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Nature’s beauty dies.

The day dawns when the nautilus is no more.

The rainbow passes, the flower fades, the mountains crumble, the stars grow cold.

But beauty in Mathematics endures for evermore.

- H. E. Huntley
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4.6 The attractor Aλ3 inside Ĩ5. The green discs are part of the chain whose
existence is provided by Theorem 4.1.3. . . . . . . . . . . . . . . . . . . . 50
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ABSTRACT

Silvestri, Stefano Ph.D., Purdue University, August 2019. The Dynamics of Semi-
groups of Contraction Similarities on the Plane. Major Professor: Rodrigo A. Pérez.

Consider two objects associated to the Iterated Function System (IFS) {λz +

1, λz − 1}: the locus M of parameters λ ∈ D \ {0} for which the corresponding

attractor is connected; and the locusM0 of parameters for which the related attractor

contains 0. The setM can also be characterized as the locus of parameters for which

the attractor of the IFS {λz + 1, λz, λz − 1} contains 1/λ. Exploiting the asymptotic

similarity ofM andM0 with the respective associated attractors, we give sufficient

conditions on λ ∈ ∂M or ∂M0 to guarantee it is accessible (not buried). Moreover,

for a specific parameter λ ∈ ∂M∩∂M0 we describe a method to show it is accessible

from the connected component of D \M containing the origin.
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1. INTRODUCTION

The focus of this thesis is on a pair of mathematical objects, denoted by M and

M0, whose study relates to several areas of mathematics. There is interest from the

number theory point of view, since β–expansions (non-integer representation) of real

numbers and Parry polynomials have been used [1, 2] to study M0. Moreover, M

and M0 can be viewed as subsets of the closure of the roots of polynomials with

(restricted) integer coefficients. The setM0 can also be seen from a dynamical point

of view as the closure of the set (restricted to the unit disc) of Galois conjugates of

entropies of real quadratic polynomials [3, 4].

We will investigate the setsM andM0 via two other interpretations: as the clo-

sure of the roots of power series with restricted coefficients, and as the connectedness

locus for a pair of linear transformations.

There is a compelling motivation, especially for analysts, to use the above interpre-

tations ofM andM0. The limit set Aλ, obtained by iteration of the aforementioned

linear transformations, is the support of a probability measure, an infinite Bernoulli

convolution. Such measure νλ is the distribution of the random sum
∑

n≥0±λn where

the signs are chosen with equal probability. The main concern is to find for which

values of λ the measure νλ is absolutely continuous with respect to the Lebesgue

measure. This problem dates back to Erdös [5] in 1939. In the real case, λ ∈ (0, 1)

and νλ is only known to be singular when λ is the reciprocal of a Pisot number in

(1, 2). This is proved by showing that the Fourier transform ν̂λ(x) does not tend to

zero as x→∞. In the complex case, νλ is singular whenever |λ| < 2−1/2. The proof

is a simple argument on the Hausdorff dimension of the support of νλ. See [6–8] for

further background and results on this topic.

Our approach does not tackle this issue. The focus is on the boundary ofM and

M0. It was proven [9,10] that both D\M and D\M0 are disconnected, i.e. that there
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exists holes in M and M0. Moreover, these holes appear to be very well-organized

as there are sequences of holes in M accumulating to points on ∂M. The question

of classifying these connected components of D \M is still open, however our results

are a step in that direction. Let P denote the set of all power series with coefficients

in {−1, 0,+1}, i.e.

P :=

{
f(z) =

∞∑
j=0

cjz
j

∣∣∣∣ cj ∈ {−1, 0,+1} , c0 = 1

}

then

Theorem 1.0.1 (Pérez-Silvestri) Suppose f is the unique power series in P that

vanishes at λ ∈ M \ R with |λ| ≤ 2−1/2. If f has finitely many zero coefficients and

its Taylor polynomials satisfy certain conditions then λ is on the boundary of a hole

ofM.

and, with minor adjustments to the conditions on the Taylor polynomials,

Theorem 1.0.2 (Pérez-Silvestri) Suppose f is the unique power series in P that

vanishes at λ ∈ M \ R with |λ| ≤ 2−1/2. If f has no zero coefficients and its Taylor

polynomials satisfy certain conditions then λ is on the boundary of a hole ofM0.

We refer to points on the boundary of holes as accessible points, for obvious reasons.

For a specific point on ∂M∩ ∂M0, we further describe a method to determine the

connected component of D \M from which it is accessible.

Proposition 1.0.1 (Pérez-Silvestri) Let λ0 ≈ −0.366+0.520i be the root of f(z) =

1+(z+z2−z3)(1−z3)−1 then λ0 is accessible from the connected component of D\M

containing the origin.

Further motivation to study boundary points of M0 is provided by the results in

[11, 12]. It is possible to define quadratic dynamics on the limit set Aλ so that it is

quasisymmetrically conjugate to the dynamics of z2+c on the Julia set for Misiurewicz

parameter c. We overview this connection in Section 4.5.
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The thesis is organized as follows. Chapter 2 introduces the framework of our

study, the Iterated Function Systems, abbreviated as IFS. An IFS is a finite collection

of linear transformations on a complete metric space. Their study has formally begun

with John E. Hutchinson in his highly influential paper [13] in 1981. Michael F.

Barnsley and Kenneth Falconer popularized the theory of IFS with their books [14,15].

Chapters 3 and 4 describe the aforementioned sets. M andM0 arise from a family

of IFS paramterized by a complex number in the punctured unit disc. In the sections

of Chapter 3, we set the notation and overview some known results about the setsM

andM0. Our main theorems are proven in Chapter 4. Using these results we obtain

explicit accessible parameters on the boundaries of bothM andM0.
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2. GENERAL THEORY OF IFS

2.1 Iterated Function Systems

Let (X, d) be a complete metric space and let X be the space of nonempty compact

subsets of X, endowed with the Hausdorff metric dH. Recall that for any compact

sets E,F ∈ X the Hausdorff distance between them is defined as

dH(E,F ) := inf
{
ε > 0 | E ⊂ F (ε) and F ⊂ E(ε)

}
where F (ε) := {x ∈ X | d(x, y) < ε for some y ∈ F} is an ε-neighborhood of F .

An Iterated Function System (IFS) is a finite collection of contractions {sj}mj=1

sj : (X, d)→ (X, d) with d(sj(x), sj(y)) ≤ d(x, y) for all x, y in X.

If we let S : (X , dH)→ (X , dH) be defined by

S(K) :=
m⋃
j=1

sj(K)

then a tedious but straightforward exercise shows S is also a contraction. Hutchinson

realized that the Contraction Fixed Point Theorem of Banach guarantees that S has

a unique fixed point:

Definition 2.1.1 (Hutchinson [13]) Given a finite collection of contractions {sj}mj=1

on a complete metric space (X, d), there exists a unique compact set A ∈ X , called

the limit set or attractor, such that

S(A) =
m⋃
j=1

sj(A) = A.

Equivalently, for any K ∈ X

A = lim
n→∞

Sn(K),

where Sk = S ◦ Sk−1 denotes the k-fold composition of S with itself.
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The attractor of an IFS can, in fact, be obtained in another way:

Proposition 2.1.1 (Hutchinson [13]) If a non-empty closed set C ⊂ X is forward

invariant (i.e. sj(C) ⊆ C) under the contraction mappings sj, (1 ≤ j ≤ m) then C

contains the attractor A of the IFS {sj}mj=1 and

A =
⋂
n≥0

Sn(C).

2.2 Examples

In what follows we provide a few classic examples of IFS. They will support the

discussions of the properties of IFS in the next sections of this chapter. Furthermore,

the first example actually belongs to the particular family of IFS on which we will

focus in the following chapters.

2.2.1 The Cantor Set

Consider the contraction similarities

s0(x) =
1

3
x− 1 s1(x) =

1

3
x+ 1

on R. Let C0 = [−3/2, 3/2], then simple calculations show that s0(C0) = [−3/2,−1/2]

and s1(C0) = [1/2, 3/2], thus C1 := S(C0) = s0(C0)∪s1(C0) is a subset of C0, which by

Proposition 2.1.1 implies the attractor is a subset of C0. Note that C1 is equivalent

to the interval C0 with the open middle third removed. In the next iteration, the

images s0(C1) and s1(C1) are simply the intervals s0(C0) and s1(C0) with their open

middle third removed. Repeating this process infinitely many times will then lead us

to the Cantor Set, C =
⋂
n≥0Cn where Ck = S(Ck−1) for k ≥ 1. A few steps of the

construction are shown in the figure below.

Note that the nth iterate, Cn, consists of 2n disjoint closed intervals, each of length(
1
3

)n−1, so the total length of Cn is 3
(

2
3

)n which tends to 0 as we increase n to infinity.

However, the points ±3/2 are indeed in C, since they belong to Cn for every n. By
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Fig. 2.1. The first four steps in the construction of the Cantor Set.

the same argument taking the endpoints of all the intervals of all the approximations

Cn, we get a countable set of points, all belonging to C.

In fact, as we will see in Section 2.3, C can be put in bijection with the set of

one-sided infinite binary words, so it is uncountable. The endpoints of every Cn

correspond to eventually repeating words, and are precisely those points of C that are

accessible from R \ C.

We remark also that we can also consider the maps {s0, s1} as contraction similar-

ities on C and obtain the same limit set, since by Definition 2.1.1, C = limn→∞ Sn(K)

for any non-empty compact set K.

2.2.2 The Sierpiński Triangle

Another standard example is the Sierpiński Triangle, T. In this case we consider

three contraction similarities on C:

s0(z) =
1

2
z + ξ0

3 , s1(z) =
1

2
z + ξ1

3 , s2(z) =
1

2
z + ξ2

3
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where ξ3 = exp (2πi/3) is a third root of unity. Let T0 be the equilateral triangle with

vertices at 2ξ0
3 , 2ξ1

3 , and 2ξ2
3 . Joining the images s0, s1, and s2 of T0 is equivalent to

removing the interior of the triangle with vertices at the midpoints of the sides of T0.

Similarly, in the next iteration we remove the inner triangle from each of the three

remaining triangles, and so on, in analogy to our description of the Cantor Set. Note

however that T is a connected set, while C is not.

Fig. 2.2. The first six steps in the construction of the Sierpiński Triangle.
The dashed circle has radius 2. The colors represent which map has been
applied first.

2.3 Symbolic Representation of an Attractor

This last section introduces a convenient way to describe limit sets of iterated

function systems. This interpretation is a consequence of the following result.

Theorem 2.3.1 (Hutchinson [13]) The attractor A of an IFS {sj}mj=1 is the clo-

sure of the set of fixed points of every finite composition of the maps {sj}mj=1.
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Given an IFS {sj}mj=1 we will describe points in the attractor A by assigning them

a “name” consisting of a sequence of symbols from {1, 2, . . . ,m}. For any finite word

w = w0w1 · · ·wn−1 ∈ {1, 2, . . . ,m}n we will denote the finite composition

sw = sw0 ◦ sw1 ◦ . . . ◦ swn−1

so that Aw := sw(A) and A =
⋃
{Aw | w ∈ {1, 2, . . . ,m}n}. When n tends to infinity,

this induces a continuous map, called the address map, π : {1, 2, . . . ,m}∞ → A from

the set {1, 2, . . . ,m}∞ of all infinite words w = w0w1 · · · onto the attractor, defined

by

π(w) := lim
n→∞

sw0 ◦ . . . ◦ swn−1(x)

where the choice of x ∈ X does not matter. The infinite word w will then be called

an itinerary of the point π(w) ∈ A.

It is important to note that itineraries are often not unique. As seen from the

discussion in Section 2.2.1 the address map π1 : {0, 1}∞ → C is, in fact, a bijection

since C is totally disconnected. However, for an attractor A each nonempty intersec-

tion sw1(A) ∩ sw2(A), where the words w1 and w2 start differently, gives rise to dual

itineraries for a common point. In the Sierpiński Triangle T, where the address map

π2 : {0, 1, 2}∞ → T is not injective: for example, consider the words

a = 011111 · · · = 0(1)∞ b = 100000 · · · = 1(0)∞.

The repeating words (0)∞ and (1)∞ correspond to the fixed points 2ξ0
3 , 2ξ

1
3 of s0 and s1

which are vertices of the starting triangle T0. Consequently, their images s0(2ξ1
3) and

s1(2ξ0
3), with itineraries a and b respectively, are both sent to the midpoint between

them:

s0(2ξ1
3) =

1

2
(2ξ1

3) + ξ0
3 = ξ1

3 + ξ0
3

s1(2ξ0
3) =

1

2
(2ξ0

3) + ξ1
3 = ξ0

3 + ξ1
3

In general, whenever the limit set of an IFS is connected the address map π cannot

possibly be a bijection.
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2.4 Geometry of the Attractor

The geometry of the limit set associated to an IFS is quite irregular. However, the

same “irregularities” appear at different scales as the attractor is magnified. In what

follows, we introduce some useful tools that will help in obtaining a better handle on

the geometric structure of the attractor.

We have already discussed the (non) connectivity of the Cantor Set. This can be

extended, using Proposition 2.1.1, to the following standard exercise:

Lemma 2.4.1 Consider the IFS of contraction similarities {si}mi=1. Then A is totally

disconnected if and only if sj(A) ∩ sk(A) = ∅ for all j 6= k.

The above lemma hints that the geometric structure of the attractor A is deter-

mined by the overlap set
⋂m
j=1 sj(A). There is a historically important property of an

IFS which ensures that there is not “too much” overlap.

Definition 2.4.1 (Moran [16]) An IFS of contraction similarities {si}mi=1 is said

to have the open set condition (OSC) if there exists a nonempty open set V ⊂ C with

m⋃
j=1

sj(V ) ⊆ V and
m⋂
j=1

sj(V ) = ∅.

A set V satisfying the OSC condition for the IFS {si}mi=1 is called a feasible open set.

There are various possibilities for a feasible set depending on the attractor. For

instance, if the pieces sj(A) are all disjoint, then there is a minimum distance ε > 0

between all of them, so a δ-neighborhood of A with δ < ε/2 is a feasible open set.

In other situations, it might be even easier to find: consider the Cantor Set C, then

any disc (or interval, if we restrict to maps on R) centered at the origin with radius

r ∈ [3/2, 3] is a feasible open set.

However, difficulties in finding a suitable V arise when the attractor is connected.

For starters, it is easy to see that the feasible open set must avoid certain points of

A: for any point ξ in the nonempty overlap sj(A) ∩ sk(A), s−1
j (ξ) and s−1

k (ξ) cannot
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possibly be in V since otherwise ξ ∈ sj(V ) ∩ sk(V ). As an example, consider the

Sierpiński Triangle, then the interior of the starting triangle is a feasible open set.

In this way, V does not contain not only the preimages of the points in the overlap

set, but also the preimages of all points accessible from C \T. Alternatively, one can

choose V to be the interior of the hexagon with vertices at the scaled sixth roots of

unity 2ξk6 = 2 exp (2kπi/6) for k ∈ {0, 1, 2, 3, 4, 5} (see Fig. 2.3).

Fig. 2.3. A feasible open set V , in gray, and its images for the Sierpiński
Triangle.

In [17] there are examples of IFS satisfying the OSC where the feasible open set

has a complicated structure which is revealed only under magnification. Two of them

are shown in Fig. 2.4: the attractor on the left is generated by the maps

s0(z) = − i

2
z, s1(z) = −1

2
z − 1

2
, s2(z) = −1

2
z +

1 + i

2
;

while the limit set on the right is obtained from the maps

s0(z) =
i

2
z − 5i

2
, s1(z) = −1

2
z, s2(z) =

i

2
z − 1 + 4i

2
.

The open set condition is important in the measure-theoretic study of IFS as it is a

useful tool in establishing the dimension of the limit set. The dimension of a set is
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Fig. 2.4. Two non trivial examples of IFS satisfying OSC.

a quantity that determines its size in the sense of how much it fills up the space in

which it lives.

There exists a variety of notions of dimension for the attractor of an IFS, but we

will only describe two of the most common ones: the Hausdorff dimension and the

similarity dimension. We first need the concept of Hausdorff measure

Definition 2.4.2 Suppose F is a subset of Rd and let s > 0. For any δ > 0 define

Hs
δ(F ) = inf

{
∞∑
i=1

diam(Ui)
s

∣∣∣∣ {Ui} is a cover of F and diam(Ui) < δ

}
,

where diam(U) = sup {|x− y| | x, y ∈ U}. The s-dimensional Hausdorff measure of

F is

Hs(F ) = lim
δ→0
Hs
δ(F ).



12

Hausdorff measures generalize the familiar ideas of length, area, and volume. It

may be shown that, the n-dimensional Hausdorff measure for subsets of Rn is, up to

a constant multiple, just the n-dimensional volume.

The limit in the definition above exists for any subset F of Rn, though the limiting

value can be 0 or∞. For a simple example, take F to be a disc in R3, then an exercise

shows H1(F ) = length(F ) =∞, H2(F ) = 4
π
area(F ) = 4, and H3(F ) = 6

π
vol(F ) = 0.

In particular, Hs(F ) =∞ for every s < 2 and Hs(F ) = 0 for every s > 2.

The jump discontinuity of Hs(F ) as a function of s is the Hausdorff dimension of

F . More precisely,

Definition 2.4.3 For any F subset of Rd, its Hausdorff dimension is

dimH(F ) = inf {s ≥ 0 | Hs(F ) = 0} = sup {s | Hs(F ) =∞} .

It follows the disc F ⊂ R3, discussed above, has Hausdorff dimension equal to 2.

The other related notion of dimension is the similarity dimension

Definition 2.4.4 Given an IFS of contraction similarities {sj}mj=1 with contraction

ratios 0 < rj < 1, the similarity dimension of the attractor is the unique number α

such that
m∑
j=1

rαj = 1.

This notion of dimension is only useful in the context of IFS. Nonetheless, it is a

powerful tool in calculating the Hausdorff dimension of the attractor:

Theorem 2.4.1 Consider the IFS {sj}mj=1 with contraction ratios 0 < rj < 1. Let A

be the attractor of the IFS and let α be its similarity dimension. Then dimH(A) ≤ α,

with equality if the IFS satisfies the OSC.

For a proof see Falconer [15].

As mentioned before, the OSC turns out to be a favorable property of IFS. In

fact, three more equivalent definitions of OSC have been found.
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Theorem 2.4.2 Consider the IFS of contraction similarities {sj}mj=1 and let A be the

associated attractor. The following are equivalent

(a) The IFS satisfies the OSC.

(b) (Moran [16] and Schief [18]) Hα(A) > 0 where α is the similarity dimension of

A.

(c) The finite clustering property (Schief [18]): there exists an integer N such that

for every Aw of diameter ε, for a finite length word w, there are at most N

incomparable pieces Av of diameter ≥ ε that can intersect the ε-neighborhood of

Aw. We say that Aw and Av are incomparable if w is not a prefix v and viceversa.

(d) The neighbor map condition (Bandt-Graf [19]): the identity map is not an accu-

mulation point of the set of neighbor maps of A. A neighbor map has the form

h = s−1
w sv where w, v ∈ {1, 2, . . . ,m}n with w0 6= v0.

How does the attractor of an IFS which fails the OSC look like? The above theorem

implies that OSC fails when the similarity dimension is larger than the ambient space

on which the IFS operates. Roughly speaking, it is equivalent to saying that the

overlap set of the attractor is “too large”.

Consider the contraction similarities on R

s0(x) =

√
5− 1

2
x− 1 s1(x) =

√
5− 1

2
x+ 1

its associated attractor A is the closed interval
[
−3+

√
5

2
, 3+

√
5

2

]
since

s0 (A) ∪ s1 (A) =

[
−3 +

√
5

2
,

√
5− 1

2

]
∪

[
−
√

5− 1

2
,
3 +
√

5

2

]

=

[
−3 +

√
5

2
,
3 +
√

5

2

]
= A.

Its similarity dimension, α is the solution to the equation 2
(√

5−1
2

)α
= 1, i.e.

α = − ln(2)

ln
(√

5−1
2

) ≈ 1.44042



14

but the dimension of R is 1 < α.

s0(A)
s1(A)

A
−
√

5−1
2

√
5−1
2−3+

√
5

2
3+
√

5
2

Fig. 2.5. The IFS{s0, s1} on R with contraction ratio the reciprocal of the
golden ratio fails the overlap set condition. The red interval represents the
overlap of s0(A) with s1(A), which are drawn above A in blue and orange
respectively.

We will refer back to the OSC property in Section 3.4, when analyzing our par-

ticular family of IFS.
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3. PARAMETRIC FAMILIES OF IFS

The rest of this thesis will be focused on two families of IFS parametrized in the

punctured disc. Let λ ∈ D∗ := D \ {0}, and consider the contraction similarities

s−(z) := λz − 1, sO(z) := λz, s+(z) := λz + 1.

Let Aλ and Ãλ be the attractors of the IFS {s−, s+} and {s−, sO, s+}, respectively.

The use of the symbols {−, O,+}, rather than the indices {0, 1, 2}, is justified since

each symbol suggests the direction of the translation applied by the corresponding

map.

Remember that we obtain the attractor of an IFS by iterating the union of the

defining maps starting with any nonempty compact set. Since s−, sO, and s+ are

affine maps we obtain the following descriptions of the limit sets

Aλ =

{
∞∑
n=0

anλ
n

∣∣∣∣ an ∈ {−1,+1}

}
, Ãλ =

{
∞∑
n=0

anλ
n

∣∣∣∣ an ∈ {−1, 0,+1}

}
.

Both attractors are symmetric about 0, and clearly Aλ ⊆ Ãλ. It is advantageous

to study them together because, contrary to what happens with the Mandelbrot set,

the parameter regions

M := {λ ∈ D | Aλ is connected} and M0 := {λ ∈ D | 0 ∈ Aλ} .

are not equal, see Fig. 3.1. Rather,M coincides with the set
{
λ ∈ D

∣∣ λ−1 ∈ Ãλ
}
or,

equivalently,
{
λ ∈ D

∣∣ 0 ∈ s−(Ãλ) ∩ sO(Ãλ) ∩ s+(Ãλ)
}
.

Interest in these IFS families spiked recently, after Tiozzo [4] (inspired by a con-

jecture of Thurston [3]) proved thatM0 equals the closure of the set of Galois con-

jugates of entropies of superattracting real quadratic polynomials. BothM andM0

were first introduced by Barnsley and Harrington [20] in the mid 1980s. In 1988–92,
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Fig. 3.1. The connectivity locusM, in blue, and its subsetM0, in fuchsia.
The outer circle for both of them has radius 1.
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Bousch [21, 22] proved M and M0 are connected and locally connected. In 2002,

Bandt [9] proved the existence of a hole inM, and conjectured that there are in fact

infinitely many holes. In 2014 Calegari, Koch, and Walker [10] gave a positive answer

to the conjecture, for bothM andM0, and in fact constructed infinite sequences of

holes accumulating at certain parameters in ∂M. These are buried points of ∂M,

i.e. not accessible from D \M.

This thesis focuses on those parameters λ ∈ ∂M or ∂M0 that are not buried,

however, their discussion is delayed to chapter 4. In this chapter we formalize notation

and show basic facts and properties ofM andM0. We will also prove some technical

lemmas and propositions which will be used later to prove the main results.

3.1 Notation

As in Chapter 2, let Σn be the set of all words w = a0 · · · an−1 of length n in

{−,+}. Define sw = sa0 ◦ . . . ◦ san−1 so that Aw
λ = sw(Aλ) and

Aλ =
⋃
w∈Σn

Aw
λ.

The natural projection from the space Σ∞ of infinite words, w = a0a1 · · · in {−,+},

onto the attractor, Aλ is given by

πλ : Σ∞ → Aλ πλ(w) =
∞∑
n=0

anλ
n.

As before, the word w ∈ Σ∞ is called the itinerary of πλ(w) in Aλ. Remember that

if Aλ is connected, then there could be multiple itineraries for a given point in Aλ.

Nevertheless, elements ω ∈ Aλ that are in Aa0a1···akλ can be written as

ω = a0 + a1λ+ . . .+ akλ
k +

∞∑
n=k+1

anλ
n, an ∈ {−1,+1} .

We will use w|k to denote the finite word a0a1 · · · ak coming from the truncation of

the infinite word w = a0a1 · · · . The notation |w| will indicate the length of the finite

word w.
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Let Dr(z) denote the closed disc centered at z with radius r and, when z = 0, we

will abbreviate Dr = Dr(0).

Lemma 3.1.1 Let R ≥ (1− |λ|)−1, then Aλ ⊂ DR and Ãλ ⊂ DR.

Proof By Proposition 2.1.1, we only have to show that s−(DR) ∪ s+(DR) ⊂ DR.

But s−(DR) and s+(DR) are discs of radius |λ|R centered at −1 and 1, respectively.

For them to be inside DR, we need

|(−1)− 1|+ 2 |λ|R ≤ 2R ⇐⇒ 1

1− |λ|
≤ R.

1

−1

DR

s−(DR)

s+(DR)

|λ|R

|λ|R

Since the disc sO(Dr) is centered at the origin with radius |λ|R < R, Ãλ is also

contained in DR. 2

From here on, we let R := (1− |λ|)−1. Let I−1 = Ĩ−1 be the disc DR, and consider

the recursive constructions In = s−(In−1) ∪ s+(In−1), and Ĩn = s−(̃In−1) ∪ sO(̃I
n−1) ∪

s+(̃In−1) for n ∈ N. From Lemma 3.1.1, it is clear that

Aλ =
∞⋂
n=0

In and Ãλ =
∞⋂
n=0

Ĩn.

As before, for any finite word w = a0a1 · · · ak in Σk+1 we can identify the discs in Ik+1 as

Dw := sw(I
−1). Each of these discs will then be centered at sw(0) = a0+a1λ+· · ·+akλk,

and have a radius of |λ|k+1R. If w ∈ Σ∞ is an infinite word, then sw(0) ∈ A
w|k
λ ⊂ Dw|k

for all k ≥ 0. Analogously, if w ∈ Σ̃∞, then sw(0) ∈ Ã
w|k
λ ⊂ D̃w|k for all k ≥ 0.

From now on, we will refer to Ik and Ĩk as the instar1 at level k of the IFS {s−, s+}

and {s−, sO, s+}, respectively. Given that Ik is the union of the copies of the instar at
1 The word “instar” is used in biology to describe the developmental stage of arthropods, such as
insects, between each molt until sexual maturity. We chose it because the limit set is obtained by
going through (infinitely many) developmental stages.
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level k − 1, s+(Ik−1) and s−(Ik−1) will be respectively called the positive and negative

instars at level k. Similarly, we refer to s+(̃Ik−1), sO(̃Ik−1), and s−(̃Ik−1) as the positive,

central, and negative instar of level k.

It will also be useful to have a name for each of the discs and their centers in the

instar. The center sw|k(0) =
∑k

j=0 ajλ
j will be called a node with itinerary w|k and

generally denoted by νw|k, while the closed disc Dw|k (or D̃w|k) surrounding it will be

referred to as a nodal disc with itinerary w|k.

3.2 The Disconnectivity Algorithm

The authors in [10] introduced a fast algorithm to determine whether λ is not in

M. We replicate it here, adjusted to our notation, as we will make use of it later in

Chapter 4.

Recall that the attractor Aλ equals the intersection
⋂
n≥0 I

n of all instars. Thus Aλ

is a Cantor set (i.e. λ 6∈ M) if and only if In is disconnected from some level n ≥ 0

onward. Since In is defined as the union s−(In−1)∪s+(In−1) of the negative and positive

instars, then it is disconnected if and only if these do not intersect. A problem arises

because verifying that none of the 2n−1 nodal discs of s−(In−1) intersect any of the

2n−1 nodal discs of s+(In−1) becomes a prohibitive computation as n increases.

However, if Dw ∩ Dv = ∅, then it is superfluous to verify whether Dwx ∩ Dvy is

empty for any combination x, y ∈ {−,+}. Therefore, we only need to check for

possible intersections that have not been ruled out at a previous level, and even

better, we may restrict only to words w, v ∈ Σn with w0 6= v0.

If |w| = n, the disc Dw, of level n−1, is given by sw(I
−1) = sw(0)+λnI−1 = νw+λnI−1,

i.e. it is centered at the node νw and has radius |λn|R. Thus, if two discs of level

n− 1 intersect, the distance between the centers is |νw − νv| < 2 |λn|R.

The algorithm begins by verifying that the nodal discs at level 0 intersect, i.e. it

checks whether ∣∣∣∣ν+ − ν−
λ

∣∣∣∣ =

∣∣∣∣2λ
∣∣∣∣ < 2R.
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If so (i.e. when |λ| > 1/2), the element 2λ−1 is stored in the stack V and the

algorithm enters its recursive phase: at each level n ≥ 0, the stack V will contain the

entry (νw − νv)λ−(n+1), if and only if the discs Dw and Dv of level n intersect.

To be more precise, let w, v be words of length n, starting with opposite symbols,

such that α := (νw − νv)λ−n−1 is in the stack V . For the next level, the algorithm

only needs to search for possible intersections between elements of {Dw−,Dw+} and

elements of {Dv−,Dv+}; that is, it computes the values

νw+ − νv+

λn+2
=

νw − νv + λn+1 − λn+1

λn+2
=
α

λ
νw+ − νv−
λn+2

=
νw − νv + λn+1 + λn+1

λn+2
=
α + 2

λ
νw− − νv+

λn+2
=

νw − νv − λn+1 − λn+1

λn+2
=
α− 2

λ
νw− − νv−
λn+2

=
νw − νv − λn+1 + λn+1

λn+2
=
α

λ

and compares them to 2R. The next level stack is then comprised of these values less

than 2R.

If the algorithm returns true then the attractor is certifiably totally disconnected.

On the other hand, if it returns false, Aλ might still be disconnected but the algorithm

will not discover it unless the maxlevel is increased.

3.3 Geometry of the Connectedness Locus

In this section we give a quick, hand-waving account of the features ofM andM0.

In Fig. 3.1 we can see how the two sets look like. Since A−λ = Aλ and Aλ = Aλ, for

any λ ∈ D, bothM andM0 are symmetric about the origin. Interestingly, the sets

M andM0 can be defined using other pairs of similarities. Indeed, for any c 6= d ∈ C

consider the contraction similarities

sc(z) = λz + c and sd(z) = λz + d,

then the map

φ(z) =
1

d− c

(
z − c

1− λ

)
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Algorithm 1: Disconnected(λ,maxlevel)

V ← {2λ−1}

n← 0

while V 6= ∅ or n ≤ maxlevel do

W ← ∅

forall α ∈ V do

if |λ−1α| < 2R then W ← W ∪ λ−1α

if |λ−1(α + 2)| < 2R then W ← W ∪ λ−1(α + 2)

if |λ−1(α− 2)| < 2R then W ← W ∪ λ−1(α− 2)

V ← W

n← n+ 1

if V = ∅ then return true

else return false
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conjugates sc to sO and sd to s+. It follows that if B = sc(B) ∪ sd(B) is the attractor

of the IFS{sc, sd}, then φ(B) = Aλ. Therefore, it is up to one’s preference which

contraction similarities to use to determineM andM0. For example, many authors

(e.g [9, 10, 23]) use the pair {sO, s+} to describeM.

Notice that λ = 1/3 generates the Cantor Set we described in Section 2.2.1. As

λ ∈ R increases towards 1/2, the gap between the generating intervals decreases until,

at λ = 1/2 the attractor fusesinto the interval [−2, 2]. A striking feature ofM and

M0 are the clearly visible isolated whiskers on the real axis starting at λ = ±1/2.

Barnsley and Harrington [20] were the first to rigorously prove thatM is entirely real

in some definite neighborhood of the endpoints of these whiskers. In fact, they gave

a rough estimate of the size of the interval which was later improved by Calegari,

Koch, and Walker in [10].

Theorem 3.3.1 ( [10,20]) There is some α > 1/2 so that the intersection of M

with some open subset of C is equal to the interval [1/2, α).

The approximate value of α is 0.6684755322100605954110550451436814.

The picture of M suggests that there is an entire annulus in its interior. In-

deed, using an argument with the similarity dimension (see Definition 2.4.4) and an

application of Lemma 3.1.1 it is possible to prove

Theorem 3.3.2 (Bousch [21]) The annulus 1√
2
≤ |λ| ≤ 1 is entirely contained in

M. The open disc of radius 1/2 is completely contained in D \M.

If λ2 ∈M, then λ ∈M0. Consequently,M0 contains the annulus 2−1/4 ≤ |λ| < 1.

The proof of the second statement needs an interpretation of both sets as the zero lo-

cus of power series with certain prescribed coefficients. We will see this interpretation

in the next section.

Note that the bounds in the theorem are actually sharp. If we move along the

imaginary axis, the attractor for any y ∈ (0, 2−1/2) is a cartesian product of Cantor

sets, Ayi = Ay2 × yAy2 . When y = 2−1/2 we actually get the rectangle with vertices
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at ±2±
√

2i. From the above theorem it follows that the boundary ofM has to be

contained in the closed disc of radius 2−1/2.

Bousch obtained another significant result about the setsM andM0:

Theorem 3.3.3 (Bousch [22]) The setsM andM0 are both connected and locally

connected.

Again the proof is based on the other definitions of the sets.

The last important property ofM, conjectured by Bandt [9] and proved by Cale-

gari et al. [10], is

Theorem 3.3.4 The setM is regular-closed; that is

M = int(M) ∪ (M∩ R).

3.4 The Overlap Set

Recall from Lemma 2.4.1 that Oλ plays a key role in the geometric structure of Aλ.

If it is empty then Aλ is simply a Cantor set and consequently λ ∈ D \M. However,

if Oλ is “large” then it becomes difficult to distinguish the smaller affine copies that

constitute Aλ. Moreover, if the large size of the overlap is resilient to a small change

of λ, then the parameter is in the interior ofM. Intuitively, λ ∈ ∂M whenever Oλ is

in some sense “thin”.

Whenever Oλ is nonempty there exist itineraries a, b ∈ Σ∞ with a0 = − and

b0 = + such that

πλ(w) :=
∞∑
j=0

ajλ
j =

∞∑
j=0

bjλ
j = πλ(v) ⇐⇒

∞∑
j=0

(aj − bj)λj = 0

Observe that aj − bj ∈ {−2, 0,+2} for every j ≥ 0. Consequently, denote the set of

all power series with coefficients from the set {−1, 0,+1} as

P =

{
f(z) =

∞∑
j=0

cjz
j

∣∣∣∣ cj ∈ {−1, 0,+1} , c0 = 1

}
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and define the set of power series which have λ as a root by

Fλ = {f ∈ P | f(λ) = 0} .

Then for λ ∈ D the overlap set, Oλ is nonempty whenever there exists f ∈ P such

that it has coefficients cj = (aj − bj)/2 and f(λ) = 0. Conversely, if for a particular

λ ∈ D the set Fλ is nonempty, then so is Oλ, and each element in it has an itinerary

associated to some f ∈ Fλ. We have just shown that

M = {λ ∈ D | Aλ is connected} = {λ ∈ D | |Fλ| 6= 0} .

Moreover, since Aλ is symmetric with respect to 0, having the origin in the overlap

implies that the coefficients cj of at least one of the power series f ∈ Fλ must all be

nonzero (see Lemma 3.4.1). It follows that

M0 = {λ ∈ D | 0 ∈ Aλ} =

{
λ ∈ D

∣∣∣∣ ∃f ∈ P , f(λ) =
∞∑
j=0

cjλ
j = 0, cj ∈ {−1, 1}

}

from which it is clear thatM0 ⊂M.

The following result is important, as it gives more insight on the relationship

between elements in Oλ and the power series which have λ as a root. We have

adjusted the proof to our setting (and notation).

Lemma 3.4.1 (Solomyak [23]) |Oλ| = 1 or 2 if and only if |Fλ| = 1. Moreover,

(i.) |Oλ| = 1 if and only if f ∈ Fλ has no zero coefficients.

(ii.) |Oλ| = 2 if and only if f ∈ Fλ has exactly one zero coefficients.

Proof (⇒) Suppose |Oλ| = 1 then, since Aλ is symmetric with respect to 0, we

must have Oλ = {0}. Let f(z) =
∑∞

j=0 cjz
j be in Fλ then we will show that

cj 6= 0 for all j ≥ 0. Assume otherwise, then there exist j ≥ 1 such that cj = 0.

Without loss of generality, assume that only c1 = 0. Then
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c0 + 0 · λ+
∞∑
j=2

cjλ
j = 0

2c0 + 0 · λ+
∞∑
j=2

2cjλ
j = 0

a0 + a1λ+
∞∑
j=2

ajλ
j = b0 + b1λ+

∞∑
j=2

bjλ
j

where a1 = b1 and aj = −bj ∈ {−1,+1} for all j 6= 1. Therefore, since∑∞
j=0 ajλ

j ∈ A+
λ and

∑∞
j=0 bjλ

j ∈ A−λ (or viceversa), then ±λ ∈ Oλ, a contra-

diction.

To show uniqueness of f in Fλ, suppose there is g ∈ Fλ. By the argument above,

all the coefficients of g are also ±1. Now since both f(λ) = 0 and g(λ) = 0,

then h(λ) = 0 where h = 1
2
(f + g). It follows that h ∈ Fλ and it has all its

coefficients equal to 1 or −1, but this is only possible if f ≡ g.

Assume Oλ = {y1, y2}. Then, since Aλ is symmetric with respect to 0, we must

have y1 = −y2. Let f(z) =
∑∞

j=0 cjz
j be in Fλ, then we will show that exactly

one coefficient is 0. We already know from the argument above that we must

have at least one zero coefficient to have two symmetric points in Oλ. Without

loss of generality, suppose that only c1 = c2 = 0. Then,

c0 + 0 · λ+ 0 · λ2 +
∞∑
j=3

cjλ
j = 0

2c0 + 0 · λ+ 0 · λ2 +
∞∑
j=2

2cjλ
j = 0

a0 + a1λ+ a2λ
2 +

∞∑
j=3

ajλ
j = b0 + b1λ+ b2λ

2 +
∞∑
j=3

bjλ
j

where a1 = b1, a2 = b2, and aj = −bj ∈ {−1,+1} for all j 6= 1, 2. Therefore,

since
∑∞

j=0 ajλ
j ∈ A+

λ and
∑∞

j=0 bjλ
j ∈ A−λ (or viceversa), then (±λ±λ2) ∈ Oλ,

giving a contradiction.

The uniqueness of f in Fλ is proved in the same way as before: suppose there

is g ∈ Fλ. By the argument above, exactly one of the coefficients of g is 0. Now
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since both f(λ) = 0 and g(λ) = 0, then h(λ) = 0 where h = 1
2
(f + g). It follows

that h ∈ Fλ and it has exactly one of its coefficients equal to 0, but this is only

possible if f ≡ g.

(⇐) Let f ∈ Fλ. We have seen above that the number of zero coefficients of f

determines the elements in the overlap. Since f is assumed to be unique, then

|Oλ| = 1 or 2.

2

Using Rouche’s Theorem and careful estimates Solomyak was also able to prove

that

Theorem 3.4.1 (Solomyak [23]) There exist uncountably many λ ∈ M for which

|Oλ| = 1. The itinerary of 0 ∈ Aλ is different for different λ.

Recall that in Section 2.4 we introduced the Open Set Condition (OSC) for an IFS

as a possible tool to investigate the associated attractor. How does the size of Oλ

relate to the OSC? Unfortunately, it is not completely clear. However, Bandt and his

collaborators have recently shown that

Theorem 3.4.2 (Bandt-Rao [24]) If 0 < |Oλ| <∞ then the OSC is satisfied.

and subsequently expanded Solomyak’s result to

Theorem 3.4.3 (Bandt-Hung [25]) For every m ∈ N there are uncountably many

λ ∈ M for which OSC holds, and the overlap set consists of 2m points. For each λ

there exists a unique f ∈ P such that Fλ = {f}.

It must be noted that the proof of the above lemma cannot be easily extended to the

case of |Oλ| = 2m for m ≥ 2. Indeed, Bandt and Hung used a different argument to

show the uniqueness of the power series.

As previously mentioned, λ = i/
√

2 is on the boundary ofM. However, there are

uncountable many power series that vanish at that parameter, since the overlap set
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is a segment on the imaginary axis, [−
√

2i,
√

2i]. It can be easily shown that, for any

k ≥ 0, the power series (1 ± z2k+1)(1 + 2z2)(1 + z2)−1 is in Fi/
√

2. Nonetheless, the

IFS
{

i√
2
z − 1, i√

2
z + 1

}
satisfies the OSC, since a feasible open set is the interior of

Ai/
√

2.

Furthermore, consider the parameters λ = 1
2
(1 + i) and λ′ = 1

4
(1 +

√
7i), both

with norm 1/
√

2, whose corresponding attractors are shown in Fig. 3.2. These are,

respectively, the well studied “twin-dragon” and “tame twin-dragon”, and they are

part of a larger family of “rep-tiles” (“rep” stands for “replication”, and “tiles” since

these sets can tile the whole plane). In both cases, the overlap set is uncountable (in

fact a rectifiable curve) and consequently so are Fλ and Fλ′ . Both IFS satisfy the

OSC, however, it seems that both parameters are on ∂M0 but not ∂M.

•

•

Fig. 3.2. Top row: the Twin-Dragon and the associated parameter λ =
2−1(1 + i) inM andM0. Bottom row: the Tame Twin-Dragon and the
corresponding parameter λ′ = 4−1(1 +

√
7i) inM andM0.
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4. THE BOUNDARY OF THE CONNECTEDNESS LOCUS

In the previous chapter we saw the importance of knowing the elements of the set

Fλ and the overlap set Oλ to understand which parameters λ lie in the boundary of

M. It was pointed out by Barnsley [14] and Bandt [9] that the local structure ofM

seems to reflect the one of the attractor. Solomyak [23] was the first to show this

connection rigorously and it was later improved by Calegari et al. [10]. This property

is the key to prove our results about accessible points on ∂M.

In this chapter we will first overview some of the known results (section 4.1) and

explain how our results fit in. In Section 4.2, we prove the main theorems. We also

provide parameters satisfying the assumptions of the main theorems in Section 4.3.

Finally, in Section 4.4 we propose a method on how to prove that a certain parameter

is on ∂M. Unfortunately, there is a technical issue that we were not able to prove, but

we strongly believe it to be true. Finaly, in Section 4.5 we point out why parameters

on the shared boundary ∂M∩∂M0 are interesting to study from a Complex Dynamics

perspective.

4.1 Self and Asymptotic Similarity

Before describing the old and new results about ∂M, we recall some definitions

which can be found in [26]. Remember that Dr(z) denotes a closed disc centered at

z with radius r and Dr = Dr(0). For compact sets E,F ⊂ C denote

[E]r = (E ∩Dr) ∪ ∂Dr; dr(E,F ) = dH([E]r, [F ]r)

where dH is the Hausdorff distance defined at the beginning of Section 2.1.

Definition 4.1.1 (i.) A compact set F is ρ-self-similar about z ∈ F , for ρ ∈ C\D,

if there is r > 0 such that [ρ(F − z)]r = [F − z]r.
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(ii.) Two compact sets E and F are asymptotically similar about z ∈ E and w ∈ F

if there is r > 0 such that

lim
t∈C, |t|→∞

dr(t(E − z), t(F − w)) = 0.

(iii.) A compact set E is asymptotically ρ-self similar about a point z ∈ E if there

is r > 0 and a compact set F such that

dr(ρ
n(E − z), F )→ 0 n→∞.

We can now state the result of Solomyak:

Theorem 4.1.1 (Solomyak [23]) Suppose λ ∈ M \ R, with |λ| ≤ 2−1/2, is such

that Fλ = {f} with

f(z) =
∑̀
n=0

cjz
j +

c`+1z
`+1 + . . .+ c`+pz

`+p

1− zp
.

Then f ′(λ) 6= 0 and

(i.) Ãλ is λ−p-self similar about −λ−(`+1)
∑`

n=0 cjλ
j =: ζ.

(ii.) M about λ is asymptotically similar to λ`+1

f ′(λ)
Ãλ about λ`+1

f ′(λ)
ζ.

(iii.) M is asymptotically λ−p-self similar about λ.

An important remark is that if the coefficients of f are all non zero, then the

theorem holds true if we substitute Ãλ with Aλ and M with M0. However, the

above theorem is not enough to certify that parameters λ satisfying the hypothesis

of the theorem lie on ∂M, because points in a neighborhood of ζ, not in Ãλ, are not

necessarily also outside ofM in a neighborhood of λ.

Theorem 4.1.2 (Calegari-Koch-Walker [10]) Suppose λ ∈ M \ R, with |λ| ≤

2−1/2, is a root of

f(z) =
∑̀
n=0

cjz
j +

c`+1z
`+1 + . . .+ c`+pz

`+p

1− zp
, cj ∈ {−1, 0,+1} .
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(i.) If C ∈ λ`+1

f ′(λ)

(
Ãλ − ζ

)
, then for every ε > 0, there is a C ′ such that |C − C ′| < ε

and for all sufficiently large n, a neighborhood of C ′λpn +λ is contained inM.

(ii.) If Fλ = {f}, then there is δ > 0 such that for every C 6∈ λ`+1

f ′(λ)

(
Ãλ − ζ

)
with

|C| < δ, the parameter Cλpn + λ is not inM for all sufficiently large n.

The first part of this theorem says that if λ is a root of a rational function then

there is an increasing union of open subsets ofM limiting to the asymptotically scaled

copy ofM centered at λ. It is therefore a stronger result than Theorem 4.1.1. The

second part of Theorem 4.1.2 implies that if |Fλ| = 1, it is possible to find a sequence

of parameters in D \M converging to λ and, therefore, establishing λ ∈ ∂M.

However, the theorem does not exclude the possibility that λ is the limit of a

sequence of connected components of D \M with diameter going to zero, i.e. λ is a

buried point of ∂M. The question of whether there is a way to recognize accessible

and buried points of ∂M remained open. The following theorem, which is our main

result, gives a partial answer.

•

Fig. 4.1. M is blue while M0 is fuchsia. Calegari and his collaborators
showed that λ ≈ 0.371859 + 0.519411i, marked in cyan, is a buried point
of ∂M.



31

Theorem 4.1.3 Suppose λ ∈M \ R with |λ| ≤ 2−1/2, is such that Fλ = {f} with

f(z) =
∑̀
n=0

cjz
j +

c`+1z
`+1 + . . .+ c`+pz

`+p

1− zp
.

Assume also that f(z) has finitely many zero coefficient and that its Taylor polyno-

mials, fk(z) =
∑k

j=0 cjz
j satisfy the following conditions for every 0 ≤ n ≤ p− 1:

(i.) |f`+1+n(λ)| > 1

2

∣∣λ`+1+n+1
∣∣

1− |λ|
;

(ii.) |f`+1+n(λ)|+ |f`+1+n+1(λ)| >
∣∣λ`+1+n+1

∣∣
1− |λ|

;

(iii.) 2 |f`+1+n(λ)| <
∣∣2f`(λ) + λ`+1P (λ)

∣∣, where P is any polynomial of degree less

or equal to n with coefficients from the set {−2,−1, 0,+1,+2}. Except, of

course, for the polynomial P such that 2f`(z) + z`+1P (z) = 2f`+1+n(z).

Then λ is accessible from a connected component of D \M.

An immediate corollary is then

Corollary 4.1.4 Suppose λ ∈ M \ R with |λ| ≤ 2−1/2, is such that Fλ = {f}

where f satisfies the hypothesis of Theorem 4.1.3 and has no zero coefficients. Then

λ ∈ ∂M∩ ∂M0 and it is accessible from a connected component of D \M.

Restricting the assumptions on the coefficients on the power series, f we also obtain

Theorem 4.1.5 Suppose λ ∈M \ R with |λ| ≤ 2−1/2, is such that Fλ = {f} with

f(z) =
∑̀
n=0

cjz
j +

c`+1z
`+1 + . . .+ c`+pz

`+p

1− zp
.

Assume also that f(z) has no zero coefficient and that its Taylor polynomials, fk(z) =∑k
j=0 cjz

j satisfy the following conditions for every 0 ≤ n ≤ p− 1:

(i.) |f`+1+n(λ)| > 1

2

∣∣λ`+1+n+1
∣∣

1− |λ|
;

(ii.) |f`+1+n(λ)|+ |f`+1+n+1(λ)| >
∣∣λ`+1+n+1

∣∣
1− |λ|

;
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(iii.) |f`+1+n(λ)| <
∣∣f`(λ) + λ`+1P (λ)

∣∣, where P is any polynomial of degree less or

equal to n with coefficients from the set {−1, 0,+1}. Except, of course, for the

polynomial P such that f`(z) + z`+1P (z) = f`+1+n(z).

Then λ is accessible from a connected component of D \M0.

In lieu of Corollary 4.1.4 and experimental evidence, we believe that if the as-

sumptions on Theorem 4.1.5 are satisfied, then also condition (iii.) of Theorem 4.1.3

must hold. Moreover, we conjecture that the parameters on ∂M∩ ∂M0 are actually

on the boundary of the main connected component of D \M0. However, we decided

to leave the study of these conjectures for future work.

4.2 Proof of the Main Theorems

We will prove theorems 4.1.3 and 4.1.5 in this section. The idea of the proof, for

both theorems, is to construct, locally, a connected chain of open discs outside Ãλ (or

Aλ) that converges to ζ = −λ−(`+1)
∑`

n=0 cjλ
j and conclude by Theorem 4.1.2(ii.)

that λ is accessible, hence on the boundary of a hole. The restrictions on the Taylor

polynomials show up when deducing the conditions for such a chain to exists.

We first need a lemma

Lemma 4.2.1 Let λ ∈M be such that Fλ = {f} with

f(z) =
∑̀
n=0

cjz
j +

c`+1z
`+1 + . . .+ c`+pz

`+p

1− zp
,

where cj = 0 only for some 0 < j ≤ `. Let ξ ∈ Oλ have itineraries a = a0a1a2 · · · and

a = a0a1a2 · · · where aj = −aj = cj if cj 6= 0, and otherwise aj = aj = − or +.

Then for every 0 ≤ n ≤ p − 1 the set Da|`+n+p ∪ Da|`+n+p about ξ is λ−p-self similar

to Da|`+n ∪ Da|`+n about ξ.

Proof Since the set in question is the union of two intersecting closed discs, to prove

the lemma is equivalent to showing that

1

λp
((
Da|`+n+p ∪ Da|`+n+p

)
− ξ
)

=
(
Da|`+n ∪ Da|`+n)− ξ.
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We will only show it for the case n = 0 to simplify the expressions, but the proof is

easily generalized to 0 < n < p.

Observe that since λ is a root of f(z) then

c`+1λ
`+1 + . . .+ c`+pλ

`+p = (λp − 1)(c0 + c1λ+ . . .+ c`λ
`).

Consequently,∣∣∣(a0 + a1λ+ . . .+ a`+pλ
`+p)− (a0 + a1λ+ . . .+ a`+pλ

`+p)
∣∣∣ = 2

∣∣∣c0 + c1λ+ . . .+ c`+pλ
`+p
∣∣∣

= 2 |λp|
∣∣∣c0 + c1λ+ . . .+ c`λ

`
∣∣∣

and ∣∣∣(a0 + a1λ+ . . .+ a`λ
`)− (a0 + a1λ+ . . .+ a`λ

`)
∣∣∣ = 2

∣∣∣c0 + c1λ+ . . .+ c`λ
`
∣∣∣

which proves that the distance of the nodes at level `+ p and at level ` are multiple

of each other.

Finally, the center of the disc Da0a1···a`+p is

a0 + a1λ+ . . .+ a`+pλ
`+p = c0 + c1λ+ . . .+ c`+pλ

`+p +
∑

0<j≤` : cj=0

ajλ
j

= λp(c0 + c1λ+ . . .+ c`λ
`) +

∑
0<j≤` : cj=0

ajλ
j

=⇒
`+p∑
j=0

ajλ
j −

∑
0<j≤` : cj=0

ajλ
j = λp

∑̀
j=0

cjλ
j = λp

∑̀
j=0

ajλ
j −

∑
0<j≤` : cj=0

ajλ
j

 .

Notice that by definition ξ =
∑

0<j≤` : cj=0

ajλ
j, so the above equation becomes

a0 + a1λ+ . . .+ a`+pλ
`+p − ξ = λp(a0 + a1λ+ . . .+ a`λ

` − ξ).

Analogous arguments are done for the other disc. 2

Remember from Lemma 3.1.1 we have that Aλ ⊂ DR and that Aw
λ ⊂ Dw for any

finite word w ∈ Σn. Consequently, the above lemma proves the self-similarity of the

attractor Aλ at its overlap:
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Corollary 4.2.1 Let λ ∈M be such that Fλ = {f} with

f(z) =
∑̀
n=0

cjz
j +

c`+1z
`+1 + . . .+ c`+pz

`+p

1− zp
,

where cj = 0 only for some 0 < j ≤ `. Let ξ ∈ Oλ have itineraries a = a0a1a2 · · · and

a = a0a1a2 · · · where aj = −aj = cj if cj 6= 0, and otherwise aj = aj = − or +.

Then for every 0 ≤ n ≤ p − 1 the set Aa|`+p+n
λ ∪ A

a|`+p+n
λ about ξ is λ−p-self similar

to A
a|`+n
λ ∪ A

a|`+n
λ about ξ.

Remark 4.2.1 The above result can be directly extended to the attractor Ãλ of the

IFS {s−, sO, s+} with the coefficients an also allowed to be 0. For any finite word

w ∈ Σ̃n, since sw
(
ÃO
λ

)
will always be in between sw

(
Ã+
λ

)
and sw

(
Ã−λ
)
then we have the

following inclusion of the overlap sets: A+
λ ∩ A−λ ⊆ Ã+

λ ∩ Ã−λ .

We now proceed to the construction of the chain in the complement of Ãλ. We

will exploit the recursive construction of Ãλ to find each disc in the chain: for each

n ≥ 0 we find an open disc tangent to the instar Ĩn. Moreover, two consecutive discs

in the chain must intersect non trivially. Finally, this chain must converge to ζ ∈ Ãλ.

Recall that λ is the root of a unique power series f ∈ P whose non-zero coefficients

eventually repeat: say

f(z) =
∑̀
j=0

cjz
j +

c`+1z
`+1 + . . .+ c`+pz

`+p

1− zp
.

Now, ζ is defined to be −λ−(`+1)
∑`

j=0 cjλ
j which means it can be described with

the periodic itinerary (c`+1 · · · c`+p)∞ ∈ Σ∞. This itinerary will be the unique one

associated to ζ as long as |Fλ| = 1. Since we assume so in the statement of the

theorems, there is a unique sequence of nodes converging to ζ, namely the ones whose

itinerary is the truncation of (c`+1 · · · c`+p)∞ at some index.

Set b = b0b1 · · · ∈ Σ̃∞ where bj = c`+1+j and let ζn := νb|n be the node in Ĩn.

Observe that ζn is by definition the center of the disc D̃b|n and ζ is a point inside such

disc. Therefore, if ζn is far enough from ζ, then ωn = −ζn + 2ζ, i.e. the reflection of
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ζn

ωn

ζ D̃b|n

Bn

Fig. 4.2. Construction of Bn, an element in the connected chain of open
sets in C \ Ãλ. The dotted circle has half the radius of D̃b|n.

ζn about ζ, will be outside D̃b|n. We can then find an open disc, Bn centered at ωn

tangent to D̃b|n (see Figure 4.2).

Recall that each nodal disc in Ĩn has a radius of |λn+1| (1 − |λ|)−1. Thus, the

radius, rn of Bn is easily found to be

rn := |ωn − ζn| −
|λn+1|
1− |λ|

= 2 |ζ − ζn| −
|λn+1|
1− |λ|

.

Proof [of Theorem 4.1.3]: We shall show that the chain of open discs
⋃
n≥0Bn is

a connected subset of C \ Ãλ. In fact, it is enough to prove Ĩp−1 ∩
⋃p−1
n=0Bn = ∅,

since by Theorem 4.1.1 the attractor Ãλ is λ−p-self similar about ζ. Moreover, we

will prove that Cλpm ∈ λ`+1

f ′(λ)

(⋃
n≥0Bn − ζ

)
for every C ∈ λ`+1

f ′(λ)

(⋃
n≥0Bn − ζ

)
and m

large enough. The claim of the theorem will then follow from Theorem 4.1.2(ii.).

We consider only the case |Oλ| = 2 to simplify the notation and the explanation

of the proof. The condition of |Oλ| being finite implies that the zero coefficients of

the power series are the non repeating ones. The choice of which ξ ∈ Oλ to consider

is arbitrary but ζ is always unique because |Fλ| = 1.

By assumption, the coefficients of f are strictly preperiodic and exactly one of

them must be zero. Hence, there exists 0 < k ≤ ` such that ck = 0 which implies

Oλ =
{
±λk

}
= {±ξ}. We deduce that the itinerary of ζ is a word in Σ∞ and, thus,

ζ ∈ Aλ ⊂ Ãλ.
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Let a, a ∈ Σ∞ be such that πλ(a) = πλ(a) = ξ. Therefore, aj = −aj = cj for

all j 6= k and ak = ak = +1 or −1 (since ck = 0). In particular, ξ = f(λ) + akλ
k.

Denote by ξn the nodes with itinerary a|n, i.e. ξn = νa|n =
∑n

j=0 ajλ
j. The Taylor

polynomial f`+1+n(λ) for n ≥ 0 can then be written as ξ`+1+n − ξ.

Observe that the itinerary of ζ is the (left) shift of a by ` terms. Indeed, we claim

that

ζ = s−1
a|`(ξ) and ζn = s−1

a|`(ξ`+1+n).

Since sa0a1(z) = sa0(sa1(z)) = λ2z + νa0a1 then s−1
a0a1

(z) = s−1
a1

(s−1
a0

(z)) = 1
λ2

(z− νa0a1).

Consequently,

s−1
a|`(ξ) =

1

λ`+1
(ξ − ξ`) = − 1

λ`+1
f`(λ) = ζ

s−1
a|`(ξ`+1+n) =

1

λ`+1
(ξ`+1+n − ξ`) =

1

λ`+1
(f`+1+n(λ)− f`(λ)) = ζn.

The centers of the discs Bn were defined in terms of ζn and ζ, but we can now rewrite

them in terms of the Taylor polynomials

ωn = −ζn + 2ζ = − 1

λ`+1
(f`+1+n(λ) + f`(λ)) .

Using the above equations, we also rewrite the radius of Bn in terms of a Taylor

polynomial:

rn = |ωn − ζn| −
|λn+1|
1− |λ|

=
2

|λ`+1|
|f`+1+n(λ)| − |λ

n+1|
1− |λ|

.

We are now practically done: for each 0 ≤ n ≤ p− 1

(i.) the disc Bn exists if and only if rn > 0, namely

2

|λ`+1|
|f`+1+n(λ)| − |λ

n+1|
1− |λ|

> 0 ⇐⇒ |f`+1+n(λ)| > 1

2

∣∣λ`+1+n+1
∣∣

1− |λ|
which is true by assumption;

(ii.) Bn ∩Bn+1 6= ∅ if and only if rn + rn+1 > |ωn − ωn+1| = |λn+1|, namely

2

|λ`+1|
(|f`+1+n(λ)|+ |f`+1+n+1(λ)|)− |λ

n+1|
1− |λ|

− |λ
n+2|

1− |λ|
>

∣∣λn+1
∣∣

⇐⇒ |f`+1+n(λ)|+ |f`+1+n+1(λ)| >

∣∣λ`+1+n+1
∣∣

1− |λ|



37

which is true by assumption;

(iii.) the disc Bn is tangent to Ĩn if and only if for every node νw|n ∈ Ĩn with w ∈ Σ̃∞

we have rn + |λn+1| (1− |λ|)−1 < |ωn − νw|, namely

2

|λ`+1|
|f`+1+n(λ)| <

∣∣∣∣− 1

λ`+1
(f`+1+n(λ) + f`(λ))− νw|n

∣∣∣∣
⇐⇒ 2 |f`+1+n(λ)| <

∣∣f`(λ) + f`+1+n(λ) + λ`+1νw|n
∣∣

<
∣∣2f`(λ) + λ`+1P (λ)

∣∣
where P is a polynomial of degree at most n with coefficients taken from the

set {−2,−1, 0,+1,+2}. Again, the inequality is true by assumption.

Finally, we claim that Cλpm ∈ λ`+1

f ′(λ)

(⋃
n≥0Bn − ζ

)
for every C ∈ λ`+1

f ′(λ)

(⋃
n≥0Bn − ζ

)
and m ≥ 1. We will show that, after a translation by −ζ, the chain is forward

invariant under z 7→ λpz.

Observe that ωn − ζ = −λ−`−1f`+1+n(λ) and since (λp − 1)f`(λ) =
∑`+p

j=`+1 cjλ
j, then

λp(ωn − ζ) = − 1

λ`+1
λpf`+1+n(λ)

= − 1

λ`+1
λp

(
f`(λ) +

`+1+n∑
j=`+1

cjλ
j

)

= − 1

λ`+1

(
λpf`(λ) + λp

`+1+n∑
j=`+1

cjλ
j

)

= − 1

λ`+1

(
f`(λ) +

`+p∑
j=`+1

cjλ
j +

`+1+n+p∑
j=`+1+p

cjλ
j

)

= − 1

λ`+1
f`+1+n+p(λ) = ωn+p − ζ

where the second to last equality is due to the fact that c`+k = c`+k+p for every k ≥ 1.

Hence, the claim follows. 2

The proof of Theorem 4.1.5 is exactly the same, except we only have to show⋃
n≥0Bn is outside Aλ. Therefore, in step (iii.) we need to check that Bn does not

intersect the instar In, rather than Ĩn.
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4.3 Examples: Landmark Points

In this section we present examples of parameters λ satisfying the hypothesis of

Theorem 4.1.3 and 4.1.5. In [23], Solomyak provided parameters λ, referred by him

as landmark points, with |Fλ| = 1. We will prove that they are all accessible points

on the boundary ofM.

Each example is denoted by a word in Σ̃∞ corresponding to the coefficients of the

power series associated to the parameter.

4.3.1 +(++−)∞

Let c = c0c1 · · · = +(+ + −)∞ ∈ Σ∞ and f(z) :=
∑∞

k=0 ckz
k =

1 + z + z2 − 2z3

1− z3
.

Solomyak proved in [23] that1 f is the unique power series for which λ0 ≈ −0.366 +

0.520i is a root. Using the notations of Theorem 4.1.3 we have ` = 0, p = 3, ξ = 0,

ξn = fn(λ0), and ζ = − 1
λ0
∈ Aλ0 ⊂ Ãλ0 which has itinerary b = (+ +−)∞.

We begin with proving hypothesis (i.) of Theorem 4.1.3 is satisfied:

Lemma 4.3.1 Let λ0 and f(z) be as above. Then for every 0 ≤ n ≤ p− 1

2 |fn(λ0)| >
∣∣λn+1

0

∣∣
1− |λ0|

.

Proof First notice that

(i.)
√

5− 1

2
< |λ0| <

2

3
and

(ii.)
2

3
π < arg(λ0) <

23

32
π.

Then from (i.) we get

2 |f0(λ0)| = 2 |1| > |λ0|
1− |λ0|

.

1Solomyak considered the word +(−+++−−)∞ which gives the power series
1− z + z2 + 2z3

1 + z3
, or

in other words, he considered f(−z). The symmetry ofM allows us to consider f(z) instead.
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From (ii.) and the Law of Cosines we get

2 |f1(λ0)| = 2 |1 + λ0| > 2

√
1 + |λ0|2 − 2 |λ0| cos

(
9π

32

)

> 2

√
1 +

(
√

5− 1)2

4
− (
√

5− 1) cos

(
9π

32

)
> 2

1√
2
> 2 |λ0| >

|λ2
0|

1− |λ0|
.

Since f(λ0) = 0 then f2(λ0) = 1 + λ0 + λ2
0 = 2λ3

0 and consequently

2 |f2(λ0)| = 2
∣∣2λ3

0

∣∣ > |λ3
0|

1− |λ0|

because 4 > (1− |λ0|)−1. 2

Remember that satisfying Theorem 4.1.3(i.) is equivalent to saying that, the discs

Bn in the chain exists for every n ≥ 0. We will now show that Bn ∩ Bn+1 6= ∅ and

that Bn ⊂ C\ Ĩn, namely the remaining two hypothesis of Theorem 4.1.3. Recall that

each disc Bn is centered at ωn and has radius rn:

ωn = − 1

λ0

(fn+1(λ0) + f0(λ0)), rn =
2

|λ0|
|fn+1(λ0)| −

∣∣λn+1
0

∣∣
1− |λ0|

Lemma 4.3.2 For λ0 ≈ −0.366 + 0.520i, the set
⋃
n≥0Bn is connected and lies in

the complement of Ãλ0.

Proof By the self-similarity of the attractor Aλ0 at ζ it is enough to prove that

∪0≤n≤2Bn is connected and lies outside the instar Ĩ2. We will first show that Bn lies

outside the instar Ĩn and then prove that Bn ∩Bn+1 6= ∅ for each n = 0, 1, 2.

n = 0: The instar Ĩ0 is the union of the discs D+,DO, and D−. We already know that

B0 is outside D+, we want to show that the distances between ω0 and the nodes

ν0 = 0 and ν− = −1 is larger than the sum of the radii of B0 and the nodal

disc of level 0. In other words, we need that r0 + |λ0| (1−|λ0|)−1 < |ω0 − 0| and
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r0 + |λ0| (1 − |λ0|)−1 < |ω0 − (−1)|. Using that 2−1(
√

5 − 1) < |λ0| < 2/3 and

arg(λ0) > 2
3
π, the Law of Cosine tells us

|1 + λ0| <
√

1 + |λ0|2 − 2 |λ0| cos
(π

3

)
<

√
1 +

4

9
− 4

3
cos
(π

3

)
< 1

so

|ω0 − (−1)| = 2

∣∣∣∣ 1

λ0

∣∣∣∣ > 2

∣∣∣∣1 + λ0

λ0

∣∣∣∣ = r0 +
|λ0|

1− |λ0|
.

Moreover, using the better estimate 11
16
π < arg(λ0) < 45

64
π,

2 |1 + λ0| < 2

√
1 +

4

9
− 4

3
cos

(
5π

16

)
<

√
22 +

4

9
− 2

4

3
cos

(
19π

64

)
< |2 + λ0|

implying that

|ω0 − 0| =
∣∣∣∣2 + λ0

λ0

∣∣∣∣ > 2

∣∣∣∣1 + λ0

λ0

∣∣∣∣ = r0 +
|λ0|

1− |λ0|
.

n = 1: The instar Ĩ1 is the union of the discs D̃w0+, D̃w0O, and D̃w0− where w0 ∈

{+, O,−}. Instead of checking that eight more inequalities are satisfied, we

use the fact that arg(λ0) ∈ (2π/3, 23π/32) to show 0 < Re(ζ1) < Re(ζ). Given

that ζ1 = 1
λ0

(f1+1(λ0)− f0(λ0)) = 1 + λ0 we need to check

− 1

|λ0|
cos(arg(λ0)) > 1 + |λ0| cos(arg(λ0)) ⇐⇒ − cos(arg(λ0)) >

|λ0|
1 + |λ2

0|

Indeed, − cos(arg(λ0)) ∈ (0.55, 0.64) and |λ0|
1+|λ20|

∈ (0.44, 0.47). Moreover, we

have Re(ζ1) > 0 because cos(arg(λ0)) > −3/2 > − |λ0|−1. Consequently, ω1 is

in the first quadrant with Re(ω1) > Re(ζ1). It follows that B1 has a chance

to intersect only the discs D̃+O and D̃+−. However, in Lemma 4.3.1 we showed

that |1 + λ0| > 2−1/2, therefore, since 2−1/2 > 2 |λ3
0| we have

|ω1 − (1− λ0)| = 2

∣∣∣∣1 + λ0

λ0

∣∣∣∣ > 4
∣∣λ2

0

∣∣ = r1 +
|λ2

0|
1− |λ0|

.

so B1 ∩ D̃+− = ∅.

Finally, B1 does not intersect D̃+O because

|ω1 − (1 + 0 · λ0)| =

∣∣∣∣−λ2
0 + 4λ3

0

λ0

∣∣∣∣ = |λ0| |1− 4λ0| > |λ0|
(
1 + 4 |λ0| cos(π/4)

)
> |λ0|

8

3
> 4

∣∣λ2
0

∣∣ = r1 +
|λ2

0|
1− |λ0|

.
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In the first equality we used the fact that 1 +λ0 = −λ2
0 + 2λ3

0 and in the second

line that 1 +
√

2
(√

5− 1
)
> 8/3 > 4 |λ0|.

n = 2: In this case we shall prove that B2 ⊂ B1 which implies that B2 is outside Ĩ2

because of the containment Ĩ2 ⊂ Ĩ1. Firstly, we have |ω1 − ω2| = |λ2
0| and that

the radius of B1 is r1 = 4 |λ2
0|−

|λ20|
1−|λ0| > |λ

2
0| because 3 > (1−|λ0|)−1. Secondly,

the radius of B2 is r2 = 2 |λ2
0| −

|λ30|
1−|λ0| , so for the containment to hold we must

have

4
∣∣λ2

0

∣∣− |λ2
0|

1− |λ0|
> 2

(
2
∣∣λ2

0

∣∣− |λ3
0|

1− |λ0|

)
,

which holds since 2 |λ0| > 1.

We have shown that B0, B1, and B2 do not intersect their respective instar and,

therefore, their union lies outside the instar Ĩ2 ⊃ Ãλ0 . We have also proved that

B2 ⊂ B1 so it remains to show that B1 ∩B0 6= ∅ and B2 ∩B3 6= ∅.

We will prove that ω1 ∈ B0, i.e. |ω0 − ω1| = |λ0| < r0: recall that r0 = 2
∣∣∣1+λ0
λ0

∣∣∣−
|λ0|

1−|λ0| and 0.63 < |λ0| < 0.64 then

2 |1− 2λ0| > 2
(
1 + 2(0.63) cos(π/4)

)
>

1

1− (0.64)
+ 1 >

1

1− |λ0|
+ 1

which implies

2

∣∣∣∣1 + λ0

λ0

∣∣∣∣ = 2

∣∣∣∣−λ2
0 + 2λ3

0

λ0

∣∣∣∣ = 2 |λ0| |1− 2λ0| > |λ0|
(

1

1− |λ0|
+ 1

)
.

Finally, we want to show that |ω2 − ω3| |λ3
0| = |λ3

0| < r2 + r3. By definition

r3 = 2 |λ2
0| |1 + λ0| −

|λ40|
1−|λ0| and since

|λ0|+
|λ2

0|
1− |λ0|

< 0.639 +
(0.639)2

1− 0.639
< 1 +

√
1 +

(
√

5− 1)2

4
− (
√

5− 1) cos

(
9π

32

)
< 1 + |1 + λ0|
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then

|λ0| < 1 + |1 + λ0| −
|λ2

0|
1− |λ0|

⇐⇒ |λ0| < 2 + 2 |1 + λ0| − |λ0| −
2 |λ2

0|
1− |λ0|

= 2− |λ0|
1− |λ0|

+ 2 |1 + λ0| −
|λ2

0|
1− |λ0|

⇐⇒
∣∣λ3

0

∣∣ < r2 + r3.

The equality in the third line holds because |λ0|
1−|λ0| = |λ0|+

|λ20|
1−|λ0| .

2

We can now prove

Proposition 4.3.1 The parameter λ0 ≈ −0.366+0.520i, root of the rational function

f(z) = 1 + (z + z2 − z3)(1− z3)−1, is an accessible point of ∂M∩ ∂M0.

Proof By Lemma 4.3.2 the chain
⋃
n≥0Bn is connected and lies in the complement

of Ãλ0 . Then by Theorem 4.1.3 λ0 ∈ ∂M is an accessible point. Because f(z) is

unique and has no zero coefficients, by Corollary 4.1.4, λ0 is an accessible point of

∂M∩ ∂M0. 2

It must be noted that the uncountable set T of parameters mentioned in Theorem

3.4.1 and Theorem 3.4.3 contains λ0 ≈ −0.366+0.520i. In fact, such set was found by

perturbing the number of repeating coefficients in the power series f and by allowing

that some of the perturbed repeating coefficients to be 0. The way Bandt and Hung

proved that no other power series g ∈ P has a root in T , entailed finding a uniform

lower bound in a neighborhood of T on the normalized difference

g(z)− h(z)

zk
=
∞∑
j=0

εjz
j, εj ∈ {−2,−1, 0,+1,+2} ; ε0 6= 0

where k ≥ 1 and h(z) a power series with a root in T . We are working on extending

Proposition 4.3.1 to parameters in T .
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Fig. 4.3. The attractor Aλ0 inside Ĩ5. The green discs are part of the chain
whose existence is provided by Theorem 4.1.3.

4.3.2 +−−(+)∞

The remaining landmark points are all inside the following sector:
√

5− 1

2
< |z| < 2

3
with 0 < arg(z) <

5π

32
.

Therefore, we will first prove, by simple geometric arguments, certain inequalities for

all points in the above sector.

Lemma 4.3.3 Suppose
√

5−1
2

< |λ| < 2
3
and 0 < arg(λ) < 5π

32
. Then the following

holds:

(a.) 1− |λ| > 1

2
|1− λ|;

(b.) 1− |λ|2 > |1− λ|;

(c.) |λ| < |2− λ|;

(d.) 2 |λ| < |3− λ|;

(e.) 2 |λ| < |1 + λ|.
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Proof From the Law of Cosine we obtain

0.541 >

√√√√12 +

(√
5− 1

2

)2

− 2

(√
5− 1

2

)
cos

(
5π

32

)

> |1− λ| >

√
12 +

(
2

3

)2

− 2

(
2

3

)
cos(0) =

1

3
.

It follows that

1− |λ| > 1− 2

3
>

1

2
(0.541) >

1

2
|1− λ|

and

1− |λ|2 > 1− 4

9
> 0.541 > |1− λ| ,

which gives (a.) and (b.).

Similarly,

|2− λ| >

√
22 +

(
2

3

)2

− 2

(
2

3

)
2 cos(0) =

4

3
> 2 |λ| > |λ|

|3− λ| >

√
32 +

(
2

3

)2

− 2

(
2

3

)
3 cos(0) =

7

3
> 2 |λ| ,

which gives (c.) and (d.).

Finally,

|1 + λ| >

√√√√12 +

(√
5− 1

2

)2

+ 2

(√
5− 1

2

)
cos

(
5π

32

)
> 1.572 >

4

3
> 2 |λ| ,

giving (e.) and concluding the proof of the lemma. 2

Let c = c0c1 · · · = + − −(+)∞ ∈ Σ∞ and f(z) :=
∑∞

k=0 ckz
k =

1− 2z + 2z3

1− z
.

Solomyak proved in [23] that f is the unique power series for which λ1 ≈ 0.5957439 +

0.2544259i is a root. Using the notations of Theorem 4.1.3 we have ` = 2, p = 1,

n = 0, and ζ = 1
1−λ1 ∈ Aλ1 ⊂ Ãλ1 which has itinerary b = (+)∞.

We are now ready to prove

Proposition 4.3.2 The parameter λ1 ≈ 0.5957439 + 0.2544259i, root of the rational

function f(z) = (1− 2z + 2z3)(1− z)−1, is an accessible point of ∂M∩ ∂M0.
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Proof Observe that since λ1 is the root of the power series f , we can write

f`(λ1) = 1− λ1 − λ2
1 = − λ3

1

1− λ1

,

f`+1(λ1) = 1− λ1 − λ2
1 + λ3

1 = − λ4
1

1− λ1

,

f`+2(λ1) = 1− λ1 − λ2
1 + λ3

1 + λ4
1 = − λ5

1

1− λ1

.

Condition (i.) in Theorem 4.1.3 is satisfied since

|f`+1(λ1)| > 1

2

∣∣λ`+2
1

∣∣
1− |λ1|

⇐⇒
∣∣∣∣ 1

1− λ1

∣∣∣∣ > 1

2

1

1− |λ1|
⇐⇒ 1− |λ1| >

1

2
|1− λ1|

holds by Lemma 4.3.3 part (a.).

Condition (ii.) in Theorem 4.1.3 is satisfied since

|f`+1(λ1)|+ |f`+2(λ1)| >
∣∣λ`+2

1

∣∣
1− |λ1|

⇐⇒
∣∣∣∣ 1

1− λ1

∣∣∣∣+

∣∣∣∣ λ1

1− λ1

∣∣∣∣ > 1

1− |λ1|

⇐⇒ 1− |λ1|2 > |1− λ1|

holds by Lemma 4.3.3 part (b.).

Condition (iii.) in Theorem 4.1.3 has four cases since the polynomial P can only be

either −2,−1, 0, or 1. The case P (z) = −2 is satisfied because

|2f`+1(λ1)| <
∣∣2f`(λ1) + λ3

1(−2)
∣∣ ⇐⇒ ∣∣∣∣ −2λ4

1

1− λ1

∣∣∣∣ < ∣∣∣∣−4λ3
1 + 2λ4

1

1− λ1

∣∣∣∣
⇐⇒ |λ1| < |2− λ1|

holds by Lemma 4.3.3 part (c.).

The case P (z) = −1 is satisfied because

|2f`+1(λ1)| <
∣∣2f`(λ1) + λ3

1(−1)
∣∣ ⇐⇒ ∣∣∣∣ −2λ4

1

1− λ1

∣∣∣∣ < ∣∣∣∣−3λ3
1 + λ4

1

1− λ1

∣∣∣∣
⇐⇒ |2λ1| < |3− λ1|

holds by Lemma 4.3.3 part (d.).

The case P (z) = 0 is trivial since

|2f`+1(λ1)| <
∣∣2f`(λ1) + λ3

1(0)
∣∣ ⇐⇒ ∣∣∣∣ −2λ4

1

1− λ1

∣∣∣∣ < ∣∣∣∣ −2λ3
1

1− λ1

∣∣∣∣ ⇐⇒ |λ1| < 1
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The case P (z) = 1 is satisfied because

|2f`+1(λ1)| <
∣∣2f`(λ1) + λ3

1(1)
∣∣ ⇐⇒ ∣∣∣∣ −2λ4

1

1− λ1

∣∣∣∣ < ∣∣∣∣−λ3
1 − λ4

1

1− λ1

∣∣∣∣
⇐⇒ |2λ1| < |1 + λ1|

holds by Lemma 4.3.3 part (e.).

Therefore, λ1 ∈ ∂M is accessible since all the assumption of Theorem 4.1.3 are

satisfied. Moreover, because f(z) is unique and has no zero coefficients, by Corol-

lary 4.1.4, λ1 is an accessible point of ∂M∩ ∂M0. 2

Fig. 4.4. The attractor Aλ1 inside Ĩ5. The green discs are part of the chain
whose existence is provided by Theorem 4.1.3.

4.3.3 +−−− (+)∞

Let c = c0c1 · · · = + − − − (+)∞ ∈ Σ∞ and f(z) :=
∑∞

k=0 ckz
k =

1− 2z + 2z4

1− z
.

Solomyak proved in [23] that f is the unique power series for which λ2 ≈ 0.63601 +

0.106924i is a root. Using the notations of Theorem 4.1.3 we have ` = 3, p = 1,

n = 0, and ζ = 1
1−λ2 ∈ Aλ2 ⊂ Ãλ2 which has itinerary b = (+)∞.

We are now ready to prove



47

Proposition 4.3.3 The parameter λ2 ≈ 0.63601 + 0.106924i, root of the rational

function f(z) = (1− 2z + 2z4)(1− z)−1, is an accessible point of ∂M∩ ∂M0.

Proof Observe that since λ2 is the root of the power series f , we can write

f`(λ2) = 1− λ2 − λ2
2 − λ3

2 = − λ4
2

1− λ2

,

f`+1(λ2) = 1− λ2 − λ2
2 − λ3

2 + λ4
2 = − λ5

2

1− λ2

,

f`+2(λ2) = 1− λ2 − λ2
2 − λ3

2 + λ4
2 + λ5

2 = − λ6
2

1− λ2

.

Condition (i.) in Theorem 4.1.3 is satisfied since

|f`+1(λ2)| > 1

2

∣∣λ`+2
2

∣∣
1− |λ2|

⇐⇒
∣∣∣∣ 1

1− λ2

∣∣∣∣ > 1

2

1

1− |λ2|
⇐⇒ 1− |λ2| >

1

2
|1− λ2|

holds by Lemma 4.3.3 part (a.).

Condition (ii.) in Theorem 4.1.3 is satisfied

|f`+1(λ2)|+ |f`+2(λ2)| >
∣∣λ`+2

2

∣∣
1− |λ2|

⇐⇒
∣∣∣∣ 1

1− λ2

∣∣∣∣+

∣∣∣∣ λ2

1− λ2

∣∣∣∣ > 1

1− |λ2|

⇐⇒ 1− |λ2|2 > |1− λ2|

holds by Lemma 4.3.3 part (b.).

Condition (iii.) in Theorem 4.1.3 has four cases since the polynomial P can only be

either −2,−1, 0, or 1. The case P (z) = −2 is satisfied because

|2f`+1(λ2)| <
∣∣2f`(λ2) + λ4

2(−2)
∣∣ ⇐⇒ ∣∣∣∣ −2λ5

2

1− λ2

∣∣∣∣ < ∣∣∣∣−4λ4
2 + 2λ5

2

1− λ2

∣∣∣∣
⇐⇒ |λ2| < |2− λ2|

holds by Lemma 4.3.3 part (c.).

The case P (z) = −1 is satisfied because

|2f`+1(λ2)| <
∣∣2f`(λ2) + λ4

2(−1)
∣∣ ⇐⇒ ∣∣∣∣ −2λ5

2

1− λ2

∣∣∣∣ < ∣∣∣∣−3λ4
2 + λ5

2

1− λ2

∣∣∣∣
⇐⇒ |2λ2| < |3− λ2|
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holds by Lemma 4.3.3 part (d.).

The case P (z) = 0 is trivial since

|2f`+1(λ2)| <
∣∣2f`(λ2) + λ4

2(0)
∣∣ ⇐⇒ ∣∣∣∣ −2λ5

2

1− λ2

∣∣∣∣ < ∣∣∣∣ −2λ4
2

1− λ2

∣∣∣∣ ⇐⇒ |λ2| < 1

The case P (z) = 1 is satisfied because

|2f`+1(λ2)| <
∣∣2f`(λ2) + λ4

2(1)
∣∣ ⇐⇒ ∣∣∣∣ −2λ5

2

1− λ2

∣∣∣∣ < ∣∣∣∣−λ3
2 − λ5

2

1− λ2

∣∣∣∣
⇐⇒ |2λ2| < |1 + λ2|

holds by Lemma 4.3.3 part (e.).

Therefore, λ2 ∈ ∂M is accessible since all the assumption of Theorem 4.1.3 are

satisfied. Moreover, because f(z) is unique and has no zero coefficients, by Corol-

lary 4.1.4, λ2 is an accessible point of ∂M∩ ∂M0. 2

Fig. 4.5. The attractor Aλ2 inside Ĩ5. The green discs are part of the chain
whose existence is provided by Theorem 4.1.3.

4.3.4 +−−O(+)∞

Let c = c0c1 · · · = +−−O(+)∞ ∈ Σ̃∞ and f(z) :=
∑∞

k=0 ckz
k =

1− 2z + z3 + z4

1− z
.

Solomyak proved in [23] that f is the unique power series for which λ3 ≈ 0.6219644 +
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0.1877304i is a root. Using the notations of Theorem 4.1.3 we have ` = 3, p = 1,

n = 0, and ζ = 1
1−λ3 ∈ Aλ3 ⊂ Ãλ3 which has itinerary b = (+)∞.

We are now ready to prove

Proposition 4.3.4 The parameter λ3 ≈ 0.6219644 + 0.1877304i, root of the rational

function f(z) = (1− 2z + z3 + z4)(1− z)−1, is an accessible point of ∂M.

Proof Observe that since λ3 is the root of the power series f , we can write

f`(λ3) = 1− λ3 − λ2
3 = − λ4

3

1− λ3

,

f`+1(λ3) = 1− λ3 − λ2
3 + λ4

3 = − λ5
3

1− λ3

,

f`+2(λ3) = 1− λ3 − λ2
3 + λ4

3 + λ5
3 = − λ6

3

1− λ3

.

Condition (i.) in Theorem 4.1.3 is satisfied since

|f`+1(λ3)| > 1

2

∣∣λ`+2
3

∣∣
1− |λ3|

⇐⇒
∣∣∣∣ 1

1− λ3

∣∣∣∣ > 1

2

1

1− |λ3|
⇐⇒ 1− |λ3| >

1

2
|1− λ3|

holds by Lemma 4.3.3 part (a.).

Condition (ii.) in Theorem 4.1.3 is satisfied since

|f`+1(λ3)|+ |f`+2(λ3)| >
∣∣λ`+2

3

∣∣
1− |λ3|

⇐⇒
∣∣∣∣ 1

1− λ3

∣∣∣∣+

∣∣∣∣ λ3

1− λ3

∣∣∣∣ > 1

1− |λ3|

⇐⇒ 1− |λ3|2 > |1− λ3|

holds by Lemma 4.3.3 part (b.).

Condition (iii.) in Theorem 4.1.3 has four cases since the polynomial P can only be

either −2,−1, 0, or 1. The case P (z) = −2 is satisfied because

|2f`+1(λ3)| <
∣∣2f`(λ3) + λ4

3(−2)
∣∣ ⇐⇒ ∣∣∣∣ −2λ5

3

1− λ3

∣∣∣∣ < ∣∣∣∣−4λ4
3 + 2λ5

3

1− λ3

∣∣∣∣
⇐⇒ |λ3| < |2− λ3|

holds by Lemma 4.3.3 part (c.).

The case P (z) = −1 is satisfied because

|2f`+1(λ3)| <
∣∣2f`(λ3) + λ4

3(−1)
∣∣ ⇐⇒ ∣∣∣∣ −2λ5

3

1− λ3

∣∣∣∣ < ∣∣∣∣−3λ4
3 + λ5

3

1− λ3

∣∣∣∣
⇐⇒ |2λ3| < |3− λ3|
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holds by Lemma 4.3.3 part (d.).

The case P (z) = 0 is trivial since

|2f`+1(λ3)| <
∣∣2f`(λ3) + λ4

3(0)
∣∣ ⇐⇒ ∣∣∣∣ −2λ5

3

1− λ3

∣∣∣∣ < ∣∣∣∣ −2λ4
3

1− λ3

∣∣∣∣ ⇐⇒ |λ3| < 1

The case P (z) = 1 is satisfied because

|2f`+1(λ3)| <
∣∣2f`(λ3) + λ4

3(1)
∣∣ ⇐⇒ ∣∣∣∣ −2λ5

3

1− λ3

∣∣∣∣ < ∣∣∣∣−λ3
3 − λ5

3

1− λ3

∣∣∣∣
⇐⇒ |2λ3| < |1 + λ3|

holds by Lemma 4.3.3 part (e.).

Therefore, λ3 ∈ ∂M is accessible since all the assumption of Theorem 4.1.3 are

satisfied. 2

Fig. 4.6. The attractor Aλ3 inside Ĩ5. The green discs are part of the chain
whose existence is provided by Theorem 4.1.3.

4.3.5 +−−OO(+)∞

Let c = c0c1 · · · = +−−OO(+)∞ ∈ Σ̃∞ and f(z) :=
∑∞

k=0 ckz
k =

1− 2z + z3 + z5

1− z
.

Solomyak proved in [23] that f is the unique power series for which λ4 ≈ 0.643703 +
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0.140749i is a root. Using the notations of Theorem 4.1.3 we have ` = 4, p = 1,

n = 0, and ζ = 1
1−λ4 ∈ Aλ4 ⊂ Ãλ4 which has itinerary b = (+)∞.

We are now ready to prove

Proposition 4.3.5 The parameter λ4 ≈ 0.643703 + 0.140749i, root of the rational

function f(z) = (1− 2z + z3 + z5)(1− z)−1, is an accessible point of ∂M.

Proof Observe that since λ4 is the root of the power series f , we can write

f`(λ4) = 1− λ4 − λ2
4 = − λ5

4

1− λ4

,

f`+1(λ4) = 1− λ4 − λ2
4 + λ5

4 = − λ6
4

1− λ4

,

f`+2(λ4) = 1− λ4 − λ2
4 + λ5

4 + λ6
4 = − λ7

4

1− λ4

.

Condition (i.) in Theorem 4.1.3 is satisfied since

|f`+1(λ4)| > 1

2

∣∣λ`+2
4

∣∣
1− |λ4|

⇐⇒
∣∣∣∣ 1

1− λ4

∣∣∣∣ > 1

2

1

1− |λ4|
⇐⇒ 1− |λ4| >

1

2
|1− λ4|

holds by Lemma 4.3.3 part (a.).

Condition (ii.) in Theorem 4.1.3 is satisfied since

|f`+1(λ4)|+ |f`+2(λ4)| >
∣∣λ`+2

4

∣∣
1− |λ4|

⇐⇒
∣∣∣∣ 1

1− λ4

∣∣∣∣+

∣∣∣∣ λ4

1− λ4

∣∣∣∣ > 1

1− |λ4|

⇐⇒ 1− |λ4|2 > |1− λ4|

holds by Lemma 4.3.3 part (b.).

Condition (iii.) in Theorem 4.1.3 has four cases since the polynomial P can only be

either −2,−1, 0, or 1. The case P (z) = −2 is satisfied because

|2f`+1(λ4)| <
∣∣2f`(λ4) + λ4

4(−2)
∣∣ ⇐⇒ ∣∣∣∣ −2λ5

4

1− λ4

∣∣∣∣ < ∣∣∣∣−4λ4
4 + 2λ5

4

1− λ4

∣∣∣∣
⇐⇒ |λ4| < |2− λ4|

holds by Lemma 4.3.3 part (c.).

The case P (z) = −1 is satisfied because

|2f`+1(λ4)| <
∣∣2f`(λ4) + λ4

4(−1)
∣∣ ⇐⇒ ∣∣∣∣ −2λ5

4

1− λ4

∣∣∣∣ < ∣∣∣∣−3λ4
4 + λ5

4

1− λ4

∣∣∣∣
⇐⇒ |2λ4| < |3− λ4|



52

holds by Lemma 4.3.3 part (d.).

The case P (z) = 0 is trivial since

|2f`+1(λ4)| <
∣∣2f`(λ4) + λ4

4(0)
∣∣ ⇐⇒ ∣∣∣∣ −2λ5

4

1− λ4

∣∣∣∣ < ∣∣∣∣ −2λ4
4

1− λ4

∣∣∣∣ ⇐⇒ |λ4| < 1

The case P (z) = 1 is satisfied because

|2f`+1(λ4)| <
∣∣2f`(λ4) + λ4

4(1)
∣∣ ⇐⇒ ∣∣∣∣ −2λ5

4

1− λ4

∣∣∣∣ < ∣∣∣∣−λ3
4 − λ5

4

1− λ4

∣∣∣∣
⇐⇒ |2λ4| < |1 + λ4|

holds by Lemma 4.3.3 part (e.).

Therefore, λ4 ∈ ∂M is accessible since all the assumption of Theorem 4.1.3 are

satisfied. 2

Fig. 4.7. The attractor Aλ4 inside Ĩ5. The green discs are part of the chain
whose existence is provided by Theorem 4.1.3.

4.4 Thunderstorm in No Man’s Land.

In this section we describe a method of proving that an accessible parameter is on

the boundary of the component of D \M containing 0. Even though we work with a

specific parameter λ ∈M, the idea applies to other accessible parameters.
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“No Man’s Land” is the name that Barnsley [14] gave to the largest region H0 of

the unit disc not in M. “Thunderstorm” refers to how we prove that an accessible

parameter λ is accessible from 0, by constructing “rays” connecting the origin to

λ ∈ ∂M.

We will show the following

Proposition 4.4.1 (Pérez-Silvestri) Let λ0 ≈ −0.366+0.520i be the root of f(z) =

1 + z + z2 − 2z3 then λ0 is on the boundary H0.

The proof is structured as follows: in Section 4.4.1 we see how the algebraic nature

of λ0 implies it lies on an infinite system of curves through 0. In Section 4.4.2 we

describe the instars of λ0 at level 1 and 2. In Section 4.4.3 we run Algorithm 1 on λ0,

and describe the stack contents at each level so that in Section 4.4.4, we may show

that a particular segment in each of these curves is in H0. Finally, in Section 4.4.5

we will piece these segments together, thus concluding the proof. We need to remark

that there is a technical issue in this last step that remains unfinished. However, we

are confident that it is manageable by direct computation.

Note that the parameter λ0 is one of the landmark points considered in Section 4.3;

it should be possible to obtain the same result for the other landmark points with a

similar construction. The key property used in the proof is an alignment condition

obtained by the fact that the itinerary of λ0 is preperiodic with preperiod 1. It seems

clear that this property is closely connected to membership in M0 ∩ ∂H0, but an

explicit characterization has not been found.

4.4.1 Alignment Condition

We construct an infinite collection of curves (rays) connecting 0 to λ0. The func-

tion f(z) = 1+z+z2−2z3

1−z3 has the following power series

(1− z3) + (z + z2 − z3)

1− z3
= 1 + z + z2 − z3 + z4 + z5 − z6 + z6 + z8 − z9 + · · · (*)
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Since f(λ0) = 0, we find that λ0 ∈M0. Moreover, since (1−z3k)f(z) = f3k−1(z)−2z3k

for every integer k ≥ 0, it follows that λ0 is a root of each polynomial f3k−1(z)− 2z3k

(where f3k−1(z) is a truncation of (*)).

The geometrical interpretation is that, in the instar I3k, the nodal discs with

centers ±f3k−1(λ0)± λ3k
0 , are aligned and equidistant (see Fig 4.8). Let us define the

expressions

Ξk(z) :=
f3k−1(z)

z3k
,

so that Ξk(λ0) = 2 for all k ≥ 1. This allows us to consider the level curves

Im(Ξk(z)) = 0 (see Fig 4.9).

Fig. 4.8. In the background is I2. Highlighted are the nodal discs of level
3 with centers ±f2(λ0)± λ3

0. The origin is colored in yellow.

For a fixed k ≥ 1, the set of z ∈ C such that Im(Ξk(z)) = 0 consists of all those

curves whose image under Ξk is the real line.

Lemma 4.4.1 For a fixed k ≥ 1, Ξ−1
k (R) =

⋃3k
j=1 Kj where Kj are curves containing

the origin.

Proof Observe that Ξk has a single pole of order 3k at 0. Hence, ∞ ∈ R has only

one preimage with multiplicity 3k. Therefore, the origin must be in each Kj for every

j, since Ξk(Kj) = R. 2
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Fig. 4.9. Plots of the level curves Im(Ξk(z)) = 0 inside the disc of radius
2−1/2 for k = 1, 2, 3, 4. The parameter λ0 is drawn in red.

We are only interested in the component Ck of the level curve that contains λ0 and,

furthermore, in the segment Rk connecting 0 and λ0.

Observe that the level curves are easily rewritten in polar coordinates: let z = reiθ

with r 6= 0, then for k = 1 we have

Im(Ξ2(z)) = Im

(
1 + z + z2

z3

)
= − 1

r3
sin(3θ)− 1

r2
sin(2θ)− 1

r
sin(θ) = 0

=⇒ sin(3θ) + r sin(2θ) + r2 sin(θ) = 0;

and in general for k ≥ 1

Im(Ξk(z)) = 0 =⇒
3k−1∑
j=0

cjr
j sin ((3k − j)θ) = 0.

where the cj are the coefficients of the polynomial f3k−1(z) which are described by

the entries in the itinerary c = +(+ +−)∞.
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Notice that z lying on the level curve Ck for some k ≥ 1 implies that it satisfies

the equation f3k−1(z) = Cz3k with C ∈ R. Also C = 2 if and only if z = λ0, while

C → +∞ forces z → 0. The value of C is a measure of overlap between the symmetric

discs Dc|3k−1 and Dc|3k−1: recall that the radius of a nodal disc of level 3k − 1 for a

parameter z is
∣∣z3k

∣∣R, therefore, if z ∈ Ck and we look at the ratio of the distance of

the centers with the sum of the radii of the two symmetric nodal discs, we obtain

2 |f3k−1(z)|
2 |z3k|R

=
C
∣∣z3k

∣∣
|z3k|

(1− |z|) = C(1− |z|).

If the above ratio is greater than 1 (which definitely occurs whenever C > 3 since

|z| < 2/3), we have that the nodal discs do no intersect; if it is equal to 1 they

intersect exactly at one point on their boundary, i.e. the origin; otherwise the nodal

discs intersect. Hence, we define the ray to be

Rk :=
{
z ∈ Ck

∣∣ ∃C ∈ [2,∞) such that f3k−1(z) = Cz3k
}
.

We remark that due to the spiraling structure of ∂M at λ0, the rays Rk have to

intersect M infinitely often. In particular, we have not yet excluded the possibility

that λ0 is on the boundary of some hole other than H0. To resolve this issue, for

each k ≥ 1, we will consider only the segment of Rk where we can guarantee that

the instar at level 3k − 1 is disconnected. Then we will argue that the segments in

Rk and Rk+1 can be connected by another curve lying completely in H0.

4.4.2 Shape Conditions at λ0

Let us describe in detail the level 1 and 2 instars for λ0. At level 1, D++ and D−−

intersect all other discs, but D−+ ∩ D+− = ∅. We call this configuration a “cloud”.

The instar of level 2 consists of two cloud copies, N− and N+. Now,

|ν+++ − ν−−−| = 2
∣∣1 + λ0 + λ2

0

∣∣ = 2
∣∣2λ3

0

∣∣ < 2 |λ3
0|

1− |λ0|
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since |λ0| < 2
3
, which can be interpreted as saying that D+++ and D−−− intersect. It

is similarly straightforward to compute, using the rough bounds
√

5−1
2

< |λ0| < 2
3
and

arg(λ0) ∈ (2π/3, 23π/32),

|ν+++ − ν−+−| = 2
∣∣1 + λ2

0

∣∣ > 2 |λ3
0|

1− |λ0|

|ν+++ − ν−++| = 2 |1| > 2 |λ3
0|

1− |λ0|

|ν+++ − ν−−+| = 2 |1 + λ0| >
2 |λ3

0|
1− |λ0|

|ν++− − ν−++| = 2
∣∣1− λ2

0

∣∣ > 2 |λ3
0|

1− |λ0|

|ν++− − ν−−+| = 2
∣∣1 + λ0 − λ2

0

∣∣ > 2 |λ3
0|

1− |λ0|

which say that no other discs of N− intersect N+ (and viceversa).

By the self-similarity (Lemma 4.2.1), this exact intersection configuration will

repeat locally every third level; i.e. there are two clouds near 0 (subsets of the

positive and negative instars), that intersect only at one disc. See Fig. 4.10.

Fig. 4.10. Local picture around the origin of I2 and I5 for the parameter
λ0. The cloud N− is highlighted in blue, while N+ is in orange.
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4.4.3 Stack Contents of the Disconnectivity Algorithm

A stronger statement is true, because the intersection conditions are exactly the

same at every third level. This is the main property that allows an iterative argument

to proceed. Since Fλ0 = {f}, and the coefficients of f are eventually periodic, the

elements in the stack in Algorithm 1 will (eventually) repeat.

This seems surprising at first, since one could expect successive stack entries to

consists of ever more complicated expressions in λ0. However, let us run the algorithm

at λ0, starting at level 3j (for j ≥ 0) and tabulate the contents of the stack. In the

diagram of Fig. 4.4.3 we show exactly what are these entries and we indicate which

nodal disc-intersection is responsible for a particular entry. The fact that f3j(λ0) = λ3j
0

make it so that the entries in the stack are exaclty the same every three levels.

Dc|(3j) ∩ Dc|(3j) 6= ∅ 2
λ0


Dc|(3j)+ ∩ Dc|(3j)+ 6= ∅

Dc|(3j)− ∩ Dc|(3j)− 6= ∅

Dc|(3j+1) ∩ Dc|(3j+1) 6= ∅

2
λ20

2(1+λ0)

λ20

Dc|(3j+2) ∩ Dc|(3j+2) 6= ∅ 2(1+λ0+λ20)

λ30
= 4

Dc|(3j+3) ∩ Dc|(3j+3) 6= ∅ 2(1+λ0+λ20−λ30)

λ40
= 2

λ0

Fig. 4.11. Diagram representing how the stack entries change as we run
Algorithm 1 for λ0. The integer j ≥ 0 also indicates the level of the stack.
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4.4.4 Different Shapes

Let us now compare the structure of the level 2 instars of λ0 and three other nearby

parameters. Let ηj be the (local) root of 1+z+z2−Cjz3 for Cj = 3, 1
2
(3− i), (7

5
+i),

so that η1 = 1
3
(−1 +

√
2i), η2 ≈ −0.427 + 0.524i, η3 ≈ −0.304 + 0.588i (see Fig. 4.12).

a.) The positive and negative instars λ0 are connected only through the overlap D+++

and D−−−.

b.) Since C1 ∈ R, η1 is on the ray R1, implying that the discs D+++−, D++++, and

D−−−+,D−−−− are aligned. However, D+++∩D−−− = ∅, and, in fact, the positive

and negative instars are completely disjoint.

c.) The values C2 and C3 are not real, so η2, η3 6∈ R1. The discs D+++ and D−−−

intersect, though. However, the instar structures are different than the λ0 case

because η2 exhibits the extra intersection of D+++ with D−−+, while η3 exhibits

the extra intersection of D+++ with D−+−.

In order to capture the notion of local shape similarity as parameters approach λ0, let

us consider the lines through the node ν−++ with direction vectors connecting ν−++

to ν−−+, and ν−+− to ν−++:

L−λ0 =

{
z ∈ C

∣∣∣∣ Im

(
z − ν−++

ν−−+ − ν−++

)
= 0

}
=

{
z ∈ C

∣∣∣∣ Im

(
z − ν−++

−2λ0

)
= 0

}
Lλ20 =

{
z ∈ C

∣∣∣∣ Im

(
z − ν−++

ν−++ − ν−+−

)
= 0

}
=

{
z ∈ C

∣∣∣∣ Im

(
z − ν−++

2λ2
0

)
= 0

}
Each line determines a left half-plane in which the node ν+++ lies. Thus we can

interpret the inequalities

Im

(
ν+++ − ν−++

−2λ0

)
= Im

(
f0(λ0)

−λ0

)
> 0,

Im

(
ν+++ − ν−++

2λ2
0

)
= Im

(
f0(λ0)

λ2
0

)
> 0,

as describing the relative orientations of the instars I2 positive and negative clouds.
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Fig. 4.12. The instar at level 2 for λ0 (top left), η1 (top right), η2 (bottom
left), and η3 (bottom right). The extra intersections are highlighted in red.
For λ0 and η1 the aligned nodal discs of the next level are also drawn.

The condition for D+++ not to intersect the discs D−+−, D−++, or D−−+ can be

written as

|ν+++ − ν−+−| = 2
∣∣1 + λ2

0

∣∣ > 2 |λ3
0|

1− |λ0|

|ν+++ − ν−++| = 2 |1| > 2 |λ3
0|

1− |λ0|

|ν+++ − ν−−+| = 2 |1 + λ0| >
2 |λ3

0|
1− |λ0|
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As previously mentioned, this arrangement of nodal discs around 0 repeats every

three levels. This suggests describing the local shape for other parameters λ in terms

of these lines:

L−λ3k−2 =

{
z ∈ C

∣∣∣∣ Im

(
z − νc|(3k−3)++

νc|(3k−3)−+ − νc|(3k−3)++

)
= 0

}
=

{
z ∈ C

∣∣∣∣ Im

(
z − νc|(3k−3)++

−2λ3k−2

)
= 0

}

Lλ3k−1 =

{
z ∈ C

∣∣∣∣ Im

(
z − νc|(3k−3)++

νc|(3k−3)++ − νc|(3k−3)+−

)
= 0

}
=

{
z ∈ C

∣∣∣∣ Im

(
z − νc|(3k−3)++

2λ3k−1

)
= 0

}
.

where c = +(+ +−)∞ is the itinerary associated to λ0.

Now, for a point λ ∈ Rk we want that, around 0, the arrangements of the nodal

discs at level 3k−1 resemble the one of λ0. The lemma below assumes that λ belongs

to the ray Rk, and proves that the local clouds are oriented correctly with respect to

each other (i.,iii.), and that they display no intersections that are not present in Aλ0

(ii.,iv.).

Then we prove

Lemma 4.4.2 Fix k ≥ 1 and suppose that f3k−1(λ) = Cλ3k, i.e. that λ ∈ Rk, and

C > (1− |λ|)−1. Then the following are satisfied:

(i.) the left half plane determined by L−λ3k−2 contains the node νc|(3k−1);

(ii.) the discs Dc|(3k−1) and Dc|(3k−3)+− do not intersect;

(iii.) the left half plane determined by Lλ3k−1 contains the node νc|(3k−1);

(iv.) the nodal discs Dc|(3k−1) and Dc|(3k−3)−+ do not intersect.
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Proof The equation f3k−1(λ) = Cλ3k allows us to rewrite each node as follows:

νc|(3k−1) = Cλ3k

νc|(3k−3)−+ = 2λ3k−1 − Cλ3k

νc|(3k−3)++ = 2λ3k−2 + 2λ3k−1 − Cλ3k

νc|(3k−3)+− = 2λ3k−2 − Cλ3k

The node νa|(3k−1) belongs to the left half plane defined by the directed line L−λ3k−2 if

Im

(
νc|(3k−1) − νc|(3k−3)++

−2λ3k−2

)
= Im

(
1 + λ− Cλ2

)
= Im

(
λ− Cλ2

)
> 0.

The above inequality is equivalent to

|λ| sin(θ)− C
∣∣λ2
∣∣ sin(2θ) > 0 ⇐⇒ 1− 2C |λ| cos(θ) > 0

which is always satisfied as θ = arg(λ) ∈ (2π/3, 23π/32). Thus, (i.) is proved.

The trivial intersection of the discs Dc|(3k−1) and Dc|(3k−3)−+ is given by the in-

equality

∣∣νc|(3k−1) − νc|(3k−3)−+

∣∣ = 2
∣∣λ3k−1

∣∣ |1− Cλ| > 2

∣∣λ3k
∣∣

1− |λ|
⇐⇒ |1− Cλ| > |λ|

1− |λ|

By the Law of Cosines and the fact that 1− 2C |λ| cos(θ) > 0

|1− Cλ| =
√

1 + C2 |λ|2 − 2C |λ| cos(θ) > C |λ| > |λ|
1− |λ|

where the last inequality is true by assumption. Hence, (ii.) is proved.

The node νc|(3k−1) lies in the left half plane defined by the directed line L−λ3k−2 if

Im

(
νc|(3k−1) − νc|(3k−3)++

2λ3k−1

)
= Im

(
−1

λ
− 1 + Cλ

)
= Im

(
−1

λ
+ Cλ

)
> 0.

Since Im(λ) > 0, then

−Im

(
1

λ

)
+ CIm (λ) =

1

|λ|2
Im(λ) + CIm(λ) > 0 ⇐⇒ C > − 1

|λ|2

which is clearly true as C is positive. Thus, (iii.) is proved.
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The trivial intersection of the discs Dc|(3k−1) and Dc|(3k−3)+− is given by the in-

equality∣∣νc|(3k−1) − νc|(3k−3)+−
∣∣ = 2

∣∣λ3k−2
∣∣ ∣∣1− Cλ2

∣∣ > 2

∣∣λ3k
∣∣

1− |λ|
⇐⇒

∣∣1− Cλ2
∣∣ > |λ2|

1− |λ|

Using the Law of Cosines again∣∣1− Cλ2
∣∣ =

√
1 + C2 |λ2|2 − 2C |λ2| cos(2π − 2θ) =

√
1 + C2 |λ|4 − 2C |λ|2 cos(2θ)

=

√
1 + C2 |λ|4 + 2C |λ|2 − 4C |λ|2 cos2(θ)

>

√
1 + C2 |λ|4 >

√√√√1 +

(
|λ|2

1− |λ|

)2

>
|λ2|

1− |λ|
.

The first inequality in the last line is true because − cos2(θ) > −1/2. Hence, (iv.) is

proved. 2

4.4.5 Proof of the Proposition

Lemma 4.4.2 is the key idea needed to obtain Proposition 4.3.1. When k = 1, for

parameters λ ∈ R1 satisfying f2(λ) = Cλ3 with C > (1 − |λ|)−1, we can guarantee

that the instar at level 3k − 1 = 2 is disconnected, and hence, λ ∈ H0. Once

C = (1− |λ|), the discs Dc|(3k−1) and Dc|(3k−1) are tangent at 0, which still guarantees

λ ∈ H0. At this point we want to connect to the next level curve, R2.

Remember that λ ∈ Rk implies that certain nodal discs have their centers on

the line through the origin which makes an angle of arg(λ3k) with the real axis.

The node νc|3k+2 is inside Dc|3k−1 and it is in between the lines through the origin

which make an angle of arg(λ3k) and arg(λ3k+3) with the real axis. The points in

parameter plane on the curve C†,k :=
{
z ∈ D

∣∣ |f3k−1(z)| =
∣∣z3k

∣∣ (1− |z|)−1
}
satisfy

the tangency condition of the discs Dc|(3k−1) and Dc|(3k−1).

Conjecture 1 The segment of the curve C†,k connecting Rk to Rk+1 is in H0.

Assume the above conjecture is true, and let λ ∈Rk+1∩C†,k. Then we claim that the

discs Dc|(3k+2) and Dc|(3k+2) are disconnected. If that were not the case, then it would
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imply that at level 3k − 1 there was a non-trivial intersection of the disc Dc|(3k−1)

and Dc|(3k−1) contradicting the fact λ ∈ C†,k. Consequently, λ ∈Rk+1 ∩ C†,k satisfies

f3k+2(λ) = Cλ3k+3 with C > (1 − |λ|)−1 and Lemma 4.4.2 applies. It follows that

λ ∈ H0.

The proof is therefore complete.

4.5 Connection to Quadratic Dynamics

We end this chapter by describing a fruitful connection between our family of IFS

to the quadratic family z2 + c. It is a widely believed, but still open question, to

decide whether this connection applies exactly to all parameters in ∂M∩∂M0. This

will only be an overview of known results, and the exposition will follow [11] very

closely.

We restrict our attention to those parameters λ ∈M for which Oλ = {0}:

T := {λ ∈M | |Oλ| = 1} .

Lemma 3.4.1 gives that if λ ∈ T , then Fλ is a singleton {f} where the coefficients

of f are all nonzero. Consequently, T ⊂ M0. For these parameters λ, Aλ is known

to be a dendrite, a connected, locally connected, nowhere dense compact set in the

plane with connected complement. Bandt [9] observed that it is possible to define

quadratic-like dynamics on Aλ for parameters in T . In this way, from a theorem of

Kameyama [27], there exists a conjugacy of this dynamics with the one of z2 + c for

some parameter c.

Observe that Aλ is invariant under h(z) = −z. Abusing notation, h flips the signs

in {−,+} of the itinerary for each point in the attractor. Define on Aλ the piecewise

map

qλ(z) =

s−1
+ (z) z ∈ A+

λ

(h ◦ s−1
− )(z) z ∈ A−λ

=


z − 1

λ
z ∈ A+

λ

−z + 1

λ
z ∈ A−λ

then qλ is a well-defined, 2-to-1 map on Aλ that is a local homeomorphism everywhere

but at 0 ∈ Oλ. In fact, the attractor of the IFS {s+, s− ◦ h} is again Aλ. In terms
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of itineraries, qλ induces as a left shift or a shift-and-a-flip, depending on the first

symbol. Recalling from Section 3.1 the definition of the projection πλ : Σ∞ → Aλ, for

any word w = w0w1w2 · · · ∈ Σ∞

qλ(πλ(w)) =

πλ(σ(w)) if w0 = +

πλ(h(σ(w)) = πλ(σ(h(w)) if w0 = −

We associate to λ a combinatorial invariant defined as the address of qλ(0) with

respect to the partition
{
{0} ,A+

λ \ {0} ,A
−
λ \ {0}

}
. Assign 0, 1, and ? to A−λ \ {0},

A+
λ \ {0}, {0} respectively. Then if the orbit of w ∈ Aλ does not come back to 0, we

define the address e(w) = e0e1 · · · of w =
∑

j≥0 anλ
n recursively as

e0 = a0 and en =

1 an 6= an−1,

0 an = an−1

.

The kneading sequence κ = κλ is the address of qλ(0):

κ = κ1κ2 · · · where κn =

en−1(qλ(0)) qλ(0) ∈ A+
λ

1− en−1(qλ(0)) qλ(0) ∈ A−λ

.

Note that by definition, the kneading sequence will always start with 1. Bandt and

Rao [24] showed that when λ ∈ T , the orbit of 0 is non-recurrent, so κ is a well-defined

sequence in {0, 1}∞.

On the other hand, given a sequence κ in {0, 1}∞, we can obtain a power series

f(z) =
∑

n≥0 anz
n by

an =

(−1)|{1≤i≤n | κi=1}| qλ(0) ∈ A+
λ

(−1)|{1≤i≤n | κi=0}| qλ(0) ∈ A−λ

.

Note that by [28] the power series so obtained, will have at most one root in the top

half of the disc D2−1/2 . Consequently, the kneading sequence determines a unique

λ ∈M0.

In the quadratic setting, let pc(z) = z2 + c, and define the (filled) Julia set for a

fixed c to be Jc = {z ∈ C | |pnc (z)| ≤ 2}. If Jc is a dendrite then it is possible (using
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external rays) to create a partition Jc = {0} ∪ J0 ∪ J1 such that pc(0) ∈ J1. The

kneading sequence of pc is defined as the address of pc(0) = c.

Proposition 4.5.1 (Eroğlu-Rohde-Solomyak [11]) Suppose λ ∈ T and c ∈ C

is a parameter such that Jc is a dendrite. If the kneading sequences of qλ and pc

are identical, then the systems (Aλ, qλ) and (Jc, pc) are topologically conjugate: there

exists a homeomorphism ϕ : Jc → Aλ such that the following diagram commutes

Jc Jc

Aλ Aλ

ϕ

pc

ϕ

qλ

This result was later extended by Pilgrim and Haïssinski.

Definition 4.5.1 A homeomorphism ϕ between metric spaces (X, dX) and (Y, dY ) is

quasisymmetric if there is a homeomorphism η : [0,∞)→ [0,∞) such that for every

t > 0 and a, b, x ∈ X,

dX(a, x) ≤ tdX(b, x) implies dY (ϕ(a), ϕ(x)) ≤ η(t)dY (ϕ(b), ϕ(x)).

Theorem 4.5.1 (Pilgrim-Haïssinski [12]) Suppose λ ∈ T and c ∈ C is a param-

eter such that Jc is a dendrite. If the kneading sequences of qλ and pc are identical,

then the systems (Aλ, qλ) and (Jc, pc) are quasisymmetrically conjugate.

As pointed out in [11], not all dendritic Julia set (i.e. those corresponding to a

Misiurewicz parameter c) have a corresponding attractor Aλ. As an example, let

c = i, then we obtain the kneading sequence 1(10)∞ (from the external ray of angle
1
6
landing at 0), which gives the power series (1 − z + z2)(1 + z2)−1. The roots are

λ = 4−1(1±
√

7i), but Aλ is not a dendrite, as we have seen at the end of Chapter 3.

The landmark points λj for j = 0, 1, 2, discussed in Section 4.3, are all elements

of T . Hence, there is a parameter cj ∈ C such that (Aλj , qλj) is quasisymmetrically

conjugate to (Jcj , pcj).

• The itinerary of 0 for λ0 ≈ 0.366+0.52i is +(−+++−−)∞. Thus, the kneading

sequence is 1(100)∞, to which we can associate the external ray with angle 3
14
.

This lands at c ≈ −0.1558 + 1.112i.
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• The itinerary of 0 for λ1 ≈ 0.596 + 0.254i is + − −(+)∞. Thus, the kneading

sequence is 101(0)∞, to which we can associate the external ray with angle 3
8
.

This lands at c ≈ −1.296 + 0.442i.

• The itinerary of 0 for λ2 ≈ 0.636 + 0.107i is +−−− (+)∞. Thus, the kneading

sequence is 1001(0)∞, to which we can associate the external ray with angle 7
16
.

This lands at c ≈ −1.771 + 0.066i.

Pictures of these sets are in Fig 4.13.

From the discussion above, is clear that there is the question of which kneading

sequences are admissible for such λ ∈ ∂M0. Future work will investigate further

this issue, as a lot more is known (see [29]) about the admissible kneading sequences

for Misiurewicz parameters and the topology of their associated Hubbard tree. In

particular, it was pointed out by Henk Bruin that for all the examples above, the

α-fixed points of Aλ have three arms, and there are no other periodic branch points.

Furthermore, the critical value qλ(0) is always an endpoint of Aλ. The latter remark

is indeed true in the case λ ∈ T is accessible and 0 ∈ Aλ has a preperiodic itinerary

with preperiod 1.
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Fig. 4.13. Table illustrating the self similar set Aλ and the corresponding
Julia set Jc.



REFERENCES



69

REFERENCES

[1] B. Solomyak, “Conjugates of beta-numbers and the zero-free domain for a class
of analytic functions,” Proc. London Math. Soc. (3), vol. 68, no. 3, pp. 477–498,
1994.

[2] D. J. Thompson, “Generalized β-transformations and the entropy of unimodal
maps,” Comment.Math. Helv., vol. 92, no. 4, pp. 777–800, 2017.

[3] W. Thurston, “Entropy in dimension one,” Frontiers in Complex Dynamics: In
Celebration of John Milnor’s 80th Birthday, pp. 339–384, 2014.

[4] G. Tiozzo, “Galois conjugates of entropies of real unimodal maps,” International
Mathematics Research Notices, 2018, accepted.

[5] P. Erdös, “On a family of symmetric Bernoulli convolutions,” Amer. J. Math.,
vol. 61, pp. 974–976, 1939.

[6] Y. Peres, W. Schlag, and B. Solomyak, “Sixty years of Bernoulli convolutions,”
Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), vol. 46, pp.
39–65, 2000.

[7] P. Shmerkin, “On the exceptional set for absolute continuity of Bernoulli convo-
lutions,” Geom. Funct. Anal., vol. 24, no. 3, pp. 946–958, 2014.

[8] P. Shmerkin and B. Solomyak, “Absolute continuity of complex Bernoulli con-
volutions,” Math. Proc. Cambridge Philos. Soc., vol. 161, no. 3, pp. 435–453,
2016.

[9] C. Bandt, “On the mandelbrot set for pairs of linear maps,” Nonlinearity, vol. 15,
no. 4, pp. 1127–1147, 2002.

[10] D. Calegari, S. Koch, and A. Walker, “Roots, schottky semigroups, and a proof
of bandt’s conjecture,” Ergodic Theory and Dynamical Systems, vol. 37, no. 8,
pp. 2487–2555, 2017.

[11] K. I. Eroğlu, S. Rohde, and B. Solomyak, “Quasisymmetric conjugacy between
quadratic dynamics and iterated function systems,” Ergodic Theory and Dynam-
ical Systems, vol. 30, no. 6, pp. 1665–1684, 2010.

[12] P. Haïssinsky and K. M. Pilgrim, “Examples of coarse expanding conformal
maps,” Discrete Contin. Dyn. Syst., vol. 32, no. 7, pp. 2403–2416, 2012.

[13] J. E. Hutchinson, “Fractals and self similarity,” Indiana University Mathematics
Journal, vol. 30, no. 5, pp. 713–747, 1981.

[14] M. F. Barnsley, Fractals everywhere, 2nd ed. Academic Press Professional,
Boston, MA, 1993.



70

[15] K. Falconer, Fractal geometry. John Wiley & Sons, Ltd., Chichester, 1990,
mathematical foundations and applications.

[16] P. A. P. Moran, “Additive functions of intervals and hausdorff measure,” Math-
ematical Proceedings of the Cambridge Philosophical Society, vol. 42, no. 1, pp.
15–23, 1946.

[17] C. Bandt and D. Mekhontsev, “Elementary fractal geometry: New relatives of
the sierpiński gasket,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 28, no. 6, pp. 63–104, 2018.

[18] A. Schief, “Separation properties for self-similar sets,” Proceedings of the Ameri-
can Mathematical Society, vol. 122, no. 1, pp. 111–115, 1994.

[19] C. Bandt and S. Graf, “Self-similar sets vii. a characterization of self-similar frac-
tals with positive hausdorff measure,” Proceedings of the American Mathematical
Society, pp. 995–1001, 1992.

[20] M. F. Barnsley and A. N. Harrington, “A mandelbrot set for pairs of linear maps,”
Physica D: Nonlinear Phenomena, vol. 15, no. 3, pp. 421–432, 1985.

[21] T. Bousch. (1988) Paires de similitudes. [Online]. Available: http://topo.math.
u-psud.fr/~bousch

[22] ——. (1992) Connexité locale et par chemins hölderiens pour les systemes itérés
de fonctions. [Online]. Available: http://topo.math.u-psud.fr/~bousch

[23] B. Solomyak, “On the ’mandelbrot set’ for pairs of linear maps: asymptotic self-
similarity,” Nonlinearity, vol. 18, no. 5, pp. 1927–1943, 2005.

[24] C. Bandt and H. Rao, “Topology and separation of self-similar fractals in the
plane,” Nonlinearity, vol. 20, no. 6, pp. 1463–1474, 2007.

[25] C. Bandt and N. Hung, “Self-similar sets with an open set condition and great
variety of overlaps,” Proceedings of the American Mathematical Society, vol. 136,
no. 11, pp. 3895–3903, 2008.

[26] T. Lei, “Similarity between the mandelbrot set and julia sets,” Communications
in mathematical physics, vol. 134, no. 3, pp. 587–617, 1990.

[27] A. Kameyama, “Julia sets and self-similar sets,” Topology Appl., vol. 54, no. 1-3,
pp. 241–251, 1993.

[28] F. Beaucoup, P. Borwein, D. W. Boyd, and C. Pinner, “Multiple roots of [−1, 1]
power series,” J. London Math. Soc. (2), vol. 57, no. 1, pp. 135–147, 1998.

[29] H. Bruin and D. Schleicher, “Admissibility of kneading sequences and structure
of Hubbard trees for quadratic polynomials,” J. Lond. Math. Soc. (2), vol. 78,
no. 2, pp. 502–522, 2008.

http://topo.math.u-psud.fr/~bousch
http://topo.math.u-psud.fr/~bousch
http://topo.math.u-psud.fr/~bousch


VITA



71

VITA

Stefano was born in the magical and eternal city of Rome, Italy. He has always

been fond of mathematics since an early age. When in high-school his teacher Silvana

Renzi introduced him to the Mandelbrot set and the theory of fractals, he knew

what he wanted to do. Somehow, during his undergraduate studies, he was lucky

enough to work with Professor Robert L. Devaney, a leader in the field of Dynamical

Systems and Fractals. Through his help and guidance, Stefano managed to enter

the graduate school with the largest Dynamical Systems research group in the US.

Here, he continued studying this beautiful subject under the supervision of his advisor

Professor Rodrigo A. Pérez.

Stefano hopes to continue uncovering the mysterious and fascinating world of

Fractals.


	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	GENERAL THEORY OF IFS
	Iterated Function Systems
	Examples
	The Cantor Set
	The Sierpinski Triangle

	Symbolic Representation of an Attractor
	Geometry of the Attractor

	PARAMETRIC FAMILIES OF IFS
	Notation
	The Disconnectivity Algorithm
	Geometry of the Connectedness Locus
	The Overlap Set

	THE BOUNDARY OF THE CONNECTEDNESS LOCUS
	Self and Asymptotic Similarity
	Proof of the Main Theorems
	Examples: Landmark Points
	+(++-)
	+–(+)
	+—(+)
	+–0(+)
	+–00(+)

	Thunderstorm in No Man's Land.
	Alignment Condition
	Shape Conditions at lambda0
	Stack Contents of the Disconnectivity Algorithm
	Different Shapes
	Proof of the Proposition

	Connection to Quadratic Dynamics

	REFERENCES
	VITA

