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ABSTRACT

Liechty, Karl Edmund, Ph.D., Purdue University, August 2010. Exact Solutions to
the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymp-
totics of Discrete Orthogonal Polynomials on an Infinite Lattice. Major Professor:
Pavel M. Bleher.

In this dissertation the partition function, Zn, for the six-vertex model with do-

main wall boundary conditions is solved in the thermodynamic limit in various re-

gions of the phase diagram. In the ferroelectric phase region, we show that Zn =

CGnF n2
(1 +O(e−n

1−ε
)) for any ε > 0, and we give explicit formulae for the numbers

C,G, and F . On the critical line separating the ferroelectric and disordered phase re-

gions, we show that Zn = Cn1/4G
√
nF n2

(1+O(n−1/2)), and we give explicit formulae

for the numbersG and F . In this phase region, the value of the constant C is unknown.

In the antiferroelectric phase region, we show that Zn = Cϑ4(nω)F
n2
(1 + O(n−1)),

where ϑ4 is Jacobi’s theta function, and explicit formulae are given for the numbers

ω and F . The value of the constant C is unknown in this phase region.

In each case, the proof is based on reformulating Zn as the eigenvalue partition

function for a random matrix ensemble (as observed by Paul Zinn-Justin), and evalua-

tion of large n asymptotics for a corresponding system of orthogonal polynomials. To

deal with this problem in the antiferroelectric phase region, we consequently develop

an asymptotic analysis, based on a Riemann-Hilbert approach, for orthogonal polyno-

mials on an infinite regular lattice with respect to varying exponential weights. The

general method and results of this analysis are given in Chapter 5 of this dissertation.



1

1. INTRODUCTION TO THE SIX-VERTEX MODEL

1.1 Definition of the model

The first four chapters of this dissertation compile the results of the papers [7], [8],

and [9], in which the partition function for the six-vertex model with domain wall

boundary conditions is solved in the thermodynamic limit in various regions of the

phase diagram. Let us therefore begin with a review of the six-vertex model.

The six-vertex model, or the model of two-dimensional ice, is a statistical me-

chanical model stated on a square n × n lattice with arrows on edges. The arrows

obey the rule that at every vertex there are two arrows pointing in and two arrows

pointing out. Such a rule is sometimes called the ice-rule. There are only six possible

configurations of arrows at each vertex, hence the name of the model, see Figure 1.1,

and the states of the system are the possible configurations of arrows which obey this

rule at every vertex.

(1) (2) (3)

(4) (5) (6)

Fig. 1.1. The six arrow configurations allowed at a vertex
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The six-vertex model is the prototypical “ice-type” model, meaning that the states

of the model can be identified with two-dimensional H2O crystals. This is achieved

by placing an oxygen atom at each vertex of the graph and a hydrogen atom at

each edge, and specifying that there is a bond between a hydrogen and an adjacent

oxygen if the arrow on that edge points towards the oxygen atom. Other “ice-type”

ensembles include the ensemble of alternating sign matrices (ASM’s), the three color

model, and the eight vertex solid-on-solid model.

The Gibbs measure of this ensemble, which gives the probability of a particular

state σ, is defined in the usual way. For each vertex type in Figure 1.1, we assign

a weight wi > 0, i = 1, . . . , 6, and define the partition function as a sum over all

possible arrow configurations of the product of the vertex weights,

Zn =
∑

arrow configurations σ

w(σ), w(σ) =
∏

x∈Vn
wt(x;σ) =

6
∏

i=1

w
Ni(σ)
i ,

where Vn is the n× n set of vertices, t(x; σ) ∈ {1, . . . , 6} is the type of configuration

σ at vertex x according to Figure 1.1, and Ni(σ) is the number of vertices of type i

in the configuration σ. The sum is taken over all possible configurations obeying the

given boundary condition. The Gibbs measure is then defined as

µn(σ) =
w(σ)

Zn
.

The six-vertex model was first introduced by J.C. Slater in [43], and solved ex-

actly in the thermodynamic limit by Lieb, [34]–[37], and Sutherland [45], for periodic

boundary conditions. As we shall see, the six-vertex model differs from other standard

models of statistical mechanics, such as the Ising model, in that it is very sensitive

to boundary conditions. The model has been studied with free boundary conditions,

anti-periodic boundary conditions, boundary loop conditions, etc. In this disserta-

tion, we consider domain wall boundary conditions (DWBC), in which the arrows on

the upper and lower boundaries point in the square, and the ones on the left and right

boundaries point out. One possible configuration with DWBC on the 4 × 4 lattice
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Fig. 1.2. An example of 4× 4 configuration with DWBC.

is shown on Figure 1.2. Our main goal is to obtain the large n asymptotics of the

partition function Zn for the six-vertex model with DWBC.

One consequence of domain wall boundary conditions is that they imply some

conservation laws in the system which allow us to reduce the number of parameters.

1.2 Height function and reduction of parameters

The six-vertex model has six parameters: the weights wi. By using some conser-

vation laws it can be reduced to only two parameters. It is convenient to derive the

conservation laws from the height function. Consider the dual lattice,

V ′ = {x = (i+
1

2
, j +

1

2
), 0 ≤ i, j ≤ n}.

Given a configuration σ on E, an integer-valued function h = hσ on V ′ is called a

height function of σ if for any two neighboring points x, y ∈ V ′, |x− y| = 1, we have

that

h(y)− h(x) = (−1)s,

where s = 0 if the arrow σe on the edge e ∈ E, crossing the segment [x, y], is oriented

in such a way that it points from left to right with respect to the vector ~xy , and
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s = 1 if σe is oriented from right to left with respect to ~xy. The ice-rule ensures that

the height function h = hσ exists for any configuration σ. It is unique up to addition

of a constant. An example of a configuration and its corresponding height function

is given in Figure 1.3.

0

2
3
4

1 2 3 4 5
4
3

1

2 3 2 3
1 2 3 2

3 2 1 2

1

012345

12 2 1 2

Fig. 1.3. A 5× 5 configuration with a height function.

To derive conservation laws, consider the height function h = hσ on a diagonal

sequence of points defined by the formula,

xj = x0 + (j, j), 0 ≤ j ≤ k,

where both x0 and xk lie on the boundary B′ of the dual lattice V ′,

B′ =

{

x =

(

i+
1

2
,
1

2

)

, 0 ≤ i ≤ n

}

∪
{

x =

(

m+
1

2
, j +

1

2

)

, 0 ≤ j ≤ n

}

∪
{

x =

(

i+
1

2
, n +

1

2

)

, 0 ≤ i ≤ n

}

∪
{

x =

(

1

2
, j +

1

2

)

, 0 ≤ j ≤ n

}

.

Then it follows from the definition of the height function that

h(xj)− h(xj−1) =























2 if t(x; σ) = 3

− 2 if t(x; σ) = 4

0 if t(x; σ) = 1, 2, 5, 6,

where

x =
xj + xj−1

2
.
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Hence

0 = h(xk)− h(x0) = 2N3(σ;L)− 2N4(σ;L),

where Ni(σ;L) is the number of vertex states of type i in σ on the line

L = {x = x0 + (t, t), t ∈ R}.

The line L is parallel to the diagonal y = x. By summing up over all possible lines

L, we obtain that

N3(σ)−N4(σ) = 0,

where Ni(σ) is the total number of vertex states of the type i in the configuration σ.

Similarly, by considering lines L parallel to the diagonal y = −x, we obtain that

N1(σ)−N2(σ) = 0.

Also,

N5(σ)−N6(σ) = n,

which follows if we consider lines L parallel to the x-axis.

The conservation laws allow us to reduce the weights w1, . . . , w6 to 3 parameters.

Namely, we have that

wN1
1 wN2

2 wN3
3 wN4

4 wN5
5 wN6

6 = C(n)aN1aN2bN3bN4cN5cN6 ,

where

a =
√
w1w2, b =

√
w3w4, c =

√
w5w6,

and the constant

C(n) =

(

w5

w6

)
n
2

.

This implies the relation between the partition functions,

Zn(w1, w2, w3, w4, w5, w6) = C(n)Zn(a, a, b, b, c, c),

and between the Gibbs measures,

µn(σ;w1, w2, w3, w4, w5, w6) = µn(σ; a, a, b, b, c, c).
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Therefore, for fixed boundary conditions like DWBC, the general weights are reduced

to the case when

w1 = w2 = a, w3 = w4 = b, w5 = w6 = c.

Furthermore,

Zn(a, a, b, b, c, c) = cn
2

Zn

(

a

c
,
a

c
,
b

c
,
b

c
, 1, 1

)

(1.1)

and

µn(σ; a, a, b, b, c, c) = µn

(

σ;
a

c
,
a

c
,
b

c
,
b

c
, 1, 1

)

,

so that a general weight reduces to the two parameters, a
c
, b
c
.

We would like to remark that the conservation laws are obtained in the paper [23]

of Ferrari and Spohn as a corollary of a path representation of the six-vertex model.

1.3 Exact solution of the six-vertex model for a finite n

Introduce the parameter

∆ =
a2 + b2 − c2

2ab
.

There are three physical phases in the six-vertex model: the ferroelectric phase,

∆ > 1; the antiferroelectric phase, ∆ < −1; and the disordered phase, −1 < ∆ < 1.

Notice that |a− b| > c in the ferroelectric phase region and c > a+ b in the antiferro-

electric phase region, while in the disordered phase region a, b, c satisfy the triangle

inequalities. In the three phases we parametrize the weights in the standard way: for

the ferroelectric phase,

a = sinh(t− γ), b = sinh(t+ γ), c = sinh(2|γ|), 0 < |γ| < t; (1.2)

for the antiferroelectric phase,

a = sinh(γ − t), b = sinh(γ + t), c = sinh(2γ), |t| < γ; (1.3)

and for the disordered phase

a = sin(γ − t), b = sin(γ + t), c = sin(2γ), |t| < γ. (1.4)

The phase diagram of the six-vertex model is shown on Figure 1.4.
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0 1

D

F

F

AF

a/c

b/c

1 A(1)

A(2)

A(3)

Fig. 1.4. The phase diagram of the model, where F, AF and D
mark ferroelectric, antiferroelectric, and disordered phases, respec-
tively. The circular arc corresponds to the so-called “free fermion”
line, when ∆ = 0, and the three dots correspond to 1-, 2-, and 3-
enumeration of alternating sign matrices.

The phase diagram and the Bethe Ansatz solution of the six-vertex model for periodic

and anti-periodic boundary conditions are thoroughly discussed in the works of Lieb

[34]- [37], Lieb, Wu [38], Sutherland [45], Baxter [2], Batchelor, Baxter, O’Rourke,

Yung [3]. See also the work of Wu, Lin [49], in which the Pfaffian solution for the

six-vertex model with periodic boundary conditions is obtained on the free fermion

line, ∆ = 0.

In the paper [28], Korepin derived an important recursion relation for the partition

function of the six-vertex model with DWBC. This led to a beautiful determinantal

formula of Izergin [24] for the partition function, commonly called the Izergin-Korepin

formula. A detailed proof of this formula and its generalizations are given in the paper

of Izergin, Coker, and Korepin [25]. When the weights are parameterized according

to (1.2)-(1.4), the Izergin-Korepin formula is

Zn =
(ab)n

2

(

∏n−1
j=0 j!

)2 τn , (1.5)
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where τn is the Hankel determinant,

τn = det

(

dj+k−2φ

dtj+k−2

)

1≤j,k≤n
, (1.6)

and

φ(t) =
c

ab
=



































sinh(2|γ|)
sinh(t− γ) sinh(t+ γ)

in the ferroelectric phase

sinh(2γ)

sinh(γ − t) sinh(γ + t)
in the antiferroelectric phase

sin(2γ)

sin(γ − t) sin(γ + t)
in the disordered phase .

(1.7)

An elegant derivation of the Izergin-Korepin formula from the Yang-Baxter equation

is given in the papers of Korepin and Zinn-Justin [31] and of Kuperberg [33] (see also

the book of Bressoud [12]).

One of the applications of the Izergin-Korepin formula is that it implies that the

function τn solves the Toda equation

τnτ
′′
n − τ ′n

2
= τn+1τn−1, n ≥ 1, (′) =

∂

∂t
, (1.8)

cf. the work of Sogo [44]. The Toda equation was used by Korepin and Zinn-Justin [31]

to derive the free energy of the six-vertex model with DWBC, assuming some Ansatz

on the behavior of subdominant terms in the large n asymptotics of the free energy.

Another application of the Izergin-Korepin formula is that τn can be expressed in

terms of the eigenvalue partition function of a random matrix model and also in terms

of related orthogonal polynomials, see the paper [51] of Zinn-Justin. This relation is

based on the following lemma, which is well known in the random matrix community.

Lemma 1.3.1 Let τn be the Hankel determinant τn = det
(

dj+k−2φ
dtj+k−2

)

1≤j,k≤n
, and sup-

pose the function φ(t) is a Laplace-type transform of some measure µ on the real line,

so that, for some constant c ∈ R \ {0},

φ(t) =

∫

R

e−ctxdµ(x).
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Suppose also that there exists a system of monic orthogonal polynomials {Pk(x)}∞k=0

on R with respect to the measure e−ctxµ(x), so that

∫

R

Pj(x)Pk(x)e
−ctxdµ(x) = hkδjk

for some normalizing coefficients {hk}∞k=0. Then

τn = cn
2−n

n−1
∏

k=0

hk.

A proof of this lemma is given in Appendix A. It follows that evaluation of the

partition function Zn in the thermodynamic limit reduces to finding a large n asymp-

totic formula for the normalizing coefficients of a system of orthogonal polynomials.

This can generally be done via a Riemann-Hilbert approach. This is the method

employed in the paper [4] of Bleher and Fokin, in which they prove the conjecture of

Paul Zinn-Justin [51] that the large n asymptotics of Zn in the disordered phase has

the following form: For some ε > 0,

Zn = CnκF n2

[1 +O(n−ε)].

Furthermore, they find the exact value of the exponent κ,

κ =
1

12
− 2γ2

3π(π − 2γ)
.

The value of F in the disordered phase is given by the formula,

F =
πab

2γ cos πt
2γ

, a = sin(γ − t), b = sin(γ + t) ,

in parametrization (1.4).

In the present study, we obtain the large n asymptotics of Zn in the remaining

two phase regions, as well as on the critical line which separates the ferroelectric and

disordered phases.
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2. FERROELECTRIC PHASE

2.1 Introduction and formulation of the main results

Here we discuss the ferroelectric phase, and we will use parametrization (1.2) for

the weights. Without loss of generality we may assume that

γ > 0,

which corresponds to the region

b > a+ c.

The parameter ∆ in the ferroelectric phase reduces to

∆ = cosh(2γ).

In this phase, the function φ(t) in the Hankel determinant τn is in fact the Laplace

transform of a discrete measure lying on the positive integers. We have that

φ(t) =
sinh(2γ)

sinh(t + γ) sinh(t− γ)
= 2

[

e−2t+2γ − e−2t−2γ

(1− e−2t+2γ)(1− e−2t−2γ)

]

= 2

[

1

1− e−2t+2γ
− 1

1− e−2t−2γ

]

= 4

∞
∑

l=1

e−2tl sinh(2γl).

(2.1)

Introduce now discrete monic polynomials Pj(x) = xj + . . . orthogonal on the set

N = {l = 1, 2, . . .} with respect to the weight,

w(l) = 2e−2tl sinh(2γl) = e−2tl+2γl − e−2tl−2γl, (2.2)

so that
∞
∑

l=1

Pj(l)Pk(l)w(l) = hkδjk. (2.3)
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Then it follows from (2.1), and Lemma 1.3.1 that

τn = 2n
2
n−1
∏

k=0

hk. (2.4)

We will prove the following asymptotics of hk.

Theorem 2.1.1 For any ε > 0, as k → ∞,

hk =
(k!)2qk+1

(1− q)2k+1

(

1 +O(e−k
1−ε

)
)

, (2.5)

where

q = e2γ−2t.

The error term in (2.5) is uniform on any compact subset of the set

{(t, γ) : 0 < γ < t} . (2.6)

Our main result in this chapter is the following theorem.

Theorem 2.1.2 In the ferroelectric phase with t > γ > 0, for any ε > 0, as n→ ∞,

Zn = CGnF n2
[

1 +O
(

e−n
1−ε
)]

,

where C = 1 − e−4γ, G = eγ−t, and F = sinh(t + γ). The error term in (2.5) is

uniform on any compact subset of the set (2.6).

Up to the constant factor, this result follows directly from Theorem 2.1.1. To find

the constant factor C we will use the Toda equation, combined with the asymptotics

of C as t→ ∞. The proof of Theorems 2.1.1 and 2.1.2 are given below in Sections 2.2-

2.5. To prove Theorem 2.1.1, we compare the orthogonal polynomials (2.3) with the

well known Meixner polynomials, which are orthogonal with respect to an exponential

weight on the non-negative integers.
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2.2 Meixner polynomials

We will use two weights: the weight w(l) defined in (2.2) and the exponential

weight on N,

wQ(l) = ql, l ∈ N; q = e2γ−2t < 1, (2.7)

which can be viewed as an approximation to w(l) for large l. The orthogonal polyno-

mials with the weight wQ(l) are expressed in terms of the Meixner polynomials with

β = 1, which are defined by the formula,

Mk(z; q) =

k
∑

j=0

(1− q−1)j
∏j−1

i=0 (k − i)
∏j−1

i=0 (z − i)

(j!)2
.

They satisfy the orthogonality condition,

∞
∑

l=0

Mj(l; q)Mk(l; q)q
l =

q−kδjk
1− q

,

see, e.g. [30]. For the corresponding monic polynomials,

PM
k (z) =

k!

(1− q−1)k
Mk(z; q)

(M in PM
k stands for Meixner), the orthogonality condition reads

∞
∑

l=0

PM
j (l)PM

k (l)qj = hMk δjk, hMk =
(k!)2qk

(1− q)2k+1
. (2.8)

They satisfy the three term recurrence relation,

zPM
k (z) = PM

k+1(z) +
kq + k + q

1− q
PM
k (z) +

k2q

(1− q)2
PM
k−1(z),

see [30]. According to (2.7), we take q = e2γ−2t.

For our purposes it is convenient to introduce a shifted Meixner polynomial,

Qk(z) = PM
k (z − 1) =

(−1)kk!qk

(1− q)k
Mk(z − 1; q), (2.9)

which is a monic polynomial as well. Equation (2.8) implies the orthogonality condi-

tion,
∞
∑

l=1

Qj(l)Qk(l)q
l = hQk δjk, hQk =

(k!)2qk+1

(1− q)2k+1
. (2.10)
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By analogy with (2.4), define

τQn = 2n
2
n−1
∏

k=0

hQk .

From (2.8) and (2.10) we obtain that

τQn = 2n
2
n−1
∏

k=0

(k!)2qk+1

(1− q)2k+1
=

2n
2
q(n+1)n/2

(1− q)n2

n−1
∏

k=0

(k!)2 . (2.11)

By analogy with (1.5), define also

ZQ
n =

[sinh(γ + t) sinh(γ − t)]n
2

n−1
∏

k=0

(k!)2

τQn .

Then from (2.11) we obtain that

ZQ
n = F n2

Gn,

where

F =
2 sinh(t− γ) sinh(t+ γ)q1/2

1− q
=

2 sinh(t− γ) sinh(t+ γ)eγ−t

1− e2γ−2t
= sinh(t + γ),

and

G = q1/2 = eγ−t.

Our goal is to compare the normalizing constants for orthogonal polynomials with

the weights w and wQ. We begin with the following formula for their difference:

hk − hQk = −
∞
∑

l=1

Pk(l)Qk(l) [w
Q(l)− w(l)], (2.12)

which can be derived as follows. Since Pk and Qk are monic polynomials, the differ-

ence, Pk −Qk, is a polynomial of degree less than k, hence

∞
∑

l=1

Pk(l)[Qk(l)− Pk(l)]w(l) = 0.

By adding this to equation (2.3) with j = k, we obtain that

hk =
∞
∑

l=1

Pk(l)Qk(l)w(l).
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Similarly, from (2.10) we obtain that

hQk =
∞
∑

l=1

Pk(l)Qk(l)w
Q(l).

By subtracting the last two equations, we obtain identity (2.12).

2.3 Evaluation of the ratio hk/h
Q
k

In this section we will prove Theorem 2.1.1. By applying the Cauchy-Schwarz

inequality to identity (2.12), we obtain that

|hk − hQk | ≤
[ ∞
∑

l=1

Pk(l)
2 |w(l)− wQ(l)|

]1/2 [ ∞
∑

l=1

Qk(l)
2 |w(l)− wQ(l)|

]1/2

,

so that

∣

∣

∣

∣

∣

hk

hQk
− 1

∣

∣

∣

∣

∣

≤
[

1

hQk

∞
∑

l=1

Pk(l)
2 |w(l)− wQ(l)|

]1/2 [

1

hQk

∞
∑

l=1

Qk(l)
2 |w(l)− wQ(l)|

]1/2

,

(2.13)

From (2.2),

|w(l)− wQ(l)| = e−(2t+2γ)l ≤ C0w(l), l ≥ 1; C0 =
1

e4γ − 1
, (2.14)

hence

1

hQk

∞
∑

l=1

Pk(l)
2 |w(l)− wQ(l)| ≤ C0

1

hQk

∞
∑

l=1

Pk(l)
2w(l) =

C0hk

hQk
≤ C0(1 + εk),

where

εk =

∣

∣

∣

∣

∣

hk

hQk
− 1

∣

∣

∣

∣

∣

.

Thus, by (2.13),

ε2k ≤ C0(1 + εk)δk, (2.15)

where

δk =
1

hQk

∞
∑

l=1

Qk(l)
2 |w(l)− wQ(l)|.
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By (2.14),

δk =
1

hQk

∞
∑

l=1

Qk(l)
2 ql0, q0 = e−2(t+γ). (2.16)

Let us evaluate δk.

We partition the sum in (2.16) into two parts:

δ′k =
1

hQk

L
∑

l=1

Qk(l)
2 ql0, (2.17)

and

δ′′k =
1

hQk

∞
∑

l=L+1

Qk(l)
2 ql0, (2.18)

where

L = [kλ], 0 < λ < 1. (2.19)

We first estimate δ′k. We have from (2.9), (2.10) that

Qk(l)

(hQk )
1/2

=
(−1)k(1− q)1/2qk/2

q1/2
Mk(l − 1; q). (2.20)

By (2.2),

Mk(l − 1; q) = 1 + (1− q−1)k(l − 1) + (1− q−1)2
k(k − 1)(l − 1)(l − 2)

(2!)2

+ (1− q−1)3
k(k − 1)(k − 2)(l − 1)(l − 2)(l − 3)

(3!)2
+ . . .

(2.21)

If l < k, then the latter sum consists of l nonzero terms. For l ≤ L it is estimated as

Mk(l − 1; q) = O(kLLL+1) = O(eL log k+(L+1) logL),

hence
Qk(l)

(hQk )
1/2

= O(e
k log q

2
+L log k+(L+1) logL).

Due to our choice of L in (2.19), this implies the estimate,

Qk(l)

(hQk )
1/2

= O(e
k log q

2
+2kλ log k).

Since 0 < q < 1 and 0 < λ < 1, the expression on the right is exponentially small as

k → ∞. From (2.17) we obtain now that

δ′k = O(ek log q+4kλ log k).
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Since λ < 1 and q < 1, we obtain that

δ′k = O(e−c0k), c0 = − log q

2
> 0. (2.22)

Now let us estimate δ′′k . By (2.10),

1

hQk

∞
∑

l=1

Qk(l)
2ql = 1,

hence

δ′′k =
1

hQk

∞
∑

l=L+1

Qk(l)
2 ql0 <

(

q0
q

)L
1

hQk

∞
∑

l=L+1

Qk(l)
2 ql <

(

q0
q

)L

= e−4γL. (2.23)

Thus,

δ′′k < e−4γ(kλ−1). (2.24)

Since 0 < λ < 1 is an arbitrary number, we obtain from (2.22) and (2.24) that for

any η > 0,

δk = O
(

e−k
1−η
)

. (2.25)

Let us return back to inequality (2.15). Consider two cases: (1) εk > 1 and (2)

εk ≤ 1. In the first case (2.15) implies that

εk ≤ 2C0δk,

which is impossible, because of (2.25). Hence, for large k, εk ≤ 1, in which case (2.15)

gives that

ε2k ≤ 2C0δk.

Estimate (2.25) implies now that for any η > 0,

εk = O
(

e−k
1−η
)

,

so that as k → ∞,

hk = hQk (1 + ε̃k), |ε̃k| = εk = O
(

e−k
1−η
)

. (2.26)

This proves Theorem 2.1.1.
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From (2.26) we obtain that for any η > 0,

Zn = ZQ
n

n
∏

k=0

(1 + ε̃k) = CZQ
n

[

1 +O
(

e−n
1−η
)]

,

where

C =
∞
∏

k=0

(1 + ε̃k) > 0. (2.27)

Thus, we have proved the following result.

Proposition 2.3.1 For any ε > 0, as n→ ∞,

Zn = CF n2

Gn
[

1 +O
(

e−n
1−ε
)]

, (2.28)

where C > 0, F = sinh(t+ γ), and G = eγ−t.

To finish the proof of Theorem 2.1.2, it remains to find the constant C.

2.4 Evaluation of the constant factor

In the next two sections we will find the exact value of the constant C in formula

(2.28). This will be done in two steps: first, with the help of the Toda equation, we

will find the form of the dependence of C on t, and second, we will find the large t

asymptotics of C. By combining these two steps, we will obtain the exact value of

C. In this section we carry out the first step of our program.

By dividing the Toda equation, (1.8), by τ 2n , we obtain that

τnτ
′′
n − τ ′2n
τ 2n

=
τn+1τn−1

τ 2n
, (′) =

∂

∂t
. (2.29)

The left hand side can be written as

τnτ
′′
n − τ ′2n
τ 2n

=

(

τ ′n
τn

)′
= (log τn)

′′ .

From (2.4) we obtain that
τn+1

τn
= 22n+1hn,
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hence equation (2.29) implies that

(log τn)
′′ =

4hn
hn−1

. (2.30)

From (2.5) we obtain that

4hn
hn−1

=
4n2q

(1− q)2
+O

(

e−n
1−ε
)

. (2.31)

We have that

4q

(1− q)2
=

4e2γ−2t

(1− e2γ−2t)2
=

[

(−2)

1− e2γ−2t

]′
=
[

− log(1− e2γ−2t)
]′′
,

hence from (2.30), (2.31) we obtain that

(log τn)
′′ = n2

[

− log(1− e2γ−2t)
]′′

+O
(

e−n
1−ε
)

.

By (1.5) this implies that

(logZn)
′′ = n2

[

log
sinh(t− γ) sinh(t + γ)

1− e2γ−2t

]′′
+O

(

e−n
1−ε
)

. (2.32)

Since

log

[

sinh(t− γ) sinh(t + γ)

1− e2γ−2t

]

= log[sinh(t+ γ)] + (t− γ)− log 2,

we can simplify (2.32) to

(logZn)
′′ = n2 [log sinh(t+ γ)]′′ +O

(

e−n
1−ε
)

.

Observe that the error term in the last formula is uniform when t belongs to a compact

set on (γ,∞), hence by integrating it we obtain that

logZn = n2 log sinh(t+ γ) + c1t + c0 +O
(

e−n
1−ε
)

,

where c0, c1 do not depend on t. In general, c0, c1 depend on γ and n. By substituting

formula (2.28) into the preceding equation, we obtain that

logC + n(γ − t) = c1t+ c0 +O
(

e−n
1−ε
)

. (2.33)

Denote

d0 = c0 − nγ, d1 = c1 + n.



19

Then equation (2.33) reads

logC = d1t+ d0 +O
(

e−n
1−ε
)

. (2.34)

Observe that C = C(γ, t) does not depend on n, while d0,1 = d0,1(γ, n) does not

depend on t. Take any 0 < γ < t1 < t2. Then

logC(γ, t2)− logC(γ, t1) = d1(t2 − t1) +O
(

e−n
1−ε
)

.

From this formula we obtain that the limit,

lim
n→∞

d1(γ, n) = d1(γ),

exists. This in turn implies that the limit,

lim
n→∞

d0(γ, n) = d0(γ),

exists. By taking the limit n→ ∞ in (2.34), we obtain that

logC = d1(γ)t + d0(γ).

Thus we have proved the following result.

Proposition 2.4.1 The constant C in asymptotic formula (2.28) has the form

C = ed1(γ)t+d0(γ).

2.5 Explicit formula for C

In this section we will find the exact value of C, and by doing this we will finish

the proof of Theorem 2.1.2. Let us consider the following regime:

γ is fixed, t→ ∞,

and let us evaluate the asymptotics of C in this regime. By (2.2) we have that

h0 =
∞
∑

l=1

w(l) =
∞
∑

l=1

(

e−2tl+2γl − e−2tl−2γl
)

=
e−2t+2γ

1− e−2t+2γ
− e−2t−2γ

1− e−2t−2γ
.
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Similarly, by (2.10),

hQ0 =
e−2t+2γ

1− e−2t+2γ
,

hence
h0

hQ0
= 1− e−4γ +O(e−2t), t→ ∞. (2.35)

Let us evaluate εk =
∣

∣

∣

hk
hQk

− 1
∣

∣

∣
for k ≥ 1.

By (2.15),

ε2k ≤ C0(1 + εk)δk, C0 =
1

e4γ − 1
. (2.36)

In the partition of δk as δ′k + δ′′k in (2.17), (2.18), let us choose

L = [k2/3 + t2/3]. (2.37)

From (2.20), (2.21) we obtain that for l ≤ L,

|Qk(l)|
(hQk )

1/2
≤ q(k−1)/2kLLL+1, q = e2γ−2t,

hence

δ′k ≤
q0q

k−1kLLL+1

1− q0
≤ qkkLLL+1

1− q0
, q0 = e−2γ−2t.

In addition, by (2.23),

δ′′k ≤ e−4γL.

Our choice of L in (2.37) ensures that there exists t0 > 0 such that for any t ≥ t0 and

any k ≥ 1,

δk = δ′k + δ′′k ≤ e−k
1/2−t1/2 .

From (2.36) we obtain now that for k ≥ 1 and large t,

εk ≤ C1e
− k1/2

2
− t1/2

2 , C1 = (2C0)
1/2. (2.38)

By (2.27),

logC =

∞
∑

k=0

log(1 + ε̃k), |ε̃k| = εk.

From equations (2.35) and (2.38) we obtain now that

logC = log(1− e−4γ) +O(e−
t1/2

2 ), t→ ∞.
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On the other hand, by (2.34)

logC = d1(γ)t+ d0(γ)

This implies that

d1(γ) = 0, d0(γ) = log(1− e−4γ),

so that

C = 1− e−4γ . (2.39)

By substituting expression (2.39) into formula (2.28), we prove Theorem 2.1.2.

As a final note in this chapter, we compare the asymptotics of the free energy in

the ferroelectric phase with the energy of the ground state.

2.6 Ground state configuration

The ground state in the ferroelectric phase region is the configuration

σgs(x) =























σ5 if x is on the diagonal

σ3 if x is above the diagonal

σ4 if x is below the diagonal,

see Figure 2.1. The weight of the ground state configuration is

w(σgs) = bn
2
(c

b

)n

= F n2

Gn
0 ,

where

F = sinh(t+ γ), G0 =
sinh(2γ)

sinh(t+ γ)
.

The ratio Zn/w(σ
gs) is evaluated as

Zn
w(σgs)

= Gn
1 ,

where

G1 =
G

G0

=
eγ−t sinh(t+ γ)

sinh 2γ
=
e2γ − e−2t

e2γ − e−2γ
> 1.
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Fig. 2.1. A ground state configuration in the ferroelectric phase region.

Observe that

lim
n→∞

logZn
n2

= lim
n→∞

logw(σgs)

n2
= logF,

so that the free energy is determined by the free energy of the ground state config-

uration. This can be explained by the fact that low energy excited states are local

perturbations of the ground state around the diagonal. Namely, it is impossible to

create a new configuration by perturbing the ground state locally away of the diag-

onal: the conservation law N3(σ) = N4(σ) forbids such a configuration. Therefore,

typical configurations of the six-vertex model in the ferroelectric phase are frozen

outside of a relatively small neighborhood of the diagonal.

This behavior of typical configurations in the ferroelectric phase is in a big contrast

with the situation in the disordered and antiferroelectric phases. Extensive rigorous,

theoretical and numerical studies, see, e.g., the works of Cohn, Elkies, Propp [13],

Eloranta [21], Syljuasen, Zvonarev [46], Allison, Reshetikhin [1], Kenyon, Okounkov

[27], Kenyon, Okounkov, Sheffield [29], Sheffield [42], Ferrari, Spohn [23], Colomo,

Pronko [14], Zinn-Justin [52], and references therein, show that in the disordered
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and antiferroelectric phases the “arctic circle” phenomenon persists, so that there are

macroscopically big frozen and random domains in typical configurations, separated

in the limit n→ ∞ by an “arctic curve”.
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3. CRITICAL LINE BETWEEN FERROELECTRIC AND

DISORDERED PHASES

3.1 Introduction and formulation of the main result

In this chapter, we consider the partition function Zn on the critical line

b

c
− a

c
= 1.

We fix a point,
a

c
=
α− 1

2
,

b

c
=
α + 1

2
; α > 1,

on this line, and we are interested in the large n asymptotics of the partition function

Zn = Zn

(

α− 1

2
,
α− 1

2
,
α + 1

2
,
α+ 1

2
, 1, 1

)

.

Let us first derive a formula for Zn on the critical line. To that end, consider the

limit of the Izergin-Korepin formula in the ferroelectric phase, (1.5)−(1.7), as

t, γ → +0,
t

γ
→ α. (3.1)

Observe that in this limit,

a

c
=

sinh(t− γ)

sinh(2γ)
→ α− 1

2
,

b

c
=

sinh(t+ γ)

sinh(2γ)
→ α + 1

2
.

By (1.1),

Zn

(

a

c
,
a

c
,
b

c
,
b

c
, 1, 1

)

=
Zn(a, a, b, b, c, c)

cn2 ,

hence by (1.5), and (2.4),

Zn

(

a

c
,
a

c
,
b

c
,
b

c
, 1, 1

)

=

[

2 sinh(t− γ) sinh(t+ γ)

sinh(2γ)

]n2 n−1
∏

k=0

hk
(k!)2

, (3.2)
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where hk are the normalizing coefficients associated with the orthogonal polynomials

{Pk(l)}∞k=0 defined in (2.3), so that

∞
∑

l=1

Pj(l)Pk(l)w(l) = hkδjk ; w(l) = e−2tl+2γl − e−2tl−2γl. (3.3)

To deal with limit (3.1) we need to rescale the orthogonal polynomials Pk(l).

Introduce the rescaled variable,

x = 2tl − 2γl,

and the rescaled limiting weight,

wα(x) = lim
t,γ→+0, t

γ
→α

(e−2tl+2γl − e−2tl−2γl) = e−x − e−rx, r =
α + 1

α− 1
> 1 .

Consider monic orthogonal polynomials Pj(x;α) satisfying the orthogonality condi-

tion,
∫ ∞

0

Pj(x;α)Pk(x;α)wα(x)dx = hk,αδjk . (3.4)

To find a relation between Pk(l) and Pk(x;α), introduce the monic polynomials

P̃k(x) = ∆kPk(x/∆), (3.5)

where

∆ = 2t− 2γ,

and rewrite orthogonality condition (3.3) in the form

∞
∑

l=1

P̃j(l∆)P̃k(l∆)wα(l∆)∆ = ∆2k+1hkδjk,

which is a Riemann sum for the integral in orthogonality condition (3.4). Therefore,

lim
t,γ→+0, t

γ
→α

P̃k(x) = Pk(x;α),

and

lim
t,γ→+0, t

γ
→α

∆2k+1hk = hk,α.
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Let us rewrite formula (3.2) as

Zn

(

a

c
,
a

c
,
b

c
,
b

c
, 1, 1

)

=

[

2 sinh(t− γ) sinh(t+ γ)

sinh(2γ)∆

]n2 n−1
∏

k=0

∆2k+1hk
(k!)2

,

and take limit (3.1). In the limit we obtain that

Zn = Zn

(

α− 1

2
,
α− 1

2
,
α + 1

2
,
α+ 1

2
, 1, 1

)

=

(

α+ 1

2

)n2 n−1
∏

k=0

hk,α
(k!)2

. (3.6)

Our main technical result in this chapter will be the proof of the following asymp-

totics of hk,α. Let, as usual,

ζ(s) = 1 +
1

2s
+

1

3s
+ . . . , Re s > 1.

Theorem 3.1.1 As k → ∞,

log

[

hk,α
(k!)2

]

= − ζ(3
2
)

2
√

π(r − 1)k1/2
+

1

4k
+O(k−3/2), r =

α + 1

α− 1
. (3.7)

The main result of this chapter is the following asymptotics of Zn on the critical

line between these two phases.

Theorem 3.1.2 As n→ ∞,

Zn

(

α− 1

2
,
α− 1

2
,
α + 1

2
,
α + 1

2
, 1, 1

)

= CnκG
√
nF n2

[1 +O(n−1/2)] ,

where C > 0,

κ =
1

4
, G = exp

[

−ζ
(

3

2

)

√

α− 1

2π

]

,

and

F =
α + 1

2
.

The proof of Theorem 3.1.2 follows easily from Theorem 3.1.1. Namely, from

formula (3.6) and asymptotics (3.7) we obtain that

log

[

Zn
(

α−1
2
, α−1

2
, α+1

2
, α+1

2
, 1, 1

)

(

α+1
2

)n2

]

=
n−1
∑

k=0

log

[

hk,α
(k!)2

]

=
n−1
∑

k=0

[

− ζ(3
2
)

2
√

π(r − 1) k1/2
+

1

4k
+O(k−3/2)

]

= −ζ
(

3

2

)

√

(α− 1)

2π
n1/2 +

logn

4
+ C0 +O(n−1/2) ,

which implies Theorem 3.1.2.
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3.2 Large k asymptotics of hk,α

We will use asymptotic formulae for orthogonal polynomials on [0,∞), obtained

in the paper [48] of Vanlessen. To formulate and to apply the Vanlessen’s asymptotic

formula we will need to introduce some notations and to evaluate some parameters.

Let us write

wα(z) = e−z − e−rz = ze−Q(z),

so that

Q(z) = z + log
z

1− e−(r−1)z
, (3.8)

where for the logarithm we take the principal branch with a cut on (−∞, 0]. Observe

that the function Q(z) is analytic in a strip |Im z| ≤ c0, c0 > 0. Define the Mashkar-

Rakhmanov-Saff (MRS) numbers βk = βk(α) as a solution to the equation

1

2π

∫ βk

0

Q′(x)

√

x

βk − x
dx = k. (3.9)

As shown in [48], for large k there is a unique solution to this equation. The purpose

of the MRS numbers is to rescale the equilibrium measure, introduced in Section 3.4,

so that it is supported by the interval [0, 1].

3.3 Evaluation of βk

By the change of variable, x = βku, equation (3.9) reduces to

βk
2π

∫ 1

0

Q′(βku)

√

u

1− u
du = k. (3.10)

Set

bk =
βk
4k

. (3.11)

Then equation (3.10) reduces to

2bk
π

∫ 1

0

Q′(4bkku)

√

u

1− u
du = 1. (3.12)

From (3.8),

Q′(z) = 1 +
1

z
− r − 1

e(r−1)z − 1
.
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Observe that the function Q′(z) has poles at the points

z =
2mπi

r − 1
, m = ±1,±2, . . .

After evaluating integrals of the first two terms of Q′(4bkku), equation (3.12) reads

bk +
1

2k
− 2

π

∫ 1

0

(r − 1)bk
e4(r−1)bkku − 1

√

u

1− u
du = 1.

By the change of variable x = ku, it reduces to

bk +
1

2k
− 2

πk3/2

∫ k

0

(r − 1)bk
e4(r−1)bkx − 1

√

x

1− (x/k)
dx = 1.

Set

ε =
1

k1/2
,

and consider the function,

f(b, ε) = b+
ε2

2
− 2ε3

π

∫ 1/ε2

0

(r − 1)b

e4(r−1)bx − 1

√

x

1− ε2x
dx− 1,

1

2
≤ b ≤ 2.

Observe that as ε→ 0,

∫ 1/ε2

0

(r − 1)b

e4(r−1)bx − 1

√

x

1− ε2x
dx =

∫ ∞

0

(r − 1)b
√
x dx

e4(r−1)bx − 1
+O(ε2)

=

√
π ζ(3

2
)

16
√

b(r − 1)
+O(ε2),

(3.13)

hence

f(b, ε) = (b− 1) +
ε2

2
− ε3ζ(3

2
)

8
√

πb(r − 1)
+O(ε5). (3.14)

It is easy to see that equation (3.13) can be differentiated in b infinitely many times,

and hence the function f(b, ε) is C∞ in a neighborhood of the point b = 1, ε = 0. In

addition,

f(1, 0) = 0,
∂f(1, 0)

∂b
= 1.

By the implicit function theorem, there is a C∞-solution b(ε) of the equation f(b, ε) =

0. From (3.14) we obtain that

b(ε) = 1− ε2

2
+

ε3ζ(3
2
)

8
√

π(r − 1)
+O(ε5), ε → 0.
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Since bk = b(k−1/2), this gives

bk = 1− 1

2k
+

ζ(3
2
)

8
√

π(r − 1)k3/2
+O(k−5/2), k → ∞. (3.15)

By (3.11),

βk = 4kbk. (3.16)

3.4 Evaluation of the equilibrium measure

Set

Vk(x) =
1

k
Q(βkx), (3.17)

and consider the following minimization problem:

E = inf
µ
I(µ),

where

I(µ) = −
∫∫

log |x− y| dµ(x)dµ(y) +
∫

Vk(x)dµ(x).

and inf
µ

is taken over all probability measures on [0,∞). There exists a unique mini-

mizer, µ = µk, called the equilibrium measure. Let us review the analytical properties

of the equilibrium measure discussed by Vanlessen in [48].

The equilibrium measure has the following properties:

1. The support of µk is the interval [0, 1].

2. The measure µk is absolutely continuous with respect to the Lebesgue measure.

3. The density function of µk has the form,

dµk(x)

dx
≡ ψk(x) =

1

2π

√

1− x

x
qk(x), (3.18)

where qk(x) is analytic and positive on [0, 1].
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The equilibrium measure µk is characterized by the Euler-Lagrange variational con-

ditions: there exists lk ∈ R such that

2

∫ 1

0

log |x− y|dµk(y)− Vk(x)− lk = 0 for x ∈ [0, 1],

2

∫ 1

0

log |x− y|dµk(y)− Vk(x)− lk ≤ 0 for x 6∈ [0, 1].

(3.19)

The function qk(z) in (3.18) is given by the formula,

qk(z) =
1

2πi

∮

Γ

√

y

y − 1

V ′
k(y) dy

y − z
, z ∈ Int Γ,

where
√

y
y−1

is taken on the principal branch, with cut on [0, 1], and Γ is a positively

oriented contour containing [0, 1] ∪ {z} in its interior, with the additional condition

that the function V ′
k(y) is analytic inside Γ. By (3.17) and (3.8),

Vk(z) = 4bkz +
1

k
log

4bkkz

1− e−4(r−1)bkkz
, (3.20)

hence

V ′
k(z) = 4bk +

1

kz
− γk
eγkkz − 1

, (3.21)

where

γk = 4(r − 1)bk,

hence

qk(z) =
1

2πi

∮

Γ

√

y

y − 1

[

4bk +
1

ky
− γk
eγkky − 1

]

dy

y − z
.

By taking the residue at infinity, we obtain that

qk(z) = 4bk + sk(z), sk(z) = − γk
2πi

∮

Γ

√

y

y − 1

dy

(eγkky − 1)(y − z)
. (3.22)

Observe that the function V ′
k(z) has poles at the points

zn =
2πni

γkk
, n = ±1,±2, . . . , (3.23)

hence the contour Γ has to pass close to 0. We choose Γ such that

c1
k

≥ dist(0,Γ) ≥ c2
k
, c1 ≥ dist(1,Γ) ≥ c2 > 0, (3.24)
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Γ

1

z1

−1z

Fig. 3.1. The contour Γ.

see Figure 3.1. More precisely, for a given z ∈ C, let m(z) ∈ [0, 1] be the closest point

from z on [0, 1], so that

inf{|z − u|, u ∈ [0, 1]} = |z −m(z)|.

Then we define, for a given δ > 0,

Γ = Γ(δ, k) = {z ∈ C : |z −m(z)| = δ

[

1

k
+m(z)

]

,

and we choose δ to be sufficiently small so that the points zn in (3.23) lie outside of

Γ, see Figure 3.1. Observe that Γ(0, k) = [0, 1].

With the help of the change of variables, u = ky, we obtain that

sk(z) = − γk
2πik1/2

∮

kΓ

√

u

(u/k)− 1

du

(eγku − 1)(u− kz)
, (3.25)

which implies that

sup
0≤z≤1

|sk(z)| = O(k−1/2), (3.26)

or even that

sup
0≤d≤ δ

2

sup
z∈Γ(d,k)

|sk(z)| = O(k−1/2). (3.27)

For z > 1, the function sk(z) can be reduced to

sk(z) = −γk
√

z

z − 1

1

(eγkkz − 1)
− γk

π

∫ 1

0

√

y

1− y

dy

(eγkky − 1)(z − y)
.

It implies that

sk(z) =
ak
z

+ rk(z) , (3.28)
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where

ak = −γk
π

∫ 1

0

√

y

1− y

dy

(eγkky − 1)
(3.29)

and rk(z) satisfies the estimate,

|rk(z)| ≤
C

z
√
z − 1 k5/2

, z > 1, (3.30)

with some C > 0. Indeed,

rk(z) = −γk
√

z

z − 1

1

eγkkz − 1
− γk

π

∫ 1

0

√

y

1− y

ydy

(eγkky − 1)(z − y)z
.

The first term on the right is exponentially small in z and k, and it obviously satisfies

estimate (3.30). In the second term on the right, let us split the integral in two

integrals, from 0 to 1
2
and from 1

2
to 1. The first part is estimated as follows:

0 ≤
∫ 1

2

0

√

y

1− y

ydy

(eγkky − 1)(z − y)z
≤ 4

z2

∫ 1
2

0

y3/2dy

(eγkky − 1)

≤ 4

z2k5/2

∫ ∞

0

u3/2du

(eγku − 1)
≤ C0

z2k5/2
, u = ky,

hence it satisfies estimate (3.30). For the second part we have that

0 ≤
∫ 1

1
2

√

y

1− y

ydy

(eγkky − 1)(z − y)z
≤ 1

z(eγkk/2 − 1)

∫ 1

1
2

dy

(z − y)
√
1− y

=
1

z(eγkk/2 − 1)

∫ 1
2

0

du

(z − 1 + u)
√
u
≤ C1

z
√
z − 1 (eγkk/2 − 1)

, u = 1− y,

which satisfies estimate (3.30). Thus, (3.30) is proved.

From (3.22) and (3.28) we obtain that

qk(z) = 4bk +
ak
z

+ rk(z) , (3.31)

where ak is given by formula (3.29) and rk(z) satisfies estimate (3.30).

3.5 Evaluation of the Lagrange multiplier

Introduce the function

gk(z) =

∫ 1

0

log(z − x)dµk(x), z ∈ C \ [0, 1], (3.32)
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where the branch of log is taken on the principal sheet, with a cut on (−∞, 0]. Also,

let

ωk(z) ≡ g′k(z) =

∫ 1

0

dµk(x)

z − x
, z ∈ C \ [0, 1], (3.33)

be the resolvent of the equilibrium measure µk. From equation (3.32) it follows that,

as z → ∞,

gk(z) = log z +O(z−1),

and from (3.33), that

ωk(z) =
1

z
+O(z−2).

From equation (3.19) it follows that

ωk(z) =
V ′
k(z)

2
−
√

z − 1

z

qk(z)

2
, (3.34)

see, e.g., equations (3.27), (3.29) in [48], and

lk = 2gk(1)− Vk(1).

Since

−gk(1) = lim
u→∞

[gk(u)− log u− gk(1)] = lim
u→∞

∫ u

1

[

ωk(z)−
1

z

]

dz

=

∫ ∞

1

[

V ′
k(z)

2
−
√

z − 1

z

qk(z)

2
− 1

z

]

dz,

we obtain that

gk(1) = −
∫ ∞

1

[

V ′
k(z)

2
−
√

z − 1

z

qk(z)

2
− 1

z

]

dz,

hence

lk = −
∫ ∞

1

[

V ′
k(z)−

√

z − 1

z
qk(z)−

2

z

]

dz − Vk(1). (3.35)

We split the last integral as

∫ ∞

1

[

V ′
k(z)−

√

z − 1

z
qk(z)−

2

z

]

dz =

∫ ∞

1

[

V ′
k(z)− 4bk −

1

kz

]

dz

−
∫ ∞

1

[

√

z − 1

z
qk(z) +

2

z
− 4bk −

1

kz

]

dz = I1 − I2.

(3.36)
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From (3.21) we have that

I1 =

∫ ∞

1

[

V ′
k(z)− 4bk −

1

kz

]

dz = −
∫ ∞

1

γkdz

eγkkz − 1
= O(e−c0k) , c0 > 0.

Let us evaluate I2. By (3.31),

I2 =

∫ ∞

1

[

√

z − 1

z
4bk +

√

z − 1

z

ak
z

+

√

z − 1

z
rk(z) +

2

z
− 4bk −

1

kz

]

dz.

Since
∫ ∞

1

(

√

z − 1

z
− 1 +

1

2z

)

dz =
1

2
− log 2,

we obtain that

I2 = bk(2− 4 log 2) +

∫ ∞

1

[

√

z − 1

z

ak
z

+

√

z − 1

z
rk(z)−

2bk − 2

z
− 1

kz

]

dz.

From estimate (3.30) we obtain that

∫ ∞

1

√

z − 1

z
rk(z)dz = O(k−5/2),

hence

I2 = bk(2− 4 log 2) +

∫ ∞

1

[

√

z − 1

z

ak
z

− 2bk − 2 + 1
k

z

]

dz + O(k−5/2). (3.37)

From equation (3.34) we have that

ωk(z) =
V ′
k(z)

2
− 1

2

√

z − 1

z

[

4bk +
ak
z

+ rk(z)
]

.

By equating terms of the order 1
z
for large z on both sides, we obtain that

1 =
1

2k
− ak

2
+ bk,

hence

ak = 2bk − 2 +
1

k
.

By substituting this expression into (3.37) we obtain that

I2 = bk(2− 4 log 2) +

(

2bk − 2 +
1

k

)∫ ∞

1

(

√

z − 1

z
− 1

)

dz

z
+O(k−5/2).
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Since
∫ ∞

1

(

√

z − 1

z
− 1

)

dz

z
= 2 log 2− 2,

we obtain that

I2 = bk(2− 4 log 2) +

(

2bk − 2 +
1

k

)

(2 log 2− 2) +O(k−5/2)

= −2bk − 4 log 2 + 4 +
2 log 2− 2

k
+O(k−5/2)

= 2− 4 log 2 +
2 log 2− 1

k
− ζ(3

2
)

4
√

π(r − 1)k3/2
+O(k−5/2).

By (3.35), (3.36),

lk = I2 − I1 − Vk(1),

and by (3.20) and (3.15),

Vk(1) = 4bk +
log(4bkk)

k
+O(k−5/2)

= 4 +
log k

k
+

2 log 2− 2

k
+

ζ(3
2
)

2
√

π(r − 1)k3/2
− 1

2k2
+O(k−5/2),

hence

lk = −2 − 4 log 2− log k

k
+

1

k
− 3ζ(3

2
)

4
√

π(r − 1)k3/2
+

1

2k2
+O(k−5/2), (3.38)

3.6 Evaluation of hk,α

According to Vanlessen’s asymptotic formula, see [48],

hk,α =
π

8
β2k+2
k eklk

[

1 +

(

3

4qk(0)
+

47

12qk(1)
− q′k(1)

4qk(1)2

)

1

k
+O(k−2)

]

. (3.39)

Observe that in [48] this formula is proved under the assumption that the weight for

the orthogonal polynomials has the form

w(x) = xαe−Q(x), α > −1,

where Q(x) is a polynomial. In Appendix B at the end of the paper we show what

changes in the paper of Vanlessen [48] should be made to prove (3.39) for Q(x) given

by (3.8). By (3.26),

qk(0) = 4 +O(k−1/2), qk(1) = 4 +O(k−1/2). (3.40)
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By (3.25),

q′k(1) = − γk
2πik1/2

∮

kΓ

√

u

(u/k)− 1

kdu

(eγku − 1)(u− k)2
,

hence

q′k(1) = O(k−1/2), (3.41)

because by condition (3.24), the function k
u−k is bounded by 1/c for u ∈ kΓ. From

(3.40) and (3.41) we obtain that

1 +

(

3

4qk(0)
+

47

12qk(1)
− q′k(1)

4qk(1)2

)

1

k
= 1 +

7

6k
+O(k−3/2). (3.42)

By substituting formulae (3.16), (3.15), (3.38), and (3.42) into (3.39) and by using

the Stirling formula for k!, we obtain that

log
hk,α
(k!)2

= − ζ(3
2
)

2
√

π(r − 1)k1/2
+

1

4k
+O(k−3/2)

(we use MAPLE for this calculation). Theorem 3.1.1 is proved.
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4. ANTIFERROELECTRIC PHASE

4.1 Introduction

In this chapter we discuss the antiferroelectric phase region, and we will use pa-

rameterization (1.3) with two parameters t, γ such that |t| < γ. The parameter ∆ in

the antiferroelectric phase region reduces to

∆ = − cosh(2γ).

In this phase region, the function φ(t) appearing in the Hankel determinant τn is

the Laplace transform of a discrete measure lying on Z, so that

φ(t) =
sinh(2γ)

sinh(γ + t) sinh(γ − t)
=

2(1− e4γ)

(1− e−2(γ−t))(1− e−2(γ+t))

=
2

1− e−2(γ−t) +
2

1− e−2(γ+t)
− 2 = 2

∞
∑

l=0

e−2l(γ−t) + 2
∞
∑

l=0

e−2l(γ+t) − 2

= 2

∞
∑

l=0

e−2l(γ−t) + 2

∞
∑

l=1

e−2l(γ+t) = 2

∞
∑

l=−∞
e2tle−2γ|l|.

(4.1)

Introduce the discrete monic polynomials Pj(x) = xj + . . . orthogonal on the set Z

with respect to the weight

w(l) = e2tle−2γ|l|,

so that
∞
∑

l=−∞
Pj(l)Pk(l)w(l) = hkδjk. (4.2)

Then it follows from (4.1), and Lemma 1.3.1 that

τn = 2n
2
n−1
∏

k=0

hk. (4.3)

We will evaluate the asymptotics of the orthogonal polynomials (4.2) by reformu-

lating them as solutions to a Riemann-Hilbert problem which can be evaluated in the
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large n limit by the Deift-Zhou steepest descent method. To employ this method, it

is convenient to rescale the polynomials. Set

∆n =
2γ

n
, x = l∆n, wn(x) = e−n(|x|−ζx), ζ =

t

γ
, (4.4)

and

Pnk(x) = ∆k
nPk

(

x

∆n

)

.

Consider also the lattice

Ln =

{

x =
2γk

n
, k ∈ Z

}

. (4.5)

Then from (4.2) we obtain that the monic polynomials Pnk(x) satisfy the orthogonality

condition,

∑

x∈Ln

Pnj(x)Pnk(x)wn(x)∆n = hnkδjk, hnk = hk∆
2k+1
n . (4.6)

We can then combine equations (1.5), (4.3), and (4.6) to obtain

Zn =

(

nab

γ

)n2 n−1
∏

k=0

hnk
(k!)2

, a = sinh(γ − t), b = sinh(γ + t). (4.7)

For what follows we will need to extend the weight wn(x) to the complex plane.

We do so by defining wn(z) on the complex plane as

wn(z) = e−nV (z)

where

V (z) =







z − ζz when Re z ≥ 0

− z − ζz when Re z ≤ 0,

so that V (z), and thus wn(z), is two-valued on the imaginary axis.

4.2 Main result: Asymptotics of the partition function

The main result of this chapter is a large n asymptotic formula for Zn in the

antiferroelectric phase region. The formulation of this result and the proofs involve

the Jacobi theta functions. Let us review their definition and basic properties.
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There are four Jacobi theta functions:

ϑ1(z) = 2

∞
∑

n=0

(−1)nq(n+
1
2
)2 sin

(

(2n+ 1)z
)

,

ϑ2(z) = 2

∞
∑

n=0

q(n+
1
2
)2 cos

(

(2n+ 1)z
)

,

ϑ3(z) = 1 + 2

∞
∑

n=1

qn
2

cos(2nz) ,

ϑ4(z) = 1 + 2

∞
∑

n=1

(−1)nqn
2

cos(2nz) ,

(4.8)

where q is the elliptic nome. We will assume that 1 > q > 0. Figure 4.1 shows

the graphs of ϑ1, ϑ2 (left figure) and ϑ3, ϑ4 (right figure) on the interval [0, π] for

q = 0.5. Observe that ϑ1, ϑ4 are increasing on [0, π
2
] while ϑ2, ϑ3 are decreasing on

this interval.

Fig. 4.1. The graphs of ϑ1, ϑ2 (left figure) and ϑ3, ϑ4 (right figure)
on the interval [0, π] for q = 0.5.

The Jacobi theta functions satisfy the following periodicity conditions:

ϑ1(z + π) = −ϑ1(z), ϑ1(z + πτ) = −e−2izq−1ϑ1(z),

ϑ2(z + π) = −ϑ2(z), ϑ2(z + πτ) = e−2izq−1ϑ2(z),

ϑ3(z + π) = ϑ3(z), ϑ3(z + πτ) = e−2izq−1ϑ3(z),

ϑ4(z + π) = ϑ4(z), ϑ4(z + πτ) = −e−2izq−1ϑ4(z),

(4.9)
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where τ is a pure imaginary number related to q by the equation,

q = eiπτ .

The theta functions also satisfy the symmetry conditions

ϑ1(−z) = −ϑ1(z), ϑ2(−z) = ϑ2(z), ϑ3(−z) = ϑ3(z), ϑ4(−z) = ϑ4(z),

and the equations,

ϑ1(z) = ϑ2

(

z − π

2

)

, ϑ3(z) = ϑ4

(

z +
π

2

)

, ϑ1(z) = −ieiz+ iπτ
4 ϑ4

(

z +
πτ

2

)

.

(4.10)

The only zeroes of the theta functions are

ϑ1(0) = 0, ϑ2

(π

2

)

= 0, ϑ3

(π

2
+
πτ

2

)

= 0, ϑ4

(πτ

2

)

= 0,

and their shifts by mπ + nπτ ; m,n ∈ Z. There are many non-trivial identities

satisfied by the theta functions. A list of those identities used in this chapter is given

in Appendix E.

In what follows we will use the following parameters, which are simply related to

the parameters t and γ:

ζ =
t

γ
∈ (−1, 1) , ω =

π(1 + ζ)

2
∈ (0, π) .

The elliptic nome for all Jacobi theta functions in this chapter will be equal to

q = e−
π2

2γ .

Our main result in this chapter is the following asymptotic formula for Zn in the

antiferroelectric phase:

Theorem 4.2.1 As n→ ∞,

Zn = Cϑ4 (nω)F
n2

(1 +O(n−1)), (4.11)

where C > 0 is a constant, and

F =
π sinh(γ − t) sinh(γ + t)ϑ′1(0)

2γϑ1(ω)
.
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The asymptotic formula (4.11) proves the conjecture of Zinn-Justin in [51]. The

proof of Theorem 4.2.1 will be based on the Riemann-Hilbert approach to discrete

orthogonal polynomials. An important first step in this approach is a construction of

the equilibrium measure.

4.3 Equilibrium measure

The heuristic idea behind the equilibrium measure is the following. We can write

τn in a form similar to the eigenvalue partition function of a random matrix ensemble,

so that

τn =
2n

2

n!

∞
∑

l1,...,ln=−∞
∆(l)2

n
∏

i=1

e2tli−2γ|li|, (4.12)

(see Appendix A). If we scale the variables in (4.12) as µi =
2γli
n
, then we can rewrite

formula (4.12) as

τn =
2n

2

n!

∑

µ∈ 2γ
n
Zn

e−n
2H(νµ), (4.13)

where

dνµ(x) =
1

n

n
∑

j=1

δ(x− µj),

and

H(ν) =

∫∫

x 6=y
log

1

|x− y|dν(x)dν(y) +
∫

(|x| − ζx)dν(x),

where all integrals are over R.

Due to the factor (−n2) in the exponent of (4.13), we expect the sum, in the large

n limit, to be focused in a neighborhood of a global minimum of the functional H .

Clearly, we have that νµ is a probability measure and

νµ(a, b) <
b− a

2γ
+

1

n
for any −∞ < a < b <∞, (4.14)

because in (4.3), µj ∈ 2γ
n
Z and µj 6= µk if j 6= k. With these constraints in mind, we

define

E0 = inf
ν
H(ν)
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where the infimum is taken over all probability measures satisfying

ν(a, b) ≤ b− a

2γ
for any −∞ < a < b <∞, (4.15)

which is (4.14) in the large n limit. It is possible to prove that there exists a unique

minimizer ν0, so that

E0 = H(ν0),

see, e.g., the works of Saff and Totik [41], Dragnev and Saff [20] and Kuijlaars [32].

Furthermore, ν0 has support on a finite number of intervals, and is absolutely continu-

ous with respect to the Lebesgue measure. The minimizer ν0 is called the equilibrium

measure.

Denote the density function of the equilibrium measure as ρ(x), and its resolvent

as ω, so we have
dν0
dx

= ρ(x), ω(z) =

∫

ρ(x)dx

z − x
,

and

ρ(x) =
1

2πi

(

ω(x− i0)− ω(x+ i0)
)

. (4.16)

The structure of the equilibrium measure ν0 is studied in the paper of Zinn-Justin [51],

who shows that ν0 has support on an interval [α, β], with a saturated region [α′, β ′]

in which

ρ(x) =
1

2γ
, x ∈ [α′, β ′],

and two unsaturated regions, [α, α′] and [β ′, β], in which

0 < ρ(x) <
1

2γ
, x ∈ (α, α′) ∪ (β ′, β), (4.17)

see Figure 4.2. We also have that

α < α′ < 0 < β ′ < β,

so that the origin, which is a singular point of the potential V (x) = |x| − ζx, lies

inside the saturated region [α′, β ′] .
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α α β β

ρ

’ ’

(x)

0

Fig. 4.2. The equilibrium density function ρ(x).

The measure ν0 is uniquely determined by the Euler-Lagrange variational condi-

tions

2

∫

log |x− y|dν0(y)− (|x| − ζx)























= l for x ∈ [α, α′] ∪ [β ′, β]

≥ l for x ∈ [α′, β ′]

≤ l for x /∈ [α, β],

(4.18)

where l is the Lagrange multiplier. The Euler-Lagrange variational conditions imply

ω(x− i0) + ω(x+ i0) = −ζ + sgn(x) for x ∈ [α, α′] ∪ [β ′, β], (4.19)

whereas in the saturated region, we have

ρ(x) =
1

2πi

(

ω(x− i0)− ω(x+ i0)
)

=
1

2γ
for x ∈ [α′, β ′]. (4.20)

Now we will give a detailed description of the equilibrium measure. We begin with

explicit formulae for the end-points of the support of the equilibrium measure.

4.4 Explicit formulae for the end-points

The locations of the end-points of the support of the equilibrium measure are

given in the following proposition.
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Proposition 4.4.1 The end-points of the support of the equilibrium measure ν0 are

equal to

α = −π ϑ
′
1(
ω
2
)

ϑ1(
ω
2
)
, α′ = −π ϑ

′
4(
ω
2
)

ϑ4(
ω
2
)
,

β ′ = −π ϑ
′
3(
ω
2
)

ϑ3(
ω
2
)
, β = −π ϑ

′
2(
ω
2
)

ϑ2(
ω
2
)
.

The differences between the end-points are equal to

α′ − α = πϑ24(0)
ϑ2(

ω
2
)ϑ3(

ω
2
)

ϑ1(
ω
2
)ϑ4(

ω
2
)
, β ′ − α′ = πϑ22(0)

ϑ1(
ω
2
)ϑ2(

ω
2
)

ϑ3(
ω
2
)ϑ4(

ω
2
)
,

β − β ′ = πϑ4(0)
2ϑ1(

ω
2
)ϑ4(

ω
2
)

ϑ2(
ω
2
)ϑ3(

ω
2
)
.

(4.21)

and

β − α = πϑ22(0)
ϑ3(

ω
2
)ϑ4(

ω
2
)

ϑ1(
ω
2
)ϑ2(

ω
2
)
, β − α′ = πϑ3(0)

2ϑ1(
ω
2
)ϑ3(

ω
2
)

ϑ2(
ω
2
)ϑ4(

ω
2
)
,

β ′ − α = πϑ23(0)
ϑ2(

ω
2
)ϑ4(

ω
2
)

ϑ1(
ω
2
)ϑ3(

ω
2
)
.

(4.22)

Finally, we have the Zinn-Justin formula for the centroid of the end-points,

α + α′ + β ′ + β

4
= −π

2

ϑ′2(
πζ
2
)

ϑ2(
πζ
2
)
.

For a proof of Proposition 4.4.1 see Section 4.8.

4.5 Equilibrium density function

The equilibrium density function is described in the following proposition.

Proposition 4.5.1 The equilibrium density function ρ(x) is given by the formula,

ρ(x) =



































1

π

∫ x

α

dx′
√

(x′ − α)(α′ − x′)(β ′ − x′)(β − x′)
, α ≤ x ≤ α′

1

2γ
, α′ ≤ x ≤ β ′

1

π

∫ β

x

dx′
√

(x′ − α)(x′ − α′)(x′ − β ′)(β − x′)
, β ′ ≤ x ≤ β.

(4.23)

Also,
∫ β

0

ρ(x) dx =
1 + ζ

2
. (4.24)
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The resolvent ω(z) of the equilibrium measure is given as

ω(z) =

∫ ∞

z

dz′
√

(z′ − α)(z′ − α′)(z′ − β ′)(z′ − β)
, (4.25)

where integration takes place on the sheet of

√

R(z′) ≡
√

(z′ − α)(z′ − α′)(z′ − β ′)(z′ − β)

for which
√

R(z′) > 0 for z′ > β, with cuts on [α, α′] and [β ′, β].

For a proof of this proposition see Section 4.8.

4.6 The g-function

Define the g-function on C \ [−∞, β] as

g(z) =

∫ β

α

log(z − x)dν0(x) (4.26)

where we take the principal branch for logarithm.

Properties of g(z):

1. g(z) is analytic in C \ (−∞, β].

2. For large z,

g(z) = log z −
∞
∑

j=1

gj
zj
, gj =

∫ β

α

xj

j
dν0(x). (4.27)

3. g′(z) = ω(z).

4. From the first relation in (4.18) we have that

g+(x) + g−(x) = |x| − ζx+ l for x ∈ [α, α′] ∪ [β ′, β], (4.28)

where g+ and g− refer to the limiting values of g from the upper and lower

half-planes, respectively. By differentiating this equation we obtain that

ω+(x) + ω−(x) = g′+(x) + g′−(x) = sgn x− ζ for x ∈ [α, α′] ∪ [β ′, β]. (4.29)
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Consider the function

f(x) = g+(x) + g−(x)− (|x| − ζx+ l).

We have from (4.28), (4.29) that

f(x) = f ′(x) = 0 for x = α, α′, β ′, β,

and from (4.25) that

f ′′(x) = − 1
√

(x− α)(x− α′)(x− β ′)(x− β)
for x ∈ (−∞, α)∪ (α′, β ′)∪ (β,∞).

Since

f ′′(x) < 0 for x ∈ (−∞, α) ∪ (β,∞).

and

f ′′(x) > 0 for x ∈ (α′, β ′), x 6= 0,

we obtain that

g+(x) + g−(x)























= |x| − ζx+ l for x ∈ [α, α′] ∪ [β ′, β],

> |x| − ζx+ l for x ∈ (α′, β ′),

< |x| − ζx+ l for x ∈ R \ [α, β].

(4.30)

5. Equation (4.26) implies that the function

G(x) ≡ g+(x)− g−(x)

is pure imaginary for all real x, and

G(x) =































































2πi for −∞ < x ≤ α

2πi− 2πi

∫ x

α

ρ(s) ds for α ≤ x ≤ α′

2πi

(

1 + ζ

2
− x

2γ

)

for α′ ≤ x ≤ β ′

2πi

∫ β

x

ρ(s) ds for β ′ ≤ x ≤ β

0 for β ≤ x <∞.

(4.31)
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From (4.30) and (4.31) we obtain that

2g±(x) =















|x| − ζx+ l ±
[

2πi− 2πi

∫ x

α

ρ(s) ds

]

for α ≤ x ≤ α′

|x| − ζx+ l ± 2πi

∫ β

x

ρ(s) ds for β ′ ≤ x ≤ β.

(4.32)

6. Also, from (4.31) we see that the function G(x) is real analytic on each of the

intervals (−∞, α), (α, α′), (α′, β ′), (β ′, β), and (β,∞), and can therefore be

extended to the complex plane in a neighborhood of any of these intervals. The

Cauchy-Riemann equations imply that

dG(x+ iy)

dy

∣

∣

∣

∣

y=0

= 2πρ(x) > 0, x ∈ (α, β).

Observe that from (4.28) we have that

G(x) = 2g+(x)− V (x)− l = −[2g−(x)− V (x)− l], x ∈ [α, α′] ∪ [β ′, β],

where V (x) ≡ |x| − ζx.

4.7 Evaluation of the Lagrange multiplier l

We have the following proposition.

Proposition 4.7.1 The Lagrange multiplier l solves the equation,

e
l
2 =

πϑ′1(0)

2eϑ1(ω)
. (4.33)

For a proof of this proposition see the next section.

4.8 Proof of Propositions 4.4.1, 4.5.1, and 4.7.1

Proof of Proposition 4.4.1. Following Zinn-Justin [51], we make the following

elliptic change of variables:

u(z) =
1

2

√

(β ′ − α)(β − α′)

∫ z

β

dz′
√

(z′ − α)(z′ − α′)(z′ − β ′)(z′ − β)
, (4.34)
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where integration takes place on the sheet of
√

R(z′) specified in Proposition 4.5.1.

To understand this integral in terms of the Jacobi elliptic functions, we first make

the change of variables

v(z′) =
(β − z′)(β ′ − α)

(β ′ − z′)(β − α)
, (4.35)

so that

z′ =
β ′(β − α)v − β(β ′ − α)

(β − α)v − (β ′ − α)
.

Note that v(β) = 0, v(β ′) = ∞, and v(α) = 1. When we substitute v into equation

(4.34), we have

u(z) =
1

2k

∫ v(z)

0

dv
√

v(v − 1)(v − 1
k2
)
,

where

k =

√

(β − α)(β ′ − α′)

(β ′ − α)(β − α′)
.

We next take v′ =
√
v, obtaining

u(z) =

∫

√
v(z)

0

dv′
√

(1− v′2)(1− k2v′2)
,

which corresponds to
√

v(z) = sn(u, k), so that

(β − z)(β ′ − α)

(β ′ − z)(β − α)
= sn2(u), sn(u) = sn(u, k). (4.36)

Notice that u maps the upper z-plane conformally and bijectively onto the rectangle

[0, K]× [0, iK ′], and the lower z-plane conformally and bijectively onto the rectangle

[0, K]× [−iK ′, 0], where

K = u(α) =

∫ 1

0

dv′
√

(1− v′2)(1− k2v′2)
and

K ′ = −iu(β ′) =

∫ 1
k

1

dv′
√

(v′2 − 1)(1− k2v′2)

are the usual complete integrals of the first kind. More specifically (see Figure 4.3),

1. The upper (resp. lower) cusp of the interval [β ′, β] is mapped onto the interval

[0, iK ′] (resp. [0,−iK ′]).
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2. The upper (resp. lower) cusp of the interval [α, α′] is mapped onto the interval

[K,K + iK ′] (resp. [K,K − iK ′]).

3. The interval [α′, β ′] is mapped onto the inteval [iK ′, K + iK ′] or the inteval

[−iK ′, K − iK ′], depending on the path of integration.

4. The remaining part of the real axis, [−∞, α]∪[β,∞], is mapped onto the interval

[0, K], with u(∞) = u∗ = u∞.

u( u(

u(

u( u(

β

β α

α

α

)=Ku(β)=0
u

*

a’)=iK’

’ ’ ’)=K−iK’

’)=K+iK’

)=−iK

Fig. 4.3. The u-plane. Here u∗ = u∞ ≡ u(∞) and a = u∗ + iK ′.

We will denote the rectangle [0, K] × [−iK ′, iK ′] as R, the fundamental domain of

the function z(u). We can now define

ω̃(u) = ω(z(u)) for u ∈ R.

The Euler-Lagrange equation (4.19) and the equation (4.20) then become

ω̃(u) + ω̃(−u) = 1− ζ for u ∈ [−iK ′, iK ′]

ω̃(u) + ω̃(−u+ 2K) = −1− ζ for u ∈ [K − iK ′, K + iK ′]

ω̃(u+ 2iK ′)− ω̃(u) = −iπ
γ

for u ∈ [−iK ′, K − iK ′].

(4.37)
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The function ω(z) is analytic in C \ [α, β], but can be analytically continued from

either above or below through any of the cuts [α, α′], [α′, β ′], and [β ′, β]. These

analytic continuations in the z-plane give an analytic continuation of ω̃ in the u-

plane into a neighborhood of R, which can then be continued by equations (4.37) to

the entire u-plane. We therefore have that ω̃ is analytic and satisfies equations (4.37)

throughout the u-plane. The first two equations of (4.37) can be combined as

ω̃(u+ 2K) = ω̃(u)− 2. (4.38)

It therefore follows that ω̃ is a linear function of u, as its derivative is a doubly periodic

entire function. We also know from the fact that ω(z) ∼ 1
z
at infinity that

ω̃(u) = − 2
√

(β ′ − α)(β − α′)
(u− u∞) +O(u− u∞)2 (4.39)

in some neighborhood of u∞, where u∞ is the image of infinity under the map u(z).

It thus follows from (4.37), (4.38), and (4.39) that

ω̃(u) = − 1

K
(u− u∞), (4.40)

and that

K ′

K
=

π

2γ
, (4.41)

√

(β ′ − α)(β − α′) = 2K , (4.42)

u∞
K

=
1− ζ

2
. (4.43)

From (4.36) we obtain that
β ′ − α

β − α
= sn2(u∞). (4.44)

This implies that

cn2(u∞) = 1− sn2(u∞) = 1− β ′ − α

β − α
=
β − β ′

β − α
,

dn2(u∞) = 1− k2sn2(u∞) = 1− (β − α)(β ′ − α′)

(β ′ − α)(β − α′)

(β ′ − α)

(β − α)
=
β − β ′

β − α′ .

(4.45)
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From equations (4.42), (4.44), (4.45) we obtain the distances between the turning

points in terms of u∞:

β − α = 2K
dn(u∞)

sn(u∞)cn(u∞)
, β − α′ = 2K

cn(u∞)

sn(u∞)dn(u∞)
,

β − β ′ = 2K
cn(u∞)dn(u∞)

sn(u∞)
.

(4.46)

The functions sn, cn, and dn are expressed in terms of Jacobi theta functions as

follows (see e.g. [50]),

sn(u) =
ϑ3(0)

ϑ2(0)

ϑ1(
πu
2K

)

ϑ4(
πu
2K

)
, cn(u) =

ϑ4(0)

ϑ2(0)

ϑ2(
πu
2K

)

ϑ4(
πu
2K

)
, dn(u) =

ϑ4(0)

ϑ3(0)

ϑ3(
πu
2K

)

ϑ4(
πu
2K

)
.

By (4.41), the half-period ratio τ and the elliptic nome q of the theta functions are

τ =
iK ′

K
=
iπ

2γ
and q = e

−πK′

K = e
−π2

2γ . (4.47)

If we take into account the fact that

ϑ3(0)
2 =

2K

π

and equation (4.43), we can write equations for the distances between the turning

points that involve the original parameters only:

β − α = πϑ22(0)
ϑ3(

ω
2
)ϑ4(

ω
2
)

ϑ1(
ω
2
)ϑ2(

ω
2
)
, β − α′ = πϑ3(0)

2ϑ1(
ω
2
)ϑ3(

ω
2
)

ϑ2(
ω
2
)ϑ4(

ω
2
)
,

β ′ − α = πϑ23(0)
ϑ2(

ω
2
)ϑ4(

ω
2
)

ϑ1(
ω
2
)ϑ3(

ω
2
)
,

(4.48)

which is (4.22). These equations determine the end-points α, α′, β ′, β up to a shift.

To fix the shift we use the equation (4.18) at the points α′ and β ′ to obtain

∫ β′

α′

(

ω(z + i0) + ω(z − i0)
)

dz = (1− ζ)β ′ + (1 + ζ)α′.

Writing this integral in terms of u gives
∫ K+iK ′

iK ′

1

K
(u− u∞)r′(u)du+

∫ K−iK ′

−iK ′

1

K
(u− u∞)r′(u)du = (1− ζ)β ′ + (1 + ζ)α′ ,

where

r(u) =
β ′(β − α)sn2(u)− β(β ′ − α)

(β − α)sn2(u)− (β ′ − α)
=
β − β′sn2(u)

sn2(u∞)

1− sn2(u)
sn2(u∞)

and r′(u) =
d

du
r(u). (4.49)
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Note that r(±iK ′) = β ′ and r(K ± iK ′) = α′. Integrating by parts gives

2

K
((K − u∞)α′ + β ′u∞)−

∫ K+iK ′

iK ′

r(u)

K
du−

∫ K−iK ′

−iK ′

r(u)

K
du = (1− ζ)β ′ + (1 + ζ)α′ ,

or equivalently
∫ K+iK ′

iK ′

r(u)du+

∫ K−iK ′

−iK ′

r(u)du = 0. (4.50)

We can evaluate these integrals by first writing r(u) in the form

r(u) = β +

(

β − β ′

sn2(u∞)

)

sn2(u)

1− sn2(u)
sn2(u∞)

and using the functions

Θ(u) = ϑ4

( πu

2K

)

, Z(u) =
Θ′(u)

Θ(u)
.

The addition formulae for the sn and Z functions are (see [50])

sn(u± a) =
sn(u)cn(a)dn(a)± sn(a)cn(u)dn(u)

1− k2sn2(a)sn2(u)
,

Z(u± a) = Z(u)± Z(a)∓ k2sn(u)sn(a)sn(u± a).

Thus we have

Z(u− a)− Z(u+ a) + 2Z(a) = k2sn(u)sn(a)
(

sn(u+ a) + sn(u− a)
)

=
k2sn(u)sn(a) [2sn(u)cn(a)dn(a)]

1− k2sn2(a)sn2(u)

=
2k2sn(a)cn(a)dn(a)sn2(u)

1− k2sn2(a)sn2(u)
.

(4.51)

We also have the half- and quarter-period identities

sn(u+ iK ′) =
1

ksn(u)
, cn(u+ iK ′) =

−i
k

dn(u)

sn(u)
, dn(u+ iK ′) = −icn(u)

sn(u)
. (4.52)

In particular, notice that 1
sn(u∞)

= ksn(u∞ + iK ′). Using the addition formula (4.51)

we can write r(u) as

r(u) = β +

(

β − β ′

2k2sn(a)cn(a)dn(a)sn2(u∞)

)

(

Z(u− a)− Z(u+ a) + 2Z(a)
)

,

(4.53)
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where a = u∞ + iK ′, (see Figure 4.3). From (4.52) and (4.46), it follows that

β − β ′

2k2sn(u∞ + iK ′)cn(u∞ + iK ′)dn(u∞ + iK ′)sn2(u∞)
= −K.

Thus we can write (4.53) as

r(u) = β −K [Z(u− u∞ − iK ′)− Z(u+ u∞ + iK ′) + 2Z(u∞ + iK ′)] . (4.54)

If we write u = x + iK ′ in the first integral of (4.50), and u = x − iK ′ in the

second, we obtain

∫ K

0

[

2β − 4KZ(u∞ + iK ′)−K[Z(x− u∞)− Z(x+ u∞ + 2iK ′)

+Z(x− u∞ − 2iK ′)− Z(x+ u∞)]
]

dx = 0

(4.55)

From the periodic properties of ϑ4, it follows that

Z(u± 2iK ′) = Z(u)∓ πi

K
,

so we can write (4.55) as
∫ K

0

(

2β − 4KZ(u∞ + iK ′)− 2πi+ 2K
[

Z(x+ u∞)− Z(x− u∞)
]

)

dx = 0

This equation is readily integrated, as Z is the logarithmic derivative of the Θ func-

tion. Integrating gives

0 =

[

(2β − 4KZ(u∞ + iK ′)− 2πi)x+ 2K log
Θ(x+ u∞)

Θ(x− u∞)

]K

x=0

= 2Kβ − 4K2Z(u∞ + iK ′)− 2Kπi+ 2K log

(

Θ(K + u∞)

Θ(K − u∞)

Θ(−u∞)

Θ(u∞)

)

.

The logarithmic term in this equation is zero due to the evenness and periodicity

(period 2K) of the Θ function and the fact that the relevant term in the integration

is real on the entire contour of integration. Thus we have that

β = 2KZ(u∞ + iK ′) + πi. (4.56)

From (4.10), we can deduce that

Z(u∞ + iK ′) = − π

2K

(

ϑ′2(
ω
2
)

ϑ2(
ω
2
)
+ i

)
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and write (4.56) as

β = −π ϑ
′
2(
ω
2
)

ϑ2(
ω
2
)
. (4.57)

This equation, together with equations (4.48) and (4.47), determine the end-points

α, α′, β ′, β. In fact, similar to (4.57) we have the following explicit formulae for the

other end-points:

α = −π ϑ
′
1(
ω
2
)

ϑ1(
ω
2
)
, α′ = −π ϑ

′
4(
ω
2
)

ϑ4(
ω
2
)
, β ′ = −π ϑ

′
3(
ω
2
)

ϑ3(
ω
2
)
. (4.58)

This follows from (4.48), (4.57), and the identities (E.2). Similarly, in addition to the

formulae (4.48) for distances between turning points, we get (4.21).

Proof of the formula of Zinn-Justin for α+α′+β′+β
4

. We immediately have from

(4.58) that

α+ α′ + β ′ + β

4
= −π

4

[

ϑ′1(
ω
2
)

ϑ1(
ω
2
)
+
ϑ′2(

ω
2
)

ϑ2(
ω
2
)
+
ϑ′3(

ω
2
)

ϑ3(
ω
2
)
+
ϑ′4(

ω
2
)

ϑ4(
ω
2
)

]

.

From the identity (E.6), we can deduce that

ϑ′1(2z)

ϑ1(2z)
=

1

2

[

ϑ′1(z)

ϑ1(z)
+
ϑ′2(z)

ϑ2(z)
+
ϑ′3(z)

ϑ3(z)
+
ϑ′4(z)

ϑ4(z)

]

,

thus we have

α + α′ + β ′ + β

4
= −π

2

ϑ′1(ω)

ϑ1(ω)
= −π

2

ϑ′1(
π
2
+ πζ

2
)

ϑ1(
π
2
+ πζ

2
)
= −π

2

ϑ′2(
πζ
2
)

ϑ2(
πζ
2
)
.

Proof of Proposition 4.5.1. From equations (4.40), (4.34), and (4.42) we obtain

formula (4.25), cf. [51]. From formula (4.25) and equations (4.16), (4.20) we obtain

that the equilibrium density function ρ(x) is given by formulae (4.23). We are left to

prove formula (4.24).

By (4.34), (4.42), and (4.23), on the interval [β ′, β],

ρ(x) =
1

iKπ
u+(x) for x ∈ [β ′, β].

It follows that

∫ β

β′

ρ(x)dx =
1

iKπ

∫ β

β′

u+(x)dx =
1

iKπ

∫ 0

iK ′

ur′(u)du, (4.59)
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where r(u) is defined in (4.49). If we use equation (4.54), together with formula

(4.56), we can write r(u) as

r(u) = iπ −K
[

Z(u− u∞ − iK ′)− Z(u+ u∞ + iK ′)
]

. (4.60)

Integrating (4.59) by parts, we get

∫ 0

iK ′

ur′(u)du = −β ′iK ′ − πK ′ −K

[

log

(

Θ(−u∞ − iK ′)Θ(u∞ + 2iK ′)

Θ(−u∞)Θ(u∞ + iK ′)

)]

. (4.61)

Using the fact that Θ is an even function and the identity

Θ(u+ 2iK ′) = eiπe−iπτe
−iπu
K Θ(u),

we can write (4.61) as

∫ 0

iK ′

ur′(u)du = −β ′iK ′ − πK ′ +K

(

iπ + π
K ′

K
− iπu∞

K

)

= i(Kπ − β ′K ′ − πu∞).

(4.62)

Remark: There is perhaps some question here as to which branch of the logarithm

to take, but it is clear that we have chosen the correct branch, as it is the only one

that gives 0 <
∫ β

β′ ρ(x)dx < 1.

Thus, from (4.59) and (4.62), we have

∫ β

β′

ρ(x)dx =
1

iKπ
i(Kπ − β ′K ′ − πu∞) = 1− β ′K ′

πK
− u∞

K
= 1− β ′

2γ
− 1− ζ

2
,

hence by (4.23),

∫ β

0

ρ(x)dx =

∫ β′

0

ρ(x)dx+

∫ β

β′

ρ(x)dx =
β ′

2γ
+ 1− β ′

2γ
− 1− ζ

2
=

1 + ζ

2
,

which proves formula (4.24).

Proof of Proposition 4.7.1. By taking x = β we obtain from (4.30) that

l = 2g(β)− V (β) = 2g(β)− (1− ζ)β.

We also have that

lim
A→∞

[g(A)− logA] = 0,
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hence

l = −2 lim
A→∞

[g(A)− g(β)− logA]− (1− ζ)β

= −2 lim
A→∞

[
∫ A

β

ω(z) dz − logA

]

− (1− ζ)β.

Writing this integral in terms of u (so z = r(u)) gives

l = 2 lim
A→∞

[
∫ B

0

1

K
(u− u∞)r′(u) du+ logA

]

− (1− ζ)β

= 2 lim
B→u∞

[∫ B

0

1

K
(u− u∞)r′(u) du+ log r(B)

]

− (1− ζ)β,

where A = r(B). Integrating by parts gives

l = 2 lim
B→u∞

[

1

K
(u− u∞)r(u)

∣

∣

∣

∣

B

u=0

− 1

K

∫ B

0

r(u) du+ log r(B)

]

− (1− ζ)β.

From (4.49) we obtain that r(0) = β and

lim
B→u∞

(B − u∞)r(B) = −(β − β ′)sn(u∞)

2sn′(u∞)
= − (β − β ′)sn(u∞)

2cn(u∞)dn(u∞)
= −K ,

hence

l = 2

[

−1 +
β(1− ζ)

2

]

− 2 lim
B→u∞

[

1

K

∫ B

0

r(u) du− log r(B)

]

− (1− ζ)β

= −2 − 2 lim
B→u∞

[

1

K

∫ B

0

r(u) du− log r(B)

]

.

(4.63)

Using equation (4.60) for r(u), we immediately get that

1

K

∫ B

0

r(u)du =
Bπi

K
+ log

[

Θ(B + u∞ + iK ′)

Θ(B − u∞ − iK ′)

]

Now using equation (4.49) for r(u), we have

lim
B→u∞

[

1

K

∫ B

0

r(u) du− log r(B)

]

=
u∞πi

K
+ lim

B→u∞
log

[

Θ(B + u∞ + iK ′)
(

sn2(u∞)− sn2(B)
)

Θ(B − u∞ − iK ′)
(

βsn2(u∞)− β ′sn2(B)
)

]

=
u∞πi

K
+ log

[

Θ(2u∞ + iK ′)2sn(u∞)sn′(u∞)

Θ′(iK ′)(β − β ′)sn2(u∞)

]

=
u∞πi

K
+ log

[

2e
−iπu∞

K ϑ1(
πu∞
K

)

πϑ′1(0)

]

= log

[

2ϑ1(ω)

πϑ′1(0)

]

.
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Plugging this into (4.63) gives

l = −2 + 2 log

(

πϑ′1(0)

2ϑ1(ω)

)

,

and thus we obtain that

e
l
2 =

πϑ′1(0)

2eϑ1(ω)
.

4.9 Riemann-Hilbert approach: Interpolation problem

The Riemann-Hilbert approach to discrete orthogonal polynomials is based on

the following Interpolation Problem (IP), which was introduced in the paper [11] of

Borodin and Boyarchenko under the name of the discrete Riemann-Hilbert problem.

See also the monograph [5] of Baik, Kriecherbauer, McLaughlin, and Miller, in which

it is called the Interpolation Problem.

We will consider the lattice Ln defined in (4.5) and the weight wn(x) defined in

(4.4).

Interpolation Problem. For a given n = 0, 1, . . ., find a 2 × 2 matrix-valued

function Pn(z) = (Pnij(z))1≤i,j≤2 with the following properties:

1. Analyticity: Pn(z) is an analytic function of z for z ∈ C \ Ln.

2. Residues at poles: At each node x ∈ Ln, the elements Pn11(z) and Pn21(z) of the

matrix Pn(z) are analytic functions of z, and the elements Pn12(z) and Pn22(z)

have a simple pole with the residues,

Res
z=x

Pnj2(z) = wn(x)Pnj1(x), j = 1, 2. (4.64)

3. Asymptotics at infinity: There exists a function r(x) > 0 on Ln such that

lim
x→∞

r(x) = 0,

and such that as z → ∞, Pn(z) admits the asymptotic expansion,

Pn(z) ∼
(

I +
P1

z
+

P2

z2
+ . . .

)





zn 0

0 z−n



 , z ∈ C \
[ ∞
⋃

x∈Ln

D
(

x, r(x)
)

]

,

(4.65)
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where D(x, r(x)) denotes a disk of radius r(x) > 0 centered at x and I is the

identity matrix.

It is not difficult to see (see [5] and [11] ) that the IP has a unique solution, which

is

Pn(z) =





Pnn(z) C(wnPnn)(z)

(hn,n−1)
−1Pn,n−1(z) (hn,n−1)

−1C(wnPn,n−1)(z)



 , (4.66)

where the Cauchy transformation C is defined by the formula

C(f)(z) =
∑

x∈Ln

f(x)

z − x
,

and Pnk(z) = zk + . . . are monic polynomials orthogonal with respect to the weight

wn(x). Because of the orthogonality condition, as z → ∞,

C(wnPnk)(z) =

∞
∑

x∈Ln

wn(x)Pnk(x)

z − x
∼

∞
∑

x∈Ln

wn(x)Pnk(x)

∞
∑

j=0

xj

zj+1
=

hnk
zk+1

+

∞
∑

j=k+2

aj
zj
,

which justifies asymptotic expansion (4.65). We have that

hnn = [P1]12, h−1
n,n−1 = [P1]21. (4.67)

4.10 Reduction of IP to RHP

We would like to reduce the Interpolation Problem to a Riemann-Hilbert Problem

(RHP). That is, we would like to replace the condition (4.64) on poles of the matrix

P with a jump condition on some contour on the complex plane. In order to do so,

we begin with some preliminaries. Introduce the function,

Π(z) =
2γ

nπ
sin

(

nπz

2γ

)

.

Observe that

Π(xk) = 0, Π′(xk) = (−1)k, exp

(

inπxk
2γ

)

= (−1)k for xk =
2γk

n
∈ Ln .

Introduce the upper triangular matrices,

Du
±(z) =





1 −wn(z)
Π(z)

e±
inπz
2γ

0 1



 ,
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and the lower triangular matrices,

Dl
± =





Π(z)−1 0

− 1
wn(z)

e±
inπz
2γ Π(z)



 =





Π(z)−1 0

0 Π(z)









1 0

− 1
Π(z)wn(z)

e±
inπz
2γ 1



 .

Define the matrix-valued functions,

Ru
n = Pn(z)×







Du
+(z) when Im z ≥ 0

Du
−(z) when Im z ≤ 0

(4.68)

and

Rl
n = Pn(z)×







Dl
+(z), when Im z ≥ 0

Dl
−(z), when Im z ≤ 0.

From (4.66) we have that

Ru
n(z) =





Pnn(z) −wn(z)Pnn(z)
Π(z)

e±
inπz
2γ + C(wnPnn)(z)

h−1
n,n−1Pn,n−1(z) −wn(z)h

−1
n,n−1Pn,n−1(z)

Π(z)
e±

inπz
2γ + h−1

n,n−1C(wnPn,n−1)(z)





when ± Im z ≥ 0,

and

Rl
n(z) =





Pnn(z)
Π(z)

− C(wnPnn)(z)
wn(z)

e±
inπz
2γ Π(z)C(wnPnn)(z)

h−1
n−1Pn,n−1(z)

Π(z)
− h−1

n,n−1C(wnPn,n−1)(z)

wn(z)
e±

inπz
2γ Π(z)h−1

n,n−1C(wnPn,n−1)(z)





when ± Im z ≥ 0.

Observe that the functionsRu
n(z) andRl

n(z) are meromorphic on the closed quadrants

of the complex plane, and that they are two-valued on the real and imaginary axes.

Their possible poles are located on the lattice Ln. An important result is that, due

to some cancellations, they do not have any poles at all. We have the following

proposition.

Proposition 4.10.1 The matrix-valued functions Ru
n(z) and Rl

n(z) have no poles

and on the real line they satisfy the following jump conditions at x ∈ R:

Ru
n+(x) = Ru

n−(x)j
u
R(x), juR(x) =





1 −nπiwn(x)
γ

0 1



 , (4.69)
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and

Rl
n+(x) = Rl

n−(x)j
l
R(x), jlR(x) =





1 0

− nπi
γwn(x)

1



 . (4.70)

Proof It follows from the definition of Ru
n(z) that all possible poles of Ru

n(z) are

located on the lattice Ln. Let us show that the residue of all these poles is equal

to zero. Consider any xk ∈ Ln. The residue of the matrix element Ru
n,12(z) at xk is

equal to

Res
z=xk

Ru
n,12(z) = −wn(xk)Pnn(xk)

(−1)k
(−1)k + wn(xk)Pnn(xk) = 0.

Similarly we get that

Res
z=xk

Rn,22(z) = 0,

hence Ru
n(z) has no pole at xk.

Similarly, the residue of the matrix element Rl
n,11(z) at xk is equal to

Res
z=xk

Rl
n,11(z) =

Pnn(xk)

(−1)k
− wn(xk)Pnn(xk)(−1)k

wn(xk)
= 0.

In the same way we obtain that

Res
z=xk

Rn,21(z) = 0.

In the entry Rl
n,21(z), the pole of the function C(wnPn)(z) at z = xk is cancelled by

the zero of the function Π(z), hence Rl
n,21(z) has no pole at xk. Similarly, Rl

n,22(z)

has no pole at xk as well, hence Rl
n(z) has no pole at xk.

Let us evaluate the jump matrices at x ∈ R. From (4.68) we have that

juR(x) = Du
−(x)

−1Du
+(x) =





1 −wn(x)
Π(x)

2i sin nπx
2γ

0 1



 =





1 −nπiwn(x)
γ

0 1



 ,

which proves (4.69). Similarly,

jlR(x) = Dl
−(x)

−1Dl
+(x) =





1 0

− 1
Π(x)wn(x)

2i sin nπx
2γ

1



 =





1 0

− nπi
γwn(x)

1



 ,

which proves (4.70).
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We are now in a position to reduce the Interpolation Problem to a Riemann-

Hilbert Problem. We follow the work [5] with some modifications. Denote

∆ = Ln ∩ [α′, β ′], ∇ = Ln \∆.

Consider the oriented contour Σ on the complex plane depicted on Figure 4.4, in which

the horizontal lines are Im z = ε, 0,−ε, where ε > 0 is a small positive constant which

will be determined later, and the vertical segments pass through the points z = α′

and z = β ′. Consider the regions Ω∆
± and Ω∇

± bounded by the contour Σ, see Figure

4.4. Observe that the regions Ω∇
± consist of two connected components, to the left

and to the right of Ω∆
± .

Ω

Ω

Ω

Ω

Ω

Ω

∆

∆

+

−

++

− −
α’ β’

Fig. 4.4. The contour Σ.

Define

Rn(z) =























KnR
u
n(z)K

−1
n for z ∈ Ω∇

±

KnR
l
n(z)K

−1
n for z ∈ Ω∆

±

KnPn(z)K
−1
n otherwise.

(4.71)

where Kn =





1 0

0 −nπi
γ



.

Define a contour ΣR by adding to the contour Σ a vertical segment [iε,−iε], see
Figure 4.5. If A ⊂ C is a set on the complex plane and b ∈ C then, as usual, we

denote

A+ b = {z = a+ b, a ∈ A}.
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0α’ ’β

Fig. 4.5. The contour ΣR.

Proposition 4.10.2 The matrix-valued function Rn(z) has the following jumps on

the contour ΣR:

Rn+(z) = Rn−(z)jR(z),

where

jR(z) =































































































































































1 w(z)

0 1



 when z ∈ (−∞, α′) ∪ (β ′,∞)





1 0

−(nπ
γ
)2w(z)−1 1



 when z ∈ [α′, β ′]

KnD
u
±(z)K

−1
n =





1 − iγ
nπ

wn(z)e
± inπz

2γ

Π(z)

0 1





when z ∈ (−∞, α′) ∪ (β ′,∞)± iε

KnD
l
±(z)K

−1
n =





Π(z)−1 0

inπ
γ

e
± inπz

2γ

wn(z)
Π(z)



 when z ∈ (α′, β ′)± iε

KnD
l
±(z)

−1Du
±(z)K

−1
n =





Π(z) γ
nπi
wn(z)e

± inπz
2γ

−nπi
γ
wn(z)

−1e±
inπz
2γ ∓nπi

γ
e±

inπz
2γ





when z ∈ (0,±iε) + α′ or z ∈ (0,±iε) + β ′

KnD
0
±(z)K

−1
n when z ∈ (0,±iε)

(4.72)

and

D0
±(z) =





1 0

−2 sinh(nz)e−nζze
± inπz

2γ

Π(z)
1



 .
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Notice that the jumps on vertical contours close to the origin, D0
±(z), are exponen-

tially close to the identity matrix.

4.11 First transformation of the RHP

Define the matrix function Tn(z) as follows from the equation,

Rn(z) = e
nl
2
σ3Tn(z)e

n(g(z)− l
2
)σ3 ,

where the Lagrange multiplier l and the function g(z) are as described in Section 4.3

and σ3 =





1 0

0 −1



 is the third Pauli matrix. Then Tn(z) satisfies the following

Riemann-Hilbert Problem:

1. Tn(z) is analytic in C \ ΣR.

2. Tn+(z) = Tn−(z)jT (z) for z ∈ ΣR, where

jT (z) =







en(g−(z)− l
2
)σ3jR(z)e

−n(g+(z)− l
2
)σ3 for z ∈ R

en(g(z)−
l
2
)σ3jR(z)e

−n(g(z)− l
2
)σ3 for z ∈ ΣR \ R.

(4.73)

3. As z → ∞,

Tn(z) ∼ I +
T1

z
+

T2

z2
+ . . . .

From (4.27) we have that

g(z) = log z +O(z−1) as z → ∞.

This implies that

[T1]12 = e−nl[R1]12. (4.74)
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Let’s take a closer look at the behavior of the jump matrix jT described in (4.73) on

the horizontal segments of ΣR. We have that

jT (z) =























































































































e−nG(z) en(g+(z)+g−(z)−V (z)−l)

0 enG(z)



 when z ∈ (−∞, α′) ∪ (β ′,∞)





e−nG(z) 0

−(nπ
γ
)2e−n(g+(z)+g−(z)−V (z)−l) enG(z)



 when z ∈ (α′, β ′)





1 ± e±nG(z)

1−e
∓inπ

γ e
εnπx

γ

0 1



 when z = x± iε ∈ (α, α′) ∪ (β ′, β)± iε





1 ±en(2g(z)−l−V (z))

1−e
∓inπx

γ e
εnπ
γ

0 1



 when z = x± iε ∈ (−∞, α) ∪ (β,∞)± iε





Π(z)−1 0

inπ
γ
e±

inπx
2γ e−n(2g(z)−V (z)−l) Π(z)



 when z ∈ (α′, β ′)± iε.

According to the properties of the g-function, we have the following proposition:

Proposition 4.11.1 The jump function jT has the following large n asymptotics:

jT (z) =



























































































e−nG(z) 0

O(e−nC(z)) enG(z)



 for z ∈ (α′, β ′)





e−nG(z) 1

0 enG(z)



 for z ∈ (α, α′) ∪ (β ′, β)





1 O(e−nC(z))

0 1



 for z ∈ (−∞, α) ∪ (β,∞)





1 e±nG(z)O(e−
εnπ
γ )

0 1



 for z ∈ (α, α′) ∪ (β ′, β)± iε,

where C(z) is a positive continuous function on any subset of the given interval which

is bounded away from the endpoints of each interval and satisfies

C(z) > c(|z|+ 1) for some c > 0. (4.75)
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4.12 Second transformation of the RHP

The second transformation is based on two observations. The first is the well

known “opening of the lenses” in a neighborhood of the unconstrained support of the

equilibrium measure. Namely, notice that, for x ∈ (α, α′) ∪ (β ′, β), the jump matrix

jT (x) factorizes as

jT (x) =





e−nG(z) 1

0 enG(z)



 =





1 0

enG(x) 1









0 1

−1 0









1 0

e−nG(x) 1





= j−(x)jM j+(x),

(4.76)

which allows us to reduce the jump matrix jT to the one jM plus asymptotically small

jumps on the lens boundaries. The second observation consists of two facts. Firstly,

the jumps on the segments [α′, β ′]± iε behave, for large n, as ±e± inπz
2γ . Secondly, note

that, for x ∈ [α′, β ′], G(x) is a linear function with slope −πi
γ
. With these facts in

mind, we make the second transformation of the RHP. Let

Sn(z) =











































































Tn(z)j+(z)
−1 for z ∈ {(α, α′) ∪ (β ′, β)} × (0, iε)

Tn(z)j−(z) for z ∈ {(α, α′) ∪ (β ′, β)} × (0,−iε)

Tn(z)





− γ
nπi
e−

inπz
2γ 0

0 −nπi
γ
e

inπz
2γ



 for z ∈ (α′, β ′)× (0, iε)

Tn(z)





γ
nπi
e

inπz
2γ 0

0 nπi
γ
e−

inπz
2γ



 for z ∈ (α′, β ′)× (0,−iε)

Tn(z) otherwise.

(4.77)

This function satisfies a similar RHP to T, but jumps now occur on a new contour,

ΣS, which is obtained from ΣR by adding the two segments (α − iε, α + iε) and

(β − iε, β + iε), see Figure 4.6.
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0α βα β’’

Fig. 4.6. The contour ΣS.

On the horizontal segments for which the jump function jS differs from jT , we

have that, as n→ ∞,

jS(z) =



















































































































0 1

−1 0



 for z ∈ (α, α′) ∪ (β ′, β)





1 +O(e−εnπ/γ) O(en[G(z)−επ/γ])

−e−nG(z) 1



 for z − iε ∈ (α, α′) ∪ (β ′, β)





1 +O(e−εnπ/γ) O(en[−G(z)−εnπ/γ])

enG(z) 1



 for z + iε ∈ (α, α′) ∪ (β ′, β)





1 +O(e−εnπ/γ) 0

nπi
γ
e−n(2g(z)−l−V (z)) 1 +O(e−εnπ/γ)



 for z ∈ [α′, β ′]± iε





−e−nπi(1+ζ) 0

e−n(g+(z)+g−(z)−l−V (z)) −enπi(1+ζ)



 for z ∈ [α′, β ′].

By formula (4.31) for the G-function and the upper constraint (4.17) on the density

ρ, we obtain that, for sufficiently small ε > 0 and x ∈ (α, α′) ∪ (β ′, β),

0 < ∓ReG(x± iε) = 2πρ(x) +O(ε2) <
πε

γ
+O(ε2).

This, combined with property (4.30) of the g-function, imply that all jumps on hor-

izontal segments are exponentially close to the identity matrix, provided that they

are bounded away from the interval [α, β]. For what follows we denote

Ωn = π + n2π

∫ β

0

ρ(x) dx = π + nπ(1 + ζ), (4.78)
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so that

−e−nπi(1+ζ) = e−iΩn .

4.13 Model RHP

The model RHP appears when we drop in the jump matrix jS(z) the terms that

vanish as n→ ∞:

1. M(z) is analytic in C \ [α, β].

2. M+(z) = M−(z)jM (z) for z ∈ [α, β], where

jM(z) =























0 1

−1 0



 for z ∈ [α, α′] ∪ [β, β ′]

e−iΩnσ3 for z ∈ [α′, β ′].

(4.79)

3. As z → ∞,

M(z) ∼ I +
M1

z
+

M2

z2
+ . . . . (4.80)

This model problem was first solved, in the general multi-cut case, in [16] (see

also [15]), and is solved in two steps. In the first step, we solve the following auxiliary

RHP:

1. Q(z) is analytic in C \ [α, α′] ∪ [β ′, β].

2. Q+(z) = Q−(z)





0 1

−1 0



 for z ∈ [α, α′] ∪ [β ′, β].

3. Q(z) = I +O(z−1) as z → ∞.

This RHP has the unique solution (see [16])

Q(z) =





γ(z)+γ−1(z)
2

γ(z)−γ−1(z)
−2i

γ(z)−γ−1(z)
2i

γ(z)+γ−1(z)
2



 (4.81)

where

γ(z) =

(

(z − α)(z − β ′)

(z − α′)(z − β)

)1/4

(4.82)
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with cuts on [α, α′] ∪ [β ′, β].

To solve the model RHP described in (4.79) and (4.80), we again use elliptic

functions. Define the function

f(s) =
ϑ3(s+ d+ c)

ϑ3(s+ d)

where ϑ3 is as defined in (4.8) with elliptic nome q = eiπτ = e
−π2

2γ ( τ = iπ
2γ
), and d

and c are arbitrary complex numbers. Notice that f has the periodic properties

f(s+ π) = f(s) , f(s+ πτ) = e−2icf(s) , (4.83)

and that f is an even function of its argument. Now let

ũ(z) =
π

2K
u(z) =

π

2

∫ z

β

dz′
√

R(z′)
(4.84)

where u is as defined in (4.34). Then ũ is two-valued on [α, β] and satisfies

ũ+(x)− ũ−(x) = πτ for x ∈ [α′, β ′]. (4.85)

Also,

ũ±(α) =
π

2
, ũ±(α

′) =
π

2
± πτ

2
, ũ±(β

′) = ±πτ
2
, ũ±(β) = 0 ,

see Figure 4.3. Because
√

R(x)
+
= −

√

R(x)− for x ∈ [α, α′] ∪ [β ′, β], it immediately

follows that

ũ+(x) + ũ−(x) = 0 for x ∈ [β ′, β], (4.86)

and that

ũ+(x) + ũ−(x) = ũ+(α
′)− ũ+(β

′) + ũ−(α
′)− ũ−(β

′) = π for x ∈ [α, α′].

(4.87)

We now define

f1(z) =
ϑ3(ũ(z) + d+ Ωn

2
)

ϑ3(ũ(z) + d)
, f2(z) =

ϑ3(−ũ(z) + d+ Ωn

2
)

ϑ3(−ũ(z) + d)
for z ∈ C \ [α, β],

where d is an arbitrary complex number. It then follows from (4.83) and(4.85) that

f1+(x) = e−iΩnf1−(x) and f2+(x) = eiΩnf2−(x) for x ∈ [α′, β ′], (4.88)
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and from (4.83), (4.86), and (4.87) that

f1+(x) = f2−(x) and f2+(x) = f1−(x) for x ∈ [α, α′] ∪ [β ′β]. (4.89)

Define the matrix valued function

F(z) =





ϑ3(ũ(z)+d1+
Ωn
2

)

ϑ3(ũ(z)+d1)

ϑ3(−ũ(z)+d1+Ωn
2

)

ϑ3(−ũ(z)+d1)
ϑ3(ũ(z)+d2+

Ωn
2

)

ϑ3(ũ(z)+d2)

ϑ3(−ũ(z)+d2+Ωn
2

)

ϑ3(−ũ(z)+d2)



 (4.90)

where d1 and d2 are yet undetermined complex constants. Then, from (4.88) and(4.89)

we have that

F+(x) = F−(x)





e−iΩn 0

0 eiΩn



 for x ∈ [α′, β ′] ,

F+(x) = F−(x)





0 1

1 0



 for x ∈ [α, α′] ∪ [β ′, β].

We can now combine (4.81) and (4.90) to obtain

M(z) = F(∞)−1





γ(z)+γ−1(z)
2

ϑ3(ũ(z)+d1+
Ωn
2

)

ϑ3(ũ(z)+d1)
γ(z)−γ−1(z)

−2i

ϑ3(−ũ(z)+d1+Ωn
2

)

ϑ3(−ũ(z)+d1)
γ(z)−γ−1(z)

2i

ϑ3(ũ(z)+d2+
Ωn
2

)

ϑ3(ũ(z)+d2)
γ(z)+γ−1(z)

2

ϑ3(−ũ(z)+d2+Ωn
2

)

ϑ3(−ũ(z)+d2)



 (4.91)

where

F(∞) =





ϑ3(ũ∞+d1+
Ωn
2

)

ϑ3(ũ∞+d1)
0

0
ϑ3(−ũ∞+d2+

Ωn
2

)

ϑ3(−ũ∞+d2)



 . (4.92)

and ũ∞ ≡ ũ(∞). This matrix satisfies conditions (4.79) and (4.80) of the model

RHP, but may not be analytic on C \ [α, β], as it may have some poles at the zeroes

of ϑ3(±ũ(z) + d1,2). However, we can choose the constants d1 and d2 such that these

zeroes coincide with the zeroes of γ(z)±γ−1(z) and are thus cancelled in the product.

First consider the zeroes of γ(z)± γ−1(z). These are the zeroes of γ2(z) ± 1 and

thus of γ4(z)− 1. Thus there is only one zero, which uniquely solves the equation

p(z) ≡ (z − α)(z − β ′)

(z − α′)(z − β)
= 1,

which is

x0 =
βα′ − αβ ′

(α′ − α) + (β − β ′)
∈ (α′, β ′).
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It is easy to check that γ(x0) = 1, thus x0 is the unique zero of γ(z)−γ−1(z), whereas

there are no zeroes of γ(z) + γ−1(z) on the specified sheet. We use here the change

of variables v defined in (4.35). Notice that, by (4.46),

v(x0) =
β ′ − α

β ′ − α′ =
dn2(u∞)

k2cn2(u∞)

implying that

sn2
(

u(x0)
)

=
dn2(u∞)

k2cn2(u∞)
. (4.93)

Since x0 ∈ (α′, β ′), we must have u(x0) ∈ (iK ′, K + iK ′) (if we choose to take

u+). Since sn2 is a one-to-one function on this interval, there is a unique point

u0 ∈ (iK ′, K + iK ′) such that sn2(u0) =
dn2(u∞)
k2cn2(u∞)

. The simple period identity

sn(u+K + iK ′) =
dn(u)

kcn(u)
,

along with (4.93), gives that we must have

u0 = u(x0) = K − u∞ + iK ′.

Thus,

ũ(x0) =
π

2K
(K − u∞ + iK ′) =

τπ

2
+
π

2
− ũ∞.

We now consider zeroes of the function ϑ3(ũ(z)− d) ≡ ϑ3(−ũ(z) + d). The zeroes

of this function are the solutions to the equation

ũ(z)− d = (2m+ 1)
π

2
+ (2k + 1)

τπ

2

for any m, k ∈ Z. Because ũ maps the first sheet of X to the rectangular domain

[0, π
2
] × [− τπ

2
, τπ

2
], it is clear that this equation can have at most one solution, and

without any loss of generality we may take m = k = 0. Then, if we want the solution

of this equation to be x0, we need to let

d = ũ(x0)−
π

2
(1 + τ) = −ũ∞.

This choice of d also ensures that ϑ3(ũ(z) + d) ≡ ϑ3(−ũ(z)− d) has no zeroes on the

first sheet of X . We can then let

d1 = d, d2 = −d
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so that (4.91) and (4.92) become

M(z) = F(∞)−1





γ(z)+γ−1(z)
2

ϑ3(ũ(z)+d+
Ωn
2

)

ϑ3(ũ(z)+d)
γ(z)−γ−1(z)

−2i

ϑ3(−ũ(z)+d+Ωn
2

)

ϑ3(−ũ(z)+d)
γ(z)−γ−1(z)

2i

ϑ3(ũ(z)−d+Ωn
2

)

ϑ3(ũ(z)−d)
γ(z)+γ−1(z)

2

ϑ3(−ũ(z)−d+Ωn
2

)

ϑ3(−ũ(z)−d)





= F(∞)−1





γ(z)+γ−1(z)
2

ϑ3(ũ(z)+(n+ 1
2
)ω)

ϑ4(ũ(z)+
ω
2
)

γ(z)−γ−1(z)
−2i

ϑ3(ũ(z)−(n+ 1
2
)ω)

ϑ4(ũ(z)−ω
2
)

γ(z)−γ−1(z)
2i

ϑ3(ũ(z)+(n− 1
2
)ω)

ϑ4(ũ(z)−ω
2
)

γ(z)+γ−1(z)
2

ϑ3(ũ(z)−(n− 1
2
)ω)

ϑ4(ũ(z)+
ω
2
)



 ,

(4.94)

where

F(∞) =





ϑ3(
Ωn
2

)

ϑ3(0)
0

0
ϑ3(

Ωn
2

)

ϑ3(0)



 =





ϑ4(nω)
ϑ3(0)

0

0 ϑ4(nω)
ϑ3(0)



 , (4.95)

solving the model RHP. The asymptotics at infinity are

M(z) = I +
M1

z
+O(z−2) ,

where the matrix M1 has the form

M1 =





∗ ϑ3(−ũ∞+d+Ωn
2

)ϑ3(ũ∞+d)

ϑ3(ũ∞+d+Ωn
2

)ϑ3(−ũ∞+d)

(β−β′)+(α′−α)
−4i

ϑ3(ũ∞−d+Ωn
2

)ϑ3(−ũ∞−d)
ϑ3(−ũ∞−d+Ωn

2
)ϑ3(ũ∞−d)

(β−β′)+(α′−α)
4i

∗



 .

(4.96)

The matrix M1 can be written in a cleaner fashion and in terms of the original

parameters as follows.

Proposition 4.13.1 We have that

[M1]12 =
iA(ω)ϑ4

(

(n+ 1)ω
)

ϑ4(nω)
, [M1]21 =

A(ω)ϑ4(nω)

iϑ4
(

(n− 1)ω
) . (4.97)

where

ω =
π(1 + ζ)

2
, A(ω) =

πϑ′1(0)

2ϑ1(ω)
.

For a proof of this proposition see Appendix D. Notice that since M solves the

model RHP, we have that

detM(z) = 1, z ∈ C.
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4.14 Parametrix at outer turning points

We now consider small disks D(α, ε) and D(β, ε) centered at the outer turning

points. Denote D = D(α, ε)∪D(β, ε). We will seek a local parametrix Un(z) defined

on D such that

1. Un(z) is analytic on D \ ΣS.

2. Un+(z) = Un−(z)jS(z) for z ∈ D ∩ ΣS.

3. Un(z) = M(z)
(

I +O(n−1)
)

uniformly for z ∈ ∂D.

We first construct the parametrix near β. The jumps jS are given by

jS(z) =



























































































0 1

−1 0



 for z ∈ (β − ε, β)





1 0

−e−nG(z) 1



 for z ∈ (β, β + iε)





1 0

enG(z) 1



 for z ∈ (β, β − iε)





e−nG(z) en(g+(z)+g−(z)−V (z)−l)

0 enG(z)



 for z ∈ (β, β + ε).

If we let

Un(z) = Qn(z)e
−n(g(z)−V (z)

2
− l

2
)σ3 ,

then the jump conditions on Qn become

Qn+(z) = Qn−(z)jQ(z)
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where

jQ(z) =



























































































0 1

−1 0



 for z ∈ (β − ε, β)





1 0

−1 1



 for z ∈ (β, β + iε)





1 0

1 1



 for z ∈ (β, β − iε)





1 1

0 1



 for z ∈ (β, β + ε),

(4.98)

and orientation is from left to right on horizontal contours, and down to up on vertical

contours, according to Figure 4.6.

Qn can be constructed using Airy functions. The Airy function solves the differ-

ential equation y′′ = zy, and has the following asymptotics at infinity (see, e.g. [40]):

Ai(z) =
1

2
√
πz1/4

e−
2
3
z3/2
(

1− 5

48
z−3/2 +O(z−3)

)

,

Ai′(z) = − 1

2
√
π
z1/4e−

2
3
z3/2
(

1 +
7

48
z−3/2 +O(z−3)

)

,

(4.99)

as z → ∞ with arg z ∈ (−π + ε, π − ε) for any ε > 0. If we let

y0(z) = Ai(z), y1(z) = ωAi(ωz), y2(z) = ω2Ai(ω2z)

where ω = e
2πi
3 , then the functions y0, y1, and y2 satisfy the relation

y0(z) + y1(z) + y2(z) = 0.



74

If we take

Φβ(z) =



























































































y0(z) −y2(z)
y′0(z) −y′2(z)



 for arg z ∈
(

0,
π

2

)





−y1(z) −y2(z)
−y′1(z) −y′2(z)



 for arg z ∈
(π

2
, π
)





−y2(z) y1(z)

−y′2(z) y′1(z)



 for arg z ∈
(

−π,−π
2

)





y0(z) y1(z)

y′0(z) y′1(z)



 for arg z ∈
(

−π
2
, 0
)

,

then Φβ satisfies jump conditions similar to (4.98), but for jumps on rays emanating

from the origin rather than from β. We thus need to map the disk D(β, ε) onto some

convex neighborhood of the origin in order to take advantage of the function Φβ .

Our mapping should match the asymptotics of the Airy function in order to have the

matching property (3) of the RHP.

To this end notice that, by (4.23), for t ∈ [β ′, β], as t→ β,

ρ(t) = C(β − t)1/2 +O
(

(β − t)3/2
)

, C > 0.

It follows that, as z → β for z ∈ (β ′, β),
∫ β

z

ρ(t)dt = C0(β − z)3/2 +O
(

(β − z)5/2
)

, C0 =
2

3
C.

Thus

ψβ(z) = −
{

3π

2

∫ β

z

ρ(t)dt

}2/3

is analytic at β, and so extends to a conformal map from D(β, ε) (for small enough

ε) onto a convex neighborhood of the origin. Furthermore,

ψβ(β) = 0 , ψ′
β(β) > 0 ;

therefore ψβ is real negative on (β − ε, β) and real positive on (β, β + ε). Also, we

can slightly deform the vertical pieces of the contour ΣS close to β, so that

ψβ{D(β, ε) ∩ ΣS} = (−ε, ε) ∪ (−iε, iε).
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We now set

Qn(z) = Eβ
n(z)Φβ

(

n2/3ψβ(z)
)

so that

Un(z) = Eβ
n(z)Φβ

(

n2/3ψβ(z)
)

e−n(g(z)−
V (z)

2
− l

2
)σ3

where

Eβ
n(z) = M(z)Lβn(z)

−1 , Lβn(z) =
1

2
√
π





n−1/6ψ
−1/4
β (z) 0

0 n1/6ψ
1/4
β (z)









1 i

−1 i



 ,

and we take the branch of ψ
1/4
β which is positive on (β, β + ε) and has a cut on

(β − ε, β).

We claim that Eβ
n(z) is analytic in D(β, ε), thus U(z) has the jump conditions jS.

This is clear, as both M and Lβn have jump the same constant jump,





0 1

−1 0



, on

the interval (β−ε, β], and are analytic elsewhere. The only other possible singularity

for either M or Lβn is the isolated singularity at β, and this is at most a fourth-root

singularity, thus removable. It follows that Eβ
n(z) = M(z)Lβn(z)

−1 is analytic on

D(β, ε), thus Un has the prescribed jumps in D(β, ε).

We are left only to prove the matching condition (3). Using (4.99), it is straight-

forward to check that, for z in each of the sectors of analyticity, Φβ(n
2/3ψβ(z)) satisfies

the following asymptotics as n→ ∞:

Φβ
(

n2/3ψβ(z)
)

=
1

2
√
π
n

1
6
σ3ψβ(z)

− 1
4
σ3









1 i

−1 i



 +
ψβ(z)

−3/2

48n





−5 5i

−7 −7i





+O(n−2)

]

× e−
2
3
nψβ(z)

3/2σ3 ,

(4.100)

where we always take the principal branch of ψβ(z)
3/2. As such, ψβ(z)

3/2 is two-valued

for z ∈ (β − ε, β), so that
[

2

3
ψβ(x)

3/2

]

±
= ∓πi

∫ β

x

ρ(t)dt. (4.101)

Notice that, by (4.30) and (4.32), for x ∈ (β − ε, β),

2g±(x)− V (x) = l ± 2πi

∫ β

x

ρ(t)dt.



76

This implies that

[2g±(β)− V (β)]− [2g±(x)− V (x)] = ∓2πi

∫ β

x

ρ(t)dt .

Combining these equations with (4.101) gives

[

2

3
ψβ(x)

3/2

]

±
=

1

2

[

(

2g±(β)− V (β)
)

−
(

2g±(x)− V (x)
)

]

. (4.102)

This equation can be extended into the upper and lower planes, respectively, giving

2

3
ψβ(z)

3/2 =
1

2

[

(

2g±(β)− V (β)
)

−
(

2g(z)− V (z)
)

]

for ± Im z > 0.

Since, by (4.14), 2g±(β)− V (β) = l, we get that

2

3
ψβ(z)

3/2 = −g(z) + V (z)

2
+
l

2

for z throughout D(β, ε). Plugging (4.100) and (4.14) into (4.14), we get, as n→ ∞,

Un(z) = M(z)Lβn(z)
−1 1

2
√
π
n− 1

6
σ3ψβ(z)

− 1
4
σ3









1 i

−1 i



+
ψβ(z)

−3/2

48n





−5 5i

−7 −7i





+O(n−2)

]

en(g(z)−
V (z)

2
− l

2
)σ3e−n(g(z)−

V (z)
2

− l
2
)σ3

= M(z)



I +
ψβ(z)

−3/2

48n





1 6i

6i −1



+O(n−2)



 .

Thus we have that Un satisfies conditions (1), (2), and (3) of the RHP.

A similar construction gives the parametrix at the α. Namely, if we let

ψα(z) = −
{

3π

2

∫ z

α

ρ(t)dt

}2/3

, (4.103)
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then ψα is analytic throughout D(α, ε), real valued on the real line, and has negative

derivative at α. Close to α, the jumps jQ become

jQ(z) =



























































































1 1

0 1



 for z ∈ (α− ε, α)





1 0

−1 1



 for z ∈ (α, α+ iε)





1 0

1 1



 for z ∈ (α, α− iε)





0 1

−1 0



 for z ∈ (α, α+ ε),

where orientation is taken left to right on horizontal contours, and up to down on

vertical contours according to Figure 4.6. After the change of variables ψα (and a

slight deformation of vertical contours), these jumps become the following jumps close

to the origin:

jQ
(

ψα(z)
)

=



























































































0 1

−1 0



 for ψα(z) ∈ (−ε, 0)





1 0

1 1



 for ψα(z) ∈ (0, iε)





1 0

−1 1



 for ψα(z) ∈ (0,−iε)





1 1

0 1



 for ψα(z) ∈ (0, ε),

where orientation is taken right to left on horizontal contours, and down to up on

vertical contours. These jump conditions are satisfied by the function

Φα(z) = Φβ(z)





1 0

0 −1



 .
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Then we can take

Un(z) = Eα
n(z)Φα

(

n2/3ψα(z)
)

e−n(g(z)−
V (z)

2
− l

2
)σ3 (4.104)

for z ∈ D(α, ε), where

Eα
n(z) = M(z)Lαn(z)

−1,

Lαn(z) =
1

2
√
π





n−1/6ψ
−1/4
α (z) 0

0 n1/6ψ
1/4
α (z)









−1 i

1 i



 .

Similar to (4.100), we have that in each sector of analyticity, Φα
(

n2/3ψα(z)
)

satisfies

Φα
(

n2/3ψα(z)
)

=
1

2
√
π
n− 1

6
σ3ψα(z)

− 1
4
σ3









1 −i
−1 −i



+
ψα(z)

−3/2

48n





−5 −5i

−7 7i





+O(n−2)

]

× e−
2
3
nψα(z)3/2σ3 .

(4.105)

Once again, we have that, for x ∈ (α, α+ε), ψα(x)
3/2 takes limiting values from above

and below, so that
[

2

3
ψα(x)

3/2

]

±
= ±πi

∫ x

α

ρ(t)dt.

In analogue to (4.102), we have

2

3
ψα(z)

3/2 =
1

2

[

(

2g±(α)− V (α)
)

−
(

2g(z)− V (z)
)

]

for ± Im z > 0.

Since, by (4.14), 2g±(α)− V (α) = l ± πi, we get that

2

3
ψα(z)

3/2 = −g(z) + V (z)

2
+
l

2
± πi for ± Im z > 0. (4.106)
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Plugging (4.106) into (4.104) and (4.105) gives, as n→ ∞,

Un(z) = M(z)Lαn(z)
−1 1

2
√
π
n

1
6
σ3ψα(z)

− 1
4
σ3









1 −i
−1 −i



+
ψα(z)

−3/2

48n





−5 −5i

−7 7i





+ O(n−2)

]

en(g(z)−
V (z)

2
− l

2
)σ3





−1 0

0 −1



 e−n(g(z)−
V (z)

2
− l

2
)σ3

= M(z)





−1 i

1 i





−1 







−1 i

1 i



+
ψα(z)

−3/2

48n





5 5i

7 −7i



 +O(n−2)





= M(z)



I +
ψα(z)

−3/2

48n





1 −6i

−6i −1



 +O(n−2)



 .

4.15 Parametrix at the inner turning points

We now consider small disks D(α′, ε) and D(β ′, ε) centered at the inner turning

points. Denote D̃ = D(α′, ε)∪D(β ′, ε). We will seek a local parametrix Un(z) defined

on D̃ such that

1. Un(z) is analytic on D̃ \ ΣS.

2. Un+(z) = Un−(z)jS(z) for z ∈ D̃ ∩ ΣS.

3. Un(z) = M(z)
(

I +O(n−1)
)

uniformly for z ∈ ∂D̃.

We first construct the parametrix near α′. Let

Un(z) = Q̃n(z)e
∓ inπz

2γ
σ3e−n(g(z)−

V (z)
2

− l
2
)σ3 for ± Im z > 0 . (4.107)
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Then the jumps for Q̃n are

jQ̃(z) =



























































































0 1

−1 0



 for z ∈ (α′ − ε, α′)





−1 0

−1 −1



 for z ∈ (α′, α′ + ε)





1 −1

0 1



 for z ∈ (α′, α′ + iε)





1 1

0 1



 for z ∈ (α′, α′ − iε),

(4.108)

where orientation is taken from left to right on horizontal contours, and down to up

on vertical contours according to Figure 4.6. A proof of this statement is given in

Appendix C. We now take

Φα′(z) =



























































































y2(z) −y0(z)
y′2(z) −y′0(z)



 for arg z ∈
(

0,
π

2

)





y2(z) y1(z)

y′2(z) y′1(z)



 for arg z ∈
(π

2
, π
)





y1(z) −y2(z)
y′1(z) −y′2(z)



 for arg z ∈
(

−π,−π
2

)





y1(z) y0(z)

y′1(z) y′0(z)



 for arg z ∈
(

−π
2
, 0
)

.

Then Φα′(z) solves a RHP similar to that of Q̃n, but for jumps emanating from the

origin rather than from α′.

Notice that, by (4.23), for t ∈ [α, α′], as t→ α′,

ρ(t) =
1

2γ
− C(α′ − t)1/2 +O

(

(α′ − t)3/2
)

, C > 0.

It follows that, as z → α′, for z ∈ (α, α′),

∫ α′

z

(

1

2γ
− ρ(t)

)

dt = C0(α
′ − z)3/2 + O((α′ − z)5/2) , C0 =

2

3
C.
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Thus,

ψα′(z) = −
{

3π

2

∫ α′

z

(

1

2γ
− ρ(t)

)

dt

}2/3

(4.109)

is analytic at α′, and so extends to a conformal map from D(α′, ε) onto a convex

neighborhood of the origin. Furthermore,

ψα′(α′) = 0 , ψ′
α′(α′) > 0;

consequently, ψα′ is real negative on (α′ − ε, α′), and real positive on (α′, α′ + ε).

Again, we can slightly deform the vertical pieces of the contour ΣS close to α′, so

that

ψα′

{

D(α′, ε) ∩ ΣS
}

= (−ε, ε) ∪ (−iε, iε).

We now take

Q̃n(z) = Eα′

n (z)Φα′

(

n2/3ψα′(z)
)

where

Eα′

n (z) = M(z)e±
iΩn
2
σ3L̃n(z)

−1 for ± Im z ≥ 0,

Lα
′

n (z) =
1

2
√
π





n−1/6ψ
−1/4
α′ (z) 0

0 n1/6ψ
1/4
α′ (z)









1 i

1 −i



 ,

and we take the branch of ψ
1/4
α′ which is positive on (α′, α′ + ε) and has a cut on

(α′ − ε, α′). Un then becomes

Un(z) = M(z)e±
iΩn
2
σ3Lα

′

n (z)
−1Φα′

(

n2/3ψα′(z)
)

e∓
inπz
2γ

σ3e−n(g(z)−
V (z)

2
− l

2
)σ3

for ± Im z > 0.
(4.110)

The function Φα′(n2/3ψα′(z)) has the jumps jS, and we claim that the prefactor Eα′

n

is analytic in D(α′, ε), thus does not change these jumps. This can be seen, as

M+(z)e
iΩn
2
σ3 = M−(z)e

− iΩn
2
σ3e

iΩn
2
σ3jMe

iΩn
2
σ3

thus the jump for the function M(z)e±
iΩn
2
σ3 is

e
iΩn
2
σ3jMe

iΩn
2
σ3 =



















e
iΩn
2
σ3





0 1

−1 0



 e
iΩn
2
σ3 for z ∈ (α′ − ε, α′)

e
iΩn
2
σ3e−iΩnσ3e

iΩn
2
σ3 for z ∈ (α′, α′ + ε),
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or equivalently,

e
iΩn
2
σ3jMe

iΩn
2
σ3 =



































0 1

−1 0



 for z ∈ (α′ − ε, α′)





1 0

0 1



 for z ∈ (α′, α′ + ε),

which is exactly the same as the jump conditions for Lα
′

n . Thus E
α′

n (z) has no jumps

in D(α′, ε). The only other possible singularity for Eα′

n is at α′, and this singularity is

at most a fourth root singularity, thus removable. Thus, Eα′

n is analytic in D(α′, ε),

and Q̃n has the prescribed jumps.

We are left check that Un satisfies the matching condition (3). The large n

asymptotics of Φα′

(

n2/3ψα′(z)
)

are given in the different regions of analyticity as

follows:

Φα′

(

n2/3ψα′(z)
)

=
1

2
√
π
n− 1

6
σ3ψα′(z)−

1
4
σ3



∓





i 1

i −1



± ψα′(z)−3/2

48n





−5i 5

7i 7





+O(n−2)

]

e
2
3
nψα′(z)3/2σ3 for ± Im z > 0,

(4.111)

where we always take the principal branch of ψα′(z)3/2. As such, ψα′(z)3/2 is two-

valued for x ∈ (α′ − ε, α), so that

[

2

3
ψα′(x)3/2

]

±
= ∓πi

∫ α′

x

(

1

2γ
− ρ(t)

)

dt = ∓πi

2γ
(α′ − x)± πi

∫ α′

x

ρ(t)dt. (4.112)

From (4.30) and (4.32), we have that

2g+(x)− V (x) = l + 2πi

∫ β

x

ρ(t)dt , 2g−(x)− V (x) = l − 2πi

∫ β

x

ρ(t)dt (4.113)

for x ∈ (α′ − ε, α′). These equations imply that

(

2g±(x)− V (x)
)

−
(

2g±(α
′)− V (α′)

)

= ±2πi

∫ α′

x

ρ(t)dt.

We can therefore write (4.112) as
[

2

3
ψα′(x)3/2

]

±
= ∓πi

2γ
(α′ − x) +

1

2

[

(

2g±(x)− V (x)
)

−
(

2g±(α
′)− V (α′)

)

]

.
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We can extend these equations into the upper and lower half-plane, respectively,

obtaining

2

3
ψα′(z)3/2 = ∓πi

2γ
(α′−z)+ 1

2

[

(

2g(z)−V (z)
)

−
(

2g±(α
′)−V (α′)

)

]

for ±Im z > 0 .

Using (4.113) at x = α′, we can write

2

3
ψα′(z)3/2 = ∓πi

2γ
(α′−z)+g(z)−V (z)

2
− l

2
∓πi

∫ β

α′

ρ(t)dt for ±Im z > 0 , (4.114)

or equivalently,

2

3
ψα′(z)3/2 = g(z)− V (z)

2
− l

2
± πiz

2γ
∓ i(Ωn − π)

2n
for ± Im z > 0 .

Plugging (4.111) and (4.114) into (4.110) gives, as n→ ∞,

Un(z) = M(z)e±
iΩn
2
σ3Lα

′

n (z)
−1 1

2
√
π
n− 1

6
σ3ψα′(z)−

1
4
σ3

×
[

∓





i 1

i −1



± ψα′(z)−3/2

48n





−5i 5

7i 7



+O(n−2)

]

× en(g(z)−
l
2
−V (z)

2
)σ3e∓

iΩn
2
σ3e±

iπ
2
σ3e±

inπz
2γ

σ3e∓
inπz
2γ

σ3e−n(g(z)−
V (z)

2
− l

2
)σ3

= M(z)e±
iΩn
2
σ3Lα

′

n (z)
−1 1

2
√
π
n− 1

6
σ3ψα′(z)−

1
4
σ3

×









1 i

1 −i



+
ψα′(z)−3/2

48n





5 −5i

−7 −7i



 +O(n−2)



 e∓
iΩn
2
σ3

= M(z)



I +
ψα′(z)−3/2

48n
e±i

Ωn
2
σ3





−1 −6i

−6i 1



 e∓i
Ωn
2
σ3 +O(n−2)





= M(z)



I +
ψα′(z)−3/2

48n





−1 −6ie±iΩn

−6ie∓iΩn 1



+O(n−2)





for ± Im (z) > 0.

We can make a similar construction near β ′. Let

ψβ′(z) = −
{

3π

2

∫ z

β′

(

1

2γ
− ρ(t)dt

)}2/3

. (4.115)



84

This function is analytic in D(β ′, ε) and has negative derivative at β ′, thus Im z and

Imψβ′(z) have opposite signs for z ∈ D(β ′, ε). Then the jumps for Q̃n are

jQ̃(z) =



























































































0 1

−1 0



 for z ∈ (β ′, β ′ + ε)





−1 0

−1 −1



 for z ∈ (β ′ − ε, β ′)





1 −1

0 1



 for z ∈ (β ′, β ′ + iε)





1 1

0 1



 for z ∈ (β ′, β ′ − iε),

where the contour is oriented from left to right on horizontal segments and up to

down on vertical segments according to Figure 4.6. After a slight deformation of the

vertical contours and the change of variables ψβ′ , these jumps become the following

jumps close to the origin:

jQ̃(ψβ′(z)) =



























































































0 1

−1 0



 for ψβ′(z) ∈ (−ε, 0)





−1 0

−1 −1



 for ψβ′(z) ∈ (0, ε)





1 −1

0 1



 for ψβ′(z) ∈ (−iε, 0)





1 1

0 1



 for ψβ′(z) ∈ (0, iε),

where the contour is oriented from right to left on horizontal segments and down to

up on vertical segments. These jump conditions are satisfied by the function

Φβ′(z) = Φα′(z)





1 0

0 −1



 .
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Then we can take for z ∈ D(β ′, ε),

Un(z) =M(z)e
±iΩn

2
σ3Lβ

′

n (z)
−1Φβ′(n2/3ψβ′(z))e∓

inπz
2γ

σ3e−n(g(z)−
V (z)

2
− l

2
)σ3

for ± Im z > 0,
(4.116)

where

Lβ
′

n (z) =
1

2
√
π





n−1/6ψ
−1/4
β′ (z) 0

0 n1/6ψ
1/4
β′ (z)









−1 i

−1 −i



 .

We once again have, as n→ ∞,

Φβ′

(

n2/3ψβ′(z)
)

=
1

2
√
π
n− 1

6
σ3ψβ′(z)−

1
4
σ3



∓





i −1

i 1



∓ ψβ′(z)−3/2

48n





5i 5

−7i 7





+O(n−2)

]

e
2
3
nψβ′(z)3/2σ3 for ± Imψβ′(z) > 0 (so ± Im z < 0),

(4.117)

and for z ∈ D(β ′, ε),

2

3
ψ

3/2
β′ (z) = ±πiz

2γ
+ g(z)− V (z)

2
− l

2
∓ i(Ωn − π)

2n
for ± Im z > 0. (4.118)

Combining (4.116), (4.117), and (4.118) gives, as n→ ∞,

Un(z) = M(z)e±
iΩn
2
σ3Lβ

′

n (z)
−1 1

2
√
π
n− 1

6
σ3ψβ′(z)−

1
4
σ3

×



±





i −1

i 1



± ψβ′(z)−3/2

48n





5i 5

−7i 7



+O(n−2)





× e
±inπz

2γ
σ3en(g(z)−

V (z)
2

− l
2
)σ3e∓

iΩn
2
σ3e±

iπ
2
σ3e∓

inπz
2γ

σ3e−n(g(z)−
V (z)

2
− l

2
)σ3

= M(z)e±
iΩn
2
σ3



I +
ψβ′(z)−3/2

48n





−1 6i

6i 1



+O(n−2)



 e∓
iΩn
2
σ3

= M(z)



I +
ψβ′(z)−3/2

48n





−1 6ie±iΩn

6ie∓iΩn 1



+O(n−2)



 for ± Im z > 0.

4.16 The third and final transformation of the RHP

We now consider the contour ΣX , which consists of the circles ∂D(α, ε), ∂D(α′, ε),

∂D(β ′, ε), and ∂D(β, ε), all oriented counterclockwise, together with the parts of
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ΣS \
(

[α, α′] ∪ [β ′, β]
)

which lie outside of the disks D(α, ε), D(α′, ε), D(β ′, ε), and

D(β, ε), see Figure 4.7.

Fig. 4.7. The contour ΣX .

We let

Xn(z) =







Sn(z)M(z)−1 for z outside the disks D(α, ε), D(α′, ε), D(β ′, ε), D(β, ε)

Sn(z)Un(z)
−1 for z inside the disks D(α, ε), D(α′, ε), D(β ′, ε), D(β, ε).

(4.119)

Then Xn(z) solves the following RHP:

1. Xn(z) is analytic on C \ ΣX .

2. Xn(z) has the jump properties

Xn+(x) = Xn−(z)jX(z)

where

jX(z) =







M(z)Un(z)
−1 for z on the circles

M(z)jSM(z)−1 otherwise.

3. As z → ∞,

Xn(z) ∼ I +
X1

z
+

X2

z2
+ . . . (4.120)

Additionally, we have that jX(z) is uniformly close to the identity in the following

sense:

jX(z) =







I +O(n−1) uniformly on the circles

I +O(e−C(z)n) on the rest of ΣX ,
(4.121)
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where C(z) is a positive, continuous function satisfying (4.75). If we set

j0X(z) = jX(z)− I,

then (4.121) becomes

j0X(z) =







O(n−1) uniformly on the circles

O(e−C(z)n) on the rest of ΣX .
(4.122)

The solution to the RHP for Xn is based on the following lemma:

Lemma 4.16.1 Suppose v(z) is a function on ΣX solving the equation

v(z) = I − 1

2πi

∫

ΣX

v(u)j0X(u)

z− − u
du for z ∈ ΣX (4.123)

where z− means the value of the integral on the minus side of ΣX . Then

Xn(z) = I − 1

2πi

∫

ΣX

v(u)j0X(u)

z − u
du for z ∈ C \ ΣX (4.124)

solves the RHP for Xn.

The proof of this lemma is immediate from the jump property of the Cauchy trans-

form. By assumption

Xn−(z) = v(z)

and the additive jump of the Cauchy transform gives

Xn+(z)−Xn−(z) = v(z)j0X(z) = Xn−(z)j
0
X(z),

thus Xn+(z) = Xn−(z)jX(z). Asymptotics at infinity are given by (4.124).

The solution to equation (4.123) is given by a series of perturbation theory.

Namely, the solution is

v(z) = I +

∞
∑

k=1

vk(z) (4.125)

where

vk(z) = − 1

2πi

∫

ΣX

vk−1(u)j
0
X(u)

z− − u
du , v0(z) = I.
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This function clearly solves (4.123) provided the series converges, which it does, for

sufficiently large n. Indeed it does, as it is bounded from above by a convergent

geometric series, and is therefore absolutely convergent (see e.g. [17]). This in turn

gives

Xn(z) = I +

∞
∑

k=1

Xn,k(z)

where

Xn,k(z) = − 1

2πi

∫

ΣX

vk−1(u)j
0
X(u)

z − u
du.

In particular, (see [17])

vk(x) = O

(

1

nk(|z|+ 1)

)

, Xn = I +O

(

1

n(|z| + 1)

)

as n→ ∞. (4.126)

We will need to compute

Xn,1(z) = − 1

2πi

∫

ΣX

j0X(u)

z − u
du.

4.17 Evaluation of X1

We are interested in the matrix X1, which gives the 1
z
-term of Xn(z) at infinity,

see (4.120). By (4.124),

X1 = − 1

2πi

∫

ΣX

v(u)j0X(u) du,

hence by (4.125), (4.126),

X1 = − 1

2πi

∫

ΣX

j0X(u) du+O(n−2).

We would like to evaluate the integral,

− 1

2πi

∫

ΣX

j0X(u)du

with an error of the order of n−2. By (4.122), it is enough to evaluate this integral over

the circles ∂D(α, ε), ∂D(α′, ε), ∂D(β ′, ε), and ∂D(β, ε). As we will see in the next

section, the matrix-valued function j0X(z) is analytic in the punctured disks, hence

X1 = −
(

Res
z=α

+ Res
z=α′

+ Res
z=β′

+ Res
z=β

)

j0X(z) +O(n−2).
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We will be especially interested in evaluation of the [12] element of the matrix X1,

and we will prove the following asymptotic formula. Introduce the numbers

ηα =



5
ϑ

′′

4(nω + ω
2
)

ϑ4(nω + ω
2
)
− 5

ϑ
′′

3(
ω
2
)

ϑ3(
ω
2
)
+ 7

(

ϑ
′

4(nω + ω
2
)

ϑ4(nω + ω
2
)

)2

+ 17

(

ϑ
′

3(
ω
2
)

ϑ3(
ω
2
)

)2

−24
ϑ

′

4(nω + ω
2
)ϑ

′

3(
ω
2
)

ϑ4(nω + ω
2
)ϑ3(

ω
2
)

]

,

ηα′ = −



5
ϑ

′′

1(nω + ω
2
)

ϑ1(nω + ω
2
)
− 5

ϑ
′′

2(
ω
2
)

ϑ2(
ω
2
)
+ 7

(

ϑ
′

1(nω + ω
2
)

ϑ1(nω + ω
2
)

)2

+ 17

(

ϑ
′

2(
ω
2
)

ϑ2(
ω
2
)

)2

−24
ϑ

′

1(nω + ω
2
)ϑ

′

2(
ω
2
)

ϑ1(nω + ω
2
)ϑ2(

ω
2
)

]

,

ηβ′ = −



5
ϑ

′′

2(nω + ω
2
)

ϑ2(nω + ω
2
)
− 5

ϑ
′′

1(
ω
2
)

ϑ1(
ω
2
)
+ 7

(

ϑ
′

2(nω + ω
2
)

ϑ2(nω + ω
2
)

)2

+ 17

(

ϑ
′

1(
ω
2
)

ϑ1(
ω
2
)

)2

−24
ϑ

′

2(nω + ω
2
)ϑ

′

1(
ω
2
)

ϑ2(nω + ω
2
)ϑ1(

ω
2
)

]

,

ηβ =



5
ϑ

′′

3(nω + ω
2
)

ϑ3(nω + ω
2
)
− 5

ϑ
′′

4(
ω
2
)

ϑ4(
ω
2
)
+ 7

(

ϑ
′

3(nω + ω
2
)

ϑ3(nω + ω
2
)

)2

+ 17

(

ϑ
′

4(
ω
2
)

ϑ4(
ω
2
)

)2

−24
ϑ

′

3(nω + ω
2
)ϑ

′

4(
ω
2
)

ϑ3(nω + ω
2
)ϑ4(

ω
2
)

]

,

and

Cα =
7

2
(β ′ − α) +

3

2
(β − α) +

3

2
(α′ − α)− (α′ − α)(β − α)

(β ′ − α)
,

Cα′ = −7

2
(β − α′)− 3

2
(β ′ − α′) +

3

2
(α′ − α)− (α′ − α)(β ′ − α′)

(β − α′)
,

Cβ′ = −7

2
(β ′ − α)− 3

2
(β ′ − α′) +

3

2
(β − β ′)− (β − β ′)(β ′ − α′)

(β ′ − α)
,

Cβ =
7

2
(β − α′) +

3

2
(β − α) +

3

2
(β − β ′)− (β − β ′)(β − α)

(β − α′)
.

Introduce also the numbers,

Ξα =
ϑ23(0)ϑ

2
4(nω + ω

2
)

ϑ23(
ω
2
)ϑ24(nω)

, Ξα′ =
ϑ23(0)ϑ

2
1(nω + ω

2
)

ϑ22(
ω
2
)ϑ24(nω)

,

Ξβ′ =
ϑ23(0)ϑ

2
2(nω + ω

2
)

ϑ21(
ω
2
)ϑ24(nω)

, Ξβ =
ϑ23(0)ϑ

2
3(nω + ω

2
)

ϑ24(
ω
2
)ϑ24(nω)

,
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and

ξα =
ϑ′3(

ω
2
)

ϑ3(
ω
2
)
− ϑ′4(nω + ω

2
)

ϑ4(nω + ω
2
)
, ξα′ = −

(

ϑ′2(
ω
2
)

ϑ2(
ω
2
)
− ϑ′1(nω + ω

2
)

ϑ1(nω + ω
2
)

)

,

ξβ′ =
ϑ′1(

ω
2
)

ϑ1(
ω
2
)
− ϑ′2(nω + ω

2
)

ϑ2(nω + ω
2
)
, ξβ = −

(

ϑ′4(
ω
2
)

ϑ4(
ω
2
)
− ϑ′3(nω + ω

2
)

ϑ3(nω + ω
2
)

)

.

We have the following lemma.

Lemma 4.17.1 As n→ ∞,

[X1]12 =
1

n
(Xα +Xα′ +Xβ′ +Xβ) +O(n−2), (4.127)

where

Xα =
iΞα
96

(

Cα + 12πξα +
π2ηα

2(β ′ − α)

)

,

Xα′ =
iΞ′

α

96

(

Cα′ + 12πξα′ +
π2ηα′

2(β − α′)

)

,

Xβ′ =
iΞβ′

96

(

Cβ′ + 12πξβ′ +
π2ηβ′

2(β ′ − α)

)

,

Xβ =
iΞβ
96

(

Cβ + 12πξβ +
π2ηβ

2(β − α′)

)

.

Proof of this lemma is given in the next section.

4.18 Proof of Lemma 4.17.1

We have that

jX(z) =



















































































































I − ψα(z)
−3/2

48n
M(z)





1 −6i

−6i −1



M−1(z) +O(n−2) for z ∈ ∂D(α, ε)

I − ψβ(z)
−3/2

48n
M(z)





1 6i

6i −1



M−1(z) +O(n−2) for z ∈ ∂D(β, ε)

I − ψα′(z)−3/2

48n
M(z)





−1 −6ie±iΩn

−6ie∓iΩn 1



M−1(z) +O(n−2)

for z ∈ ∂D(α′, ε), ±Im z > 0

I − ψβ′(z)−3/2

48n
M(z)





−1 6ie±iΩn

6ie∓iΩn 1



M−1(z) +O(n−2)

for z ∈ ∂D(β ′, ε), ±Im z > 0.
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Thus

j0X(z) =



















































































































−ψα(z)
−3/2

48n
M(z)





1 −6i

−6i −1



M−1(z) +O(n−2) for z ∈ ∂D(α, ε)

−ψβ(z)
−3/2

48n
M(z)





1 6i

6i −1



M−1(z) +O(n−2) for z ∈ ∂D(β, ε)

−ψα′(z)−3/2

48n
M(z)





−1 −6ie±iΩn

−6ie∓iΩn 1



M−1(z) +O(n−2)

for z ∈ ∂D(α′, ε)

−ψβ′(z)−3/2

48n
M(z)





−1 6ie±iΩn

6ie∓iΩn 1



M−1(z) +O(n−2)

for z ∈ ∂D(β ′, ε),

(4.128)

for ±Im z > 0. To simplify notation, we will write the model solution given in (4.94)

and (4.95) as

M(z) =
1

2





(

γ(z) + γ−1(z)
)

ϑ11(z) i
(

γ(z)− γ−1(z)
)

ϑ12(z)

−i
(

γ(z)− γ−1(z)
)

ϑ21(z)
(

γ(z) + γ−1(z)
)

ϑ22(z)



 ,

where

ϑ11(z) =
ϑ3(ũ(z)− ũ∞ + Ωn

2
)ϑ3(0)

ϑ3(ũ(z)− ũ∞)ϑ3(
Ωn

2
)

, ϑ12(z) =
ϑ3(ũ(z) + ũ∞ − Ωn

2
)ϑ3(0)

ϑ3(ũ(z) + ũ∞)ϑ3(
Ωn

2
)

,

ϑ21(z) =
ϑ3(ũ(z) + ũ∞ + Ωn

2
)ϑ3(0)

ϑ3(ũ(z) + ũ∞)ϑ3(
Ωn

2
)

, ϑ22(z) =
ϑ3(ũ(z)− ũ∞ − Ωn

2
)ϑ3(0)

ϑ3(ũ(z)− ũ∞)ϑ3(
Ωn

2
)

.

(4.129)

Notice that each of the functions ϑij is analytic throughout the complex plane, except

on the intervals (α, α′) and (β ′, β), where they satisfy the relations

[ϑ11]± = [ϑ12]∓ , [ϑ21]± = [ϑ22]∓,

and on the interval (α′, β ′), where they satisfy

[ϑ11]+ = e−iΩn[ϑ11]− , [ϑ12]+ = eiΩn [ϑ12]− , [ϑ21]+ = e−iΩn [ϑ21]− , [ϑ22]+ = eiΩn[ϑ22]−.
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Multiplying out equation (4.128) gives

j0X(z) =
ψξ(z)

−3/2

48n





jξ11 jξ12

jξ21 jξ22



+O(n−2) for z ∈ ∂D(ξ, ε), ξ = α, α′, β ′, β, (4.130)

where

jα12 =
i

2

[

3
(

(γ2(z) + γ−2(z)
)

(ϑ211 − ϑ212) +
(

γ2(z)− γ−2(z)
)

ϑ11ϑ12 + 6(ϑ211 − ϑ212)
]

,

jα
′

12 =
i

2

[

3
(

γ2(z) + γ−2(z)
)

J(z)−
(

γ2(z)− γ−2(z)
)

ϑ11ϑ12 + 6K(z)
]

,

jβ
′

12 = − i

2

[

3
(

γ2(z) + γ−2(z)
)

J(z) +
(

γ2(z)− γ−2(z)
)

ϑ11ϑ12 + 6K(z)
]

,

jβ12 = − i

2

[

3(
(

γ2(z) + γ−2(z)
)

(ϑ211 − ϑ212)−
(

γ2(z)− γ−2(z)
)

ϑ11ϑ12 + 6(ϑ211 − ϑ212)
]

,

(4.131)

and

J(z) =







ϑ211e
iΩn + ϑ212e

−iΩn for Im z > 0

ϑ211e
−iΩn + ϑ212e

iΩn for Im z < 0,

K(z) =







ϑ211e
iΩn − ϑ212e

−iΩn for Im z > 0

ϑ211e
−iΩn − ϑ212e

iΩn for Im z < 0.

In order to integrate j0X(z), let us examine the behavior of the various functions

described above near each of the turning points. Introduce the numbers

Aα =
√

(α′ − α)(β ′ − α)(β − α) , Aα′ =
√

(α′ − α)(β ′ − α′)(β − α′) ,

Aβ′ =
√

(β ′ − α)(β ′ − α′)(β − β ′) , Aβ =
√

(β − α)(β − α′)(β − β ′) ,

and

Bα =
1

α′ − α
+

1

β ′ − α
+

1

β − α
, Bα′ = − 1

α′ − α
+

1

β ′ − α′ +
1

β − α′ ,

Bβ′ =
1

β ′ − α
+

1

β ′ − α′ −
1

β − β ′ , Bβ =
1

β − α
+

1

β − α′ +
1

β − β ′ .
(4.132)

For x ∈ (β, β + ε), we have

ũ(x) =
π

2K
u(x) =

π

Aβ

√

x− β +O((x− β)3/2); (4.133)

for x ∈ (α− ε, α),

ũ(x) =
π

2K
u(x) =

π

2
− π

Aα

√
α− x+O((α− x)3/2); (4.134)
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for x ∈ (α′, α′ + ε),

ũ±(x) =
π

2K
u±(x) =

π

2
± τπ

2
− π

Aα′

√
x− α′ +O((x− α′)3/2); (4.135)

and for x ∈ (β ′ − ε, β ′),

ũ±(x) =
π

2K
u±(x) = ±τπ

2
+

π

Aβ′

√

β ′ − x+O((β ′ − x)−3/2). (4.136)

Also, from (4.82) we have that

γ2(z)± γ−2(z) =

√

(z − α)(z − β ′)

(z − α′)(z − β)
±
√

(z − α′)(z − β)

(z − α)(z − β ′)
,

and from (4.101), (4.103), (4.109), (4.115) , and (4.23) that

ψ−3/2
α (z) = (α− z)−3/2

[

Aα
2

+
1

20
AαBα(α− z) + O

(

(α− z)2
)

]

,

ψ
−3/2
α′ (z) = (z − α′)−3/2

[

Aα′

2
− 1

20
Aα′Bα′(z − α′) +O

(

(z − α′)2
)

]

,

ψ
−3/2
β′ (z) = (β ′ − z)−3/2

[

Aβ′

2
− 1

20
Aβ′Bβ′(β ′ − z) +O

(

(β ′ − z)2
)

]

,

ψ
−3/2
β (z) = (z − β)−3/2

[

Aβ
2

+
1

20
AβBβ(z − β) +O

(

(z − β)2
)

]

.

(4.137)

It follows that the functions (γ2 ± γ−2)ψ−3/2(z) are meromorphic in a neighborhood

of each of the turning points. In particular, at z = α, we have

(γ2 ± γ−2)ψ−3/2
α (z) = ±(α′ − α)(β − α)

2(α− z)2
+

1

(α− z)

[

(β ′ − α)

2
± 3

10
(β − α)

± 3

10
(α′ − α)∓ 1

5

(α′ − α)(β − α)

(β ′ − α)

]

+O(1);

(4.138)

at z = β, we have

(γ2 ± γ−2)ψ
−3/2
β (z) =

(β − α)(β − β ′)

2(z − β)2
+

1

(z − β)

[

±1

2
(β − α′) +

3

10
(β − α)

+
3

10
(β − β ′)− 1

5

(β − α)(β − β ′)

(β − α′)

]

+O(1);

(4.139)

at z = α′, we have

(γ2 ± γ−2)ψ
−3/2
α′ (z) =

(α′ − α)(β ′ − α′)

2(z − α′)2
+

1

(z − α′)

[

±(β − α′)

2
+

3

10
(β ′ − α′)

− 3

10
(α′ − α) +

1

5

(α′ − α)(β ′ − α′)

(β − α′)

]

+O(1);

(4.140)
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and at z = β ′, we have

(γ2 ± γ−2)ψ
−3/2
β′ (z) = ±(β ′ − α′)(β − β ′)

2(β ′ − z)2
+

1

(β ′ − z)

[

(β ′ − α)

2
± 3

10
(β ′ − α′)

∓ 3

10
(β − β ′)± 1

5

(β ′ − α′)(β − β ′)

β ′ − α

]

+O(1).

(4.141)

Notice also, from the relations (4.129), that the functions ϑ211 + ϑ212 and ϑ11ϑ12 have

no jumps in neighborhoods of α or β, and take finite values at z = α and z = β, thus

are analytic in neighborhoods of α and β. Using (4.133) and (4.134), we see that

these functions have Taylor expansions about z = β,

ϑ211(z) + ϑ212(z) = 2
ϑ23(0)

ϑ23(
Ωn

2
)

ϑ23(ũ∞ − Ωn

2
)

ϑ23(ũ∞)
+

π2

2A2
β

d2

dũ2

(

ϑ211 + ϑ212

)

∣

∣

∣

∣

∣

z=β

(z − β) + · · · ,

ϑ11(z)ϑ12(z) =
ϑ23(0)

ϑ23(
Ωn

2
)

ϑ23(ũ∞ − Ωn

2
)

ϑ23(ũ∞)
+

π2

2A2
β

d2

dũ2

(

ϑ11ϑ12

)

∣

∣

∣

∣

∣

z=β

(z − β) + · · · ,

(4.142)

and about z = α,

ϑ211(z) + ϑ212(z) = 2
ϑ23(0)

ϑ23(
Ωn

2
)

ϑ24(ũ∞ − Ωn

2
)

ϑ24(ũ∞)
+

π2

2A2
α

d2

dũ2

(

ϑ211 + ϑ212

)∣

∣

∣

∣

z=α

(α− z) + · · · ,

ϑ11(z)ϑ12(z) =
ϑ23(0)

ϑ23(
Ωn

2
)

ϑ24(ũ∞ − Ωn

2
)

ϑ24(ũ∞)
+

π2

2A2
α

d2

dũ2

(

ϑ11ϑ12

)∣

∣

∣

∣

z=α

(α− z) + · · · .

(4.143)

By a similar argument, J(z) and ϑ11ϑ12 are also analytic in neighborhoods of α′

and β ′ and using (4.135) and (4.136) we can write their Taylor expansions about

z = α′,

J(z) = 2
ϑ23(0)

ϑ23(
Ωn

2
)

ϑ21(ũ∞ − Ωn

2
)

ϑ21(ũ∞)
+

π2

2A2
α′

d2

dũ2
J(z)

∣

∣

∣

∣

z=α′

(z − α′) + · · · ,

ϑ11(z)ϑ12(z) =
ϑ23(0)

ϑ23(
Ωn

2
)

ϑ21(ũ∞ − Ωn

2
)

ϑ21(ũ∞)
+

π2

2A2
α′

d2

dũ2

(

ϑ11ϑ12

)∣

∣

∣

∣

z=α′

(z − α′) + · · · ,

(4.144)
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and about z = β ′,

J(z) = 2
ϑ23(0)

ϑ23(
Ωn

2
)

ϑ22(ũ∞ − Ωn

2
)

ϑ22(ũ∞)
+

π2

2A2
β′

d2

dũ2
J(z)

∣

∣

∣

∣

∣

z=β′

(β ′ − z) + · · · ,

ϑ11(z)ϑ12(z) =
ϑ23(0)

ϑ23(
Ωn

2
)

ϑ22(ũ∞ − Ωn

2
)

ϑ22(ũ∞)
+

π2

2A2
β′

d2

dũ2

(

ϑ11ϑ12

)

∣

∣

∣

∣

∣

z=β′

(β ′ − z) + · · · .

(4.145)

Finally, notice that the function ϑ211 − ϑ212 is an odd function of ũ, and using (4.133)

and (4.134), we can write, for x ∈ (β, β + ε),

ϑ211(x)− ϑ212(x) =
√

x− β

×
[

4π

Aβ

ϑ23(0)

ϑ23(
Ωn

2
)

ϑ23(ũ∞ − Ωn

2
)

ϑ23(ũ∞)

(

ϑ′3(ũ∞)

ϑ3(ũ∞)
− ϑ′3(ũ∞ − Ωn

2
)

ϑ3(ũ∞ − Ωn

2
)

)

+O(x− β)

]

,

(4.146)

and for x ∈ (α− ε, α),

ϑ211(x)− ϑ212(x) = −
√
α− x

×
[

4π

Aα

ϑ23(0)

ϑ23(
Ωn

2
)

ϑ24(ũ∞ − Ωn

2
)

ϑ24(ũ∞)

(

ϑ′4(ũ∞)

ϑ4(ũ∞)
− ϑ′4(ũ∞ − Ωn

2
)

ϑ4(ũ∞ − Ωn

2
)

)

+O(α− x)

]

.

(4.147)

Similarly, using (4.135) and (4.136), we can write, for x ∈ (α′, α′ + ε),

K(x) = −
√
x− α′

×
[

4π

Aα′

ϑ23(0)

ϑ23(
Ωn

2
)

ϑ21(ũ∞ − Ωn

2
)

ϑ21(ũ∞)

(

ϑ′1(ũ∞)

ϑ1(ũ∞)
− ϑ′1(ũ∞ − Ωn

2
)

ϑ′1(ũ∞ − Ωn

2
)

)

+O(x− α′)

]

,

(4.148)

and for x ∈ (β ′ − ε, β ′),

K(x) =
√

β ′ − x

×
[

4π

Aβ′

ϑ23(0)

ϑ23(
Ωn

2
)

ϑ22(ũ∞ − Ωn

2
)

ϑ22(ũ∞)

(

ϑ′2(ũ∞)

ϑ2(ũ∞)
− ϑ′2(ũ∞ − Ωn

2
)

ϑ′2(ũ∞ − Ωn

2
)

)

+O(β ′ − x)

]

.

(4.149)

From equations (4.137), (4.146), (4.147), (4.148), and (4.149), it follows that the

functions
(

ϑ211(z) − ϑ212(z)
)

ψ
−3/2
α (z) and

(

ϑ211(z) − ϑ212(z)
)

ψ
−3/2
β (z) are meromorphic

in neighborhoods of α and β, respectively, and have simple poles at z = α and z = β,
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respectively, and that the functions K(z)ψ
−3/2
α′ (z) and K(z)ψ

−3/2
β′ (z) are meromorphic

in neighborhoods of α′ and β ′, respectively, and have simple poles at z = α′ and z = β ′,

respectively.

Let us compute the residues of functions that appear in (4.131). Observe that

Ωn
2

= nω +
π

2
, ũ∞ = −ω

2
+
π

2
,

Ωn
2

− ũ∞ = nω +
ω

2
.

From (4.138), (4.139), (4.142), and (4.143), we obtain that

Res
z=α

3
(

ϑ211(z) + ϑ212(z)
) (

γ2(z) + γ−2(z)
)

ψ−3/2
α (z)

=
ϑ23(0)ϑ

2
4(nω + ω

2
)

ϑ23(
ω
2
)ϑ24(nω)

[

−3(β ′ − α)− 9

5
(β − α)− 9

5
(α′ − α) +

6

5

(α′ − α)(β − α)

(β ′ − α)

]

− 3π2

4(β ′ − α)

d2

dũ2

(

ϑ211 + ϑ212

)∣

∣

∣

∣

z=α
(4.150)

and

Res
z=β

3
(

ϑ211(z) + ϑ212(z)
) (

γ2(z) + γ−2(z)
)

ψ
−3/2
β (z)

=
ϑ23(0)ϑ

2
3(nω + ω

2
)

ϑ24(
ω
2
)ϑ24(nω)

[

3(β − α′) +
9

5
(β − β ′) +

9

5
(β − α)− 6

5

(β − α)(β − β ′)

(β − α′)

]

+
3π2

4(β − α′)

d2

dũ2

(

ϑ211 + ϑ212

)∣

∣

∣

∣

z=β

.

Also,

Res
z=α

(

ϑ11(z)ϑ12(z)
) (

γ2(z)− γ−2(z)
)

ψ−3/2
α (z)

=
ϑ23(0)ϑ

2
4(nω + ω

2
)

ϑ23(
ω
2
)ϑ24(nω)

[

−(β ′ − α)

2
+

3

10
(β − α) +

3

10
(α′ − α)− 1

5

(α′ − α)(β − α)

(β ′ − α)

]

+
π2

4(β ′ − α)

d2

dũ2

(

ϑ11ϑ12

)∣

∣

∣

∣

z=α

,

(4.151)

and

Res
z=β

(

ϑ11(z)ϑ12(z)
) (

γ2(z)− γ−2(z)
)

ψ
−3/2
β (z)

=
ϑ23(0)ϑ

2
3(nω + ω

2
)

ϑ24(
ω
2
)ϑ24(nω)

[

−(β − α′)

2
+

3

10
(β − β ′) +

3

10
(β − α)− 1

5

(β − α)(β − β ′)

(β − α′)

]

+
π2

4(β − α′)

d2

dũ2

(

ϑ11ϑ12

)∣

∣

∣

∣

z=β

.
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From (4.137), (4.146), and (4.147), we obtain that

Res
z=α

6
(

ϑ211(z)− ϑ212(z)
)

ψ−3/2
α (z) = −12π

ϑ23(0)ϑ
2
4(nω + ω

2
)

ϑ23(
ω
2
)ϑ24(nω)

[

ϑ′3(
ω
2
)

ϑ3(
ω
2
)
− ϑ′4(nω + ω

2
)

ϑ4(nω + ω
2
)

]

(4.152)

and

Res
z=β

6
(

ϑ211(z)− ϑ212(z)
)

ψ
−3/2
β (z) = −12π

ϑ23(0)ϑ
2
3(nω + ω

2
)

ϑ24(
ω
2
)ϑ24(nω)

[

ϑ′4(
ω
2
)

ϑ4(
ω
2
)
− ϑ′3(nω + ω

2
)

ϑ′3(nω + ω
2
)

]

.

We now turn our attention to the residues at the inner turning points. From

(4.140), (4.141), (4.144), and (4.145), we have

Res
z=α′

3ψ
−3/2
α′ (z)J(z)

(

γ2(z) + γ−2(z)
)

=
ϑ23(0)ϑ

2
1(nω + ω

2
)

ϑ22(
ω
2
)ϑ24(nω)

[

3(β − α′) +
9

5
(β ′ − α′)− 9

5
(α′ − α) +

6

5

(α′ − α)(β ′ − α′)

β − α′

]

+
3π2

4(β − α′)

d2

dũ2
J(z)

∣

∣

∣

∣

z=α′

and

Res
z=β′

3ψ
−3/2
β′ (z)J(z)

(

γ2(z) + γ−2(z)
)

=
ϑ23(0)ϑ

2
2(nω + ω

2
)

ϑ21(
ω
2
)ϑ24(nω)

[

−3(β ′ − α)− 9

5
(β ′ − α′) +

9

5
(β − β ′)− 6

5

(β ′ − α′)(β − β ′)

β ′ − α

]

− 3π2

4(β ′ − α)

d2

dũ2
J(z)

∣

∣

∣

∣

z=β′

.

Also,

Res
z=α′

ψ
−3/2
α′ (z)

(

γ2(z)− γ−2(z)
)

ϑ11(z)ϑ12(z)

=
ϑ23(0)ϑ

2
1(nω + ω

2
)

ϑ22(
ω
2
)ϑ24(nω)

[

−(β − α′)

2
+

3

10
(β ′ − α′)− 3

10
(α′ − α) +

1

5

(α′ − α)(β ′ − α′)

β − α′

]

+
π2

4(β − α′)

d2

dũ2

(

ϑ11ϑ12

)∣

∣

∣

∣

z=α′

and

Res
z=β′

ψ
−3/2
β′ (z)

(

γ2(z)− γ−2(z)
)

ϑ11(z)ϑ12(z)

=
ϑ23(0)ϑ

2
2(nω + ω

2
)

ϑ21(
ω
2
)ϑ24(nω)

[

−(β ′ − α)

2
+

3

10
(β ′ − α′)− 3

10
(β − β ′) +

1

5

(β ′ − α′)(β − β ′)

β ′ − α

]

+
π2

4(β ′ − α)

d2

dũ2

(

ϑ11ϑ12

)∣

∣

∣

∣

z=β′

.
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From (4.137), (4.148), (4.149), we have

Res
z=α′

6ψ
−3/2
α′ (z)K(z) = 12π

ϑ23(0)ϑ
2
1(nω + ω

2
)

ϑ22(
ω
2
)ϑ24(nω)

[

ϑ′2(
ω
2
)

ϑ2(
ω
2
)
− ϑ′1(nω + ω

2
)

ϑ1(nω + ω
2
)

]

and

Res
z=β′

6ψ
−3/2
β′ (z)K(z) = 12π

ϑ23(0)ϑ
2
2(nω + ω

2
)

ϑ21(
ω
2
)ϑ24(nω)

[

ϑ′1(
ω
2
)

ϑ1(
ω
2
)
− ϑ′2(nω + ω

2
)

ϑ2(nω + ω
2
)

]

.

Combining (4.130),(4.131),(4.150),(4.151), and (4.152), we get that

Res
z=α

[j0X(z)] =
i

96

[

ϑ23(0)ϑ
2
4(nω + ω

2
)

ϑ23(
ω
2
)ϑ24(nω)

(

−7

2
(β ′ − α)− 3

2
(β − α)− 3

2
(α′ − α)

+
(α′ − α)(β − α)

β ′ − α
− 12π

(

ϑ′3(
ω
2
)

ϑ3(
ω
2
)
− ϑ′4(nω + ω

2
)

ϑ4(nω + ω
2
)

))

− π2

4(β ′ − α)

d2

dũ2

[

3(ϑ211 + ϑ212)− ϑ11ϑ12

]

z=α

]

.

Similarly, we have

Res
z=α′

[j0X(z)] =
i

96

[

ϑ23(0)ϑ
2
1(nω + ω

2
)

ϑ22(
ω
2
)ϑ24(nω)

(

7

2
(β − α′) +

3

2
(β ′ − α′)− 3

2
(α′ − α)

+
(α′ − α)(β ′ − α′)

β − α′ + 12π

(

ϑ′2(
ω
2
)

ϑ2(
ω
2
)
− ϑ′1(nω + ω

2
)

ϑ1(nω + ω
2
)

))

+
π2

4(β − α′)

d2

dũ2

[

3J(z)− ϑ11ϑ12

]

z=α′

]

,

Res
z=β′

[j0X(z)] =
i

96

[

ϑ23(0)ϑ
2
2(nω + ω

2
)

ϑ21(
ω
2
)ϑ24(nω)

(

7

2
(β ′ − α) +

3

2
(β ′ − α′)− 3

2
(β − β ′)

+
(β − β ′)(β ′ − α′)

β ′ − α
− 12π

(

ϑ′1(
ω
2
)

ϑ1(
ω
2
)
− ϑ′2(nω + ω

2
)

ϑ2(nω + ω
2
)

))

+
π2

4(β ′ − α)

d2

dũ2

[

3J(z)− ϑ11ϑ12

]

z=β′

]

,

and

Res
z=β

[j0X(z)] =
i

96

[

ϑ23(0)ϑ
2
3(nω + ω

2
)

ϑ24(
ω
2
)ϑ24(nω)

(

−7

2
(β − α′)− 3

2
(β − α)− 3

2
(β − β ′)

+
(β − β ′)(β − α)

β − α′ + 12π

(

ϑ′4(
ω
2
)

ϑ4(
ω
2
)
− ϑ′3(nω + ω

2
)

ϑ3(nω + ω
2
)

))

− π2

4(β − α′)

d2

dũ2

[

3(ϑ211 + ϑ212)− ϑ11ϑ12

]

z=β

]

.
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Using MAPLE for calculations, we get

d2

dũ2
[3(ϑ211 + ϑ212)− ϑ11ϑ12]

∣

∣

∣

∣

z=α

= 2
ϑ23(0)ϑ

2
4(nω + ω

2
)

ϑ23(
ω
2
)ϑ24(nω)

[

5
ϑ

′′

4(nω + ω
2
)

ϑ4(nω + ω
2
)
− 5

ϑ
′′

3(
ω
2
)

ϑ3(
ω
2
)

+ 7

(

ϑ′4(nω + ω
2
)

ϑ4(nω + ω
2
)

)2

+ 17

(

ϑ′3(
ω
2
)

ϑ3(
ω
2
)

)2

−24
ϑ′4(nω + ω

2
)ϑ′3(

ω
2
)

ϑ4(nω + ω
2
)ϑ3(

ω
2
)

]

,

d2

dũ2
[3(ϑ211 + ϑ212)− ϑ11ϑ12]

∣

∣

∣

∣

z=β

= 2
ϑ23(0)ϑ

2
3(nω + ω

2
)

ϑ24(
ω
2
)ϑ24(nω)

[

5
ϑ

′′

3(nω + ω
2
)

ϑ3(nω + ω
2
)
− 5

ϑ
′′

4(
ω
2
)

ϑ4(
ω
2
)

+ 7

(

ϑ′3(nω + ω
2
)

ϑ3(nω + ω
2
)

)2

+ 17

(

ϑ′4(
ω
2
)

ϑ4(
ω
2
)

)2

−24
ϑ′3(nω + ω

2
)ϑ′4(

ω
2
)

ϑ3(nω + ω
2
)ϑ4(

ω
2
)

]

,

d2

dũ2
[3J(z)− ϑ11ϑ12]

∣

∣

∣

∣

z=α′

= 2
ϑ23(0)ϑ

2
1(nω + ω

2
)

ϑ22(
ω
2
)ϑ24(nω)

[

5
ϑ

′′

1(nω + ω
2
)

ϑ1(nω + ω
2
)
− 5

ϑ
′′

2(
ω
2
)

ϑ2(
ω
2
)

+ 7

(

ϑ′1(nω + ω
2
)

ϑ1(nω + ω
2
)

)2

+ 17

(

ϑ′2(
ω
2
)

ϑ2(
ω
2
)

)2

−24
ϑ′1(nω + ω

2
)ϑ′2(

ω
2
)

ϑ1(nω + ω
2
)ϑ2(

ω
2
)

]

,

d2

dũ2
[3J(z)− ϑ11ϑ12]

∣

∣

∣

∣

z=β′

= 2
ϑ23(0)ϑ

2
2(nω + ω

2
)

ϑ21(
ω
2
)ϑ24(nω)

[

5
ϑ

′′

2(nω + ω
2
)

ϑ2(nω + ω
2
)
− 5

ϑ
′′

1(
ω
2
)

ϑ1(
ω
2
)

+ 7

(

ϑ′2(nω + ω
2
)

ϑ2(nω + ω
2
)

)2

+ 17

(

ϑ′1(
ω
2
)

ϑ1(
ω
2
)

)2

−24
ϑ′2(nω + ω

2
)ϑ′1(

ω
2
)

ϑ2(nω + ω
2
)ϑ1(

ω
2
)

]

.

These formulae, combined with (4.132), prove Lemma 4.17.1.

4.19 Large n asymptotic formula for hn

We evaluate the large n asymptotic behavior of hnn and then we use formula (4.7).

By (4.67), hnn = [P1]12, and by (4.71),

[P1]12 = [R1]12

(

−nπi
γ

)

,

hence

hnn = [R1]12

(

−nπi
γ

)

.

Furthermore, from (4.74) we obtain that

hnn = enl[T1]12

(

−nπi
γ

)

,
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and from (4.77), that

hnn = enl[S1]12

(

−nπi
γ

)

.

It follows from (4.119) that

S1 = M1 +X1.

By (4.97),

[M1]12 =
iAϑ4

(

(n+ 1)ω
)

ϑ4(nω)
, ω =

π(1 + ζ)

2
, A =

πϑ′1(0)

2ϑ1(ω)
,

and by (4.127),

[X1]12 =
c(n)

n
+O(n−2),

where

c(n) = Xα +Xα′ +Xβ′ +Xβ (4.153)

is an explicit quasi-periodic function of n. Therefore,

hnn = enl

[

iAϑ4
(

(n+ 1)ω
)

ϑ4(nω)
+
c(n)

n
+O(n−2)

]

(

−nπi
γ

)

.

By (4.33),

e
l
2 =

πϑ′1(0)

2eϑ1(ω)
=
A

e
,

hence

hnn =

(

A

e

)2n
[

iA
ϑ4
(

(n+ 1)ω
)

ϑ4(nω)
+
c(n)

n
+O(n−2)

]

(

−nπi
γ

)

=
nπA2n+1ϑ4

(

(n+ 1)ω
)

γe2nϑ4(nω)

(

1 +
c1(n)

n
+O(n−2)

)

,

(4.154)

where

c1(n) =
c(n)ϑ4(nω)

iAϑ4
(

(n+ 1)ω
) . (4.155)

From (4.7) and the Stirling formula we obtain that

hn
(n!)2

=
n2nhnn

(n!)2(2γ)2n
=

(

e

2γ

)2n
hnn
2πn

(

1− 1

6n
+O(n−2)

)

,
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hence by (4.154),

hn
(n!)2

=

(

e

2γ

)2n
1

2πn

nπA2n+1ϑ4
(

(n+ 1)ω
)

γe2nϑ4(nω)

(

1 +
c1(n)

n
− 1

6n
+O(n−2)

)

= G2n+1 ϑ4
(

(n+ 1)ω
)

ϑ4(nω)

(

1 +
c2(n)

n
+O(n−2)

)

,

where

G =
A

2γ
=

πϑ′1(0)

4γϑ1(ω)
, c2(n) = c1(n)−

1

6
.

Observe that c1(n) has the form,

c1(n) = f(nω, ω),

where f(x, ω) is a real analytic function which is periodic with respect to both x and

ω, of periods π and 2π, respectively, so that

f(x+ π, ω) = f(x, ω), f(x, ω + 2π) = f(x, ω).

We can now summarize now the asymptotic formula for hn/(n!)
2.

Proposition 4.19.1 As n→ ∞,

hn
(n!)2

= G2n+1 ϑ4
(

(n + 1)ω
)

ϑ4(nω)

[

1 +
f0(nω, ω)

n
+O(n−2)

]

,

where

G =
πϑ′1(0)

4γϑ1(ω)
(4.156)

and

f0(x, ω) = f(x, ω)− 1

6

is a real analytic function which satisfies the periodicity conditions

f0(x+ π, ω) = f0(x, ω), f0(x, ω + 2π) = f0(x, ω).

By (4.155),

f(nω, ω) =
X(nω, ω)ϑ4(nω)

iAϑ4
(

(n + 1)ω
) .
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where

X ≡ Xα +Xα′ +Xβ′ +Xβ

and explicit expressions for Xα, Xα′, Xβ′, Xβ are given in Lemma 4.17.1.

In the subsequent sections, we carry out a concrete evaluation of f(nω, ω), ob-

taining that

f0(x, ω) ≡ 0, (4.157)

thus we can improve Proposition 4.19.1 to the following.

Proposition 4.19.2 As n→ ∞,

hn
(n!)2

= G2n+1 ϑ4
(

(n+ 1)ω
)

ϑ4(nω)

(

1 +O(n−2)

)

, (4.158)

where G is defined in (4.156).

To this end, we will first show that f(nω, ω) does not depend on n.

4.20 The function f(x, ω) is constant in x

Denote

z = nω +
ω

2
, f̃(x, ω) ≡ f

(

x− ω

2
, ω
)

,

so that

f̃(z, ω) = f(nω, ω).

To prove that f(x, ω) is constant in x we will prove the following lemmas.

Lemma 4.20.1 The function f̃(z, ω) is doubly periodic in z.

Lemma 4.20.2 The function f̃(z, ω) is analytic throughout the z-plane.

From these two lemmas, it follows immediately that f̃(z, ω) is constant in z, as it is a

doubly periodic entire function of z, and it thus follows that f(x, ω) is constant in x.

To prove Lemma 4.20.1, we will check that f̃(z + πτ, ω) = f̃(z, ω). By (4.155),

(4.153),

c1(n) ≡ f(nω, ω) = f̃(z, ω) = Y1 + Y2 + Y3 + Y4,



103

where

Y1 =
Xαϑ4(nω)

iAϑ4(nω + ω)

=
ϑ1(ω)ϑ

2
3(0)ϑ

2
4(z)

48πϑ′1(0)ϑ
2
3(
ω
2
)ϑ4(z − ω

2
)ϑ4(z +

ω
2
)

(

Cα + 12πξα +
π2ηα

2(β ′ − α)

)

,

Y2 =
Xα′ϑ4(nω)

iAϑ4(nω + ω)

=
ϑ1(ω)ϑ

2
3(0)ϑ

2
1(z)

48πϑ′1(0)ϑ
2
2(
ω
2
)ϑ4(z − ω

2
)ϑ4(z +

ω
2
)

(

Cα′ + 12πξα′ +
π2ηα′

2(β − α′)

)

,

Y3 =
Xβ′ϑ4(nω)

iAϑ4(nω + ω)

=
ϑ1(ω)ϑ

2
3(0)ϑ

2
2(z)

48πϑ′1(0)ϑ
2
1(
ω
2
)ϑ4(z − ω

2
)ϑ4(z +

ω
2
)

(

Cβ′ + 12πξβ′ +
π2ηβ′

2(β ′ − α)

)

,

Y4 =
Xβϑ4(nω)

iAϑ4(nω + ω)

=
ϑ1(ω)ϑ

2
3(0)ϑ

2
3(z)

48πϑ′1(0)ϑ
2
4(
ω
2
)ϑ4(z − ω

2
)ϑ4(z +

ω
2
)

(

Cβ + 12πξβ +
π2ηβ

2(β − α′)

)

.

Observe that Y1, Y2, Y3, Y4 can be written in the form

Y1 = Q11h11(z) +Q12h12(z) +Q13h13(z) +Q14h14(z),

Y2 = Q21h21(z) +Q22h22(z) +Q23h23(z) +Q24h24(z),

Y3 = Q31h31(z) +Q32h32(z) +Q33h33(z) +Q34h34(z),

Y4 = Q41h41(z) +Q42h42(z) +Q43h43(z) +Q44h44(z),
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where

h11(z) =
ϑ24(z)

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
, h12(z) =

ϑ′4(z)ϑ4(z)

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
,

h13(z) =
ϑ′4(z)

2

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
, h14(z) =

ϑ′′4(z)ϑ4(z)

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
,

h21(z) =
ϑ21(z)

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
, h22(z) =

ϑ′1(z)ϑ1(z)

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
,

h23(z) =
ϑ′1(z)

2

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
, h24(z) =

ϑ′′1(z)ϑ1(z)

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
,

h31(z) =
ϑ22(z)

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
, h32(z) =

ϑ′2(z)ϑ2(z)

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
,

h33(z) =
ϑ′2(z)

2

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
, h34(z) =

ϑ′′2(z)ϑ2(z)

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
,

h41(z) =
ϑ23(z)

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
, h42(z) =

ϑ′3(z)ϑ3(z)

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
,

h43(z) =
ϑ′3(z)

2

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
, h44(z) =

ϑ′′3(z)ϑ3(z)

ϑ4(z − ω
2
)ϑ4(z +

ω
2
)
,

and the numbers Qij do not depend on z. More specifically,

Q11 =
ϑ1(ω)ϑ

2
3(0)

48πϑ′1(0)ϑ
2
3(
ω
2
)

×



Cα + 12π
ϑ′3(

ω
2
)

ϑ3(
ω
2
)
+

π2

2(β ′ − α)



−5
ϑ

′′

3(
ω
2
)

ϑ3(
ω
2
)
+ 17

(

ϑ
′

3(
ω
2
)

ϑ3(
ω
2
)

)2






 ,

Q12 = − ϑ1(ω)ϑ
2
3(0)

4ϑ′1(0)ϑ
2
3(
ω
2
)
− πϑ1(ω)ϑ

2
3(0)ϑ

′

3(
ω
2
)

4(β ′ − α)ϑ′1(0)ϑ
3
3(
ω
2
)
, Q13 =

7πϑ1(ω)ϑ
2
3(0)

96(β ′ − α)ϑ′1(0)ϑ
2
3(
ω
2
)
,

Q14 =
5πϑ1(ω)ϑ

2
3(0)

96(β ′ − α)ϑ′1(0)ϑ
2
3(
ω
2
)
,

and similar formulae hold for other Qij. In particular, notice that

Q13 +Q14 =
πϑ1(ω)ϑ

2
3(0)

8(β ′ − α)ϑ′1(0)ϑ
2
3(
ω
2
)
=

ϑ1(ω)ϑ1(
ω
2
)

8ϑ′1(0)ϑ2(
ω
2
)ϑ3(

ω
2
)ϑ4(

ω
2
)
,

Q23 +Q24 = − πϑ1(ω)ϑ
2
3(0)

8(β − α′)ϑ′1(0)ϑ
2
2(
ω
2
)
= − ϑ1(ω)ϑ4(

ω
2
)

8ϑ′1(0)ϑ1(
ω
2
)ϑ2(

ω
2
)ϑ3(

ω
2
)
,

Q33 +Q34 = − πϑ1(ω)ϑ
2
3(0)

8(β ′ − α)ϑ′1(0)ϑ
2
1(
ω
2
)
= − ϑ1(ω)ϑ3(

ω
2
)

8ϑ′1(0)ϑ1(
ω
2
)ϑ2(

ω
2
)ϑ4(

ω
2
)
,

Q43 +Q44 =
πϑ1(ω)ϑ

2
3(0)

8(β − α′)ϑ′1(0)ϑ
2
4(
ω
2
)
=

ϑ1(ω)ϑ2(
ω
2
)

8ϑ′1(0)ϑ1(
ω
2
)ϑ3(

ω
2
)ϑ4(

ω
2
)
.
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Observe that all Qij = Qij(ω) are periodic functions of ω of period 2π. It follows

from equations (4.9) that the functions

hj1(z), j = 1, 2, 3, 4,

are doubly periodic,

hj1(z + π) = hj1(z) , hj1(z + πτ) = hj1(z),

while the functions,

hj2(z), hj3(z), hj4(z), j = 1, 2, 3, 4

satisfy the equations

hjk(z + π) = hjk(z), k = 2, 3, 4;

hj2(z + πτ) = hj2(z)− 2ihj1(z), hj3(z + πτ) = hj3(z)− 4ihj2(z)− 4hj1(z),

h4(z + πτ) = hj4(z)− 4ihj2(z)− 4hj1(z).

This implies that the functions Yj = Yj(z) for j = 1, 2, 3, 4, satisfy the equations

Yj(z + π) = Yj(z),

Yj(z + πτ) = Yj(z) + (−2iQj2 − 4Qj3 − 4Qj4)hj1(z)

+ (−4iQj3 − 4iQj4)hj2(z).

(4.159)

The proof of Lemma 4.20.1 then follows immediately from (4.159) and the following

identities:

(Q13 +Q14)h11(z) + (Q23 +Q24)h21(z) + (Q33 +Q34)h31(z) + (Q43 +Q44)h41(z) ≡ 0

(4.160)

(Q13 +Q14)h12(z) + (Q23 +Q24)h22(z) + (Q33 +Q34)h32(z) + (Q43 +Q44)h42(z) ≡ 0

(4.161)

Q12h11(z) +Q22h21(z) +Q32h31(z) +Q42h41(z) ≡ 0, (4.162)

which are proven below. Introduce here the notation

ϑj ≡ ϑj(
ω

2
), ϑ′j ≡ ϑ′j(

ω

2
), ϑ′′j ≡ ϑ′′j (

ω

2
) for j = 1, 2, 3, 4.
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The sum in (4.160) can be written as

ϑ1(ω)
[

ϑ21ϑ
2
4(z)− ϑ24ϑ

2
1(z) + ϑ22ϑ

2
3(z)− ϑ23ϑ

2
2(z)

]

8ϑ′1(0)ϑ1ϑ2ϑ3ϑ4ϑ4(z − ω
2
)ϑ4(z +

ω
2
)

,

which is zero by the Jacobi identity (E.9).

The sum in (4.161) can be written as

ϑ1(ω)
[

ϑ21ϑ
′
4(z)ϑ4(z)− ϑ24ϑ

′
1(z)ϑ1(z) + ϑ22ϑ

′
3(z)ϑ3(z)− ϑ23ϑ

′
2(z)ϑ2(z)

]

8ϑ′1(0)ϑ1ϑ2ϑ3ϑ4ϑ4(z − ω
2
)ϑ4(z +

ω
2
)

. (4.163)

Using the identities (E.2), we can write the expression in brackets in the numerator

of (4.163) as

ϑ′1(z)

ϑ1(z)

[

ϑ21ϑ
2
4(z)− ϑ24ϑ

2
1(z)− ϑ23ϑ

2
2(z) + ϑ22ϑ

2
3(z)

]

+
ϑ2(z)ϑ3(z)ϑ4(z)

ϑ1(z)

[

ϑ23ϑ
2
2(0)− ϑ21ϑ

2
4(0)− ϑ22ϑ

2
3(0)

]

.

(4.164)

The first term in (4.164) vanishes by (E.9) and the second term vanishes by (E.10).

Thus (4.161) is proven.

Finally, we can expand the sum in (4.162) and make the substitutions from iden-

tities (E.2), to obtain

ϑ1(w)

4ϑ′1(0)ϑ4(z − ω
2
)ϑ4(z +

ω
2
)

[

ϑ′1
(

ϑ24ϑ
2
1(z)− ϑ21ϑ

2
4(z)− ϑ22ϑ

2
3(z) + ϑ23ϑ

2
2(z)

)

ϑ21ϑ2ϑ3ϑ4

+
ϑ23(z)

ϑ24

(

ϑ23(0) +
ϑ22ϑ

2
4(0)

ϑ21

)

+
ϑ21(z)

ϑ22

(

ϑ23(0)−
ϑ24ϑ

2
2(0)

ϑ21

)

− ϑ23(0)

ϑ21
ϑ22(z)

]

.

(4.165)

Once again, the first term vanishes by (E.9). If we substitute the identity (E.11) in

the second and third terms, (4.165) becomes simply

ϑ1(w)

4ϑ′1(0)ϑ1ϑ4(z − ω
2
)ϑ4(z +

ω
2
)

[

ϑ23(z)ϑ
2
2(0)− ϑ22(z)ϑ

2
3(0)− ϑ21(z)ϑ

2
4(0)

]

,

which is zero by (E.10). This proves (4.162) and thus Lemma 4.20.1.

We now turn to the proof of Lemma 4.20.2. Notice that in the fundamental

rectangle

R = {z ∈ C : −π
2
≤ Re z ≤ π

2
, 0 ≤ Im z ≤ πτ},
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the function f̃(z, ω) has the two possible simple poles,

z1,2 =
πτ

2
± ω

2
.

Because of the double-periodicity of f̃ , we must have

Res
z=z1

f̃(z, ω) = −Res
z=z2

f̃(z, ω).

Denote

Rij(ω) = Res
z=z1

hij(z, ω).

Then we have that

R11 =
ϑ21

ϑ′1(0)ϑ1(ω)
, R12 =

(ϑ′1 − iϑ1)ϑ1
ϑ′1(0)ϑ1(ω)

, R13 =
(ϑ′1 − iϑ1)

2

ϑ′1(0)ϑ1(ω)
,

R14 =
(ϑ′′1 − 2iϑ′1 − ϑ1)ϑ1

ϑ′1(0)ϑ1(ω)
, R21 =

ϑ24
ϑ′1(0)ϑ1(ω)

, R22 =
(ϑ′4 − iϑ4)ϑ4
ϑ′1(0)ϑ1(ω)

,

R23 =
(ϑ′4 − iϑ4)

2

ϑ′1(0)ϑ1(ω)
, R24 =

(ϑ′′4 − 2iϑ′4 − ϑ4)ϑ4
ϑ′1(0)ϑ1(ω)

, R31 =
−ϑ23

ϑ′1(0)ϑ1(ω)
,

R32 =
−(ϑ′3 − iϑ3)ϑ3
ϑ′1(0)ϑ1(ω)

, R33 =
−(ϑ′3 − iϑ3)

2

ϑ′1(0)ϑ1(ω)
,

R41 =
−ϑ22

ϑ′1(0)ϑ1(ω)
, R42 =

−(ϑ′2 − iϑ2)ϑ2
ϑ′1(0)ϑ1(ω)

, R43 =
−(ϑ′2 − iϑ2)

2

ϑ′1(0)ϑ1(ω)
,

R44 =
−(ϑ′′2 − 2iϑ′2 − ϑ2)ϑ2

ϑ′1(0)ϑ1(ω)
, R34 =

−(ϑ′′3 − 2iϑ′3 − ϑ3)ϑ3
ϑ′1(0)ϑ1(ω)

,

and

Res
z=z1

f̃(z, ω) =
4
∑

j,k=1

QjkRjk. (4.166)

A priori, the sum in (4.166) is quite complicated, so we evaluate first the imaginary

part . Multiplying out (4.166) and again making the substitutions from (E.2), we get

ImRes
z=z1

f̃(z, ω) =
(ϑ42 − ϑ44)

(

ϑ21ϑ
2
3(0) + ϑ22ϑ

2
4(0)− ϑ24ϑ

2
2(0)

)

4ϑ′1(0)
2ϑ21ϑ

2
2ϑ

2
4

,

which is zero by (E.11).

Substituting the identities (E.5), along with (E.2), into the sum (4.166) gives

Res
z=z1

f̃(z, ω) =
24A+ 17B + 12C + 10D + 7E + 5F

96ϑ′1(0)
2ϑ21ϑ

3
2ϑ3ϑ

3
4

,
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where

A = ϑ23
(

ϑ42 + ϑ44
)

[

ϑ22ϑ
2
4ϑ

2
2(0)ϑ

2
4(0)− ϑ21ϑ

2
3(0)

(

ϑ22ϑ
2
4(0)− ϑ24ϑ

2
2(0)

)

]

,

B = −ϑ23
(

ϑ82ϑ
4
4(0) + ϑ84ϑ

4
2(0)

)

,

C = ϑ21ϑ
2
2ϑ

2
4

(

ϑ42 + ϑ44 − ϑ41 − ϑ43

)

,

D = −ϑ42ϑ23ϑ44ϑ43(0),

E = −ϑ23
[

ϑ41ϑ
4
3(0)

(

ϑ42 + ϑ44
)

+ ϑ42ϑ
4
4

(

ϑ42(0) + ϑ44(0)
)

]

,

F = ϑ22ϑ
2
4ϑ

2
3(0)

[

ϑ22ϑ
2
4(0)

(

ϑ43 − ϑ41 − ϑ44 + ϑ42
)

+ ϑ24ϑ
2
2(0)

(

ϑ44 − ϑ42 + ϑ43 − ϑ41
)

]

.

Note that none of these terms involve derivatives of theta functions. We immediately

have C = 0 by the identity (E.8). We can also use this identity to write

F = 2ϑ22ϑ
2
4ϑ

2
3(0)

[

ϑ22ϑ
2
4(0)

(

ϑ43 − ϑ44
)

+ ϑ24ϑ
2
2(0)

(

ϑ43 − ϑ42
)

]

,

and (E.11) to write

A = ϑ23
(

ϑ42 + ϑ44
)

[

ϑ22ϑ
2
4ϑ

2
2(0)ϑ

2
4(0) + ϑ41ϑ

2
3(0)

]

.

We now combine the terms A,B, and E to obtain

24A+ 17B + 7E =24ϑ22ϑ
2
3ϑ

2
4

(

ϑ24ϑ
2
2(0)− ϑ22ϑ

2
4(0)

)(

ϑ22ϑ
2
2(0)− ϑ24ϑ

2
4(0)

)

− 21ϑ42ϑ
2
3ϑ

4
4ϑ

4
3(0) + 7ϑ63

(

ϑ42 + ϑ44
)(

ϑ42(0) + ϑ44(0)
)

− 7ϑ23
(

ϑ84ϑ
4
4(0) + ϑ82ϑ

4
2(0)

)

.

By (E.11) and (E.13) we can write this sum as

24A+ 17B + 7E = 24ϑ21ϑ
2
2ϑ

2
3ϑ

2
4ϑ

2
3(0)

(

ϑ22ϑ
2
2(0)− ϑ24ϑ

2
4(0)

)

− 21ϑ42ϑ
2
3ϑ

4
4ϑ

4
3(0)

+ 7ϑ63ϑ
4
3(0)

(

ϑ42 + ϑ44
)

− 7ϑ23
(

ϑ84ϑ
4
4(0) + ϑ82ϑ

4
2(0)

)

.

We now combine all terms and use (E.11) and (E.13) to write all terms solely in terms

of ϑ2, ϑ4, and factors which are constant with respect to ω, yielding

24A+ 17B + 10D + 7E + 5F =

(

41
ϑ22ϑ

2
4ϑ

2
4(0)

ϑ23(0)
+ 24

ϑ44ϑ
4
4(0)

ϑ22(0)ϑ
2
3(0)

+ 17
ϑ42ϑ

4
2(0)

ϑ23(0)

)

×
(

ϑ42(0) + ϑ44(0)− ϑ43(0)

)

,
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which is zero by (E.13). Lemma 4.20.2 is thus proven, and it follows that f̃(z, ω) is

constant in z. To evaluate the constant, we can take z = 0.

4.21 Evaluation of f̃(0, ω)

We will evaluate f̃(z, ω) at z = 0. Notice that many of the functions hjk(z) vanish

at z = 0. In fact we have

f̃(0, ω) = Q11h11(0) +Q14h14(0) +Q23h23(0) +Q31h31(0) +Q34h34(0)

+Q41h41(0) +Q44h44(0).
(4.167)

The identities (E.4) and (E.3) allow us eliminate all derivatives of theta functions from

the sum (4.167) except ϑ′2, ϑ
′′
2. Making these substitutions and simplifying, (4.167)

becomes

f̃(0, ω) =
ϑ1(ω)

(

ϑ21ϑ
2
4(0) + ϑ22ϑ

2
3(0)− ϑ23ϑ

2
2(0)

)

96ϑ′1(0)

(

5ϑ′′2(0)

ϑ1ϑ2ϑ3ϑ34
+

17(ϑ′2)
2

ϑ1ϑ32ϑ3ϑ
3
4

− 5ϑ′′2
ϑ1ϑ22ϑ3ϑ

3
4

+
24ϑ′2

(

ϑ23ϑ
2
2(0) + ϑ21ϑ

2
4(0)

)

ϑ21ϑ
3
2ϑ

2
3ϑ

2
4

)

+
ϑ1(ω)(24A+ 17B + 7C + 5D + 3E + 2F )

96ϑ′1(0)ϑ
3
1ϑ

3
2ϑ

3
3ϑ

3
4ϑ

2
2(0)

(4.168)

where

A = ϑ22ϑ
2
4ϑ

2
2(0)ϑ

2
3(0)

(

ϑ41ϑ
4
4(0) + ϑ43ϑ

4
2(0)

)

,

B = ϑ24ϑ
2
2(0)

(

ϑ21ϑ
2
4(0)− ϑ23ϑ

2
2(0)

)(

(ϑ23ϑ
2
2(0) + ϑ21ϑ

2
4(0))

2 − ϑ21ϑ
2
3ϑ

2
2(0)ϑ

2
4(0)

)

,

C = ϑ42ϑ
2
4ϑ

2
2(0)ϑ

4
3(0)

(

ϑ21ϑ
2
4(0)− ϑ23ϑ

2
2(0)

)

,

D = ϑ21ϑ
2
3

[

ϑ24ϑ
4
2(0)ϑ

2
4(0)

(

ϑ23ϑ
2
2(0)− ϑ21ϑ

2
4(0)

)

+ ϑ23(0)

(

ϑ22(0)
(

ϑ43ϑ
4
2(0)− ϑ41ϑ

4
4(0)

)

+ ϑ22ϑ
2
1(0)ϑ

2
4(0)

(

ϑ21(ϑ
2
4(0) + ϑ22ϑ

2
3(0)

)

)]

,

E = ϑ21ϑ
2
2ϑ

2
3ϑ

2
2(0)ϑ

2
3(0)

[

ϑ24(0)
(

ϑ21ϑ
2
3(0)− ϑ24ϑ

2
2(0)

)

− ϑ22ϑ
4
2(0)

]

,

F = ϑ21ϑ
2
2ϑ

2
3ϑ

2
2(0)

[

4ϑ22ϑ
2
3(0)ϑ

4
4(0)− ϑ22(0)

(

ϑ21ϑ
2
2(0)ϑ

2
4(0) + ϑ23ϑ

4
4(0) + ϑ23ϑ

4
3(0)

)

]

.



110

The identity (E.10) implies that all terms in (4.168) involving derivatives of theta

functions in the numerator vanish. Additionally, (E.10)-(E.13) allow us to simplify

the numbers B,C,D and E. Namely, we have

B = −ϑ22ϑ24ϑ22(0)ϑ23(0)
(

(ϑ23ϑ
2
2(0) + ϑ21ϑ

2
4(0))

2 − ϑ21ϑ
2
3ϑ

2
2(0)ϑ

2
4(0)

)

,

C = −ϑ62ϑ24ϑ22(0)ϑ63(0),

D = ϑ21ϑ
2
2ϑ

2
3ϑ

2
2(0)ϑ

2
3(0)

(

ϑ21ϑ
2
3(0)ϑ

2
4(0) + ϑ23ϑ

2
2(0)ϑ

2
3(0) + ϑ24ϑ

2
2(0)ϑ

2
4(0)

)

,

E = −ϑ21ϑ42ϑ23ϑ22(0)ϑ63(0).

Combining these terms gives us

24A+ 17B + 7C + 5D + 3E + 2F =

ϑ22ϑ
2
2(0)

[

− 12ϑ21ϑ
2
3ϑ

2
4ϑ

2
2(0)ϑ

2
3(0)ϑ

2
4(0) + 7ϑ24ϑ

2
3(0)

(

ϑ43ϑ
4
2(0) + ϑ41ϑ

4
4(0)− ϑ42ϑ

4
3(0)

)

+ 8ϑ21ϑ
2
2ϑ

2
3ϑ

2
3(0)ϑ

4
4(0) + 5ϑ41ϑ

2
3ϑ

4
3(0)ϑ

2
4(0) + 3ϑ21ϑ

2
3ϑ

4
3(0)

(

ϑ23ϑ
2
2(0)− ϑ22ϑ

2
3(0)

)

− 2ϑ21ϑ
2
3ϑ

2
2(0)ϑ

2
4(0)

(

ϑ21ϑ
2
2(0) + ϑ23ϑ

2
4(0)

)

]

.

Again using (E.10)-(E.13), this expression simplifies to

24A+ 17B + 7C + 5D + 3E + 2F = 8ϑ21ϑ
2
2ϑ

2
3ϑ

2
4ϑ

2
2(0)ϑ

2
3(0)ϑ

2
4(0).

Inserting this into (4.168), we get

f̃(0, ω) ≡ f̃(z, ω) ≡ f(nω, ω) =
ϑ1(ω)ϑ

2
2(0)ϑ

2
3(0)ϑ

2
4(0)

12ϑ′1(0)ϑ1ϑ2ϑ3ϑ4
=

1

6

by (E.1) and (E.6). It then follows that

f0(nω, ω) = f(nω, ω)− 1

6
= 0.

This proves (4.157) and therefore Proposition 4.19.2.
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4.22 Large n asymptotics of Zn

By substituting (4.158) into (4.3) we obtain that

τn
∏n−1

k=0(k!)
2
= 2n

2
n−1
∏

k=0

hk
(k!)2

= 2n
2

h0

n−1
∏

k=1

[

G2k+1 ϑ4((k + 1)ω)

ϑ4(kω)

(

1 +O(k−2)
)

]

= Cϑ4(nω)(2G)
n2

(

1 +O(n−1)

)

,

where C > 0 does not depend on n. Thus, by (1.5),

Zn =
[sinh(γ − t) sinh(γ + t)]n

2
τn

(
∏n−1

k=0 k!
)2 = Cϑ4(nω)F

n2

(

1 +O(n−1)

)

,

where

F = 2G sinh(γ − t) sinh(γ + t) =
π sinh(γ − t) sinh(γ + t)ϑ′1(0)

2γϑ1(ω)
.

Theorem 4.2.1 is proved.
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5. DISCRETE ORTHOGONAL POLYNOMIALS ON AN

INFINITE LATTICE

5.1 Introduction

In the preceding chapter, we developed a Riemann-Hilbert approach to asymp-

totics of a system of discrete orthogonal polynomials on a regular infinite lattice. In

fact, this approach can easily be extended to a large class of discrete orthogonal poly-

nomials. In this chapter, originally presented in the paper [10], we obtain asymptotic

results for systems of discrete orthogonal polynomials with respect to varying expo-

nential weights on a regular infinite lattice. For a given N ∈ N, introduce the regular

infinite lattice,

LN =

{

xk,N =
k

N
, k ∈ Z

}

.

We consider polynomials orthogonal on LN with respect to the varying exponential

weight

wN(x) = e−NV (x),

where V (x) is a real analytic function such that, for some ε > 0, V has analytic

extension to the strip

| Im z| < ε, (5.1)

and satisfies the growth condition

ReV (z)

log(|z|2 + 1)
→ +∞ as |z| → ∞, | Im z| < ε. (5.2)

More specifically, we introduce the system of monic orthogonal polynomials,

Pn(x) = xn + pn,n−1x
n−1 + . . .+ pn0, n = 0, 1, . . . ,

such that
∑

x∈LN

Pm(x)Pn(x)wN(x) = hnδmn , (5.3)
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for some normalizing coefficients hn. Existence and uniqueness of this system of or-

thogonal polynomials is guaranteed by condition (5.2). These orthogonal polynomials

satisfy the three-term recurrence relation

xPn(x) = Pn+1(x) + βnPn(x) + γ2nPn−1(x). (5.4)

We will explore the asymptotics of the quantities γn, βn, and hn for n = N,N − 1, as

well as pointwise asymptotics of the polynomials PN(x) as N → ∞.

The present work has the three predecessors:

1. The work [16] of Deift, Kriecherbauer, McLaughlin, Venakides, and Zhou, in

which the large N asymptotics has been obtained for orthogonal polynomials

with respect to varying exponential weights on the real line.

2. The work [5] of Baik, Kriecherbauer, McLaughlin, and Miller, in which the large

N asymptotics has been obtained for orthogonal polynomials with respect to

varying exponential weights on a lattice in a finite interval.

3. The work [8] of Bleher and Liechty, presented in the preceding chapter, in which

the large N asymptotics has been obtained for orthogonal polynomials with

respect to the varying exponential weight wN(x) = e−N(|x|−ζx) on the infinite

lattice LN .

Also, a very important ingredient comes from the work [32] of Kuijlaars, in which

analytic properties of equilibrium measures with constraints are established.

The asymptotic analysis of the polynomials PN(x) in this work will be based on

the Interpolation Problem for discrete orthogonal polynomials, which is introduced

in the work [11] of Borodin and Boyarchenko (see also [5], [7], [8]). The asymptotic

analysis of PN(x) will consist of three steps. The first step will be a reduction of

the Interpolation Problem to a Riemann-Hilbert problem on a contour on the com-

plex plane, which we accomplish following the general approach introduced in the

paper [39] of Miller and in the monograph [26] of Kamvissis, McLaughlin, and Miller.

The second step will be an application of the nonlinear steepest descent method of
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Deift and Zhou [19] to the Riemann-Hilbert problem under consideration, and the

final, third step will be a derivation of the asymptotic formulae both for the orthog-

onal polynomials PN(x) and for the recurrence coefficients. To apply the nonlinear

steepest descent method to the orthogonal polynomials PN(x) we need to study the

corresponding equilibrium measure.

5.2 Equilibrium measure

The significance of the equilibrium measure is that, as we will see, it gives the

limiting distribution of zeros of the polynomial PN(x). By definition, the equilibrium

measure is a solution to a variational problem. Namely, let us consider the following

set of probability measures on R1:

M = {0 ≤ ν ≤ σ, ν(R1) = 1},

where σ is the Lebesgue measure, and let us introduce the functional

H(ν) =

∫∫

log
1

|x− y|dν(x)dν(y) +
∫

V (x)dν(x), ν ∈ M.

The equilibrium measure minimizes this functional over some set of measures. In the

case of continuous orthogonal polynomials, we minimize over the set of probability

measures on the real line. However, in the case of discrete orthogonal polynomials,

we must introduce the upper constraint, ν ≤ σ, in order to account for an interlacing

property of the zeroes of orthogonal polynomials.

It is a general fact, (see, e.g. [47]) that for any system of polynomials orthogonal

on the real line with respect to a real weight, the nth polynomial has n real distinct

distinct zeroes. Furthermore, the zeroes of a system of discrete orthogonal polyno-

mials satisfy an interlacing property with regard to the location of the nodes of the

lattice LN , so that no more than one zero may lie between any pair of adjacent nodes.

It therefore follows that, if we denote by µN the normalized counting measure on the

zeroes of the Nth orthogonal polynomial in our system,

µN(a, b) ≤ b− a+
1

N
for any −∞ < a < b <∞,
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so that µ ≤ σ, where µ = limN→∞ µN . With this constraint in mind, we define

E0 = inf
ν∈M

H(ν).

It is possible to prove that there exists a unique minimizer ν0, so that

E0 = H(ν0), (5.5)

see, e.g., the works of Saff and Totik [41], Dragnev and Saff [20] and Kuijlaars [32].

The minimizer is called the equilibrium measure.

The equilibrium measure ν0 is uniquely determined by the Euler-Lagrange varia-

tional conditions: there exists a Lagrange multiplier l such that

2

∫

log |x− y|dν0(y)− V (x)







≥ l for x ∈ supp ν0

≤ l for x ∈ supp (σ − ν0),

see the works [18] of Deift and McLaughlin and [20]. In particular,

2

∫

log |x− y|dν0(y)− V (x) = l for x ∈ supp ν0 ∩ supp (σ − ν0).

The equilibrium measure ν0 possesses a number of nice analytical properties, as shown

by Kuijlaars in [32]. We will use these analytic properties, so let us discuss the results

of [32].

First, observe that the constraint ν0 ≤ σ implies the existence of the density,

ρ(x) =
dν0
dx

.

We can partition R into the three sets

I0 =

{

x ∈ R : 2

∫

log |x− y|dν0(y)− V (x) = l

}

,

I+ =

{

x ∈ R : 2

∫

log |x− y|dν0(y)− V (x) > l

}

,

I− =

{

x ∈ R : 2

∫

log |x− y|dν0(y)− V (x) < l

}

.

(5.6)

The structure of the equilibrium measure is well described in the following theorem

of Kuijlaars, obtained in [32].
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Theorem 5.2.1 (Kuijlaars) For any real analytic potential V (x) satisfying (5.2), the

following hold:

1. The density ρ(x) of the constrained equilibrium measure ν0 (defined in (5.5)) is

continuous.

2. The sets I+ and I− are both finite unions of open intervals.

3. The density ρ is real analytic on the open set {x : 0 < ρ(x) < 1}.

4. The density ρ has the representation

ρ(x) =
1

π

√

q+1 (x) for x ∈ I0 ∪ I− ,

where q+1 is the positive part of a function q1 defined on I0 ∪ I− which is real

analytic on the interior of I0 ∪ I−. The function q1 is negative on I−, so that

ρ(x) = 0 for x ∈ I− ,

and it is nonnegative on I0, so that

ρ(x) =
1

π

√

q1(x) for x ∈ I0. (5.7)

5. The density ρ has the representation

ρ(x) = 1− 1

π

√

q+2 (x) for x ∈ I0 ∪ I+ ,

where q+2 is the positive part of a function q2 defined on I0 ∪ I+ which is real

analytic on the interior of I0 ∪ I+. The function q2 is negative on I+, so that

ρ(x) = 1 for x ∈ I+ ,

and it is nonnegative on I0, so that

ρ(x) = 1− 1

π

√

q2(x) for x ∈ I0. (5.8)
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Remark: It follows from equations (5.7) and (5.8) that

1

π

√

q1(x) = 1− 1

π

√

q2(x) for x ∈ I0,

hence q1 and q2 uniquely determine each other.

Notice that, according to point (2) of this theorem, the connected components of

I0 are either closed intervals or isolated points. Since ν0 has compact support, we

can write

I0 =

q
⊔

j=1

[αj , βj] ,

where

αj ≤ βj for j = 1, . . . , q ,

βj < αj+1 for j = 1, . . . , q − 1.

Notice that the intervals (−∞, α1) and (βq,∞) are components of I−. The interval

(βj , αj+1) for 1 ≤ j < q is a component of either I+ or I−. We therefore adopt the

notation

Av =

{

j ∈ {1, . . . , q − 1} : (βj , αj+1) ⊂ I−
}

As =

{

j ∈ {1, . . . , q − 1} : (βj , αj+1) ⊂ I+
}

.

We will call an equilibrium measure ν0 regular if the following hold:

1. The functions q1 and q2 are non-vanishing on the interior of I0.

2. I0 contains no isolated points, so that αj < βj for all j = 1, . . . , q.

3. If j ∈ Av, then q
′
1(βj) 6= 0 and q′1(αj+1) 6= 0.

4. If j ∈ As, then q
′
2(βj) 6= 0 and q′2(αj+1) 6= 0.

For the remainder of this paper, we will assume that our equilibrium measure is

regular. In this case, the sets I0, I+ and I− are each finite unions of intervals, so that

−∞ < α1 < β1 < α2 < β2 < · · · < αq < βq <∞,

and we classify these intervals as follows:



118

α α α αβ β β1 1 2 2 3 3 4 5β α4 5β

Fig. 5.1. The graph of the density function for a hypothetical equi-
librium measure with q = 5. Bands are denoted by bold segments,
saturated regions by dashed segments, and voids by thin segments.

Definition: A void is an open subinterval (βj , αj+1), j ∈ Av, or one of the intervals

(−∞, α1), (βq,∞). The union of all voids is I−.

Definition: A saturated region is an open subinterval (βj , αj+1), j ∈ As. The union

of all saturated regions is I+.

Definition: A band is an open subinterval (αj , βj), j = 1, . . . , q. The union of all

bands is the interior of I0. Observe that ρ(x) = 0 on any void (βj, αj+1), ρ(x) = 1

on any saturated interval (βj , αj+1), and 0 < ρ(x) < 1 on any band (αj, βj), see Figure

5.1. In addition, at the end-points of any band, ρ(x) has a square-root singularity.

Namely, if αj is a common end-point of a band and a void then as x→ +0,

ρ(αj + x) = C
√
x (1 +O(x)), C = |q′1(αj)|1/2 > 0.

and if αj is a common end-point of a band and a saturated region then as x→ +0,

ρ(αj + x) = 1− C
√
x (1 +O(x)), C = |q′2(αj)|1/2 > 0.

Similarly, if βj is a common end-point of a band and a void then as x→ +0,

ρ(βj − x) = C
√
x (1 +O(x)), C = |q′1(βj)|1/2 > 0. (5.9)

and if βj is a common end-point of a band and a saturated region then as x→ +0,

ρ(βj − x) = 1− C
√
x (1 +O(x)), C = |q′2(βj)|1/2 > 0.

In the next section we introduce the g-function, which will be our means of ex-

ploiting the equilibrium measure.
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5.3 The g-function

Define the g-function on C \ (−∞, βq] as

g(z) =

∫ βq

α1

log(z − x)dν0(x) (5.10)

where we take the principal branch for the logarithm. Also, introduce the numbers

Ωj for j = 1, . . . , q − 1 as

Ωj =



















2π

∫ βq

αj+1

ρ(x)dx for j ∈ Av

2π

∫ βq

αj+1

ρ(x)dx+ 2παj+1 for j ∈ As.

Properties of g(z):

1. g(z) is analytic in C \ (−∞, βq].

2. For large z,

g(z) = log z −
∞
∑

j=1

gj
zj
, gj =

∫ βq

α1

xj

j
dν0(x). (5.11)

3. The resolvent of the equilibrium measure is given by

g′(z) =

∫

R

ρ(x)dx

z − x

4. From (5.6), we have that

g+(x) + g−(x)























= V (x) + l for x ∈ I0

> V (x) + l for x ∈ I+

< V (x) + l for x ∈ I−,

(5.12)

where g+ and g− refer to the limiting values from the upper and lower half-

planes, respectively.

5. Equation (5.10) implies that the function

G(x) ≡ g+(x)− g−(x)
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is pure imaginary for all real x, and

G(x) = 2πi

∫ βq

x

ρ(s) ds. (5.13)

Thus

G(x) =







iΩj for βj < x < αj+1, and j ∈ Av

iΩj − 2πix for βj < x < αj+1, and j ∈ As.

From (5.12) and (5.13) we obtain that

2g±(x) = V (x) + l ± 2πi

∫ βq

x

ρ(s)ds for x ∈ I0. (5.14)

6. Also, from (5.13), we get that G(x) is real analytic on the sets I+, I−, and on

the interior of I0. We can therefore extend G into a complex neighborhood of

any interval of analyticity for ρ, and the Cauchy-Riemann equations imply that

dG(x+ iy)

dy

∣

∣

∣

∣

y=0

= 2πρ(x) ≥ 0.

Observe that from (5.12) we have that

G(x) = 2g+(x)− V (x)− l = −[2g−(x)− V (x)− l], x ∈ I0.

5.4 Main results

In this section, we summarize the main results of this chapter. In order to do so,

we must first introduce some notations. Introduce the numbers Ωj,N for j = 0, . . . , q

as

Ωj,N =



































NΩj for j ∈ Av

π +NΩj for j ∈ As

2πN for j = 0

0 for j = q.

and the vector

ΩN = (Ω1,N , . . . ,Ωq−1,N).
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Let

R(z) ≡
q
∏

j=1

(z − αj)(z − βj)

and let X be the two-sheeted Riemann surface of genus g ≡ q − 1 associated with
√

R(z) with cuts on the intervals (αj, βj). We fix the first sheet of X by the condition

√

R(z) > 0 for z > βq

on the first sheet.

Introduce the following homology basis on X . For any j ∈ {1, · · · , q − 1}, let Aj
be a cycle enclosing the interval (βj, αj+1) (passing through the intervals (αj , βj) and

(αj+1, βj+1)), oriented clockwise, such that the piece of Aj which lies in the upper

half-plane also lies on the first sheet of X , while the piece of Aj which lies in the lower

half plane also lies on the second sheet of X . Also for any j ∈ {1, · · · , q − 1}, let Bj

be a cycle enclosing the interval (α1, βj) (passing through the intervals (−∞, α1) and

(βj , αj+1)), oriented clockwise, and lying entirely on the first sheet of X . Then the

cycles (A1, . . . , Aq−1, B1, . . . .Bq−1) form a canonical homology basis for X .

Now consider the the g-dimensional complex linear space Ω of holomorphic one-

forms on X ,

Ω =

{

ω =

q−2
∑

j=0

cjz
jdz

√

R(z)

}

,

and the basis

ω = (ω1, . . . , ωq−1) (5.15)

normalized such that
∫

Aj

ωk = δjk. (5.16)

Notice that the basis ω is real. That is, for the basis elements

ωj =

q−1
∑

k=1

cjkz
k−1dz

√

R(z)
, (5.17)

the coefficients cjk are real.
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Now define the associated matrix of B-periods as

τ = (τjk), τjk =

∫

Bj

ωk, j, k = 1, . . . , q − 1.

Since
√

R(z) is pure imaginary on the intervals (αj, βj), the numbers τjk are pure

imaginary. Furthermore, the matrix τ is symmetric and the matrix −iτ is positive

definite (see [22]).

We now define the Riemann theta function associated with τ as

ϑ(s) =
∑

m∈Zg

e2πi(m,s)+πi(m,τm), s ∈ C
g, (5.18)

where (m, s) =
∑q−1

j=1mjsj . Because the quadratic form i(m, τm) is negative definite,

the sum in (5.18) is absolutely convergent for all s ∈ Cg, and thus ϑ(s) is an entire

function in Cg. Notice that the theta function is an even function and satisfies the

periodicity properties

ϑ(s + ej) = ϑ(s), ϑ(s + τj) = e−2πisj−πiτjjϑ(s)

where ej = (0, . . . , 1, . . . , 0) is the jth canonical basis vector in Cg, and τj = τej .

Introduce now the vector valued function

u(z) =

∫ z

βq

ω, for z ∈ C \ (α1, βq),

where ω = (ω1, . . . , ωg) is defined in (5.15) and (5.16), and the contour of integration

lies in C\(α1, βq) on the first sheet of X . Notice that u(z) is well defined as a function

with values in Cg/Zg except on the interval (α1, βq), where it takes limiting values

from the upper and lower half-planes.

Introduce also the function

γ(z) =

q
∏

j=1

(

z − αj
z − βj

)1/4

with cuts on I0, taking the branch such that γ(z) ∼ 1 as z → ∞. It can be seen

(see [16]) that, on the first sheet of X , the function γ− 1
γ
has exactly one zero in each
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of the intervals (βj , αj+1), and is non-zero elsewhere, and that the function γ + 1
γ
has

no zeroes on the first sheet of X . Define the numbers xj as

xj ∈ (βj , αj+1), γ(xj)−
1

γ(xj)
= 0.

Define the vector of Riemann constants

K ≡ −
q−1
∑

j=1

u(βj)

and the vector

d ≡ −K +

q−1
∑

j=1

u(xj).

Then

ϑ(u(xj)− d) = 0 for j ∈ {1, . . . , q − 1},

and {xj}gj=1 are all the zeroes of the function ϑ(u(z) − d). In addition, the function

ϑ(u(z) + d) has no zeroes on the first sheet of X .

Finally, for j = 1, . . . q, introduce the functions

ψαj
(z) = −

{

3π

2

∫ z

αj

ρ(t)dt

}2/3

, ψβj (z) = −
{

3π

2

∫ βj

z

ρ(t)dt

}2/3

,

and the functions

M1(z) =
ϑ(u(∞) + d)

ϑ(u(∞) + ΩN

2π
+ d)

γ(z) + γ(z)−1

2

ϑ(u(z) + ΩN

2π
+ d)

ϑ(u(z) + d)

M2(z) =
ϑ(u(∞) + d)

ϑ(u(∞) + ΩN

2π
+ d)

γ(z)− γ(z)−1

2

ϑ(u(z)− ΩN

2π
− d)

ϑ(u(z)− d)
.

Notice that M1 and M2 depend quasiperiodically on N , thus are O(1) as N → ∞.

The asymptotics of the normalizing constants in equation (5.3) and of the recur-

rence coefficients in equation (5.4) are presented in the following theorem.

Theorem 5.4.1 (Asymptotics of recurrence coefficients) Let V (x) be a real analytic

function satisfying (5.2) which yields a regular equilibrium measure (5.5), and let

{Pn}∞n=0 be the system of orthogonal polynomials defined according to (5.3). Then as
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N → ∞, the normalizing constants in (5.3) and recurrence coefficients in (5.4) admit

the following asymptotic expansions.

hN =
Nπ

2
eNl

(

q
∑

j=1

(βj − αj)

)

ϑ(u(∞) + d)ϑ(u(∞)− ΩN

2π
− d)

ϑ(u(∞)− d)ϑ(u(∞) + ΩN

2π
+ d)

[

1 +O

(

1

N

)]

,

hN−1 = 8NπeNl

(

q
∑

j=1

(βj − αj)

)−1
ϑ(u(∞)− d)ϑ(u(∞)− ΩN

2π
+ d)

ϑ(u(∞) + d)ϑ(u(∞) + ΩN

2π
− d)

[

1 +O

(

1

N

)]

,

γ2N =

(

∑q
j=1(βj − αj)

4

)2
ϑ(u(∞) + d)2ϑ(u(∞)− ΩN

2π
− d)ϑ(u(∞) + ΩN

2π
− d)

ϑ(u(∞)− d)2ϑ(u(∞) + ΩN

2π
+ d)ϑ(u(∞)− ΩN

2π
+ d)

+O

(

1

N

)

,

βN−1 =

∑q
j=1(β

2
j − α2

j )

2
∑q

j=1(βj − αj)
+

(

∇ϑ(u(∞) + ΩN

2π
− d)

ϑ(u(∞) + ΩN

2π
− d)

− ∇ϑ(u(∞) + ΩN

2π
+ d)

ϑ(u(∞) + ΩN

2π
+ d)

+
∇ϑ(u(∞) + b)

ϑ(u(∞) + b)
− ∇ϑ(u(∞)− d)

ϑ(u(∞)− d)
, u′(∞)

)

+O

(

1

N

)

.

where ∇ϑ is the gradient of ϑ,

u′(∞) = (c1,q−1, c2,q−1, . . . , cq−1,q−1), (5.19)

and the numbers cjk are defined in (5.17).

Notice that, up to the lattice scaling factor N in the normalizing coefficients, these

asymptotics are similar to the results obtained in [16] for continuous orthogonal poly-

nomials.

The remaining theorems in this section present pointwise asymptotics of the poly-

nomials PN(z) in various regions of the real line and complex plane.

Theorem 5.4.2 (Asymptotics of PN(z) in voids) Let K ⊂ C be a compact subset of

the complex plane such that K does not intersect with the support of the equilibrium

measure ν0. Then for any z ∈ K, we have that

PN(z) = eNg(z)
[

M1(z) +O(N−1)
]

.

The error term O(N−1) is uniform in K.
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The function eNg(z)M1(z) is analytic in a neighborhood of any compact subset of

any void, thus this formula gives asymptotics of PN(x) for x in a void. In particular,

notice that this function has no zeroes in the exterior intervals (−∞, α1) and (βq,∞),

and at most one zero in any other void.

Theorem 5.4.3 (Asymptotics of PN(z) in bands) Let K be a compact subset of the

interior of I0. Then for any point x ∈ K, we have that

PN(x) = 2e
N
2
(V (x)+l)

[

Re
(

eiNπφ(x)M1+(x)
)

+O(N−1)
]

,

where M1+(x) refers to the limiting value of the function M1(z) from the upper

half-plane, and

φ(x) :=

∫ βq

x

ρ(t)dt. (5.20)

The error term O(N−1) is uniform in K.

Theorem 5.4.4 (Asymptotics of PN(z) in saturated regions) Let K be a compact

subset of I+. Then the exists ε > 0 such that, for any point x ∈ K, we have that

PN(x) = eNL(x)
[

2 sin(Nπx)
(

Im
(

e
iNΩj

2 M1+(x)
)

+O(N−1)
)

+O(e−Nε)
]

,

where M1+(x) refers to the limiting value of the function M1(z) from the upper

half-plane, and

L(x) :=

∫ βq

α1

log |x− t|ρ(t)dt. (5.21)

Both of the error terms, O(N−1) and O(e−Nε), are uniform in K.

The remaining theorems in this section use the Airy functions Ai and Bi (see,

e.g. [40]).

Theorem 5.4.5 (Asymptotics of PN(z) at band-void edge points) Let j ∈ Av ∪ {q},
so that the point βj is the right endpoint of a band and the left endpoint of a void.

Then there exists ε > 0 such that, for |z − βj| < ε,

PN(z) = e
N
2
(V (z)+l)

×
{

N1/6ψβj(z)
1/4Ai(N2/3ψβj(z))

[

e±
iΩj,N

2 M1(z) + e∓
iΩj,N

2 M2(z) +O(N−1)
]

−N−1/6ψβj (z)
−1/4Ai′(N2/3ψβj (z))

[

e±
iΩj,N

2 M1(z)− e∓
iΩj,N

2 M2(z) +O(N−1)
]

}
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for ±Im z > 0.

Let j ∈ Av∪{0}, so that the point αj+1 is the left endpoint of a band and the right

endpoint of a void. There exists ε > 0 such that, for |z − αj+1| < ε,

PN(z) = e
N
2
(V (z)+l)

×
{

N1/6ψαj+1j(z)
1/4Ai(N2/3ψαj+1

(z))
[

e±
iΩj,N

2 M1(z)− e∓
iΩj,N

2 M2(z) +O(N−1)
]

−N−1/6ψαj+1
(z)−1/4Ai′(N2/3ψαj+1

(z))
[

e±
iΩj,N

2 M1(z) + e∓
iΩj,N

2 M2(z) +O(N−1)
]

}

for ±Im z > 0.

Theorem 5.4.6 (Asymptotics of PN(z) at band-saturated region edge points) Let j ∈
As. Then the point βj is the right endpoint of a band and the left endpoint of a

saturated region. There exists ε > 0 such that, for |z − βj | < ε,

PN(z) = e
N
2
(V (z)+l)

×
{

N1/6ψβj (z)
1/4B1(z)

[

−e±
iΩj,N

2 M1(z) + e∓
iΩj,N

2 M2(z) +O(N−1)
]

−N−1/6ψβj (z)
−1/4B2(z)

[

e±
iΩj,N

2 M1(z) + e∓
iΩj,N

2 M2(z) +O(N−1)
]

}

for ±Im z > 0, where

B1(z) = cos(Nπz)Ai(N2/3ψβj (z)) + sin(Nπz)Bi(N2/3ψβj (z)),

B2(z) = cos(Nπz)Ai′(N2/3ψβj(z)) + sin(Nπz)Bi′(N2/3ψβj (z)).

The point αj+1 is the left endpoint of a band and the right endpoint of a void.

There exists ε > 0 such that, for |z − αj+1| < ε,

PN(z) = e
N
2
(V (z)+l)

×
{

N1/6ψαj+1j(z)
1/4B3(z)

[

e±
iΩj,N

2 M1(z) + e∓
iΩj,N

2 M2(z) +O(N−1)
]

.

−N−1/6ψαj+1
(z)−1/4B4(z)

[

e±
iΩj,N

2 M1(z)− e∓
iΩj,N

2 M2(z) +O(N−1)
]

}

for ±Im z > 0, where

B3(z) = cos(Nπz)Ai(N2/3ψαj+1
(z))− sin(Nπz)Bi(N2/3ψαj+1

(z)),

B4(z) = cos(Nπz)Ai′(N2/3ψαj+1
(z))− sin(Nπz)Bi′(N2/3ψαj+1

(z)).
(5.22)
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Remark: Although the above theorems are presented for real analytic potential V (x)

these results may be extended to potentials which are continuous and piecewise real

analytic satisfying (5.2), assuming that the points of non-analyticity lie strictly within

saturated regions and voids, as is the case in the preceding chapter. In this case the

preceding results hold, and the asymptotic solution to the associated Riemann-Hilbert

Problem does not require local analysis near the points of non-analyticity (see [8]).

Before continuing with the proofs of these theorems, we would also like to remark

that the results obtained in this paper match the results obtained in [5] for polyno-

mials orthogonal on a lattice which sits inside a finite interval. Consequently, many

corollaries discussed in [5] also apply to infinite lattices. In particular, the authors

of [5] discuss the particle statistics of the discrete orthogonal polynomial ensemble in

different regions of a finite interval of the real line, which are based on asymptotic

properties of the associated orthogonal polynomials. The results of this paper imply

that their results may be extended to discrete orthogonal polynomial ensembles on an

infinite (regular) lattice. Of particular interest may be the discrete sine kernel as the

scaling limit of the reproducing kernel in the interior of bands, the Airy kernel as the

scaling limit of the reproducing kernel at band end-points, the Tracy-Widom distri-

bution for the location of the left- and right-most particle, and exponential estimates

for all correlation functions in voids and saturated regions.

The rest of this chapter is organized as follows. In Section 5.5, we reformulate the

orthogonal polynomials (5.2) as the solution to an interpolation problem of complex

analysis. In Section 5.6, we reduce the interpolation problem to a Riemann-Hilbert

Problem which can be solved by steepest descent analysis, which is done in Sections

5.7-5.12. Finally, in Section 5.13, we give proofs of the preceding theorems.
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5.5 Interpolation problem

We will evaluate the asymptotics of the discrete orthogonal polynomials described

above via a steepest descent asymptotic analysis of a Riemann-Hilbert problem. To

that end, we first introduce the following interpolation problem.

Interpolation Problem. For a given N = 0, 1, . . ., find a 2 × 2 matrix-valued

function PN(z) = (PN(z)ij)1≤i,j≤2 with the following properties:

1. Analyticity: PN(z) is an analytic function of z for z ∈ C \ LN .

2. Residues at poles: At each node x ∈ LN , the elements PN(z)11 and PN(z)21

of the matrix PN(z) are analytic functions of z, and the elements PN(z)12 and

PN(z)22 have a simple pole with the residues,

Res
z=x

PN(z)j2 = wN(x)PN(x)j1, j = 1, 2.

3. Asymptotics at infinity: There exists a function r(x) > 0 on LN such that

lim
x→∞

r(x) = 0,

and such that as z → ∞, PN(z) admits the asymptotic expansion,

PN(z) ∼
(

I +
P1

z
+

P2

z2
+ . . .

)





zN 0

0 z−N



 , z ∈ C \
[ ∞
⋃

x∈LN

D
(

x, r(x)
)

]

,

(5.23)

where D(x, r(x)) denotes a disk of radius r(x) > 0 centered at x and I is the

identity matrix.

It is not difficult to see (see [11] and [5]) that the IP has a unique solution, which

is

PN(z) =





PN(z) C(wNPN)(z)

(hN−1)
−1PN−1(z) (hN−1)

−1C(wNPN−1)(z)



 , (5.24)

where the Cauchy transformation C is defined by the formula,

C(f)(z) =
∑

x∈LN

f(x)

z − x
.
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Because of the orthogonality condition, as z → ∞,

C(wNPn)(z) =
∑

x∈LN

wN(x)Pn(x)

z − x
∼
∑

x∈LN

wN(x)Pn(x)

∞
∑

j=0

xj

zj+1
=

hn
zn+1

+

∞
∑

j=n+2

aj
zj
,

which justifies asymptotic expansion (5.23), and have that

hN = [P1]12, h−1
N−1 = [P1]21. (5.25)

Furthermore, the recurrence coefficients in equation (5.4) are given by

γ2N = [P1]12[P1]21 ; βN−1 =
[P2]21
[P1]21

− [P1]11. (5.26)

5.6 Reduction of IP to RHP

We would like to reduce the Interpolation Problem to a Riemann-Hilbert Problem

(RHP). Introduce the function

Π(z) =
sin (Nπz)

Nπ
.

Notice that

Π(xk) = 0, Π′(xk) = exp (iNπxk) = (−1)k, for xk =
k

N
∈ LN .

Introduce the upper triangular matrices,

Du
±(z) =





1 −wN (z)
Π(z)

e±iNπz

0 1



 ,

and the lower triangular matrices,

Dl
± =





Π(z)−1 0

− 1
wN (z)

e±iNπz Π(z)



 =





Π(z)−1 0

0 Π(z)









1 0

− 1
Π(z)wN (z)

e±iNπz 1



 .

(5.27)

Define the matrix-valued functions,

Ru
N = PN(z)×







Du
+(z) when Im z ≥ 0

Du
−(z) when Im z ≤ 0,
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and

Rl
N = PN(z)×







Dl
+(z), when Im z ≥ 0

Dl
−(z), when Im z ≤ 0.

From (5.24) we have that

Ru
N(z) =





PN(z) −wN (z)PN (z)
Π(z)

e±iNπz + C(wNPN)(z)

h−1
N−1PN−1(z) −wN (z)h−1

N−1PN−1(z)

Π(z)
e±iNπz + h−1

N−1C(wNPN−1)(z)





when ± Im z ≥ 0,

and

Rl
N(z) =





PN (z)
Π(z)

− C(wNPN )(z)
wN (z)

e±iNπz Π(z)C(wNPN)(z)
h−1
N−1PN−1(z)

Π(z)
− h−1

N−1C(wNPN−1)(z)

wN (z)
e±iNπz Π(z)h−1

N−1C(wNPN−1)(z)





when ± Im z ≥ 0.

Observe that the functions Ru
N(z), R

l
N(z) are meromorphic on the closed upper and

lower complex planes and they are two-valued on the real axis. Their possible poles

are located on the lattice LN . In fact, due to some cancellations they do not have

any poles at all. We have the following proposition.

Proposition 5.6.1 The matrix-valued functions Ru
N(z) and Rl

N(z) have no poles

and on the real line they satisfy the following jump conditions at x ∈ R:

Ru
N+(x) = Ru

N−(x)j
u
R(x), juR(x) =





1 −2NπiwN (x)

0 1



 ,

and

Rl
N+(x) = Rl

N−(x)j
l
R(x), jlR(x) =





1 0

− 2Nπi
wN (x)

1



 .

The proof of this proposition is identical to that of Proposition 4.10.1, and we

omit it here.

To reduce the Interpolation Problem to a Riemann-Hilbert Problem, we simply

generalize the approach of the previous chapter. Consider the oriented contour Σ on

the complex plane depicted in Figure 5.2, in which the horizontal lines are Im z =
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∆
+

Ω ∆
−

Ω

Ω

∆

∆
+

−

ΩΩ

Ω Ω

Ω Ω

Ω
+ +

−−−

+

∆

∆

∆

∆

∆

∆

Fig. 5.2. The contour Σ arising from the hypothetical equilibrium
measure in Figure 5.1, dividing an ε-neighborhood of the real line
into the regions Ω∆

± and Ω∇
± .

ε, 0,−ε, where ε > 0 is a small positive constant which will be determined later, and

the vertical segments pass through the endpoints of saturated intervals. Consider the

regions

Ω∇
± = {I0 ∪ I−} × (0,±iε)

Ω∆
± = I+ × (0,±iε)

bounded by the contour Σ.

Define

RN(z) =























KNR
u
N(z)K

−1
N for z ∈ Ω∇

±

KNR
l
N(z)K

−1
N for z ∈ Ω∆

±

KNPN(z)K
−1
N otherwise,

(5.28)

where KN =





1 0

0 −2iNπ



.

Proposition 5.6.2 The matrix-valued function RN(z) has the following jumps on

the contour Σ:

RN+(z) = RN−(z)jR(z),
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where

jR(z) =



































































































































1 wN(z)

0 1



 for z ∈ I− ∪ I0





1 0

−(2Nπ)2wN(z)
−1 1



 for z ∈ I+

KND
u
±(z)K

−1
N =





1 1
2iNπ

wN (z)e±iNπz

Π(z)

0 1



 for z ∈ {I− ∪ I0} ± iε

KND
l
±(z)K

−1
N =





Π(z)−1 0

2iNπ e
±iNπz

wN (z)
Π(z)



 for z ∈ I+ ± iε

KND
l
±(z)

−1Du
±(z)K

−1
N =





Π(z) 1
2Nπi

wN(z)e
±iNπz

−2NπiwN (z)
−1e±iNπz ∓2Nπie±iNπz





for z ∈ (0,±iε) + βj or z ∈ (0,±iε) + αj+1 for j ∈ As.

5.7 First transformation of the RHP

Define the matrix function TN(z) as follows from the equation

RN(z) = e
Nl
2
σ3TN(z)e

N(g(z)− l
2
)σ3 , (5.29)

where l is the Lagrange multiplier, the function g(z) is described in Section 5.2,

and σ3 =





1 0

0 −1



 is the third Pauli matrix. Then TN(z) satisfies the following

Riemann-Hilbert Problem:

1. TN(z) is analytic in C \ Σ.

2. TN+(z) = TN−(z)jT (z) for z ∈ Σ, where

jT (z) =







eN(g−(z)− l
2
)σ3jR(z)e

−N(g+(z)− l
2
)σ3 for z ∈ R

eN(g(z)− l
2
)σ3jR(z)e

−N(g(z)− l
2
)σ3 for z ∈ Σ \ R.

(5.30)

3. As z → ∞,

TN(z) ∼ I +
T1

z
+

T2

z2
+ . . . .
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Let’s take a closer look at the behavior of the jump matrix jT described in (5.30) on

the horizontal segments of Σ. We have that

jT (z) =



















































































































e−NG(z) wN(z)e
N(g+(z)+g−(z)−l)

0 eNG(z)



 when z ∈ I0 ∪ I−





e−NG(z) 0

−(2Nπ)2e−N(g+(z)+g−(z)−V (z)−l) eNG(z)



 when z ∈ I+





1 ± eN(2g(z)−l−V (z))

1−e∓2iNπxeε2Nπ

0 1



 when z = x± iε ∈ {I− ± iε}





1 ± e±NG(z)

1−e∓2iNπxeε2Nπ

0 1



 when z = x± iε ∈ {I0 ± iε}





Π(z)−1 0

2iNπe±iNπxe−N(2g(z)−l−V (z)) Π(z)



 when z = x± iε ∈ {I+ ± iε}.

5.8 Second transformation of the RHP

We make the second transformation of the RHP in analogue with (4.77), so that

SN (z) =



















































TN(z)j+(z)
−1 for z ∈ I0 × (0, iε)

TN(z)j−(z) for z ∈ I0 × (0,−iε)

TN(z)A+(z) for z ∈ I+ × (0, iε)

TN(z)A−(z) for z ∈ I+ × (0,−iε)

TN(z) otherwise,

(5.31)

where

A+(z) =





− 1
2Nπi

e−iNπz 0

0 −2NπieiNπz



 , A−(z) =





1
2Nπi

eiNπz 0

0 2Nπie−iNπz



 ,

j+(x) =





1 0

e−NG(x) 1



 , j−(x) =





1 0

eNG(x) 1



 .
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This function satisfies a similar RHP to T, but jumps now occur on a new contour,

ΣS, which is obtained from Σ by adding the segments (α1− iε, α1+ iε), (βq− iε, βq+

iε),(αj+1 − iε, αj+1 + iε), (βj − iε, βj + iε) for j ∈ Av, see Figure 5.3.

Fig. 5.3. The contour ΣS arising from the hypothetical equilibrium
measure shown in Figure 5.1.

On horizontal segments, we have that

jS(z) =







































































































































































0 1

−1 0



 for z ∈ I0





1 +O(e−2εNπ) O(eN(G(z)−2επ))

−e−NG(z) 1



 for z − iε ∈ I0





1 +O(e−2εNπ) O(eN(−G(z)−2επ))

eNG(z) 1



 for z + iε ∈ I0





1 +O(e−2εNπ) 0

2iNπe−N(2g(z)−l−V (z)) 1 +O(e−2εNπ)



 for z ∈ {I+ ± iε}





−e−iNΩj 0

−e−N(g+(z)+g−(z)−l−V (z)) −eiNΩj



 for z ∈ (βj, αj+1), j ∈ As





1 eN(2g(z)−l−V (z))O(e−2εNπ)

0 1



 for z = x± iε ∈ {I− ± iε}





e−iNΩj eN(g+(z)+g−(z)−l−V (z))

0 eiNΩj



 for z ∈ (βj , αj+1), j ∈ Av.
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By formula (5.12) for the G-function and the upper constraint on the density ρ, we

obtain that, for sufficiently small ε > 0 and x ∈ (αj, βj),

0 < ∓ReG(x± iε) = 2πρ(x) +O(ε2) < 2πε+O(ε2).

This, combined with property (5.13) of the g-function, implies that all jumps on

horizontal segments are exponentially close to the identity matrix, provided that

they are bounded away from the segment (α1, βq).

5.9 Model RHP

The model RHP appears when we drop in the jump matrix jS(z) the terms that

vanish as N → ∞:

1. M(z) is analytic in C \ [α1, βq].

2. M+(z) = M−(z)jM (z) for z ∈ [α1, βq], where

jM (z) =























0 1

−1 0



 for z ∈ I0

e−iΩj,Nσ3 for z ∈ (βj, αj+1),

(5.32)

3. As z → ∞,

M(z) ∼ I +
M1

z
+

M2

z2
+ . . . . (5.33)

The solution to this model problem is given as follows (see [16], [15]), using the

notation introduced in Section 5.4.

M(z) = F(∞)−1





γ(z)+γ−1(z)
2

ϑ(u(z)+
ΩN
2π

+d)

ϑ(u(z)+d)
γ(z)−γ−1(z)

−2i

ϑ(u(z)−ΩN
2π

−d)
ϑ(u(z)−d)

γ(z)−γ−1(z)
2i

ϑ(u(z)+
ΩN
2π

−d)
ϑ(u(z)−d)

γ(z)+γ−1(z)
2

ϑ(u(z)−ΩN
2π

+d)

ϑ(u(z)+d)





where

F(∞) =





ϑ(u(∞)+
ΩN
2π

+d)

ϑ(u(∞)+d)
0

0
ϑ(u(∞)−ΩN

2π
+d)

ϑ(u(∞)+d)



 .

The asymptotics at infinity are given as

M(z) = I +
M1

z
+O(z−2).
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5.10 Parametrix at band-void edge points

We now consider small disks D(αj, ε) for j − 1 ∈ Av ∪ {0}, and D(βj, ε) for

j ∈ Av ∪ {q}, centered at the endpoints of bands which are adjacent to a void.

Denote

D =





⋃

j−1∈Av∪{0}
D(αj, ε)





⋃





⋃

j∈Av∪{q}
D(βj , ε)



 .

We will seek a local parametrix UN (z) defined on D such that

1.

UN(z) is analytic on D \ ΣS. (5.34)

2.

UN+(z) = UN−(z)jS(z) for z ∈ D ∩ ΣS . (5.35)

3.

UN(z) = M(z)
(

I +O(N−1)
)

uniformly for z ∈ ∂D. (5.36)

We first construct the parametrix near βj for j ∈ Av. The jumps jS are given by

jS(z) =



























































































0 1

−1 0



 for z ∈ (βj − ε, βj)





1 0

−e−NG(z) 1



 for z ∈ (βj, βj + iε)





1 0

eNG(z) 1



 for z ∈ (βj , βj − iε)





e−NG(z) eN(g+(z)+g−(z)−V (z)−l)

0 eNG(z)



 for z ∈ (βj, βj + ε).

If we let

UN(z) = QN(z)e
−N(g(z)−V (z)

2
− l

2
)σ3 ,

then the jump conditions on QN become

QN+(z) = QN−(z)jQ(z)
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where

jQ(z) =



























































































0 1

−1 0



 for z ∈ (βj − ε, βj)





1 0

−1 1



 for z ∈ (βj, βj + iε)





1 0

1 1



 for z ∈ (βj , βj − iε)





1 1

0 1



 for z ∈ (βj , βj + ε).

(5.37)

where orientation is from left to right on horizontal contours, and down to up on

vertical contours, according to Figure 5.3.

QN is constructed using Airy functions. Recall that the Airy function solves the

differential equation y′′ = zy, and has the asymptotics (4.99). If we let

y0(z) = Ai(z), y1(z) = ωAi(ωz), y2(z) = ω2Ai(ω2z)

where ω = e
2πi
3 , then the functions y0, y1, and y2 satisfy the relation

y0(z) + y1(z) + y2(z) = 0.

If we take

Φrv(z) =



























































































y0(z) −y2(z)
y′0(z) −y′2(z)



 for arg z ∈
(

0,
π

2

)





−y1(z) −y2(z)
−y′1(z) −y′2(z)



 for arg z ∈
(π

2
, π
)





−y2(z) y1(z)

−y′2(z) y′1(z)



 for arg z ∈
(

−π,−π
2

)





y0(z) y1(z)

y′0(z) y′1(z)



 for arg z ∈
(

−π
2
, 0
)

,

then Φrv satisfies jump conditions similar to (5.37), but for jumps on rays emanating

from the origin rather than from βj. We thus need to map the disk D(βj, ε) onto
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some convex neighborhood of the origin in order to take advantage of the function

Φrv. Our mapping should match the asymptotics of the Airy function in order to

have the matching property (5.36).

To this end, notice that, by (5.9), for t ∈ [αj , βj], as t→ βj ,

ρ(t) = C(βj − t)1/2 +O
(

(β − t)3/2
)

, C > 0.

It follows that, for x ∈ [αj , βj] as x→ βj ,

∫ βj

x

ρ(t)dt = C(βj − x)3/2 +O
(

(βj − x)5/2
)

C0 =
2

3
C.

Thus,

ψβj (z) = −
{

3π

2

∫ βj

z

ρ(t)dt

}2/3

is analytic at βj , thus extends to a conformal map from D(βj , ε) (for small enough ε)

onto a convex neighborhood of the origin. Furthermore,

ψβj (βj) = 0 ; ψ′
βj
(βj) > 0,

thus ψβj is real negative on (βj− ε, βj), and real positive on (βj , βj+ ε). Also, we can

slightly deform the vertical pieces of the contour ΣS close to βj, so that

ψβj{D(βj, ε) ∩ ΣS} = (−ε, ε) ∪ (−iε, iε).

We now set

QN(z) = E
βj
N (z)Φrv

(

N2/3ψβj (z)
)

so that

UN(z) = E
βj
N (z)Φrv

(

N2/3ψβj (z)
)

e−N(g(z)−V (z)
2

− l
2
)σ3 , (5.38)

where

E
βj
N (z) = M(z)e±

iΩj,N
2

σ3L
βj
N (z)−1 for ± Im z > 0,

L
βj
N (z) =

1

2
√
π





N−1/6ψ
−1/4
βj

(z) 0

0 N1/6ψ
1/4
βj

(z)









1 i

−1 i



 ,

and we take the principal branch of ψ
1/4
βj

, which is positive on (βj , βj + ε) and has

a cut on (βj − ε, βj). The function Φrv(N
2/3ψβj(z)) has the jumps jS , and we claim
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that the prefactor E
βj
N is analytic in D(βj, ε), thus does not change these jumps. This

can be seen, as

M+(z)e
iΩj,N

2
σ3 = M−(z)e

− iΩj,N
2

σ3e
iΩj,N

2
σ3jMe

iΩj,N
2

σ3 , (5.39)

thus the jump for the function M(z)e±
iΩj,N

2
σ3 is

e
iΩj,N

2
σ3jMe

iΩj,N
2

σ3 =



















e
iΩj,N

2
σ3





0 1

−1 0



 e
iΩj,N

2
σ3 for z ∈ (βj − ε, βj)

e
iΩj,N

2
σ3e−iΩj,Nσ3e

iΩj,N
2

σ3 for z ∈ (βj, βj + ε) ,

(5.40)

or equivalently,

e
iΩj,N

2
σ3jMe

iΩj,N
2

σ3 =



































0 1

−1 0



 for z ∈ (βj − ε, βj)





1 0

0 1



 for z ∈ (βj , βj + ε),

(5.41)

which is exactly the same as the jump conditions for L
βj
N . Thus E

βj
N (z) = M(z)

e±
iΩj,N

2
σ3L

βj
N (z)−1 has no jumps in D(βj, ε). The only other possible singularity for

E
βj
N is at βj , and this singularity is at most a fourth root singularity, thus removable.

Thus, E
βj
N is analytic in D(βj , ε), and QN has the prescribed jumps. We are left only

to prove the matching condition (5.36). Using (4.99), one can check that, for z in

each of the sectors of analyticity, Φrv(N
2/3ψβj (z)) satisfies the following asymptotics

as N → ∞:

Φrv
(

N2/3ψβj (z)
)

=
1

2
√
π
N− 1

6
σ3ψβj (z)

− 1
4
σ3









1 i

−1 i



 +
ψβj(z)

−3/2

48N





−5 5i

−7 −7i





+O(N−2)

]

e−
2
3
Nψβj

(z)3/2σ3 ,

(5.42)

where we always take the principal branch of ψβj(z)
3/2. As such, ψβj(z)

3/2 is two-

valued for z ∈ (βj − ε, βj), so that

[

2

3
ψβj (x)

3/2

]

±
= ∓πi

∫ βj

x

ρ(t)dt. (5.43)



140

Notice that, by (5.14),

2g±(x)− V (x) = l ± 2πi

∫ βq

x

ρ(t)dt = l ± 2πi

∫ βj

x

ρ(t)dt± iΩj (5.44)

This implies that for x ∈ (βj − ε, βj),

[2g+(βj)− V (βj)]− [2g+(x)− V (x)] = −2πi

∫ βj

x

ρ(t)dt ,

[2g−(βj)− V (βj)]− [2g−(x)− V (x)] = 2πi

∫ βj

x

ρ(t)dt .

Combining these equations with (5.43) gives

[

2

3
ψβj (x)

3/2

]

±
=

1

2

[

(

2g±(βj)− V (βj)
)

−
(

2g±(x)− V (x)
)

]

. (5.45)

This equation can be extended into the upper and lower planes, respectively, giving

2

3
ψβj(z)

3/2 =
1

2

[

(

2g±(βj)− V (βj)
)

−
(

2g(z)− V (z)
)

]

for ± Im z > 0.

Since, by (5.44), 2g±(βj)− V (βj) = l ± iΩj , we get that

2

3
ψβj (z)

3/2 = −g(z) + V (z)

2
+
l

2
± iΩj

2
(5.46)

for ±Im z > 0. Plugging (5.42) and (5.46) into (5.38), we get, as N → ∞,

UN(z) = M(z)e±
iΩj,N

2 L
βj
N (z)−1 1

2
√
π
N− 1

6
σ3ψβj(z)

− 1
4
σ3









1 i

−1 i





+
ψβj (z)

−3/2

48N





−5 5i

−7 −7i



+O(N−2)



 eN(g(z)−V (z)
2

− l
2
∓ iΩj

2
)σ3e−N(g(z)−V (z)

2
− l

2
)σ3

= M(z)



I +
ψβj (z)

−3/2

48N





1 6ie±iΩj,N

6ie∓iΩj,N −1



 +O(N−2)





for ±Im z > 0. Thus we have that UN satisfies conditions (5.34), (5.35), and (5.36).

A similar construction gives the parametrix at the αj for j − 1 ∈ Av. Namely, if

we let

ψαj
(z) = −

{

3π

2

∫ z

αj

ρ(t)dt

}2/3

,
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then ψαj
is analytic throughout D(αj, ε), real valued on the real line, and has negative

derivative at αj . Close to αj , the jumps jQ become

jQ(z) =



























































































1 1

0 1



 for z ∈ (αj − ε, αj)





1 0

−1 1



 for z ∈ (αj, αj + iε)





1 0

1 1



 for z ∈ (αj, αj − iε)





0 1

−1 0



 for z ∈ (αj, αj + ε),

where orientation is taken left to right on horizontal contours, and up to down on

vertical contours according to Figure 5.3. After the change of variables ψαj
(and

a slight deformation of vertical contours), these jumps become the following jumps

close to the origin:

jQ
(

ψαj
(z)
)

=



























































































0 1

−1 0



 for ψαj
(z) ∈ (−ε, 0)





1 0

1 1



 for ψαj
(z) ∈ (0, iε)





1 0

−1 1



 for ψαj
(z) ∈ (0,−iε)





1 1

0 1



 for ψαj
(z) ∈ (0, ε),

where orientation is taken right to left on horizontal contours, and down to up on

vertical contours. These jump conditions are satisfied by the function

Φlv(z) = Φrv(z)





1 0

0 −1



 .
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Then we can take

UN(z) = E
αj

N (z)Φlv
(

N2/3ψαj
(z)
)

e−N(g(z)−V (z)
2

− l
2
)σ3 (5.47)

for z ∈ D(αj, ε), where

E
αj

N (z) = M(z)e±
iΩj−1,N

2
σ3L

αj

N (z)−1 for ± Im z > 0,

L
αj

N (z) =
1

2
√
π





N−1/6ψ
−1/4
αj (z) 0

0 N1/6ψ
1/4
αj (z)









1 −i
−1 −i



 ,

is an analytic prefactor. Similar to (5.42), we have that in each sector of analyticity,

Φlv(N
2/3ψαj

(z)) satisfies, as N → ∞,

Φlv
(

N2/3ψαj
(z)
)

=
1

2
√
π
N− 1

6
σ3ψαj

(z)−
1
4
σ3









1 −i
−1 −i



+
ψαj

(z)−3/2

48N





−5 −5i

−7 7i





+O(N−2)

]

e−
2
3
Nψαj (z)

3/2σ3 .

(5.48)

Once again, we have that, for x ∈ (αj , αj + ε), ψαj
(x)3/2 takes limiting values from

above and below, so that

[

2

3
ψαj

(x)3/2
]

±
= ±πi

∫ x

αj

ρ(t)dt.

In analogue to (5.45), we have

2

3
ψαj

(z)3/2 =
1

2

[

(

2g±(αj)− V (αj)
)

−
(

2g(z)− V (z)
)

]

for ± Im z > 0.

Since, by (5.44), 2g±(αj)− V (αj) = l ± πi, we get that

2

3
ψαj

(z)3/2 = −g(z) + V (z)

2
+
l

2
± iΩj−1

2
for ± Im z > 0. (5.49)



143

Plugging (5.49) into (5.47) and (5.48) gives, as N → ∞,

UN(z) = M(z)L
αj

N (z)−1 1

2
√
π
N− 1

6
σ3ψαj

(z)−
1
4
σ3









1 −i
−1 −i





+
ψαj

(z)−3/2

48N





−5 −5i

−7 7i



+O(N−2)





× eN(g(z)−V (z)
2

− l
2
∓ iΩj−1

2
)σ3e−N(g(z)−V (z)

2
− l

2
)σ3

= M(z)



I +
ψαj

(z)−3/2

48N





1 −6ie
iΩj−1,N

2
σ3

−6ie−
iΩj−1,N

2
σ3 −1



+O(N−2)



 .

5.11 Parametrix at the band-saturated region end points

We now consider small disks D(αj, ε) for j − 1 ∈ As, and D(βj, ε) for j ∈ As,

centered at the endpoints of bands which are adjacent to a saturated region. Denote

D̃ =

(

⋃

j−1∈As

D(αj, ε)

)

⋃

(

⋃

j∈As

D(βj, ε)

)

.

We will seek a local parametrix UN(z) defined on D̃ such that

1. UN(z) is analytic on D̃ \ ΣS.

2. UN+(z) = UN−(z)jS(z) for z ∈ D̃ ∩ ΣS.

3. For z ∈ ∂D̃, we have the uniform estimate,

UN (z) = M(z)
(

I +O(N−1)
)

. (5.50)

We first construct the parametrix near βj for j ∈ As. Let

UN(z) = Q̃N (z)e
∓iNπzσ3e−N(g(z)−V (z)

2
− l

2
)σ3 for ± Im z > 0.



144

Then the jumps for Q̃N are

jQ̃(z) =



























































































0 1

−1 0



 for z ∈ (βj − ε, βj)





−1 0

−1 −1



 for z ∈ (βj , βj + ε)





1 −1

0 1



 for z ∈ (βj , βj + iε)





1 1

0 1



 for z ∈ (βj, βj − iε) ,

where orientation is taken from left to right on horizontal contours, and down to up

on vertical contours according to Figure 5.3. We now take

Φrs(z) =



























































































y2(z) −y0(z)
y′2(z) −y′0(z)



 for arg z ∈
(

0,
π

2

)





y2(z) y1(z)

y′2(z) y′1(z)



 for arg z ∈
(π

2
, π
)





y1(z) −y2(z)
y′1(z) −y′2(z)



 for arg z ∈
(

−π,−π
2

)





y1(z) y0(z)

y′1(z) y′0(z)



 for arg z ∈
(

−π
2
, 0
)

.

Then Φrs(z) solves a RHP similar to that of Q̃N , but for jumps emanating from the

origin rather than from βj .

Once again,

ψβj (z) = −
{

3π

2

∫ βj

z

(1− ρ(t)) dt

}2/3

extends to a conformal map from D(βj, ε) onto a convex neighborhood of the origin,

with

ψβj (βj) = 0 ; ψ′
βj
(βj) > 0,
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Again, we can slightly deform the vertical pieces of the contour ΣS close to βj, so

that

ψβj
{

D(βj , ε) ∩ ΣS
}

= (−ε, ε) ∪ (−iε, iε).

We now take

Q̃N (z) = E
βj
N (z)Φrs

(

N2/3ψβj (z)
)

, (5.51)

where

E
βj
N (z) = M(z)e±

iΩj,N
2

σ3L
βj
N (z)−1 for ± Im z ≥ 0,

L
βj
N (z) =

1

2
√
π





N−1/6ψ
−1/4
βj

(z) 0

0 N1/6ψ
1/4
βj

(z)









1 i

1 −i



 ,

and we take the principal branch of ψ
1/4
βj

. The function Φrs(N
2/3ψβj(z)) has the jumps

jS. Similar to the prefactor E
βj
N at band-void end-points, the prefactor E

βj
N is analytic

in D(βj, ε), thus does not change these jumps.

We now check that UN satisfies the matching condition (5.50). The large N

asymptotics of Φrs(N
2/3ψβj (z)) are given in the different regions of analyticity as

follows:

Φrs
(

N2/3ψβj(z)
)

=
1

2
√
π
N− 1

6
σ3ψβj (z)

− 1
4
σ3

[

±





−i −1

−i 1



± ψβj(z)
−3/2

48N





−5i 5

7i 7





+O(N−2)

]

e
2
3
Nψβj

(z)3/2σ3 for ± Im z > 0,

(5.52)

where we always take the principal branch of ψβj(z)
3/2. As such, ψβj(z)

3/2 is two-

valued for x ∈ (βj − ε, βj), so that

[

2

3
ψβj (x)

3/2

]

±
= ∓πi

∫ βj

x

(1− ρ(t)) dt = ∓πi(βj − x)± πi

∫ βj

x

ρ(t)dt. (5.53)

From (5.14) we have that

2g±(x)− V (x) = l ± 2πi

∫ βq

x

ρ(t)dt = l ± 2πi

∫ βj

x

ρ(t)dt± iΩj ∓ 2πiβj (5.54)

for x ∈ (βj − ε, βj). These equations imply that

(

2g±(x)− V (x)
)

−
(

2g±(βj)− V (βj)
)

= ±2πi

∫ βj

x

ρ(t)dt.
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We can therefore write (5.53) as

[

2

3
ψβj (x)

3/2

]

±
= ∓πi(βj − x) +

1

2

[

(

2g±(x)− V (x)
)

−
(

2g±(βj)− V (βj)
)

]

.

We can extend these equations into the upper and lower half-plane, respectively,

obtaining

2

3
ψβj(z)

3/2 = ∓πi(βj−z)+
1

2

[

(

2g(z)−V (z)
)

−
(

2g±(βj)−V (βj)
)

]

for ±Im z > 0.

Using (5.54) at x = βj, we can write

2

3
ψβj (z)

3/2 = g(z)− V (z)

2
− l

2
± πiz ∓ i(Ωj,N − π)

2N
for ± Im z > 0. (5.55)

Plugging (5.52) and (5.55) into (5.51) gives, as N → ∞,

UN(z) = M(z)e
iΩj,N

2
σ3L

βj
N (z)−1 1

2
√
π
N− 1

6
σ3ψβj (z)

− 1
4
σ3

×
[

±





−i −1

−i 1



± ψβj (z)
−3/2

48N





−5i 5

7i 7



 +O(N−2)

]

× eN(g(z)− l
2
−V (z)

2
)σ3e±iNπzσ3e∓

iΩj,N
2

σ3e±
iπ
2
σ3e∓iNπzσ3e−N(g(z)−V (z)

2
− l

2
)σ3

= M(z)



I +
ψβj(z)

−3/2

48N





−1 −6ie±iΩj,N

−6ie∓iΩj,N 1



+O(N−2)





for ± Im (z) > 0.

We can make a similar construction near αj for j − 1 ∈ As. Let

ψαj
(z) = −

{

3π

2

∫ z

αj

(1− ρ(t)) dt

}2/3

. (5.56)
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This function is analytic in D(αj, ε) and has negative derivative at αj , thus Im z and

Imψαj
(z) have opposite signs for z ∈ D(αj, ε). Then the jumps for Q̃N are

jQ̃(z) =



























































































0 1

−1 0



 for z ∈ (αj , αj + ε)





−1 0

−1 −1



 for z ∈ (αj − ε, αj)





1 −1

0 1



 for z ∈ (αj, αj + iε)





1 1

0 1



 for z ∈ (αj , αj − iε),

where the contour is oriented from left to right on horizontal segments and up to

down on vertical segments according to Figure 5.3. After a slight deformation of the

vertical contours and the change of variables ψαj
, these jumps become the following

jumps close to the origin:

jQ̃(ψαj
(z)) =



























































































0 1

−1 0



 for ψαj
(z) ∈ (−ε, 0)





−1 0

−1 −1



 for ψαj
(z) ∈ (0, ε)





1 −1

0 1



 for ψαj
(z) ∈ (−iε, 0)





1 1

0 1



 for ψαj
(z) ∈ (0, iε),

where the contour is oriented from right to left on horizontal segments and down to

up on vertical segments. These jump conditions are satisfied by the function

Φls(z) = Φrs(z)





1 0

0 −1



 .
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Then we can take for z ∈ D(αj, ε),

UN(z) =M(z)e
±iΩj,N

2
σ3L

αj

N (z)−1Φls(N
2/3ψαj

(z))e∓iNπzσ3e−N(g(z)−V (z)
2

− l
2
)σ3

for ± Im z > 0,
(5.57)

where

L
αj

N (z) =
1

2
√
π





N−1/6ψ
−1/4
αj (z) 0

0 N1/6ψ
1/4
αj (z)









−1 i

−1 −i



 .

We once again have, as N → ∞,

Φls
(

N2/3ψαj
(z)
)

=
1

2
√
π
N− 1

6
σ3ψαj

(z)−
1
4
σ3

[

±





−i 1

−i −1



± ψαj
(z)−3/2

48N





−5i −5

7i −7





+O(N−2)

]

e
2
3
Nψαj (z)

3/2σ3 for ± Imψαj
(z) > 0 (so ∓ Im z > 0),

(5.58)

and for z ∈ D(αj, ε),

2

3
ψ3/2
αj

(z) = ±iπz + g(z)− V (z)

2
− l

2
∓ i(Ωj,N − π)

2N
for ± Im z > 0. (5.59)

Combining (5.57), (5.58), and (5.59) gives, as N → ∞,

UN(z) = M(z)e
±iΩj,N

2
σ3L

αj

N (z)−1 1

2
√
π
N− 1

6
σ3ψαj

(z)−
1
4
σ3

×



±





i −1

i 1



± ψαj
(z)−3/2

48N





5i 5

−7i 7



+O(N−2)





× e±iNπzσ3eN(g(z)−V (z)
2

− l
2
)σ3e∓

iΩj,N
2

σ3e±
iπ
2
σ3e∓iNπzσ3e−N(g(z)−V (z)

2
− l

2
)σ3

= M(z)e
±iΩj,N

2
σ3



I +
ψαj

(z)−3/2

48N





−1 6i

6i 1



 +O(N−2)



 e∓
iΩj,N

2
σ3

= M(z)



I +
ψαj

(z)−3/2

48N





−1 6ie±iΩj,N

6ie∓iΩj,N 1



+O(N−2)





for ± Im z > 0.

5.12 The third and final transformation of the RHP

We now consider the contour ΣX , which consists of the circles ∂D(αj , ε), and

∂D(βj , ε), for j = 1, . . . q, all oriented counterclockwise, together with the parts of
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ΣS \
(
⋃

j

[αj , βj]
)

which lie outside of the disks D(α, ε), D(α′, ε), D(β ′, ε), and D(β, ε),

see Figure 5.4.

Fig. 5.4. The contour ΣX arising from the hypothetical equilibrium
measure shown in Fig. 5.1.

We let

XN(z) =







SN (z)M(z)−1 for z outside the disks D(αj , ε), D(βj, ε)

SN (z)UN (z)
−1 for z inside the disks D(αj, ε), D(βj, ε).

(5.60)

Then XN(z) solves the following RHP:

1. XN(z) is analytic on C \ ΣX .

2. XN(z) has the jump properties

XN+(x) = XN−(z)jX(z)

where

jX(z) =







M(z)UN (z)
−1 for z on the circles

M(z)jSM(z)−1 otherwise.

3. As z → ∞,

XN(z) ∼ I +
X1

z
+

X2

z2
+ . . .

Additionally, we have that jX(z) is uniformly close to the identity in the following

sense:

jX(z) =







I +O(N−1) uniformly on the circles

I +O(e−C(z)N) on the rest of ΣX ,
(5.61)

where C(z) is a positive, continuous function satisfying (5.2). If we set

j0X(z) = jX(z)− I,
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then (5.61) becomes

j0X(z) =







O(N−1) uniformly on the circles

O(e−C(z)N) on the rest of ΣX .

The solution to the RHP for XN follows from Lemma 4.16.1 and the arguments

following it, which give that

XN(z) = I +
∞
∑

k=1

XN,k(z)

where

XN,k(z) = − 1

2πi

∫

ΣX

vk−1(u)j
0
X(u)

z − u
du.

In particular, this implies that

XN ∼ I +O

(

1

N(|z|+ 1)

)

as N → ∞ (5.62)

uniformly for z ∈ C \ ΣX .

5.13 Proof of theorems 5.4.1-5.4.6

The transformations (5.28), (5.29), (5.31), (5.60) give that, for z bounded away

from the real line,

PN(z) = K−1
N e

Nl
2
σ3XN(z)M(z)eN(g(z)− l

2
)σ3KN , (5.63)

and for z close to the real line but bounded away from the support of the equilibrium

measure,

PN(z) = K−1
N e

Nl
2
σ3XN(z)M(z)eN(g(z)− l

2
)σ3KND

u
±(z)

−1 for ± Im z ≥ 0. (5.64)

Expanding (5.63) or (5.64), we get that

PN(z) = [PN(z)]11 = eNg(z) ([M]11[X]11 + [M]21[X]12)

which, along with (5.62), proves Theorem 5.4.2.
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The proof of Theorem 5.4.1 requires only the formulae (5.23), (5.25), and (5.26),

and a straightforward large z expansion of equation (5.63).

Similar to (5.63), we have that, for any interval J which is contained in and

bounded away from the endpoints of a band, in some neighborhood of J , we have

PN(z) =







K−1
N e

Nl
2
σ3XN(z)M(z)j+(z)e

N(g(z)− l
2
)σ3KND

u
+(z)

−1 for Im z ≥ 0

K−1
N e

Nl
2
σ3XN(z)M(z)j−1

− (z)eN(g(z)− l
2
)σ3KND

u
−(z)

−1 for Im z ≤ 0,

Expanding the left side of this equation for Im z ≥ 0, utilizing (5.14), and taking

limits as z approaches the real line, we get that

PN(x) = [PN(x)]11 = e
N
2
(V (x)+l)

(

eiNπφ(x)[M11]+(x) + e−iNπφ(x)[M12]+(x) +O(N−1)
)

,

(5.65)

where φ(x) is as defined in (5.20), and the + subscript indicates the limiting value

from the upper half plane. Notice that [M12]+ = [M11]− in this region, and that

M11(z) = M11(z). This implies that [M12]+(x) = [M11]+(x), and thus we can write

(5.65) as

PN (x) = e
N
2
(V (x)+l)

(

eiNπφ(x)[M11]+(x) + eiNπφ(x)[M11]+(x) +O(N−1)
)

,

which proves Theorem 5.4.3.

For any interval J which is contained in and bounded away from the endpoints of

a saturated region, in some neighborhood of J , we have

PN(z) = K−1
N e

Nl
2
σ3XN(z)M(z)A−1

± (z)eN(g(z)− l
2
)σ3KND

l
±(z)

−1 for ± Im z > 0.

(5.66)

Notice that in this region, we can write

g±(x) = L(x)± iΩj
2

∓ iπx ,
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where L(x) is defined in (5.21). Notice also that 2g±(x)− V (x)− l has positive real

part. Expanding (5.66) for Im z > 0 and taking the limit as z approaches the real

line gives

PN(x)11 = eNg+(x)
[

(1− e2πiNx)(M11X11 +M21X12)

+ e−N(2g+(x)−V (x)−l)(M12X11 +M22X12)
]

= eNg+(x)
[

(1− e2πiNx)(M11X11 +O(N−1)) +O(e−Nδ)
]

= eNL(x)
[

− 2i sin(πNx)e
iNΩj

2 [M11]+(x)(1 +O(N−1)) +O(e−Nδ)
]

,

which proves Theorem 5.4.4.

Similarly, at the turning points αj and βj , explicit formulae can be written for

PN in terms of explicit transformations in each sector of analyticity of the local

parametrix. From these formulae and the properties of the g-function, Theorems

5.4.5 and 5.4.6 are almost immediate, with Theorem 5.4.6 also requiring the identities

(see, e.g. [40])

y1(z) = −1

2

(

Ai(z)− iBi(z)
)

,

y2(z) = −1

2

(

Ai(z) + iBi(z)
)

.
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A. PROOF OF LEMMA (1.3.1)

We have

τn = det
(

φ(i+j−2)(t)
)

1≤i,j≤n

where

φ(k)(t) =

∫

R

(−cx)ke−ctxdµ(x). (A.1)

From equation (A.1) and multi-linearity of the determinant function, we have that τn

is equal to

∫

· · ·
∫

Rn

det























e−ctx1 (−cx1)e−ctx1 · · · (−cx1)n−1e−ctx1

(−cx2)e−ctx2 (−cx2)2e−ctx2 · · · (−cx2)ne−ctx2

(−cx3)2e−ctx3 (−cx3)3e−ctx3 · · · (−cx3)n+1e−ctx3

...
...

. . .
...

(−cxn)n−1e−ctxn (−cxn)ne−ctxn · · · (−cxn)2n−2e−ctxn























n
∏

k=1

dµ(xk)

=

∫

· · ·
∫

Rn

∆(−cx)
n
∏

k=1

(−cxk)k−1
n
∏

k=1

e−ctxkdµ(xk)

= cn
2−n
∫

· · ·
∫

Rn

∆(x)

n
∏

k=1

(xk)
k−1

n
∏

k=1

e−txkdµ(xk)

where ∆(x) =
∏

i<j(xi − xj) is the Vandermonde determinant. Note that, up to

sign, this expression for τn is invariant with respect to any permutation of xk
′s. So,

multiplying by their signs and then summing over all permutations, we get

n!τn = cn
2−n
∫

· · ·
∫

Rn

∆(x)
∑

π∈Sn

(−1)π
n
∏

k=1

(xk)
π(k)−1

n
∏

k=1

e−ctxkdµ(xk),

thus

τn =
cn

2−n

n!

∫

· · ·
∫

Rn

∆(x)2
n
∏

k=1

e−ctxkdµ(xk), (A.2)

which is the eigenvalue partition function for an ensemble of random matrices. To

express this function in terms of orthogonal polynomials, notice that multilinearity
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of the determinant function and the form of the Vandermonde matrix allows us to

replace ∆(x) with

det























1 1 1 · · · 1

P1(x1) P1(x2) P1(x3) · · · P1(xn)

P2(x1) P2(x2) P2(x3) · · · P2(xn)
...

...
...

...
...

Pn−1(x1) Pn−1(x2) Pn−1(x3) · · · Pn−1(xn)























,

where {Pj(x)}∞j=0 is the system of monic polynomials orthogonal with respect to the

measure e−ctxdµ(x). Then (A.2) becomes

τn =
cn

2−n

n!

∫

· · ·
∫

Rn

(

∑

π∈Sn

(−1)π
n
∏

k=1

Pπ(k)−1(xk)

)2 n
∏

k=1

e−ctxkdµ(xk).

The orthogonality condition ensures that, after integrating, only diagonal terms are

non-zero, so we get

τn =
cn

2−n

n!

∫

· · ·
∫

Rn

(

∑

π∈Sn

n
∏

k=1

P 2
π(k)−1(xk)

)

n
∏

k=1

e−ctxkdµ(xk) = cn
2−n

n−1
∏

k=0

hk.
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B. PROOF OF FORMULA (3.39)

We use the notations and results from the work [48] of Vanlessen. The essential

difference with [48] is that we consider not a fixed but a shrinking neighborhood of

the origin,

Ũδ,k =

{

z ∈ C : |z| ≤ δ

k

}

,

where δ > 0 is small enough so that the function Vk(x) is analytic in Ũδ,k, see (3.17).

As in [48], we consider a sequence of transformations of the Riemann-Hilbert problem

for orthogonal polynomials, and in the end we arrive at the following Riemann-Hilbert

problem on a 2× 2 matrix-valued function R(z):

0 1

ΓR

γ

γ

+

−

Fig. B.1. The contour ΓR.

1. R(z) is analytic on C \ ΓR, where ΓR is the contour shown on Fig. 6, and it has

limits, R+(z) and R−(z), on ΓR, as z approaches a point on ΓR from the left

and from the right of the contour, with respect to the orientation indicated on

Fig. B-1.

2. On ΓR, R(z) satisfies the jump condition, R+(z) = R−(z)vR(z), where vR(z) is

an explicit matrix-valued function.

3. R(z) ≃ I + R1

z
+ . . . as z → ∞, where I is the identity matrix.

The contour ΓR consists of the circle ∂Ũδ,k, the circle ∂Uδ, where

Uδ = {z ∈ C : |z − 1| ≤ δ} ,



160

the boundaries of the lenses, γ±, and the semi-infinite interval [1 + δ,∞). The jump

matrix vR on ∂Ũδ,k has the following asymptotics as k → ∞:

vR(z) ≃ I +

∞
∑

n=1

∆̃n(z)k
−n, (B.1)

see formulae (3.105) and (3.98) in [48]. This asymptotics holds under the condition

that k2z → ∞. Under this condition, for any N ≥ 1 there exists a constant CN > 0

such that
∣

∣

∣

∣

∣

vR(z)− I −
N
∑

n=1

∆̃n(z)k
−n

∣

∣

∣

∣

∣

≤ CN

(k2|z|)N
2 |z|2

.

The condition k2z → ∞ is valid for z ∈ ∂Ũδ,k, and in this case the last estimate gives

that

sup
z∈∂Ũδ,k

∣

∣

∣

∣

∣

vR(z)− I −
N
∑

n=1

∆̃n(z)k
−n

∣

∣

∣

∣

∣

≤ C̃N

k
N
2
−2
, C̃N =

CN

δ[
N
2 ]+2

. (B.2)

The coefficients ∆̃n(z) in (B.1) are given by the following formula:

∆̃n(z) =
1

φ̃k(z)n/2
P (∞)(z)(−z) 1

2
σ3An (−z)−

1
2
σ3P (∞)(z)−1, (B.3)

where

P (∞)(z) = 2−σ3





a(z)+a(z)−1

2
a(z)−a(z)−1

2i

a(z)−a(z)−1

−2i
a(z)+a(z)−1

2





(

2z − 1 + 2
√

z(z − 1)

z

)σ3/2

, (B.4)

a(z) =

(

z − 1

z

)1/4

, φ̃k(z) = −
[

1

4

∫ z

0

√

1− s

s
qk(s) ds

]2

, (B.5)

An =

∏n
j=1[4− (2j − 1)2]

16nn!





(−1)n

4n
(3 + 2n) (n− 1

2
)i

(−1)n+1(n− 1
2
)i 1

4n
(3 + 2n)



 . (B.6)

The function φ̃k(z) is analytic in Ũδ,k. From (3.22), (3.15), and (3.27) we obtain that

as k → ∞,

sup
z∈Ũδ,k

|qk(z)− 4| = O(k−1/2).

By (B.5) this implies that

sup
z∈Ũδ,k

∣

∣

∣

∣

∣

φ̃k(z)

φ(z)
− 1

∣

∣

∣

∣

∣

= O(k−1/2), φ(z) = −
(

∫ z

0

√

1− s

s
ds

)2

= −4z +
4z2

3
+ . . .
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The function ∆̃n(z) is meromorphic in Ũδ,k with the only possible pole at the origin of

the order at most
[

n+1
2

]

, see [48]. This result, combined with explicit formula (B.3),

implies that there exists cn > 0 such that

sup
z∈∂Ũδ,k

∣

∣

∣
∆̃n(z)k

−n
∣

∣

∣
≤ cnk

−n+[n+1
2 ].

This, in turn, allows us to improve estimate (B.2) as follows: for any N ≥ 1 there

exists c̃N > 0 such that

sup
z∈∂Ũδ,k

∣

∣

∣

∣

∣

vR(z)− I −
N
∑

n=1

∆̃n(z)k
−n

∣

∣

∣

∣

∣

≤ c̃Nk
−N+[N2 ] .

When N = 1, this gives that

sup
z∈∂Ũδ,k

∣

∣

∣

∣

∣

vR(z)− I − ∆̃1(z)

k

∣

∣

∣

∣

∣

= O(k−1). (B.7)

The function ∆̃1(z) has a simple pole at 0 and its residue is equal to

Bk =
3

16qk(0)
2−σ3





1 i

i −1



 2σ3 ,

see equation (4.11) in [48]. The function ∆̃1(z) − Bk

z
is regular at z = 0 and from

explicit formula (B.3) we obtain that as k → ∞,

sup
z∈∂Ũδ,k

∣

∣

∣

∣

∆̃1(z)−
Bk

z

∣

∣

∣

∣

= O(1),

hence from (B.7) we obtain that

sup
z∈∂Ũδ,k

∣

∣

∣

∣

vR(z)− I − Bk

kz

∣

∣

∣

∣

= O(k−1). (B.8)

The problem here is that vR(z) is not close to I on ∂Ũδ,k, but we will overcome this

obstacle by a transformation of the Riemann-Hilbert problem for R(z).

Observe that

TrBk = 0, detBk = 0,

hence

det

(

I +
Bk

kz

)

= 1,
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hence the matrix I + Bk

kz
is invertible for any z 6= 0. Let us make the substitution,

R(z) =











R̃(z), z ∈ Ũδ,k,

R̃(z)

(

I +
Bk

kz

)

, z 6∈ Ũδ,k.
(B.9)

Then R̃(z) solves the Riemann-Hilbert problem similar to the one for R(z), with the

jump matrix ṽR(z) such that

ṽR(z) = vR(z)

(

I +
Bk

kz

)−1

, z ∈ ∂Ũδ,k

and

ṽR(z) =

(

I +
Bk

kz

)

vR(z)

(

I +
Bk

kz

)−1

, z ∈ ΓR \ ∂Ũδ,k.

From (B.8) we obtain that

sup
z∈∂Ũδ,k

|ṽR(z)− I| = O(k−1).

Also, since the equilibrium density function diverges as z−1/2 at the origin, we obtain

that vR(z) is sub-exponentially small on the boundary of lenses,

sup
z∈γ+∪γ−

|vR(z)− I| = O(e−c
√
k), c > 0.

This implies that ṽR(z) satisfies a similar estimate,

sup
z∈γ+∪γ−

|ṽR(z)− I| = O(e−c
√
k), c > 0.

In addition,

sup
z∈∂Uδ

|ṽR(z)− I| = O(k−1),

and

|ṽR(z)− I| = O(e−ckz), z ≥ 1; c > 0.

These estimates of smallness of (ṽR(z) − I) on ΓR enable us to solve the Riemann-

Hilbert problem for R̃(z) by a series of perturbation theory. The fact that the radius

of Ũδ,k, r = δ
k
, is tending to zero does not cause a problem, see the appendix to the

work [6] of Bleher and Kuijlaars.
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The rest of the proof of formula (3.39) goes along the lines of [48]. Namely, by

formula (4.17) in [48],

hk,α =
π

8
β2k+2
k eklk

[

1− 16i(R1)12 +O(k−2)
]

. (B.10)

By (B.9),

(R1)12 = (R̃1)12 +
(Bk)12
k

+O(k−2) = (R̃1)12 +
3i

64qk(0)k
+O(k−2)

By applying formula (4.11) in [48] to R̃1, we obtain that

(R̃1)12 = − q′k(1)i

64qk(1)2k
+

47i

192qk(1)k
+O(k−2).

Observe that the first term in formula (4.11) in [48] is missing in this case, because

the function
[

∆̃1(z)− Bk

z

]

is regular at z = 0. From the last two formulae we obtain

that

−16i(R1)12 =

[

3

4qk(0)
− q′k(1)

4qk(1)2
+

47

12qk(1)

]

1

k
+ O(k−2).

By substituting this into (B.10) we obtain (3.39).



164

C. PROOF OF FORMULA (4.108)

From, (4.107), (4.76), (4.77), and (4.30), we have that the jump jQ̃ on (α′ − ε, α′) is

given by

jQ̃ = e
inπz
2γ

σ3e−n(g−(z)−V (z)
2

− l
2
)σ3jSe

n(g+(z)−V (z)
2

− l
2
)σ3e

inπz
2γ

σ3

= e
inπz
2γ

σ3e−n(g−(z)−V (z)
2

− l
2
)σ3j−1

− jT j
−1
+ en(g+(z)−V (z)

2
− l

2
)σ3e

inπz
2γ

σ3

= e
inπz
2γ

σ3e−n(g−(z)−V (z)
2

− l
2
)σ3





0 1

−1 0



 en(g+(z)−V (z)
2

− l
2
)σ3e

inπz
2γ

σ3

= e
inπz
2γ

σ3





0 e−n(g+(z)+g−(z)−V (z)−l)

−en(g+(z)+g−(z)−V (z)−l) 0



 e
inπz
2γ

σ3

=





0 1

−1 0



 .

From, (4.107), (4.77), (4.73), and (4.72), we have that the jump jQ̃ on (α′, α′ + ε) is

given by

jQ̃ = e
inπz
2γ

σ3e−n(g−(z)−V (z)
2

− l
2
)σ3jSe

n(g+(z)−V (z)
2

− l
2
)σ3e

inπz
2γ

σ3

= e
inπz
2γ

σ3e−n(g−(z)−V (z)
2

− l
2
)σ3





γ
nπi
e

inπz
2γ 0

0 nπi
γ
e−

inπz
2γ





−1

jT

×





− γ
nπi
e−

inπz
2γ 0

0 −nπi
γ
e

inπz
2γ



 en(g+(z)−V (z)
2

− l
2
)σ3e

inπz
2γ

σ3

= e−n(g−(z)−V (z)
2

− l
2
)σ3





nπi
γ

0

0 γ
nπi



 en(g−(z)− l
2
)σ3jRe

−n(g+(z)− l
2
)σ3





− γ
nπi

0

0 −nπi
γ





× en(g+(z)−V (z)
2

− l
2
)σ3

= en
V (z)
2
σ3





nπi
γ

0

0 γ
nπi









1 0

(nπi
γ
)2enV (z) 1









− γ
nπi

0

0 −nπi
γ



 e−n
V (z)
2
σ3

= en
V (z)
2
σ3





−1 0

−enV (z) −1



 e−n
V (z)

2
σ3 =





−1 0

−1 −1



 .
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From (4.107), (4.77), (4.73), (4.72), and analytic continuation of (4.30) into a neigh-

borhood of [α, α′], we have that the jump jQ̃ on (α′, α′ + iε) is given by

jQ̃ = e−n(g+(z)−V (z)
2

− l
2
)σ3





−nπi
γ

0

0 − γ
nπi



 en(g+(z)− l
2
)σ3jRe

−n(g+(z)− l
2
)σ3j+(z)

−1

× en(g+(z)−V (z)
2

− l
2
)σ3e

inπz
2γ

σ3

= en
V (z)
2
σ3





−nπi
γ

0

0 − γ
nπi



 jRe
−n(g+(z)− l

2
)σ3j+(z)

−1en(g+(z)−V (z)
2

− l
2
)σ3e

inπz
2γ

σ3

= en
V (z)
2
σ3





−nπi
γ

0

0 − γ
nπi









Π(z) γ
nπi
e−nV (z)e

inπz
2γ

−nπi
γ
enV (z)e

inπz
2γ −nπi

γ
e

inπz
2γ





× e−n(g+(z)− l
2
)σ3





1 0

−e−n(g+(z)−g−(z)) 1



 en(g+(z)−V (z)
2

− l
2
)σ3e

inπz
2γ

σ3

= en
V (z)
2
σ3





−2i sin(nπz
2γ

) −e−nV (z)e
inπz
2γ

enV (z)e
inπz
2γ e

inπz
2γ





×





e−n
V (z)
2 0

−en(g+(z)+g−(z)−l−V (z)
2

) en
V (z)

2



 e
inπz
2γ

σ3

=





−2i sin(nπz
2γ

)en
V (z)
2 −e−nV (z)

2 e
inπz
2γ

en
V (z)
2 e

inπz
2γ e−n

V (z)
2 e

inπz
2γ





×





e−n
V (z)
2 0

−en(g+(z)+g−(z)−l−V (z)
2

) en
V (z)

2



 e
inπz
2γ

σ3

=





−2i sin(nπz
2γ

) + e
inπz
2γ en(g+(z)+g−(z)−l−V (z)) −e inπz

2γ

e
inπz
2γ − e

inπz
2γ en(g+(z)+g−(z)−l−V (z)) e

inπz
2γ



 e
inπz
2γ

σ3

=





e−
inπz
2γ −e inπz

2γ

0 e
inπz
2γ



 e
inπz
2γ

σ3 =





1 −1

0 1



 .
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Similarly, we have that the jump jQ̃ on (α′ − iε, α′) is given by

jQ̃ = e
inπz
2γ

σ3e−n(g−(z)−V (z)
2

− l
2
)σ3jSe

n(g−(z)−V (z)
2

− l
2
)σ3e−

inπz
2γ

σ3

= e
inπz
2γ

σ3e−n(g−(z)−V (z)
2

− l
2
)σ3





γ
nπi
e

inπz
2γ 0

0 nπi
γ
e−

inπz
2γ





−1

jT j−(z)

× en(g−(z)−V (z)
2

− l
2
)σ3e−

inπz
2γ

σ3

= en
V (z)
2
σ3





nπi
γ

0

0 γ
nπi



 jRe
−n(g−(z)− l

2
)σ3j−(z)e

n(g−(z)−V (z)
2

− l
2
)σ3e−

inπz
2γ

σ3

= en
V (z)
2
σ3





nπi
γ

0

0 γ
nπi









Π(z) γ
nπi
e−nV (z)e−

inπz
2γ

−nπi
γ
enV (z)e−

inπz
2γ nπi

γ
e−

inπz
2γ





×





e−n
V (z)
2 0

en(g+(z)+g−(z)−l−V (z)
2

) en
V (z)

2



 e−
inπz
2γ

σ3

=





2i sin(nπz
2γ

)en
V (z)
2 e−n

V (z)
2 e−

inπz
2γ

−enV (z)
2 e−

inπz
2γ e−n

V (z)
2 e−

inπz
2γ









e−n
V (z)

2 0

en(g+(z)+g−(z)−l−V (z)
2

) en
V (z)
2



 e−
inπz
2γ

σ3

=





2i sin(nπz
2γ

) + e−
inπz
2γ en(g+(z)+g−(z)−l−V (z)) e−

inπz
2γ

−e− inπz
2γ + e−

inπz
2γ en(g+(z)+g−(z)−l−V (z)) e−

inπz
2γ



 e−
inπz
2γ

σ3

=





e
inπz
2γ e−

inπz
2γ

0 e−
inπz
2γ



 e−
inπz
2γ

σ3 =





1 1

0 1



 .
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D. PROOF OF PROPOSITION 4.13.1

From (4.43) and (4.84), we have

ũ∞ =
π

4
(1− ζ)

This, combined with formula (4.78) for Ωn immediately gives

ϑ3(ũ∞ + d)ϑ3(−ũ∞ + d+ Ωn

2
)

ϑ3(−ũ∞ + d)ϑ3(ũ∞ + d+ Ωn

2
)
=
ϑ3(0)ϑ4((n+ 1)ω)

ϑ3(ω)ϑ4(nω)
. (D.1)

Formulae (4.21) give that

(β − β ′) + (α′ − α)

4i
=
πϑ24(0)

4i

[

ϑ21(
ω
2
)ϑ24(

ω
2
) + ϑ22(

ω
2
)ϑ23(

ω
2
)

ϑ1(
ω
2
)ϑ2(

ω
2
)ϑ3(

ω
2
)ϑ4(

ω
2
)

]

. (D.2)

Plugging the duplication formulae (E.6) and (E.7) into (D.2) yields

(β − β ′) + (α′ − α)

4i
=
π

2i

ϑ2(0)ϑ4(0)ϑ3(ω)

ϑ1(ω)
. (D.3)

Combining (D.1) and (D.3), we can write the [12] entry of (4.96) as

[M1]12 =
iπ

2

ϑ4
(

(n+ 1)ω
)

ϑ4(nω)

ϑ3(0)

ϑ3(ω)

ϑ2(0)ϑ4(0)ϑ3(ω)

ϑ1(ω)

=
iπ

2

ϑ4
(

(n+ 1)ω
)

ϑ4(nω)

ϑ′1(0)

ϑ2(
πζ
2
)
=
iAϑ4

(

(n + 1)ω
)

ϑ4(nω)
.

Similarly, we can write the [21] entry of (4.96) as

[M1]21 =
Aϑ4(nω)

iϑ4
(

(n− 1)ω
) .
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E. THETA FUNCTION IDENTITIES

The following identities (see [50]) are used in chapter 4 of this dissertation. There are

the identities involving derivatives of theta functions:

ϑ′1(0) = ϑ2(0)ϑ3(0)ϑ4(0), (E.1)

ϑ′4(z) =
ϑ′1(z)ϑ4(z)− ϑ4(0)

2ϑ2(z)ϑ3(z)

ϑ1(z)
, ϑ′2(z) =

ϑ′1(z)ϑ2(z)− ϑ2(0)
3ϑ3(z)ϑ4(z)

ϑ1(z)
,

ϑ′3(z) =
ϑ′1(z)ϑ3(z)− ϑ3(0)

2ϑ2(z)ϑ4(z)

ϑ1(z)
,

(E.2)

ϑ′4(z) =
ϑ′2(z)ϑ4(z) + ϑ1(z)ϑ3(z)ϑ

2
3(0)

ϑ2(z)
, ϑ′1(z) =

ϑ′2(z)ϑ1(z) + ϑ3(z)ϑ4(z)ϑ
2
2(0)

ϑ2(z)
,

ϑ′3(z) =
ϑ′2(z)ϑ3(z) + ϑ1(z)ϑ4(z)ϑ

2
4(0)

ϑ2(z)
,

(E.3)

ϑ′′4(z) =
ϑ′′2(z)ϑ4(z)

ϑ2(z)
+

2ϑ′2(z)ϑ1(z)ϑ3(z)ϑ
2
3(0)

ϑ22(z)

+
ϑ4(z)ϑ

2
3(0)

ϑ22(z)

(

ϑ23(z)ϑ
2
2(0) + ϑ21(z)ϑ

2
4(0)

)

,

ϑ′′1(z) =
ϑ′′2(z)ϑ1(z)

ϑ2(z)
+

2ϑ′2(z)ϑ3(z)ϑ4(z)ϑ
2
2(0)

ϑ22(z)

+
ϑ1(z)ϑ

2
2(0)

ϑ22(z)

(

ϑ23(z)ϑ
2
3(0) + ϑ24(z)ϑ

2
4(0)

)

,

ϑ′′3(z) =
ϑ′′2(z)ϑ3(z)

ϑ2(z)
+

2ϑ′2(z)ϑ1(z)ϑ4(z)ϑ
2
4(0)

ϑ22(z)

+
ϑ3(z)ϑ

2
3(0)

ϑ22(z)

(

ϑ24(z)ϑ
2
2(0) + ϑ21(z)ϑ

2
4(0)

)

,

(E.4)
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ϑ′′4(z) =
ϑ′′1(z)ϑ4(z)

ϑ1(z)
− 2ϑ′1(z)ϑ2(z)ϑ3(z)ϑ

2
4(0)

ϑ21(z)

+
ϑ24(0)ϑ

2
4(z)

ϑ21(z)

(

ϑ23(z)ϑ
2
2(0) + ϑ22(z)ϑ

2
3(0)

)

,

ϑ′′2(z) =
ϑ′′1(z)ϑ2(z)

ϑ1(z)
− 2ϑ′1(z)ϑ3(z)ϑ4(z)ϑ

2
2(0)

ϑ21(z)

+
ϑ22(0)ϑ

2
2(z)

ϑ21(z)

(

ϑ24(z)ϑ
2
3(0) + ϑ23(z)ϑ

2
4(0)

)

,

ϑ′′3(z) =
ϑ′′1(z)ϑ3(z)

ϑ1(z)
− 2ϑ′1(z)ϑ2(z)ϑ4(z)ϑ

2
3(0)

ϑ21(z)

+
ϑ23(0)ϑ

2
3(z)

ϑ21(z)

(

ϑ24(z)ϑ
2
2(0) + ϑ22(z)ϑ

2
4(0)

)

,

(E.5)

the duplication formulae

ϑ1(2z) =
2ϑ1(z)ϑ2(z)ϑ3(z)ϑ4(z)

ϑ′1(0)
, (E.6)

ϑ3(2z)ϑ3(0)ϑ
2
2(0) = ϑ1(z)

2ϑ4(z)
2 + ϑ2(z)

2ϑ3(z)
2, (E.7)

ϑ4(2z)ϑ
3
4(0) = ϑ43(z)− ϑ42(z) = ϑ44(z)− ϑ41(z), (E.8)

the addition formula

ϑ3(y + z)ϑ3(y − z)ϑ22(0) = ϑ23(y)ϑ
2
2(z) + ϑ24(y)ϑ

2
1(z)

= ϑ21(y)ϑ
2
4(z) + ϑ22(y)ϑ

2
3(z),

(E.9)

and the identities relating squares of theta functions

ϑ21(z)ϑ
2
4(0) = ϑ23(z)ϑ

2
2(0)− ϑ22(z)ϑ

2
3(0), (E.10)

ϑ22(z)ϑ
2
4(0) = ϑ24(z)ϑ

2
2(0)− ϑ21(z)ϑ

2
3(0), (E.11)

ϑ23(z)ϑ
2
4(0) = ϑ24(z)ϑ

2
3(0)− ϑ21(z)ϑ

2
2(0), (E.12)

ϑ24(z)ϑ
2
4(0) = ϑ23(z)ϑ

2
3(0)− ϑ22(z)ϑ

2
2(0). (E.13)
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