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ABSTRACT 

 
 
 
Dovzhenok, Andrey A. Ph.D., Purdue University, May 2012. Mathematical Models of 
Basal Ganglia Dynamics. Major Professor: Leonid Rubchinsky. 
 
 
 

Physical and biological phenomena that involve oscillations on multiple time 

scales attract attention of mathematicians because resulting equations include a small 

parameter that allows for decomposing a three- or higher-dimensional dynamical system 

into fast/slow subsystems of lower dimensionality and analyzing them independently 

using geometric singular perturbation theory and other techniques. However, in most life 

sciences applications observed dynamics is extremely complex, no small parameter exists 

and this approach fails. Nevertheless, it is still desirable to gain insight into behavior of 

these mathematical models using the only viable alternative – ad hoc computational 

analysis. Current dissertation is devoted to this latter approach. 

Neural networks in the region of the brain called basal ganglia (BG) are capable 

of producing rich activity patterns. For example, burst firing, i.e. a train of action 

potentials followed by a period of quiescence in neurons of the subthalamic nucleus 

(STN) in BG was shown to be related to involuntary shaking of limbs in Parkinson’s 

disease called tremor. The origin of tremor remains unknown; however, a few hypotheses 

of tremor-generation were proposed recently. The first project of this dissertation 

examines the BG-thalamo-cortical loop hypothesis for tremor generation by building 



xi 
 

physiologically-relevant mathematical model of tremor-related circuits with negative 

delayed feedback. The dynamics of the model is explored under variation of connection 

strength and delay parameters in the feedback loop using computational methods and data 

analysis techniques. The model is shown to qualitatively reproduce the transition from 

irregular physiological activity to pathological synchronous dynamics with varying 

parameters that are affected in Parkinson’s disease. Thus, the proposed model provides an 

explanation for the basal ganglia-thalamo-cortical loop mechanism of tremor generation. 

Besides tremor-related bursting activity BG structures in Parkinson’s disease also 

show increased synchronized activity in the beta-band (10-30Hz) that ultimately causes 

other parkinsonian symptoms like slowness of movement, rigidity etc. Suppression of 

excessively synchronous beta-band oscillatory activity is believed to suppress 

hypokinetic motor symptoms in Parkinson’s disease. Recently, a lot of interest has been 

devoted to desynchronizing delayed feedback deep brain stimulation (DBS). This type of 

synchrony control was shown to destabilize synchronized state in networks of simple 

model oscillators as well as in networks of coupled model neurons. However, the 

dynamics of the neural activity in Parkinson’s disease exhibits complex intermittent 

synchronous patterns, far from the idealized synchronized dynamics used to study the 

delayed feedback stimulation. The second project of this dissertation explores the action 

of delayed feedback stimulation on partially synchronous oscillatory dynamics, similar to 

what one observes experimentally in parkinsonian patients. We employ a computational 

model of the basal ganglia networks which reproduces the fine temporal structure of the 

synchronous dynamics observed experimentally. Modeling results suggest that delayed 
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feedback DBS in Parkinson’s disease may boost rather than suppresses synchronization 

and is therefore unlikely to be clinically successful. 

Single neuron dynamics may also have important physiological meaning. For 

instance, bistability – coexistence of two stable solutions observed experimentally in 

many neurons is thought to be involved in some short-term memory tasks. Bistability that 

occurs at the depolarization block, i.e. a silent depolarized state a neuron enters with 

excessive excitatory input was proposed to play a role in improving robustness of 

oscillations in pacemaker-type neurons. The third project of this dissertation studies what 

parameters control bistability at the depolarization block in the three-dimensional 

conductance-based neuronal model by comparing the reduced dopaminergic neuron 

model to the Hodgkin-Huxley model of the squid giant axon. Bifurcation analysis and 

parameter variations revealed that bistability is mainly characterized by the inactivation 

of the Na+ current, while the activation characteristics of the Na+ and the delayed rectifier 

K+ currents do not account for the difference in bistability in the two models. 
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1. INTRODUCTION 
  
 
 

Brain neural elements generate complex electrical activity that is necessary to 

execute various cognitive and behavioral tasks. When these processes occur on different 

time scales, the resulting dynamical system may be separated into lower-dimensional 

subsystems by means of fast/slow decomposition. Analytical results are straightforwardly 

obtained for systems that can be decomposed into subsystems of dimension 1 or 2. The 

long-term behavior of such dynamical systems can only include limit cycles and/or 

equilibrium points as follows from Poincare-Bendixson theorem in dimension 2 and from 

a simple argument in dimension 1. Hence, standard methods of geometric singular 

perturbation theory can be used in dimensions 1 and 2 to analyze each subsystem 

independently. Then, the dynamics of the full higher-dimensional system can be 

faithfully reconstructed by gluing the obtained solutions together.  

However, in many life sciences’ problems like modeling tremor and deep brain 

stimulation in Parkinson’s disease oscillations occur on some intermediate time scale and 

may even include delayed feedback (Glass and Mackey, 1988). In these cases, the 

fast/slow decomposition is not applicable. Moreover, the behavior of the dynamical 

system in dimension 3 and higher may be extremely complex and even include chaos, but 

virtually no other standard methods for analysis exist. In this case, numerical simulations 

are the only way to obtain valuable information about the system’s behavior, but more 
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importantly computational analysis is indispensable because it can give the intuition to 

develop novel analytical tools and theories to study those mathematical models. 

Similar obstacles arise in the analysis of synchronization in networks of neural 

oscillators. Synchronization in ensembles of interacting elements is a rapidly developing 

field of study with possible applications in physics, chemistry and life sciences, in 

particular, to Parkinson’s disease and epilepsy (Pikovsky et al., 2001). Most of the 

synchronization analysis methods characterize a system close to the synchronized state 

(that is also called synchronization manifold) or near bifurcation points. For example, 

time series analysis allows measuring the degree of correlation between two signals, i.e. 

how far the system is from the synchronized state. Then, Lyapunov exponents may be 

used to estimate its stability.  

These universal methods are well-suited for physical or engineering systems 

where synchronization is relatively strong and the system spends most of the time near 

the synchronization manifold. However, in biological systems (neuronal populations, for 

example) phase synchronization is frequently very weak. In this case, the system spends 

relatively little time close to the synchronized state and the above methods may not be 

very informative of the overall dynamics of the system. Thus, one must retreat to either 

numerical analysis or devise alternative ad hoc computational methods to study 

synchronization dynamics.  

Another important area of application of numerical simulation and analysis arises 

when experimenters are limited in their ability to test a hypothesis due to limitations on 

human testing or when the experiment is not feasible to implement. The former is true in 

the context of developing novel stimulation techniques that may be used in the treatment 
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of Parkinson’s disease symptoms where it is not desirable to involve human subjects 

during the early stages of the project. The latter is the case in testing the basal ganglia-

thalamocortical loop hypothesis for tremor that is studied in Chapter 2. Mathematical 

modeling and simulations may be the only available option that can provide deeper 

insight and valuable information in this case. That is why mathematical and 

computational neuroscience has become an important tool for studying various 

neurological disorders from schizophrenia and epilepsy to Parkinson’s disease 

(Ermentrout and Terman, 2010; Izhikevich, 2007). 
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2. ON THE ORIGIN OF TREMOR IN PARKINSON’S DISEASE 

 
 
 

2.1 Introduction 

Tremor is one of the cardinal symptoms of Parkinson’s disease. Some studies 

report it to be present in up to 80% of patients with autopsy-proven Parkinson’s disease 

(Gelb et al., 1999). It is a well-recognized feature of Parkinson’s disease and is a 

disabling symptom. Parkinsonian tremor is primarily a rest tremor with the frequency in 

3-7 Hz range, it is episodic in time, can be modulated (suppressed or enhanced) by motor 

or cognitive activity; cortical and subcortical motor areas during episodes of Parkinsonian 

tremor exhibit bursty neuronal firing correlated with tremor EMG (Lenz et al., 1994; 

Elble and Koller, 1990; Deuschl et al., 2000; Rubchinsky et al., 2007). Tremor is believed 

to be different from akineto-rigid symptoms of the disease both in the patterns of 

degeneration of dopaminergic neurons (Jellinger, 1999) and in the spatial location and 

spectral content of the neuronal activity in the basal ganglia circuits (Rivlin-Etzion et al., 

2006; Moran et al., 2008; Weinberger et al., 2009). 

While the occurrence of parkinsonian tremor is naturally related to dopaminergic 

degeneration (or, potentially, some other degeneration in Parkinson’s disease), the 

network, cellular and synaptic mechanisms of parkinsonian tremor are not clear. It is 

commonly acknowledged that parkinsonian tremor has a central origin, but the 

localization of this central oscillator (oscillators) is still debatable. A few hypotheses of 
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tremor generation have been proposed previously (reviewed in (Deuschl et al., 2000)). 

Some of them place an emphasis on the thalamus, suggesting that it either generates 

tremor because of the rebound activity of thalamic cells when they are released from 

excessive pallidal inhibition (Llinas, 1984), or that it filters (or otherwise promotes, 

Guehl et al., 2003) low-frequency oscillations out of a broader band (Pare et al., 1990). 

Another suggests that the basal ganglia circuits may be the tremor-generating oscillator 

on its own (Wichmann and DeLong, 1999). However, the increase in interspike interval 

within the burst characteristic of the thalamic rebound bursting is not observed in 

thalamic bursts seen in parkinsonian tremor (Zirh et al., 1998). Neither is the thalamic 

filter hypothesis supported by data analysis (Raethjen et al., 2009) nor does it explain the 

origin of 10-15Hz oscillations. The tremor-suppressing effect of lesions outside the basal 

ganglia (such as lesions in the thalamus (Zirh et al., 1998; Lenz et al., 1994) and cortex 

(Volkmann et al., 1996)) suggests that the tremor generator may extend beyond the basal 

ganglia networks. Cerebellar circuits are involved in the tremulous movement, but appear 

to be not directly connected with the tremor movement (Timmermann et al., 2003) and 

are thus unlikely to be its generator (reviewed in (Deuschl et al., 2000)). 

A very plausible view is that the tremor oscillator is localized in the basal ganglia-

thalamo-cortical circuits (Fig. 2.1a) (reviewed in (Deuschl et al., 2000)). The basal 

ganglia cells are known to possess rich membrane properties, which support pacemaking 

(Surmeier et al., 2005; Bevan et al., 2006), but do not produce tremor oscillations in 

healthy basal ganglia circuits. In contrast, in parkinsonian circuits tremor-related activity 

(i.e. neural activity in the tremor frequency band, correlated with the tremor movement or 

tremor EMG) was observed in the basal ganglia (in the subthalamic nucleus, STN (Levy 
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et al., 2000) and in pallidum (Hutchison et al., 1997)), in the thalamus (Zirh et al., 1998; 

Lenz et al., 1994), and in cortex (Timmermann et al., 2003; Volkmann et al., 1996). 

Surgical lesions in different parts of the basal ganglia-thalamo-cortical loop (in the STN 

(Alvarez et al., 2005), in cortex (reviewed in (Deuschl et al., 2000)), in pallidum and the 

thalamus (Tarsy et al., 2003)) suppress tremor. The fact that breaking the loop at multiple 

sites leads to the same effect – tremor suppression – suggests that the loop itself, more 

than any of its parts, is a tremor generator. However, this evidence is indirect and does 

not tell how tremor is generated. 

The present study explores the possibility of the basal ganglia-thalamo-cortical 

loop theory. We use computational neuroscience techniques to study the dynamics of this 

loop. While the physiology of the cortico-basal ganglia loops has been the subject of 

earlier computational studies (e.g., Beiser and Houk, 1998), including studies (Humphries 

et al., 2006; Leblois et al., 2006), which provided further confirmation for the role of 

dopamine depletion in promoting oscillatory activity in various frequency bands (usually 

beta-band), these studies were mostly concerned with the action selection in basal ganglia 

and did not consider tremor oscillations. We show that the membrane properties of basal 

ganglia neurons together with anatomy of the basal ganglia circuits (Fig. 2.1a) and the 

gross feedback-like structure of the basal ganglia-thalamo-cortical loop may generate 

tremor-like oscillations if the synaptic projections change their strength (as is expected to 

be the case in Parkinson’s disease due to dopaminergic degeneration, discussed in more 

details in Section 2.2.3). These tremor-like oscillations in the model are suppressed by 

breaking the loop in various locations. Deeper understanding of the tremor mechanisms 
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a) 

 

 b) 

 

Figure 2.1. Basal ganglia-thalamo-cortical circuit. a) is the schematics of the anatomy. b) 
is the model circuit. The model circuit consists of one GPe neuron, one STN neuron and a 
feedback neuron, represented by a feedback box. Arrows indicate excitatory synapses and 
bars indicate inhibitory synapses. Squares indicate the delay units with the delays τs and 
τg. 
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will allow for improved treatment of parkinsonian tremor and will enhance our 

understanding of basal ganglia physiology. 

 
 

2.2 Methods 
 
 
 

2.2.1 Model Circuit Development 

In vitro studies (Plenz and Kitai, 1999) demonstrated how a cultured network of 

GPe and STN neurons can generate low-frequency oscillations. The bursting they 

observed is not necessarily the same as tremor oscillations. However, this experimental 

result indicates that pallido-subthalamic networks have the necessary cellular and 

synaptic properties to produce low-frequency oscillatory dynamics. Nevertheless, in 

healthy humans in vivo, subthalamo-pallidal networks do not generate tremor oscillations. 

Various studies (see Section 2.2.3) have provided evidence for how the basal ganglia-

thalamo-cortical loop may become more strongly connected in Parkinson’s disease. 

Lesions in different parts of the basal ganglia-thalamo-cortical loop in Parkinson’s 

disease suppress tremor (see references in Section 2.1). This suggests an intriguing 

possibility that subthalamo-pallidal circuits embedded in a pathologically connected basal 

ganglia-thalamo-cortical loop may be the generator of tremor oscillations. Thus, the 

strength of the loop (defined by the underlying synaptic projections) becomes stronger in 

Parkinson’s disease giving rise to tremor, while dopaminergic medication or surgical 

lesions would decrease the strength of or partially break the loop, suppressing tremor. 

This reasoning suggests the following organization of the model network: a 

network of connected subthalamic and pallidal cells, embedded in a larger feedback loop 
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(provided by basal ganglia, thalamic, cortical, and possibly other circuitry). To study the 

basic properties of the tremor oscillations in this loop, we consider a model, which retains 

some anatomical, synaptic and cellular properties of the underlying circuits, but 

simplifies others, especially those, which are not well-known. Thus, we suggest 

considering the circuit presented in Fig. 2.1b. We retain the cellular properties of 

subthalamic and pallidal cells and circuits (which have some pacemaking properties 

(Plenz and Kitai, 1999)) by utilizing the detailed models of STN and GPe neurons 

developed by (Terman et al., 2002), but simplify the rest of the complex basal ganglia-

thalamo-cortical network, which is represented in this study by a single neuron model and 

two delay units to incorporate the delays in the polysynaptic pathways the signals will 

travel through. This model network is in agreement with the known organization of the 

basal ganglia and related circuits (Wilson, 2004), but obviously does not consider the 

detailed properties and parameters of the loop (which would be hard to estimate from 

experiments anyway). Thus, the results of the study will be sensitive to only general 

properties of the loop – essentially its presence or absence and overall connection 

strength.  

The inhibitory input to the pallidal segment in the model represents thalamo-

cortico-striatal and, possibly, thalamo-striatal (Smith et al., 2004) pathways. Excitatory 

input to STN represents the thalamo-cortico-STN pathway. GPi is not explicitly present 

in the model. Hence, the model architecture assumes GPi to be enslaved to STN input. 

While GPi intrinsic dynamics and non-STN inputs to GPi may affect the dynamics in the 

loop, the exclusion of GPi provides us with a model, which considers GPe-STN 
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interaction with the feedback loop. GPi projection to thalamus is inhibitory, which is 

reflected by inhibitory output of the model STN (in reality the latter sends excitatory 

projections to GPi).  

 
 

2.2.2 Model Neurons 

Each module in the model circuit (Fig. 2.1b) is represented by a single neuron 

modeled as a one-compartment conductance-based model. Since the properties of the 

subthalamic and pallidal cells are likely to contribute to the birth of oscillations (see 

Section 2.2.1), we use conductance-based model of GPe and STN neurons developed in 

(Terman et al., 2002) and further utilized in an array of studies (e.g., Rubchinsky et al., 

2003; Rubin and Terman, 2004; Best et al., 2007). On the contrary, the basal ganglia-

thalamo-cortical feedback is represented by delay units and a very simple neuronal 

model. This generic model serves the mere purpose of the feedback signal propagation in 

the model circuit and does not include any further details of the loop architecture (see the 

reasoning in Section 2.2.1). 

The models for GPe and STN neuronal modules (Fig. 2.1b) include a leak current, 

fast spike-producing potassium and sodium currents, low threshold T-type and high-

threshold Ca2+-currents, and a Ca2+-activated voltage-independent afterhyperpolarization 

K+-current (AHP), so that the equation governing the transmembrane potential takes the 

form  

appsynAHPCaTNaKL IIIIIIII
dt
dVC +−−−−−−−=  
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with the membrane currents given as  

)( LLL VVgI −= , 

)(4
KKK VVngI −= , 

)()(3
NaNaNa VVhVmgI −= ∞ , 

))(()( 23
CaTT VVrbVagI −= ∞∞ , 

))((2
CaCaCa VVVsgI −= ∞ , 

)))(]/([]([ 1 KAHPAHP VVkCaCagI −+= . 

The intracellular calcium balance is described by the equation 

])[(/][ CakIIdtCad CaTCa −−−= ε . 

The gating variables are described by the 1st order kinetic equation in the form:  

/ ( ( ) ) / ( )dx dt x V x Vτ∞= − , 

where x can be n, h and r . 

The inactivation function b∞(r) for the T current was modeled as in (Terman et 

al., 2002). Voltage-dependent gating variables m∞(V), a∞(V) and s∞(V) are assumed to be 

instantaneous. GPe and STN neurons differ in parameter values, which were taken from 

(Terman et al., 2002), except for the parameter changes that follow (Rubin and Terman 

2004) with applied current to STN further increased to appI =32 pA/μm2 to produce more 

realistic firing rates.  

The conductance-based model of the feedback neuronal module (Fig. 2.1b) 

includes equation for the membrane potential 

appsynpNaKL IIIII
dt
dVC +−−−−= ,
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with persistent potassium, instantaneously activating persistent (non-inactivating) sodium 

and leak currents given by 

)( KKK VVngI −= , 

))((, NaNapNa VVVmgI −= ∞ , 

)( LLL VVgI −= . 

  The gating variable n has first-order dynamics  

)()( vnn
dt
dn

nτ−= ∞  

with  

( )kvn n )(exp(11 −+=∞ θ  

while instantaneous activation of Na+ current is given by 

( )kvm m )(exp(11 −+=∞ θ  

Mathematically, this model is similar to Morris-Lecar model. This neuron is 

tonically active (Fig. 2.2c). The model, KpNa II +, -model, and parameters were taken 

from (Izhikevich, 2007). Two delay units were chosen to approximate the time it takes 

for the neuronal activity to travel through (potentially multiple) basal ganglia-thalamo-

cortical loops before reaching STN and GPe regions. We use delay times τs=30 ms and 

τg=50 ms for the modeling reported below which appear to be physiologically plausible 

(Romo and Schultz, 2002), however, eventually we explore a wide range of the delays.  

All connections in the model circuit are excitatory glutamatergic and inhibitory 

GABAergic synapses modeled by the 1st -order kinetic equations describing the fraction 

of activated channels 
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( )(1 )presyn g
ds H V s s
dt

α θ β∞= − − − , 

where the sigmoidal function 1/(1 exp[ ( ) / ])H H
g gH V σ∞ = + − −Θ  and the values of all 

synaptic parameters are taken from (Terman et al., 2002). The maximal synaptic 

conductance from neuron X to neuron Y is denoted gX→Y, with X, Y taking values S, G 

and F for STN, GPe and feedback neurons, respectively. The values of synaptic strengths 

in the “normal” state (high dopamine level) are gF→G= 0.18, gG→S= 0.695, gS→F= 0.25, 

gF→S= 0.215, gS→G= 0.051, and the maximal conductance of the AHP current in STN 

neuron was set to gAHP = 4.23 nS/μm2. The values of synaptic strengths corresponding to 

the parkinsonian (low dopamine level) state are gF→G = 0.36, gG→S = 1.39, gS→F = 0.5, 

gF→S = 0.43, gS→G = 0.103, with STN cell’s AHP conductance set to gAHP = 8.46 nS/μm2. 

Parameters for the parkinsonian state were found by varying synaptic strengths in 

physiologically relevant ranges to obtain distinct tremor-like activity in the model. Then, 

the normal state parameters were assumed to be 50% of their strength in the parkinsonian 

state. Further clarification of what a normal and a parkinsonian states are from the 

activity pattern standpoint are given in Section 2.3 and Fig. 2.2. Ultimately, we 

considered a large range of values for the synaptic strengths as we discuss below. 

The model circuit equations were simulated with XPP software (Bard Ermentrout, 

University of Pittsburg, http://www.math.pitt.edu/~bard/xpp/xpp.html). 

 
 

2.2.3 Dopamine-Dependent Parameters 

Because of the well-established dopaminergic degeneration in Parkinson’s 

disease, the positive effect of L-DOPA on the symptoms (at least at the initial phase of 
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treatment) and the tremor reduction produced by dopamine agonists (Elble, 2002), we 

study how the dynamics of the model system depends on parameters, which, in turn, are 

affected by the action of nigral dopamine.  

Since nigral dopamine may modulate many types of synapses and cells in the 

basal ganglia, we consider two dopaminergic parameters, s1 and s2, which take into 

account several known dopaminergic actions. The first one, s1, considers dopaminergic 

modulation of striato-pallidal and pallido-subthalamic synapses, and s2 describes the 

modulation of cortico-subthalamic and subthalamo-pallidal synapses and of Ca2+-

activated K+ current in STN. Dopamine is known to act on presynaptic receptors at 

striato-pallidal synapses reducing GABA release in GPe (Cooper and Stanford, 2001; see 

also Ogura and Kita, 2000). In perhaps a similar manner, dopaminergic action in STN 

inhibits GABA release, in particular, from synapses from GPe (Shen et al., 2003; Floran 

et al., 2004; Cragg et al., 2004; Shen and Johnson, 2005; Baufreton and Bevan, 2008). 

These experiments also suggest that dopamine is able to suppress excitatory transmission 

to STN from cortex (Shen and Johnson, 2000), while excitatory projections from STN to 

GPe are also suppressed by dopaminergic action (Hernandez et al., 2006). Dopamine also 

has a tendency to depolarize STN cells by multiple mechanisms, in particular, including 

modulation of Ca2+-activated K+-current (Baufreton et al., 2005; Ramanathan et al., 

2008). Overall, dopamine depletion seems to make the elements of the basal ganglia 

circuitry more functionally connected (e.g., Bevan et al., 2006). 

Thus, we set up two dopaminergic parameters s1 and s2 to modulate synaptic or 

membrane conductance to make them weaker or stronger, as one expects them to be in 

the presence or absence of dopamine. A dopamine-modulated conductance 
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2,1,)2( 0 =−= igsg i , where g0 for s1 involves gF→G and gG→S, and g0 for s2 involves 

gF→S, gS→G, and gAHP. We usually vary s1 and s2 in the [1, 2] range, so that lower values 

of s1 and s2 correspond to lower dopamine levels and stronger conductances. As 

dopaminergic parameters s1,2 are decreased from 2 to 1, conductance g increases from 0 

to some maximal value g0 which would correspond to the transition from high to low 

dopamine level (with transition from normal to parkinsonian state presumably being 

somewhere within these bounds). Obviously, the real modulation by the dopamine may 

not necessarily scale in the same way for all of its targets and is unlikely to go all the way 

to 0. Above division of parameters affected by dopamine into two groups is somewhat 

arbitrary. But our approach allows us to explore the parameter space in the model when 

s1 and s2 are changing in a particular direction (of increasing or decreasing dopamine 

level) over a large range. Exploration of the two-parametric space is a compromise, 

which allows us to avoid exploration of a high-dimensional parametric space (which may 

be hard to interpret anyway), yet, lets us study what happens with the network dynamics, 

when more than just one dopamine-sensitive parameter is being modulated.  

 
 

2.2.4 Time-Series Analysis 

To quantify the presence of tremor-like oscillations in the modeling circuit we 

used a modified version of the signal to noise ratio (SNR) criterion adopted in (Hurtado 

et al., 2004, 2005) to study the dynamics of tremor in parkinsonian patients: 
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where )(ωP

 

is the power spectrum. This SNR criterion is used here to measure the 

degree of bursting activity in the tremor frequency range in the STN model neuron. The 

parameter setting of this criterion are aω = 4 Hz, bω = 8 Hz for the tremor band [ aω , bω ] 

and minω = 3 Hz, maxω = 30 Hz for the wider band [ minω , maxω ]. While the real 

parkinsonian tremor may present with frequencies slightly lower than 4 Hz, the 4-8 Hz 

range in the model appears to be sufficient to study the bursting in the system. Moreover, 

proprioceptive feedback tends to lower parkinsonian tremor frequency (Pollock and 

Davis, 1930; Rack and Ross, 1986). This sensory feedback is not a part of the central 

mechanisms represented by the model. 

To avoid analyzing transients, we ran simulations for 3 s first and used the next 

8.2 s for time-series analysis. The time-series analysis steps were similar to those in 

(Hurtado et al., 2004). The time-series of STN voltage was cut into non-overlapping 

intervals of equal length of around 0.8 s, multiplied with a Hanning tapering window and 

processed with fast Fourier transform (FFT) for each interval in the data sample. 

Obtained values were normalized by the interval size. Finally, SNR was calculated as a 

mean of values for each time interval. Only time-averaged SNR was considered in the 

current paper. 

To show the robustness of tremor detection we introduced three more variations 

in SNR criteria. The second SNR criterion identified the position ωm of the peak of the 

power spectrum in 3-8 Hz range to create a ω∆ frequency band centered around this 

peak: ]2/,2/[ ωωωω ∆+∆− mm  and then computed 
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with Hz4=∆ω . Therefore, SNR2 was supposed to identify oscillations in a band of the 

same width, but different center frequency than SNR1 (such as 3-7 Hz, 5-9 Hz, etc.), 

detecting oscillations in part of the spectrum slightly wider than usual parkinsonian 

frequencies.  

The other two criteria used average power in the fixed 4-8 Hz tremor band or 

average power in the floating band around the peak ]2/,2/[ ωωωω ∆+∆− mm , instead of 

the maximal values, i.e. 
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and 
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While not completely equivalent, these criteria are similar, as intended, since they 

all are aimed at identification of oscillations. All time-series analysis was performed in 

MATLAB (MathWorks, Natick, MA). 
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2.3 Results 
 
 
 

2.3.1 Tremor Oscillations in the Model of Basal Ganglia-Thalamo-Cortical Loop 

Although pallidal and subthalamic cells and their computational models used here 

are known to possess burst properties (see Section 2.1) under certain conditions, the 

modeling network (see Fig. 2.1b) exhibits tonic spiking activity under moderate values of 

the coupling strength (s1 = 1.5, s2 = 1.5) (Fig. 2.2a). We consider these dynamics as the 

normal (healthy) state, as no tremor-like oscillations are present in the modeling circuits.  

As the coupling increases (s1 = 1, s2 = 1), STN and GPe neurons in the model 

network exhibit bursting activity (Fig. 2.2b) with a frequency around 6 Hz. This kind of 

dynamics, with bursting in the STN neuron at the tremor range is considered here as a 

parkinsonian state, because it exhibits tremor-like oscillations. 

To further explore the relevance of these model oscillations to the real tremor we will 

study the dynamics of the model in response to the modifications of the network, 

representing dopaminergic treatment (see Section 2.3.2) and therapeutic lesions used to 

suppress tremor. There is no explicit representation of GPi in the model network, so that 

pallidotomy may be represented in the model by removing the projection from STN to 

the thalamo-cortical circuits. When this projection is removed from the model in the 

parkinsonian state (s1 = 1, s2 = 1) the STN activity is almost tonic (this will be quantified 

in Section 2.3.2 with the SNR criteria, as described in Section 2.2.4). Even though GPe is 

silent here (presumably due to stronger inhibition from the feedback neuron in the 

absence of subthalamic inhibitory input), the tonic nature of STN discharge (Fig. 2.2c) 

confirms that the system returns in a normal state. 
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Figure 2.2. Membrane potential (in millivolts) in GPe and STN cells in the model circuit 
shows activity patterns in different states and after lesions. a) “Normal” state, the activity 
pattern in GPe, STN and feedback neurons is tonic spiking. b) “Parkinsonian” state in the 
circuit with stronger feedback; STN and GPe neurons exhibit bursting discharge. c) the 
result of a lesion at the level of STN output, and d) the result of a lesion at the level of 
inputs to GPe and STN. While GPe is silent in c), STN firing is essentially tonic after 
both lesions, thus, the model basal ganglia circuit may generate tonic (and presumably 
more healthy) output. Parameter values in a) are: s1 = 1.5, s2 = 1.5. Parameters in b, c and 
d) are: s1 = 1, s2 = 1. 
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The other kind of lesion reproduced in the model is at the level of cortex or 

thalamus. In the model that would correspond to a lesion of inputs to the GPe and STN 

segments (or, in other words, removal of the feedback neuron). In this case, the activity 

patterns of both GPe and STN are switched to tonic firing (Fig. 2.2d). Note that in the 

case of this lesion at the level of basal ganglia input the feedback neuron shows 

somewhat bursty output. However, this bursting activity is at a much higher frequency 

and, therefore, cannot lead to tremulous movement of limbs. The characteristic feature of 

GPe neuron is its tonic activity and high firing rate.  

While the interpretation of the model lesions is not unique (and is left for Discussion), in 

both lesion cases the feedback is removed in one way or another and in the “normal” case 

the feedback is weakened. Section 2.3.2 provides a systematic study of the circuit 

behavior for varying feedback.  

 
 

2.3.2 The Effect of Dopaminergic Modulation 

To study the effects of dopaminergic modulation we varied dopaminergic 

parameters s1 and s2 as proxy for the presence of dopaminergic modulation (see Section 

2.2.3). The results of Section 2.3.1 suggest that the strength of the feedback is essential 

for the occurrence of bursting, so we varied the dopaminergic parameters in a broad 

range to see how bursty the discharge is (as quantified by SNR criterion, see Section 

2.2.4). 

As an example, we consider the SNR1 as we vary the dopaminergic parameter s1 

in the interval [1, 2] (Fig. 2.3). As the dopaminergic parameter increases, SNR1, which 

indicates the presence of the tremor-related bursting (the presence of oscillations in the  
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Figure 2.3. The presence of tremor frequency band activity in the STN neuron as 
measured by the value of SNR1 in dependence on the dopaminergic parameter s1. The 
dopaminergic parameter s2 = 1.1.  
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tremor frequency band), decreases, first moderately, then sharply to less than 1 (the lack 

of activity in the tremor frequency range). Thus, Fig. 2.3 illustrates the transition between 

tremulous and non-tremulous case, as the dopaminergic action changes. Of note is a 

relatively sharp onset of tremor oscillations in the model and jagged profile of SNR. We 

think this is most likely due to the simplicity of the model. While gross structure (strong 

coupling – oscillations; weak coupling – no oscillations) is captured by the model, the 

exact details of oscillatory/nonoscillatory transition in the model depend on a particular 

set of bifurcations the model experiences as the parameters are varied. This bifurcation 

cascade is likely to be model-specific. Moreover, if dopamine-dependent parameters are 

varied in different ways, the SNR profile may be different. 

While the example above may be illustrative of the role of the dopamine-

modulated thalamo-cortical feedback loop, the results of dopamine action on different 

synapses and cells in the system may be different. As we explain in the Methods, we 

study the effect of independent modulation of different properties of the network 

employing two dopaminergic parameters s1 and s2. How exactly dopamine will affect 

different synaptic and cellular parameters is not known, but the independent variation of 

two dopaminergic parameters (which, in turn, corresponds to variation of several synaptic 

and cellular parameters, see Section 2.2.3) should give some general knowledge about the 

effect of the basal ganglia-thalamo-cortical feedback loop on the tremor-like bursting in 

the basal ganglia circuits. 

We varied both s1 and s2 in the range from 1 to 1.9, which corresponds to the 

variation of the underlying network parameters from some maximal values to almost 

zero. The presence of tremor-like activity in STN (the output node of our simplified basal 
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ganglia network) was assessed with SNR criteria. Figure 2.4 presents the result of this 

numerical experiment. Four different sub-plots were generated with the different SNR 

criteria (SNR1-4). Lighter shade of grey indicates stronger tremor activity. It is hard to 

define the exact level of SNR above which the activity can be called tremulous. However, 

the present SNR criteria are based on an earlier experimental study of tremor in 

parkinsonian patients (Hurtado et al., 2004), which uses 3.7 as a critical value for SNR1. 

The four SNR criteria employed here are slightly different one from another and the 

resulting subplots in Fig. 2.4 are also slightly different. In particular, maximal SNR tends 

to yield larger values than those of averaged SNR, which may be attributed to the large 

height and small width of the spectral peaks. However, overall, tremor-like activity is 

present in the same regions, regardless of the criteria used. The smallness of the 

differences between the subplots points to the generic character of the observed 

phenomena.  

Figure 2.4 shows that the low values of dopaminergic parameters, i.e. low s1 and 

s2, tend to promote bursting in the tremor frequency range. This indicates that the 

strength of the coupling in the basal ganglia-thalamo-cortical feedback loop is 

responsible for the tremor oscillations. However, the dependence of SNR on the 

dopaminergic parameters is not monotonic. The areas of high SNR are interspersed with 

the areas of low SNR. The relative contribution of s1 and s2 is also different. 

Nevertheless, the general pattern (low dopaminergic parameter values – more tremulous 

activity, high values – less tremulous activity) is persistent. 
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Figure 2.4. Tremulous activity with variation of dopaminergic parameters. The 
parameters s1 and s2 run along vertical and horizontal axis respectively, the grey shade 
codes for the value of SNR. The point (1, 1) corresponds to the bursting mode shown in 
Figure 2.2b. a), b), c), and d) represent SNR1,2,3, and 4 respectively. Parameters s1 and 
s2 are proxies of dopaminergic status and their higher values correspond to stronger 
dopamine influence. Thus upper right corner corresponds to a “normal” state of the 
network, while lower left corner corresponds to a “parkinsonian” state. Black color 
indicates the absence of tremor-band oscillations, grey and white areas indicate 
prominent oscillations.  
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2.3.3 The Effect of Calcium, AHP and T-type Currents 

We also study the effect of individual currents on the tremor-like oscillations in 

the loop. Fig. 2.5a shows how the dopaminergic action parameter s1 and the conductance 

of the AHP current in STN neuron gAHP affect SNR of tremor frequency oscillations. 

Tremor-like oscillations exist in a region of relatively strong values of the AHP current 

conductance and the parameter s1 around the parkinsonian state of Fig. 2.2b (s1=1, 

gAHP=1). Unlike Fig. 2.4, dependence of SNR on the dopaminergic parameter s1 and the 

AHP current conductance alone is monotonic: SNR abruptly decreases and remains low 

indicating disappearance of bursting activity in the tremor band as the value of gAHP 

decreases. Hence, the tremor-like oscillations in the loop substantially depend on the 

AHP current. 

Similar results are obtained when we varied the Ca2+ current conductance together 

with the dopaminergic parameter s1 as shown in Fig. 2.5b. Again, the dependence of 

SNR on the parameters is monotonic: tremor-like oscillations in the model exist in a 

single region around (s1 = 1, gAHP = 1) and disappear when the value of the Ca2+ current 

conductance is lowered. This similarity may be due to the fact that the decrease in the 

Ca2+ current lowers the intracellular Ca2+ concentration and therefore leads to reduction 

in the calcium-dependent AHP current in STN neuron. 

Interestingly, our study revealed no substantial dependence of oscillations on the 

T-type current (not shown). In the model circuit STN neuron’s T-type current is almost 

inactivated and cannot deinactivate due to relatively small inhibition from the GPe 

neuron. Hence, these results may indicate that the T current is not strongly involved in 

generation of tremor-like activity. 
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Figure 2.5. Tremulous activity with variation of current conductances. The shades of gray 
code for the value of SNR1 so that lighter areas exhibit stronger tremor oscillations. (a) 
Bursting activity with variation of the dopaminergic parameter s1 and the AHP current 
conductance gAHP. (b) Bursting activity with variation of the dopaminergic parameter s1 
and the Ca2+ current conductance gCa. Parameters are the same as in Fig. 2.2b. gAHP and 
gCa are in units of the AHP current and the Ca2+ current conductances in Parkinsonian 
state respectively (gAHP=8.46, gCa=0.5). Lower values of AHP and Ca+ currents 
conductances lead to disappearance of tremor. 
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2.3.4 The Influence of Delays in the Basal Ganglia-Thalamo-Cortical Loop 

The model circuit (Fig. 2.1b) incorporates two delay units, which represent 

synaptic and conductance delays in polysynaptic pathways from STN to GPi to thalamus 

to cortico-striatal system. While these delays are likely to be fixed for each individual 

subject, we do not know their exact values. Therefore we study the impact of the delays 

on the tremor-like activity in the model network. Both delays, τs and τg, were varied 

independently in a relatively large range. This range may include biologically unrealistic 

delay values but the objective is to ensure that the real delays are in the domain studied. 

Figure 2.6 describes how delays affect SNR of tremor frequency oscillations. The regions 

of tremulous activity in the plane of delays are in the form of relatively narrow stripes; 

the slope of these stripes does not vary much and is close to 1. This suggests that the 

difference between delays may be more important than the values of the delays. Figure 

2.6 also indicates that the oscillations are robust with respect to variation in delay values 

and tremor-like bursting exists for multiple values of the delays. Thus even though the 

exact values of the delays in the loop are not known, there are likely to be some fitting 

with those at the domains of tremor existence.  

 
 

2.3.5 The Influence of the Feedback Neuron Model on the Dynamics of the Network 

Finally, we substitute the Morris-Lecar-type feedback neuron considered so far in 

this paper with a more physiologically realistic thalamocortical relay cell model in the 

form used in (Rubin and Terman, 2004), which includes sodium , potassium and leak 

currents, as well as low-threshold calcium current. Figure 2.7 shows how SNR depends 

on the dopaminergic parameters s1,2 in the case of this modified model circuit. Similarly 
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Figure 2.6. Tremulous activity with variation in delays. The parameters are the same as in 
Fig. 2.2b. The shades of gray code for the value of SNR1 so that lighter areas exhibit 
stronger tremor oscillations (gray and white areas are tremulous dynamics) 
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Figure 2.7. Tremulous activity with a thalamocortical relay cell instead of a feedback 
neuron in the thalamocortical feedback loop. The point (1, 1) corresponds to parameter 
values as in Figure 2.2b, except gSTN→Th=0.46. Thalamocortical neuron parameters are 
taken from (Rubin and Terman, 2004) with Iappth=0.85. The parameters s1 and s2 run 
along vertical and horizontal axis respectively, the shades of gray code for the value of 
SNR1. 
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to the simple feedback model (Fig. 2.4), STN oscillations in tremor frequency-band exist 

in the model network in parkinsonian state and cease when the dopaminergic parameter 

s1 increases to indicate higher dopamine level and presumably normal state. This 

suggests that the observed dynamics are robust with respect to different types of the 

feedback neuron in the model network. In turn, this suggests that the delayed feedback 

loop itself is likely to be essential for tremor-like oscillations in the model together with 

the cellular properties of STN and GPe neurons.  

 
 

2.4 Discussion 

 
 

2.4.1 Summary of the Modeling Results 
  

The modeling shows that anatomical and membrane properties of subthalamo-

pallidal circuits are prone to generation of tremor-like bursting in the presence of 

relatively strong basal ganglia-thalamo-cortical feedback. As we strengthen synaptic 

projections in the network (the expected outcome from the lack of dopaminergic 

modulation in Parkinson’s disease), the tremor-like oscillations become more prominent. 

The destruction of the feedback leads to the suppression of the tremor-like oscillations (as 

one would expect from the outcomes of surgical lesions in parkinsonian patients). 

The dependence of the strength of tremor-like oscillations on the strength of 

dopamine-dependent synaptic projections is not monotonic. Based on the simple model 

setup, one can hardly specify which range of synaptic parameters corresponds to the 

actual range of variation of the synaptic strength experienced in Parkinson’s disease. 

Moreover, the effects of adding in dopamine agonist (which guided the choice of 
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parameters modulated by dopamine) are not necessarily opposite to the effects of 

dopamine depletion taking place in Parkinson’s disease. However, the model study 

demonstrates the general pattern of the change: as the basal ganglia-thalamo-cortical 

feedback loop becomes stronger, oscillations are likely to occur. The phenomenon is 

robust with respect to different kinds of modulation of the dopamine-dependent 

parameters. The phenomenon is also robust with respect to different values of delays in 

the feedback loop. While the actual delays are not likely to change in Parkinson’s disease, 

they are not well-known. But the studied phenomenon persists for different values of 

delays. 

Interestingly, recent studies suggest that the dopamine depletion negatively 

impacts autonomous activity in GPe (Chan et al., 2011). Such a decline in GPe 

pacemaking may be seen at least to some extent similar to the increase in synaptic 

coupling, since in both cases the degree to which intrinsic dynamics influences the 

overall activity of a neuron is diminished in comparison with synaptic influence. 

Finally we would like to note that the model effectively utilizes a negative 

delayed feedback (just follow the signs of synaptic connections in the loop for the STN 

unit, Fig. 2.1b), which is known to be able to give rise to oscillations (Mackey and Glass, 

1977). A generic model for parkinsonian tremor with delayed negative feedback was 

studied by (Beuter and Vasilakos, 1995). Their model, however, was concerned with 

delayed proprioceptive feedback which had long been shown not to be significantly 

involved in the origin of parkinsonian tremor (Pollock and Davis, 1930; Hassler, 1970; 

Rack and Ross, 1986; Burne et al., 1987). It also did not represent the cortico-subcortical 

circuitry and membrane properties of the involved cells. In that respect it was a more 
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generic study of how the feedback may influence oscillations. In the current study we 

consider the cellular models with appropriate membrane properties, realistic network 

anatomy, the modulation of the network due to the lack of dopamine, and the results of 

known surgical interventions in Parkinson’s disease and how they affect tremulous 

activity. Thus the feedback mechanism is considered in Parkinsonian context, which 

allows us to suggest that this is the dopamine-mediated strength of cortico-subcortical 

loop, which facilitates the birth of tremulous oscillations. 

The very general nature of the feedback in the model and the robustness of the 

studied phenomenon indicate that the details of the feedback are unlikely to produce a 

substantial qualitative change in the modeling results.  

 
 

2.4.2 Limitations of the Model 
 

The model considered clearly has some limitations. The simplicity of the model 

basal ganglia-thalamo-cortical feedback is both its advantage (as it provides a way to 

study the generic effects of the feedback) and disadvantage (as it limits the model in 

many ways). Several limitations are discussed below. 

The model network includes only single STN and GPe neurons necessary in the 

framework of minimalistic approach to modeling. We do not believe that results would 

change much qualitatively with the addition of more neurons in the model; however, the 

complexity of the real network and the number of possible (and sometimes unknown) 

connection parameters in the loop is huge. The introduction of these elements into the 

model will substantially increase the number of unknown parameters. In particular, 

earlier modeling studies of Terman et al. (2002) considered oscillations within the basal 
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ganglia network (but not cortico-subcortical loops) and the effect of the intrapallidal 

connectivity on these oscillations. However, the oscillations considered in that framework 

(which are likely to correspond to the beta-band oscillations accompanying hypokinetic 

symptoms of Parkinson’s disease) are not related to tremor oscillations and can be 

supported by networks without intrapallidal connectivity (Best et al., 2007; Park et al., 

2011). While overall the model neurons exhibit reasonable patterns of neural activity, the 

case of the model lesions at the level of basal ganglia output may present some problem. 

When the STN firing does not exhibit tremulous activity, GPe is silent (Fig. 2.2c). Hence, 

our modeling predicts the reduction in GPe activity after GPi lesion. It is hard to know if 

this is what happens in parkinsonian patients after lesions in internal pallidum (we are not 

aware of recordings in GPe after lesion in ipsilateral GPi in patients with tremor). 

Moreover, some studies indicate that GP intrinsic oscillation capability may increase after 

STN lesion (Kita and Kita, 2011) which would break the feedback to the basal ganglia. 

However, STN lesion also removes direct STN input to GPe and thus is not equivalent to 

GPi lesion in our model. Thus we believe the numerical studies still indicate that a 

stronger basal ganglia-thalamo-cortical feedback promotes tremor oscillations and its 

destruction suppresses them. Even though the lack of activity is visible in GPe in the 

computational results, the output of the model basal ganglia lacks burstiness. Likewise, in 

the case of the model lesions at the level of basal ganglia input the feedback neuron 

shows bursty output. Nevertheless, this bursting activity is high-frequency and, therefore, 

cannot give rise to tremor. Given the minimalistic modeling approach, the model should 

not be expected to reproduce the results of all known cortical and subcortical lesions with 
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high fidelity. Similarly, minimalistic modeling approach may not necessarily reproduce 

the firing rates with high fidelity. 

The traditional target for anti-tremor thalamotomy in Parkinson’s disease is 

thalamic nucleus ventralis intermedius, Vim, although basal ganglia projections to 

thalamus target the nucleus ventro-oralis posterior, Vop (Jones, 2001). Vim is not directly 

represented in our model circuit. However, Vim is effective site for surgical treatment 

(whether lesion or deep brain stimulation) of many tremor types beyond Parkinson’s 

disease (Deuschl and Bergman, 2002; Speelman et al., 2002). This does not necessarily 

indicate that Vim is the ultimate tremor-generator, rather it may be a downstream part of 

the circuitry between tremor generator and limbs. Thalamus may be a “bottleneck” for 

cortico-subcortical circuits involved in tremor generation and maintenance (Raethjen and 

Deuschl, 2009). As we discussed in the introduction, cerebellar networks, while involved 

with the parkinsonian tremor movement, are unlikely to generate it directly (Deuschl et 

al., 2000; Timmermann et al., 2003). Moreover, the basal ganglia (in particular, STN) 

have a disynaptic projection to the cerebellar cortex, which can be a way for basal ganglia 

dynamics to affect the activity in cerebellar circuits (Bostan et al., 2010).  

We did not consider the effect of deep brain stimulation (DBS) on tremor in the 

model. DBS may have differential effects on various neuronal elements, which are not 

present in the model (e.g., Miocinovic et al., 2006). Nevertheless, the complicated 

network effect of DBS appears to perform “informational lesion”. i.e. functionally disrupt 

the flow of pathological signals through the basal ganglia-thalamo-cortical loop (see, e.g., 

Lozano et al., 2002; Grill et al., 2004; McIntyre et al., 2004). Thus the effect of DBS in 

the context of the present minimal model may be equivalent to that of a lesion. 



36 
 

 
 

The dopaminergic system is not the only transmission and modulation system 

affected in Parkinson’s disease. Cholinergic and serotonergic disruptions have been 

observed as well (discussed in e.g., Rivlin-Etzion et al., 2006). Tremor severity in 

Parkinson’s disease is poorly correlated with the degree of dopaminergic denervation, at 

least in striatum. Nevertheless, even in cases of Parkinson’s disease with tremor only, i.e. 

monosymptomatic rest tremor, a dopaminergic deficit is present (Antonini et al., 1998). 

Dissociation of parkinsonian tremor and hypokinetic symptoms may be due to the 

different patterns of nigral degeneration (Jellinger, 1999). Thus, the variations in the 

dopamine level are likely to act in the way in which they are considered in the model. 

Moreover, if the effect of cholinergic or other pathologies in Parkinson’s disease is to 

increase effective coupling in the basal ganglia-thalamo-cortical circuitry, these 

pathologies are likely to induce tremor-like bursting. This is expected because our 

modeling indicates that the lack of dopamine promotes oscillations due to the increase in 

the coupling in the circuits. 

Compensatory effects are not considered in our model although they have been 

conjectured to play a role in the tremor genesis (e.g., Rivlin-Etzion et al., 2006). 

Compensatory effects may slow down the increase of the feedback strength or may even 

eventually weaken it as a result of overcompensation (which may be one of the 

explanations for why the tremor severity may decrease in the advanced state of 

Parkinson’s disease). However, the variation of feedback strength is not removed by 

these kinds of compensations, rather the timing of the processes and its magnitude are 

altered. Therefore the modeling conclusions are unlikely to be invalidated by the 

presence of compensation. 
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Finally, it is known, that the neural activity in tremor-supporting networks 

exhibits a complex spatio-temporal structure (Hurtado et al., 2005). These patterns are 

likely to be induced by the complex anatomical structure of the tremor-supporting 

networks and thus cannot be reproduced in our model. 

 
 

2.4.3 Implications for the Tremor-Genesis and Tremor Therapies 

Earlier indirect evidences (discussed in Introduction) suggested that parkinsonian 

tremor arises in the basal ganglia-thalamo-cortical loops, and that the presence of the 

thalamocortical feedback to basal ganglia is essential for tremor occurrence. However, 

there was no direct experimental study of this hypothesis. Such a study is clearly hard to 

implement. In vitro preparations will not be able to maintain the structure of the loop 

which spans multiple subcortical and cortical locations. In vivo studies would be limited 

by the difficulty of recording from multiple locations of the circuitry and with variation 

of multiple parameters. Available animal models of Parkinson’s disease either do not 

exhibit tremor at all or exhibit tremor, which is not really similar to the human 

parkinsonian tremor (Bergman et al., 1998; Wilms et al., 1999). In these circumstances, 

the computational neuroscience approaches become especially valuable. 

The minimalistic representation of the thalamo-cortical feedback in the present 

modeling study signifies a very general role of this feedback in the tremor genesis. This 

study suggests that just the presence of the relatively strong basal ganglia-thalamo-

cortical feedback leads to the birth of tremor-like oscillations under rather general 

conditions. The study indicates that the parkinsonian tremor genesis has its origin in both 

the properties of local basal ganglia circuits and in the thalamo-cortical feedback to the 
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basal ganglia. This feedback loop is modulated by dopamine and as dopamine level 

decreases, the strength of the loop increases to generate tremor-like oscillations. While 

weakly-connected (presumably normal) cortico-subcortical loops through the basal 

ganglia and thalamus may be crucial for movement control and other functions, we show 

that malfunctioning of modulatory mechanisms of these loops can cause tremor. 

The feedback-loop mediated origin of tremor suggests directions for its treatment. 

Since the weakening or destruction of the loop itself (rather than a particular node of the 

loop network) may suppress tremor, different sites in the loop network may be explored 

as anatomical targets for surgical or pharmacological intervention. Lesions or high-

frequency stimulation beyond traditional pallidal or thalamic sites may turn out to be 

efficient. Similarly, pharmacological influences of different nature may prove to be 

effective as long as they appropriately decrease the strength of the basal ganglia-thalamo-

cortical loop at any of its parts. 

  

 

 



39 
 

 
 

Bibliography 
 
 
 

Alvarez, L., Macias, R., Lopez, G., Alvarez, E., Pavon, N., Rodriguez-Oroz, M. C., 
Juncos, J. L., Maragoto, C., Guridi, J., Litvan, I., Tolosa, E. S., Koller, W., Vitek, 
J., DeLong, M. R., & Obeso, J. A. (2005). Bilateral subthalamotomy in 
Parkinson's disease: initial and long-term response. Brain 128:570–583. 

  
Antonini, A., Moeller, J. R., Nakamura, T., Spetsieris, P., Dhawan, V., & Eidelberg, D. 

(1998). The metabolic anatomy of tremor in Parkinson’s disease. Neurology 
51:803–810. 

 
Baufreton, J., & Bevan, M. D. (2008). D2-like dopamine receptor-mediated modulation 

of activity-dependent plasticity at GABAergic synapses in the subthalamic 
nucleus. J Physiol 586:2121–2142. 

 
Baufreton, J., Zhu, Z. T., Garret, M., Bioulac, B., Johnson, S. W., & Taupignon, A. I. 

(2005). Dopamine receptors set the pattern of activity generated in subthalamic 
neurons. FASEB J 19: 1771–1777. 

 
Beiser, D. G., & Houk, J. C. (1998). Model of cortical-basal ganglionic processing: 

encoding the serial order of sensory events. J Neurophysiol 79:3168–3188. 
 
Bergman, H., Raz, A., Feingold, A., Nini, A., Nelken, I., Hansel, D., Ben-Pazi, H., 

& Reches, A. (1998). Physiology of MPTP tremor. Mov Disord 13(Suppl 3):29–
34. 

 
Best, J., Park, C., Terman, D., & Wilson, C. (2007). Transitions between irregular and 

rhythmic firing patterns in excitatory-inhibitory neuronal networks. J Comput 
Neurosci 23:217–235. 

 
Bevan, M. D., Atherton, J. F., & Baufreton, J. (2006). Cellular principles underlying 

normal and pathological activity in the subthalamic nucleus. Curr Opin Neurobiol 
16:621–628. 

 
Bostan, A. C., Dum, R. P., & Strick, P. L. (2010). The basal ganglia communicate with 

the cerebellum. Proc Natl Acad Sci USA 107:8452–8456. 
 
Beuter, A., & Vasilakos, K. (1995). Tremor: Is Parkinson’s disease a dynamical disease? 

Chaos 5:35–42. 
 
Burne, J. A. (1987). Reflex origin of parkinsonian tremor. Exp Neurol 97:327–339.  
 

http://www.ncbi.nlm.nih.gov/pubmed/9636117
http://www.ncbi.nlm.nih.gov/pubmed/9636117
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bergman%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Raz%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Feingold%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nini%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nelken%20I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hansel%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ben-Pazi%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Reches%20A%22%5BAuthor%5D


40 
 

 
 

Chan, C. S., Glajch, K. E., Gertler, T. S., Guzman, J. N., Mercer, J. N., Lewis, A. S., 
Goldberg, A. B., Tkatch, T., Shigemoto, R., Fleming, S. M., Chetkovich, D. M., 
Osten, P., Kita, H., & Surmeier, D. J. (2011). HCN channelopathy in external 
globus pallidus neurons in models of Parkinson's disease. Nat Neurosci 14:85–92. 

 
Cooper, A. J., & Stanford, I. M. (2001). Dopamine D2 receptor mediated presynaptic 

inhibition of striatopallidal GABA(A) IPSCs in vitro. Neuropharmacology 41:62–
71. 

 
Cragg, S. J., Baufreton, J., Xue, Y., Bolam, J. P., & Bevan, M. D. (2004). Synaptic 

release of dopamine in the subthalamic nucleus. Eur J Neurosci 20:1788–1802. 
 
Deuschl, G., & Bergman, H. (2002). Pathophysiology of nonparkinsonian tremors. Mov 

Disord 17 (Suppl 3):S41–S48. 
 
Deuschl, G., Raethjen, J., Baron, R., Lindemann, M., Wilms, H., & Krack, P. (2000). The 

pathophysiology of parkinsonian tremor: a review. J Neurol 247 (Suppl 5):V33–
V48. 

 
Elble, R. J. (2002). Tremor and dopamine agonists. Neurology 58:S57–62. 
 
Elble, R. J., & Koller, W. G. (1990). Tremor. Baltimore, MD: John Hopkins University 

Press.  
 
Floran, B., Floran, L., Erlij, D., & Aceves, J. (2004). Dopamine D4 receptors inhibit 

depolarization-induced [3H]GABA release in the rat subthalamic nucleus. Eur J 
Pharmacol 498:97–102. 

 
Gelb, D. J., Oliver, E., & Gilman, S. (1999). Diagnostic Criteria for Parkinson Disease. 

Arch Neurol 56:33–39. 
 
Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an 

informational lesion of the stimulated nucleus. Neuroreport 15:1137–1140. 
 
Guehl, D., Pessiglione, M., François, C., Yelnik, J., Hirsch, E. C., Féger, J., & Tremblay, 

L. (2003). Tremor-related activity of neurons in the 'motor' thalamus: changes in 
firing rate and pattern in the MPTP vervet model of parkinsonism. Eur J Neurosci 
17:2388–2400.  

 
Hassler, R., Mundinger, F., & Riechert, T. (1970). Pathophysiology of tremor at rest 

derived from the correlation of anatomical and clinical data. Conf Neurol 32:79–
87. 

 
 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Guehl%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pessiglione%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fran%C3%A7ois%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Yelnik%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hirsch%20EC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22F%C3%A9ger%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tremblay%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tremblay%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/12814370


41 
 

 
 

Hernandez, A., Ibanez-Sandoval, O., Sierra, A., Valdiosera, R., Tapia, D., Anaya, 
V., Galarraga, E., Bargas, J., & Aceves, J. (2006). Control of the subthalamic 
innervation of the rat globus pallidus by D2/3 and D4 dopamine receptors. J 
Neurophysiol 96:2877–2888. 

 
Humphries, M. D., Stewart, R. D., & Gurney, K. N. (2006). A physiologically plausible 

model of action selection and oscillatory activity in the basal ganglia. J Neurosci 
26:12921–12942. 

 
Hurtado, J. M., Rubchinsky, L. L., & Sigvardt, K. A. (2004). Statistical method for 

detection of phase locking episodes in neural oscillations. J Neurophysiol 
91:1883–1898. 

 
Hurtado, J. M., Rubchinsky, L. L., Sigvardt, K. A., Wheelock, V. L., & Pappas, C. T. E. 

(2005). Temporal evolution of oscillations and synchrony in GPi/muscle pairs in 
Parkinson’s disease. J Neurophysiol 93:1569–1584. 

 
Hutchison, W. D., Lozano, A. M., Tasker, R. R., Lang, A. E., & Dostrovsky, J. O. (2007). 

Identification and characterization of neurons with tremor-frequency activity in 
human globus pallidus. Exp Brain Res 113:557–563. 

 
Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience: The Geometry of 

Excitability and Bursting. Cambridge, MA: The MIT Press.  
 
Jellinger, K. A. (1999). Post mortem studies in Parkinson’s disease: is it possible to detect 

brain areas for specific symptoms? J Neural Transm Suppl 56:1–29.  
 
Jones, E. G. (2001). Morphology, nomenclature and connections of the thalamus and 

basal ganglia. In J. K. Krauss, J. Jankovic, & R. G. Grossman (Ed.), Surgery for 
Parkinson's Disease and Movement Disorders (pp. 24–47). Philadelphia: 
Lippincott, Williams and Wilkins. 

 
Kita, H., & Kita, T. (2011) Role of striatum in the Pause and Burst Generation in the 

Globus Pallidus of 6-OHDA-Treated Rats. Front Syst Neurosci 5:42. 
 
Leblois, A., Boraud, T., Meissner, W., Bergman, H., & Hansel, D. (2006). Competition 

between feedback loops underlies normal and pathological dynamics in the basal 
ganglia. J Neurosci 26:3567–3583. 

 
Lenz, F., Kwan, H., Martin, R., Tasker, R. R., Dostrovsky, J. O., & Lenz, Y. E. (1994). 

Single unit analysis of the human ventral thalamic nuclear group. Tremor-related 
activity in functionally identified cells. Brain 117:531–543. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hern%C3%A1ndez%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ib%C3%A1%C3%B1ez-Sandoval%20O%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sierra%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Valdiosera%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tapia%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Anaya%20V%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Anaya%20V%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Galarraga%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bargas%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Aceves%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/17167083
http://www.ncbi.nlm.nih.gov/pubmed/17167083
http://www.ncbi.nlm.nih.gov/pubmed/16571765
http://www.ncbi.nlm.nih.gov/pubmed/16571765
http://www.ncbi.nlm.nih.gov/pubmed/16571765


42 
 

 
 

Levy, R., Hutchison, W. D., Lozano, A. M., & Dostrovsky, J. O. (2000). High-frequency 
synchronization of neuronal activity in the subthalamic nucleus of parkinsonian 
patients with limb tremor. J Neurosci 20:7766–7775.  

 
Llinas, R. (1984). Rebound excitation as the physiological basis for tremor: a biophysical 

study of the oscillatory properties of mammalian central neurons in vitro. In L. J. 
Finley, & R. Capildeo (Ed.), Movement Disorders, Tremor (pp. 339–351). 
Macmillan, London. 

 
Lozano, A. M., Dostrovsky, J., Chen, R., & Ashby, P. (2002). Deep brain stimulation for 

Parkinson's disease: disrupting the disruption. Lancet Neurol 1:225–231. 
 
Mackey, M. C., & Glass, L. (1977). Oscillations and chaos in physiological control 

system. Science 197:287–289. 
 
McIntyre, C. C., Mori, S., Sherman, D. L., Thakor, N. V., & Vitek, J. L. (2004). Electric 

field and stimulating influence generated by deep brain stimulation of the 
subthalamic nucleus. Clin Neurophysiol 115:589–595. 

 
Miocinovic, S., Parent, M., Butson, C. R., Hahn, P. J., Russo, G. S., Vitek, J. L., & 

McIntyre, C. C. (2006). Computational analysis of subthalamic nucleus and 
lenticular fasciculus activation during therapeutic deep brain stimulation. J 
Neurophysiol 96:1569–1580. 

 
Moran, A., Bergman, H., Israel, Z., & Bar-Gad, I. (2008). Subthalamic nucleus functional 

organization revealed by parkinsonian neuronal oscillations and synchrony. Brain 
131:3395–3409. 

 
Ogura, M., & Kita, H. (2000). Dynorphin exerts both postsynaptic and presynaptic effects 

in the Globus pallidus of the rat. J Neurophysiol 83:3366–3376. 
 
Pare, D., Curro’Dossi, R., & Steriade, M. (1990). Neuronal basis of the parkinsonian 

resting tremor: a hypothesis and its implications for treatment. Neuroscience 
35:217–226.  

 
Park, C., Worth, R. M., & Rubchinsky, L. L. (2011). Neural dynamics in parkinsonian 

brain: the boundary between synchronized and nonsynchronized dynamics. 
Physical Review E 83, 042901. 

 
Plenz, D., & Kitai, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic 

nucleus and external globus pallidus. Nature 400:677–682.  
 
Pollock, L. J., & Davis, L. (1930). Muscle tone in parkinsonian states. Arch Neurol 

Psychiatry 23:303–319. 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Miocinovic%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Parent%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Butson%20CR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hahn%20PJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Russo%20GS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Vitek%20JL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22McIntyre%20CC%22%5BAuthor%5D


43 
 

 
 

Rack, P. M., & Ross, H. F. (1986). The role of reflexes in the resting tremor of 
Parkinson’s disease. Brain 109:115–141. 

 
Raethjen, J., & Deuschl, G. (2009). Tremor. Curr Opin Neurol 22:400–405. 
 
Raethjen, J., Govindan, R. B., Muthuraman, M., Kopper, F., Volkmann, J., & Deuschl, G. 

(2009). Cortical correlates of the basic and first harmonic frequency of 
Parkinsonian tremor. Clin Neurophysiol 120:1866–1872. 

 
Ramanathan, S., Tkatch, T., Atherton, J. F., Wilson, C. J., & Bevan, M. D. (2008). D2-

like dopamine receptors modulate SKCa channel function in subthalamic nucleus 
neurons through inhibition of Cav2.2 channels. J Neurophysiol 99:442–459. 

 
Rivlin-Etzion, M., Marmor, O., Heimer, G., Raz, A., Nini, A., & Bergman, H. (2006). 

Basal ganglia oscillations and pathophysiology of movement disorders. Curr Opin 
Neurobiol 16:629–637. 

Romo, R., & Schultz, W. (1992). Role of primate basal ganglia and frontal cortex in the 
internal generation of movements. III Neuronal activity in the supplementary 
motor area. Exp Brain Res 91:396–407. 

 
Rubchinsky, L. L., Kopell, N., & Sigvardt, K. A. (2003). Modeling facilitation and 

inhibition of competing motor programs in basal ganglia subthalamic nucleus - 
pallidal circuits. Proc Nat Acad Sci USA 100:14427–14432. 

 
Rubchinsky, L. L., Kuznetsov, A. S., Wheelock, V. L., & Sigvardt, K. A. (2007). Tremor. 

Scholarpedia 2(10):1379. http://www.scholarpedia.org/article/Tremor 
 
Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic 

nucleus eliminates pathological thalamic rhythmicity in a computational model. J 
Comput Neurosci 16:211–235. 

 
Shen, K. Z., & Johnson, S. W. (2000). Presynaptic dopamine D2 and muscarine M3 

receptors inhibit excitatory and inhibitory transmission to rat subthalamic 
neurones in vitro. J Physiol 525(Pt 2):331–41. 

 
Shen, K. Z., & Johnson, S. W. (2005). Dopamine depletion alters responses to glutamate 

and GABA in the rat subthalamic nucleus. Neuroreport 16:171–174. 
 
Shen, K. Z., Zhu, Z. T., Munhall, A., & Johnson, S. W. (2003). Dopamine receptor 

supersensitivity in rat subthalamus after 6-hydroxydopamine lesions. Eur J 
Neurosci 18:2967–2974. 

 
Smith, Y., Raju, D. V., Pare, J. F., & Sidibe, M. (2004). The thalamostriatal system: a 

highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–
527. 



44 
 

 
 

Speelman, J. D., Schuurman, R., de Bie, R. M., Esselink, R. A., & Bosch, D. A. (2002). 
Stereotactic neurosurgery for tremor. Mov Disord 17 (Suppl 3):S84–S88.  

 
Surmeier, D. J., Mercer, J. N., & Chan, C. S. (2005). Autonomous pacemakers in the 

basal ganglia: who needs excitatory synapses anyway? Curr Opin Neurobiol 
15:312–318. 

 
Tarsy, D., Vitek, J. L., & Lozano, A. M. (2003). Surgical Treatment of Parkinson’s 

Disease and Other Movement Disorders. Totowa, NJ: Humana Press. 
  
Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a 

model for subthalamopallidal network of basal ganglia. J Neurosci 22:2963–2976. 
 
Timmermann, L., Gross, J., Dirks, M., Volkmann, J., Freund, H. J., & Schnitzler, A. 

(2003). The cerebral oscillatory network of parkinsonian resting tremor. Brain 
126:199–212.  

 
Volkmann, J., Joliot, M., Mogilner, A., Ioannides, A. A., Lado, F., Fazzini, E., Ribary, 

U., & Llinas, R. (1996). Central motor loop oscillations in parkinsonian resting 
tremor revealed by magnetoencephalography. Neurology 46:1359–1370.  

 
Weinberger, M., Hutchison, W. D., Lozano, A. M., Hodaie, M., & Dostrovsky, J. O. 

(2009). Increased gamma oscillatory activity in the subthalamic nucleus during 
tremor in Parkinson's disease patients. J Neurophysiol 101:789–802. 

 
Wichmann, T., & DeLong, M. R. (1999). Oscillations in the basal ganglia. Nature 

400:621–622.  
 
Wilms, H., Sievers, J., & Deuschl, G. (1999). Animal models of tremor. Mov Disord 

14:557–571.  
 
Wilson, C. J. (2004). Basal Ganglia. In G. M. Shepherd (Ed.), The Synaptic Organization 

of the Brain (pp. 361–413). New York: Oxford University Press.  
 
Zirh, T. A., Lenz, F. A., Reich, S. G., & Dougherty, P. M. (1998). Patterns of bursting 

occurring in thalamic cells during parkinsonian tremor. Neuroscience 83:107–
121. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Volkmann%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Joliot%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mogilner%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ioannides%20AA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lado%20F%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fazzini%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ribary%20U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ribary%20U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Llin%C3%A1s%20R%22%5BAuthor%5D


45 
 

 

 

3. DELAYED FEEDBACK DEEP BRAIN STIMULATION FAILURE IN 

PARTIALLY SYNCHRONOUS PARKINSONIAN BASAL GANGLIA 

 
 

3.1 Introduction 

Deep brain stimulation (DBS) entails the delivery of a stimulation signal to 

subcortical structures via implanted electrodes. DBS has received a lot of attention as a 

therapeutic procedure in various neurological and neuropsychiatric disorders (Wichmann 

and DeLong, 2006). DBS of different targets in the basal ganglia-thalamocortical loop is 

used to treat motor symptoms of Parkinson’s disease (PD) as well as other motor 

disorders (Kringelbach et al., 2007). Standard surgical targets for DBS in Parkinson’s 

disease are subthalamic nucleus (STN) and internal Globus Pallidus (GPi), and the 

ventral intermediate (Vim) nucleus of the thalamus may be used in tremor-dominant 

Parkinson’s disease.  

Hypokinetic symptoms of Parkinson’s disease have been related to excessive 

beta-band oscillations and synchrony in the basal ganglia and other structures (Hammond 

et al., 2007; Brown, 2007; Eusibio and Brown, 2009; Kuhn et al., 2009). Thus DBS 

effectiveness has been linked to the destruction of this pathological rhythmicity (Lozano 

et al., 2002; Grill et al., 2004; McIntyre et al., 2004) by reducing the bursting and 

increasing regularity and synchrony in the high-frequency band. The standard DBS 

paradigm utilizes strong high-frequency stimuli. Apparently these stimuli are sufficiently 
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strong to override pathological firing patterns and induce a more regular and less bursty 

signal, which is not necessarily identical to the normal one but is superior to pathological 

patterns. These considerations are supported by experimental studies in humans with PD, 

in healthy rodents and primates, and in primate and rodent models of Parkinson’s disease 

(Hashimoto et al., 2003; Meissner et al., 2005; Hahn et al., 2008; Dorval et al., 2008). 

Computational studies provide an additional explanation of the way in which DBS may 

act at a cellular level to reduce pathological oscillations (Miocinovich et al., 2006). The 

standard DBS probably induces more synchronized firing in the high-frequency band and 

reduces pathologically synchronous oscillatory activity in the beta band, as supported by 

experimental observations (Wingeier et al., 2006; Kuhn et al., 2008; McCairn and Turner, 

2009; Eusibio et al., 2011). 

However, standard DBS has substantial side effects, which may be related to its 

strong stimuli and “one size fits all” approach. In particular, standard DBS is associated 

with a variety of adverse effects such as dyskinesia, paraesthesia, dysarthria and gait 

disturbances (Umemura et al., 2003), and motor performance during DBS may not be 

completely identical to normal performance. In addition, non-motor adverse effects such 

as mania, impulsivity, depression, various cognitive alterations and suicidal behavior 

have been reported (Appleby et al., 2007). They can arise due to current spread to 

adjacent structures and due to the fact that associative, limbic and motor circuits, 

although traditionally viewed as largely parallel in the BG, are not completely 

independent (Pesseglione et al., 2005).  

These considerations lead to a strong interest in new DBS algorithms. Ideally, 

stimulation waveforms should have small amplitudes and should be targeted specifically 
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to destruction of the pathological activity which results in the primary symptoms 

(demand-based or adaptive DBS). Low amplitudes of stimulation will also save battery 

life, reducing the need for battery-replacement surgeries. 

One method which has received a lot of attention recently and has appeared to be 

very promising is nonlinear delayed feedback control. Pikovsky and Rosenblum (2004a, 

b) considered an elegant feedback control scheme, which rendered the synchronized state 

in an ensemble of all-to-all coupled abstract oscillators unstable. In the limit of the large 

number of oscillators, the amplitude of feedback signals vanishes, which makes it 

especially attractive for DBS applications. This control scheme was modified into a more 

realistic setting: Popovych et al. (2005, 2006) showed that a delayed feedback through a 

mean field (a proxy for easy-to-record local field potentials, LFP) may cancel the effect 

of coupling and desynchronize ensembles of coupled oscillators. Subsequent studies 

provided further computational evidence for the ability of nonlinear delayed feedback to 

destabilize a synchronized state and thus to desynchronize excessively synchronous 

dynamics (e.g., Tukhlina et al., 2007; Popovich et al., 2008; Popovich and Tass, 2010; 

Guo and Rubin, 2011). 

Therefore, the delayed feedback desynchronization algorithm appears to be quite 

robust for experimental implementation in vivo. However, in spite of these advances and 

in spite of hardware availability (Hauptmann et al., 2009), we are not aware of any 

clinically successful implementation of this strategy. This is clearly a challenging task 

and there may be many reasons why the considered desynchronization technique has 

resisted effective realization. The goal of this paper is to explore the action of delayed 

feedback DBS on the dynamics of a realistically partially-synchronous network. We 
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conjecture that the complex origin of partially synchronous neural dynamics in 

parkinsonian brain may be a substantial obstacle to implementation of delayed feedback 

desynchronization. 

To study this problem, we employ a computational model of the basal ganglia 

networks which successfully reproduces experimentally recorded neural activity (Park et 

al., 2011). The synchronous activity in the parkinsonian brain is very intermittent (Park et 

al., 2010; Rubchinsky et al., 2011). The model of (Park et al., 2011) is based on the 

membrane properties of the basal ganglia cells and is tuned in such a way as to reproduce 

not only the average synchrony levels, but also the temporal patterns of the synchronous 

dynamics seen in human experimental data. In the language of dynamical systems theory, 

that model realistically describes the dynamics not only in the vicinity of the 

synchronized state, but also in other parts of the phase space, ensuring more substantial 

similarity between the model and the experimental system (Ahn et al., 2011). In contrast, 

the models used in earlier studies use more generic oscillators, placed in a fully 

synchronized regime. 

We study the effect of delayed feedback in numerical experiment. When the 

parameters of our model are such that the dynamics is strongly synchronous, the 

feedback, in line with earlier studies, exerts desynchronizing action. However, this 

strongly synchronous dynamics is not physiologically realistic. When the model is tuned 

to reproduce the highly variable temporal patterns observed experimentally, the same 

delayed feedback tends to increase the synchrony in the system. Hence, 

“desynchronizing” delayed feedback acting on realistic partially synchronous dynamics 

may boost rather than suppress synchronization. It suggests that delayed feedback DBS is 
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unlikely to be successful in Parkinson’s disease. It also indicates that this 

desynchronization strategy is not guaranteed to work if the original dynamics is not fully 

synchronous to begin with. 

 
 

3.2 Methods 
 
 
 

3.2.1 Model Network 

We use the model of the basal ganglia studied in (Park et al., 2011). This model 

network is based on the developments in (Terman et al., 2002), but its dopamine-

modulated parameters are tuned in such a way as to reproduce experimentally recorded 

data. The model consists of two arrays of neurons: an array of 10 GPe model neurons and 

array of 10 STN model neurons; each array has a circular structure. Neurons are 

connected as in (Park et al., 2011): each GPe neuron receives synaptic input from one 

STN neuron, while each STN neuron receives inputs from the same neuron it transmits to 

as well as from two of its neighbors (Fig. 3.1). While the model is clearly limited in many 

ways and does not incorporate other brain structures beyond STN and GPe, the model is 

based on experimental anatomical and physiological data and captures the rich repertoire 

of parkinsonian rhythmicity, recorded in these circuits in parkinsonian patients and 

animals (Park et al., 2011). In addition, it appears to adequately reproduce the 

experimentally studied mechanisms of this rhythmicity resulting from sequences of 

recurrent excitation and inhibition in subthalamo-pallidal networks (Bevan et al., 2002; 

Mallet et al., 2008). 
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Figure 3.1. The schematics of the model network with examples of synaptic connections 
between neurons. Bars represent inhibitory synapses and arrows represent excitatory 
synapses. Delayed feedback stimulation Istim is modeled as an applied current to specified 
STN neurons. 
 
 
 

Both STN and GPe neuron models are described by conductance-based (Hodgkin-

Huxley like) formalism, with channel properties recovered from experiment (Terman et 

al., 2002). The model includes leak current, fast spike-producing potassium and sodium 

currents, low threshold T-type and high-threshold Ca2+-currents and Ca2+-activated 

voltage-independent afterhyperpolarization (AHP) K+-current in the current balance 

equation: 

appsynAHPCaTNaKL IIIIIIII
dt
dVC +−−−−−−−=  

where ( )LLL VVgI −= , ( )KKK VVngI −= 4 , ( )NaNaNa VVhVmgI −= ∞ )(3 , 

( )CaTT VVrbVagI −= ∞∞ )()( 23 , ( )CaCaCa VVVsgI −= ∞ )(2 , ( )( )( )KAHPAHP VVkCaCagI −+= 1][][ .  

The intracellular concentration of calcium is described by the differential equation 

( )][][ CakIIdtCad CaTCa −−−= ε . 
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The gating variables n, h and r obey first-order kinetic equation in the form: 

( ) )()( VxVxdtdx xτ−= ∞ . 

Fast activation variables m, a and s are assumed to be instantaneous with voltage-

dependent activation functions )(Vm∞ , )(Va∞  and )(Vs∞ , correspondingly. Synaptic 

current is given by  

( )∑−=
j jsynsynsyn sVVgI , 

where the sum is taken over the presynaptic neurons from which there are incoming 

connections to a given cell. The synaptic variable sj satisfies 

( )( ) jjgpresynj ssVHdtds βθα −−−= ∞ 1 . 

While both STN and GPe neurons are described by the same kind of equations, 

the parameters of these equations are different, reflecting the difference in the biophysical 

properties of neuronal membranes. Parameters for GPe and STN neurons follow (Park et 

al., 2011). 

 
 

3.2.2 Stimulation Setup 

The scheme of the stimulation setup is given in Fig. 3.2. Time-delayed feedback 

is used for stimulation current following the ideas of (Rosenblum and Pikovsky, 2004a, 

b; Popovich et al., 2005, 2006). This type of feedback reliably disrupts correlated activity 

in a model of synaptically-coupled neuronal systems.  
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Figure 3.2. Stimulation setup for STN neurons. STN LFP is first computed from synaptic 
currents and then band-pass filtered using a damped harmonic oscillator. Differential 
delay signal is then constructed from the filtered signal, bounded by nonlinear 
transformation, amplified and injected into the same neurons.  
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The feedback signal is constructed by computing the local field potential (LFP). 

Following the rationale in (Park et al., 2011), STN LFP at the jth neuron is computed as: 

( ) ( ) jstimjsynjsynjsynjsynjsynj IiiwiiwitX ,2,2,21,1,1,)( ++−+−−= +−+− , 

where isyn,j is the total synaptic current coming to the neuron j; w1 and w2 are weights 

representing the attenuation of the field with the distance. We set the weights w1 and w2 

to several different values from the interval [0, 0.4]. We consider w1 > w2 to account for 

the attenuation of the signal by the tissue with w2 = 0.1 or zero. However, for both 

choices of w2 results were qualitatively similar. 

The model LFP is measured at the same site at which stimulation is applied; 

therefore, the stimulation current Istim, j is added to Xj (t). The resulting signal is then 

filtered using the damped harmonic oscillator as suggested in (Tukhlina et al., 2007)  

)(2 tXxxx jjjfj =++ ωα  , 

where fπω 2=  and f is the bursting frequency of the model network without stimulation. 

Parameter ωα =f  determines the band pass properties of the filter. To compensate for a 

phase shift introduced by filtering, the output of the harmonic oscillator is delayed by the 

value sτ of the shift (Popovych et al., 2006): ( )sjj txtx τ−=)(~ . Time-delayed differential 

feedback is computed as )(~)(~ txtx jj −−τ . Finally, the stimulation signal might become 

very strong and present danger to neuronal cells; thus it is reasonable to bound the 

stimulation signal. Here, we use a nonlinear transformation of the filtered signal that 

keeps the stimulation current strength below a maximum value Kf. The feedback 

stimulation current at the jth STN neuron is then obtained as: 
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( )( )( )( ) ( )
( )2,2,2

1,1,11, 5.014)(~)(~exp112

+−

+−

+

+++−−−−+=

jstimjstim

jstimjstimjjfjstim

IIw
IIwtxtxCKI τ

 

In our results in Section 3.3, we administer stimulation current to subsets of 

neurons in the STN array. In particular, up to three STN neurons are stimulated in every 

arrangement: a single neuron, two adjacent STN neurons, three adjacent neurons as well 

as two nonadjacent neurons (stimulation current is applied to STN neurons j and j+2) or 

three nonadjacent neurons (STN neurons j-2, j, and j+2 were stimulated). This gives a 

total of five different stimulation arrangements that we investigate in this study.  

In numerical simulations, stimulation feedback was switched on 1 s after the start 

of simulations. A second later, the data was saved for 5 s and was subjected to the 

analysis (see Section 3.2.3). The model network equations were numerically solved with 

XPP software (Bard Ermentrout, University of Pittsburg, 

http://www.math.pitt.edu/~bard/xpp/xpp.html). 

 
 

3.2.3 Network’s Dynamics and Estimation of its Synchrony 

The model network without stimulation was analyzed earlier in (Park et al., 2011) 

in the two-dimensional parameter space of (gsyn, Iapp) – the strength of GPe to STN 

synaptic connections and the applied current to the GPe neurons (Iapp represents synaptic 

input from striatum to pallidum). The choice of these parameters was grounded in the 

following considerations (Park et al., 2011; Rubchinsky et al., 2011). Both of these 

parameters (essentially, synaptic strengths) are affected by dopamine. In Parkinson’s 

disease, dopaminergic cells of the substantia nigra pars compacta degenerate, thus 

depriving these synaptic connections of dopaminergic modulation. Larger values of gsyn 
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and smaller values of Iapp would correspond to a parkinsonian-like state. In numerical 

experiments this would lead to more synchronous dynamics. 

To quantitatively estimate the amount of synchrony among STN neurons principal 

component analysis (PCA) was used following (Park et al., 2011). The slow variable r 

from each of the STN neurons was used for the analysis (the choice of the slow variable 

is motivated by the fact that beta-band synchrony here is essentially a synchrony of 

bursting). We look at the number of principal components capturing 80% of the variation 

in PCA. The dynamics of the network without stimulation is presented in Fig. 3.3. The 

right lower corner of the network is a synchronized state, while the left upper corner is 

nonsynchronized state. The dashed contours in the figure indicate the parameter domain 

where the dynamics of the model network exhibits synchronous patterns similar to what 

is experimentally observed not only in average synchrony level, but also in the fine 

temporal structure of synchrony (Park et al., 2011). This area of parkinsonian dynamics is 

on the boundary between the (presumably healthy) nonsynchronous state (upper left 

corner) and an unrealistic strongly synchronous state (lower right corner). Given the 

location of the realistic firing patterns we confined our simulations to a smaller domain, 

which still captures the main types of dynamics (see dotted contour in Fig. 3.3). The 

effect of the delayed feedback stimulation on the degree of synchrony was measured by 

the change in the number of principal components in the model network with stimulation 

vs. without stimulation. This time-series analysis was done in MATLAB (Mathworks, 

Natick, MA).  
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Figure 3.3. Parameter plane with the number of principal components in the network 
without stimulation. Points enclosed by dashed contours represent parameter values for 
which the model network synchronization dynamics is close to the experimental 
dynamics as analyzed in (Park et al., 2011) for the weight parameter w1 = 0.3. 
Simulations with feedback stimulation were performed for the parameter values inside 
the dotted rectangle. The filling of the circles specifies the number of principle 
components; empty being synchronized dynamics and black being incoherent dynamics.   
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3.3 Results 

Depending on the values of gsyn and Iapp the STN-GPe model network may 

exhibit three characteristic types of collective behavior: irregular activity, strongly 

correlated spiking, or an intermittent synchrony regime on the boundary between the 

former two (Park et al., 2011). The intermittent activity in the model possesses the same 

temporal synchronization pattern as recorded from STN neurons in patients with 

Parkinson’s disease (Park et al., 2010). Therefore, when measuring the effect of proposed 

feedback stimulation we were particularly interested in how delayed feedback stimulation 

acted on the realistically intermittent weak synchrony. 

 
 

3.3.1 Examples of Synchronizing and Desynchronizing Action of Delayed Feedback 

Stimulation 

An example of the action of feedback on strongly synchronous dynamics is given in Fig. 

3.4a. It can be seen (Fig. 3.4a) that the stimulation leads to reduction in synchrony and 

more uncorrelated dynamics settles in, i.e. the phase locking between stimulated neurons 

is broken by the delayed feedback. Hence, feedback stimulation leads to decrease in 

synchronization of the whole STN network. On the contrary, in the intermittent regime 

(Fig. 3.4b) the same delayed feedback stimulation results in no apparent change in 

synchronization for moderate stimulation strengths, while stronger stimulation, in fact, 

leads to increased synchronization among STN neurons. While Fig. 3.4 illustrates the 

dynamics of only two neurons in the network, the synchronizing effect of the 

“desynchronizing” feedback stimulation is confirmed by the decrease in the number of 

principal components for the whole network as can be seen in Fig. 3.5.  
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Figure 3.4. Nonlinear delayed feedback stimulation effect in the model network. a) 
Desynchronization of strongly synchronous STN neurons with delayed feedback 
stimulation. b) Feedback stimulation leads to increased synchrony in the model network 
in the physiological intermittent regime. The 5th and 7th STN neurons in the array are 
stimulated and their membrane potentials (in millivolts) are shown in the top and bottom 
time traces in a) and b). Middle boxes contain voltage for the 5th (black line) and 7th (gray 
line) STN neurons together filtered to the beta-band. Stimulation is switched on at 1000 
ms. Parameters are: w1 = 0.3, w2 = 0, Iapp = 5, a) gsyn = 1.3, Kf = 40. b) gsyn = 0.9, Kf = 
30.  
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3.3.2 Delayed Feedback Effects on Networks with Different Synchrony Levels 

To study these phenomena systematically, we consider the dynamics of the 

network in the two-dimensional space of parameters gsyn and Iapp and vary strength of the 

feedback stimulation. We start by setting Iapp at some intermediate value that, depending 

on the parameter gsyn, produces either intermittent synchrony or strongly correlated 

activity. Fig. 3.5 depicts the change in the number of principal components in the 

network stimulated with nonlinear delayed feedback compared to the network without 

stimulation. Here, the increase in stimulation strength leads to decrease in synchrony in 

the network (indicated by the increase in the number of principal components) when the 

synaptic parameter gsyn corresponds to the strongly correlated activity without 

stimulation (see Fig. 3.3). However, the model network which is in an intermittent 

synchronization regime before stimulation (see Fig. 3.3) shows no positive change in the 

number of principal components and eventually becomes more synchronous with 

stronger stimulation current. This is highlighted by the decrease in the number of 

principal components with higher values of Kf. Thus there is a marked difference in a 

trend: as gsyn decreases to produce less coherent pre-stimulation dynamics, the increase in 

the stimulation strength leads to more rather than less synchronized dynamics.  

The results for several other types of spatial arrangement of stimulation electrodes 

are presented in Fig. 3.6. One can see that some stimulation set-ups may lead to 

desynchronizing effect even for moderate values of gsyn, however, there are nearby 

values of gsyn which yield no improvement in desynchronization.  
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Figure 3.5. Change in the number of PCA components in the network with feedback 
stimulation set-ups. Positive change indicates dynamics less synchronous than pre-
stimulation dynamics, negative change indicates more coherent dynamics. Two different 
spatial stimulation set-ups are presented and two different weights are presented. a, b) 
The 5th and 7th STN neurons in the array are stimulated. c, d) The 5th, 6th and 7th STN 
neurons are stimulated. Weight parameters are w1 = 0.3, a, c) w2 = 0; b, d) w2 = 0.1. Iapp 
= 5 in all simulations. 
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Figure 3.6. Change in the number of PCA components in a network with feedback 
stimulation, the spatial set-up of stimulation is different from that in figure 5. a, b) The 5th 
STN neuron in the array is stimulated. c, d) The 5th and 6th STN neurons are stimulated. 
e, f) The 5th, 7th and 9th STN neurons are stimulated. Weight parameters are w1 = 0.3, a, c, 
e) w2 = 0; b, d, f) w2 = 0.1. Iapp = 5 in all simulations. 
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Similar phenomena were observed by us for other values of Iapp. Therefore, for a 

systematic study of these phenomena we will vary both control parameters (gsyn and Iapp) 

in the model network to span a large repertoire of synchronized behavior and to include 

synchrony patterns similar to experimentally observed ones. To find the largest possible 

desynchronizing effect of the delayed feedback, we consider the maximum increase in 

the number of principal components, that is, the maximum desynchronization effect, in 

the two-parameter plane gsyn-Iapp obtained over the full range of tested stimulation 

strengths (Fig. 3.7). The only consistent improvement in desynchronization was made in 

the region of strongly correlated activity (see Fig. 3.3). For the parameter values 

corresponding to uncorrelated activity and intermittent synchrony the desynchronization 

of the network was not usually achieved. On the contrary, as Fig. 3.5 shows, stronger 

delayed feedback stimulation at these parameter values frequently leads to stronger 

correlation and overall more synchronous dynamics in the network. Similar to Fig. 3.7, 

the effect of spatial electrode arrangements considered in Fig. 3.6 is summarized in Fig. 

3.8. 

Therefore, while the delayed feedback stimulation produces reliable synchrony 

suppression in the case of strongly correlated activity, it frequently fails to destroy 

synchronized activity in the network with intermittent synchrony regime that was shown 

to be similar to the pattern of synchrony observed in parkinsonian patients. 
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Figure 3.7. Maximum improvement in the number of principal components with the 
spatial electrode setups from Fig. 3.5. While the desynchronizing action (dark symbols) is 
consistent for the lower right corner (strongly correlated dynamics), it is very rare outside 
of that corner, for moderately synchronous (and more realistic) dynamics. Diamonds 
indicate desynchronizing action of stimulation of various efficiency (indicated by the 
darkness of the filling). Circles indicate no desynchronization. Note that unlike Fig. 3.5, 
here we consider the maximum improvement; so that it cannot be negative (it is always 
zero for zero stimulation strength). a, b) The 5th and 7th STN neurons in the array are 
stimulated. c, d) The 5th, 6th and 7th STN neurons are stimulated. Weight parameters are 
w1 = 0.3, a, c) w2 = 0; b, d) w2 = 0.1.  
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Figure 3.8. Maximum improvement in the number of principal components with the 
spatial electrode setups from Fig. 3.6. These results are overall similar to those in Fig. 
3.7. a, b) The 5th STN neuron in the array is stimulated. c, d) The 5th and 6th STN neurons 
are stimulated. e, f) The 5th, 7th and 9th STN neurons are stimulated. Weight parameters 
are w1 = 0.3, a, c, e) w2 = 0; b, d, f) w2 = 0.1. 
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3.4 Discussion 

 
 

3.4.1 Potential Limitations of the Modeling 

The modeling approach used here obviously does not include many factors which 

may be crucial for the physiology of parkinsonian basal ganglia. For example, the basal 

ganglia model is imperfect in that the real mechanisms of the generation of the 

synchronized beta-band oscillations may be much more complicated. However, the 

model does a good job at reproducing the experimentally observed synchrony patterns 

(Park et al., 2011). Therefore even though the model may have some mechanistic 

deficiencies, it appears to be dynamically adequate for studying the real basal ganglia 

circuits in Parkinson’s disease. In the terms of the phase space, there is an equivalence of 

the phase spaces of the model and of the real dynamics not only in a vicinity of the 

synchronization manifold, but in other areas of the space. This is important because the 

overall synchrony level is not very strong and the system spends a substantial fraction of 

time in those areas of the phase space. 

The computation of LFPs, stimulation field and its effect on the cells is relatively 

simplistic, however a more precise account of the field distribution (similar to is likely to 

make desynchronization even more challenging. The number of neurons in the model is 

relatively small. So that really vanishing stimulation desynchronization (where control 

term is zero in the desynchronized state) is not possible. However, this should not negate 

the observations of this study. We follow the change in the degree of synchrony in the 
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network, whether the stimulation truly vanishes or not. What is important is that if the 

stimulation is applied for a partially synchronous regime, desynchronization is not 

achieved. 

Modeling studies suggest that the structure and parameters of the feedback 

stimulation affect the efficiency of desynchronization. For example, computing the mean 

field from a group of elements, not completely coincident with the group of stimulated 

elements, made the domain of existence of desynchronization smaller (Rosenblum et al., 

2006). This may be of potential relevance to the subthalamic nucleus, because the mean 

filed is likely to be generated by pallidal synaptic activity and is represented in such a 

way in the model utilized here. Also, for moderate strengths of the feedback loop, the 

delayed feedback stimulation may exert a synchronizing effect; however the 

desynchronizing effect occurs for larger values of the strength of the feedback loop 

(Popovich et al., 2008). But these issues are unlikely to vitiate the major result of our 

study. We had no problem in obtaining desynchronization in a network which is fully 

synchronous to begin with. However as parameters of the network are gradually changed 

in such a way as to obtain experimentally realistic, partially synchronous firing patterns 

the “desynchronizing” feedback gradually loses the ability to decrease synchrony strength 

in the system and, in fact, eventually increases the synchrony level. We varied the 

strength of the feedback for each of the parameter sets of the model network to find the 

optimal stimulation characteristics, but it did not affected the general outcome. We do not 

completely exclude the possibility that some feedback control may potentially decrease 

synchrony of a partially synchronized dynamics in parkinsonian basal ganglia. However, 
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our results indicate that the same delayed feedback stimulation that desynchronizes 

complete synchrony may actually increase synchrony strength in a partially synchronized 

regime. 

 
 

3.4.2 Conclusions 

In the context of Parkinson’s disease the results indicate that delayed nonlinear 

feedback is likely to increase synchrony in the basal ganglia of parkinsonian patients 

rather than suppress it. This suggests a need for further attention to other DBS techniques. 

For example, coordinated resetting (e.g., Hauptmann and Tass, 2010) may be efficient in 

desynchronizing (it is also may be beneficial due to the improvement in thalamocortical 

relay function, Guo and Rubin, 2011). However, unlike the delayed feedback stimulation 

it does not vanish in the limit of a large number of oscillators. Another non-vanishing, but 

potentially efficient technique is based on the optimization of the stimulation waveforms 

(Feng et al., 2007a,b; Wongsarnpigoon and Grill, 2010), where the stimulation signals are 

drawn from a broad class of waveforms and optimized by genetic search algorithms. An 

emerging model-based approach based on Kalman filtering may be promising too (Schiff, 

2010). 

The other important implication of the present study extends beyond the context 

of DBS in Parkinson’s disease. Our results indicate that even if a control strategy 

destabilizes a fully synchronized state, its action on weakly synchronous dynamics may 

be quite opposite. This, perhaps, should not be very surprising. The major idea behind 

desynchronizing algorithms like desynchronizing nonlinear delayed feedback is that they 

are set up in such a way as to make the synchronous state unstable. However the neural 
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synchrony, especially in human brain is far from being stable even in pathological 

conditions; rather it varies in time and has a moderate overall strength. Thus what defines 

synchrony strength in the system is not only the stability/instability properties of the 

synchronized state, but also the mechanisms pushing the system back to a synchronous 

state. The desynchronizing strategies such as delayed nonlinear feedback are mostly 

concerned with destabilizing synchronous state and do not address these other issues. 

A number of neurological and psychiatric conditions have being associated with 

elevated levels of synchrony of neural oscillations (Schnitzler and Gross, 2005; Uhlhaas 

and Singer, 2006). Desynchronizing deep brain stimulation may have therapeutic 

potential for treatment of any conditions where excessive synchrony leads to pathological 

symptoms. However, as the current study suggests, to identify a viable desynchronization 

algorithm, one needs to test it in models with reasonably accurate reproduction of the 

clinically relevant features of synchronized oscillatory activity. 
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4. EXPLORING NEURONAL BISTABILITY AT THE DEPOLARIZATION BLOCK 
 
 
 

4.1 Introduction 

Bistability – coexistence of two firing modes in the same experimental conditions 

– has been documented in different types of neurons. Tonic spiking coexists with bursting 

(Shilnikov et al., 2005) or with a different spiking mode (Cymbalyuk and Shilnikov, 

2005) in leach heart cells. Bistability of bursting and spiking was also discovered in 

neuron R15 of the marine mollusk Aplysia (Lechner et al., 1996). In this paper, we focus 

on the bistability between a resting and tonic spiking states. This type of bistability was 

observed in different motor neurons (Hounsgaard et al., 1984; Le et al., 2006; Lee and 

Heckman, 1996). The same type of bistability is hypothesized to be involved in short-

term memory (discussed in Marder et al., 1996). In a bistable cell, a short signal triggers a 

long-lasting change in the firing, which encodes the last input. Altogether, bistability is 

common among neurons and endows them with richer forms of information processing. 

In this study we focus on the bistability at the transition to the state called 

depolarization block – a silent state that occurs in every neuron when it receives 

excessive excitation. In vitro, a neuron enters depolarization block whenever the applied 

current exceeds a certain level. In a slightly different experiment, an iontophoresis current 

that supplies an excitatory neurotransmitter can also lead the neuron into depolarization 

block. Its minimal value that silences the neuron characterizes the neuron and the specific 
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receptor (e.g. NMDA). Furthermore, depolarization block was suggested to explain the 

therapeutic action of antipsychotic drugs (Grace et al., 1997). In schizophrenia and other 

diseases, the level of the neurotransmitter dopamine (DA) is abnormally high. 

Antipsychotics were shown to have a direct excitatory influence on the neurons releasing 

dopamine – dopaminergic neurons. This should further elevate the DA levels unless the 

DA neuron enters depolarization block and stops releasing dopamine. The effectiveness 

of the antipsychotics was linked to their ability to suppress DA neuron activity by 

depolarization block. DA neuron is one of two examples explored in this article.  

Bistability at the transition to depolarization block has been observed in multiple 

neurons (Guttman et al., 1980; Hounsgaard et al., 1984; Lee and Heckman, 1996; Marder 

et al., 1996; Le et al., 2006). However, it was not studied in models (but see Rinzel, 1978) 

and, more importantly, most experimental studies pay no attention to bistability at this 

transition. The terminology itself is not ready to account for two separate transitions – the 

stabilization of the silent state and the cessation of spiking. Which of these transitions 

should be called depolarization block? Which one is observed in experiments? This 

depends on the experimental protocol. What does it say about the neuron when spiking 

and the silent state are both stable in a wide range of the applied current? We address 

these questions and prepare a theoretical basis for experimental studies of bistability. We 

investigate what factors contribute to bistability at the transition to depolarization block. 
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4.1.1 Definitions 

We start by defining the notions of bistability and hysteresis in a dynamical 

system. 

Definition 1. The lack of reversibility as a parameter is varied is called hysteresis 

(Strogatz, 1994). 

Definition 2. A dynamical system having two coexisting attractors (stable solutions) is 

called bistable (Izhikevich, 2007). The solutions attract trajectories starting from different 

initial conditions and determine distinct long-term behavior.  

Bistability is realized in a range of a parameter and is generally lost at bifurcations 

as a stable solution disappears or loses stability. Bistability for some range of the 

parameter is a necessary condition for hysteresis in any dynamical system.  

The definition of depolarization block and the experimental protocols do not take 

into account bistability at a strong applied depolarization. The cessation of oscillations 

involves the loss of stability or the disappearance of the oscillatory solution and transition 

to the stable equilibrium state. This may occur by different scenarios. 

Scenario 1: The oscillatory solution that corresponds to spiking decreases in amplitude to 

zero and merges with the equilibrium that corresponds to the silent state. The silent state 

becomes stable. This transition is a single supercritical Andronov-Hopf bifurcation, and it 

does not involve any hysteresis (see e.g. Fig. 4.3c). 

Scenario 2: The equilibrium state becomes stable by giving birth to an unstable 

oscillatory solution. This is a subcritical Andronov-Hopf bifurcation. Further increase in 

the applied current causes the unstable oscillatory solution to merge with the stable one, 

which corresponds to spiking (see e.g. Fig. 4.3b). Both solutions disappear, and this 
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transition is a saddle-node bifurcation of oscillatory solutions (limit cycles). This 

transition involves bistability because between the Andronov-Hopf and the saddle-node 

bifurcations, the stable equilibrium and the stable oscillatory solution coexist. 

To correctly describe the range of applied current where both solutions are stable 

- bistability range, we introduce the following definitions: 

Definition 3. We call the range of the applied current where the equilibrium state is 

unstable the instability range. 

Definition 4. We call the range of the applied current where a stable oscillatory solution 

exists the oscillatory range. 

When there is no bistability in the model, these parameter ranges coincide. On the 

other hand, when the oscillatory solution disappears in a saddle-node bifurcation of limit 

cycles, the oscillatory range extends to higher applied currents than the instability range. 

The difference between these ranges is exactly the bistability range.  

The main objective of the current study is to reveal mechanisms that cause 

bistability in the spiking subsystem of a neuron comprised of the fast sodium and the 

rectifying potassium currents. Virtually every neuron has these currents and their 

interaction results in very different transitions between tonic spiking and the silent state. 

One example we consider in this article is the giant squid axon modeled by Hodgkin and 

Huxley (1952). We call it the Hodgkin-Huxley (HH) neuron in the rest of the article. In 

the HH neuron, there is no bistability at the transition to depolarization block (Fig. 4.3c). 

The transition from spiking to silence occurs through the supercritical Andronov-Hopf 

bifurcation. The other example we consider is the spiking subsystem of the dopaminergic 

(DA) neuron (Kuznetsov et al., 2006). The DA neuron model displays strong bistability 
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over a large range of applied depolarization. The model includes several currents that 

work in the voltage range below the spike initiation threshold, but bistability remains 

strong even when the model is reduced to spiking currents only. We call this reduced 

model the DA neuron in the rest of the paper for simplicity. After the reduction, the 

model includes exactly the same set of spiking currents and has the same structure and 

dimension as the model in (Hodgkin and Huxley, 1952). Thus, it’s not a different set of 

currents, but rather altered parameters of the same spike-producing currents that 

determine if the model displays bistability or not. In this paper, we identify particular 

parameters of the spiking currents that produce hysteresis and discuss physiological 

distinctions that characterize these currents in different neuron types. 

 
 

4.2 Methods 

 
 

4.2.1 Conductance-Based Model 

Our DA and HH neurons are simply two different sets of parameters for the 

following conductance-based model. The model contains delayed rectifier potassium, fast 

sodium and leak currents and is given by the following system of differential equations: 

)()()()( 34
LLNaNaKKapp EvgEvhvmgEvngI

dt
dvC −−−−−−= ∞  

( ) )()( vnvn
dt
dn

nτ−= ∞  

( ) )()( vhvh
dt
dh

hτ−= ∞  
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where v is the membrane potential in mV, n and h are the activation gating variable for 

the K+ current and the inactivation gating variable for the Na+ current, correspondingly.  

Thus the model is a 3-dimensional dynamical system with variables v, n and h. 

Gating variables have steady state voltage-dependent functions in the form  

( )( )XXh SvvvX )(exp11)( −−+=∞  

(where X can be m, n or h) and voltage-dependent time constant functions given by 

( )τθτττ XXXXX Svv 210 )(exp)( −−+=  

(where X is n or h). The model parameter values for the HH neuron and the DA neuron 

are given in table 4.1. Computer simulations were performed in XPPAUT (Ermentrout, 

2002) using the stiff method and a time step of 0.1 ms. 

The comparison of the steady state functions of the DA neuron and the HH 

neuron shows that the half-activation/inactivation values for the DA neuron are about 20 

mV above the corresponding values for the HH neuron (Figs. 4.1a-b, 4.2a). Also, the DA 

neuron steady state functions are steeper than those of the HH neuron. The timescales of 

all three variables change by an order of magnitude as the system evolves in the phase 

space. Thus, there is no permanent timescale separation among the variables, and we only 

compare the timescales of the corresponding variables in the two neurons. The time 

constants of the K+ and the Na+ currents display steeper voltage dependence in the DA 

neuron and are an order of magnitude greater. This makes the K+ current activation and 

the Na+ current inactivation effectively slower than in the HH neuron (Figs. 4.1c, 4.2b). 

The time constant τv of the membrane potential v depends on what currents are open. Its 

minimum is determined by the conductance of the sodium current 

 

τv min = C gNa
, and has 
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Table 4.1. Parameter values for the DA neuron and the HH neuron. 

Parameter 
Value 

Dimension 
DA neuron HH neuron 

C 1 1 μF/cm2 

gK 4 36 mS/cm2 

gNa 150 120 mS/cm2 
gL 0.05 0.3 mS/cm2 
EK -90 -77 mV 
ENa 55 55 mV 
EL -34.4 -54.4 mV 

Na+ current activation constants 
vmh -18 -40 mV 
Sm 8 9  

Na+ current inactivation constants 
vhh -48 -62 mV 
Sh -4 -7  
τh

0 1 1.2  
τh

1 55 7.4  
θh -53 -67  
Sh

τ 12 20  
DR current activation constants 

vnh -35 -53 mV 
Sn 8 15  
τn

0 5 1.1  
τn

1 51 4.7  
θn -79 -53  
Sn

τ 23 50  
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Figure 4.1. The activation a) and inactivation b) functions of the Na+ current in the DA 
neuron (solid curve) and the HH neuron (dashed curve). c) The time constant function of 
the Na+ current. Note that the functions are shifted by around 20 mV for a better 
comparison of the slopes. The ranges for the HH neuron are at the top and to the right. 
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Figure 4.2. The activation a) and time constant b) functions of the K+ current from the 
DA neuron (solid curve) and the HH neuron (dashed curve). The ranges for the HH 
neuron are at the top and to the right. 
 

 

a similar value in both neurons. Its maximum is approximated by the leak conductance 

 

τv max = C gL
, and has a much greater value in the DA neuron (τv = 20 ms) than in the HH 

neuron (τv = 3.3 ms).  

Below we change half-(in)activation parameter values vnh and vhh simultaneously 

with θn and θh, respectively. These parameters are linked for all channels, and such 

manipulation is the most physiologically relevant. 

 
 

4.3 Results 

The DA neuron demonstrates Class 3 excitability (Izhikevich, 2007): The resting state 

remains stable for any value of the applied current. The oscillatory solution emerges from 

a saddle-node bifurcation of limit cycles, and stays completely isolated from the 

equilibrium state (Fig. 4.3a). When the half-activation of the K+ current, vnh, is increased 
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Figure 4.3. One-parameter bifurcation diagrams for the DA and HH neurons. a) 
Oscillatory solution stays isolated from the equilibrium state in the DA neuron. This is 
Class 3 excitability. Parameters for the DA neuron are from table 4.1. b) The oscillatory 
solution connects to the equilibrium state in an Andronov-Hopf bifurcation in the DA 
neuron. Parameters are from a), except that the K+ current half-activation is increased by 
5 mV (vnh = -31 mV). c) Hysteresis is not present at the upper boundary of the oscillatory 
range in the HH neuron. Parameters for the HH neuron are from table 4.1. d) The 
oscillatory solution connects to the equilibrium state in an Andronov-Hopf bifurcation in 
the HH neuron. Parameters are from c), except that the K+ current half-activation is 
decreased by 5 mV (vnh = -58 mV). Thin curves represent equilibrium states, thick curves 
- limit cycles. Solid (dashed) curves represent stable (unstable) solutions. HB is the 
Andronov-Hopf bifurcation, SNLC is the saddle-node of limit cycles bifurcation. 
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to -31 mV (Fig. 4.3b), the class of excitability of the DA neuron changes to Class 2: The 

oscillatory solution emerges again from a saddle-node bifurcation of limit cycles, but in 

this case the equilibrium state becomes unstable via subcritical Andronov-Hopf 

bifurcations. We use the parameter set from Fig. 4.3b in all two-parameter bifurcation 

diagrams for the DA neuron given below.  

The HH neuron possesses no hysteresis and has Class 2 excitability (Fig. 4.3c). 

However, relatively weak bistability and hysteresis compared to the DA neuron may be 

induced in the HH neuron with a decrease in the half-activation of the K+ current vnh (Fig. 

4.3d). Similarly, we use the parameter set from Fig. 4.3d in all two-parameter bifurcation 

diagrams for the HH neuron that follow. 

 
 

4.3.1 Half-Activation/Inactivation Parameters’ Effect on Hysteresis 

To investigate the effect of the half-(in)activation parameters on hysteresis in both 

neurons we consider the two-parameter bifurcation diagrams where the K+ current half-

activation vnh or the Na+ current half-inactivation vhh are varied together with the applied 

current. 

The two-parameter bifurcation diagram in vnh and Iapp for the DA neuron is shown 

in Fig. 4.4a. This diagram shows the location of the Andronov-Hopf and the saddle-node 

bifurcations marked in Fig. 4.3b for different values of the bifurcation parameters. Every 

horizontal cross section of this diagram at a particular value of vnh defines the instability 

range and the oscillatory range which are bounded by these bifurcations. The ranges 

extend in the parameter vnh and span two-dimensional regions. Likewise, the bistability 

range spans the shaded region in the bifurcation diagram. We characterize the strength of 
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Figure 4.4 
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Figure 4.4. Two-parameter bifurcation diagrams of the DA neuron and the HH neuron in 
vnh/vhh/vmh and Iapp planes. a) Hysteresis is strong in the DA neuron. Parameters are from 
table 4.1. b) Hysteresis is removed and oscillatory region expands in the DA neuron with 
the increase in the half-inactivation of the Na+ current. Parameters are from Fig. 4.3b. c) 
Hysteresis is not reduced with the decrease in the half-activation of the Na+ current. 
Parameters are from Fig. 4.3b. d) Hysteresis is weak in the HH neuron. Parameters are 
from table 4.1. e) Hysteresis is removed in the HH neuron with an increase of vhh. 
Parameters are from Fig. 4.3d. f) Hysteresis is weak in the HH neuron with an increase of 
vmh. Parameters are from Fig. 4.3d. A solid curve represents an Andronov-Hopf 
bifurcation, a dashed curve – a saddle-node bifurcation of limit cycles. Horizontal dotted 
lines in a) and d) represent the values of half-activation of the K+ current taken in b, c) 
and e, f), correspondingly. Horizontal dotted lines in b, c) and e, f) represent the values of 
half-(in)activations from table 4.1 for the DA and HH neurons, correspondingly. 
Hysteresis regions are shaded gray. 
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hysteresis by the relative size of this shaded region compared to the instability region 

(bounded by solid curves in Fig. 4.4).  

At intermediate values of the applied current, the depolarization block boundary 

consists of two transitions: First, the equilibrium state becomes stable in a subcritical 

Andronov-Hopf bifurcation; second, the stable oscillatory solution disappears in a saddle-

node bifurcation of limit cycles (see e.g. Fig. 4.3b). In the range between the two 

bifurcations, the system is bistable and may show oscillations or a steady voltage 

depending on the initial conditions. At higher values of vnh, the two bifurcation curves 

stay at a nearly constant distance (Fig. 4.4a) and hysteresis remains strong. Instability 

range shortens and disappears at vnh = -15 mV and oscillatory range follows at vnh = 14 

mV, at which point all oscillations cease in the DA neuron. 

Fig. 4.4d shows the same bifurcation diagram for the HH neuron. The area 

between the bifurcation curves is small. The model can show a significant bistability in 

response to variations in the applied current, but only with a very precise tuning of vnh to 

values right above -60 mV (see e.g. Fig. 4.3d). The comparison of the areas of the 

bistability regions in the two neurons allows us to say that bistability is much stronger in 

the DA neuron.  

An increase in the Na+ current half-inactivation reduces and then completely 

abolishes hysteresis in both neurons (Fig. 4.4b, e). In Fig. 4.4b we fix the half-activation 

of the K+ current at the level indicated in Fig. 4.4a. Thus, Fig. 4.4a and Fig. 4.4b are 

perpendicular sections of the parameter space that intersect along the indicated levels. 

The influence of the Na+ current half-inactivation is remarkably similar in the two 

neurons. Along with removing bistability, increasing half-inactivation expands the 



87 

 

 

oscillatory range very much, so that it becomes similar in the two neurons (Fig. 4.4b, e). 

This parameter change makes the inactivation effectively weaker, and the Na+ window 

current greater. Therefore, a weaker Na+ current inactivation promotes oscillations at a 

higher applied depolarization. However, a further elevation of the half-inactivation blocks 

oscillations completely. Thus, inactivation is necessary for generating oscillations in both 

neurons. Altogether, there is an optimal value of the half-inactivation of the Na+ current 

that maximizes the oscillatory range and abolishes hysteresis in the model. 

The influence of the Na+ current half-activation vmh on the transition to the 

depolarization block in the DA and HH neurons is shown in Fig. 4.4c, f, respectively. In 

the DA neuron a decrease in the Na+ current half-activation initially expands both 

oscillatory and instability regions and moderately increases hysteresis, but below vmh =-

31 mV, the dependence is reversed. Further decrease in vmh results in simultaneous 

shrinking of oscillatory and instability regions, but their upper boundaries remain almost 

parallel and hysteresis remains strong. In the HH neuron (Fig. 4.4f), the oscillatory range 

also peaks at an intermediate level of vmh around -45 mV. Both low and high values of 

the half-activation abolish oscillations. However, hysteresis exists only in a very narrow 

range of the Na+ current half-activation and is substantially smaller than in the DA 

neuron (Fig. 4.4c).  

 
 
4.3.2 Half-Activation/Inactivation Slope Parameters’ Effect on Hysteresis 

The slopes of the activation and inactivation functions differ substantially in the 

DA and HH neurons (Figs. 4.1a, b and 4.2a). Therefore, we also estimate the effect of the 

slope parameters on hysteresis in both neurons.  
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We change the slope of the Na+ current inactivation function from steep (|Sh| = 4) 

as in the DA neuron to gradual (|Sh| = 7) as in the HH neuron (see Fig. 4.1b) in both 

neurons. The decrease in the slope (larger |Sh|) increased the instability range. However, it 

reduced and then completely abolished bistability in both neurons (Fig. 4.5a, d). This 

occurs because the instability range expands strongly and merges with the oscillatory 

range as Sh increases in both neurons. Interestingly, in the HH neuron instability region 

was not present until the value of the slope parameter was around |Sh| = 6.5, but then 

instability region quickly expanded removing hysteresis similarly to Fig. 4.4d. As for the 

variations in the half-inactivation above, the influence of Sh in the two neurons is 

remarkably similar. First, it removes the difference in the length of the instability region 

between the neurons. Second, its increase abolishes hysteresis. Therefore, the slope of the 

Na+ current inactivation controls hysteresis and the length of the oscillatory and 

instability ranges in both neurons. 

The Na+ current activation function is steeper in the DA than in the HH neuron 

(Fig. 4.1a). A decrease in the slope of the function (Sm → 9, Fig. 4.5b) leads to an almost 

linear expansion of the instability and oscillatory regions in the DA neuron. Hysteresis 

remains unchanged because the boundaries are parallel. In the HH neuron, both the 

instability and oscillatory regions shrink and shift into higher values of the applied 

current with a steeper activation of the Na+ current (Sm → 8). While hysteresis increases 

at the low applied currents (hyperpolarization block), at the depolarization block, 

hysteresis remains unchanged because upper boundaries of both the oscillatory and 

instability ranges expand almost equally. Altogether, changes in Sm only slightly shift the 

upper boundaries, and both the oscillatory and the instability ranges remain of different 
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Figure 4.5. Two-parameter bifurcation diagrams of the DA and HH neuron for the change 
in slope of (in)activation functions. a) A gradual voltage dependence of the Na+ current 
inactivation function removes hysteresis in the DA neuron. b) Steeper voltage 
dependence of the activation of the Na+ current has no effect on hysteresis in the DA 
neuron. c) More gradual voltage dependence of the K+ current has minimal effect on 
hysteresis in the DA neuron. Parameters are from Fig. 4.3b. d) Steeper voltage 
dependence of the Na+ current leads to stronger hysteresis in the HH neuron. e) Gradual 
voltage dependence of the activation of the Na+ current has no effect on hysteresis at the 
upper boundary of oscillatory region in the HH neuron. f) Gradual voltage dependence of 
the K+ current increases hysteresis in the DA neuron. A solid curve represents an 
Andronov-Hopf bifurcation, a dashed curve – a saddle-node bifurcation of limit cycles. 
Parameters are from Fig. 4.3d. Horizontal dotted lines in (a) and (d) mark the value of 
slope parameter from table 4.1 for the HH neuron. Hysteresis regions are shaded gray. 
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orders of magnitude in the HH and DA neurons. Moreover, the boundaries shift in the 

opposite directions in the two neurons, which only emphasizes the difference between 

their parameter sets. 

To test how steepness of the activation function for the K+ current affects 

bistability we change the slope of the K+ current activation in both neurons from steep (Sn 

= 8) as in the DA neuron to a more gradual (Sn = 15) as in the HH neuron (Fig. 4.2a). In 

the DA neuron (Fig. 4.5c), the upper boundaries of oscillatory and instability regions 

remain almost parallel until the instability region disappears at around Sn = 12. Even 

above that point, the slope parameter only weakly affects the boundary of the oscillatory 

region, and hysteresis remains almost unchanged. In contrast, in the HH neuron (Fig. 

4.5f) the oscillations are not present for smaller values of Sn, i.e. for the steeper voltage 

dependence of the K+ current. The oscillatory range emerges above Sn = 10 and quickly 

expands, whereas the equilibrium remains stable giving rise to strong hysteresis. The 

instability region appears above Sn = 13, rapidly expands and limits hysteresis to short 

ranges at both boundaries. Therefore, the decrease in the slope of the K+ current 

activation function (Sn → 15) has an opposite effect on the instability range in the two 

neurons. Extending the distinction, in the HH, but not in DA neuron, the parameter 

strongly affects the oscillatory and hysteresis regions. 

 
 

4.3.3 Gating Variables’ Kinetics Effect on Hysteresis 

None of the variables in the model is uniformly slow or uniformly fast. The 

timescale of the voltage is minimal when the Na+ current is open, and elevates to the 

maximum when the leak current works alone. Likewise, the timescales of the gating 
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variables depend on the voltage (Figs. 4.1c and 4.2b). Therefore, there is no permanent 

separation onto fast and slow variables in the model. On the other hand, comparing 

timescales of the corresponding variables in the two neurons is more straightforward and 

has a clear physiological meaning. By changing kinetics of the gating variables below, 

we study how the difference in the timescales affects the oscillatory and instability 

ranges.  

The inactivation variable is much faster in the HH neuron compared to the DA 

neuron (Fig. 4.1c). Therefore, we now study how hysteresis is affected by accelerating 

the Na+ current inactivation uniformly at all voltages (fh > 1). Fig. 4.6a shows that 

accelerating the inactivation moderately reduces the distance between the Andronov-

Hopf and the saddle-node of limit cycles bifurcations. Instability range shortens slower 

than the oscillatory range. After the instability range disappears, the oscillatory range 

continues to shrink until all oscillations cease in the DA neuron. In the HH neuron, the 

transition should be made in the opposite direction because inactivation is initially much 

faster compared to the DA neuron; therefore we reduce its rate of change (fh < 1). In 

contrast to the DA neuron, the instability range does not depend on the inactivation 

timescale (Fig. 4.6d). The oscillatory range shortens with slower Na+ current inactivation 

because the hysteresis ranges at both boundaries of the instability range disappear (Fig. 

4.6d).  

Similar results hold when the K+ current activation variable n is accelerated (fn > 

1) in both the DA neuron and the HH neuron (Fig. 4.6b, e). In the DA neuron, instability 

range shortens and disappears at around four times faster activation (fn = 4) of the K+ 

current. The oscillatory range, first, expands with a faster K+ activation, but then starts to 
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94 

 

 

 

 

 

 

 

 

 

Figure 4.6. Changing kinetics of gating variables in the DA and HH neurons. a, b) 
Bistability region shortens with accelerating kinetics of the gating variables h (fh > 1) and 
n (fn > 1) in the DA neuron. fh = 1 and fn = 1 correspond to parameter set from Fig. 4.3b. 
c) Simultaneous acceleration of both n and h variables (fn,h > 1) decreases the size of 
bistability range. fn,h = 1 corresponds to parameter set from Fig. 4.3b. d, e) Hysteresis is 
reduced (d) or eliminated (e) in the HH neuron with slowing the individual current 
kinetics (fh < 1 or fn < 1). fh = 1 and fn = 1 correspond to parameter set from Fig. 4.3d. f) 
Hysteresis is increased with simultaneous slowing of gating variables n and h (fn,h < 1). 
fn,h = 1 corresponds to parameter set from Fig. 4.3d. A solid curve represents an 
Andronov-Hopf bifurcation, a dashed curve – a saddle-node bifurcation of limit cycles. 
Horizontal dotted lines (where shown) give the values of fh and fn for which the 
maximum value of the corresponding time constant function for the DA (HH) neuron 
matches the maximum value of the time constant for the HH (DA) neuron. Hysteresis 
regions are shaded gray. 
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decrease in size. This decrease is more gradual than in Fig. 4.6a for the Na+ current 

inactivation, and bistability remains in the neuron when the Na+ current becomes as fast 

as in the HH neuron (fn = 10). In the HH neuron, the instability range weakly depends on 

the timescale of the K+ current activation variable n. When the variable becomes slower 

(fn < 1), the oscillatory range shortens, and hysteresis disappears (fn = 0.1). 

Finally, we change both the Na+ current inactivation and the K+ current activation 

timescales simultaneously in both neurons. The diagram for the DA neuron (Fig. 4.6c) is 

very similar to Fig. 4.6a. This suggests that the changes in the dynamics are not due to the 

introduced mismatch between the timescales of the two gating variables, but mostly due 

to the mismatch between the timescales of the voltage and the gating variables. 

Furthermore, as follows from the similarity of Fig 4.6a, c, the accelerated Na+ current 

inactivation contributes the most to the loss of oscillations. When K+ current activation is 

also accelerated, the gating variables remain at the same timescale, but this only 

moderately expands the oscillatory region. 

In the HH neuron, when we make the kinetics of both variables slower (fn/h → 

0.1), hysteresis at the upper boundary of the oscillatory range increases (Fig. 4.6f). This is 

opposite to the results for the differential changes in these two parameters above (Fig. 

4.6d, e). This also contrasts the results for the DA neuron. Hence, the reduction in 

hysteresis was due to a mismatch between the timescales of the gating variables. By 

contrast, concurrent slowing of the gating variables, which creates a mismatch between 

the timescale of voltage and that of the two gating variables, expand the hysteresis range. 
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4.3.4 Contribution of Other Parameters to Hysteresis 

The susceptibility of the DA neuron to depolarization block was attributed to the 

weakness of the delayed rectifier current long ago. The common sense explanation is that 

the voltage stays high near the state of depolarization block because the potassium 

current cannot lower it enough. The increase in the maximal conductance of the K+ 

current gK in the DA neuron leads to the monotone increase of the oscillatory range and 

the decrease and disappearance of the instability range (Fig. 4.7a). The growth of the 

oscillatory range is consistent with the logic outlined above, but stabilization of the 

equilibrium state that entail strong hysteresis is unexpected. In the HH neuron, the 

increase in gK also leads, at first, to the expansion of the instability range without 

hysteresis. Then the instability range shortens abruptly, but the oscillatory range persists, 

and a significant hysteresis region emerges (Fig. 4.7d). Hence, the maximal conductance 

of the K+ current gK efficiently controls the length of the oscillatory range in both 

neurons. However, the strength of hysteresis is controlled by other parameters because it 

is drastically different in the two diagrams. 

The reversal potential of the K+ current is defined by the extracellular potassium 

concentration, can be controlled in experiments, and has been found to affect hysteresis 

in pre-Botzinger complex respiratory neurons (Y. Molkov, private communications). An 

increase in EK monotonically reduces oscillatory and instability ranges in both the DA 

and the HH neurons (Fig. 4.7b, e). Furthermore, the upper boundaries of both oscillatory 

and instability regions in the HH neuron are very close to straight parallel lines (Fig. 

4.7e). This suggests a passive contribution of the K+ current at the transition to 
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Figure 4.7 
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Figure 4.7. Two-parameter bifurcation diagrams for the change in maximal conductances 
and equilibrium potential. a) Increase in gK expands the oscillatory region, shortens the 
instability region and increases hysteresis in the DA neuron. b) Increase in K+ current 
reversal potential shortens oscillatory region much faster than the instability region, 
reducing hysteresis in the DA neuron. c) Increase in the maximum conductance of the 
leak current shortens both instability and oscillatory regions and finally eliminates 
oscillations in the neuron in the DA neuron. d) Hysteresis exists in a narrow range of 
parameter gK in the HH neuron. e) Hysteresis at the upper boundary of oscillatory region 
is not affected by the decrease in EK in the HH neuron. f) Hysteresis is slightly reduced 
with the decrease in the maximum leak conductance in the HH neuron. a, b, c) Parameter 
values from Fig. 4.3b. d, e, f) Parameter values from Fig. 4.3d. A solid curve represents 
an Andronov-Hopf bifurcation, a dashed curve – a saddle-node bifurcation of limit 
cycles. Horizontal dotted lines mark parameter values from table 4.1 for the DA and the 
HH neurons, correspondingly. The hysteresis regions are shaded gray. 
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depolarization block and a linear compensation by Iapp. In the DA neuron, this 

dependence is more nonlinear (Fig. 4.7b), and the reduction in hysteresis is much 

stronger. 

The maximum conductance of the leak current is very different in the two neurons 

(see table 4.1), and determines the slowest timescale of voltage changes (see discussion 

in the Model subsection). The increase in gL in the DA neuron shortens both instability 

and oscillatory ranges (Fig. 4.7c). Instability range disappears first and then the 

oscillatory range follows at gL = 0.4. This influence of increasing gL is very similar to the 

influence of accelerating both gating variables (compare Figs. 4.7c and 4.6c). This 

differentiates the oscillatory mechanism in the DA neuron from a relaxation oscillator. In 

a relaxation oscillator, oscillations disappear if the timescale separation is decreased or 

reversed. Therefore, accelerating a slow variable would abolish oscillations, whereas 

accelerating a fast variable would only promote them. The fact that accelerating any 

variable abolished oscillations in the DA neuron means that the oscillatory mechanism 

does not tolerate a significant mismatch in the timescales, distinguishing it from the 

relaxation oscillator. 

In the HH neuron, increase in the maximum conductance of the leak current 

shortens both the oscillatory and instability ranges (Fig. 4.7f). This also tells against the 

relaxation oscillator mechanism and the role of the voltage as a fast variable in the HH 

neuron. The elevation in gL significantly increases the hysteresis range. Increasing gL 

makes the voltage, or more precisely its slowest timescale, faster. This introduces 

timescale separation similar to the one achieved by slowing the two gating variables (Fig. 

4.6f). In both cases (Figs. 4.6f and 4.7f) this leads to the increase in hysteresis at the 
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depolarization block. However, slowing the gating variables hardly affects the instability 

region and only reduces hysteresis at the hyperpolarization block. Therefore, the slowest 

voltage changes determined by the leak conductance promote oscillations and the 

instability of the equilibrium state in both neurons.  

 
 

4.3.5 Normalized Contributions of Parameters to Hysteresis 

To compare the effect of different parameters on hysteresis we compute changes 

in the hysteresis range with changes in each parameter. The parameters were increased by 

10%. The changes in the length of the hysteresis range were normalized by its initial 

length to obtain the relative contributions. The results are shown in table 4.2. For 

example, the increase in the maximal conductance of the K+ current in the HH neuron 

from 36 mS/cm2 to 39.6 mS/cm2 (10% increase) leads to the increase in the length of 

hysteresis range from 30.5 to 67.8 (122% increase) (see Fig. 4.7d). The increase in the 

(in)activation parameters vhh and vnh in the HH neuron leads to the complete removal of 

hysteresis (Fig. 4.4c, d) and is reflected by the 100% decrease in hysteresis in table 4.2. 

Overall, normalized change in hysteresis in the HH neuron is an order of magnitude 

higher than in the DA neuron for most of the parameters. This provides another 

indication that hysteresis in the HH neuron exists in the narrow parameter ranges and is 

not as robust as in the DA neuron since small changes in parameter values lead to large 

changes in hysteresis.  
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Table 4.2. Normalized parameter contribution to hysteresis in the DA and HH neurons. 

Model\parameters gK gNa gL vhh vnh Sh Sm Sn 

HH neuron, % 122 -56 3 -100 -100 426 -55 -21 

DA neuron, % 4 6 0 5 0 1.5 -0.5 0 

 

 

4.3.6 Summary of the Results 

The parameters in the two model neurons can be separated into three groups. The 

first group of parameters consists of the half-inactivation of the Na+ current vhh and the 

slope of the inactivation function Sh. The two-parameter diagrams in vhh and Sh are very 

similar for the HH and the DA neurons in spite of the differences in other parameters 

(Figs. 4.4b, e and 4.5a, d). First, the diagrams show the strongest expansion of the 

oscillatory and instability ranges. By changing these two parameters, we can remove the 

order of magnitude difference in the length of these ranges in the HH vs. DA neuron. 

Second, they control hysteresis in a very similar way in the two neurons. Therefore, these 

parameters contribute most to the difference between the neurons in both hysteresis and 

the length of the instability/oscillatory ranges.  

The second group of parameters includes the half-activation of the K+ and Na+ 

currents vnh and vmh, reversal potential of the K+ current EK, leak conductance gL and the 

slope of the activation function of the Na+ current Sm. Variations in these parameters 

produce the diagrams that are quite distinct in the HH and DA neurons, i.e. cannot make 

the dynamics of the two neurons similar. This suggests that these parameters do not 
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contribute to the difference between the DA and the HH neurons. Nevertheless, they 

influence hysteresis and the length of the oscillatory and instability ranges similarly in 

both neurons.  

Finally, the third group of parameters consists of the slope of the K+ current 

activation function Sn and parameters that influence the kinetics of the gating variables, 

i.e. fn, fh and fn,h. Variations in these parameters not only produce different diagrams, but 

also influence the neurons in the opposite ways. 

 
 

4.4 Discussion 

In this paper, we have analyzed bistability that distinguishes two types of neurons. 

We identified their spike-producing currents as responsible for bistability. The neurons 

were reduced to the same model and differed by the values of the parameters. We 

examined transitions between the two parameter sets and found that bistability is present 

in a wide region of the multidimensional parameter space. The values of the parameters 

in the bistability regions are physiologically plausible because transitions span the 

intervals between values corresponding to two types of neurons. This is consistent with 

bistability between tonic spiking and the silent state commonly observed in neurons. Our 

modeling suggests that this bistability arises from the interaction of the spiking currents. 

Bistability is useful in qualitative classification of neurons based on the firing 

patterns. Electrophysiological and pharmacological characterization of neurons separates 

them into numerous types. The neurons differ by their neurotransmitters, the composition 

of currents, typical firing patterns, responses to pharmacological manipulations, etc. 

Managing the diversity of neurons is an enormously complex task. Thus, of critical 
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importance are criteria that can identify broad classes of neurons sharing some functional 

similarities. A great example is the neuron characterization by a phase response curve 

(Hansel et al., 1995) or classification of neurons into resonators and integrators; bistable 

and monostable dynamical systems (Izhikevich, 2007). These characteristics separate 

broad groups of neurons, and are very useful for predicting how neurons behave when 

they interact in a network. Another example is the separation of neurons into three classes 

of excitability (Hodgkin, 1948). The class of neuron excitability is determined in one of 

the simplest experiments – a negative current is applied into the soma through an 

electrode and then gradually removed. In response, the neuron first enters the silent state 

of hyperpolarization and then resumes firing as the hyperpolarizing applied current is 

removed. The transition from quiescence to firing determines the excitability class.  

Bistability between tonic spiking and silence has been used in explaining the 

mechanisms of bursting (Izhikevich, 2007). In this case, an additional variable plays the 

role of a parameter that provides hysteresis and switches the system from spiking to 

silence and back. Only artificially treating this variable as a parameter in the model 

allows for observing bistability in simulations. We consider a true parameter, applied 

current, and bistability that occurs in experiments as the parameter is manipulated. Our 

model did not take into account the subthreshold currents. Their inclusion may suppress 

bistability in some cases. Our modeling of the DA neuron (Kuznetsov et al., 2006) shows 

that a model that includes subthreshold currents together with the spike-producing ones 

retains the same bistability. How bistability is affected by subthreshold currents in other 

neurons is a subject of future studies focused on particular neurons. 
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We have found that bistability is much stronger in the DA neuron than in the HH 

neuron. The major factors contributing to this difference are a low half-inactivation and a 

steep voltage dependence of the inactivation of the Na+ current. Only the manipulations 

of these two parameters were able to abolish the order of magnitude difference in the 

length of the oscillatory region in the two neurons. They also control hysteresis in a very 

similar way in spite of the difference in other parameters. The rest of the parameters 

produce very different diagrams in the two neurons. Some of them have the opposite 

influence on the dynamics of the two neurons.  

In order to interpret the result for the future experiments, we connect it to 

physiological characteristics. The window Na+ current is its small steady state component 

that remains after a strong transient component as the current inactivates. Lowering half-

inactivation parameter of the current decreases its window component. Increasing the 

slope of the inactivation voltage dependence reduces the window current as well. Our 

way of changing the slope excludes any shift in the half-inactivation. Thus, two 

manipulations that decrease the window current promote bistability. Altogether, our 

results suggest a connection between the characterization of the Na+ window current in a 

neuron and strong bistability in response to changes in the applied current. 

Bistability endows neurons with richer forms of information processing. A 

bistable cell encodes a brief signal by a long-lasting change in its firing. Hence, the 

bistability between resting and tonic spiking states studied in this article has been 

hypothesized to be involved in short-term memory (discussed in Marder et al., 1996). 

This type of bistability was also observed in different motor neurons (Hounsgaard et al., 
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1984; Le et al., 2006; Lee and Heckman, 1996). Bistable motor neurons have been 

hypothesized to support prolonged low force tasks, like posture.  

Hysteresis at the upper boundary of oscillatory range may be essential for 

pacemaker-type neurons as it may improve robustness of oscillations and lead to a more 

efficient control of the dynamics (Guttman et al., 1980). Efficiency and robustness follow 

from the inability of small perturbations (e.g. noise) in the control parameter to switch the 

neuronal activity from one mode to the other as soon as the bifurcation parameter 

(applied current) is perturbed. For this reason, many physical systems like heating 

thermostats utilize hysteresis to improve efficiency by reducing the frequency of on-off 

switching. 

Bistability studied in this article is generally independent of the excitability class. 

In particular, Class 3 excitability is always accompanied by bistability simply because the 

equilibrium state remains stable for the whole parameter range where the oscillatory 

solutions exist. However, in other cases where the equilibrium loses stability, the 

excitability class is unrelated to the presence of bistability. In most cases we examined, 

strong bistability occurs at the upper boundary of the instability (oscillatory) range, i.e., at 

the depolarization block. The excitability class refers to the transition at the 

hyperpolarization block. These two transitions are independent. The saddle-node on 

invariant circle bifurcation, which is responsible for Class 1 excitability, never occurs at 

the upper boundary of the oscillatory range. The half-activation of the K+ current was the 

most effective in spanning all three excitability classes, but did not abolish bistability 

completely. By contrast, changing the half-inactivation of the Na+ current or kinetics of 
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the gating variables switches the excitability only between Class 2 and Class 3. 

Therefore, bistability can be used in conjunction with the excitability class in 

characterizing the neurons. 

Our results show that the silent state of depolarization block may be stable 

together with the tonic spiking state. In DA neurons, progressive depolarization block 

was proposed as a mechanism for the maximal therapeutic action of antipsychotic drugs 

(Grace et al., 1997). Chronic administration of drugs used in treatment of schizophrenia 

results in silencing of the DA neurons due to depolarization block (Boye and Rompre, 

2000; Valenti et al., 2011). Taken together with our results, the DA neurons may stay in 

the silent state after lowering the dose or complete cessation of the drug administration 

because of the possible bistability between the silent and active states.  
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