shaped by the porous solid is

completely filled by the solid and the fluid constituents. Hence, the solid and

fluid volume fractions have to satisfy the saturation constraint

nS + nF = 1. (2.79)

2. Materially incompressible solid and fluid constituents: we will be assuming that

both the solid and the fluid phases cannot undergo volume changes at the

microscale. As discussed in Section 2.2, the microscopic deformation behavior

of a real constituent is transferred to the macroscale by the tensor FαR. The

incompressibility constraint of constituent α is then expressed by requiring the

determinant JαR of FαR to be 1. Moreover, it is assumed that any exchange of

mass between the two constituents does not happen between the real materials,

but rather it is accommodated through a change in the partial volume fractions.

This means that the real mass of a constituent is conserved, or, equivalently, its

total mass Mα remains constant under the mapping FαR between the reference

and the intermediate placements

Mα =

∫
B̃α

ραR dṽα =

∫
B0α

ρ0α
α dv0α,

where B0α is a control volume in the reference placement at the position Xα, and

B̃α is the corresponding domain in the intermediate placement in the tangent

space. Proceeding similarly to Section 2.3.1 gives

ραR = ρ0α
α J

−1
αR,

and, since JαR = 1, we obtain that the incompressibility constraint for phase α

can be expressed by

ραR = ρ0α
α = constant. (2.80)
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3. Viscous pore fluid streaming through a viscoelastic solid skeleton: we are inter-

ested in studying the role played by viscoelasticity in the modeling of biological

tissues. In Chapter 4, we will be discussing about influences of tissue viscoelas-

ticity on the optic nerve head perfusion.

4. Uniform body force: bα = b.

5. Quasi-static conditions: solid and fluid accelerations are neglected, that is

aα = 0. (2.81)

This choice will be motivated in Chapter 4 in the context of mathematical

modeling of the optic nerve head perfusion.

6. Isothermal process:

θα = θ = constant.

7. Constraints on the source/sink terms:

ρ̃S + ρ̃F = 0, p̃S + p̃F = 0, φ̃S = φ̃F = 0.

The system is isothermal, which means that there can be no external sources of

heat and the boundary of the porous medium is insulated. Therefore, rα = 0,qα =

0. Under these assumptions, and neglecting energy supply terms, it follows that

the balance of energy equation (2.71) is not independent of the linear momentum

equation (2.43), even if accelerations are not neglected. In fact, if rα = 0,qα = 0,

and φ̃α = 0, the balance of energy (2.71) simplifies to

ρ̃αφα + ρα(φα)′α =
1

2
ρ̃αvα · vα − vα · p̃α + Tα : Dα.

Integrating over a generic control volume Ω gives∫
Ω

(ρ̃αφα + ρα(φα)′α) dv =

∫
Ω

(
1

2
ρ̃αvα · vα − vα · p̃α + Tα : Dα

)
dv. (2.82)

The integral on the left hand side is the material time derivative of the internal

energy Eα (see equation (2.61)). By the balance of energy in integral form (2.59),
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the material derivative of Eα is given by Wα − (Kα)′α, which represents the net rate

of work, i.e. the total power exerted by external forces that is not used to produce

motion. From equations (2.63) and (2.65), we get

(Eα)′α = Wα − (Kα)′α

=

∫
Ω

vα · ραb dv +

∫
∂Ω

vJαT
IJ
α nI dS −

∫
Ω

(
1

2
ρ̃αvα · vα + ραaα · vα

)
dv.

(2.83)

Comparing equations (2.82) and (2.83) gives∫
Ω

vα · ραb dv +

∫
∂Ω

vJαT
IJ
α nI dS −

∫
Ω

(
1

2
ρ̃αvα · vα + ραaα · vα

)
dv

=

∫
Ω

(
1

2
ρ̃αvα · vα − vα · p̃α + Tα : Dα

)
dv.

(2.84)

Equation (2.84) follows immediately from the balance of linear momentum (2.43).

Taking the dot product of equation (2.43) with the velocity vα, we obtain∫
Ω

(
∂T IJα
∂xI

vJα + ραb · vα + p̃α · vα
)
dv =

∫
Ω

( ραaα · vα + ρ̃αvα · vα ) dv. (2.85)

The first term on the left hand side can be integrated by parts using the divergence

theorem on the vector T IJα vJα∫
Ω

(
∂T IJα
∂xI

vJα

)
dv =

∫
Ω

(
∂(T IJα vJα)

∂xI
− T IJα

∂vJα
∂xI

)
dv

=

∫
∂Ω

T IJα vJαn
I dS −

∫
Ω

T IJα
∂vJα
∂xI

dv.

By equation (2.68), we have∫
∂Ω

T IJα vJαn
I dS −

∫
Ω

T IJα
∂vJα
∂xI

dv =

∫
∂Ω

T IJα vJαn
I dS −

∫
Ω

T IJα LIJα dv

=

∫
∂Ω

T IJα vJαn
I dS −

∫
Ω

T IJα DIJ
α dv

Hence, equation (2.85) becomes∫
∂Ω

T IJα vJαn
I dS +

∫
Ω

(ραb · vα + p̃α · vα − T IJα DIJ
α ) dv

=

∫
Ω

( ραaα · vα + ρ̃αvα · vα ) dv,
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and, after few manipulations,∫
∂Ω

T IJα vJαn
I dS +

∫
Ω

ραb · vα dv −
∫

Ω

(
1

2
ρ̃αvα · vα + ραaα · vα

)
dv

=

∫
Ω

(
1

2
ρ̃αvα · vα − p̃ · vα + Tα : Dα

)
dv,

which coincides with (2.84).

Thus far we have formulated four balance equations, an entropy inequality, and

a collection of kinematic relationships. The overall set of governing equations for a

binary porous media model satisfying assumptions 1–7 is shown in Table 2.1. This

Table shows that there are more unknown variables than equations. Hence, additional

equations are required to close the system. These additional equations are called

constitutive equations and describe the nature of the continuum under consideration

by characterizing its responses, such as stress and Helmholtz free energy, in terms of

the kinematics of the porous medium.

There is not a unique approach to formulate constitutive equations. One approach

could be starting from a simplified description of the molecular behavior and then

averaging over all possible configurations to obtain the behavior at the macroscopic

(continuum) level. Alternatively, one could use phenomenological models based on

experiments. No matter how we obtain a constitutive model, it is important to be

aware of the assumptions behind it and which regime of motion it is valid over.

Two basic principle that constitutive equations should always fulfill are:

Principle 1. They should be objective (i.e. not influenced by superimposed rigid

body motions).

Principle 2. They should not violate the laws of thermodynamics.

2.4.1 Principle of Material Objectivity

The behavior of a material should not be influenced by superimposed rigid body

motions of the observer. A quantity that is not affected by the observer is called
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objective or material frame independent. According to Principle 1, constitutive laws

need to be formulated in terms of objective quantities.

In classical continuum mechanics, relativistic effects are neglected, and, thus, any

observer must measure the same spatial distances and time intervals. Consider an

observer measuring spatial position and time by the pair (x = ϕα(Xα, t), t), where x

is given by

ϕα : B0α × [0, T )→ B

(Xα, t) → x = ϕα(Xα, t),

and another one by (x̆, t̆), where x̆ is given by

ϕ̆α : B0α × [−t0, T̆ )→ B̆

(Xα, t̆) → x̆ = ϕ̆α(Xα, t̆),

and t̆ = t − t0, t0 being a constant time shift. Since t̆ and t differ only by a con-

stant amount and a change of (Eulerian) observer does not affect the Lagrangian

coordinates, the material (total) derivative with respect to t and t̆, i.e. (·)′α and (·)′ᾰ,

respectively, coincide. More precisely, given an Eulerian function

f(x, t) = f̆(x̆(x), t̆),

we have

(f)′α = (f̆)′ᾰ.

The most general transformation between the two observers is a rigid body motion

x̆ = Q(t)x + c(t), (2.86)

where Q : [0, T )→ R3×R3 is an orthogonal matrix, and c : [0, T )→ R3 a translation

vector.

Given a scalar function w(x, t) = w̆(x̆(x, t), t̆), its value must not change due to a

superimposed rigid body motion, that is

w̆(x̆, t̆) = w(x̆, t). (2.87)
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Hence, w is invariant under an Eulerian observer transformation, i.e., it is observer

invariant. For a vector u, to be objective, its length must not change under the

observer transformation

ŭ · ŭ = u · u.

Writing vector u as a difference of two points in space, u = x− y, we get

ŭ = x̆− y̆ = Qx + c−Qy − c = Q(x− y) = Qu,

and then

ŭ · ŭ = ŭI ŭI = QIJu
IQIKu

K = QT
JIQIKu

JuK = δJKu
JuK = uJuJ = u · u,

because Q is orthogonal. Thus, a vector u is observer independent (or objective in

the Eulerian sense) if

ŭ = Qu. (2.88)

From equation (2.88), for a tensor of order two, A, to remain invariant under observer

rigid motions, it must be

Ăŭ = Q(Au),

that we can rewrite as

Ăŭ = Q(Au) = Q(A(QT ŭ)) = QAQT ŭ.

Hence, in order to be objective in the Eulerian sense, A must obey the following

transformation rule

Ă = QAQT . (2.89)

The transformations for the velocity and the acceleration are obtained by taking the

material derivative of equation (2.86). Since, the material derivatives (·)′ᾰ and (·)′α
coincide, as observed before, we have, for the velocity

v̆α = (x̆)′ᾰ = (Qx + c)′α = (Q)′αx +Q(x)′α + (c)′α = Qvα + (Q)′αx + (c)′α,

and, for the acceleration

ăα = (v̆α)′ᾰ = (Qvα + (Q)′αx + (c)′α )′α = Qaα + 2(Q)′αvα + (Q)′′αx + (c)′′α.
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Hence, the velocity and acceleration do not transform according to (2.88) unless Q

and c are both constant. Thus, they are not objective and depend on the motion of

the observer.

The deformation gradient tensor Fα transforms via

F̆ IJ
α =

∂x̆I

∂XJ
α

=
∂

∂XJ
α

(QIK(t)xK + cI(t) ) = QIKFKJ
α ,

or

F̆α = QFα, (2.90)

so that the deformation gradient tensor is not objective, as it does not transform

according to equation (2.89). The right Cauchy-Green tensor is invariant under a

change of observer as

C̆α = F̆ T
α F̆α = (QFα)TQFα = F T

αQ
TQFα = F T

αFα = Cα, (2.91)

Therefore, the same holds for the Green-Lagrange strain tensor

Ĕα =
1

2
(C̆α − Ĭ) =

1

2
(C̆α − Ĭ) =

1

2
(Cα − I) = Eα, (2.92)

where we used the fact that Ĭ = I since the Lagrangian identity tensor I : B0α → B0α

is invariant under an Eulerian observer transformation. Thus, Cα and Eα, which are

based on the Lagrangian coordinates, do not transform according to (2.89), so they

are not observer independent. Rather, they are observer invariant, or objective in

a Lagrangian sense. The Eulerian (Almansi) strain tensor is based on the Eulerian

coordinates and does transform objectively. In fact, from equation (2.90) and since

Q(t) : B → B̆, QT (t) : B̆ → B, Q−1(t) = QT (t),

we obtain

Ăα =
1

2
(Ĭ −C̆α) =

1

2
(QQT − F̆−Tα F̆−1

α ) =
1

2
(QQT −QF−Tα F−1

α QT ) = QAαQ
T . (2.93)

The spatial velocity gradient Lα does not transform objectively. In fact, by equa-

tions (2.16), (2.90), and the remark about the material derivatives (·)′ᾰ, (·)′α, we get

L̆α = (F̆α)′ᾰF̆
−1
α = (QFα)′α(QFα)−1

= ((Q)′αFα +Q(Fα)′α)F−1
α QT = (Q)′αQ

T +QLαQ
T .

(2.94)
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The symmetric part of Lα, the Eulerian rate of deformation tensor Dα, transforms

objectively. In order to prove this, take the material derivative of the identity tensor

Ĭ = QQT to get

0 = (QQT )′ᾰ = (Q)′αQ
T +Q[(Q)′α]T ,

which shows that

(Q)′αQ
T = −Q[(Q)′α]T . (2.95)

Hence, from equations (2.94) and (2.95), we have

D̆α =
1

2
(L̆α + L̆Tα) =

1

2
((Q)′αQ

T +QLαQ
T +Q[(Q)′α]T +QLTαQ

T )

= Q
1

2
(Lα + LTα)QT = QDαQ

T ,
(2.96)

so Dα transforms according to (2.89). Conversely, the antisymmetric pat of Lα, Wα,

does not transform objectively

W̆α =
1

2
(L̆α − L̆Tα) =

1

2
((Q)′αQ

T +QLαQ
T −Q[(Q)′α]T −QLTαQT )

= Q
1

2
(Lα − LTα)QT + (Q)′αQ

T = QWαQ
T + (Q)′αQ

T .

Let us summarize this section about the principle of material objectivity. We

found that constitutive laws should be formulated using:

• either quantities objective in a Lagrangian sense, i.e. observer invariant, like

the Cauchy-Green tensor Cα and the Green-Lagrange strain tensor Eα, together

with its material time derivative (Eα)′α (see equations (2.91), (2.92));

• or quantities objective in the Eulerian sense, i.e. observer independent, like the

Almansi strain tensor Aα and the Eulerian rate of deformation tensor Dα (see

equations (2.93), (2.96)).

2.4.2 The Saturation and Incompressibility Constraints

As described in Section 2.3.5, the entropy inequality is a constraint on the evolu-

tion of a physical system. Its essence is that there is a physical limit to the rate at
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which heat can be absorbed by a body, but no limit to the rate at which it can be

released. The entropy inequality can be used to gain restrictions for the constitutive

equations, according to Principle 2.

There are many possibilities to satisfy this inequality. Some evaluations may be

less restrictive than others. The entropy inequality has to be manipulated in order

to include fundamental physical phenomena known from experience, test observa-

tions, and theories. Similarly to what is done in constraint optimization theory in

finite [29] and infinite [30] dimensional problems, all additional constraints, like the

saturation (2.79) and the incompressibility (2.80) conditions, have to be put in a

stress-power like form by taking their material derivative and multiplying each of

them by a Lagrange multiplier, and finally added to the entropy inequality. A con-

straint is then formulated is such a way that its stress-power like form provides an easy

and physical meaningful interpretation of its Lagrange multiplier. We will illustrate

this last point in the following.

Differentiating the saturation constraint (2.79) with respect to the solid phase

gives

0 = (nS)′S + (nF )′S,

which, using the definition of the total derivatives (·)′α, α = S, F , as well as adding

and subtracting ∇nF · vF , can be rewritten as

0 = (nS)′S + (nF )′S

= (nS)′S +
∂nF
∂t

+∇nF · vS +∇nF · vF −∇nF · vF

= (nS)′S + (nF )′F −∇nF · (vF − vS),

or, equivalently

0 = −(nS)′S − (nF )′F +∇nF · (vF − vS) . (2.97)
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The same result can be obtained by taking the derivative with respect to the fluid

phase

0 = (nS)′F + (nF )′F

=
∂nS
∂t

+∇nS · vF + (nF )′F +∇nS · vS −∇nS · vS

= (nS)′S + (nF )′F +∇nS · (vF − vS).

Taking the gradient of the saturation constraint gives

∇nS = ∇(1− nF ) = −∇nF ,

which, together with the previous equation, implies (2.97). Observe that the unit of

measure of each term in equation (2.97) is [s−1]. Multiplying (2.97) by a Lagrange

multiplier λ and comparing it with the units of the entropy inequality in Table 2.1 ( [N·
m−2 · s−1] ), reveals that λ has the same units of a pressure [N ·m−2]. In fact, since the

saturation constraint in the rate formulation restricts the rates of volumetric changes

of both the solid and fluid phases, its multiplier λ is understood as an unknown

hydrostatic interface pressure acting on both the constituents. Hence, we expect the

evaluation of the entropy inequality to provide us with two constitutive equations for

λ, one containing properties of the smeared solid constituent, and another one with

properties of the smeared fluid constituent.

From the incompressibility constraints

ρSR = constant, ρFR = constant,

we get

(ρSR)′S = (ρFR)′F = 0. (2.98)

Rather than using equation (2.98), multiplied by an appropriate Lagrange multiplier,

in the evaluation of the entropy inequality, we rewrite it with the help of the balance of
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mass (2.37). Using the definition of the partial density ρα = nαραR in equations (2.37)

and (2.98), we have

ρ̃α = (ρα)′α + ρα∇ · vα
= (nα)′αραR + nα(ραR)′α + ρα∇ · vα
= (nα)′αραR + ρα∇ · vα,

and, dividing through by ραR, we obtain

(nα)′α + nα∇ · vα =
ρ̃α
ραR

, or
∂nα
∂t

+∇ · (nαvα) =
ρ̃α
ραR

. (2.99)

Let us stress that equation (2.99) is the incompressibility constraint (2.98) rewritten

with the help of the balance of mass. This form can now be readily used in the

evaluation of the entropy inequality. In fact, its units are [s−1], so that its Lagrange

multiplier λαR has the same units of a pressure, i.e. [N · m−2], similarly to the case

of the saturation constraint. Thus, λαR can be interpreted as an hydrostatic pressure

reflecting the incompressibility of the real (not the smeared) material.

Finally, observe that the divergence of the velocity field vα can be written as the

contraction (see equation (2.67)) of the identity tensor I with the Eulerian rate of

deformation tensor Dα

∇ · vα =
∂vIα
∂xI

= DII
α = I : Dα.

Now we are ready to start manipulating the entropy inequality. Multiply equa-

tions (2.97) and (2.99) by their corresponding Lagrange multipliers, λ, λSR, and λFR,

respectively, and add them to the entropy inequality in Table 2.1 to obtain∑
α=S,R

(
−ρα(ψα)′α − ρ̃α

(
ψα −

1

2
vα · vα

)
+ Tα : Dα − p̃α · vα

)
+ λ(−(nS)′S − (nF )′F +∇nF · (vF − vS) )

+ λSR

(
(nS)′S + nS∇ · vS −

ρ̃S
ρSR

)
+ λFR

(
(nF )′F + nF∇ · vF −

ρ̃F
ρFR

)
≥ 0.
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Manipulating the last inequality and using the constraint p̃S + p̃F = 0 in Table 2.1,

we obtain

− ρS(ψS)′S − ρF (ψF )′F

− ρ̃S
(
ψS −

1

2
vS · vS +

λSR
ρSR

)
− ρ̃F

(
ψF −

1

2
vF · vF +

λFR
ρFR

)
+ (T S + λSRnSI) : DS + (T F + λFRnFI) : DF

− (p̃F − λ∇nF ) · (vF − vS)− (nS)′S(λ− λSR)− (nF )′F (λ− λFR) ≥ 0.

(2.100)

To concisely rewrite the above inequality, it is common practice [13] to define the

chemical potential functions

µα := ψα −
1

2
vα · vα +

λαR
ραR

, (2.101)

and the effective or extra field quantities

TEα := Tα + λαRnαI, p̃EF = p̃F − λ∇nF . (2.102)

The word effective is used to denote the total stress tensors Tα and interaction term

p̃F minus the effects of the hydrostatic pressure λ. This is in full agreement with the

classical concept of effective stress, which presumes that the effective soil stress in a

geophysical consolidation problem is determined by the total stress minus the excess

pore pressure [13, 31]. With the help of µα, T
E
α , and p̃EF , and using the constraint

ρ̃F + ρ̃S = 0 from Table 2.1, we can rewrite (2.100) as follows

− ρS(ψS)′S − ρF (ψF )′F − ρ̃F (µF − µS) + TES : DS + TEF : DF

− p̃EF · (vF − vS)− (nS)′S(λ− λSR)− (nF )′F (λ− λFR) ≥ 0.
(2.103)

In the following, we will introduce constitutive relations for TES , T
E
F , p̃

E
F , ψS, ψF , and

ρ̃F . This will allow us to close the poro-visco-elastic system of equations listed in

Table 2.1.

2.4.3 Constitutive Variables and Evaluation of the Entropy Inequality

The goal of this section is to provide constitutive relations for the quantities

R = {TES , TEF , p̃EF , ψS, ψF , ρ̃F}, (2.104)
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in order to close the system of equations shown in Table 2.1. Since porous media

theory proceeds from the assumption that each point of the space shaped by the

porous solid is occupied by both the fluid and solid phases simultaneously, the re-

sponse functions (2.104) may depend on a common set U of constitutive or process

variables (see [13,22,32]):

U =
{
nS, ES,∇SES, {QnS,∇SQnS}Nn=1,vF − vS, DF

}
(2.105)

The choice of process variables is justified as follows:

• The solid volume fraction nS affects the unknown hydrostatic pressure λ, which

is the Lagrange multiplier of the saturation constraint in the rate formulation,

see equation (2.97). Observe that nF does not appear in U as it is coupled to

nS via the saturation constraint (2.79). Being a scalar function, nS is observer

invariant (see equation (2.87)).

• The partial solid Green-Lagrange strain tensor ES and its gradient ∇SES, to-

gether with the internal state variables QnS and their gradients ∇SQnS represent

the deformations of the partial solid. The solid free energy ψS is a scalar func-

tion and must be invariant under a change in Eulerian observer in order for the

material behavior to be objective (see equation (2.87)). Since ψS depends on the

deformation measure d, d must also remain invariant under a change in Eule-

rian observer, i.e. d̆ = d. From this argument, the choice of the Green-Lagrange

strain tensor follows, since we know it is observer invariant, as shown in Sec-

tion 2.4.1. The internal state variables {QnS}Nn=1 are variables that represent

the memory of the material, and are introduced to characterize the viscoelas-

ticity of the solid phase [33, 34]. A viscoelastic solid material exhibits both

elastic and viscous, i.e. rate-dependent, material responses, so that the current

state of stress (or strain) depends on the whole strain (or stress) history [35,36].

Therefore, {QnS}Nn=1 need to be observer invariant variables defined via evolution

equations

(QnS)′S = Gn(U), n = 1, . . . , N.
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• The velocity difference vF − vS and the symmetric part of the fluid velocity

gradient tensor, DF , govern dissipative effects in the fluid. In fact, if there

is relative motion between the solid and fluid phases (vF − vS 6= 0), we can

expect boundary layers at the wall of the pore channels to occur and lead to

dissipation. Also, shear stresses in the fluid lead to dissipation. These stresses

develop when the fluid is in motion; thus, we expect them to be a function

of the Eulerian rate of deformation tensor DF . Observe that DF is objective,

whereas vF − vS is not, as shown in Section 2.4.1. This is not an actual issue,

as we will show that vF − vS is not an independent constitutive variable, so it

can be removed from the set U (2.105).

We are now ready to use the entropy inequality to gain restrictions for constitutive

equations. This procedure is known as evaluation of the entropy inequality. The

analysis will be performed in the case of small deviations from the equilibrium state

of the mixture [13, 32].

Definition. The equilibrium state of a mixture is the state characterized by

U =
{
nS, ES,∇SES =

3

0, {QnS,∇SQnS =
3

0}Nn=1,vF − vS = 0, DF = 0
}
,

(2.106)

where
3

(·) denotes a tensor of order 3, i.e. a tensor with 3 associated directions (for

example, the Levi-Civita symbol defined in (2.55) is a tensor of order 3).

Thus, considering small deviations from the equilibrium state refers to small values

of ∇SES,∇SQS,vF − vS, DF . The evaluation of the entropy inequality around the

mixture equilibrium state is described in great details by de Boer [13] and Bowen [32].

The main results of their analysis are the following functional dependencies for the

solid and fluid free energies

ψS = ψS(nS, ES, {QnS}Nn=1), ψF = constant. (2.107)

In equation (2.107), the free energy ψα of a given constituent α only depends on the

variables included into the process by the respective constituent (actually, ψF is a
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constant in our case, so this observation is trivially true for ψF ). This situation is

also known as principle of phase separation [37]. Rather than repeating the extremely

detailed analysis of Bowen [32] and de Boer [13], we will illustrate the evaluation of

the entropy inequality giving the functional dependencies (2.107) for granted.

Using the chain rule on (2.107), the material time derivatives of ψS and ψF are

(ψS)′S =
∂ψS
∂nS

(nS)′S +
∂ψS
∂ES

: (ES)′S +
N∑
n=1

∂ψS
∂QnS

: (QnS)′S, (2.108)

(ψF )′F = 0. (2.109)

From the definition of the Green-Lagrange strain tensor Eα (2.20) and equation (2.16),

it follows that

(EIJ
S )′S =

1

2
(FKI

S FKJ
S − δIJ)′S =

1

2
( (FKI

S )′SF
KJ
S + FKI

S (FKJ
S )′S )

=
1

2
( (LKMS FMI

S )FKJ
S + FKI

S (LKMS FMJ
S ) ),

and then

∂ψS
∂ES

: (ES)′S =
∂ψS
∂EIJ

S

(EIJ
S )′S =

1

2

∂ψS
∂EIJ

S

(LKMS FMI
S FKJ

S + FKI
S LKMS FMJ

S )

=
1

2

(
FMI
S

∂ψS
∂EIJ

S

FKJ
S

)
LKMS +

1

2

(
FKI
S

∂ψS
∂EIJ

S

FMJ
S

)
LKMS

=
1

2

(
F S

∂ψS
∂ES

F T
S

)
: LTS +

1

2

(
F S

∂ψS
∂ES

F T
S

)
: LS

=

(
F S

∂ψS
∂ES

F T
S

)
: DS,

(2.110)

where DS is the symmetric part of LS. Inserting (2.108), (2.109), and (2.110)(
TES − ρSF S

∂ψS
∂ES

F T
S

)
: DS − ρS

N∑
n=1

∂ψS
∂QnS

: (QnS)′S − ρ̃F (µF − µS) + TEF : DF

− p̃EF · (vF − vS)− (nS)′S

(
λ− λSR + ρS

∂ψS
∂nS

)
− (nF )′F (λ− λFR) ≥ 0,

(2.111)

which has to be true for all valid thermodynamic processes. These processes are

identified by all possible combinations of the variables

DS, (QnS)′S
N
n=1, µF − µS, DF , vF − vS, (nS)′S, (nF )′F . (2.112)
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One such process is the instantaneous elastic deformation of the real solid material,

which is represented by an arbitrary change in DS, whereas all the other variables

in (2.112) are fixed. Inequality (2.111) is then satisfied only if

TES − ρSF S
∂ψS
∂ES

F T
S = 0 , or TES = ρSF S

∂ψS
∂ES

F T
S . (2.113)

In addition, considering a process that only involves a change in the volume fractions,

either (nS)′S or (nF )′F , independently, we deduce that

λ− λSR + ρS
∂ψS
∂nS

= 0 , or λ = λSR − ρS
∂ψS
∂nS

, (2.114)

and

λ− λFR = 0 , or λ = λFR . (2.115)

As expected, we gain two expressions for the interface pressure λ, because λ acts

on both the solid and fluid constituents. Equation (2.115) implies that, within the

assumptions we made to develop our constitutive model, λ coincides with the La-

grange multiplier of the fluid incompressibility, λFR, which is understood as the fluid

pressure, in analogy with classical fluid mechanics.

The remainder of the entropy inequality (2.111), the so-called residual inequality

is

− ρS
N∑
n=1

∂ψS
∂QnS

: (QnS)′S + TEF : DF − ρ̃F (µF − µS)− p̃EF · (vF − vS) ≥ 0. (2.116)

This inequality cannot be further reduced because the following variables

{(QnS)′S}Nn=1, DF , µF − µS, vF − vS

are not free, i.e. they cannot assume arbitrary values independently from one another:

• The rates of the internal variables {(QnS)′S}Nn=1 have to be defined by evolu-

tion equations associated with the intrinsic dissipation mechanisms of the solid

phase.
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• According to classic continuum mechanics, the stress for a general fluid does de-

pend on the rate of deformation. In other words, DF cannot vary independently

of TEF .

• The chemical potentials µF and µS are related to the fluid and solid velocities,

vF and vS, respectively.

• The velocity difference vF −vS is coupled to the free variables (nF )′F and (nS)′S

via equation (2.97), so it is not an independent variable.

Comparing inequality (2.116) with the definition of equilibrium state of the mix-

ture (2.106), we get that (2.116) represents the irreversible or dissipative parts re-

sponsible for the non-equilibrium states of the binary model. Constitutive laws for

{(QnS)′S}Nn=1, TEF , ρ̃F , p̃EF ,

can be obtained assuming that each expression of the residual inequality (2.116) yields

a positive definite quadratic form, which can accomplished by assuming the following

proportionalities

− ρS
∂ψS
∂QnS

∝ (QnS)′S, TEF ∝ DF , ρ̃F ∝ −(µF − µS), p̃EF ∝ −(vF − vS). (2.117)

2.4.4 Linear Viscoelastic Models for the Solid Constituent

The goal of this section is to provide constitutive laws for the effective stress tensor

TES of the solid constituent. The main references used here are the books of Fung [35]

and Findley et al. [36].

Many materials, included the living tissues our bodies are made of, exhibit both

elastic and viscous behaviors in response to applied loads. When stressed, elastic ma-

terials undergo instantaneous deformation, whereas viscous materials exhibit time-

dependent strain effects. Materials that exhibit both these behaviors are called vis-

coelastic, and, as such, have strain rate effects in response to applied loads. These

time-dependent phenomena may have a considerable effect on the stress and strain
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distributions. In this section, few basic concepts of linear viscoelasticity will be pro-

vided within a one dimensional framework, which yields a mathematically tractable

representation for stress-strain-time relationships and leads to reasonably simple mod-

els for the biomechanical applications we are interested in. Linear viscoelasticity is

based on the Boltzmann superposition principle:

Proposition 2.4.1 (Boltzmann superposition principle) The sum of the strain

outputs resulting from each component of stress input is the same as the strain output

resulting from the combined stress input [36].

The behavior of most materials is linear, or approximately linear, under small strain

and stress levels. Three dimensional linear viscoelastic behavior will be described

by formal extension of the governing scalar equations. Finally, these findings will

be brought in accordance with the entropy inequality (2.111), in order to formulate

constitutive laws for the effective stress tensor TES .

There are some phenomena that are common to many viscoelastic materials, as

illustrated in Figure 2.7:

• Instantaneous elasticity : the material instantaneously deforms in response to

an applied load and instantaneously recovers once the load is removed.

• Creep under constant stress : if the material is suddenly stressed and then the

stress is maintained constant afterwards, the body continues to deform.

• Stress relaxation under constant strain: when a body is suddenly strained and

then the strain is maintained constant afterwards, the corresponding stresses

induced in the body decrease with time.

• Delayed recovery : following stress removal, the material does not recover im-

mediately, but rather at a decreasing rate.

• Permanent set : following recovery, a permanent nonzero strain remains in the

material.
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Figure 2.7. Phenomena common to many viscoelastic materials. For each
row, the graph on the left represents a particular stress (σ) or strain
(ε) input, whereas the graph on the right represents the corresponding
strain or stress output: (first row) instantaneous elasticity; (second row)
instantaneous elasticity (a) and creep (b) under constant stress; (third
row) instantaneous elasticity (c) and stress relaxation (d) under constant
strain; (fourth row) instantaneous elasticity (e), creep (f), instantaneous
recovery (g), delayed recovery (h), and permanent set (i).
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Figure 2.8. Behavior of a linear spring.

• Hysteresis : if the material is subject to a cyclic loading, the stress-strain rela-

tionship in the loading process is usually different from that in the unloading

process.

One Dimensional Models for Linear Viscoelasticity

Mechanical models are often used to discuss the viscoelastic behavior of materials.

These models are composed of combinations of linear springs with spring constant

E and linear dashpots with constant coefficient of viscosity η. A linear spring is

supposed to produce an instantaneous deformation proportional to the load (see Fig-

ure 2.8). If σ : [0, T ) → R is the stress acting on a spring and ε : [0, T ) → R is the

induced strain, we have

σ(t) = Eε(t). (2.118)
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Figure 2.9. Behavior of a linear dashpot.

A linear dashpot is supposed to produce a strain rate proportional to the load (see

Figure 2.9). Dashpots are commonly used in shock absorbers for cars and airplanes.

For a dashpot, we have

σ(t) = ηε′(t), (2.119)

where (·)′ denotes time differentiation within the current one dimensional framework.

Equation (2.119) is equivalent to

ε(t) =
1

η

∫ t

0

σ(s) ds.

According to (2.119), the strain rate ε′(t) is proportional to the stress, i.e. the

dashpot will be deformed continuously at a constant rate when it is subject to a step

of constant stress (see Figure 2.9). On the other hand, if it was possible to impose a

step of constant strain on the dashpot, the strain rate ε′(0), and so σ(0), should have

an infinite value, whereas it would be ε′(t) = 0 and σ(t) = 0 for t > 0. This behavior

can be modeled by the so called Dirac measure at the origin, denoted by the symbol
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δ. The Dirac measure is not a function in the usual sense of analysis; if it were, it

should have the following properties:

δ(0) =∞, δ(t) = 0 for t 6= 0,∫
R
δ(t) dt = 1,

(2.120)

clearly incompatible with any concept of classical function or integral. A rigorous

definition of the Dirac measure requires the theory of generalized functions or distri-

butions [38]. Thus, the stress resulting from a step change in strain is indicated as

follows

σ(t) = ηδ(t).

Since an infinite stress is impossible in reality, it is impossible to impose any finite

deformation on a dashpot instantaneously.

Maxwell Model

The Maxwell model is a two-element model consisting of a linear spring and a

linear dashpot connected in series, as shown in Figure 2.10. In a Maxwell model, the

same stress σ is transmitted from the spring to the dashpot. This stress produces a

strain

ε1 =
σ

E
(2.121)

in the spring, and a strain rate

ε′2 =
σ

η
(2.122)

in the dashpot. Since both elements are connected in series, the total strain ε is

ε = ε1 + ε2,

so that the total strain rate is

ε′ = ε′1 + ε′2. (2.123)
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Figure 2.10. Behavior of a Maxwell model: (top) Maxwell model; (graphs
on the left) creep and recovery; (graphs on the right) stress relaxation.
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Substituting the time derivative of equations (2.121) and (2.122) into (2.123), we

obtain the following relationship between σ and ε for the Maxwell model

ε′ =
σ′

E
+
σ

η
, t > 0 . (2.124)

Equation (2.124) can be solved for the strain ε(t) given a stress condition σ(t), or for

the stress σ(t) given a strain ε(t) input.

For example, applying a constant stress σ = σ(0) at t = 0, equation (2.124)

becomes a first order differential equation for ε

ε′ =
σ(0)

η
, (2.125)

which describes the creep response of the Maxwell model. If the stress is suddenly

applied at t = 0, the spring will be suddenly deformed to ε1 = σ(0)/E, but the initial

dashpot deflection ε2 would be zero, because there is no time to deform. Thus the

initial condition for (2.125) is

ε(0) =
σ(0)

E
.

The solution of (2.125) is then

ε(t) = σ(0)

(
1

E
+

1

η
t

)
, (2.126)

which is represented in Figure 2.10. According to the last equation, the sudden

application of a load induces an immediate deflection by the elastic spring, which is

followed by creep of the dashpot. If the stress is removed at time t1, the elastic strain

σ(0)/E in the spring returns to zero at the instant the stress is removed (instantaneous

recovery), whereas σ(0)t1/η is a permanent stress that does not go away. If the

Maxwell model is subject to a constant strain ε(0) at time t = 0, then equation (2.124)

becomes

σ′ = −E
η
σ,

with initial condition σ(0) = Eε(0), whose solution is

σ(t) = Eε(0)e−Et/η , (2.127)
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which is represented in Figure 2.10. Equation (2.127) describes the stress relaxation

phenomenon for a Maxwell model under constant strain. The initial stress rate of

change is

σ′(t)|t=0 = −σ(0)E

η
.

If the stress was decreasing linearly at this initial rate, the relaxation would follow

the straight line

σ(t) = −σ(0)E

η
t+ σ(0),

so that the stress would be zero when t = tR = η/E, which is called the relaxation

time of the Maxwell model. The relaxation time is one of the viscoelastic properties

of the material. When t = tR, most of the relaxation has already occurred, since

σ(tR) = σ(0)/e ≈ 0.37σ(0). Thus, about 37% of the initial stress remains at t = tR.

Voigt Model

In the Voigt model, a linear spring and a linear dashpot are connected in parallel

(see Figure 2.11). Since they are connected in parallel, they undergo the same strain

ε. The spring and the dashpot will produce stresses

σ1 = Eε and σ2 = ηε′, (2.128)

respectively. Since both elements are connected in parallel, the total stress σ is

σ = σ1 + σ2. (2.129)

Combining equations (2.128) and (2.129), we get the following relation between stress

σ and strain ε

ε′ +
E

η
ε =

σ

η
, t > 0 . (2.130)

The creep curve for the Voigt model can be obtained by solving (2.130) under a

constant stress σ = σ(0) applied at t = 0. A sudden application of a stress will

produce no immediate deflection, because the dashpot, arranged in parallel with the

spring, will not move instantaneously. Therefore, the appropriate initial condition is

ε(0) = 0.
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Figure 2.11. Behavior of a Voigt model: (left) Voigt model; (right) creep
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The solution of equation (2.130) is then

ε(t) =
σ(0)

E
(1− e−Et/η) . (2.131)

As illustrated in Figure 2.11, the strain described by (2.131) decreases with a de-

creasing rate and approaches asymptotically the value σ(0)/E. Initially, for the Voigt

model, a suddenly applied stress is carried entirely by the dashpot. Under the con-

stant stress σ(0), the dashpot elongates and gradually transfers the load to the spring.

Finally, i.e. when e−Et/η → 0 for t → ∞, the entire stress is carried by the spring.

This behavior is called delayed elasticity.

The initial strain rate is

ε′(t)|t=0 =
σ(0)

η
.

If the strain ε increased linearly at this initial rate, it would cross the horizontal

asymptote at time t = tC = η/E, called the retardation time. Most of the total strain

σ(0)/E occurs before the retardation time, since

ε(tC) =
σ(0)

E

(
1− 1

e

)
≈ 0.63

σ(0)

E
.

Hence, after t = tC , only about 37% of the asymptotic strain remains to be ac-

complished. The recovery behavior of the Voigt model can be obtained from equa-

tion (2.131) and the superposition principle (Proposition 2.4.1) by considering that at

time t = t1 a constant stress −σ(0) is added. Therefore, the recovery strain ε(t), t > t1

is the sum of two independent actions

ε(t) =
σ(0)

E
(1− e−Et/η)− σ(0)

E
(1− e−E(t−t1)/η)

=
σ(0)

E
e−Et/η(eEt1/η − 1), t > t1.

When t → ∞, ε(t) → 0: the Voigt model exhibits full recovery. In reality, some

materials show full recovery, whereas others only partial recovery.

The Voigt model cannot be used to study the stress relaxation phenomenon in

response to a step change in strain ε(0). As noted above, a sudden application of

a strain cannot produce immediate deflection due to the dashpot, which is arranged
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in parallel with the spring. A step change in strain would correspond to an infinite

stress at t = 0. For t > 0, due to the constant strain ε = ε(0), the stress carried by

the dashpot would immediately drop to zero

σ2(t) = η(ε)′ = 0,

but a constant stress Eε(0) would remain in the spring. This can be modeled by

using the Dirac distribution δ, heuristically defined in (2.120)

σ(t) = ηδ(t) + Eε(0) . (2.132)

Neither the Maxwell nor the Voigt models are able to describe the behavior of all

possible viscoelastic materials. For example, the Voigt model does not exhibit instan-

taneous elasticity, and it cannot be used to study stress relaxation under constant

strain, as we just discussed, nor does it describe a permanent strain after unloading.

The Maxwell model does not show either time-dependent recovery or the decreas-

ing strain rate under constant stress that is typical of primary creep. Therefore,

sometimes, more complex mechanical models need to be formulated.

Kelvin model

The Kelvin model (also called the standard linear solid model) is shown in Fig-

ure 2.12, where a spring and a Maxwell model are connected in parallel. Since they

are connected in parallel, the strain ε in the spring and the strain ε1 + ε2 in the

Maxwell element are the same

ε = ε1 + ε2. (2.133)

The total stress σ is the sum of the stress σ0 from the spring and σ1 from the Maxwell

element:

σ = σ0 + σ1, (2.134)

σ0 = E0ε, (2.135)

σ1 = E1ε1 = η1ε
′
2. (2.136)
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Figure 2.12. Behavior of a Kelvin model: (top) Kelvin model; (graphs on
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A constitutive equation between σ and ε for the Kelvin model can be obtained in the

following way:

• Combine the time derivative of equation (2.133), ε′ = ε′1 + ε′2, with (2.136) to

get

ε′ = ε′1 + ε′2 =
σ′1
E1

+
σ1

η1

. (2.137)

• Solve for σ1 and its time derivative σ′1 from (2.134) and combine it with (2.135)

σ1 = σ − σ0 = σ − E0ε, σ′1 = σ′ − σ′0 = σ′ − E0ε
′.

• Combine the last two equations with (2.137)

ε′ =
σ′ − E0ε

′

E1

+
σ − E0ε

η1

,

which can be rewritten in the form

η1

(
1 +

E0

E1

)
ε′ + E0ε =

η1

E1

σ′ + σ,

or, equivalently,

E0(τσε
′ + ε) = τεσ

′ + σ, t > 0 , (2.138)

where

τσ =
η1

E0

(
1 +

E0

E1

)
, τε =

η1

E1

.

For a suddenly applied stress σ(0) and strain ε(0), the initial dashpot strain ε2 would

be zero, because there is no time to deform. Thus, the two springs have the same

strain ε = ε1 = ε(0), and the appropriate initial condition for equation (2.138) is

σ(0) = E0ε(0) + E1ε(0) = (E0 + E1)ε(0) = E0
τσ
τε
ε(0). (2.139)

The creep behavior of the Kevin model under constant stress σ = σ(0) can be obtained

by solving (2.138) with initial condition (2.139), which gives

ε(t) =
σ(0)

E0

(
1−

(
1− τε

τσ

)
e−t/τσ

)
, (2.140)
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which is illustrated in Figure 2.12. At t = 0, there is an instantaneous elastic response

from the two springs. Then, the dashpot starts elongating, transferring a greater and

greater portion of σ1 to the spring E0. As a result, the strain approaches σ(0)/E0

asymptotically. The recovery behavior can be obtained from equation (2.140) and the

superposition principle (Proposition 2.4.1) by considering that at t = t1 a constant

stress σ = −σ0 is added. Hence, the recovery strain ε(t), t > t1 is

ε(t) =
σ(0)

E0

(
1−

(
1− τε

τσ

)
e−t/τσ

)
− σ(0)

E0

(
1−

(
1− τε

τσ

)
e−(t−t1)/τσ

)
,

or

ε(t) =
σ(0)

E0

(
1− τε

τσ

)(
et1/τσ − 1

)
e−t/τσ . (2.141)

Recovery is also shown in Figure 2.12. The recovery exhibits an instantaneous elastic

decrease (equal to (σ(0)τε)/(E0τσ)), then tends towards zero as t→∞.

From equations (2.138) and (2.139), the stress relaxation behavior of the Kelvin

model can also be obtained

σ(t) = E0ε(0)

(
1−

(
1− τσ

τε

)
e−t/τε

)
, (2.142)

which is illustrated in Figure 2.12. From (2.142), it follows that σ(t) → E0ε(0) as

t → ∞, so that the Kelvin model prescribes a nonzero permanent stress from a

relaxation process with infinite duration.

In conclusion, the behavior of the Kelvin model shows similarities with both the

Maxwell and the Voigt models. Nevertheless, it cannot describe the behavior of many

viscoelastic materials. For example, from (2.141), it follows that it cannot be used

for those materials that exhibit partial recovery after stress unloading.

Another limitation of the Maxwell, Voigt and Kelvin models is that they have only

one relaxation or retardation time, whereas real materials often behave as if they have

several relaxation times. To deal with this situation and be able to describe more

materials, several complex models have been proposed.
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Figure 2.13. Generalized Maxwell model.

Generalized Linear Viscoelastic Models

In order to account for several relaxation mechanisms within a single body, each

of which characterized by a different relaxation time, several spring and dashpot

elements could be combined together. For example, several Maxwell models connected

in parallel with a spring, as shown in Figure 2.13, are able to represent instantaneous

elasticity, delayed elasticity with various retardation times, and stress relaxation with

various relaxation times. The generalized Maxwell model is rather convenient to

predict the stress associated with a prescribed strain variation, because the same

prescribed strain is applied to each individual element. The resulting stress σ is the

sum of the individual contributions. Denoting by N the number of Maxwell elements,

constitutive equations of this model are:

ε = εen + εin,

σ = σ0 +
N∑
n=1

σn,

σ0 = E0ε,

σn = Enε
e
n = ηn(εin)′.

The order of the differential equation relating σ and ε is increased by one for each

additional Maxwell branch [36]. Another generalized form of the basic models may
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Figure 2.14. Generalized Kelvin model.

be obtained by considering various Kelvin models in series with a spring as in Fig-

ure 2.14 [35].

The same stress σ is transmitted to the spring E0 and to each Kelvin unit. In

analogy with (2.133)–(2.136), the constitutive equations of this model are:

ε = ε0 +
N∑
n=1

εn,

εn = εen + εin,

σ = σ1
n + σ2

n,

σ1
n = Enεn,

σ2
n = EM

n ε
e
n = ηMn (εin)′.

The generalized Kelvin model (see Figure 2.14) is more convenient than the general-

ized Maxwell model (see Figure 2.13) for viscoelastic analysis in cases where the stress

history is prescribed. Because of the range of different relaxation times that can be

brought into play, both of these models permit a close description of real behavior

over a wider time span than with simpler models.

The most general formulation of a linear viscoelastic law is the integral representa-

tion due to Boltzmann (1844–1906). Let the origin of time be taken at the beginning

of motion and loading. We introduce two functions:
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• The creep compliance, J : [0, T ) → R. For each t ∈ [0, T ), J(t) represents the

creep strain per unit of applied stress at time t.

• The relaxation modulus, E : [0, T )→ R. For each t ∈ [0, T ), E(t) represents the

stress per unit of applied strain at time t.

In general, J(t) and E(t) are different for each material. Also, let

H(t) =

1 if t ≥ 0,

0 if t < 0,

(2.143)

be the characteristic function of the interval [0,∞), known as the Heaviside function.

If a constant stress is applied at t = τ1, then σ(t) = σ1H(t−τ1) and the corresponding

strain will be

ε(t) = σ1J(t− τ1)H(t− τ1).

If the stress input σ(t) is variable with time, the strain output ε(t) can be expressed

using the superposition principle (Proposition 2.4.1). If the function σ(t) is continuous

and differentiable, Taylor’s theorem can be used to write the increment of loading

dσ(τ) in a small time interval dτ at time τ

dσ(τ) =
dσ(τ)

dτ
dτ.

This stress increment will induce a strain increment dε

dε = J(t− τ)H(t− τ)dσ(τ) = J(t− τ)H(t− τ)
dσ(τ)

dτ
dτ.

Thus, summing over the entire stress history, which is allowed under the superposition

principle (Proposition 2.4.1), we get

ε(t) =

∫ t

0

J(t− τ)H(t− τ)
dσ(τ)

dτ
dτ =

∫ t

0

J(t− τ)
dσ(τ)

dτ
dτ. (2.144)

To get the last equality, we used the fact that H(t − τ) = 1, ∀τ ∈ [0, t]. Similar

arguments apply when arbitrary changes in strain are applied and the resulting change
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in stress is determined. Thus, the current stress σ(t) due to a constant strain ε1

applied at t = τ1 is

σ(t) = E(t− τ1)ε(t) = ε1E(t− τ1)H(t− τ1),

whereas, if the strain input ε(t) is variable with time, we have

σ(t) =

∫ t

0

E(t− τ)H(t− τ)
dε(τ)

dτ
dτ =

∫ t

0

E(t− τ)
dε(τ)

dτ
dτ. (2.145)

Equations (2.144) and (2.145) are known as Boltzmann integral representation of ε(t)

and σ(t), respectively. All the models examined so far, from the Maxwell model to

the generalized Kelvin model, are special cases of the Boltzmann formulation. For

example, from equations (2.126) and (2.127), we infer that the creep and relaxation

functions for the Maxwell model are given by

J(t) =
1

E
+

1

η
t and E(t) = Ee−Et/η,

respectively. These models have a relaxation function of the form

E(t) =
N∑
n=0

αne
−tνn , (2.146)

for a proper integer N , where αn denotes the amplitude associated with the charac-

teristic frequency νn. Plotting a vertical line of length αn at each νn on a frequency

axis, we obtain the discrete spectrum of the relaxation function (2.146), as shown in

Figure 2.15.

Sometimes, for example in the case of a living tissue such as mesentery [35], a

discrete spectrum does not reproduce experimental results on relaxation accurately

enough. Thus, not even a generalized Maxwell or generalized Kelvin model with a

finite number of units would be appropriate. In these cases, a generalization to a

continuum spectrum has to be introduced.

Response of a Viscoelastic Material to a Harmonic Input

In order to characterize the mechanical behavior of a viscoelastic material and

choose the right model to fit the experimental data, the response to an oscillatory
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input should be considered, in addition to creep and relaxation experiments. Suppose

the material is subject to an oscillating stress σ:

σ : [0, T )→ R

t → σ(t) = σ0 cos(ωt).
(2.147)

Using Euler’s formula

eiωt = cos(ωt) + i sin(ωt),

σ can be represented by a complex number with magnitude σ0 and argument ωt

σ = σ0e
iωt.

The stress input will induce a strain ε oscillating at the same frequency, but lagging

behind by a phase angle γ (see Figure 2.16):

ε : [0, T )→ R

t → ε(t) = ε0 cos(ωt− γ),

or, equivalently,

ε = ε0e
i(ωt−γ),

where ε0 is the strain amplitude. The phase angle γ is often called the loss angle.

Both ε0 and γ are functions of the internal friction of the material, which causes

energy dissipation. In general, the energy dissipated is different for each value of the

angular frequency ω. Thus, ε0 and γ depend on ω.

Using the complex representation for σ and ε, the complex creep compliance J∗ is

the complex function defined as:

J∗ : R→ C

ω → J∗(ω),

with

J∗(ω) =
ε

σ
=
ε0(ω)ei(ωt−γ(ω))

σ0eiωt
=
ε0(ω)

σ0

e−iγ(ω)

=
ε0(ω)

σ0

(cos γ(ω)− i sin γ(ω))

= J1(ω)− iJ2(ω) = |J∗(ω)|e−iγ(ω),

(2.148)
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where:

• J1 is called the storage compliance and is associated with the elastic behavior

of a material;

• J2 is called the loss compliance and is associated with dissipation of energy;

• |J∗| is the magnitude of the complex compliance.

Similarly, if the input is an oscillatory strain

ε = ε0e
iωt, (2.149)

the stress response σ will lead the strain by a phase angle γ. Using the complex

representation, we can write

σ = σ0(ω)ei(ωt+γ(ω)). (2.150)

The complex relaxation modulus E∗ is then the complex function defined as:

E∗ : R→ C

ω → E∗(ω),

with

E∗(ω) =
σ

ε
=
σ0(ω)ei(ωt+γ(ω))

ε0eiωt
=
σ0(ω)

ε0

eiγ(ω)

=
σ0(ω)

ε0

(cos γ(ω) + i sin γ(ω)) = E1(ω) + iE2(ω) = |E∗(ω)|eiγ(ω),

(2.151)

where:

• E1 is called the storage modulus and, like J1, is associated with the elastic

behavior of a material;

• E2 is called the loss modulus and, like J2, is associated with dissipation of

energy;

• |E∗| is the magnitude of the complex modulus.
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Using the same values for σ0 and ε0 to define the complex compliance J∗ and complex

modulus E∗, equations (2.148) and (2.151) imply that

|J∗| = 1

|E∗| and tan γ =
E2

E1

=
J2

J1

.

As an illustrative example, let us compute the relaxation modulus for the Kelvin

model. By plugging the complex representations for the strain (2.149) and the

stress (2.150) and their time derivatives into the constitutive equation of the Kelvin

model (2.138), we get

E0(iωτσε+ ε) = iωτεσ + σ,

which, after few manipulations, provides

E∗(ω) =
σ

ε
= E0

1 + iωτσ
1 + iωτε

=
E0

1 + ω2τ 2
ε

(1 + ω2τστε + iω(τσ − τε)),

with

|E∗| = E0

√
1 + ω2τ 2

σ

1 + ω2τ 2
ε

, tan γ =
ω(τσ − τε)
1 + ω2τστε

.

In a similar manner, the complex relaxation modulus for any viscoelastic model can

be obtained. The quantities |E∗| and tan γ are usually plotted against the logarithm

of ω (see Figure 2.17).

Having determined the experimental curves of relaxation, creep, frequency re-

sponse, and internal friction of the material being studied, a scientist can compare

them with those of the theoretical models and choose the most appropriate model for

the problem at hand.

Reconciling Linear Viscoelastic Models with the Entropy Inequality

The goal of this section is to show that, under appropriate assumptions, linear

viscoelastic models can be brought in accordance with the entropy inequality (2.111),

and so can be used to describe the viscoelastic behavior of the solid phase. In the

following discussion, we shall eliminate both geometrical and material nonlinearities
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by assuming both that the deformations are infinitesimal and that constitutive laws

are linear. According to (2.9) and the hypothesis of infinitesimal deformations, the

current position x can be written as follows

x = Xα + uα = Xα + εǔα, (2.152)

where ε� 1 and the norm of ǔα is O(1). We will also assume small mass production

|ρ̃α| � 1. (2.153)

From (2.152) and (2.153), it follows that [22,24]:

1. There is little point making a distinction between Lagrangian and Eulerian

coordinates, that is between reference and current configurations. As a conse-

quence, partial derivatives with respect to the coordinates Xα in the reference

configuration, denoted by ∇α, are approximately the same as partial derivatives

with respect to the current position x, denoted by ∇. Thus we can replace ∇α

with ∇. Also, the material derivative (·)′α reduces to a partial derivative with

respect to time t, which we will denote by (·)′ or ∂(·)/∂t, interchangeably.

2. From equation (2.21) and point 1, the deformation gradient Fα is given by

Fα = I +∇uα = I + ε∇ǔα,

where I denotes the identity tensor. It follows that the determinant Jα of Fα is

approximately equal to 1 +∇ · uα. In fact, using the definition of determinant,

we get

Jα = detFα = det(I +∇uα) = det(I + ε∇ǔα)

= 1 + ε
∂ǔ1

α

∂x
+ ε

∂ǔ2
α

∂y
+ ε

∂ǔ3
α

∂z
+O(ε2)

≈ 1 + ε
∂ǔ1

α

∂x
+ ε

∂ǔ2
α

∂y
+ ε

∂ǔ3
α

∂z

= 1 +∇ · uα.

(2.154)
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3. From the assumption of small mass production (2.153), in accordance with the

conservation of mass in Lagrangian form (2.38), we get

ρS ≈ ρ0
SJ
−1
S ,

which, by the incompressibility assumption (2.80) and the relation between

partial and real densities (2.5), implies that

nS ≈ n0
SJ
−1
S , (2.155)

where n0
S is the volume fraction of the solid constituent in the reference con-

figuration. Note that, according to our remarks in point 1, we are not dis-

tinguishing between the reference configuration of the solid and fluid phases.

Equation (2.155) implies that nS is determined by the solid state of defor-

mation. Thus, nS can be dropped from the list of independent constitutive

variables (2.105) and the functional dependencies of the solid Helmholtz free

energy (2.107). Moreover, combining equations (2.154) and (2.155), it follows

that

nS ≈ n0
S(1 +∇ · uS)−1,

and then, by the saturation constraint (2.79),

nF = 1− nS ≈ 1− n0
S

1 +∇ · uS
=

1 +∇ · uS − n0
S

1 +∇ · uS
=
n0
F +∇ · uS
1 +∇ · uS

≈ n0
F +∇ · uS,

(2.156)

where n0
F is the fluid volume fraction in the reference configuration.

4. The nonlinear term
(
∇Tuα

)(
∇uα

)
in the Green-Lagrange strain tensor Eα

(see equation (2.22)) is negligible. Thus, Eα is approximately equal to the

infinitesimal strain tensor εα, which is defined as follows:

εα : B × [0, T )→ R3 × R3

(x, t) → εα =
1

2
(∇uα +∇Tuα).

(2.157)



83

According to point 1, the material derivative of εα is approximately equal to

the symmetric part Dα of the spatial velocity gradient, that is

(εα)′α ≈ (εα)′ ≈ Dα.

5. The Taylor expansions of all the stress tensors (e.g. the Cauchy stress tensor,

body stress tensor, first and second Piola-Kirchhoff stress tensors) about the

reference configuration coincide up to O(ε). Therefore, there is no distinction

between them in linear viscoelasticity. In the following, we will denote the single

solid stress tensor by σ. Moreover, we will assume that the solid phase is not

pre-stressed in the reference configuration, that is the O(0) term of the Taylor

expansion of σS is zero.

According to the above five points, the functional dependencies of the solid Helmholtz

free energy (2.107) can be reduced to

ψS = ψS(εS, {QnS}Nn=1). (2.158)

Moreover, the entropy inequality (2.111) can be rewritten as follows(
σES − ρS

∂ψS
∂εS

)
: ε′S − ρS

N∑
n=1

∂ψS
∂QnS

: (QnS)′S − ρ̃F (µF − µS) + TEF : DF

− p̃EF · (vF − vS)− (nS)′S(λ− λSR)− (nF )′F (λ− λFR) ≥ 0,

(2.159)

where σES denotes the linear solid effective stress tensor of the infinitesimal theory.

Linear viscoelastic models can be brought in accordance with (2.159). We will

show how this can be done for one of the viscoelastic models presented before, the

Voigt model, which has been analyzed by Bociu et al. [39] within the framework of

porous media viscoelasticity. In Chapter 3 of this thesis, a novel numerical method for

the solution of their poro-viscoelastic model is proposed. In Chapter 4, this method

will be used to theoretically investigate the perfusion of the optic nerve head, a region

of the eye that is believed to play an important role in ocular pathologies, including

glaucoma [11].
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Figure 2.18. Extension of the Voigt model (see Figure 2.11) to three
dimensions.
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By formal extension of the constitutive equations (2.128) and (2.129) of the Voigt

model to three dimensions, we get (see Figure 2.18):

σES = σ1
S + σ2

S, (2.160)

σ1
S =

4

ESR εS, (2.161)

σ2
S =

4
ηSR ε

′
S, (2.162)

where:

• σES and εS have the same meaning as in (2.159).

• The spring and dashpot elements are connected in parallel, so they undergo the

same strain εS.

• σ1
S is a stress due to the linear spring and so is determined by a linear elasticity

law with the positive definite fourth order elasticity tensor
4

ESR. The subscript

SR refers to macroscopic real parameters of the solid phase. In the case of a

Hooke-type elasticity law, we have

σ1
S =

4

ESR εS = 2µeSRεS + λeSR(∇ · uS)I, (2.163)

where µeSR and λeSR are the solid macroscopic real elastic parameters.

• σ2
S is a stress due to the linear dashpot and so is determined by another linear

law with the positive definite fourth order viscosity tensor
4
ηSR. In the case of

isotropic tensor functions,
4
η assumes a form similar to

4

ESR. Thus

σ2
S =

4
ηSR (εS)′ = 2µvSRε

′
S + λvSR(∇ · u′S)I,

with µvSR and λvSR being the viscosity parameters and u′S = vS, i.e. the velocity

of the solid phase.

In order to bring Voigt model (2.160)–(2.162), or any other viscoelastic model, in

accordance with (2.159), it is assumed that the Helmholtz free energy ψS can be
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decomposed into the sum of an equilibrium part ψEQS and a non equilibrium part

ψNEQS , also known as pseudo-potential or dissipative potential (see [22, 40])

ψS = ψEQS + ψNEQS . (2.164)

The equilibrium part ψEQS is exclusively associated with equilibrium stress states

obtained from a relaxation process with infinite duration at constant strain [41]. It

does not include strain rate effects. Hence, ψEQS can depend on the total solid strain

εS, but not on the internal state variables QnS, which represent strain rate effects.

Thus, we can have

ψEQS = ψEQS (εS).

The non equilibrium part ψNEQS is associated with strain rate effects causing dissipa-

tion in the material. Thus we can have

ψNEQS = ψNEQS ({QS}Nn=1).

Observe that the terms
∂ψS
∂εS

and
∂ψS
∂QnS

,

provide distinct contributions to the entropy inequality (2.159). Thus, following our

discussion about ψEQS and ψNEQS , we can write

∂ψS
∂εS

=
∂ψEQS
∂εS

and
∂ψS
∂QnS

=
∂ψNEQS

∂QnS
. (2.165)

Now we wish to find an expression for ψEQS and ψNEQS in the case of the Voigt

model. In every linear viscoelastic model, the internal variables QnS are identified

with deformations of dashpot elements, which, by definition, are not elastic. In the

Voigt model (see Figure 2.18), there is only one dashpot and, thus, only one internal

variable QS. Since the spring and the dashpot are in parallel, dashpot deformations

coincide with the total solid strain εS. It follows that

QS ≡ εS, (2.166)
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and thus

ψNEQS = ψNEQS (QS) = ψNEQS (εS),
∂ψNEQS

∂QS
=
∂ψNEQS

∂εS
. (2.167)

Moreover, as discussed at the beginning of this Section, the Voigt model cannot

undergo instantaneous elastic deformations when subject to a step change in stress

nor it can be used to study stress relaxation in response to constant strain (see

equations (2.131) and (2.132)). We can conclude that

ψEQS = 0. (2.168)

Observe that, due to (2.166) and (2.168), the evaluation of the entropy inequality will

be slightly different from what described in Section 2.4.3. Concerning ψNEQS , since:

• the Helmholtz free energy is a form of potential energy (see the discussion in

Section 2.3.5 about the entropy inequality);

• energy can only be stored in the spring element;

• the deformation of the spring element coincides with εS;

we can write

ψNEQS =
1

2ρSR
εS :

4

ESR εS,

and then
∂ψNEQS

∂εS
=

1

ρSR

4

ESR εS. (2.169)

Combining (2.159), (2.165), (2.167), (2.168), and (2.169), we get(
σES −

ρS
ρSR

4

ESR εS

)
: ε′S − ρ̃F (µF − µS) + TEF : DF

− p̃EF · (vF − vS)− (nS)′S(λ− λSR)− (nF )′F (λ− λFR) ≥ 0.

(2.170)

Evaluation of the above inequality provides

λ = λSR and λ = λFR, (2.171)
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i.e. the interface pressure λ coincides with the Lagrange multiplier of the fluid in-

compressibility λFR, which is understood as the fluid pressure, and the Lagrange

multiplier of the solid incompressibility λSR. The residual inequality is

(
σES −

4

ES εS
)

: ε′S − ρ̃F (µF − µS) + TEF : DF − p̃EF · (vF − vS) ≥ 0.

where
4

ES is the partial macroscopic, i.e. smeared, elasticity tensor obtained as follows

ρS
ρSR

4

ESR =
nSρSR
ρSR

4

ESR = nS
4

ESR =
4

ES. (2.172)

In analogy with (2.117), in order to satisfy the residual inequality, we require

σES −
4

ES εS ∝ ε′S, ρ̃F ∝ −(µF − µS), TEF ∝ DF , p̃EF ∝ −(vF − vS). (2.173)

Dimensional analysis reveals that the proportionality tensor in

σES −
4

ES εS ∝ ε′S,

has the units of a viscosity parameter, i.e. [Pa · s]. Hence, denoting by
4
ηS a partial

(smeared) positive definite fourth order viscosity tensor, we can write

σES −
4

ES εS =
4
ηS ε

′
S or σES =

4

ES εS +
4
ηSε

′
S , (2.174)

which coincides with the constitutive equations of the Voigt model (2.160)–(2.162).

We can finally conclude that the Voigt model provides a constitutive law for the

effective stress tensor σES of the solid constituent that allows to satisfy the entropy

inequality.

Let us stress that the elasticity tensor
4

ES and the viscosity tensor
4
ηS in (2.174)

are macroscopic partial quantities, i.e they represent average properties of the solid

constituent after being smeared over the volume shaped by the porous solid. However,

they are determined by physical quantities at the microscale. Similarly to what

we discussed in Section 2.2.1, in order to transfer the microscopic behavior of the

real solid phase to the macroscale,
4

ES and
4
ηS should be expressed using quantities

representative of the real solid material and of the empty porous solid [20, 42–44].
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For example, in the case of a Hooke-type elasticity law like (2.163), the partial elastic

parameter λeS can be expressed as

λeS = Ke
S −

2

3
µeS,

where Ke
S is the partial compression modulus that depends on the solid volume frac-

tion nS and the compression moduli Ke
SR and Ke

SN of the real solid material and the

empty porous solid, respectively,

Ke
S =

nSK
e
SRK

e
SN

Ke
SR +Ke

SN

, (2.175)

as described by de Boer [44]. In the case of incompressible solid phase,

Ke
SR →∞,

and therefore

Ke
S → nSK

e
SN <∞. (2.176)

From (2.176), we get that, unlike classic linear elasticity, the hypothesis of solid

incompressibility does not cause the partial compression modulus Ke
S to blow up.

Four types of tests are commonly used to determine poroelastic parameters: drained,

undrained, jacketed, and unjacketed tests. A thorough discussion about these tests

is presented by Coussy [20], Terragni [42], and Detournay [43].

Here we conclude our discussion about constitutive laws for the viscoelastic solid

constituent. In the next section, we will be formulating constitutive laws for the

effective fluid stress tensor TEF and the fluid-solid interaction force p̃FE in (2.173).

2.4.5 Darcy Law for the Fluid Constituent

In accordance with the sufficient conditions (2.173), the following constitutive law

can be given for the effective stress tensor TEF

TEF = 2µFDF + λF (∇ · vF )I = 2µFDF + λF trace(DF ) I, (2.177)
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where µF is the partial dynamic viscosity and λF is the partial dilatational viscosity.

In equation (2.177), TEF is linearly related to the rate of deformation DF , just like

a Newtonian fluid. Concerning the interaction term p̃EF , in accordance with (2.173)

and the analysis of Whitaker for fluid flows in homogeneous porous media [21], it is

assumed that

p̃EF = −(nF )2K−1
F (vF − vS) = −nFK−1

F v, (2.178)

where:

• K−1
F represents a positive definite inverse permeability tensor, which is a measure

of the capability of a porous material to transmit fluid. A constitutive equation

for KF has to be provided and will depend on properties of both the fluid and

solid phases, in general. The components ofKF can be calculated by considering

a representative unit cell in a spatially periodic model of the porous medium and

then solving a closure problem on such representative cell [21]. A constitutive

equation for KF dependent on the local state of stress and strain is proposed

in Chapter 4 to study the ONH perfusion.

• v = nF (vF − vS) is known as discharge (or Darcy) velocity.

According to the quasi-static approximation (2.81) and considering a uniform

body force b, the balance of linear momentum for the fluid phase (2.43) can be

rewritten as follows

ρ̃FvF = ∇ · T F + ρFb + p̃F . (2.179)

By neglecting fluid accelerations in (2.179), we are assuming that fluid viscosity dom-

inates over inertial effects and the fluid flow is laminar [24, 45]. By definition of the

effective quantities TEF , p̃
E
F (2.102) and equation (2.171), we obtain

ρ̃FvF = ∇ · T F + ρFb + p̃F

= ∇ · TEF −∇(λnF ) + ρFb + p̃EF + λ∇nF
= ∇ · TEF − nF∇λ+ ρFb + p̃EF .
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Plugging (2.177) and (2.178) into the last equation gives

ρ̃FvF = ∇ ·
(

2µFDF + λF (∇ · vF )I
)
− nF∇λ+ ρFb− nFK−1

F v

= ∇ ·
(
µF (∇vF +∇TvF ) + λF (∇ · vF )I

)
− nF∇λ+ ρFb− nFK−1

F v

= µF∇2vF + (µF + λF )∇(∇ · vF )− nF∇λ+ ρFb− nFK−1
F v,

(2.180)

where we have assumed that µF and λF do not depend on space. Applying the

procedure of length scale analysis by Whitaker [21], it is possible to prove that

||µF∇2vF + (µF + λF )∇(∇ · vF )|| � ||nFK−1
F v||. (2.181)

In (2.181), the term on the left hand side represents dissipative terms acting within

the fluid flow, whereas the term on the right hand side represents terms acting at

the fluid-solid interface. Thus, according to equation (2.181), we are assuming that

dissipation mainly occurs at the wall boundary layers of the pore channels, whereas

the fluid is almost inviscid at the pore interior, that is

TEF ≈ 0. (2.182)

Inserting (2.181) and (2.182) into (2.180), we get the Darcy law

ρ̃FvF ≈ −nF∇λ+ ρFb− nFK−1
F v,

or, equivalently,

v ≈ −KF

(
∇λ− ρFRb +

ρ̃F
nF

vF

)
. (2.183)

2.5 A Poro-Viscoelastic Model

In accordance with the residual inequality (2.172), we have determined constitu-

tive laws for σES (2.174), TEF (2.182), and p̃EF (2.178). From (2.173), it follows that a

constitutive law for the fluid mass supply ρ̃F is still needed. In this section, since a

discussion of possible constitutive laws for ρ̃F is outside the scope of this thesis, we

will assume such a law to be given in terms of the fluid chemical potential µF and
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the solid chemical potential µS, defined in equation (2.101). The interested reader is

referred to, e.g., Ricken and Blum [46].

From the results of the previous sections, a model describing the coupled behavior

of a viscous fluid streaming through a viscoelastic solid constituent is obtained and

summarized in Table 2.2. Constitutive laws allowed us to close the system of governing

equations shown in Table 2.1.

The number of unknowns can be reduced by combining equations in Table 2.2.

Adding the balance of mass equations of the fluid and solid phases and using the

constraints

nS + nF = 1, ρ̃S + ρ̃F = 0, (2.184)

together with the definition of discharge velocity

v = nF (vF − vS),

we get

ρ̃F

(
1

ρFR
− 1

ρSR

)
=
∂(nS + nF )

∂t
+∇ · (nFvF + nSvS)

= 0 +∇ · (nFvF − nFvS + nFvS + nSvS)

= ∇ · (vS + v),

which, assuming sufficient regularity of spatial and time derivatives so that they can

be interchanged, is equivalent to

(∇ · uS)′ +∇ · v = ρ̃F

(
1

ρFR
− 1

ρSR

)
.

The last equation represents the balance of mass for the overall mixture. As shown

in Section 2.4.4, under the hypothesis of small mass supply ρ̃S � 1, the balance of

mass for the solid phase and the incompressibility constraint can be manipulated to

obtain

nF = n0
F +∇ · uS.

Adding the balance equations of linear momentum and using

p̃F + p̃S = 0,
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together with (2.184) and the constitutive equations

σS =
4

ES εS +
4
ηSε

′
S − nSλI, T F = −λnF I,

we get

ρ̃F (vF − vS) = ∇ ·
( 4

ES εS +
4
ηSε

′
S − (nF + nS)λI

)
+ (nFρFR + nSρSR)b

= ∇ ·
( 4

ES εS +
4
ηSε

′
S − λI

)
+ (nFρFR + (1− nF )ρSR)b.

(2.185)

Defining the total stress tensor σ and the mixture partial density ρ as

σ =
4

ES εS +
4
ηSε

′
S − λI, ρ = nFρFR + (1− nF )ρSR,

respectively, equation (2.185) can be rewritten as

∇ · σ + ρb =
ρ̃F
nF

v,

which represents the balance of linear momentum for the overall mixture. In accor-

dance with Section 2.4.5, combining the balance of linear momentum for the fluid

phase with the constitutive law

p̃EF = −nFK−1
F v,

we obtain Darcy’s law

v = −KF

(
∇λ− ρFRb +

ρ̃F
nF

vF

)
.

To summarize, the coupled behavior of a viscous fluid streaming through a viscoelastic

solid is described by:

σ =
4

ES εS(uS) +
4
ηSεS(u′S)− pI, (2.186)

ρ = nFρFR + (1− nF )ρSR, (2.187)

∇ · σ + ρb =
ρ̃F
nF

v, (2.188)

v = nF (vF − u′S) = −KF

(
∇p− ρFRb +

ρ̃F
nF

vF

)
, (2.189)

nF = n0
F +∇ · uS, (2.190)

(∇ · uS)′ +∇ · v = ρ̃F

(
1

ρFR
− 1

ρSR

)
, (2.191)
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where the fluid pressure λ has been denoted by p. Note that, in (2.186) and (2.191),

spatial and time derivatives have been interchanged, under the assumption of suffi-

cient regularity. The mass supply ρ̃F and the permeability tensor KF are assumed

to be known functions of the other variables. Thus, equations (2.186)–(2.191) are a

system of 18 scalar equations in the 18 scalar unknowns

nF , ρ,uS, p,vF ,v, σ.

These equations have to be equipped by proper initial and boundary conditions in

order to be solved, as we will be discussing in Chapter 3.
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3. A HYBRIDIZABLE DISCONTINUOUS GALERKIN

METHOD FOR POROUS MEDIA VISCOELASTICITY

This chapter is concerned with the numerical treatment of the biphasic solid fluid

model (2.186)–(2.191) discussed in Chapter 2. We propose a novel numerical method

based on HDG finite elements for the direct approximation of the dual variables,

i.e. the total stress σ and the discharge velocity v, which involve gradients of the

primal unknowns, i.e. the solid displacement u and the fluid pressure p. Gradients

often represent quantities of primary interest in engineering, and, therefore, it is very

important to approximate them accurately. Numerical differentiation is a particularly

delicate procedure that usually suffers from a loss in approximation accuracy [47].

The HDG method proposed in this work computes both primal and dual variables

simultaneously with optimal order of accuracy. In other words, if polynomials of

degree k are used to approximate a variable and the variable itself meets sufficient

regularity requirements, then the approximation error behaves like O(hk+1), where h

is the maximum diameter of a mesh.

The HDG methods can be understood as mixed finite element methods [16] stem-

ming from the Local Discontinuous Galerkin method, one of the many discontinu-

ous Galerkin (DG) schemes covered in a paper by Arnold, Brezzi, Cockburn and

Marini [48]. DG schemes are praised for their ability to handle all sorts of compli-

cated meshes and discontinuous data, to provide high-order accurate solutions, to

perform h/p adaptivity, and to retain very good scalability properties. However, they

have been criticized because, for the same mesh and same polynomial degree, the

number of globally coupled degrees of freedom is much larger than those of continu-

ous Galerkin methods.
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Certain DG methods, however, including the one proposed in this work, have

the key property of being hybridizable, i.e., the global system can be recast in terms

of (statically condensed onto) a single hybrid variable that represents the trace of

the solution on the boundaries of the mesh elements [49]. These form a family of

methods that are called the HDG methods [19]. The main guidelines for devising

these methods are:

• Use a characterization of the associated exact solution in terms of solutions of

Dirichlet boundary-value problems on each element of the mesh.

• Use DG methods to approximate the local Dirichlet problems. This can be done

in parallel over the mesh elements.

• Patch all the local problems together by weakly imposing transmission con-

ditions representing the continuity of normal flux and stress on inter-element

faces [50]. The hybrid variable we introduced before coincides with the Lagrange

multiplier associated with the transmission conditions.

The procedure just described is called hybridization or static condensation [19], and

creates a global linear system for the hybrid variable only, whose dimension is much

smaller than what it would be obtained from standard DG methods. After solving

the global system, the unknowns are recovered locally on each element, again in

parallel. This is similar to the hybridized implementation of mixed methods such

as the Raviart-Thomas elements (see [19, 51]), except that the HDG method has

the very interesting feature of using different (and simpler) polynomial spaces and a

stabilization function (which does not need tuning) instead of a stable mixed finite

element pair.

Therefore, HDG methods retain all the advantages of DG methods and, thanks

to hybridization, become computationally competitive with traditional continuous

Galerkin approaches [52]. However, hybridization is not just an implementation trick.

Rather, it endows HDG methods with some attractive convergence properties that

allow to enhance the accuracy of the approximate solution by local postprocessing [53].
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Due to their attractive features, scientists are constantly pushing limits of ap-

plicability of HDG ideas to many problems in continuum mechanics and physics.

Below, an absolutely not exhaustive list of applications of HDG methods and related

references is given:

• steady-state diffusion [49];

• convection-diffusion [54–56];

• linear and nonlinear elasticity [57,58];

• Stokes flow [59];

• compressible and incompressible Navier-Stokes [60, 61];

• wave and Maxwell’s equations [62–64];

• fluid-structure interaction [65].

In this chapter, we present a novel numerical approach for solving porous media

viscoelasticity. The key feature of this approach is the use of a new HDG method for

spatial discretization of the poro-viscoelastic system, which is obtained by carefully

blending the approaches by Cockburn et al. [19] and Qiu et al. [55,57] for the diffusion

equation and linear elasticity with a fixed-point map for the nonlinear dependence of

the permeability on the volumetric solid strain.

3.1 Problem Setting

Let Ω ⊂ R3 be an open subset of R3 representing the spatial domain occupied by

the fluid-solid mixture with boundary ∂Ω and let [0, T ), T > 0 be the time domain.
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The model problem we will be discussing in this chapter is a modified version of

system (2.186)–(2.191) presented at the end of Chapter 2, namely:

σ = σe + δσv − pI in Ω× (0, T ), (3.1)

∇ · σ = F in Ω× (0, T ), (3.2)

v = −K(∇ · u)∇p in Ω× (0, T ), (3.3)

(∇ · u)′ +∇ · v = S in Ω× (0, T ), (3.4)

where σe and σv are the elastic and viscoelastic stress contributions, respectively, for

which Hooke-type laws are assumed:

σe =
4

E ε(u) = 2µeε(u) + λe(∇ · u)I, (3.5)

σv =
4
η ε(u′) = 2µvε(u′) + λv(∇ · u′)I, (3.6)

where µe and λe are the smeared elastic parameters, and µv and λv are the smeared

viscous parameters. The parameter δ ≥ 0 in (3.1) indicates the extent to which

the model includes viscoelastic effects for the solid constituent, with δ = 0 corre-

sponding to the purely elastic case. In equations (3.1)–(3.4), with respect to the

poro-viscoelastic system presented at the end of Chapter 2, we have that:

• The subscript S has been dropped when referring to physical quantities of the

solid phase.

• In the balance of linear momentum for the overall mixture (3.2), the divergence

of the total stress∇·σ is set equal to F, which is assumed to be a given function.

• In the Darcy’s law (3.3), only the effect of the fluid pressure is retained. More-

over, the permeability tensor KF is an isotropic tensor depending on the size

of the interconnected pore volume, which is represented by the fluid volume

fraction nF :

KF = κI, with κ = κ(nF ).
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From now on, nF will be simply denoted by n. Using equation (2.190), the

dependency of κ(n) can be rewritten in terms of ∇ · u as

κ(n) = K(∇ · u), (3.7)

as it appears in (3.3).

• In the balance of mass for the overall mixture (3.4), the right hand side is

denoted by S and is assumed to be a given function.

Let ∂Ω denote the boundary of Ω. We consider two partitions of ∂Ω: one for the

solid phase

∂Ω = Γ
D

S ∪ Γ
N

S ∪ Γ
xy

S ∪ Γ
xz

S ∪ Γ
yz

S ∪ Γ
x

S ∪ Γ
y

S ∪ Γ
z

S, (3.8)

with ΓiS ∩ΓjS = ∅, i, j ∈ {D,N, xy, xz, yz, x, y, z}, i 6= j; and another one for the fluid

phase

∂Ω = Γ
D

F ∪ Γ
N

F , (3.9)

with ΓDF ∩ ΓNF = ∅. We consider the following boundary conditions:

u = gDS on ΓDS , (3.10)

σn = gNS on ΓNS , (3.11)

e1 · u = gxyS,1, e2 · u = gxyS,2, e3 · σn = gxyS,3 on ΓxyS , (3.12)

e1 · u = gxzS,1, e2 · σn = gxzS,2, e3 · u = gxzS,3 on ΓxzS , (3.13)

e1 · σn = gyzS,1, e2 · u = gyzS,2, e3 · u = gyzS,3 on ΓyzS , (3.14)

e1 · u = gxS,1, e2 · σn = gxS,2, e3 · σn = gxS,3 on ΓxS, (3.15)

e1 · σn = gyS,1, e2 · u = gyS,2, e3 · σn = gyS,3 on ΓyS, (3.16)

e1 · σn = gzS,1, e2 · σn = gzS,2, e3 · u = gzS,3 on ΓzS, (3.17)

p = gDF on ΓDF , (3.18)

v · n = gNF on ΓNF , (3.19)
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where gDS ,g
N
S , {gxyS,i, gxzS,i, gyzS,i, gxS,i, gyS,i, gzS,i, i = 1, 2, 3}, gDF , gNF are given functions of

space and time. In some cases, it may be useful to express Neumann boundary

conditions involving the total stress σ or the discharge velocity v in the following way

σn = gSn and v · n = gF · n,

respectively. The HDG method proposed in this thesis does not require any simplify-

ing assumption on the boundary partitions (3.8) and (3.9) (i.e. we include cases when

ΓiS ∩ ΓjF 6= ∅, for any i, j) and the associated boundary conditions. In the boundary

conditions (3.12)–(3.17), the solid displacement is specified along one or two coor-

dinate directions, whereas the total normal traction σn is specified along the other

one(s). A boundary condition of type (3.17) will be used in Chapter 4 to describe the

anchorage between the sclera and the lamina cribrosa in the ONH.

In order to specify the initial conditions, it is useful to distinguish between the

viscoelastic case, i.e. δ > 0, and the purely elastic case, i.e. δ = 0. When δ > 0, time

derivatives appear both in (3.1) and (3.4), requiring an initial condition on the whole

displacement field, namely

u = u0 in Ω at t = 0 (case δ > 0). (3.20)

When δ = 0, only the divergence of the displacement ∇ · u undergoes time differen-

tiation, see equation (3.4). Therefore, only a condition on ∇ · u is required, namely

∇ · u = d0 in Ω at t = 0 (case δ = 0). (3.21)

3.1.1 Existence of Solutions

Several theoretical approaches have been developed to study poroelastic sys-

tems [66–73]. However, Bociu et al. [39] present the first study that addresses the

solution of system (3.1)–(3.4), simultaneously accounting for non-zero, mixed bound-

ary data, nonlinear dependence of the permeability on the volumetric solid strain,

and elastic and viscoelastic effects in the solid constituent. Their existence results

are particularly relevant to our discussion and will be reported below.
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Let us begin by introducing some notations and conventions. Norms ‖ · ‖D are

taken to be L2(D) for a domain D. For functions u, v in L2(D) we write (u, v)D =∫
D
uv dx if D is a domain of R3 and 〈u, v〉D =

∫
D
uv dx if D is a domain of R2. The

subscript denoting the domain in norms and inner products will be dropped where

the context does not lead to confusion. The Sobolev space of order s defined on a

domain D will be denoted by Hs(D), with Hs
0(D) denoting the closure of C∞0 (D) in

the Hs(D) norm (which we denote by ‖ · ‖Hs(D) or ‖ · ‖s,D). When s = 0, we may

further abbreviate the notation to ‖ · ‖ (as described above). We make use of the

standard notation for the trace of functions γ[w] as the map from H1(D) to H1/2(∂D).

We will make use of the spaces L2(0, T ;U) and Hs(0, T ;U), where U is a topological

vector space. These norms (and their associated inner products) will be denoted with

the appropriate subscript, e.g., || · ||L2(0,T ;U).

The principal spaces we consider are of the form

H1
Γ∗(Ω) =

{
f ∈ H1(Ω)

∣∣∣ γ[f ]
∣∣
Γ∗

= 0
}
.

In this case we have H1
Γ∗(Ω) ⊃ H1

0 (Ω) for any Γ∗ ⊂ Γ ≡ ∂Ω. The norms in these

spaces are inherited from H1(Ω). In this section, we will provide existence results

in the case of boundary conditions of type (3.10) with gDS = 0, (3.11), (3.18) with

gDF = 0, and (3.19), with no simplifying assumptions on the boundary partitions

∂Ω = Γ
D

S ∪ Γ
N

S and ∂Ω = Γ
D

F ∪ Γ
N

F ,

i.e. we include cases when ΓiS∩ΓjF 6= ∅, for i, j = D,N . Let us introduce the following

bilinear forms

ae(u,w) = λe(∇ · u,∇ ·w)Ω + µe(∇u,∇w)Ω + µe(∇u,∇Tw)Ω, (3.22)

av(u,w) = λv(∇ · u,∇ ·w)Ω + µv(∇u,∇w)Ω + µv(∇u,∇Tw)Ω. (3.23)

In this notation, we utilize

(A,B)Ω =

∫
Ω

(AijBij) dv,
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sometimes also denoted by (A : B) (see equation (2.67)).

In both cases δ > 0 (viscoelastic case, or VE) and δ = 0 (elastic case, or E),

solutions will satisfy a weak form of (3.1)–(3.4), (3.10), (3.11), (3.18), and (3.19).

Bociu et al. [39] notion of an E-solution (δ = 0) follows that in [66] (and it is closely

related to the notion in [71]). For a VE-solution (δ > 0), they extend this notion in

a natural way as specified below.

Definition 3.1.1 [VE-Solution] A solution to (3.1)–(3.4), (3.10), (3.11), (3.18), and

(3.19) (with δ > 0) is represented by the pair of functions u ∈ H1(0, T ; [H1
ΓDS

(Ω)]3)

and p ∈ L2(0, T ;H1
ΓDF

(Ω)) such that:

1. the following relations are satisfied for any w ∈ [H1
ΓDS

(Ω)]3, q ∈ H1
ΓDF

(Ω), and

f ∈ C∞([0, T ]):

δ

∫ T

0

av(u
′,w)f dt+

∫ T

0

ae(u,w)f dt−
∫ T

0

(p,∇ ·w)f dt

=

∫ T

0

〈gNS ,w〉ΓNS f dt+

∫ T

0

(F,w)f dt, (3.24)∫ T

0

(K(∇ · u)∇p,∇q)f dt+
∫ T

0

(∇ · u′, q)f dt

=−
∫ T

0

〈gNF , q〉ΓNF f dt+

∫ T

0

(S, q)f dt (3.25)

2. the initial conditions u(x, 0) = u0 ∈ [H1
ΓDS

(Ω)]3 and ∇ · u(x, 0) = d0 ∈ L2(Ω)

are given, and we require ∇ · u0 = d0 (in the L2(Ω) sense).

Definition 3.1.2 [E-Solution] A solution to (3.1)–(3.4), (3.10), (3.11), (3.18), and

(3.19) (with δ = 0) is represented by the pair of functions u ∈ L2(0, T ; [H1
ΓDS

(Ω)]3)

and p ∈ L2(0, T ;H1
ΓDF

(Ω)) such that:
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1. the following relations are satisfied for any w ∈ [H1
ΓDS

(Ω)]3, q ∈ H1
ΓDF

(Ω), and

f ∈ C∞0 ((0, T )):∫ T

0

ae(u,w)f dt−
∫ T

0

(p,∇ ·w)f dt

=

∫ T

0

〈gSN ,w〉ΓNS f dt+

∫ T

0

(F,w)f dt (3.26)∫ T

0

(K(∇ · u)∇p,∇q)f dt−
∫ T

0

(∇ · u, q)f ′ dt

=−
∫ T

0

〈gNF , q〉ΓNF f dt+

∫ T

0

(S, q)f dt (3.27)

2. for every q ∈ H1
ΓDF

(Ω), the term (∇ · u(t), q) uniquely defines an absolutely

continuous function on [0, T ] and the initial condition (∇ · u(0), q) = (d0, q) is

satisfied.

Definition 3.1.3 [Energies] Energy functionals for solutions are defined as follows:

Ee(u(t)) =
1

2

[
λe||∇ · u(t)||2 + µe||∇u||2 + µe(∇u,∇Tu)

]
, (3.28)

Ev(u(t)) =
1

2

[
λv||∇ · u(t)||2 + µv||∇u||2 + µv(∇u,∇Tu)

]
, (3.29)

W (p(t)) = (K(∇ · u)∇p,∇p), (3.30)

where Ee is the integrated elastic energy, Ev is the integrated viscous energy, and

W is the integrated rate of change of fluid kinetic energy.

Let us consider the following assumptions on the domain Ω and the permeability κ:

Assumption 3.1.1 We assume:

1. ΓDS is a set of positive measure, so by Korn’s inequality [16] there exists a con-

stant CKorn = CKorn(Ω) > 0 such that

||ε(w)||2[L2(Ω)]3×3 ≥ CKorn||∇w||2[L2(Ω)]3×3 ∀w ∈ [H1
ΓDS

(Ω)]3. (3.31)

2. ΓDF is a set of positive measure, so by Poincare’s inequality [38] there exists a

constant CP = CP (Ω) > 0 such that

||q||L2(Ω) ≤ CP ||∇q||L2(Ω) ∀ q ∈ H1
ΓDF

(Ω). (3.32)
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3. The scalar function K : R→ R is continuous on R. We assume K(s) ≥ Kmin >

0 ∀s ∈ R, so there is a constant Cκ such that

||p||21,Ω ≤ CκW (p(t)).

Additionally, we assume: K(s) ≤ Kmax <∞ ∀s ∈ R.

4. The boundary Γ is sufficiently regular [39].

We can now state the two main existence results [39].

Theorem 3.1.1 [Existence of VE-Solutions] Consider equations (3.1)–(3.4), (3.10),

(3.11), (3.18), and (3.19) with δ > 0. Let Assumption 3.1.1 hold, and consider data

of the form:

F ∈ L2
(

0, T ;
[
L2(Ω)

]3)
, S ∈ L2(0, T ;L2(Ω)), (3.33)

gNS ∈ L2
(
0, T ; [H1/2(ΓNS )]3

)
, gNF ∈ L2

(
0, T ;L2(ΓNF )

)
. (3.34)

Then, there exists a VE-solution (in the sense of (3.24)–(3.25)) satisfying

sup
t∈[0,T ]

[Ee(u(t)) + δEv(u(t))] +

∫ T

0

[Ee(u) + δEv(ut)] dt+

∫ T

0

W (p) dt

≤C [eK1T + eK2T ], (3.35)

where:

C ≡ [CEe(u(0)) + δCEv(u(0))] (3.36)

+ C(cγ, CP ,K−1
min)

∫ T

0

[
||F||20 + ||gNS ||2L2(ΓNS ) + ||S||20 + ||gNF ||2L2(ΓNF )

]
,

K1 ≡ C(cγ, CKorn, µ
e, λe), (3.37)

K2 ≡ C(cγ, CKorn, µ
v, λv, δ−1), (3.38)

and cγ, CKorn and CP0 are the constants associated with the trace theorem [38], the

Korn’s inequality (3.31), and the Poincare’s inequality (3.32), respectively.
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Theorem 3.1.2 [Existence of E-Solutions] Consider equations (3.1)–(3.4), (3.10),

(3.11), (3.18), and (3.19) with δ = 0. Let Assumption 3.1.1 hold, and consider data

of the form:

F ∈ H1
(

0, T ;
(
L2(Ω)

)3
)
, S ∈ L2(0, T ;L2(Ω)), (3.39)

gNS ∈ H1
(
0, T ; (H1/2(ΓNS ))3

)
, gNF ∈ L2

(
0, T ;L2(ΓNF )

)
. (3.40)

Then there exists an E-solution (in the sense of (3.26)–(3.27)) satisfying

sup
t∈[0,T ]

Ee(u(t)) +

∫ T

0

[W (p) + Ee(u)] dt ≤ C eK T , (3.41)

where

C ≡ C(cγ, CKorn, µ
e, λe)Ee(u(0)) (3.42)

+C(cγ, CKorn, µ
e, λe) sup

[0,T ]

(
||gNS (t)||2L2(ΓNS ) + ||F(t)||20

)
+C(cγ, CP ,K−1

min)

∫ T

0

(
||gNS ||2L2(ΓNS ) + ||gNS t||2L2(ΓNS ) + ||gNF ||2L2(ΓNF )

)
+C(cγ, CP ,K−1

min)

∫ T

0

(
||F||20 + ||Ft||20 + ||S||20

)
,

and

K ≡ C(cγ, CKorn, CP , µ
e, λe,K−1

min), (3.43)

and cγ, CKorn and CP are the constants associated with the trace theorem [38], the

Korn’s inequality (3.31), and the Poincare’s inequality (3.32), respectively.

In Theorem 3.1.1 and Theorem 3.1.2, different time regularities of the volumetric

source of linear momentum F and the boundary source of traction gNS are required,

namely L2 time regularity for the viscoelastic case and H1 for the elastic case. Inter-

estingly, numerical experiments described in Chapter 4 show that the Darcy velocity

and the related fluid energy might become unbounded in the purely elastic case if

data do not exhibit sufficient time regularity.
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3.2 Numerical Algorithm

In this section, we propose a novel numerical approach based on HDG finite el-

ements for the solution of system (3.1)–(3.6) in the computational domain Ω with

boundary ∂Ω = Γ, subject to boundary conditions of the form (3.10)–(3.19) and ini-

tial conditions (3.20) (viscoelastic case, δ > 0) or (3.21) (purely elastic case, δ = 0).

Without loss of generality, we will present the method considering boundary condi-

tions of type (3.10), (3.11), (3.18), and (3.19), corresponding to the following parti-

tions of the boundary ∂Ω

∂Ω = Γ
D

S ∪ Γ
N

S = Γ
D

F ∪ Γ
N

F .

Boundary conditions of mixed type (3.12)–(3.17) simply require a projection on the

coordinates axes. We define the computational time domain t ∈ (tstart, tend) of length

T = tend − tstart. Thus, in the space-time domain Q = Ω× (tstart, tend), the following

system has to be solved:

σ = 2µeε(u) + λe(∇ · u)I + δ(2µvε(u′) + λv(∇ · u′)I)− pI in Q, (3.44)

∇ · σ = F in Q, (3.45)

v = −κ(n)∇p in Q, (3.46)

(∇ · u)′ +∇ · v = S in Q, (3.47)

n = ∇ · u + n0 in Q, (3.48)

u = gDS on ΓDS , (3.49)

σn = gNS on ΓNS , (3.50)

p = gDF on ΓDF , (3.51)

v · n = gNF on ΓNF , (3.52)

subject to the following initial conditions:

u = u0 in Ω at t = tstart (case δ > 0), (3.53)

∇ · u = d0 in Ω at t = tstart (case δ = 0). (3.54)



108

Observe that we used equation (3.7) and (2.156) to rewrite the permeability coefficient

as a function of the fluid volume fraction n, i.e. κ(n) = K(∇ · u). In (3.48), n0

represents the initial value of the fluid volume fraction.

The computational method proposed by Bociu et al. [39] for a one dimensional

version of system (3.44)–(3.48) is composed of three main steps:

1. Backward Euler method for discretization in time [47];

2. a fixed-point iteration for the nonlinearity in the permeability that couples

balance and constitutive equations (3.44)–(3.48);

3. a dual mixed finite element method for the discretization in space.

In this thesis, we extend their numerical approach to multidimensional geometries

and validate it against available data in a living tissue, i.e. the lamina cribrosa in the

ONH [1]. The details of each step are given in the following subsections.

3.2.1 Temporal Semi-Discretization

We divide [tstart, tend] into a finite number r ≥ 1 of sub-intervals [ti, ti+1], i =

0, . . . , r − 1, of uniform length ∆t = T/r. For any smooth function (in time) Y =

Y(x, t), we let Y i := Y(x, ti); otherwise, if Y is discontinuous (in time) at t = ti, we

let Y i := Y(x, ti−). Using the Backward Euler method for the time discretization,

we get a sequence of r non linearly coupled boundary value problems, as shown in

Algorithm 3.2.1.

3.2.2 Fixed-Point Iteration

We adopt a Picard iteration to numerically deal with the nonlinear dependence

of the permeability κ on n = ∇ · u + n0 in equation (3.57). This approach has

also been used by Cao et al. [73]. The complete fixed point iteration is described in

Algorithm 3.2.2. The limiter Π in equation (3.66) is a function Π: R→ [nmin, nmax],
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Algorithm 3.2.1 Temporal Semi-Discretization of system (3.44)–(3.52)

Input: u0 and n0.

1: for i = 0, . . . , r − 1 do

2: Given ui, solve the following nonlinear problem:

σi+1 = 2µveε(ui+1) + λve(∇ · ui+1)I

− δ

∆t
(2µvε(ui) + λv(∇ · ui)I)− pi+1I, (3.55)

∇ · σi+1 = Fi+1, (3.56)

vi+1 = −κ(ni+1)∇pi+1, (3.57)

1

∆t
∇ · ui+1 +∇ · vi+1 = Si+1 +

1

∆t
∇ · ui, (3.58)

ni+1 = ∇ · ui+1 + n0, (3.59)

(3.60)

for x ∈ Ω, with:

ui+1 = gD,i+1
S on ΓDS , (3.61)

σi+1n = gN,i+1
S on ΓNS , (3.62)

pi+1 = gD,i+1
F on ΓDF , (3.63)

vi+1 · n = gN,i+1
F on ΓNF , (3.64)

where µve = µe + δ
∆t
µv, λve = λe + δ

∆t
λv.

3: end for
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where 0 < nmin < nmax < 1 are prescribed bounds on the fluid volume fraction n.

This step is important to ensure that n remains within its physical admissible range,

i.e. n ∈ (0, 1). We do not allow either n = 0 (no fluid phase) or n = 1 (no solid

phase). Several different choices are possible for Π. However, it is important to let

Π be a sufficiently smooth mapping in order to avoid limit cycles in the iterative

method. For example, a mapping that is only only Lipschitz-continuous on R and

could lead to limit cycles is given below (see Figure 3.1):

ΠLip(n) =


nmin if n ≤ nmin,

n if if nmin < n ≤ nmax,

nmax if n > nmax.

On the other hand, a C1(R) mapping that should be able to suppress limit cycles is

the following (see Figure 3.1):

ΠC1(n) =


h1(n) if n ≤ nmin + ∆,

n if if nmin + ∆ < n ≤ nmax −∆,

h2(n) if n > nmax −∆,

(3.65)

where ∆ = c(nmax − nmin) and 0 < c < 1. The functions h1 : R→ R and h2 : R→ R

in (3.65) have to meet some reasonable criteria, such as:

lim
n→−∞

h1(n) = nmin,

h1(n) ≥ nmin if n ≤ nmin + ∆,

h1(nmin + ∆) = nmin + ∆,

dh1

dn

∣∣∣∣
n=nmin+∆

= 1,
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and, similarly,

lim
n→∞

h2(n) = nmax,

h2(n) ≤ nmax if n ≥ nmax −∆,

h2(nmax −∆) = nmax −∆,

dh2

dn

∣∣∣∣
n=nmax−∆

= 1.

In this work, we let h1 and h2 be branches of hyperbolas satisfying the above condi-

tions:

h1(n) =
−∆2

n− (nmin + 2∆)
+ nmin,

h2(n) =
−∆2

n− (nmax − 2∆)
+ nmax.

Depending on the functional dependence of the permeability κ on n, bounding

n also causes κ to be bounded, thus ensuring that Assumption 3.1.1, introduced by

Bociu et al. [39] to prove the existence theorems 3.1.1 and 3.1.2, is satisfied.

Algorithm 3.2.2 is a semi-implicit variant of the staggered (or loosely coupled)

algorithm proposed and successfully used by Causin et al. [74] for the numerical study

of a problem similar to that considered in Chapter 4. Algorithm 3.2.2 is convergent

if the following map:

Πtot : R → [nmin, nmax]

n(j) → n(j+1) = Πtot(n
(j)),

which is a composition of the limiter Π introduced in (3.66) with the solution map

of system (3.55)–(3.64), admits a fixed point. In this work, we do not provide an

analytic study of the conditions under which this holds. Nevertheless, the sensitivity

analysis provided in Section 3.3.2 suggests that the convergence of Algorithm 3.2.2

is strongly affected by the physical and geometrical parameters characterizing the

problem.
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n
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1

nmin

nmax

nmin + ∆

nmax −∆

ΠLip
ΠC1

Figure 3.1. Examples of limiter functions that can be used in Algo-
rithm 3.2.2 to ensure that the fluid volume fraction n is within physical
limits, i.e. 0 < n < 1. The limiter ΠLip is only Lipschitz continuous and
leads to limit cycles in the fixed-point iterations, whereas ΠC1 is C1(R)
and does not cause such behavior.

Finally, the divergence of the solid displacement ∇ · uj+1 has to be updated, as

mentioned in line 4 of Algorithm 3.2.2. This point will be addressed in the next

section.

3.2.3 Spatial Discretization by the HDG Method

In many engineering applications, it is extremely delicate to choose a proper spatial

discretization. This is due to the fact that gradients often represent quantities of

primary interest. For example, stresses drive the non-uniform growth and remodeling

of the collagen within the lamina cribrosa [75], whereas discharge velocities are related

to the blood perfusion of the laminar tissue.

This thesis presents a novel numerical method for porous media viscoelasticity

based on HDG finite elements for the direct approximation of both the primal un-

knowns, i.e. the solid displacement u and the fluid pressure p, and the dual unknowns,

i.e. the total stress σ and the discharge velocity v.
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Algorithm 3.2.2 Fixed-Point Iteration for the Nonlinear Problem (3.55)–(3.64).

Input: u(0) = ui and n(0) = ni, j = 0.

1: while termination criterion is not met do

2: Apply a limiter to the fluid volume fraction n(j+1/2)

n(j+1/2) = Π(n(j)). (3.66)

3: Solve the following linear problem:

σ(j+1) = 2µveε(u(j+1)) + λve(∇ · u(j+1))I

− δ

∆t
(2µvε(ui) + λv(∇ · ui)I)− p(j+1)I, (3.67)

∇ · σ(j+1) = Fi+1, (3.68)

v(j+1) = −κ(n(j+1/2))∇p(j+1), (3.69)

1

∆t
∇ · u(j+1) +∇ · v(j+1) = Si+1 +

1

∆t
∇ · ui, (3.70)

for x ∈ Ω, with

u(j+1) = gD,i+1
S on ΓDS , (3.71)

σ(j+1)n = gN,i+1
S on ΓNS , (3.72)

p(j+1) = gD,i+1
F on ΓDF , (3.73)

v(j+1) · n = gN,i+1
F on ΓNF . (3.74)

4: Update ∇ · u(j+1) by using equation (3.67).

5: Update the fluid volume fraction

n(j+1) = ∇ · u(j+1) + n0. (3.75)

6: j = j + 1.

7: end while
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Similarly to other HDG methods devised for other applications, the approach

considered here has some very interesting features, partially inherited by DG methods,

which make it particularly well-suited for solving poro-viscoelastic models compared

to other finite element approaches, like those mentioned in Chapter 1:

• It can handle any type of mesh and basis functions and is ideally suited for

h/p-adaptivity [52].

• It obtains optimal order of convergence for all the variables on stationary prob-

lems. In other words, if polynomials of degree k are used to approximate a

variable and the variable itself meets sufficient regularity requirements, then

the approximation error behaves like O(hk+1), where h is the maximum diam-

eter of a mesh.

• It has a stabilization mechanism that does not degrade its high order accuracy

and does not need any tuning.

• It is obtained by discretizing a characterization of the exact solution written in

terms of many local problems, one for each element of the triangulation Ωh of

the domain Ω, with suitably chosen data, and in terms of a single global prob-

lem that actually determines them. This is what makes this method, like other

HDG methods, efficiently implementable since it inherits the above-mentioned

structure of the exact solution. With respect to other DG methods of compa-

rable accuracy, HDG methods require less degrees of freedom in the solution of

the global system, since this is written in terms of (statically condensed onto)

hybrid variables that represent the trace of the solution on the boundaries of

the elements.

Let us now describe the HDG discretization for system (3.67)–(3.74) in details.

The method we use combines Cockburn et al.’s [19] and Qiu et al.’s [55,57]. We will

then use their notation. Let Ωh be a conforming triangulation of a polyhedral domain

Ω ⊂ Rd, d = 2, 3, made of shape-regular polyhedral elements K. An interior face of
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Ωh is any set F of positive (d−1)-Lebesgue measure of the form F = ∂K+∩∂K− for

some two elements K+ and K− of Ωh. We say that F is a boundary face if there is an

element K ∈ Ωh such that F = ∂K ∩Γ and the (d− 1)-Lebesgue measure of F is not

zero. We recall that ∂Ωh = { ∂K | K ∈ Ωh }, and Eh denotes the set of all faces F of

all the elements. Let also Eoh denote the set of interior faces of Ωh. If V (D) denotes

a space of scalar-valued functions defined on D, the corresponding space of vector-

valued functions is V(D) := (V (D))d and the corresponding space of matrix-valued

functions is V (D) := (V (D))d×d. Finally, V (S,D) denotes the symmetric subspace

of V (D). We will also write

(v, w)Ωh =
∑
K∈Ωh

(v, w)K , 〈µ, λ〉∂Ωh =
∑
K∈Ωh

〈µ, λ〉∂K . (3.76)

We seek an approximation (σh,uh, ûh,vh, ph, p̂h) to

(σ(j+1),u(j+1),u(j+1)|Eh ,v(j+1), p(j+1), p(j+1)|Eh),

in the finite dimensional space

V u
h ×Wu

h ×Mu
h ×Vp

h ×W p
h ×Mp

h ,

defined by:

V u
h =

{
µ1 ∈ L2(S,Ω)

∣∣ µ1|K ∈ P k(S,K) ∀K ∈ Ωh

}
, (3.77)

Wu
h =

{
µ2 ∈ L2(Ω)

∣∣ µ2|K ∈ Pk+1(K) ∀K ∈ Ωh

}
, (3.78)

Mu
h =

{
µ5 ∈ L2(Eh)

∣∣ µ5|F ∈ Pk(F ) ∀F ∈ Eh
}
, (3.79)

Vp
h =

{
µ3 ∈ L2(Ω)

∣∣ µ3|K ∈ Pk(K) ∀K ∈ Ωh

}
, (3.80)

W p
h =

{
µ4 ∈ L2(Ω)

∣∣ µ4|K ∈ P k∗(K) ∀K ∈ Ωh

}
, (3.81)

Mp
h =

{
µ6 ∈ L2(Eh)

∣∣ µ6|F ∈ P k(F ) ∀F ∈ Eh
}
, (3.82)

where k∗ could be either k or k + 1 in equation (3.81). Observe that all the spaces

introduced above are element-wise, or face-wise, discontinuous. Moreover, by defini-

tion of V u
h, the symmetry of the stress tensor is imposed strongly, rather than in a

weak sense [76–78].
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For any discontinuous (scalar, vector or tensor) function u in V u
h,W

u
h,V

p
h, or W p

h ,

the trace u|F on an interior face F = ∂K+ ∩ ∂K− is a double value function, whose

two branches are denoted by (u|F )K+ and (u|E)K− . For any double-valued scalar (u),

vector (v), or tensor (w) function, we define the jump of its normal component across

an interior face F by

JuKF = uK+ − uK− ,

JvKF = vK+ · nK+ + vK− · nK− ,

JwKF = wK+nK+ + wK−nK− ,

respectively. On any face F of K lying on the boundary, we set

JvKF = vK · nK ,

JwKF = wKnK .

A Characterization of the Exact Solution

Let us rewrite system (3.67)–(3.74) in mixed form:

c1σ
(j+1) + c2(trσ(j+1))I − ε(u(j+1)) + PTp

(j+1)I = −c3ε(u
i)− c4(∇ · ui)I, (3.83)

∇ · σ(j+1) = Fi+1, (3.84)

κ−1(n(j+1/2))v(j+1) +∇p(j+1) = 0, (3.85)

1

∆t
∇ · u(j+1) +∇ · v(j+1) = Si+1 +

1

∆t
∇ · ui, (3.86)

for x ∈ Ω, where trσ = σii, n
(j+1/2) depends on ∇ · u(j) according to (3.66), (3.75),

and

c1 =
1

2µve
, c2 = − λve

2µve(2µve + 3λve)
= − 1

2µve
(

2µve

λve
+ 3

) ,
c3 =

δ

∆t
(2µvc1), c4 =

δ

∆t
(2µvc2 + λvPT ),

PT = c1 + 3c2.
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In Appendix A, it is shown how equation (3.67) can be manipulated to obtain its

mixed form (3.83) and the functional expressions of coefficients c1, c2, c3, and c4.

Boundary conditions are:

u(j+1) = gD,i+1
S on ΓDS , (3.87)

σ(j+1)n = gN,i+1
S on ΓNS , (3.88)

p(j+1) = gD,i+1
F on ΓDF , (3.89)

v(j+1) · n = gN,i+1
F on ΓNF , (3.90)

Four functions σ,u,v, p are exact solutions of (3.83)–(3.90) if and only if they satisfy

the following conditions [19]:

• equations (3.83)–(3.86) are satisfied on each element K of the mesh Ωh;

• transmission conditions are satisfied on each interior face F ∈ Eoh:

Jû · e1KF = 0, Jû · e2KF = 0, Jû · e3KF = 0, (3.91)

Jσ̂KF = 0, (3.92)

Jp̂KF = 0, (3.93)

Jv̂KF = 0; (3.94)

• boundary conditions:

û|F = gD,i+1
S |F if F ∈ ΓDS ,

σ̂n|F = gN,i+1
S |F if F ∈ ΓNS ,

p̂|F = gD,i+1
F |F if F ∈ ΓDF ,

v̂ · n|F = gN,i+1
F |F if F ∈ ΓNF ;

where û, σ̂, p̂, and v̂ are the traces of the displacement, the stress, the fluid pressure

and the discharge velocity on the boundary of the elements, respectively. The trans-

mission conditions (3.91)–(3.94) imply that û, σ̂n, p̂, and v̂ · n are single-valued on
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the interior faces of the mesh. In every mesh element K, we can obtain (σ,u,v, p) in

terms of û, p̂ on ∂K and ui,Fi+1, Si+1 by solving the following local Dirichlet problem

c1σ + c2(trσ)I − ε(u) + PTpI = −c3ε(u
i)− c4(∇ · ui)I in K, (3.95)

∇ · σ = Fi+1 in K, (3.96)

κ−1(n(j+1/2))v +∇p = 0 in K, (3.97)

1

∆t
∇ · u +∇ · v = Si+1 +

1

∆t
∇ · ui in K, (3.98)

u = û on ∂K, (3.99)

p = p̂ on ∂K. (3.100)

The functions û and p̂ can now be determined on Eh as the solutions of the following

global problem:

Jσ̂KF = 0 if F ∈ Eoh, (3.101)

Jv̂KF = 0 if F ∈ Eoh, (3.102)

û|F = gD,i+1
S |F if F ∈ ΓDS , (3.103)

σ̂n|F = gN,i+1
S |F if F ∈ ΓNS , (3.104)

p̂|F = gD,i+1
F |F if F ∈ ΓDF , (3.105)

v̂ · n|F = gN,i+1
F |F if F ∈ ΓNF . (3.106)

The HDG method is obtained by constructing discrete versions of (3.95)–(3.106). In

this way, the only globally coupled degrees of freedom will be those of the global

formulations (3.101)–(3.106).
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The HDG Formulation

Using notation (3.76), equations (3.95)–(3.106) are discretized with:

(c1σh, µ1)Ωh + (c2 trσh, trµ1)Ωh − 〈ûh, µ1n〉∂Ωh + (uh,∇ · µ1)Ωh + (PTph, trµ1)Ωh =

−(c3ε(u
i
h), µ1)Ωh − (c4(∇ · uih), trµ1)Ωh ,

(3.107)

−(σh,∇µ2)Ωh + 〈σ̂hn,µ2〉∂Ωh = (Fi+1,µ2)Ωh , (3.108)

(κ−1vh,µ3)Ωh + 〈p̂h,µ3 · n〉∂Ωh − (ph,∇ · µ3)Ωh = 0, (3.109)

1

∆t
(∇ · uh, µ4)Ωh − (vh,∇µ4)Ωh + 〈v̂h · n, µ4〉∂Ωh = (Si+1, µ4)Ωh

+
1

∆t
(∇ · uih, µ4)Ωh , (3.110)

〈σ̂hn,µ5〉∂Ωh\ΓDS
= 〈gN,i+1

S ,µ5〉ΓNS , (3.111)

〈ûh,µ5〉ΓDS = 〈gD,i+1
S ,µ5〉ΓDS , (3.112)

〈v̂h · n, µ6〉∂Ωh\ΓDF
= 〈gN,i+1

F , µ6〉ΓNF , (3.113)

〈p̂h, µ6〉ΓDF = 〈gD,i+1
F , µ6〉ΓDF , (3.114)

for all (µ1,µ2,µ3, µ4,µ5, µ6) ∈ V u
h×Wu

h×Vp
h×W p

h ×Mu
h×Mp

h , where the numerical

normal fluxes σ̂h and v̂h are defined as:

σ̂hn = σhn− τS(PMuuh − ûh), on ∂Ωh, (3.115)

v̂h · n =

vh · n + τF (ph − p̂h) if ph|K ∈ P k(K),

vh · n + τF (PMpph − p̂h) if ph|K ∈ P k+1(K),

on ∂Ωh. (3.116)

In (3.115), (3.116), PMu and PMp denote the standard L2-orthogonal projections from

L2(Eh) onto Mu
h and from L2(Eh) onto Mp

h , respectively. These projection operators

have been introduced by Lehrenfeld [79] to define the numerical normal fluxes for

diffusion problems. The parameters τS and τF are called stabilization parameters.

They only need to satisfy few requirements in order to get optimal convergence rates:
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• τS is allowed to be double valued on Eoh, with two branches τ−S = τK
−

S > 0 and

τ+
S = τK

+

S > 0 defined on the face F shared by the elements K− and K+, such

that

τ−S = O(h−1
K−), τ+

S = O(h−1
K+), (3.117)

where hK is the diameter of the K-th element. We can also let τS be a fixed

positive number on all faces, with τS = O(h−1) [57].

• Similarly to τS, τF is allowed to be double valued on Eoh. However, its defi-

nition depends on the choice of the space W p
h for the fluid pressure (see equa-

tion (3.81)). If ph|K ∈ P k(K), i.e. k∗ = k in (3.81), τF is a non negative function

that does not vanish identically on the boundary ∂K of each element, that is

∀K ∈ Ωh, ∃F ∈ ∂K such that τKF |F > 0 [54]. Instead, if ph|K ∈ P k+1(K), i.e.

k∗ = k + 1 in (3.81), τF must be strictly positive on all the faces. In particular

τ−F = O(h−1
K−) > 0, τ+

F = O(h−1
K+) > 0. (3.118)

In this case, we can also let τF be a fixed positive number on all the faces, with

τF = O(h−1) [55].

Equations (3.111) and (3.113) combine the flux equilibrium on internal faces (3.101),

(3.102) and the Neumann boundary conditions (3.105), (3.106) written in weak form:

• Flux equilibrium: for all F ∈ Eoh, F = K− ∩K+, we impose:

〈Jσ̂hK,µ5〉F = 〈(σ̂hn)|K− ,µ5〉F + 〈(σ̂hn)|K+ ,µ5〉F = 0, (3.119)

〈Jv̂hK, µ6〉F = 〈(v̂h · n)|K− , µ6〉F + 〈(v̂h · n)|K+ , µ6〉F = 0. (3.120)

These last two equations also provide an intuitive explanation of the important

role played by the projection operators PMu and PMp in the definition of the

normal numerical fluxes (3.115), (3.116). By (3.115) and (3.116), the (extension

by zero to Eh of the functions) Jσ̂hK|Eoh and Jv̂hK|Eoh belong to Mu
h and Mp

h ,

respectively. Thus, equations (3.119) and (3.120) are stating that

Jσ̂hK|Eoh = 0, Jv̂hK|Eoh = 0
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pointwise, i.e. the normal numerical fluxes σ̂hn and v̂h · n are single-valued.

This means that σ̂h and v̂h are conservative numerical fluxes [19,48]. Without

the projections PMu and PMp , by (3.119) and (3.120) the normal components

of σ̂h and v̂h are only weakly continuous across the interfaces.

• Neumann boundary conditions :

〈σ̂hn,µ5〉F = 〈gN,i+1
S ,µ5〉F ∀F ∈ ΓNS ,

〈v̂h · n, µ6〉F = 〈gN,i+1
F , µ6〉F ∀F ∈ ΓNF .

Dirichlet boundary conditions are represented by (3.112) and (3.114).

Note that equations (3.107)–(3.110) are completely local and, consequently, for

each element K ∈ Ωh, the internal variables σh,uh,vh, and ph can be eliminated

in favor of ûh, p̂h and the problem data, i.e. uih,F
i+1, and Si+1. The solutions of

the local problems can then be plugged into (3.111)–(3.114) to get a system whose

globally coupled degrees of freedom are those of the numerical traces ûh and p̂h. This

elimination procedure is referred to as static condensation and is the fundamental

step that makes the hybridized method efficient and computationally competitive

with standard displacement-based approaches.

After solving problem (3.107)–(3.114), which corresponds to the spatial discretiza-

tion of the linear problem in Algorithm 3.2.2, the divergence of the solid displacement

has to be updated. By applying the trace operator to (3.83), we get the following

equation

c1 trσ
(j+1)
h + 3c2 trσ

(j+1)
h −∇ · u(j+1)

h + 3PTp
(j+1)
h = −c3∇ · uih − 3c4∇ · uih,

which can be solved for ∇ · u(j+1)
h , yielding

∇ · u(j+1)
h = (c1 + 3c2) trσ

(j+1)
h + 3PTp

(j+1)
h + (c3 + 3c4)∇ · ui. (3.121)

We notice that the evaluation of (3.121) does not require numerical differentiation,

but only quantities that are directly computed by the HDG method. Thus it is

expected that the high accuracy provided by the HDG scheme in the approximation
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of the stress, the solid displacement and the fluid pressure reflects into the evaluation

of ∇ · u(j+1)
h .

3.3 Numerical Experiments

In this section we provide experiments to numerically validate our HDG method.

For any function u(x, t), either scalar or vectorial, defined in the space-time domain

Q = Ω× [tstart, tend]

we consider the norm

‖u‖Q := sup
t∈[tstart,tend]

‖u(x, t)‖L2(Ω).

If u does not depend on time, we have

‖u‖Q := ‖u(x)‖L2(Ω),

For any function w(x, t), either scalar or vectorial, defined on the set of faces Eh of a

mesh, we consider

‖w‖h := sup
t∈[tstart,tend]

‖w(x, t)‖h, with ‖w(x, t)‖h :=

(∑
F∈Eh

|F |‖w(x, t)‖2
F

)1/2

.

If w does not depend on time, we have

||w||h :=

(∑
F∈Eh

|F |‖w(x)‖2
F

)1/2

.

To estimate the accuracy of the HDG method on time dependent problems, the

following errors are computed

eσh = ||σ − σh||Q, euh = ||u− uh||Q, evh = ||v − vh||Q, eph = ||p− ph||Q, (3.122)

and

euh = ||ū− ūh||Q, eph = ||p̄− p̄h||Q, eûh = ||u− ûh||h, ep̂h = ||p− p̂h||h, (3.123)
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Table 3.1
Data for the eight meshes used in the experiments.

Number of triangles 8 32 128 512 2048 8192 32768 131072

Number of edges 16 56 208 800 3136 12416 49408 197120

where ūh, p̄h represent the local averages of the solid displacement and fluid pressure,

respectively. On stationary problems, relative errors are computed, instead:

eσh,rel =
||σ − σh||Ω
||σ||Ω

, euh,rel =
||u− uh||Ω
||u||Ω

, evh,rel =
||v − vh||Ω
||v||Ω

, eph,rel =
||p− ph||Ω
||p||Ω

,

(3.124)

euh,rel =
||ū− ūh||Q
||ū||Q

, eph,rel =
||p̄− p̄h||Q
||p̄||Q

, eûh,rel =
||u− ûh||h
||u||h

, ep̂h,rel =
||p− p̂h||h
||p||h

.

(3.125)

Estimates of the order of convergence for a generic quantity eh are computed using

the formula log2(eh/2/eh).

3.3.1 Convergence Tests in 2D

In this section we reproduce in a two-dimensional setting the convergence tests

provided by Bociu et al. in the one-dimensional case for their dual mixed hybridized

method for poro-viscoelasticity [39]. We perform tests for several values of the degree

k of the local basis functions, k = 1, 2, 3. The global coupled HDG system coming

from the flux equilibrium conditions (3.119), (3.120) is solved on 64 cores using the

SuperLU library, a general purpose library for the direct solution of large, sparse,

non-symmetric systems of linear equations [80,81].
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Validation Test Case 1

First, we consider a linear stationary test case with δ = 0 in (3.44)–(3.52). We

take the domain Ω to be the square [0, 1]× [0, 1]. Boundary conditions (BCs) are as

follows:

• on 0 ≤ x < 1, y = 0: Dirichlet BCs on both the displacement u and the fluid

pressure p;

• on x = 1, 0 ≤ y < 1: Neumann BCs on the total stress σ and Dirichlet BCs on

p;

• on 0 < x ≤ 1, y = 1: Dirichlet BCs on u and Neumann BCs on the Darcy

velocity v;

• on x = 0, 0 < y ≤ 1: Neumann BCs on both σ and v.

The coarsest triangulation contains 8 elements. Seven nested refinements of this

partition are used. The main triangulation data are given in Table 3.1. We use a

constant permeability coefficient κ = κref = 1 m2Pa−1s−1 and choose the data so that

the exact solution is

u = Uref

cos(πx) sin(πy)

sin(πx) cos(πy)

 , p = Pref sin(πx) sin(πy),

with Uref = 1 m, Pref = 1 Pa. We use the formulation with ph|K ∈ P k+1(K), for

K ∈ Ωh, and test for several values of the polynomial degree k on the eight meshes.

As shown in Tables C.1–C.3, the errors eσh,rel, e
v
h, e

û
h,rel, e

p̂
h,rel behave like O(hk+1)

whereas errors euh,rel, e
p
h,rel, e

u
h,rel, e

p
h,rel behave like O(hk+2). The reduced convergence

rates for k = 2, 3 on the finest meshes are due to round-off errors. Hence, the

HDG method is able to achieve optimal convergence for both the dual variables,

σh and vh, and the primal variables, uh and ph. Note that due to the disparity

of polynomial degrees for the stress and displacement, and for the Darcy velocity

and fluid pressure, optimal convergence of this method yields the same quality of
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the solution as a postprocessed method based on a superconvergent scheme. This

is extremely important in any application where gradients have to be approximated

accurately and high order accuracy is also required for the primal variables.

Validation Test Case 2

Here, we consider a nonlinear test case. We consider the same domain, boundary

conditions and mesh data as in test case 1. The porosity n is now allowed to vary

according to

n = ∇ · u + 0.5, (3.126)

within the range [nmin, nmax], where 0 < nmin < nmax, so that the permeability κ,

expressed by the Carman-Kozeny law [21]

κ(n) = κref
n3

(1− n)2
, (3.127)

satisfies

0 < κref
n3

min

(1− nmin)2
≤ κ(n) ≤ κref

n3
max

(1− nmax)2
.

We set nmin = 0.1, nmax = 0.9, κref = 1 m2Pa−1s−1. Figure 3.2 shows the graph of

κ(n) for n ∈ [nmin, nmax] = [0.1, 0.9]. Observe that

κ(nmin) ≈ 0.0012 m2Pa−1s−1, κ(nmax) ≈ 73 m2Pa−1s−1,

so that variations in κ range over almost 5 orders of magnitude.

Data are taken so that the exact solution is

u = Uref

cos(πx) sin(πy)

sin(πx) cos(πy)

 , p = Pref sin(πx) sin(πy),

with Uref = 0.1/πm, Pref = 0.1 Pa. The fixed point algorithm terminates when

||Ûj − Ûj−1||∞
||Ûj−1||∞

< ε (3.128)

where ε = · 10−10 and Ûj and Ûj−1 are the vectors with all the Lagrange multipliers

û, p̂ at the current and the previous fixed point iterations, respectively. Interestingly,
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Figure 3.2. Carman-Kozeny law for the permeability coefficient.



127

the fixed point algorithm converges in 11 iterations for all the values of k on all the

meshes (besides the case k = 1 on the first mesh where convergence is achieved in 12

iterations).

Tables C.4–C.6 show that the errors eσh,rel, e
v
h,rel, e

û
h,rel, e

p̂
h,rel behave like O(hk+1)

whereas errors euh,rel, e
p
h,rel, e

u
h,rel, e

p
h,rel behave like O(hk+2). Again, the reduced conver-

gence rates for k = 2, 3 on the finest meshes are due to round-off errors. Thus, even

in this nonlinear test case, the HDG method coupled with the fixed point algorithm

has the very interesting feature of achieving optimal convergence for both the dual

variables, σh and vh, and the primal variables, uh and ph.

Validation Test Case 3

Here we consider a time dependent version of test case 1. We consider prob-

lem (3.44)–(3.53) with δ = 1 in the unit square Ω = [0, 1]× [0, 1] and the time interval

[0, T ], with T = 1 s. A constant permeability coefficient κ = κref = 1 m2Pa−1s−1 is

used and data are taken so that the exact solution is

u = Uref

cos(πx) sin(πy) sin(2πt)

sin(πx) cos(πy) sin(2πt)

 , p = Pref sin(πx) sin(πy) sin(2πt),

with Uref = 1 m, Pref = 1 Pa. We take the same meshes used in test case 1 and temporal

step sizes ∆t = T/r, with r ∈ {5, 10, 20, 40, 80, 160, 320, 640}. Tables C.7–C.9 show

the absolute errors. The approximate variables converge to the corresponding exact

ones with linear rate with respect to the mesh diameter h, spoiling the convergence

property of the HDG method achieved in the stationary test case 1. The degradation

of the convergence rate of the HDG method is due to the choice of the Backward

Euler method as time-advancing scheme, which is first-order accurate in time [47].

Observe that increasing the polynomial degree of the HDG spaces (p-refinement) is

effective in reducing the errors for any pair of mesh and time step.
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Validation Test Case 4

Here we consider a time dependent version of test case 2. Let us consider again

problem (3.44)–(3.53) with δ = 1 in the unit square Ω = [0, 1] × [0, 1] and the time

interval [0, T ], with T = 1 s. Porosity and permeability are nonlinear functions of the

solution, as described in test case 2. Data are taken so that the exact solution is

u = Uref

cos(πx) sin(πy) sin(2πt)

sin(πx) cos(πy) sin(2πt)

 , p = Pref sin(πx) sin(πy) sin(2πt),

with Uref = 0.1/πm, Pref = 0.1 Pa. We take the same meshes used in test case 2 and

temporal step sizes ∆t = T/r, with r ∈ {5, 10, 20, 40, 80, 160, 320, 640}. Tables C.10–

C.12 show the absolute errors. Unlike the stationary nonlinear case 2, the convergence

of the approximate variables reduces to linear rate due to the Backward Euler method.

Increasing the polynomial degree effectively reduces the errors also in this test case.

3.3.2 Sensitivity Analysis

The goal of this section is to determine how variations in the poro-visco-elastic

model parameters affect the performance of our HDG method. Variations in the

following physical parameters will be considered:

• permeability κ;

• elastic and viscous parameters: λe, µe, λv, µv;

• different scaling of the fluid pressure and the solid displacement;

• time step ∆t.

In 2D, the sensitivity analysis is carried out by repeating the four validation test cases

with updated parameters on the first seven meshes in Table 3.1 with polynomial

degree k = 1. The results shown below illustrate that, in some cases, it may be

beneficial to scale problem (3.44)–(3.54) and reformulate it in terms of dimensionless
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variables in order to restore the accuracy provided by the HDG scheme. However,

care is needed when using this approach, as the choice of characteristic scales may

be a non trivial issue for the problem at hand [82]. In Appendix B, we show how

problem (3.44)–(3.54) can be reformulated in terms of dimensionless variables.

Effect of Permeability

• Solving the validation test case 1 in 2D for a smaller value of the permeability κ

(κ = κref = 1× 10−4 m2Pa−1s−1), we observe a full order drop in the convergence

rate of p̄h on the seventh mesh when using the formulation with ph|K ∈ P k+1(K).

Instead, when taking ph|K ∈ P k(K), there is no convergence rate drop for p̄h,

but errors for ph are one order of magnitude bigger, as expected. Using a

smaller value for the permeability κ (κ = κref = 1× 10−6 m2Pa−1s−1), the

errors for ph and p̄h actually increase from the sixth to the seventh mesh with

ph|K ∈ P k+1(K), whereas this does not occur with ph|K ∈ P k(K).

• By setting κref = 1× 10−2 m2Pa−1s−1 in the validation test case 2 in 2D, rel-

ative errors for the two different formulations for ph exhibit a similar trend to

those obtained in test case 1 for κref = 1× 10−4 m2Pa−1s−1. Also, the num-

bers of fixed point iterations needed by both formulations to converge are not

affected. Conversely, when taking κref = 1× 10−4 m2Pa−1s−1, the formulation

with ph|K ∈ P k+1(K) does not converge within the maximum number of fixed

point iterations (500) on the last three meshes. The relative inf norm of the

increments defined in (3.128) oscillates between 1× 10−10 and 1× 10−9. With

ph|K ∈ P k(K), the algorithm converges in 11 iterations on every mesh (except

the first one where it takes 14 iterations to converge). By comparing relative

errors, we observe that the formulation with ph|K ∈ P k+1(K) provides smaller

approximation errors, even if it does not always achieve convergence.

Working with the poro-viscoelastic equations in dimensionless form (see Appendix B)

may be beneficial in the following situations:
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• in test case 1, setting all the characteristic parameters but vc (the character-

istic Darcy velocity) equal to 1 and vc = κpc/xc, restores the accuracy of the

formulation with ph|K ∈ P k+1(K).

• in test case 2, with vc = κref = 1× 10−4 ms−1 and all the other characteristic

parameters set equal to 1, the fixed point algorithm converges in 11 iterations

on every mesh, and its accuracy is restored for ph|K ∈ P k+1(K).

Conclusion: the formulation with ph|K ∈ P k(K) looks more stable when the per-

meability κ gets small. On the other hand, the formulation with ph|K ∈ P k+1(K)

always provides smaller errors on stationary problems as expected, even when it does

not converge. This may indicate that using too strict tolerances in the fixed point

algorithm is not beneficial or that a better alternative to the fixed point algorithm

should be used.

Effect of Elastic and Viscous Parameters

Here we consider three pairs of values for the elastic parameters µe and λe:

µe = 5× 104 Pa, λe = 1× 104 Pa,

µe = 3× 104 Pa, λe = 2× 106 Pa,

µe = 6× 106 Pa, λe = 1× 108 Pa.

The first two pairs correspond to the elastic parameters used by Phillips to study

locking, or the nonphysical pressure oscillations, which sometimes arise in numerical

algorithms for poroelasticity [17]. The last pair is used in this work in a later section

to characterize the elastic behavior of the lamina cribrosa [83,84]. For stationary test

cases, we considered relative rather than absolute errors as in (3.122), (3.123).

• All the three pairs have similar effects on the performance of the HDG method

in the validation test case 1. The higher the elastic parameters, the bigger the

relative errors for uh and ûh. Also, relative errors for ph are 1 to 2 orders of
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magnitude smaller when taking ph|K ∈ P k+1(K) rather than ph|K ∈ P k(K).

Interestingly, convergence rates for all the variables are just as expected (see

Table C.13), except for ûh, which decreases much faster.

• Similar relative errors and convergence rates to those shown in Table C.13 are

found in the validation test case 2 as the elastic parameters get bigger. More-

over, with the first two pairs of elastic parameters, the fixed point algorithm

converges just in 4 iterations on each mesh, whereas, with the last pair, it fails

to converge on all the meshes but the two coarsest ones. The performance of

our method is still very good, as the relative inf norm of the increments defined

in (3.128) oscillates between 1× 10−9 and 1× 10−8.

Working with the poro-viscoelastic equations in dimensionless form (see Appendix B)

may be beneficial in the following situations:

• Setting the characteristic total stress σc = 2µe and all the other characteristic

parameters to 1 restores the accuracy of uh and ûh in test case 1 and 2, even

for the biggest pair of elastic parameters, µe = 6× 106 Pa, λe = 1× 108 Pa (see

Table C.14 and Table C.15). In test case 2, even with this last pair, the fixed

point algorithm converges in 4 iterations on all the meshes.

Conclusion: as the values of the elastic parameters increase, fine meshes might be

needed in order to get reasonable errors for the solid displacement. The HDG method

seems not to suffer from locking arising in linear elasticity for nearly incompressible

materials, as all the variables retain optimal convergence rates even for the biggest pair

of elastic parameters. The convergence of the fixed point method is affected by the

elastic parameters, but this could be tackled by working with dimensionless equations.

Taking ph|K ∈ P k+1(K) provides smaller approximation errors than ph|K ∈ P k(K)

as expected.
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Table 3.2
Combinations of Uref and Pref tested in the sensitivity analysis.

Pair Uref [m] Pref [Pa]

1 1 100

2 1 10000

3 0.01 1

4 0.0001 1

5 0.01 0.01

6 0.0001 0.0001
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Effect of Pressure and Solid Displacement Scaling

In this section, we consider the effect of changing the scaling of uh and ph by

tuning Uref and Pref, as shown in Table 3.2. Choosing Pref/Uref ≥ 1 Pa m−1 is based on

the fact that the model proposed by Bociu et al. [39] is valid under the assumption

of small solid deformations and displacements, whereas the fluid pressure is allowed

to vary greatly.

• In the validation test case 1, as long as Pref/Uref = 1 Pa m−1, the performance

of the HDG method is not affected and the same approximation errors corre-

sponding to Uref = 1 m, Pref = 1 Pa are obtained (see Table C.1). Conversely, the

bigger the ratio Pref/Uref, the worse the effect on the convergence of the HDG

method. In particular, if Pref/Uref = 1× 104 Pa m−1, approximation errors for uh

and ūh are 3 orders of magnitude bigger than the case Pref/Uref = 1 Pa m−1 on all

the meshes (see Table C.16). Using ph|K ∈ P k(K) rather than ph|K ∈ P k+1(K)

provides bigger errors, but with the same order of magnitude.

• In the validation test case 2, only the first 6 meshes shown in Table 3.1 were used.

Similarly to test case 1, as long as Pref/Uref = 1 Pa m−1, the accuracy of the HDG

method does not degrade and the same approximation errors corresponding to

Uref = 1 m, Pref = 1 Pa are obtained (see Table C.4). Instead, in the other four

cases shown in Table 3.2, the HDG method does not perform well. With the

third and the fourth pairs, the fixed point algorithm converges, even faster than

in the original test case 2, but errors show the same trend as in the linear test

case (see Table C.16). The first two pairs Uref, Pref shown in Table 3.2 have a

detrimental effect on the fixed point algorithm: there is no convergence on any

mesh, as the relative increments defined in equation (3.128) oscillate between

1× 10−3 and 1× 10−1. Errors are several orders of magnitude bigger than

those in the original test case 2 and decrease very slowly (compare Table C.4

and Table C.17).
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The use of dimensionless equations (see Appendix B) is tested only for the first two

pairs (Uref, Pref) shown in Table 3.2, as they involve scaling of the fluid pressure, not

of the displacement field. Conversely, when considering the third and the fourth

pairs, the displacement field uh should be scaled, but this would be problematic in

the nonlinear test case 2, as ∇ · uh could become close to 1, thereby making the

Carman-Kozeny formula blow up. We take

pc = Pref, σc = Pref, vc = κpc/xc = 1 · Pref/1 = Pref · 1 m s−1 Pa−1,

and set all the other characteristic parameters to 1. Scaling is not very effective either

in test case 1 or 2, as there is only a slight improvement in the approximation errors

in test case 1 and the fixed point algorithm still fails to converge on any mesh in

test case 2. Looking at the definition of the total stress in dimensionless form (see

equation (B.1)) and observing that relative errors for uh, ûh are small on finer meshes

in Table C.16, we guess that it is necessary to take very small spatial step sizes in

order for the strain tensor ε∗h(u
∗
h) to balance the scaling of the total stress and the

fluid pressure.

Conclusion: the relative scaling of the solid displacement uh and the fluid pressure

ph has a strong effect on the performance of the HDG algorithm. Unlike the results

obtained in previous sections, scaling does not help here. This should warn the reader

against thinking that scaling is a panacea in any situation. Instead, our results

suggest that, depending on the regime of motion, it might be necessary to use a

different preconditioning strategy or a different iterative method than the fixed point

approach used in this work.

Effect of Time Step

We study the effect of reducing the time step ∆t of the Backward Euler method

used to discretize test case 3 in time. We fix the triangulation (the fourth one in

Table 3.1), use temporal step sizes ∆t = T/r, with

r ∈ {20, 40, 80, 160, 320, 640, 1280, 2560},
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and test for different values of the degree k of the local polynomial bases, k = 1, 2, 3, 4.

Interestingly, for k = 1, the smaller the time step, the higher the approximation errors

(see Table C.18). Even more interestingly, higher order bases have a stabilization

effect on the errors: the higher the degree, the more stabilized the errors. For example,

for k = 2, errors start increasing only for ∆t ≤ 1/320s, whereas, for k = 4, errors

always decrease linearly with ∆t (see Table C.19).

Conclusion: using a small temporal step size has a negative effect on the conver-

gence of the HDG method. However, this can be countered by using high order basis

functions, which the HDG method is ideally suited for.

3.3.3 The Problem of Locking

Phillips and Wheeler [85] provided evidence that numerical methods for poroe-

lasticity may suffer from locking, or nonphysical pressure oscillations. They used the

famous problem of Barry and Mercer as test case [86]. This problem has a couple

of interesting features: first, it provides an exact solution in 2D to the poro-elastic

system (3.44)–(3.52), (3.54), where viscous effects have been neglected (δ = 0); sec-

ond, both the dimensionless deformation and pressure solutions do not depend on the

dimensionless parameter m = 1 + λe/µe.

Domain and boundary conditions are shown in Figure 3.3. We use a = b = 1 m,

x0 = 0.23 m and y0 = 0.22 m. There is no source term in the balance of momentum,

whereas on the right side of the balance of mass (3.47), we have

sf (t) = 2βF (βt), (3.129)

with β = a−1b−1(λe + 2µe)κ = (λe + 2µe)κ, and

F (s) = δ(x− x0, y − y0) sin(s),

δ being the Dirac delta function. Equation (3.129) represents an oscillating point

source. Denoting by PK
i the i-th basis function for the approximate fluid pressure in
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Source sf (t)

(x0, y0)

Figure 3.3. Domain and boundary conditions for the Barry and Mercer
problem [86].
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element K ∈ Ωh, the local contribution of sf to the discrete balance of mass (3.110)

is ∫
K

sfP
K
i dx =

∫
K

2βδ(x− x0, y − y0) sin(βt)PK
i dx

= 2β sin(βt)

∫
K

δ(x− x0, y − y0)PK
i dx

= 2β sin(βt)PK
i (x0, y0).

Barry and Mercer provide a solution for the fluid pressure and the solid displace-

ment for this problem [86]. Let:

γn = nπ, γq = qπ, γnq = γ2
n + γ2

q ,

p̂(n, q, t) = −2 sin(γnx0) sin(γqy0)

γ2
nq + 1

(γnq sin(βt)− cos(βt) + e−γnqβt),

û(n, q, t) =
γn
γnq

p̂(n, q, t), ŵ(n, q, t) =
γq
γnq

p̂(n, q, t).

The solution is then:

p(x, y, t) = −4(λe + 2µe)
∞∑
n=1

∞∑
q=1

p̂(n, q, t) sin(γnx) sin(γqy), (3.130)

ux(x, y, t) = 4
∞∑
n=1

∞∑
q=1

û(n, q, t) cos(γnx) sin(γqy), (3.131)

uy(x, y, t) = 4
∞∑
n=1

∞∑
q=1

ŵ(n, q, t) sin(γnx) cos(γqy). (3.132)

We approximate the series in equations (3.130)–(3.132) with finite sums using the

first 30 × 30 terms. Taking more terms does not affect the values of p, ux, and uy

noticeably.

We consider the same set of material parameters used by Phillips and Wheeler [17,

18,85] to numerically validate their scheme using continuous or discontinuous elements

for displacement and a mixed formulation for the fluid pressure

E = 1× 105 Pa, ν = 0.1, κ = 1× 10−2 m2 Pa−1 s−1. (3.133)
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Figure 3.4. The problem of Barry and Mercer: dimensionless fluid pressure
computed by the HDG method at time t∗ = π/2 (left) and t∗ = 3π/2
(right), plotted on the deformed meshes. The solid displacement field has
not been amplified.

The HDG formulation with k = 1 and ph|K ∈ P k(K) is applied to the dimensionless

form of the poro-elastic system (see Appendix B), where characteristic parameters

are chosen as follows:

xc = 1 m, uc = 1 m, pc = λe + 2µe, (3.134)

σc = 2µe, vc =
κpc
xc

= κpc · 1 m−1, tc =
uc
vc

=
1

κpc
=

1

β
. (3.135)

Let t∗ = t/tc = βt be the dimensionless time. A normalized time step of ∆t∗ =

0.1π/2 is used for this test case. Figure 3.4 shows the HDG solution obtained for the

parameter set (3.133) at two relevant values of t∗. At t∗ = π/2 (left), the source sf

is at a positive maximum; this fluid injection causes an expansion of the poro-elastic

medium. At t∗ = 3π/2 (right), the source is at a negative minimum; the fluid is

withdrawing and this makes the medium contract.

Figure 3.5 illustrates the effect of element size on the errors of the normalized

pressure (top) and displacement (bottom). A smaller step size leads to a reduction in

error at most times. The initial overshooting of the errors for the displacement is also

reported by Phillips [17]. Taking smaller values for the permeability and the time

step, i.e. κ = 1× 10−6 m2 Pa−1 s−1 and ∆t∗ = 1× 10−5π/2, Phillips and Wheeler [18]
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Figure 3.5. HDG errors in Barry and Mercer’s problem. The displacement
error contains a kink at the initial time step.
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Figure 3.6. Fluid pressure computed by the HDG method at the first
time step using the time interval ∆t∗ = 0.1π/2 and permeability κ =
1× 10−2 m2 Pa−1 s−1. The solution does not exhibit nonphysical oscilla-
tions.
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Figure 3.7. Fluid pressure computed by the HDG method at the first time
step using a short time interval ∆t∗ = 1× 10−5π/2 and low permeability
κ = 1× 10−6 m2 Pa−1 s−1. Pressure oscillations are suppressed to a very
good degree.

show that their numerical scheme using continuous elements for displacement suffers

from nonphysical pressure oscillations for the initial time step solution, whereas the

one using discontinuous elements suppresses them to a fair degree. Figure 3.7 shows

the HDG solution at the initial time step. The average fluid pressure at the red-

colored cell, where the fluid source is placed, is 2.934× 10−7, whereas for all the

other cells the pressure is bounded between −1.754× 10−8 and 1.691× 10−8, more

than one order of magnitude smaller. Hence, also the HDG method is able to counter

pressure oscillations and combat locking.

Finally, we address the dependence of the HDG solution on the elastic parameters,

µe and λe. At the beginning of this section, we mentioned that the normalized

analytic pressure and deformation solutions are independent of m = 1 +λe/µe. Since

1 + λe/µe = 1/(1 − 2ν), this implies an independence of Poisson’s ratio, ν, over

its admissible range. To study whether this independence carries over to the HDG

method, we consider the parameter set (3.133) and take ν = 0.1 in one case, and ν =

0.49 in the other case. Characteristic parameters are chosen as in (3.134) and (3.135).

Figure 3.8 shows that the errors for the normalized pressure are not affected by ν,

whereas the errors for the normalized displacement decrease as ν gets bigger.
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Figure 3.8. Dependence of the HDG solution on the Poisson’s ratio in
Barry and Mercer’s problem.
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Table 3.3
Data for the seven meshes used in the 3D experiments.

Mesh 1 2 3 4 5 6 7

Number of tetrahedra 6 48 384 3072 24576 196608 1572864

Number of faces 18 120 864 6528 50688 399360 3170304

3.3.4 Convergence tests in 3D

In this Section, we reproduce the convergence tests provided in Section 3.3.1 in a

three-dimensional setting. The main triangulation data are given in Table 3.3. We

test for three values of the polynomial degree k, k = 1, 2, 3. In each of the four

following tests, the formulation with ph|K ∈ P k+1(K), K ∈ Ωh, is used. The global

HDG system coming from the flux equilibrium conditions (3.119), (3.120) is solved

on 64 cores using an iterative method, the restarted Generalized Minimal Residual

method (GMRES) [87], preconditioned with the block Jacobi method (with one block

per process) [88].

Validation Test Case 1

We consider a stationary linear test case with δ = 0 in (3.44)–(3.48). We take

the domain Ω to be the unit cube [0, 1] × [0, 1] × [0, 1]. Boundary conditions are

described in Table 3.4. The coarsest triangulation contains 6 elements. Six nested

refinements of this partition are used. We use a constant permeability coefficient

κ = κref = 1 m2 Pa−1 s−1 and choose the data so that the exact solution is

u = Uref


sin(πx) cos(πy) sin(πz)

cos(πx) sin(πy) cos(πz)

x2yz + xy2z + xyz2

 , p = Pref sin(πx) sin(πy) sin(πz),
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with Uref = 1 m, Pref = 1 Pa. We use the formulation with ph|K ∈ P k+1(K), for

K ∈ Ωh, and test for k = 1, 2 on the seven meshes in Table 3.3. Polynomial basis

functions of degree k = 3 are tested on the first six meshes.

Tables C.20–C.22 confirm the excellent performance of the HDG method we have

in the 2D case: the errors achieve optimal convergence rates. As observed before,

note that due to the disparity of polynomial degrees for the stress and displacement,

optimal convergence of this method yields the same quality of the solution as a post-

processed method based on a superconvergent scheme. Unfortunately, most variables

suffer from a huge drop or even an inversion in convergence rate on the finest mesh,

the average fluid pressure p̄h being affected the worst (see Tables C.20–C.21 for the

cases k = 1 and k = 2). This issue is not due to the HDG method itself, but rather to

the loss of performance of the global solver when the condition number of the global

matrix becomes very large as the spatial step size shrinks. Preconditioning strategies

other than the block Jacobi approach used here should definitely be investigated.

Validation Test Case 2

Here, we consider a stationary nonlinear test case. We use the same domain and

boundary conditions as in test case 1. The finest mesh in Table 3.3 is not included

in this analysis. Similarly to the validation test case 2 in 2D, the porosity n and the

permeability coefficient κ are allowed to vary according to

n = ∇ · u + 0.5, with n ∈ [nmin, nmax],

and the Carman-Kozeny law

κ(n) = κref
n3

(1− n)2
.
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Table 3.5
Number of fixed point iterations in the nonlinear test case 2 in 3D.

Mesh k = 1 k = 2 k = 3

1 7 6 6

2 6 6 6

3 6 6 6

4 6 6 6

5 6 6 6

6 6 9 6

We take nmin = 0.1, nmax = 0.9, κref = 1 m2 Pa−1 s−1. Data are taken so that the exact

solution is

u = Uref


sin(πx) cos(πy) sin(πz)

cos(πx) sin(πy) cos(πz)

x2yz + xy2z + xyz2

 , p = Pref sin(πx) sin(πy) sin(πz),

with Uref = 0.01 m, Pref = 0.01 Pa. For the fixed point iterations, we use the same

stopping criterion as in 2D (3.128). Interestingly, the fixed point algorithm converges

very quickly and with a number of iterations independent of the mesh size (see Ta-

ble 3.5).

Tables C.23–C.25 shows that, similarly to the linear test case, the relative errors

are achieving optimal convergence, suggesting that the fixed point algorithm is per-

forming well. On the finest mesh considered in this analysis (mesh number 6), both

euh,rel and eph,rel show huge losses of convergence rate, eph,rel being affected the worst.

Validation Test Case 3

Here we consider a time dependent linear test case. We consider problem (3.44)–

(3.53) with δ = 1 defined on the unit cube Ω = [0, 1] × [0, 1] × [0, 1] and the time
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interval [0, T ], with T = 1 s. with the same boundary conditions as in Table 3.4. A

constant permeability coefficient κ = κref = 1 m2 Pa−1 s−1 is used and data are taken

so that the exact solution is

u = Uref


(cos(πx) + yz) sin(2πt)

(cos(πy) + xz) sin(2πt)

(cos(πz) + xy) sin(2πt)

 , p = Pref sin(π(x+ y + z)) sin(2πt),

with Uref = 1 m, Pref = 1 Pa. We take the five coarsest meshes in Table 3.3 and

temporal step sizes ∆t = T/r, with r ∈ {5, 10, 20, 40, 80}. Tables C.26–C.28 show

the absolute errors. For most combinations of meshes and polynomial degree k, the

approximate variables converge to the corresponding exact ones with linear rate with

respect to the mesh diameter h, due to the choice of the Backward Euler method

as time-advancing scheme, thereby spoiling the convergence property of the HDG

method achieved in the stationary test case 1. Interestingly, for k = 1, the approx-

imation errors literally explode on the finest mesh (see Table C.26), whereas higher

order bases have a stabilization effect on the errors (see Tables C.27–C.28). The

degradation of the convergence rates of eσh, e
u
h, e

u
h, e

û
h on the finest mesh, for k = 3,

should be further investigated to understand whether it is due to our particular choice

of mesh and time step, or to something else. This behavior resembles the effect of

reducing the time step in 2D as it is described in Section 3.3.2 about sensitivity

analysis.

Validation Test Case 4

Here we consider a time dependent nonlinear test case. Let us consider prob-

lem (3.44)–(3.53) with δ = 1, defined in the same spatial-time domain as in test case

3, with the same boundary conditions as in Table 3.4. The porosity n and the per-
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meability coefficient κ are allowed to vary as in test case 2. Data are taken so that

the exact solution is

u = Uref


cos(πx) sin(2πt)

cos(πy) sin(2πt)

cos(πz) sin(2πt)

 , p = Pref sin(πx) sin(πy) sin(πz) sin(2πt),

with Uref = 0.01 m and Pref = 0.01 Pa. We take the five coarsest meshes in Table 3.3

and temporal step sizes ∆t = T/r, with r ∈ {5, 10, 20, 40, 80}. The polynomial degree

k is set to 1, the tolerance ε of the stopping criterion (3.128) and the maximum number

of fixed point iterations per time step are set to 1× 10−9 and 40, respectively. The

performance of the fixed point algorithm is summarized in Table 3.6. Observe that

no convergence is achieved on the finest mesh for most time iterations, neither if

the maximum number of fixed point iterations is increased to 500 (experiment not

shown). Table C.29 shows the absolute errors eσh, e
u
h, e

v
h, e

p
h, e

u
h, e

p
h, e

û
h and ep̂h. Even if

convergence rates are far from reaching their asymptotic values, it is clear that the

optimal convergence of the HDG method is spoiled by the choice of the Backward

Euler method as time-advancing technique. Moreover, the errors blow up on the finest

mesh, most probably due to the lack of convergence of the fixed point algorithm. As

discussed in previous test cases, this implies that preconditioning and/or alternative

nonlinear algorithms might be useful in these situations.

3.3.5 The Sponge’s Problem

In order to further motivate the use of the HDG method in poroelastic problems,

we test it using an exact three dimensional solution proposed by Kaasschieter and

Frijns [89]. This solution has the interesting property of having a clear physical

meaning. Consider a cubic sponge with edges of length 2L being saturated with

water. The origin of the frame of reference is placed in the center of the sponge and

the coordinate axes parallel to its edges. It is assumed that the the solid skeleton

behaves like a homogeneous isotropic linear elastic material and that the flow of water
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Table 3.6
Performance of the fixed point algorithm on test case 4 in 3D for k = 1
on the five coarsest meshes shown in Table 3.3.

Mesh Time iterations Converging time iterations

1 5 3

2 10 10

3 20 20

4 40 40

5 80 31
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through the pores can be described by Darcy’s law. Therefore, the set of governing

equations is obtained by taking δ = 0 in (3.44)–(3.48). These equations are completed

with suitable initial and boundary conditions:

• Initial conditions : at time t = 0 all unknowns are equal to zero, except for the

fluid pressure p that can be taken equal to some arbitrary constant value. In

particular, we have

(∇ · u)(x, 0) = 0. (3.136)

• Boundary conditions : at t = 0+, an instantaneous compression is applied and

water is squeezed out of the pores. After this instantaneous compression, the

faces of the sponge are fixed in their compressed position and sealed. Kaass-

chieter and Frijns [89] show how this experiment can be described analytically.

Denoting by n, τ 1 and τ 2 the outward unit normal vector and the two tangen-

tial unit vectors to each face F of the cubic sponge, we obtain the following set

of boundary conditions on F :

u · n = u0, (3.137)

τ · σESn = 0, (3.138)

v · n = 0, (3.139)

where u0 < 0 is a given constant value and σES is the effective stress tensor of

the solid phase. Equation (3.138) means that perfect slip applies, whereas, by

equation (3.139), an impervious boundary is assumed.
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As shown by Kaasschieter and Frijns [89], the solution to this poroelastic problem is

given by:

u(x, t) =
u0

L
x + L

∞∑
n=1

γn sin
(nπx

L

)
exp

(
−n

2π2t

C

)
, (3.140)

σES (x, t) = (2µe + 3λe)
u0

L
I + 2µe

∞∑
n=1

γnnπ exp

(
−n

2π2t

C

)
· diag

(
cos
(nπx1

L

)
, cos

(nπx2

L

)
, cos

(nπx3

L

))
+ λe

∞∑
n=1

γnnπ
3∑
I=1

cos
(nπxI

L

)
exp

(
−n

2π2t

C

)
I, (3.141)

p(x, t) = (2µe + λe)
∞∑
n=1

γnnπ

3∑
I=1

cos
(nπxI

L

)
exp

(
−n

2π2t

C

)
, (3.142)

v(x, t) = L
∞∑
n=1

γn
n2π2

C
sin
(nπx

L

)
exp

(
−n

2π2t

C

)
, (3.143)

where:

• γn =
2u0

nπL
(−1)n;

• C =
L2

(2µe + λe)κ
is a characteristic time; µe and λe are the smeared elastic

parameters, and κ is a constant permeability coefficient;

• diag(a, b, c) denotes the 3×3 diagonal matrix with the entries a, b, and c on the

main diagonal

diag(a, b, c) =


a 0 0

0 b 0

0 0 c

 .
Since the analytic solution (3.140)–(3.143) involves series, the results in this section

are intended only to provide an indication of the agreement between the analytical and

numerical solutions. According to equations (3.136), (3.137) and (3.140), the normal

component of the solid displacement u · n on each face of the sponge is not time-

differentiable at t = 0 s. In order to avoid this discontinuity, numerical simulations

are performed in the time interval [0.005C,C], where C is the characteristic time
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introduced before. By plotting the analytic solution in this time interval, we observe

that it can be very well approximated taking the first 100 terms in the series (3.140)–

(3.143). We choose the following parameters

L = 1 m, u0 = −0.2 m, µe = 1× 107 Pa, λe = 2× 108 Pa, κ = 1 m2 Pa−1 s−1.

The HDG formulation with k = 1 and ph|K ∈ P k+1(K) is applied to the dimensionless

form of the poro-elastic system (see Appendix B), where characteristic parameters

are chosen as follows:

xc = L, uc = |u0|, pc = λe + 2µe, (3.144)

σc = 2µe, vc =
κpc
xc
, tc = C. (3.145)

Let t∗ = t/tC be the dimensionless time. A normalized time step of ∆t∗ = 0.995/100

and a mesh with 24576 tetrahedra is used for this test case. Figure 3.9 shows the fluid

pressure and Darcy velocity computed by the HDG method at the first and last time

steps. After the sponge is reduced to a smaller cube by an instantaneous compression,

the water in the pores redistribute to a stationary situation characterized by v = 0

and p = 0.

Figure 3.10 illustrates the effect of element size on the errors of some normalized

variables: total stress, solid displacement, Darcy velocity, and fluid pressure. A

smaller step size leads to a reduction in error at most times.



153

(a) Fluid pressure at t∗ = 0.005 + ∆t∗. (b) Fluid pressure at t∗ = 1.

(c) Darcy velocity at t∗ = 0.005 + ∆t∗. (d) Darcy velocity at t∗ = 1.

Figure 3.9. The sponge problem: dimensionless fluid pressure and dimen-
sionless Darcy velocity computed by the HDG method at the first and last
time steps, i.e. t∗ = 0.005+∆t∗ and t∗ = 1, respectively. In Figures 3.9(c)
and 3.9(d), the Darcy velocity is characterized with streamlines, colored
with the magnitude of the vector field. The streamlines are augmented
with little pointers. The pointers face in the direction of the velocity, and
their size is proportional to the magnitude of the velocity.
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Figure 3.10. Effect of element size on the error of the HDG solution: (top-
left) total stress; (top-right) solid displacement; (bottom-left) Darcy ve-
locity; (bottom-right) fluid pressure. The element sizes h =

√
3/2,
√

3/4,
and

√
3/8 correspond to a mesh with 384, 3072, and 24576 tetrahedra,

respectively.
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4. MATHEMATICAL MODELING OF THE OPTIC

NERVE HEAD PERFUSION

Glaucoma is an optic neuropathy characterized by progressive death of RGCs and

irreversible visual loss. Glaucoma is the second leading cause of blindness world-

wide [2], and yet its etiology and treatment remain unclear. The main modifiable

risk factor in glaucoma patients is elevated IOP [3–7]; however, a high percentage of

individuals with elevated IOP (a condition called ocular hypertension) never develop

glaucoma [8], and many glaucoma patients continue to experience disease progression

despite lowering IOP to target levels or have no history of elevated IOP - a condition

called normal tension glaucoma [9].

Several studies suggest correlations between impaired ocular blood flow and glau-

coma [90–96]. In healthy conditions, vascular beds exhibit an intrinsic ability to

maintain relatively constant blood flow over a large range of arterial pressures. This

autoregulatory behavior is recognized in most vascular beds - including the eye [97,98],

brain [99], heart [100], kidney [101], skeletal muscle [102], and gut [103] - but the effec-

tiveness of autoregulation differs among these vascular beds according to importance

of function. For example, the brain and kidney receive stable flow over a range of

arterial pressure [99, 104] whereas autoregulation in other beds such as the gut is

less effective. In the eye, the retinal and ONH vascular beds are known to exhibit

autoregulation, though to differing extents [1]. Details and experimental measures

of autoregulation are better established in the retina than in the ONH. In experi-

ments assessing hemodynamic responses to light stimulation [105–108], blood flow in

the retina and ONH seems to be highly correlated to increased neural activity. This

phenomenon is called neurovascular coupling [109].
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In glaucoma the location of damage to nerve cells is hypothesized to be predomi-

nantly in the ONH [11], and thus a clearer understanding of the factors affecting the

blood supply to the ONH is necessary to determine how this may be compromised

and potentially contribute to the pathophysiology of glaucoma. In this chapter, we

first describe the complex anatomy and vascular supply of the ONH, laying down the

anatomical foundations of our modeling efforts to describe the perfusion of the lamina

cribrosa in the ONH. In the second part of the chapter, we use modeling and numeri-

cal approaches described in Chapters 2 and 3 to theoretically investigate the influence

of viscoelasticity on the mechanics and hemodynamics of the lamina cribrosa.

4.1 Anatomy and Vascular Supply of the ONH

4.1.1 Anatomy

The ONH is where RGC axons leave the eye through the scleral portion of the neu-

ral canal, forming bundles separated by astrocytes, a particular type of glial cell [110].

For the purpose of description, the anatomy and vascular supply of the ONH is best

divided into 4 regions, from anterior to posterior segments (see Figure 4.1).

The most anterior part of the ONH is the superficial nerve fiber layer (SNFL).

Some vascular details of this layer can be resolved on ophthalmoscopy examination or

angiography. A part of the appearance of the SNFL comes from light back-scattered

from deeper tissue [111]. Immediately behind the SNFL is the prelaminar region,

which lies adjacent to the peripapillary choroid. Posterior to the prelaminar region,

the laminar region is composed of the lamina cribrosa, a structure consisting of fen-

estrated connective tissue beams through which the RGC axons pass on their path

from the retina to the optic nerve. Finally, the retrolaminar region lies posterior

to the lamina cribrosa. It is marked by the beginning of axonal myelination and is

surrounded by meninges.

The lamina cribrosa bears the translaminar pressure difference: the difference be-

tween the IOP, which is the pressure in the intraocular space, and the retrolaminar



157

zoom Central 
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Figure 4.1. Anatomy and vascular supply of the optic nerve head (ONH).
The ONH includes the superficial nerve fiber layer, the prelaminar region,
the laminar region, and the retrolaminar region [1].
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tissue pressure (RLTp), which is the pressure in the retrolaminar region. The RLTp is

usually lower than the IOP and is strongly correlated to the cerebrospinal fluid pres-

sure and the pressure in the subarachnoid space of the optic nerve when cerebrospinal

fluid pressure > 2 mmHg (1 mmHg ≈ 133.3224 Pa) [112, 113]. A hoop stress is also

transferred to the lamina by the sclera [110]. There is evidence that an annulus of

collagen fibrils exists around the scleral canal in the peripapillary sclera. These fibrils

appear to be oriented mostly radially in the periphery of the lamina [114–116]. The

peripapillary annulus significantly reduces the IOP-related expansion of the scleral

canal and shields the lamina from high-tensile stress. The radially oriented fibrils

in the lamina periphery reinforce the lamina against transverse shear stresses and

reduce laminar bending deformations [114]. The lamina cribrosa remodels into a

thicker, more posterior structure, which incorporates more connective tissue after

chronic IOP elevation [75,115].

In the prelaminar, laminar, and retrolaminar regions, RGC axons are surrounded

by astrocytes, which are believed to maintain the homeostasis of the extracellular

environment. In particular, astrocytes remove potassium and glutamate from the ex-

tracellular space, provide cellular support to the axons, and synthesize extracellular

matrix macromolecules [110, 117]. In the prelaminar and retrolaminar region, it is

presumed that nutrient delivery to the axons occurs both via diffusion and advec-

tion [110]. In the laminar region, the extracellular matrix of laminar beams lies in

between capillaries and astrocytes. Consequently, nutrients likely diffuse from lami-

nar capillaries, across the endothelial and pericyte basement membranes, through the

extracellular matrix of the laminar beams, across the basement membranes of astro-

cytes. From there, they may go into the astrocytes or percolate in the extracellular

space between them, ultimately reaching the adjacent axons.
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Superficial 
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Central retinal 
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Epipapillary 
vessels

Figure 4.2. Superficial nerve fiber layer (SNFL). The SNFL receives oxy-
genated blood primarily from retinal arterioles. These small vessels, called
epipapillary vessels, originate in the peripapillary SNFL and run toward
the center of the ONH [1].

4.1.2 Vascular Supply

The vascular system nourishing the ONH is quite complex [118, 119] and shows

high inter-individual and intra-individual variability [120–122]. A critical anatomic

distinction between the different portions of the ONH is that blood flow to the ONH

is primarily supplied by the posterior ciliary arteries (PCAs), whereas the SNFL

receives oxygenated blood primarily from retinal arterioles [123]. These small vessels,

called epillary vessels, originate in the peripapillary SNFL and run toward the center

of the ONH (see Figure 4.2).

In approximately 30% of all people, a cilioretinal artery may be present and supply

the temporal SNFL. This artery, if present, may be a direct branch of the ciliary or



160

Central retinal 
artery and vena
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Choroid

Branches of the short PCAs 
and of the circle of Zinn-Haller

Figure 4.3. Prelaminar region. The prelaminar region is mainly supplied
by direct branches of the short posterior ciliary arteries (PCAs) and by
branches of the circle of Zinn-Haller. The circle of Zinn-Haller, if present,
is a complete or incomplete ring of arterioles within the perineural sclera
formed by the confluence of branches of the short PCAs [1].

choroidal arteries, emerging from the temporal SNFL of the ONH and extending

laterally along the papillomacular bundle. The retinal arteries and the cilioretinal

arteries lack anastomotic blood exchange in the case of an artery occlusion, leading

to an ischemic infarct in the area supplied by the artery or its branches [124].

The prelaminar region is mainly supplied by direct branches of the short PCAs

and by branches from the circle of Zinn-Haller (see Figure 4.3).

The circle of Zinn-Haller, if present, is a complete or incomplete ring of arteri-

oles within the perineural sclera formed by the confluence of branches of the short

PCAs. The arterial circle branches into the prelaminar region, lamina cribrosa, and

retrolaminar pial system and supplies the peripapillary choroid. This vascular ring
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Figure 4.4. Laminar region. Blood flow to the laminar region is provided
by centripetal branches of the short PCAs. The centripetal branches arise
either directly from the short PCAs or from the circle of Zinn-Haller. The
lamina cribrosa is shown as a 3D network, as suggested in recent in vivo
imaging studies based on optical coherence tomography (OCT) [127–130],
and in finite element modeling studies [115,131,132] of the lamina cribrosa
microarchitecture [1].

can be recognized in vivo using indocynanine green videoangiography in highly my-

opic eyes [125]. These vessels exhibit an anastomotic blood exchange [126], but it is

unclear whether this exchange can counterbalance an insufficiency of a single PCA.

There is also evidence of direct arterial supply to the prelaminar layer arising from

the choroidal vasculature [119], even though the extent to which it contributes to the

perfusion of the region is still a matter of debate [118]. Blood flow to the laminar

region is provided by centripetal branches of the short PCAs (see Figure 4.4).

Such a 3D architecture differs from, without effectively denying, what is proposed

in some histology studies, where the lamina is viewed as a set of stacked perforated
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sheets containing vessels, with pores in each sheet aligned to create tunnel for bundles

of nerve fibers to exit from the eye [133,134]. Unlike in vivo imaging, histology imaging

suffers from distortions because of the loss of pressure (IOP, intracranial pressure, and

blood pressure), distortions during tissue preparation, and tissue degradation after

death. Nevertheless, care is needed when comparing optical coherence tomography

(OCT) results to histology because of differences in optical resolution and sampling

density. OCT has significantly worse lateral resolution when compared with electron

microscopy or other forms of microscopy used to study the lamina cribrosa, and it

likely overemphasizes beams, compared to histology [130]. Hence, many questions

still need to be answered to characterize the 3D geometry of the lamina cribrosa

accurately [135].

The centripetal branches arise either directly from the short PCAs or from the

circle of Zinn-Haller. These precapillary branches perforate the outer boundary of

the lamina and then branch into an intraseptal capillary network, which runs inside

the laminar beams. It is still unclear whether there are anastomoses between the

capillary or precapillary bed of the laminar region, the prelaminar region, and the

SNFL region. If these anastomoses exist, it is unclear whether they play a role when a

sudden (or slowly progressive) vascular occlusion on the precapillary or intracapillary

level happens [124]. The retrolaminar region is supplied by the central retinal artery

(CRA) and the pial system (see Figure 4.5). The pial system is an anastomosing

network of capillaries located immediately within the pia mater. The pial system

originates from the circle of Zinn-Haller and may also be fed directly by the short

PCAs. The branches of the pial system extend centripetally to nourish the axons

of the optic nerve. The CRA may supply several small intraneural branches in the

retrolaminar region. Some of these branches may also anastomose with the pial

system.

In the ONH the capillaries form a continuous network throughout its entire length,

being continuous posteriorly with those in the rest of the optic nerve and anteriorly

with the adjacent retinal capillaries [133,136]. It is unclear whether this implies that
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Central retinal 
artery and vena

Pial system

Posterior ciliary arteries

Sclera

Figure 4.5. Retrolaminar region. The retrolaminar region is supplied by
the central retinal artery (CRA) and the pial system. The pial system
is an anastomosing network of capillaries located immediately within the
pia mater [1].
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blood flow regulation is similar [136] or not [119] in both vascular regions, independent

of the arterial source.

Critical questions remain unanswered. The CRA within the intraorbital optic

nerve is innervated, but innervation stops (at least) anterior to the lamina cribrosa,

and it does not follow the branches of the CRA inside the eye [137]. Neurotransmitter

receptors, however, are present on the surface of retinal vessels [138,139]. In addition,

normal retinal vessels lack fenestrations [124]. Hence, vasoactive hormones cannot

leak from capillaries and reach the muscular coat of nearby arterioles where they can

influence blood flow. The branches of the PCA that feed the intrascleral portion of

the optic nerve may or may not be innervated and/or fenestrated. Such knowledge is

crucial to understand how blood flow is regulated in the ONH.

Venous drainage of the ONH occurs primarily through the central retinal vein

(CRV). In the SNFL, blood is drained directly into the retinal veins, which then

join to form the CRV. In the prelaminar, laminar, and retrolaminar regions, venous

drainage occurs via the CRV or axial tributaries to the CRV.

4.2 Techniques for In Vivo Studies of ONH Hemodynamics

As described in Section 4.1, the complex vasculature of the ONH is comprised of

small diameter vessels arranged in an intricate 3D geometry. At present, no tech-

nology allows a noninvasive measurement of volumetric blood flow in absolute units;

however, some hemodynamic measurement techniques provide surrogates for ONH

blood flow in arbitrary units. Four of these measurement techniques for in vivo stud-

ies of ONH hemodynamics are discussed and compared in the following sections.

Table 4.1 summarizes their main features, advantages, and limitations.

4.2.1 Laser Doppler Flowmetry

Laser Doppler flowmetry (LDF) is a noninvasive method of assessing blood flow

and perfusion in the ONH. LDF is based on the Doppler effect. It measures the shift
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in frequency that occurs when light is scattered by the red blood cells moving through

capillaries. LDF uses a fundus camera and a computer system to detect these changes

in frequency. This information is used to calculate three hemodynamic parameters:

velocity, blood volume, and blood flow within the ONH. Velocity is defined as the

average speed of red blood cells traveling through capillaries and is proportional to

the mean change in Doppler shift frequency. Blood volume is defined as the number

of red blood cells in the given sample. Blood flow or flux is defined as the flux of

red blood cells through a specific part of a capillary at a given time. The main

advantage of LDF is its ability to measure three different hemodynamic parameters;

however, LDF only provides measurements of blood perfusion in arbitrary (and not

absolute) units, which limits its usefulness in a clinical setting [140]. Moreover, LDF

measurements depend significantly on the depth of the sampled tissue. This depth

determines the relative contribution to the Doppler signal of the superficial layers,

the layers supplied by the CRA, and the deeper layers supplied by the short PCAs.

Blood flow autoregulation may or may not differ within these vascular beds. In a

study on monkey eyes, LDF appeared to be more heavily influenced by blood flow

changes in the more superficial layers of the ONH than in deeper ones, but to what

extent remains uncertain [141].

4.2.2 OCT Angiography

OCT angiography, a combination of high speed OCT and a new 3D angiography

system called split-spectrum amplitude-decorrelation angiography, is a noninvasive

method used to estimate blood flow in the ONH, especially within the microcircula-

tion [142]. It computes the flow index, which is a surrogate for blood flow in arbitrary

units.

OCT is a technique that takes cross-sectional images of a biologic tissue using a

low-coherence interferometer. These cross-section images are captured using a low-

coherence beam directed at the target tissue. The light signals reflect off of the
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tissue back to the interferometer, which stacks a series of longitudinal tomographic

b-scans to derive a three dimensional image. Doppler OCT, a commonly used sub-

type of OCT, can detect the Doppler frequency shift of the reflected light, providing

additional information on blood flow. The split-spectrum amplitude-decorrelation

angiography algorithm allows three dimensional angiography to be done four times

faster than previous algorithms and also improves blood flow detection, creates better

visualization of the microvasculature, and removes motion errors automatically [143].

OCT angiography has many advantages over Doppler OCT. Doppler OCT can

only quantify blood flow in large superficial vessels of the ONH and cannot visualize

the microvasculature [143]. OCT angiography minimizes the pulsatory bulk motion

noise along the axial direction and optimizes flow detection along the transverse direc-

tion [142]. As with all measuring techniques, OCT angiography has limitations. One

of the main disadvantages is that blood flow from superficial layers can be projected to

deeper layers, thereby incorrectly indicating that the imaged blood flow is a few layers

deeper than its location in vivo [142]. Also, split-spectrum amplitude-decorrelation

angiography cannot distinguish between perfusion defects caused by damaged tissue

or ischemia [144], and ONH blood flow estimates are provided in arbitrary units. De-

spite these limitations, OCT angiography is a very useful tool to measure blood flow

in the ONH.

4.2.3 Color Doppler Imaging

Color Doppler imaging (CDI), also known as color Doppler ultrasound, is a nonin-

vasive procedure that allows the user to visualize a color-coded image of blood veloc-

ity against a gray-scale image of the surrounding structures. This technique uses the

principle of Doppler frequency shift to measure blood flow velocity in absolute units.

Various transducers are used to measure the Doppler frequency shift, which produces

color pixels [145]. The color red represents blood flowing toward the ultrasound probe,

whereas blue represents blood flowing away from the probe [146]. CDI is most com-
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monly used to measure the peak systolic velocity (PSV) and end diastolic velocity

(EDV), which are then used to measure the resistive index (RI = (PSV−EDV)/PSV)

and pulsatility index (PI = (PSV−EDV)/Tmax, where Tmax is the time averaged peak

velocity). These values estimate resistance to blood flow caused by the microvascula-

ture distal to the site of measurement. The RI is particularly suitable for investigating

the low resistance retrobulbar vasculature [145]. The major advantages of CDI are

that it is noninvasive, vessel selective, reproducible, and does not require pupil dila-

tion, clear media, or fixation. CDI is limited in its ability to measure only velocity

(not flow) and calculate vascular resistance and requires an experienced operator to

obtain accurate results [147]. CDI has particular difficulty in imaging and interpreting

small vessels, and the PCAs are close to the size limit that can be studied.

4.2.4 Laser Speckle Flowgraphy

Laser speckle flowgraphy (LSFG) is a noninvasive method of measuring blood

flow and velocity in the ONH. LSFG measures blood flow by using the laser speckle

phenomenon, which is an interference event that occurs when laser light scatters off

of a diffusing tissue. This creates a speckle pattern that varies in proportion to the

velocity of red blood cells and thus represents capillary blood flow. The faster the

velocity of the red blood cells, the greater the rate of pattern variation. Although

the velocity cannot be measured directly, the normalized blur and square blur ratio

values can be calculated as quantitative indicators of blood velocity. Normalized

blur values are well correlated with blood flow measurements simultaneously taken

with the hydrogen gas clearance method, colored microspheres technique, and other

methods in the ONH, iris, choroid, and retina [148–155]. The distribution of blood

flow can be displayed in a two dimensional color-coded map, which reflects the time

variation of the speckles at each pixel point [156]. This allows for visualization of

blood flow in real time.
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LSFG uses a diode laser, image sensor, infrared charge-coupled device camera,

and digital charge-coupled device camera. The diode laser and image sensor are used

for laser speckle measurements. The laser is focused on the image sensor and creates

a speckle pattern, which is scanned at 512 scans/second [156]. The digital charge-

coupled device camera measures vessel diameter and takes pictures of the fundus.

The advantages of LSFG are that its results are adequately reproducible and that

the change in velocity at the same site of the same eye can be followed over time. A

major disadvantage of LSFG is that the meaning of its measurement is not clearly

understood and does not allow for intereye or interindividual comparisons [147].

4.3 Mathematical Modeling of ONH Mechanics and Hemodynamics

Despite significant recent advances in the understanding of ONH blood flow and

the techniques to study it, important questions still remain unanswered concerning

the identification of the geometrical, material and fluid dynamical parameters that

have the strongest influence on the blood supply to the ONH and how these may be

compromised and potentially contribute to the pathophysiology of glaucoma.

The quest for answers to these questions is hindered by limitations in both the

technological and scientific tools currently available to the community. Major limita-

tions in the current technologies for ONH measurements include the fact that LDF,

LSFG, and OCT angiography only provide ONH blood flow estimates in arbitrary

units and intereye comparison is problematic. LDF appears to be mainly influenced

by blood flow changes in the more superficial layers of the ONH than deeper ones,

but to what extent remains uncertain. OCT angiography provides measurements for

the ONH deeper layers which may contain spurious projections from the superficial

layers. In addition to the difficulties related to structural and functional imaging

of the ONH, there are scientific challenges in designing experimental and clinical

studies capable of disentangling the complex interplay between chemical, mechanical,

and hemodynamic factors that contribute to the pathogenesis of optic neuropathies.
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Given these challenges, mathematical modeling provides a unique tool that can play

a significant role in advancing the understanding of ONH physiology in health and

disease. A mathematical model can serve as a virtual laboratory where the influence

of each factor acting on the system can be singled out and investigated, from a the-

oretical viewpoint, in isolation or in relation with other factors. In the following, we

review the main contributions to the modeling of the biomechanics and perfusion in

the ONH. Finally, we show how the models and numerical approaches discussed in

Chapters 2 and 3 can be used to investigate the mechanics and hemodynamics of the

lamina cribrosa in the ONH. In particular, we will investigate how changes in lamina

viscoelasticity may compromise lamina perfusion in response to sudden variations of

IOP, possibly leading to disc hemorrhages.

4.3.1 Mechanics of the ONH

Alterations in the ONH biomechanical response to changes in IOP have been

identified as a major factor in the pathogenesis of glaucoma [110,157]. Particular at-

tention has been devoted to the mathematical description of the mechanical stresses

and strains arising within the lamina cribrosa, which is thought to be a primary site

of axonal injury in glaucoma [11]. A linear model of elastic mechanics theory on

the bending of thin circular plate was developed for the lamina cribrosa [158]. Such

an idealization allowed quantitative estimates to be obtained of the extent to which

the degree of fixity offered by the connection with the sclera, the pretension caused

by scleral expansion, and the ratio between flexural and in-plane stiffness influence

the mechanical response of the lamina cribrosa to IOP. An idealized, analytical mi-

crostructural model of the ONH load bearing tissues based on an octagonal cellular

solid description of the porosity within the lamina identified the material and geomet-

rical properties of the sclera as major determinants in the strain distributions within

the lamina [159]. The analysis also showed that much larger strains are developed

perpendicular to the major axis of an elliptical canal rather than in a circular canal.
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Eye-specific finite element models based on experimentally reconstructed geometries

have been used recently [115, 160, 161]. These models are used to study in depth

influences of geometry and material properties of the ONH to changes in IOP and to

investigate growth and remodeling mechanisms in glaucoma, including adaptation of

tissue anisotropy, tissue thickening/thinning, tissue elongation/shortening, and tissue

migration. Macro- and micro-scale strains are proposed as potential control mecha-

nisms governing mechanical homeostasis [75, 114, 162–164]. Further development of

these sophisticated finite element models may benefit from the recent advances in

OCT imaging aimed at providing a more accurate characterization of the architec-

tural microstructure within the lamina cribrosa [135].

4.3.2 Hemodynamics of the ONH

Perfusion of the ONH results from the complex interplay between blood pressure,

which provides the driving force for the blood through the vasculature, mechanical

stress, which acts as external forces on the vessels, and vascular regulation, which

mediates vessel dilation/constriction to compensate for changes in the system. Using

idealized networks to describe the vasculature nourishing the lamina cribrosa in the

ONH (see Figure 4.4), Girard et al. found that the lamina hemodynamics and oxygen

concentration is influenced by the shape of the lamina and the blood pressure in the

circle of Zinn-Haller and in the CRV [165].

To the best of our knowledge, only the model by Causin et al. [74] combines

mechanics and hemodynamics in the lamina cribrosa. In this model, which is the first

novel contribution of this thesis, the lamina cribrosa is treated as a two dimensional

poroelastic material, where blood vessels are viewed as isotropically distributed pores

in a solid matrix comprising collagen, elastin, extracellular matrix and neural tissue

(see Figure 4.6). The presence of blood vessels in the tissue defines a vascular porosity

n that changes with the local state of stress and strain. The vascular permeability,
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which defines the ability of the porous material to allow fluid passing through it, is

described by an isotropic tensor K that depends on n

K = K(n) = κ(n)I. (4.1)

Using Poiseuille’s law to model the blood flow within a capillary, we derive the fol-

lowing constitutive relationship for κ

κ = κ(n) =
β

8µb
n2, (4.2)

where β is a constant depending on the geometry of the lamina and µb is the dynamic

viscosity of blood. Equation (4.2) can be obtained as follows. In view of Poiseuille’s

law, the velocity v of blood moving through a cylindrical capillary of radius Rc and

length Lc is

v =
1

4µb
(R2

c − r2)
∆p

Lc
, (4.3)

where r is the distance from the center of the capillary and ∆p is the blood pressure

drop across the capillary. From (4.3), the average velocity on the capillary cross-

section is given by

vavg =
R2
c

8µb

∆p

Lc
. (4.4)

According to Darcy’s law (2.189), we have

nvavg = κ
∆p

Lc
. (4.5)

Comparing (4.4) and (4.5), we obtain

κ = κ(n) =
nR2

c

8µb
. (4.6)

The radius Rc of a laminar capillary and the blood volume fraction n are related. Let

VolB be the total volume occupied by blood in laminar capillaries, Nc be the total

number of capillaries, volB be the volume of a single laminar capillary, and VolLC be

the total volume of the lamina excluding the opening for the central retinal vessels.

Thus, by definition of n, we have

n =
VolB
VolLC

=
NcvolB
VolLC

=
NcπR

2
cLc

VolLC

,
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from which it follows that

R2
c =

VolLC

NcπLc
n = βn, (4.7)

where

β =
VolLC

NcπLc
,

is assumed to be a constant. By combining (4.6) and (4.7), equation (4.2) is obtained.

Concerning the solid matrix, we model it as a nonlinear isotropic elastic material.

Blood flow is driven by the difference between the arterial pressure in the short PCAs

(Pa) and the venous pressure in the CRV (Pv). The lamina cribrosa deforms under the

combined action of IOP, RLTp and scleral tension. This exploratory two dimensional

analysis suggested that the degree of fixity at the conjunction with the sclera has a

strong influence on the distributions of stresses and strains, as suggested by other

studies [158, 159], but also on the blood flow within the lamina. In particular, the

inner surface of the lamina was found to be more susceptible to experiencing reduced

blood supply following IOP elevation. Despite the many simplifying assumptions

adopted in the model, most importantly the choice of a two dimensional geometry,

the satisfactory qualitative agreement between experimental data and numerical sim-

ulations encouraged us to further investigate the use of poroelastic models to describe

the complex mechanisms governing ONH perfusion.

4.4 Mathematical Modeling of Tissue Viscoelasticity and its Influence on

the ONH Hemodynamics

Studies have suggested that the development and progression of glaucoma are

associated with changes in the viscoelastic properties of collagen fibers embedded into

the laminar tissue [166, 167]. We hypothesize that changes in lamina viscoelasticity

may compromise lamina perfusion in response to sudden variations of IOP, possibly

leading to disc hemorrhages. Isolating these factors experimentally is difficult, and

mathematical modeling provides an approach to address these limitations.
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nerve fibers

blood capillaries

IOP
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scleral

tension

lamina
cribrosa

Figure 4.6. Schematic representation of the mathematical model describ-
ing the lamina cribrosa in the ONH [74].
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4.4.1 Methods

Extending the approach in Causin et al. [74], the LC is modeled as a three dimen-

sional poro-viscoelastic material [39, 74], where blood vessels are viewed as isotrop-

ically distributed pores in a solid matrix comprising collagen, elastin, neural tissue

and extracellular matrix. The vascular porosity n, defined by the presence of blood

vessels in the tissue, changes with the local state of stress and strain. The vascular

permeability is assumed to be proportional to the square of n according to equa-

tions (4.1), (4.2); in this section, the solid matrix is assumed to behave as a linear

isotropic elastic material. Both blood and the solid matrix are assumed to be sepa-

rately incompressible. As discussed in Chapter 2, this does not imply that the overall

fluid-solid mixture is incompressible, as the pores are still allowed to change in size

and shape.

Let Ω ⊂ R3 be the spatial domain occupied by the lamina cribrosa and (tstart, tend)

be the time domain. The spatial domain used in the numerical experiments is sketched

in Figure 4.7 and its geometrical parameters listed in Table 4.2. As discussed in

Chapters 2 and 3, the lamina can be described by the following poro-viscoelastic

system in the space-time domain Q = Ω× (tstart, tend):

σ = 2µeε(u) + λe(∇ · u)I + δ(2µvε(u′) + λv(∇ · u′)I)− pI in Q, (4.8)

∇ · σ = 0 in Q, (4.9)

v = −κ(n)∇p in Q, (4.10)

(∇ · u)′ +∇ · v = 0 in Q, (4.11)

κ(n) =
β

8µb
n2 in Q, (4.12)

n = ∇ · u + n0 in Q. (4.13)

The above system is obtained from (3.44)–(3.52) by assuming that there are no vol-

umetric source terms either in the balance of linear momentum or in the balance of

mass, i.e. F = 0 in (3.45) and S = 0 in (3.47), respectively. Due to the differences

between classical continuum mechanics and porous media theory briefly addressed
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major axis

minor axis C
R

thickness

Γpre

Γsclera

Γvessels

Γsclera

Γretro

Figure 4.7. Schematic representation of the geometry of the lamina
cribrosa used in the numerical experiments: (top left and top right) geo-
metrical parameters; (bottom left and bottom right) boundary surfaces:
Γpre, prelaminar surface; Γretro, retrolaminar surface; Γsclera, interface with
the sclera; Γvessels, interface with the central retinal vessels. See Table 4.2
for parameter values.
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in Chapter 2, care is needed when estimating the partial elastic (µe, λe) and viscous

(µv, λv) parameters for porous materials, like the lamina cribrosa. These parameters

appear to be drained properties, i.e. properties that can be measured in tests where

the fluid pressure is held constant [20,42]. Since these parameters transfer the micro-

scopic behavior of the real solid phase to the macroscale, they should be expressed in

terms of quantities characterizing the real solid material and the empty porous solid,

as discussed in Chapter 2. Moreover, to our knowledge, there are only few stud-

ies addressing the viscoelastic material properties of the ONH [166, 167] and further

research is needed to characterized them. Thus, we estimated these parameters as

follows:

• Laminar first elastic parameter, µe = 1.2× 106 dyn cm−2: this parameter is

taken from the work of Woo et al. [84]. They characterized the material prop-

erties of human cornea and sclera by doing tests on enucleated human eyes, 1–3

days post mortem. Due to the loss of pressure caused by histology prepara-

tion [1], we assume that the experiments of Woo et al. have been performed in

a drained environment.

• Laminar second elastic parameter, λe = 7.8× 106 dyn cm−2: as pointed out at

the end of Section 2.4.4, unlike classical linear elasticity, the hypothesis of solid

incompressibility does not cause the partial compression modulus Ke, and thus

λe, to blow up. Hence, rather than estimating λe from µe by taking a Poisson’s

ratio very close to 0.5, we first estimate Ke with the upper bound introduced

by Coussy [20]

Ke = (1− n0)Ke
SR

4µe

4µe + 3n0Ke
SR

, (4.14)

where Ke
SR is the bulk modulus of the real macroscopic material. Then, we take

the limit of (4.14) for Ke
SR → ∞ in order to simulate solid incompressibility,

thereby obtaining

Ke =
4(1− n0)

3n0
µe,
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from which λe can be computed as follows

λe = Ke − 2

3
µe.

• Laminar first and second viscous parameters, µv and λv: as discussed in Chap-

ter 2, the Voigt model does not exhibit stress relaxation. Thus, its material

parameters can be characterized using either creep tests or its response to a

harmonic input. When subject to a harmonic input of frequency ω, the loss

angle γ of the Voigt model satisfies

tan γ(ω) =
η

E
, (4.15)

where η and E are the dashpot and spring coefficients, respectively [36]. Iden-

tifying E with the partial Young’s modulus Ee and using standard linear elas-

ticity, we get

E = Ee =
9Keµe

3Ke + µe
.

Equation (4.15) is then used to find η by fitting data from Palko et al. [167],

as shown in Figure 4.8. Despite the poor fit shown in Figure 4.8, considering

the theoretical analysis discussed in Chapter 3, the Voigt model is a necessary

preliminary step towards the use of more realistic viscoelastic models. After

finding η and identifying it as the viscous Young’s modulus Ev, we estimate µv

and λv by assuming
µv

µe
=
λv

λe
=
Ev

Ee
.

Finally, the constant β appearing in (4.7) is estimated as follows

β =
R2
c

n0
,

where Rc and n0 are the reference laminar capillary radius and the vascular porosity

in the reference configuration listed in Table 4.2, respectively.

The system (4.8)–(4.13) has to be equipped with initial and boundary conditions.

In the viscoelastic case (δ > 0), we impose

u = u0 in Ω at t = tstart,
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Figure 4.8. Data from Palko et al. [167] fitted using the Voigt model
described in Chapter 2. The poor fit denotes that a more appropriate
viscoelastic model is needed for the lamina cribrosa.
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whereas, in the elastic case (δ = 0), we impose

∇ · u = d0 in Ω at t = tstart.

Regarding the boundary conditions, blood flow is driven by the difference between

the arterial pressure in the short PCAs and the venous pressure in the CRV (see

Figure 4.4). Thus, using the notation introduced in Figure 4.7 for the boundary

surfaces of the computational domain, we consider the following boundary conditions

for the balance of mass (4.12):

• Since laminar capillaries are embedded into the laminar beams (see Figure 4.4)

and their blood flow does not contribute to the perfusion of either the prelaminar

or the retrolaminar region, as discussed in Section 4.1.2, we impose no-flux

conditions on Γpre ∪ Γretro:

v · n = 0 on Γpre ∪ Γretro. (4.16)

• Since blood drainage in the lamina occurs through the CRV (see Section 4.1.2),

we impose

p = Pv on Γvessels, (4.17)

where Pv = 20 mmHg is the blood pressure in the CRV [172].

• As described in Section 4.1.2, the vasculature supplying the lamina cribrosa

region arise directly from the short PCAs or from the circle of Zinn-Haller,

which, if present, is a complete or incomplete ring of vessels within the perineural

sclera formed by the confluence of branches of the short PCAs. In the following

sections, we are going to assume that the circle of Zinn-Haller is a complete

ring, so that the lamina is nourished by vessels arising from the whole interface

with the sclera, Γsclera. Under this assumption, we impose a Dirichlet boundary

condition on Γsclera

p = Pa on Γsclera, (4.18)
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where Pa is the blood pressure in the circle oh Zinn-Haller and the short PCAs

feeding the lamina. Measuring this pressure is challenging with current method-

ologies. At present, CDI can be used to measure velocity profiles in short PCAs.

However, this is particularly difficult due to the fact that PCAs are close to the

size limit that can be studied. Using velocity profiles, time profiles for Pa

can be determined by solving inverse problems as described by Guidoboni et

al. [172]. In this work we are going to use a much simpler approach: since both

the short PCAs and the vessels forming the circle of Zinn-Haller are arterioles,

from an anatomical perspective, Pa is estimated by starting from the pressure

Pv = 20 mmHg in the CRV [172], and then adding the pressure drops across

large venules, small venules and capillaries used by Arciero et al. [170] for the

retinal vasculature

p = Pa = 20 + 1.41 + 2.30 + 5.04

= 28.75 mmHg ≈ 30 mmHg on Γsclera.
(4.19)

The value Pa = 30 mmHg is also reasonable when compared to the pressure at

the end of arterioles used by Guidoboni et al. [172].

Boundary conditions are also needed for the balance of linear momentum (4.9).

From equations (3.10)–(3.17), we could impose either Dirichlet boundary conditions

on any of the components of the solid displacement u or Neumann boundary con-

ditions on any of the components of the total stress tensor σ. In order to correctly

impose Neumann boundary conditions on σ, it is important to distinguish between

boundary surfaces where matrix pores are sealed and boundary surfaces where pores

are exposed [68]. On the sealed portion of the boundary, the hydraulic pressure

contributes to the total stress σ within the matrix. On the exposed portion of the

boundary, only the effective or viscoelastic component of the stress σe + δσv is spec-

ified, since there the fluid pressure does not contribute to the support of the matrix.

By taking these observations into account and assuming that the lamina cribrosa de-

forms under the combined action of IOP, RLTp and scleral tension (see Figure 4.6),

we consider the following boundary conditions for the balance of linear momentum:
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• The prelaminar Γpre and retrolaminar Γretro surfaces are subject to the IOP

and the RLTp, respectively. As discussed before about the Neumann boundary

condition (4.16), matrix pores, i.e. blood vessels, on Γpre and Γretro are assumed

to be sealed, and, thus, the fluid pressure contributes to the total stress σ.

Therefore, we set:

σn = −IOP n on Γpre, (4.20)

σn = −RLTp n on Γretro. (4.21)

• At the interface Γvessels between the lamina cribrosa and the central retinal

vessels, laminar blood vessels are exposed and drain into the CRV. Thus, the

mechanical stress PCRA exerted by the CRA onto Γvessels is carried only by the

effective component σe + δσv of the stress tensor. Thus, we set

(σe + δσv)n = −PCRA n on Γvessels,

which, thanks to (4.17), can be rewritten in terms of the total stress tensor σ

σn = (σe + δσv − pI)n = −(PCRA + Pv)n on Γvessels. (4.22)

Here, we take PCRA = 40 mmHg [172].

• At the interface Γsclera between the lamina cribrosa and the sclera, we set

e3 · u = 0 on Γsclera, (4.23)

to prevent displacement of the lamina in the z direction, i.e. in the sagittal

direction. Moreover, the lamina is subject to the scleral tension Tsc, which can

be estimated using Laplace’s law

Tsc =
IOPRsc

2hsc

, (4.24)

where Rsc and hsc are the scleral radius and thickness, whose values are specified

in Table 4.2. Equation (4.24) is valid under the assumption that the sclera can
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be modeled as a perfect sphere. Since blood vessels are exposed also on Γsclera,

Tsc is carried only by the solid matrix and thus

e1 · (σe + δσv)n = e1 · Tscn, e2 · (σe + δσv)n = e2 · Tscn on Γsclera,

where Tsc is taken with a positive sign because the lamina is pulled by the sclera.

From (4.19), the last equation can be rewritten in terms of the total stress σ

e1 · σn = e1 · (Tsc − Pa)n, e2 · σn = e2 · (Tsc − Pa)n on Γsclera. (4.25)

4.4.2 Results

The predictions of the mathematical model for the lamina cribrosa displacement

are validated using two different experimental studies. These two validation test cases

are performed on a mesh with 41292 tetrahedra and 86698 triangular faces. The work

by Yang et al. [173] reports histomorphometric data for the IOP-induced displacement

of the anterior laminar surface of monkeys. After setting IOP to 10 mmHg, the ONH

and peripapillary sclera from both eyes of three glaucoma monkey models (one eye

normal, one eye given laser-induced glaucoma) were trephinated and serial-sectioned.

The embedded tissue block face was stained and imaged after each cut. Images were

aligned and stacked to create 3D reconstructions. Regional laminar, scleral flange,

and peripapillary scleral position and thickness were compared between the normal

and glaucomatous eyes of each monkey and between treatment groups by analysis of

variance.

Due to the loss of pressure caused by tissue preparation [1], we numerically re-

produce the experimental setting of Yang et al. by solving a stationary version of

system (4.8)–(4.13) with the following boundary conditions:

• For the balance of mass:

v · n = 0 on Γpre ∪ Γretro,

p = 0 on Γvessels ∪ Γsclera.
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• For the balance of linear momentum:

σn = −IOP n on Γpre,

σn = 0 on Γretro ∪ Γvessels,

e1 · σn = 0, e2 · σn = 0 on Γsclera,

e3 · u = 0 on Γsclera,

with IOP = 10 mmHg.

The poro-viscoelastic system (4.8)–(4.13) is also scaled using

σc = IOP,

and setting all the other characteristic parameters to 1.

As shown in Figure 4.9, the model predicts a maximum posterior laminar dis-

placement of ≈ 4.226× 10−3 cm = 42.26 µm, which is approximately half the value

reported by Yang et al. for the normal eyes of their three monkey models (≈ 100 µm).

We believe our prediction is in very good agreement with these experimental data,

given that:

• We put no effort in choosing geometrical and material parameters that would

match the properties of the normal eyes of the monkey models.

• Our model estimates the anterior laminar displacement, which is the relative

position with respect to the undeformed lamina configuration, i.e. for IOP =

0 mmHg. On the other hand, Yang et al. measure the lamina cribrosa position

relative to a reference plane at the level of the Bruch’s membrane opening, called

the BMO plane, as shown in Figure 2B in [173]. Such Figure suggests that the

position of the BMO plane could be rather different from the anterior surface

of the lamina cribrosa in the undeformed configuration, thereby explaining the

discrepancy between the experimental data and our prediction.

We compared the displacements of the lamina cribrosa predicted by our mathe-

matical model also with the experimental data obtained by Morgan et al. [174], for
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Figure 4.9. Model predictions for the continuous laminar displacement
map in the sagittal direction for the experiment by Yang et al. [173].
Data are displayed on the deformed mesh.
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different values of IOP and RLTp. In their study, the anterior chamber and lat-

eral ventricles of eight dogs were cannulated to control IOP and cerebrospinal fluid

pressure (CSFp), respectively. The depth of the optic disc surface, which reflects

the underlying anterior laminar movement, was performed at each value of IOP and

CSFp via confocal scanning laser tomography. Starting from baseline (corresponding

to IOP = 15 mmHg and CSFp = 0 mmHg), IOP was elevated up to an average of

32 mmHg, via steps between 3 and 5 mmHg. In a second set of experiments, starting

from baseline, CSFp was elevated up to an average of 12 mmHg, via steps between 2

and 4 mmHg. Morgan et al. report their results using the quantity ∆MaxD, which is

the difference in the maximum disc depth with respect to baseline.

In order to reproduce the experimental setting of Morgan et al. numerically, we

solve a stationary version of system (4.8)–(4.13) with the following boundary condi-

tions:

• For the balance of mass:

v · n = 0 on Γpre ∪ Γretro,

p = Pv on Γvessels,

p = Pa on Γsclera.

• For the balance of linear momentum:

σn = −IOP n on Γpre,

σn = −RLTp n on Γretro,

σn = −(PCRA + Pv)n on Γvessels,

e1 · σn = e1 · (Tsc − Pa)n, e2 · σn = e1 · (Tsc − Pa)n on Γsclera,

e3 · u = 0 on Γsclera.

We also scale the poro-viscoelastic system (4.8)–(4.13) using

xc = 1 cm, tc = 1 s, uc = 1 cm,
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and

pc = Pv, σc = RLTp, vc =
β

8µb
(n0)2pc/xc.

In order to relate CSFp and RLTp, we use the following linear relation (in mmHg),

derived by Morgan et al. in a previous work [113]:

RLTp =

0.07 CSFp + 2.9200 for CSFp ≤ 1.33,

0.82 CSFp + 1.9225 for CSFp > 1.33.

(4.26)

Then, we solve the system with RLTp = 2.92 mmHg, which corresponds to CSFp =

0 mmHg according to (4.26), and with IOP varying between 15 mmHg and 33 mmHg.

Next, we solve the system by fixing IOP = 15 mmHg, and varying RLTp in the range

that corresponds to CSFp ∈ [0 mmHg, 12 mmHg] via (4.26). Since Morgan et al. [174]

do not provide geometric and elastic properties of the eyes they examined, we use the

physiologically representative values listed in Table 4.2.

In Figure 4.10, we compare the maximum disc depth ∆MaxD measured by Mor-

gan et al. [174] with the theoretical predictions obtained via our mathematical model.

The agreement between model predictions and experimental data is very satisfac-

tory. The high lamina cribrosa movements predicted by our model in the high range

of translaminar pressure difference IOP−CSFp are due to our hypothesis of a me-

chanically homogeneous, linear, and isotropic laminar tissue. Evidence suggests that

these are only approximations and that the tissues are inhomogeneous [115], nonlin-

ear [75, 84,114,162–164], and anisotropic [75,114,162–164].

Finally, we theoretically investigate the influence of viscoelasticity on the perfusion

of the lamina cribrosa. Utilizing our mathematical model, we simulate and compare

the behavior of the integrated rate of change of blood kinetic energy W

W = (κ(n)∇p,∇p),

which has been introduced in equation (3.30), treating the lamina as an elastic or a

viscoelastic medium when sudden external forces are applied.
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Figure 4.10. Comparison between model predictions and experimental
measurements of the anterior lamina displacements. Changes of maximum
optic disc depth ∆MaxD with respect to the baseline at IOP−CSFp=
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predictions of the mathematical model (green line) are compared with
experimental data by Morgan et al. [174].
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We solve system (4.8)–(4.13) in the space-time domain Q = Ω × (0, T ), T = 2 s,

with the following boundary conditions:

• For the balance of mass:

v · n = 0 on Γpre ∪ Γretro,

p = Pv on Γvessels,

p = Pa on Γsclera.

• For the balance of linear momentum:

σn = −IOP n on Γpre,

σn = −RLTp n on Γretro,

σn = −(PCRA + Pv)n on Γvessels,

e1 · σn = e1 · (Tsc − Pa)n, e2 · σn = e1 · (Tsc − Pa)n on Γsclera,

e3 · u = 0 on Γsclera,

with

IOP =

15 mmHg if t ≤ 0.75 s ∪ t > 1.25 s,

17 mmHg if 0.75 s < t ≤ 1.25 s.

We also scale the poro-viscoelastic system (4.8)–(4.13) using

xc = 1 cm, tc = 1 s, uc = 0.004 cm,

and

pc = Pv, σc = RLTp, vc =
β

8µb
(n0)2pc/xc.

When subject to a sudden force, such as, for example, an increase in IOP due to

rubbing of the eye, the lamina undergoes a sudden deformation in the elastic model,

i.e. it behaves like a linear spring (see Section 2.4.4). However, using the Voigt

model to describe the viscoelastic behavior of the lamina, the deformation will be
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Figure 4.11. (top) IOP fluctuation pattern tested in the model; (bottom)
integrated time rate of change of blood kinetic energy W in response to
IOP variations treating the lamina cribrosa as an elastic (blue curve) or
a viscoelastic (green curve) medium.

gradually built up, thereby reducing tissue susceptibility to damage. In other words,

the viscoelastic biomechanical properties of an intact and healthy lamina cribrosa

enable it to absorb sudden changes in force and transfer it slowly to the surrounding

structures, including blood vessels and capillaries, thereby lowering the susceptibility

to vessel hemorrhage and rupture.
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Figure 4.11 shows that the absence or presence of structural viscoelasticity in-

fluence noticeably W as the lamina experiences sudden changes in IOP. More pre-

cisely, without viscoelasticity (Figure 4.11(bottom), blue curve), W exhibits sharp

peaks at the IOP switch-on and switch-off times, suggesting perfusion instability.

Conversely, in the presence of viscoelasticity (Figure 4.11(bottom), green curve) W

remains bounded at lower levels.

4.4.3 Discussion

This thesis introduces a mathematical model that can serve as a virtual laboratory

to theoretically investigate lamina cribrosa perfusion. To our knowledge, this is the

first model combining mechanics and hemodynamics of the lamina cribrosa into a sin-

gle framework. In this thesis, we use it to study the influence of tissue viscoelasticity

on the perfusion of the lamina cribrosa.

In order to validate the model, we compare its predictions with data from indepen-

dent experimental studies. Figures 4.9 and 4.10 show that the model-predicted values

of laminar displacements are consistent with clinical measurements [173, 174]. Most

of the geometrical and physiological parameters of the model were directly available

from published literature, as shown in Table 4.2, whereas some had to be estimated,

for example the viscous parameters µv and λv. These parameters vary among individ-

uals. In particular, they could vary with age [110], ethnicity [175], disease [75, 164],

thereby affecting the mechanical and hemodynamical response of the laminar tissue to

external forces, such as IOP and RLTp. Patient-specific geometric and physiological

properties would improve model predictions.

Influences of tissue viscoelasticity on lamina perfusion are investigated by com-

puting the integrated rate of change of blood kinetic energy W treating the lamina

as an elastic or a viscoelastic medium in response to sudden temporal IOP variations

(see Figure 4.11). Our findings suggest that the lack of viscoelasticity may increase

the lamina susceptibility to localized damage due to peaks in W as IOP experiences
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sudden changes in time, as they normally occur during the day. In other words, if the

lamina viscoelasticity is not intact, sudden IOP changes will be translated to lamina

hemodynamics, possibly leading to perfusion instabilities. On the other hand, if the

lamina viscoelasticity is intact, sudden changes will be absorbed by the tissue and we

will not see perfusion instabilities. The importance of viscoelasticity in the tissue has

been evidenced also in other studies [166, 167]. The clinical implications of lamina

perfusion deficits during IOP variation should be further investigated to elucidate

their impact on glaucoma pathophysiology. Next steps of our work will be devoted

to investigating the existence of possible correlations between the magnitude of the

peaks in W and IOP or OPP fluctuations in glaucoma and other ocular pathologies.

Our model for the lamina cribrosa has some limitations. Here we summarize

those that are more relevant to our discussion. The constitutive model for the

laminar tissue is homogeneous, linear and isotropic. Evidence suggests that these

are only approximations and that the tissues are non homogeneous [115], nonlin-

ear [75,84,114,162–164], and anisotropic [75,114,162–164]. An extension of the model

to more realistic constitutive equations for the laminar tissue [164] would help, for

example, to improve model predictions for the laminar displacement, stress and strain

distributions in response to external loads. It would also help to better characterize

vascular permeability.

Blood is the only fluid phase of our poro-viscoelastic model and its flow is only

driven by the pressure gradient in the capillaries. Vascular autoregulation and neu-

rovascular coupling are not taken into account. Expanding the model to incorporate

a mechanistic autoregulation description, similar to the one developed by Arciero et

al. [170], could help to investigate the hemodynamic consequences of IOP alterations

in subjects who suffer from metabolic or endothelial dysfunctions [1]. In order to do

this, multiphasic models (e.g. a viscoelastic solid filled with viscous fluid containing

nutrients) based on porous media theory can be developed. The same strategy can

also be used to investigate the effects of nutrients availability on the non-uniform

growth and remodeling of the collagen within the lamina [75].
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5. CONCLUSIONS AND FUTURE DIRECTIONS

The mathematical modeling of the interplay between biomechanics and perfusion

in the ONH is still at its early stages, but is quickly attracting attention. Elucidating

the complex interactions of ONH perfusion and tissue structure in health and disease

using current imaging methodologies is difficult, and mathematical modeling provides

an approach to solving these limitations. One of the main difficulties lies in the fact

that the biophysical phenomena governing the ONH physiology occur at different

scales in time and space. In order to address and theoretically investigate these

multiscale problems, we used a modeling approach based on the theory of porous

media. We devoted particular attention to the description of a viscous fluid streaming

through a viscoelastic solid skeleton, a situation that is often encountered in many

areas of biomechanics. The resulting system of balance equations is solved via a

numerical method based on a novel hybridizable discontinuous Galerkin finite element

discretization. This method is obtained by carefully blending the approaches by

Cockburn et al. [19] and Qiu et al. [55, 57] for the diffusion equation and linear

elasticity with a fixed-point map for the nonlinear dependence of the permeability on

the volumetric solid strain.

In the case of stationary problems, our HDG method computes both primal (solid

displacement and fluid pressure) and dual (total stresses and discharge velocities)

variables simultaneously with optimal order of accuracy. Dual variables often rep-

resent quantities of primary interest in engineering. For example, stresses drive the

non-uniform growth and remodeling of the collagen within the lamina cribrosa [75],

whereas discharge velocities are related to the blood perfusion of the laminar tissue.

Unless dual variables are computed directly, they require the evaluation of gradients

of primal variables. However, numerical differentiation is a particularly delicate pro-
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cedure that usually suffers from a loss in approximation accuracy [47]. The HDG

method proposed here does not suffer from this loss of accuracy because all the vari-

ables are approximated directly.

Similarly to other HDG methods devised for other applications, our approach in-

herits some extremely interesting features of DG schemes: it can handle all sorts of

complicated meshes and discontinuous data, provide high-order accurate solutions,

can be used to perform h/p adaptivity, and retains very good scalability properties.

Moreover, thanks to hybridization, our method becomes computationally competitive

with traditional continuous Galerkin approaches [52]. However, hybridization is not

just an implementation trick. Rather, it endows HDG methods with some attractive

convergence properties that allow to enhance the accuracy of the approximate solu-

tion by local postprocessing. Also, Phillips and Wheeler [18] provided evidence that

numerical methods for poroelasticity based on continuous Galerkin approaches may

suffer from locking, or nonphysical pressure oscillations. Model simulations shown in

Section 3.3.3 suggest that our HDG method suppresses locking to a very good degree.

Similarly to other multiphysics problem, the poro-viscoelastic system (3.44)–(3.54)

can be ill-conditioned. In other words, the quality of the numerical solutions and the

convergence of the fixed point map proposed here are affected by the values of the

model parameters (like permeability and viscoelastic parameters) and the different

scaling of the variables. Convergence properties of the HDG method can be restored

by scaling the poro-viscoelastic system and reformulating it in terms of new dimen-

sionless variables. This technique is equivalent to precondition the poro-viscoelastic

system. However, care is needed when using this approach, since several characteristic

scales may be involved in the problem at hand and, thus, the choice of characteristic

scales may be a non trivial issue. Moreover, as reported in Section 3.3.2, there might

be situations where scaling does not improve the convergence of the fixed point al-

gorithm. These results suggest that, depending on the regime of motion, it might be

necessary to use a different preconditioning strategy or a different iterative method
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than the fixed point approach used here. We are currently exploring iterative methods

based on operator-splitting and augmented Lagrangian strategies [30].

In Chapter 4, the poro-viscoelastic model is used to theoretically investigate the

influence of tissue viscoelasticity on the perfusion of the lamina cribrosa in the ONH.

Our theoretical results suggest that even physiological changes in IOP may induce

pathological changes in lamina perfusion if the lamina viscoelasticity provided by the

collagen fibers is not intact (due, e.g., to aging or disease). The clinical implications

of lamina perfusion deficits during IOP variation should be further investigated to

elucidate their impact on glaucoma pathophysiology.

We are currently working on extending our model to account for:

• more realistic nonlinear constitutive equations for the laminar tissue;

• effects of nutrients availability on the non-uniform growth and remodeling of

collagen within the lamina;

• blood flow autoregulation in the laminar vasculature.

The accurate modeling and simulation of multiscale and multiphysics problems is

still an open area of research, and therefore the modeling of the ONH offers stimulating

opportunities for groundbreaking activities from both the clinical and theoretical

viewpoints. The application of advanced modeling to reveal the mechanistic interplay

of previously unseen physiologic relationships holds the potential to advance medical

care in ophthalmic disease and provide patients and clinicians new hope for future

diagnosis and therapy.
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chanical properties and correlation with collagen solubility profile in the poste-
rior sclera of canine eyes with an adamts10 mutationscleral biomechanics and
collagen solubility. Investigative Ophthalmology & Visual Science, 54(4):2685–
2695, 2013.

[168] J. B. Jonas, C. Y. Mardin, U. S. Schrehardt, and G. O. Naumann. Morphometry
of the human lamina cribrosa surface. Investigative Ophthalmology & Visual
Science, 32(2):401–405, 1991.

[169] I. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier. Finite element
modeling of optic nerve head biomechanics. Investigative Ophthalmology &
Visual Science, 45(12):4378–4387, 2004.

[170] J. Arciero, A. Harris, B. Siesky, A. Amireskandari, V. Gershuny, A. Pickrell,
and G. Guidoboni. Theoretical analysis of vascular regulatory mechanisms
contributing to retinal blood flow autoregulation. Investigative Ophthalmology
& Visual Science, 54(8):5584–5593, 2013.

[171] C. Balaratnasingam, M. H. Kang, P. Yu, G. Chan, W. H. Morgan, S. J. Cringle,
and D. Y. Yu. Comparative quantitative study of astrocytes and capillary
distribution in optic nerve laminar regions. Experimental Eye Research, 121:11–
22, 2014.

[172] G. Guidoboni, A. Harris, S. Cassani, J. Arciero, B. Siesky, A. Amireskandari,
L. Tobe, P. Egan, I. Januleviciene, and J. Park. Intraocular pressure, blood pres-
sure, and retinal blood flow autoregulation: A mathematical model to clarify
their relationship and clinical relevance. Investigative Ophthalmology & Visual
Science, 55(7):4105–4118, 2014.



209

[173] H. Yang, J. C. Downs, C. Girkin, L. Sakata, A. Bellezza, H. Thompson, and
C. F. Burgoyne. 3-d histomorphometry of the normal and early glaucomatous
monkey optic nerve head: Lamina cribrosa and peripapillary scleral position
and thickness. Investigative Ophthalmology & Visual Science, 48(10):4597–607,
2007.

[174] W. H. Morgan, B. C. Chauhan, D. Y. Yu, S. J. Cringle, V. A. Alder, and P. H.
House. Optic disc movement with variations in intraocular and cerebrospinal
fluid pressure. Investigative Ophthalmology & Visual Science, 43(10):3236–3242,
2002.

[175] Y. Dongmei, S. McPheeters, G. Johnson, U. Utzinger, and J. P. Vande Geest.
Microstructural differences in the human posterior sclera as a function of age
and race. Investigative Ophthalmology & Visual Science, 52(2):821–829, 2011.



APPENDICES



210

Appendix A. Constitutive equations in mixed form

Constitutive Equation of the Total Stress Tensor in Mixed Form

Proposition A.0.1 The constitutive equation (3.67) for the total stress tensor σ(j+1)

σ(j+1) = 2µveε(u(j+1)) + λve(∇ · u(j+1))I

− δ

∆t
(2µvε(ui) + λv(∇ · ui)I)− p(j+1)I,

(A.1)

can be rewritten in mixed form as

c1σ
(j+1) + c2(trσ(j+1))I − ε(u(j+1)) + PTp

(j+1)I = −c3ε(u
(j))− c4(∇ · ui)I, (A.2)

with

c1 =
1

2µve
, c2 = − λve

2µve(2µve + 3λve)
= − 1

2µve
(

2µve

λve
+ 3

) , (A.3)

c3 =
δ

∆t
(2µvc1), c4 =

δ

∆t
(2µvc2 + λvPT ), (A.4)

PT = c1 + 3c2. (A.5)

Proof Let us introduce a fourth order tensor
4

C acting on a second order tensor T

as follows
4

C T = 2µveT + λve(trT )I. (A.6)

Using (A.6), we can rewrite (A.1) as

σ(j+1) =
4

C ε(u(j+1))− δ

∆t
(2µvε(ui) + λv(∇ · ui)I)− p(j+1)I.

Multiplying the last equation by
4

A =
( 4

C
)−1

and rearranging terms, we obtain

4

Aσ(j+1) − ε(u(j+1)) + p(j+1)
4

A I = − δ

∆t
(2µv

4

A ε(ui) + λv(∇ · ui)
4

A I). (A.7)
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The fourth order tensor
4

A is formally equivalent to the compliance tensor
4

B in Hooke-

type elasticity laws
4

B σ = ε(u), which means that
4

A acts on a second order tensor T

as follows
4

AT =
1

2µve
T − λve

2µve(2µve + 3λve)
(trT )I. (A.8)

Using T = σ in (A.8) and comparing the result with (A.2), (A.7), we immediately

get (A.3). Using T = I in (A.8) and the definition of c1, c2, we have

4

A I = c1I + c2(tr I)I = (c1 + 3c2)I,

which, compared with (A.2) and (A.7), implies (A.5). Plugging T = ε(ui) in (A.8),

we get
4

A ε(ui) = c1ε(u
i) + c2(tr ε(ui))I = c1ε(u

i) + c2(∇ · ui)I,

by definition of ε(ui). Using the last equation and the definition of PT , the right hand

side of (A.7) reads

− δ

∆t
(2µv

4

A ε(ui) + λv(∇ · ui)
4

A I)

= − δ

∆t
(2µv(c1ε(u

i) + c2(∇ · ui)I) + λv(∇ · ui)PT I)

= − δ

∆t
2µvc1ε(u

i)− δ

∆t
(2µvc2 + λvPT )(∇ · ui)I,

which proves (A.4). �
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Appendix B. Scaling

In this appendix, we will show how problem (3.44)–(3.54) can be scaled and reformu-

lated in terms of dimensionless variables.

Scaling is a technique used to rewrite a problem in terms of new dimensionless

variables. This procedure is useful, or even necessary in some situations, especially

when comparing the magnitude of various terms in an equation and understanding

whether some of them can be neglected [82]. Another application is provided in

Section 3.3.2, where scaling is used to precondition system (3.44)–(3.54) and restore

the accuracy of the HDG method.

For example, significant changes in OPP occur within one cardiac cycle (≈ 1 s),

implying that this problem has a characteristic time scale tc = 1 s. In some cases,

there are multiple time scales. For example, OPP itself has also been shown to follow

a pattern of circadian variations (24 h) [12]. Problems can also be characterized by

different space scales:

• Perfusion of the lamina cribrosa in the ONH involves at least 3 orders of mag-

nitude as we progress from the capillaries running within the laminar beams

(≈ 1× 10−6 m) to the dimensions of the optic nerve canal (≈ 1× 10−3 m) [1].

• There is evidence that IOP elevation causes the lamina to remodel into a thicker

more posterior structure by incorporating more connective tissue [75]. This re-

modeling process involves both macroscopic effect, such as IOP (≈ 1× 10−3 m),

and mechanisms occurring at the level of the collagen fibers forming the connec-

tive tissue of the lamina cribrosa (≈ 1× 10−8 m).

Thus, for some problems, choosing appropriate characteristic time and spatial scales

could be quite a delicate task and must be carried out with care. Once a characteristic
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scale xc has been identified for a variable, say x, a new dimensionless variable x̄ can

be introduced by

x̄ =
x

xc
.

Ideally, xc has to be chosen so that it represents the order of magnitude or approximate

size of x. In this case, the dimensionless variable x̄ will be of order unity. After

characteristic scales are chosen for the independent and dependent variables, the

problem can be reformulated in terms of the new dimensionless variables. The result

will be a problem in dimensionless form, where all the variables and parameters are

dimensionless.

Let us introduce the following dimensionless variables

x∗ =
x

xc
, t∗ =

t

tc
, u∗ =

u

uc
,

p∗ =
p

pc
, σ∗ =

σ

σc
, v∗ =

v

vc
,

where xc, tc, uc, pc, σc, and vc represent characteristic scales for the position vector

x, time t, the solid displacement u, the fluid pressure p, the total stress σ, and the

discharge velocity v, respectively. Denoting by ∇∗(·) and (·)t∗ the partial derivatives
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with respect to x∗ and t∗, respectively, the dimensionless form of system (3.44)–(3.54)

to be solved in the scaled domain Q∗ = Ω∗ ×
(
tstart

tc
,
tend

tc

)
reads:

σ∗ = 2
µeuc
xcσc

ε∗(u∗) +
λeuc
xc

(∇∗ · u∗)I

+ δ

(
2
µvuc
xctcσc

ε∗(u∗t∗) +
λvuc
xctcσc

(∇∗ · u∗t∗)I

)
− pc
σc
p∗I in Q∗, (B.1)

∇∗ · σ∗ =
xc
σc

F in Q∗, (B.2)

xcvc
κpc

v∗ +∇∗p∗ = 0 in Q∗, (B.3)

uc
tcvc

(∇∗ · u∗)t∗ +∇∗ · v∗ =
xc
vc
S in Q∗, (B.4)

n∗ =
uc
xc
∇∗ · u∗ + n0 in Q∗, (B.5)

u∗ =
gDS
uc

on ΓD,∗S , (B.6)

σ∗n =
gNS
σc

on ΓN,∗S , (B.7)

p∗ =
gDF
pc

on ΓD,∗F , (B.8)

v∗ · n =
gNF
vc

on ΓN,∗F , (B.9)

subject to the following initial conditions:

u∗ =
u0

uc
in Ω at t∗ =

tstart

tc
(case δ > 0), (B.10)

∇∗ · u∗ =
d0xc
uc

in Ω at t∗ =
tstart

tc
(case δ = 0). (B.11)
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Appendix C. Error tables

Table C.1
Linear stationary validation test in 2D. Relative errors for different trian-
gulations with the lowest order method k = 1.

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

9.0633e− 02 - 5.9250e− 01 - 2.0335e− 01 - 3.1450e− 01 -

4.4912e− 02 1.01 1.1336e− 01 2.39 4.1566e− 02 2.29 3.3734e− 02 3.22

1.1526e− 02 1.96 1.4270e− 02 2.99 1.0566e− 02 1.98 4.2664e− 03 2.98

2.9031e− 03 1.99 1.7848e− 03 3.00 2.6522e− 03 1.99 5.3503e− 04 3.00

7.2722e− 04 2.00 2.2302e− 04 3.00 6.6367e− 04 2.00 6.6944e− 05 3.00

1.8190e− 04 2.00 2.7869e− 05 3.00 1.6595e− 04 2.00 8.3708e− 06 3.00

4.5484e− 05 2.00 3.4829e− 06 3.00 4.1488e− 05 2.00 1.0465e− 06 3.00

1.1372e− 05 2.00 4.3532e− 07 3.00 1.0372e− 05 2.00 1.3082e− 07 3.00

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

3.6850e− 02 - 1.3478e− 02 - 2.6333e− 01 - 8.0934e− 02 -

9.6455e− 03 1.93 1.6196e− 03 3.06 4.8075e− 02 2.45 4.7290e− 02 0.78

1.1220e− 03 3.10 2.1420e− 04 2.92 1.1971e− 02 2.01 1.2098e− 02 1.97

1.2608e− 04 3.15 2.7550e− 05 2.96 3.0137e− 03 1.99 3.0421e− 03 1.99

1.4332e− 05 3.14 3.4890e− 06 2.98 7.5743e− 04 1.99 7.6161e− 04 2.00

1.6805e− 06 3.09 4.3880e− 07 2.99 1.8992e− 04 2.00 1.9047e− 04 2.00

2.0240e− 07 3.05 5.5011e− 08 3.00 4.7551e− 05 2.00 4.7622e− 05 2.00

2.4799e− 08 3.03 6.8862e− 09 3.00 1.1897e− 05 2.00 1.1906e− 05 2.00
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Table C.2
Linear stationary validation test in 2D. Relative errors for different trian-
gulations for k = 2.

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

4.9426e− 02 - 2.4498e− 01 - 1.3022e− 02 - 2.6498e− 02 -

4.8793e− 03 3.34 1.2156e− 02 4.33 4.6465e− 03 1.49 3.6580e− 03 2.86

6.2053e− 04 2.98 7.7057e− 04 3.98 5.9004e− 04 2.98 2.3198e− 04 3.98

7.7892e− 05 2.99 4.8328e− 05 3.99 7.4025e− 05 2.99 1.4551e− 05 3.99

9.7465e− 06 3.00 3.0231e− 06 4.00 9.2600e− 06 3.00 9.1031e− 07 4.00

1.2186e− 06 3.00 1.8898e− 07 4.00 1.1576e− 06 3.00 5.6908e− 08 4.00

1.5233e− 07 3.00 1.1811e− 08 4.00 1.4470e− 07 3.00 3.5570e− 09 4.00

1.9042e− 08 3.00 7.3825e− 10 4.00 1.8087e− 08 3.00 2.2239e− 10 4.00

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

2.0531e− 03 - 5.4584e− 05 - 2.2518e− 02 - 5.4311e− 02 -

8.8000e− 05 4.54 3.8506e− 05 0.50 5.7572e− 03 1.97 6.0290e− 03 3.17

4.5545e− 06 4.27 3.2559e− 06 3.56 7.4917e− 04 2.94 7.6945e− 04 2.97

2.6069e− 07 4.13 2.2809e− 07 3.84 9.5330e− 05 2.97 9.6683e− 05 2.99

1.5534e− 08 4.07 1.4949e− 08 3.93 1.2014e− 05 2.99 1.2101e− 05 3.00

9.4586e− 10 4.04 9.5434e− 10 3.97 1.5076e− 06 2.99 1.5131e− 06 3.00

5.8328e− 11 4.02 6.0265e− 11 3.99 1.8881e− 07 3.00 1.8916e− 07 3.00

7.5128e− 12 2.96 6.6232e− 12 3.19 2.3623e− 08 3.00 2.3645e− 08 3.00
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Table C.3
Linear stationary validation test in 2D. Relative errors for different trian-
gulations for k = 3.

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

1.8681e− 03 - 1.1066e− 02 - 8.5125e− 03 - 1.3113e− 02 -

4.2643e− 04 2.13 1.0420e− 03 3.41 4.0723e− 04 4.39 3.1720e− 04 5.37

2.7132e− 05 3.97 3.3012e− 05 4.98 2.5805e− 05 3.98 1.0060e− 05 4.98

1.7044e− 06 3.99 1.0350e− 06 5.00 1.6178e− 06 4.00 3.1558e− 07 4.99

1.0669e− 07 4.00 3.2369e− 08 5.00 1.0118e− 07 4.00 9.8718e− 09 5.00

6.6717e− 09 4.00 1.0117e− 09 5.00 6.3239e− 09 4.00 3.0859e− 10 5.00

4.1706e− 10 4.00 3.1671e− 11 5.00 3.9525e− 10 4.00 1.1281e− 11 4.77

2.6432e− 11 3.98 7.0336e− 12 2.17 2.7008e− 11 3.87 2.0587e− 11 −0.87

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

1.1941e− 04 - 1.6376e− 05 - 1.2331e− 02 - 2.0455e− 03 -

5.0594e− 06 4.56 3.8697e− 07 5.40 5.6086e− 04 4.46 5.9180e− 04 1.79

1.1125e− 07 5.51 8.6639e− 09 5.48 3.6593e− 05 3.94 3.7667e− 05 3.97

2.2435e− 09 5.63 1.5808e− 10 5.78 2.3298e− 06 3.97 2.3649e− 06 3.99

4.5075e− 11 5.64 2.6590e− 12 5.89 1.4686e− 07 3.99 1.4797e− 07 4.00

1.1122e− 12 5.34 1.8195e− 12 0.55 9.2157e− 09 3.99 9.2510e− 09 4.00

1.8489e− 12 −0.73 5.8533e− 12 −1.69 5.7712e− 10 4.00 5.7826e− 10 4.00

6.9632e− 12 −1.91 2.0586e− 11 −1.81 3.6771e− 11 3.97 4.1599e− 11 3.80
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Table C.4
Nonlinear stationary validation test in 2D. Relative errors for different tri-
angulations for k = 1.

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

9.0904e− 02 - 6.6505e− 01 - 2.6774e− 01 - 2.0332e− 01 -

4.5911e− 02 0.99 1.2678e− 01 2.39 1.1259e− 01 1.25 2.8830e− 02 2.82

1.1777e− 02 1.96 1.5914e− 02 2.99 2.5847e− 02 2.12 3.2432e− 03 3.15

2.9636e− 03 1.99 1.9875e− 03 3.00 6.6182e− 03 1.97 4.0696e− 04 2.99

7.4186e− 04 2.00 2.4816e− 04 3.00 1.6646e− 03 1.99 5.0880e− 05 3.00

1.8549e− 04 2.00 3.0999e− 05 3.00 4.1710e− 04 2.00 6.3612e− 06 3.00

4.6368e− 05 2.00 3.8734e− 06 3.00 1.0438e− 04 2.00 7.9527e− 07 3.00

1.1591e− 05 2.00 4.8408e− 07 3.00 2.6106e− 05 2.00 9.9418e− 08 3.00

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

2.8865e− 02 - 4.3253e− 02 - 2.4288e− 01 - 1.7209e− 01 -

1.2914e− 02 1.16 1.0236e− 02 2.08 5.0078e− 02 2.28 4.9856e− 02 1.79

1.5472e− 03 3.06 1.0575e− 03 3.28 1.2120e− 02 2.05 1.2185e− 02 2.03

1.7175e− 04 3.17 1.2685e− 04 3.06 3.0212e− 03 2.00 3.0466e− 03 2.00

1.9113e− 05 3.17 1.5633e− 05 3.02 7.5780e− 04 2.00 7.6187e− 04 2.00

2.2016e− 06 3.12 1.9478e− 06 3.00 1.8994e− 04 2.00 1.9049e− 04 2.00

2.6204e− 07 3.07 2.4340e− 07 3.00 4.7552e− 05 2.00 4.7623e− 05 2.00

3.1886e− 08 3.04 3.0433e− 08 3.00 1.1897e− 05 2.00 1.1906e− 05 2.00
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Table C.5
Nonlinear stationary validation test in 2D. Relative errors for different tri-
angulations for k = 2.

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

5.0150e− 02 - 2.7276e− 01 - 1.2042e− 01 - 5.2908e− 02 -

4.9322e− 03 3.35 1.3512e− 02 4.34 1.1774e− 02 3.35 2.9652e− 03 4.16

6.2465e− 04 2.98 8.5589e− 04 3.98 2.3493e− 03 2.33 2.4258e− 04 3.61

7.8263e− 05 3.00 5.3671e− 05 4.00 2.9133e− 04 3.01 1.4995e− 05 4.02

9.7853e− 06 3.00 3.3571e− 06 4.00 3.6600e− 05 2.99 9.3986e− 07 4.00

1.2230e− 06 3.00 2.0985e− 07 4.00 4.5829e− 06 3.00 5.8773e− 08 4.00

1.5286e− 07 3.00 1.3116e− 08 4.00 5.7320e− 07 3.00 3.6732e− 09 4.00

1.9107e− 08 3.00 8.1978e− 10 4.00 7.1666e− 08 3.00 2.2957e− 10 4.00

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

3.4712e− 03 - 7.4377e− 03 - 3.0831e− 02 - 6.4819e− 02 -

1.2849e− 04 4.76 1.8566e− 04 5.32 5.7943e− 03 2.41 6.0674e− 03 3.42

6.4304e− 06 4.32 1.3579e− 05 3.77 7.4990e− 04 2.95 7.7308e− 04 2.97

3.6237e− 07 4.15 8.3896e− 07 4.02 9.5341e− 05 2.98 9.6790e− 05 3.00

2.1439e− 08 4.08 5.3069e− 08 3.98 1.2014e− 05 2.99 1.2104e− 05 3.00

1.3010e− 09 4.04 3.3344e− 09 3.99 1.5076e− 06 2.99 1.5132e− 06 3.00

8.0093e− 11 4.02 2.0883e− 10 4.00 1.8881e− 07 3.00 1.8916e− 07 3.00

8.1647e− 12 3.29 1.3397e− 11 3.96 2.3623e− 08 3.00 2.3645e− 08 3.00
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Table C.6
Nonlinear stationary validation test in 2D. Relative errors for different tri-
angulations for k = 3.

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

2.0480e− 03 - 1.2568e− 02 - 2.8157e− 02 - 1.5601e− 02 -

4.3131e− 04 2.25 1.1567e− 03 3.44 3.4496e− 03 3.03 6.2526e− 04 4.64

2.7415e− 05 3.98 3.6626e− 05 4.98 2.0943e− 04 4.04 2.1723e− 05 4.85

1.7209e− 06 3.99 1.1481e− 06 5.00 1.4155e− 05 3.89 7.3305e− 07 4.89

1.0769e− 07 4.00 3.5902e− 08 5.00 8.9467e− 07 3.98 2.3199e− 08 4.98

6.7336e− 09 4.00 1.1221e− 09 5.00 5.6055e− 08 4.00 7.2715e− 10 5.00

4.2091e− 10 4.00 3.5137e− 11 5.00 3.5056e− 09 4.00 2.3231e− 11 4.97

2.6624e− 11 3.98 8.8950e− 12 1.98 2.1940e− 10 4.00 2.0009e− 11 0.22

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

3.1938e− 04 - 1.2335e− 03 - 1.2275e− 02 - 4.2138e− 03 -

1.1144e− 05 4.84 7.1919e− 06 7.42 5.6474e− 04 4.44 6.2487e− 04 2.75

2.2300e− 07 5.64 1.5269e− 07 5.56 3.6623e− 05 3.95 3.8056e− 05 4.04

4.0676e− 09 5.78 3.2263e− 09 5.56 2.3301e− 06 3.97 2.3716e− 06 4.00

7.9753e− 11 5.67 6.4740e− 11 5.64 1.4686e− 07 3.99 1.4808e− 07 4.00

1.7883e− 12 5.48 1.6288e− 12 5.31 9.2158e− 09 3.99 9.2526e− 09 4.00

2.2274e− 12 −0.32 4.7409e− 12 −1.54 5.7713e− 10 4.00 5.7827e− 10 4.00

8.8267e− 12 −1.99 1.9997e− 11 −2.08 3.7169e− 11 3.96 4.1314e− 11 3.81
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Table C.7
Linear time dependent validation test in 2D. Absolute errors for different
triangulations for k = 1.

eσh e.c.r. euh e.c.r. evh e.c.r. eph e.c.r.

1.6810e+ 02 - 6.6763e+ 00 - 5.7616e+ 01 - 2.5082e+ 01 -

1.0749e+ 02 0.65 3.5199e+ 00 0.92 2.8608e+ 01 1.01 1.2043e+ 01 1.06

5.4428e+ 01 0.98 1.6706e+ 00 1.08 1.5683e+ 01 0.87 6.6078e+ 00 0.87

2.7749e+ 01 0.97 8.2154e− 01 1.02 7.8989e+ 00 0.99 3.3290e+ 00 0.99

1.3990e+ 01 0.99 4.0717e− 01 1.01 3.9279e+ 00 1.01 1.6555e+ 00 1.01

7.0580e+ 00 0.99 2.0280e− 01 1.01 1.9541e+ 00 1.01 8.2357e− 01 1.01

3.5722e+ 00 0.98 1.0120e− 01 1.00 9.7406e− 01 1.00 4.1051e− 01 1.00

1.8180e+ 00 0.97 5.0553e− 02 1.00 4.8621e− 01 1.00 2.0491e− 01 1.00

euh e.c.r. eph e.c.r. eûh e.c.r. ep̂h e.c.r.

6.3145e+ 00 - 2.3331e+ 01 - 1.3455e+ 01 - 5.3718e+ 01 -

3.4211e+ 00 0.88 1.1914e+ 01 0.97 7.4138e+ 00 0.86 2.5080e+ 01 1.10

1.6560e+ 00 1.05 6.5913e+ 00 0.85 3.4296e+ 00 1.11 1.3503e+ 01 0.89

8.1981e− 01 1.01 3.3269e+ 00 0.99 1.6668e+ 00 1.04 6.7316e+ 00 1.00

4.0696e− 01 1.01 1.6552e+ 00 1.01 8.2046e− 01 1.02 3.3293e+ 00 1.02

2.0278e− 01 1.00 8.2354e− 01 1.01 4.0715e− 01 1.01 1.6517e+ 00 1.01

1.0120e− 01 1.00 4.1050e− 01 1.00 2.0279e− 01 1.01 8.2217e− 01 1.01

5.0553e− 02 1.00 2.0491e− 01 1.00 1.0120e− 01 1.00 4.1010e− 01 1.00
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Table C.8
Linear time dependent validation test in 2D. Absolute errors for different
triangulations for k = 2.

eσh e.c.r. euh e.c.r. evh e.c.r. eph e.c.r.

3.7538e+ 01 - 2.1811e+ 00 - 1.2534e+ 01 - 2.9845e+ 00 -

1.0482e+ 01 1.84 3.2138e− 01 2.76 1.1225e+ 00 3.48 3.6194e− 01 3.04

3.9796e+ 00 1.40 1.6972e− 01 0.92 4.0671e− 01 1.46 1.7634e− 01 1.04

1.9473e+ 00 1.03 8.7328e− 02 0.96 2.0625e− 01 0.98 8.8877e− 02 0.99

9.7212e− 01 1.00 4.4104e− 02 0.99 1.0330e− 01 1.00 4.4424e− 02 1.00

4.8603e− 01 1.00 2.2126e− 02 1.00 5.1597e− 02 1.00 2.2175e− 02 1.00

2.4303e− 01 1.00 1.1080e− 02 1.00 2.5772e− 02 1.00 1.1074e− 02 1.00

1.2152e− 01 1.00 5.5438e− 03 1.00 1.2877e− 02 1.00 5.5330e− 03 1.00

euh e.c.r. eph e.c.r. eûh e.c.r. ep̂h e.c.r.

1.9888e+ 00 - 2.2334e+ 00 - 3.3878e+ 00 - 6.6705e+ 00 -

3.0516e− 01 2.70 3.5694e− 01 2.65 6.8980e− 01 2.30 7.5245e− 01 3.15

1.6810e− 01 0.86 1.7595e− 01 1.02 3.5618e− 01 0.95 3.6174e− 01 1.06

8.7126e− 02 0.95 8.8826e− 02 0.99 1.7809e− 01 1.00 1.7995e− 01 1.01

4.4079e− 02 0.98 4.4417e− 02 1.00 8.8960e− 02 1.00 8.9392e− 02 1.01

2.2123e− 02 0.99 2.2174e− 02 1.00 4.4433e− 02 1.00 4.4486e− 02 1.01

1.1080e− 02 1.00 1.1074e− 02 1.00 2.2205e− 02 1.00 2.2182e− 02 1.00

5.5437e− 03 1.00 5.5330e− 03 1.00 1.1098e− 02 1.00 1.1074e− 02 1.00
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Table C.9
Linear time dependent validation test in 2D. Absolute errors for different
triangulations for k = 3.

eσh e.c.r. euh e.c.r. evh e.c.r. eph e.c.r.

1.8783e+ 01 - 7.0904e− 01 - 2.4144e+ 00 - 1.0198e+ 00 -

8.1848e+ 00 1.20 3.5044e− 01 1.02 9.6746e− 01 1.32 4.1244e− 01 1.31

3.9161e+ 00 1.06 1.7557e− 01 1.00 4.2975e− 01 1.17 1.8464e− 01 1.16

1.9453e+ 00 1.01 8.8033e− 02 1.00 2.0934e− 01 1.04 8.9955e− 02 1.04

9.7210e− 01 1.00 4.4172e− 02 0.99 1.0369e− 01 1.01 4.4559e− 02 1.01

4.8604e− 01 1.00 2.2135e− 02 1.00 5.1652e− 02 1.01 2.2192e− 02 1.01

2.4303e− 01 1.00 1.1081e− 02 1.00 2.5778e− 02 1.00 1.1076e− 02 1.00

1.2152e− 01 1.00 5.5439e− 03 1.00 1.2878e− 02 1.00 5.5333e− 03 1.00

euh e.c.r. eph e.c.r. eûh e.c.r. ep̂h e.c.r.

6.6789e− 01 - 9.7606e− 01 - 1.4408e+ 00 - 2.2705e+ 00 -

3.3917e− 01 0.98 4.0853e− 01 1.26 7.4552e− 01 0.95 8.6498e− 01 1.39

1.7399e− 01 0.96 1.8421e− 01 1.15 3.6198e− 01 1.04 3.7822e− 01 1.19

8.7832e− 02 0.99 8.9903e− 02 1.03 1.7879e− 01 1.02 1.8210e− 01 1.05

4.4146e− 02 0.99 4.4553e− 02 1.01 8.9027e− 02 1.01 8.9662e− 02 1.02

2.2132e− 02 1.00 2.2191e− 02 1.01 4.4442e− 02 1.00 4.4519e− 02 1.01

1.1081e− 02 1.00 1.1076e− 02 1.00 2.2206e− 02 1.00 2.2186e− 02 1.00

5.5439e− 03 1.00 5.5333e− 03 1.00 1.1099e− 02 1.00 1.1075e− 02 1.00
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Table C.10
Nonlinear time dependent validation test in 2D. Absolute errors for different
triangulations for k = 1.

eσh e.c.r. euh e.c.r. evh e.c.r. eph e.c.r.

7.1164e+ 00 - 2.3799e− 01 - 2.2314e+ 00 - 5.5134e+ 00 -

3.2846e+ 00 1.12 1.1138e− 01 1.10 8.7231e− 01 1.36 1.0455e+ 00 2.40

1.6829e+ 00 0.96 5.1288e− 02 1.12 4.7392e− 01 0.88 4.7845e− 01 1.13

8.6110e− 01 0.97 2.5185e− 02 1.03 2.3901e− 01 0.99 2.2263e− 01 1.10

4.3387e− 01 0.99 1.2492e− 02 1.01 1.1911e− 01 1.00 1.0551e− 01 1.08

2.1905e− 01 0.99 6.2239e− 03 1.01 5.9339e− 02 1.01 5.1158e− 02 1.04

1.1100e− 01 0.98 3.1075e− 03 1.00 2.9600e− 02 1.00 2.5166e− 02 1.02

5.6625e− 02 0.97 1.5526e− 03 1.00 1.4781e− 02 1.00 1.2478e− 02 1.01

euh e.c.r. eph e.c.r. eûh e.c.r. ep̂h e.c.r.

2.2844e− 01 - 5.2255e+ 00 - 4.9096e− 01 - 1.0613e+ 01 -

1.0822e− 01 1.08 1.0346e+ 00 2.34 2.3464e− 01 1.07 2.1675e+ 00 2.29

5.0833e− 02 1.09 4.7724e− 01 1.12 1.0527e− 01 1.16 9.7705e− 01 1.15

2.5131e− 02 1.02 2.2249e− 01 1.10 5.1094e− 02 1.04 4.5007e− 01 1.12

1.2486e− 02 1.01 1.0549e− 01 1.08 2.5171e− 02 1.02 2.1217e− 01 1.08

6.2231e− 03 1.00 5.1156e− 02 1.04 1.2495e− 02 1.01 1.0260e− 01 1.05

3.1074e− 03 1.00 2.5166e− 02 1.02 6.2268e− 03 1.00 5.0401e− 02 1.03

1.5526e− 03 1.00 1.2478e− 02 1.01 3.1082e− 03 1.00 2.4973e− 02 1.01
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Table C.11
Nonlinear time dependent validation test in 2D. Absolute errors for different
triangulations for k = 2.

eσh e.c.r. euh e.c.r. evh e.c.r. eph e.c.r.

1.2041e+ 00 - 6.9380e− 02 - 3.9853e− 01 - 2.0488e− 01 -

3.4587e− 01 1.80 1.0414e− 02 2.74 3.5279e− 02 3.50 3.5545e− 02 2.53

1.3324e− 01 1.38 5.5433e− 03 0.91 1.2548e− 02 1.49 1.7058e− 02 1.06

6.5255e− 02 1.03 2.8579e− 03 0.96 6.3525e− 03 0.98 8.7613e− 03 0.96

3.2597e− 02 1.00 1.4448e− 03 0.98 3.1841e− 03 1.00 4.4439e− 03 0.98

1.6308e− 02 1.00 7.2513e− 04 0.99 1.5914e− 03 1.00 2.2372e− 03 0.99

8.1558e− 03 1.00 3.6318e− 04 1.00 7.9502e− 04 1.00 1.1223e− 03 1.00

4.0782e− 03 1.00 1.8173e− 04 1.00 3.9729e− 04 1.00 5.6203e− 04 1.00

euh e.c.r. eph e.c.r. eûh e.c.r. ep̂h e.c.r.

6.3126e− 02 - 1.4665e− 01 - 1.0750e− 01 - 5.0188e− 01 -

9.9015e− 03 2.67 3.5027e− 02 2.07 2.2517e− 02 2.26 7.3916e− 02 2.76

5.4906e− 03 0.85 1.7019e− 02 1.04 1.1648e− 02 0.95 3.5019e− 02 1.08

2.8513e− 03 0.95 8.7563e− 03 0.96 5.8307e− 03 1.00 1.7775e− 02 0.98

1.4439e− 03 0.98 4.4433e− 03 0.98 2.9147e− 03 1.00 8.9532e− 03 0.99

7.2502e− 04 0.99 2.2371e− 03 0.99 1.4562e− 03 1.00 4.4910e− 03 1.00

3.6317e− 04 1.00 1.1223e− 03 1.00 7.2783e− 04 1.00 2.2487e− 03 1.00

1.8173e− 04 1.00 5.6203e− 04 1.00 3.6382e− 04 1.00 1.1251e− 03 1.00
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Table C.12
Nonlinear time dependent validation test in 2D. Absolute errors for different
triangulations for k = 3.

eσh e.c.r. euh e.c.r. evh e.c.r. eph e.c.r.

6.0037e− 01 - 2.2958e− 02 - 7.6159e− 02 - 5.5499e− 02 -

2.7308e− 01 1.14 1.1430e− 02 1.01 2.9935e− 02 1.35 3.4718e− 02 0.68

1.3091e− 01 1.06 5.7407e− 03 0.99 1.3218e− 02 1.18 1.7158e− 02 1.02

6.5161e− 02 1.01 2.8819e− 03 0.99 6.4440e− 03 1.04 8.7962e− 03 0.96

3.2593e− 02 1.00 1.4471e− 03 0.99 3.1970e− 03 1.01 4.4488e− 03 0.98

1.6308e− 02 1.00 7.2542e− 04 1.00 1.5928e− 03 1.01 2.2378e− 03 0.99

8.1558e− 03 1.00 3.6322e− 04 1.00 7.9520e− 04 1.00 1.1223e− 03 1.00

4.0782e− 03 1.00 1.8173e− 04 1.00 3.9732e− 04 1.00 5.6204e− 04 1.00

euh e.c.r. eph e.c.r. eûh e.c.r. ep̂h e.c.r.

2.1633e− 02 - 5.3733e− 02 - 4.6765e− 02 - 1.2012e− 01 -

1.1065e− 02 0.97 3.4411e− 02 0.64 2.4337e− 02 0.94 7.3441e− 02 0.71

5.6896e− 03 0.96 1.7118e− 02 1.01 1.1841e− 02 1.04 3.5346e− 02 1.06

2.8753e− 03 0.98 8.7911e− 03 0.96 5.8541e− 03 1.02 1.7855e− 02 0.99

1.4463e− 03 0.99 4.4481e− 03 0.98 2.9170e− 03 1.00 8.9642e− 03 0.99

7.2531e− 04 1.00 2.2378e− 03 0.99 1.4565e− 03 1.00 4.4925e− 03 1.00

3.6321e− 04 1.00 1.1223e− 03 1.00 7.2787e− 04 1.00 2.2489e− 03 1.00

1.8173e− 04 1.00 5.6204e− 04 1.00 3.6383e− 04 1.00 1.1251e− 03 1.00
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Table C.13
Effect of varying the elastic Lamé parameters in the validation test case 1
in 2D. Local bases of degree k = 1 have been used. The fluid pressure ph|K
was taken in P k+1(K).

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

9.1918e− 02 - 2.2084e+ 07 - 2.0335e− 01 - 3.1450e− 01 -

6.9495e− 02 0.40 4.1434e+ 06 2.41 5.3348e− 02 1.93 4.0850e− 02 2.94

1.5486e− 02 2.17 5.2383e+ 05 2.98 1.0566e− 02 2.34 4.2656e− 03 3.26

3.7966e− 03 2.03 6.5671e+ 04 3.00 2.6522e− 03 1.99 5.3497e− 04 3.00

9.3380e− 04 2.02 8.2150e+ 03 3.00 6.6367e− 04 2.00 6.6937e− 05 3.00

2.3116e− 04 2.01 1.0271e+ 03 3.00 1.6595e− 04 2.00 8.3702e− 06 3.00

5.7483e− 05 2.01 1.2839e+ 02 3.00 4.1488e− 05 2.00 1.0465e− 06 3.00

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

1.4347e− 01 - 1.3478e− 02 - 9.1063e+ 06 - 8.0934e− 02 -

1.7157e− 01 −0.26 3.2924e− 02 −1.29 2.8498e+ 05 5.00 5.8218e− 02 0.48

2.0016e− 02 3.10 2.1344e− 04 7.27 1.3156e+ 04 4.44 1.2098e− 02 2.27

2.1347e− 03 3.23 2.7508e− 05 2.96 5.9237e+ 02 4.47 3.0421e− 03 1.99

2.2934e− 04 3.22 3.4904e− 06 2.98 2.6405e+ 01 4.49 7.6161e− 04 2.00

2.5626e− 05 3.16 4.4081e− 07 2.99 1.1717e+ 00 4.49 1.9047e− 04 2.00

2.9834e− 06 3.10 5.5287e− 08 3.00 5.1887e− 02 4.50 4.7622e− 05 2.00
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Table C.14
Accuracy of uh and ûh is restored in test case 1 in 2D by taking the charac-
teristic total stress σc = 2µe = 1.2× 107 Pa, and all the other characteristic
parameters equal to 1.

eσh e.c.r. euh e.c.r. evh e.c.r. eph e.c.r.

9.1231e− 02 - 1.8760e+ 00 - 2.0335e− 01 - 3.1450e− 01 -

5.7464e− 02 0.67 4.0787e− 01 2.20 4.1566e− 02 2.29 3.3734e− 02 3.22

1.4718e− 02 1.97 5.0453e− 02 3.02 1.0566e− 02 1.98 4.2664e− 03 2.98

3.6795e− 03 2.00 6.1684e− 03 3.03 2.6522e− 03 1.99 5.3503e− 04 3.00

9.1625e− 04 2.01 7.5771e− 04 3.03 6.6367e− 04 2.00 6.6944e− 05 3.00

2.2838e− 04 2.00 9.3737e− 05 3.01 1.6595e− 04 2.00 8.3708e− 06 3.00

5.6994e− 05 2.00 1.1652e− 05 3.01 4.1488e− 05 2.00 1.0465e− 06 3.00

euh e.c.r. eph e.c.r. eûh e.c.r. ep̂h e.c.r.

1.4947e− 01 - 1.3478e− 02 - 7.2379e− 01 - 8.0934e− 02 -

1.4276e− 01 0.07 1.6196e− 03 3.06 2.4489e− 01 1.56 4.7290e− 02 0.78

1.6596e− 02 3.10 2.1420e− 04 2.92 3.0738e− 02 2.99 1.2098e− 02 1.97

1.8477e− 03 3.17 2.7550e− 05 2.96 4.3311e− 03 2.83 3.0421e− 03 1.99

2.0754e− 04 3.15 3.4890e− 06 2.98 8.3123e− 04 2.38 7.6161e− 04 2.00

2.4087e− 05 3.11 4.3880e− 07 2.99 1.9388e− 04 2.10 1.9047e− 04 2.00

2.8801e− 06 3.06 5.5011e− 08 3.00 4.7774e− 05 2.02 4.7622e− 05 2.00
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Table C.15
Accuracy of uh and ûh is restored in test case 2 in 2D by taking the charac-
teristic total stress σc = 2µe = 1.2× 107 Pa, and all the other characteristic
parameters equal to 1.

eσh e.c.r. euh e.c.r. evh e.c.r. eph e.c.r.

9.1231e− 02 - 1.8760e+ 00 - 2.6764e− 01 - 1.9098e− 01 -

5.7464e− 02 0.67 4.0787e− 01 2.20 1.1337e− 01 1.24 2.9488e− 02 2.70

1.4718e− 02 1.97 5.0453e− 02 3.02 2.6078e− 02 2.12 3.2740e− 03 3.17

3.6795e− 03 2.00 6.1684e− 03 3.03 6.6773e− 03 1.97 4.0928e− 04 3.00

9.1625e− 04 2.01 7.5771e− 04 3.03 1.6790e− 03 1.99 5.1099e− 05 3.00

2.2838e− 04 2.00 9.3737e− 05 3.01 4.2057e− 04 2.00 6.3883e− 06 3.00

5.6994e− 05 2.00 1.1652e− 05 3.01 1.0522e− 04 2.00 8.0286e− 07 2.99

euh e.c.r. eph e.c.r. eûh e.c.r. ep̂h e.c.r.

1.4947e− 01 - 4.3902e− 02 - 7.2379e− 01 - 1.4888e− 01 -

1.4276e− 01 0.07 1.0768e− 02 2.03 2.4489e− 01 1.56 5.0258e− 02 1.57

1.6596e− 02 3.10 1.0588e− 03 3.35 3.0738e− 02 2.99 1.2198e− 02 2.04

1.8477e− 03 3.17 1.2313e− 04 3.10 4.3311e− 03 2.83 3.0471e− 03 2.00

2.0754e− 04 3.15 1.4941e− 05 3.04 8.3123e− 04 2.38 7.6190e− 04 2.00

2.4087e− 05 3.11 1.8571e− 06 3.01 1.9388e− 04 2.10 1.9049e− 04 2.00

2.8802e− 06 3.06 2.4551e− 07 2.92 4.7774e− 05 2.02 4.7623e− 05 2.00
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Table C.16
Approximation errors for Pref/Uref = 1× 104 Pa m−1 in the validation test
case 1 in 2D. Local bases of degree k = 1 have been used. The fluid pressure
ph|K was taken in P k+1(K).

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

1.2972e− 01 - 3.1964e+ 02 - 2.0335e− 01 - 3.1450e− 01 -

6.1348e− 02 1.08 6.6987e+ 01 2.25 4.1566e− 02 2.29 3.3734e− 02 3.22

1.5570e− 02 1.98 8.0962e+ 00 3.05 1.0566e− 02 1.98 4.2664e− 03 2.98

3.8633e− 03 2.01 9.8720e− 01 3.04 2.6522e− 03 1.99 5.3503e− 04 3.00

9.5814e− 04 2.01 1.2147e− 01 3.02 6.6367e− 04 2.00 6.6944e− 05 3.00

2.3835e− 04 2.01 1.5050e− 02 3.01 1.6595e− 04 2.00 8.3708e− 06 3.00

5.9426e− 05 2.00 1.8725e− 03 3.01 4.1488e− 05 2.00 1.0465e− 06 3.00

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

1.3026e+ 02 - 1.3478e− 02 - 2.0620e+ 02 - 8.0934e− 02 -

2.3392e+ 01 2.48 1.6196e− 03 3.06 4.1327e+ 01 2.32 4.7290e− 02 0.78

2.2898e+ 00 3.35 2.1420e− 04 2.92 4.3523e+ 00 3.25 1.2098e− 02 1.97

2.2989e− 01 3.32 2.7550e− 05 2.96 4.5898e− 01 3.25 3.0421e− 03 1.99

2.3830e− 02 3.27 3.4890e− 06 2.98 4.9658e− 02 3.21 7.6161e− 04 2.00

2.5963e− 03 3.20 4.3880e− 07 2.99 5.6080e− 03 3.15 1.9047e− 04 2.00

2.9717e− 04 3.13 5.5011e− 08 3.00 6.5967e− 04 3.09 4.7622e− 05 2.00
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Table C.17
Approximation errors for Pref = 1× 104 Pa, Uref = 1 m in the validation
test case 2 in 2D. Local bases of degree k = 1 have been used. The fluid
pressure ph|K was taken in P k+1(K).

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

1.2974e+ 01 - 6.8121e+ 04 - 8.2089e− 01 - 3.9167e+ 01 -

2.6880e+ 01 −1.05 7.7707e+ 04 −0.19 1.3521e+ 00 −0.72 6.0584e+ 01 −0.63

1.9811e+ 01 0.44 5.4491e+ 04 0.51 7.6147e− 01 0.83 4.2564e+ 01 0.51

1.1597e+ 01 0.77 2.6187e+ 04 1.06 3.9461e− 01 0.95 2.3866e+ 01 0.83

7.7878e+ 00 0.57 1.5571e+ 04 0.75 5.4963e− 01 −0.48 1.6046e+ 01 0.57

6.2401e+ 00 0.32 1.1648e+ 04 0.42 2.7818e− 01 0.98 1.2725e+ 01 0.33

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

6.2200e+ 04 - 3.0496e+ 01 - 7.4287e+ 04 - 4.1732e+ 01 -

7.6857e+ 04 −0.31 5.4891e+ 01 −0.85 8.0277e+ 04 −0.11 8.3134e+ 01 −0.99

5.4154e+ 04 0.51 4.0415e+ 01 0.44 5.4638e+ 04 0.56 5.1960e+ 01 0.68

2.6110e+ 04 1.05 2.3106e+ 01 0.81 2.6088e+ 04 1.07 2.7533e+ 01 0.92

1.5553e+ 04 0.75 1.5798e+ 01 0.55 1.5541e+ 04 0.75 1.7577e+ 01 0.65

1.1644e+ 04 0.42 1.2656e+ 01 0.32 1.1636e+ 04 0.42 1.3405e+ 01 0.39
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Table C.18
Effect of reducing the temporal step size ∆t in the linear time dependent
test case 3 in 2D. The mesh was fixed and ∆t was taken as ∆t = T/r with
r = [20, 40, 80, 160, 320, 640, 1280, 2560]. We used the formulation with
ph|K ∈ P k+1(K), k = 1. Absolute errors increase as ∆t decreases.

eσh e.c.r. euh e.c.r. evh e.c.r. eph e.c.r.

1.2999e+ 01 - 4.4127e− 01 - 3.9682e+ 00 - 1.6738e+ 00 -

2.7748e+ 01 −1.09 8.2154e− 01 −0.90 7.8989e+ 00 −0.99 3.3292e+ 00 −0.99

5.7654e+ 01 −1.06 1.5988e+ 00 −0.96 1.5702e+ 01 −0.99 6.6171e+ 00 −0.99

1.2184e+ 02 −1.08 3.1623e+ 00 −0.98 3.1256e+ 01 −0.99 1.3171e+ 01 −0.99

2.6150e+ 02 −1.10 6.3069e+ 00 −1.00 6.2333e+ 01 −1.00 2.6267e+ 01 −1.00

5.5674e+ 02 −1.09 1.2666e+ 01 −1.01 1.2447e+ 02 −1.00 5.2450e+ 01 −1.00

1.1529e+ 03 −1.05 2.5373e+ 01 −1.00 2.4874e+ 02 −1.00 1.0481e+ 02 −1.00

2.3389e+ 03 −1.02 5.0785e+ 01 −1.00 4.9726e+ 02 −1.00 2.0954e+ 02 −1.00

euh e.c.r. eph e.c.r. eûh e.c.r. ep̂h e.c.r.

4.4031e− 01 - 1.6726e+ 00 - 8.9520e− 01 - 3.3843e+ 00 -

8.1980e− 01 −0.90 3.3269e+ 00 −0.99 1.6668e+ 00 −0.90 6.7315e+ 00 −0.99

1.5954e+ 00 −0.96 6.6125e+ 00 −0.99 3.2440e+ 00 −0.96 1.3379e+ 01 −0.99

3.1556e+ 00 −0.98 1.3162e+ 01 −0.99 6.4141e+ 00 −0.98 2.6632e+ 01 −0.99

6.2934e+ 00 −1.00 2.6248e+ 01 −1.00 1.2777e+ 01 −0.99 5.3109e+ 01 −1.00

1.2638e+ 01 −1.01 5.2414e+ 01 −1.00 2.5639e+ 01 −1.00 1.0605e+ 02 −1.00

2.5317e+ 01 −1.00 1.0474e+ 02 −1.00 5.1336e+ 01 −1.00 2.1193e+ 02 −1.00

5.0674e+ 01 −1.00 2.0939e+ 02 −1.00 1.0273e+ 02 −1.00 4.2367e+ 02 −1.00
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Table C.19
Effect of reducing the temporal step size ∆t in the linear time dependent
test case 3 in 2D. The mesh was fixed and ∆t was taken as ∆t = T/r
with r = [20, 40, 80, 160, 320, 640, 1280, 2560]. We used the formulation
with ph|K ∈ P k+1(K), k = 4. Absolute errors decrease linearly with ∆t as
expected.

eσh e.c.r. euh e.c.r. evh e.c.r. eph e.c.r.

3.8573e+ 00 - 1.7429e− 01 - 4.2036e− 01 - 1.8066e− 01 -

1.9404e+ 00 0.99 8.7882e− 02 0.99 2.0830e− 01 1.01 8.9518e− 02 1.01

9.7162e− 01 1.00 4.4158e− 02 0.99 1.0357e− 01 1.01 4.4509e− 02 1.01

4.8599e− 01 1.00 2.2134e− 02 1.00 5.1640e− 02 1.00 2.2187e− 02 1.00

2.4303e− 01 1.00 1.1083e− 02 1.00 2.5786e− 02 1.00 1.1078e− 02 1.00

1.2152e− 01 1.00 5.5472e− 03 1.00 1.2896e− 02 1.00 5.5394e− 03 1.00

6.0792e− 02 1.00 2.7794e− 03 1.00 6.4757e− 03 0.99 2.7784e− 03 1.00

3.0694e− 02 0.99 1.4009e− 03 0.99 3.3082e− 03 0.97 1.4108e− 03 0.98

euh e.c.r. eph e.c.r. eûh e.c.r. ep̂h e.c.r.

1.7389e− 01 - 1.8055e− 01 - 3.5396e− 01 - 3.6571e− 01 -

8.7680e− 02 0.99 8.9465e− 02 1.01 1.7848e− 01 0.99 1.8121e− 01 1.01

4.4056e− 02 0.99 4.4483e− 02 1.01 8.9679e− 02 0.99 9.0100e− 02 1.01

2.2084e− 02 1.00 2.2174e− 02 1.00 4.4952e− 02 1.00 4.4913e− 02 1.00

1.1057e− 02 1.00 1.1072e− 02 1.00 2.2506e− 02 1.00 2.2426e− 02 1.00

5.5345e− 03 1.00 5.5361e− 03 1.00 1.1262e− 02 1.00 1.1213e− 02 1.00

2.7731e− 03 1.00 2.7768e− 03 1.00 5.6380e− 03 1.00 5.6239e− 03 1.00

1.3977e− 03 0.99 1.4099e− 03 0.98 2.8301e− 03 0.99 2.8547e− 03 0.98
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Table C.20
Linear stationary validation test in 3D. Relative errors for different trian-
gulations with the lowest order method k = 1.

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

5.8651e− 01 - 3.7733e+ 00 - 5.8901e− 01 - 2.7938e+ 00 -

1.9029e− 01 1.62 5.2659e− 01 2.84 1.9146e− 01 1.62 3.2981e− 01 3.08

5.4064e− 02 1.82 6.6167e− 02 2.99 5.2890e− 02 1.86 4.0593e− 02 3.02

1.4252e− 02 1.92 8.6656e− 03 2.93 1.3590e− 02 1.96 5.0043e− 03 3.02

3.5835e− 03 1.99 1.1659e− 03 2.89 3.4223e− 03 1.99 6.2271e− 04 3.01

8.8788e− 04 2.01 1.5304e− 04 2.93 8.5727e− 04 2.00 7.7741e− 05 3.00

2.2053e− 04 2.01 1.9587e− 05 2.97 2.1444e− 04 2.00 9.8088e− 06 2.99

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

2.2057e− 01 - 2.1711e− 01 - 1.6371e+ 00 - 6.4946e− 01 -

3.6397e− 02 2.60 1.9903e− 02 3.45 2.2443e− 01 2.87 2.0757e− 01 1.65

9.3696e− 03 1.96 1.8717e− 03 3.41 5.1621e− 02 2.12 5.8367e− 02 1.83

2.1757e− 03 2.11 1.4869e− 04 3.65 1.2873e− 02 2.00 1.5047e− 02 1.96

3.8523e− 04 2.50 1.2718e− 05 3.55 3.1699e− 03 2.02 3.7914e− 03 1.99

5.6174e− 05 2.78 1.2987e− 06 3.29 7.8409e− 04 2.02 9.4972e− 04 2.00

7.4849e− 06 2.91 1.3766e− 06 −0.08 1.9539e− 04 2.00 2.3755e− 04 2.00
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Table C.21
Linear stationary validation test in 3D. Relative errors for different trian-
gulations and polynomial degree k = 2.

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

2.7380e− 01 - 1.5294e+ 00 - 3.0596e− 01 - 1.0503e+ 00 -

5.2196e− 02 2.39 1.3228e− 01 3.53 5.3969e− 02 2.50 8.4262e− 02 3.64

7.4312e− 03 2.81 8.7767e− 03 3.91 7.5438e− 03 2.84 5.5677e− 03 3.92

9.6430e− 04 2.95 5.6320e− 04 3.96 9.7195e− 04 2.96 3.5212e− 04 3.98

1.2110e− 04 2.99 3.5896e− 05 3.97 1.2248e− 04 2.99 2.2067e− 05 4.00

1.5112e− 05 3.00 2.2678e− 06 3.98 1.5345e− 05 3.00 1.3804e− 06 4.00

4.3342e− 06 1.80 2.0254e− 06 0.16 2.1608e− 05 −0.49 5.2700e− 05 −5.25

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

3.6265e− 02 - 6.1856e− 03 - 5.2212e− 01 - 2.3047e− 01 -

2.4286e− 03 3.90 1.3067e− 03 2.24 5.5574e− 02 3.23 6.4748e− 02 1.83

1.6708e− 04 3.86 4.0284e− 05 5.02 7.0207e− 03 2.98 9.1884e− 03 2.82

1.1195e− 05 3.90 1.1525e− 06 5.13 8.9948e− 04 2.96 1.1859e− 03 2.95

7.1904e− 07 3.96 4.9457e− 08 4.54 1.1337e− 04 2.99 1.4943e− 04 2.99

4.5498e− 08 3.98 3.0374e− 08 0.70 1.4220e− 05 3.00 1.8717e− 05 3.00

2.0206e− 06 −5.47 5.2706e− 05 −10.76 2.6904e− 06 2.40 5.2888e− 05 −1.50
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Table C.22
Linear stationary validation test in 3D. Relative errors for different trian-
gulations and polynomial degree k = 3.

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

1.3595e− 01 - 7.1002e− 01 - 1.1059e− 01 - 3.3265e− 01 -

1.2275e− 02 3.47 2.9841e− 02 4.57 1.2670e− 02 3.13 1.9008e− 02 4.13

8.6573e− 04 3.83 1.0069e− 03 4.89 8.8195e− 04 3.84 6.4094e− 04 4.89

5.6073e− 05 3.95 3.2042e− 05 4.97 5.6660e− 05 3.96 2.0413e− 05 4.97

3.5428e− 06 3.98 1.0055e− 06 4.99 3.5663e− 06 3.99 6.4120e− 07 4.99

2.2223e− 07 3.99 3.1484e− 08 5.00 2.2382e− 07 3.99 4.2202e− 08 3.93

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

3.4352e− 03 - 3.9899e− 04 - 1.8337e− 01 - 1.9518e− 01 -

1.4701e− 04 4.55 3.9320e− 05 3.34 1.3031e− 02 3.81 1.6669e− 02 3.55

4.0412e− 06 5.19 9.0138e− 07 5.45 8.7319e− 04 3.90 1.1762e− 03 3.82

8.9659e− 08 5.49 2.0902e− 08 5.43 5.6107e− 05 3.96 7.5774e− 05 3.96

1.9885e− 09 5.49 1.5048e− 08 0.47 3.5539e− 06 3.98 4.7719e− 06 3.99

1.4265e− 09 0.48 3.7148e− 08 −1.30 2.2361e− 07 3.99 3.0113e− 07 3.99
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Table C.23
Nonlinear stationary validation test in 3D. Relative errors for different tri-
angulations for k = 1.

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

5.8560e− 01 - 3.7739e+ 00 - 5.7216e− 01 - 1.5595e+ 00 -

1.9016e− 01 1.62 5.2699e− 01 2.84 1.9608e− 01 1.54 1.7695e− 01 3.14

5.4090e− 02 1.81 6.6165e− 02 2.99 5.4205e− 02 1.85 2.1287e− 02 3.06

1.4261e− 02 1.92 8.6607e− 03 2.93 1.3923e− 02 1.96 2.6112e− 03 3.03

3.5848e− 03 1.99 1.1655e− 03 2.89 3.5050e− 03 1.99 3.2412e− 04 3.01

8.8800e− 04 2.01 1.5302e− 04 2.93 8.7760e− 04 2.00 4.0420e− 05 3.00

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

2.1789e− 01 - 2.8152e− 01 - 1.6398e+ 00 - 6.5767e− 01 -

3.6065e− 02 2.59 2.0765e− 02 3.76 2.2451e− 01 2.87 2.0758e− 01 1.66

9.2859e− 03 1.96 1.9281e− 03 3.43 5.1582e− 02 2.12 5.8357e− 02 1.83

2.1676e− 03 2.10 1.9609e− 04 3.30 1.2869e− 02 2.00 1.5047e− 02 1.96

3.8480e− 04 2.49 2.1915e− 05 3.16 3.1697e− 03 2.02 3.7914e− 03 1.99

5.6157e− 05 2.78 2.5769e− 06 3.09 7.8409e− 04 2.02 9.4972e− 04 2.00
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Table C.24
Nonlinear stationary validation test in 3D. Relative errors for different tri-
angulations for k = 2.

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

2.7103e− 01 - 1.5306e+ 00 - 3.1379e− 01 - 5.0867e− 01 -

5.2179e− 02 2.38 1.3235e− 01 3.53 5.7713e− 02 2.44 4.3798e− 02 3.54

7.4349e− 03 2.81 8.7764e− 03 3.91 7.9869e− 03 2.85 2.9665e− 03 3.88

9.6473e− 04 2.95 5.6310e− 04 3.96 1.0395e− 03 2.94 1.8966e− 04 3.97

1.2112e− 04 2.99 3.5893e− 05 3.97 1.3135e− 04 2.98 1.1911e− 05 3.99

1.5113e− 05 3.00 2.2677e− 06 3.98 1.6465e− 05 3.00 7.4617e− 07 4.00

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

3.6417e− 02 - 9.0363e− 03 - 5.2096e− 01 - 2.3427e− 01 -

2.4610e− 03 3.89 1.0237e− 03 3.14 5.5530e− 02 3.23 6.4804e− 02 1.85

1.6938e− 04 3.86 4.9414e− 05 4.37 7.0177e− 03 2.98 9.1887e− 03 2.82

1.1265e− 05 3.91 2.0191e− 06 4.61 8.9938e− 04 2.96 1.1859e− 03 2.95

7.2048e− 07 3.97 8.9102e− 08 4.50 1.1337e− 04 2.99 1.4943e− 04 2.99

4.5527e− 08 3.98 3.7285e− 08 1.26 1.4220e− 05 3.00 1.8717e− 05 3.00
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Table C.25
Nonlinear stationary validation test in 3D. Relative errors for different tri-
angulations for k = 3.

eσh,rel e.c.r. euh,rel e.c.r. evh,rel e.c.r. eph,rel e.c.r.

1.3585e− 01 - 7.1027e− 01 - 1.0280e− 01 - 1.5989e− 01 -

1.2273e− 02 3.47 2.9852e− 02 4.57 1.2878e− 02 3.00 1.0129e− 02 3.98

8.6592e− 04 3.83 1.0070e− 03 4.89 1.1027e− 03 3.55 4.1431e− 04 4.61

5.6077e− 05 3.95 3.2042e− 05 4.97 7.3590e− 05 3.91 1.3648e− 05 4.92

3.5429e− 06 3.98 1.0055e− 06 4.99 4.6780e− 06 3.98 4.3294e− 07 4.98

2.2224e− 07 3.99 3.1492e− 08 5.00 2.9413e− 07 3.99 4.6424e− 08 3.22

euh,rel e.c.r. eph,rel e.c.r. eûh,rel e.c.r. ep̂h,rel e.c.r.

3.5841e− 03 - 1.9569e− 03 - 1.8335e− 01 - 1.9563e− 01 -

1.4595e− 04 4.62 6.0481e− 05 5.02 1.3018e− 02 3.82 1.6664e− 02 3.55

4.0175e− 06 5.18 1.6777e− 06 5.17 8.7305e− 04 3.90 1.1766e− 03 3.82

8.9508e− 08 5.49 4.0178e− 08 5.38 5.6106e− 05 3.96 7.5781e− 05 3.96

2.0140e− 09 5.47 1.8273e− 08 1.14 3.5539e− 06 3.98 4.7721e− 06 3.99

1.6045e− 09 0.33 4.4418e− 08 −1.28 2.2361e− 07 3.99 3.0213e− 07 3.98
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Table C.27
Linear time dependent validation test in 3D. Absolute errors for different
triangulations for k = 2.

eσh e.c.r. euh e.c.r. evh e.c.r. eph e.c.r.

4.2423e+ 02 - 4.5936e+ 00 - 5.5461e+ 01 - 2.5077e+ 01 -

7.5376e+ 01 2.49 1.0569e+ 00 2.12 6.6159e+ 00 3.07 2.8754e+ 00 3.12

2.1277e+ 01 1.82 1.3458e− 01 2.97 2.3205e+ 00 1.51 1.0155e+ 00 1.50

9.5236e+ 00 1.16 3.6604e− 02 1.88 1.0983e+ 00 1.08 4.8038e− 01 1.08

4.6957e+ 00 1.02 1.8551e− 02 0.98 5.4570e− 01 1.01 2.3864e− 01 1.01

euh e.c.r. eph e.c.r. eûh e.c.r. ep̂h e.c.r.

2.6065e+ 00 - 2.1087e+ 01 - 9.4588e+ 00 - 6.1608e+ 01 -

9.5821e− 01 1.44 2.7791e+ 00 2.92 1.3696e+ 00 2.79 4.7213e+ 00 3.71

1.2344e− 01 2.96 1.0078e+ 00 1.46 1.1987e− 01 3.51 1.1187e+ 00 2.08

3.6036e− 02 1.78 4.7946e− 01 1.07 2.8057e− 02 2.10 3.6716e− 01 1.61

1.8480e− 02 0.96 2.3853e− 01 1.01 9.9850e− 03 1.49 1.2776e− 01 1.52
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Table C.28
Linear time dependent validation test in 3D. Absolute errors for different
triangulations for k = 3.

eσh e.c.r. euh e.c.r. evh e.c.r. eph e.c.r.

1.9470e+ 02 - 1.6007e+ 00 - 2.5045e+ 01 - 1.1036e+ 01 -

4.4014e+ 01 2.15 1.5927e− 01 3.33 5.3221e+ 00 2.23 2.3295e+ 00 2.24

1.9236e+ 01 1.19 7.5442e− 02 1.08 2.2241e+ 00 1.26 9.7234e− 01 1.26

9.3870e+ 00 1.04 3.7522e− 02 1.01 1.0925e+ 00 1.03 4.7767e− 01 1.03

1.2018e+ 02 −3.68 9.9671e− 02 −1.41 5.4540e− 01 1.00 2.3848e− 01 1.00

euh e.c.r. eph e.c.r. eûh e.c.r. ep̂h e.c.r.

6.5877e− 01 - 9.6628e+ 00 - 2.9660e+ 00 - 2.8412e+ 01 -

1.3836e− 01 2.25 2.2606e+ 00 2.10 2.6385e− 01 3.49 3.7734e+ 00 2.91

7.1678e− 02 0.95 9.6498e− 01 1.23 8.4774e− 02 1.64 1.0709e+ 00 1.82

3.6989e− 02 0.95 4.7676e− 01 1.02 2.8898e− 02 1.55 3.6507e− 01 1.55

2.6116e− 02 0.50 2.3837e− 01 1.00 5.2602e− 02 −0.86 1.2767e− 01 1.52
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