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ABSTRACT

Bothner, Thomas Joachim Ph.D., Purdue University, May 2013. Asymptotics of the
Fredholm determinant corresponding to the first bulk critical universality class in
random matrix models. Major Professor: Alexander R. Its.

We study the one-parameter family of determinants det(I − γKPII), γ ∈ R of

an integrable Fredholm operator KPII acting on the interval (−s, s) whose kernel is

constructed out of the Ψ-function associated with the Hastings-McLeod solution of

the second Painlevé equation. In case γ = 1, this Fredholm determinant describes

the critical behavior of the eigenvalue gap probabilities of a random Hermitian matrix

chosen from the Unitary Ensemble in the bulk double scaling limit near a quadratic

zero of the limiting mean eigenvalue density. Using the Riemann-Hilbert method, we

evaluate the large s-asymptotics of det(I−γKPII) for all values of the real parameter

γ.
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1. INTRODUCTION

1.1 Objective

This dissertation is devoted to the asymptotical analysis of certain Fredholm deter-

minants which appear in random matrix theory. Let M(n) be the unitary ensemble

of random n× n Hermitian matrices M = (Mij) =M
t
equipped with the probability

measure,

P (n,N)(M)dM = ce−NtrV (M)dM, c

∫

M(n)

e−NtrV (M)dM = 1. (1.1)

Here dM denotes the Haar measure on M(n) ≃ R
n2
, N is a fixed integer and the

potential V : R → R is assumed to be real analytic satisfying the growth condition

V (x)

ln(x2 + 1)
→ ∞ as |x| → ∞. (1.2)

The principal object of the analysis of the model is the statistics of eigenvalues of

the matrices from M(n). A classical fact [17, 42] is that the eigenvalues form a

determinantal random point process with the kernel

Kn,N(x, y) = e−
N
2
V (x)e−

N
2
V (y)

n−1∑

i=0

pi(x)pi(y), (1.3)

where pj(x) are polynomials orthonormal with respect to the weight e−NV (x),

∫

R

pi(x)pj(x)e
−NV (x)dx = δij , pj(x) = κjx

j + ... (1.4)

In particular, one of the basic statistical characteristics, the gap probability,

En,N(s) = Prob
(
M ∈ M(n) has no eigenvalues in the interval (−s, s), s > 0

)
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is given by the formula,

En,N(s) =

n∑

j=0

(−1)j

j!

s∫

−s

· · ·
s∫

−s

det
(
Kn,N(xk, xl)

j
k,l=1

)
dx1 · · · dxj

≡ det(I −Kn,N),

whereKn.N is the trace class operator acting on L2
(
(−s, s), dx

)
with kernelKn.N(x, y).

Assumptions (1.2) on the potential V (x) ensure [23] (see also [17] for more on the

history of the subject) that the mean eigenvalue density 1
n
Kn,N(x, x) has a limit,

lim
n,N→∞

n
N
→1

1

n
Kn,N(x, x) = ρV (x) ≥ 0, (1.5)

whose support, ΣV ≡ {x ∈ R : ρV (x) > 0}, is a finite union of intervals (simulta-

neously, ρV (x) defines the density of the equilibrium measure for the logarithmic

potentials in the presence of the external potential V ). The limiting density ρV (x) is

determined by the potential V (x). At the same time, the local statistics of eigenvalues

in the large n,N limit satisfies the so-called universality property, i.e. it is determined

only by the local characteristics of the eigenvalue density ρV (compare [9,24,47]). For

instance, let us choose a regular point x∗ ∈ ΣV , i.e. ρV (x
∗) > 0. Then the bulk

universality states that

lim
n→∞

1

nρV (x∗)
Kn,n

(
x∗ +

λ

nρV (x∗)
, x∗ +

µ

nρV (x∗)

)
= Ksin(λ, µ) ≡

sin π(λ− µ)

π(λ− µ)
(1.6)

uniformly on compact subsets of R, which in turn implies [24] that for a regular point

x∗,

lim
n,N→∞

n
N
→1

Prob

(
M ∈ M(n) has no eigenvalues ∈

(
x∗ − s

nρV (x∗)
, x∗ +

s

nρV (x∗)

))

= det(I −Ksin), (1.7)

where Ksin is the trace class operator on L2
(
(−s, s); dλ

)
with kernel Ksin(λ, µ) given

in (1.6). (This result was first obtained for the Gaussian unitary ensemble with

quadratic polynomial potential V (x) in the classical works of Gaudin and Dyson.) The
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Fredholm determinant in the right hand side of (1.7) admits the following asymptotic

representation [26],

ln det(I −Ksin) = −(πs)2

2
− 1

4
ln(πs) +

1

12
ln 2 + 3ζ ′(−1) +O

(
s−1
)
, s→ ∞, (1.8)

where ζ ′(z) is the derivative of the Riemann zeta-function (a rigorous proof for this

expansion without the constant term was obtained independently by Widom and

Suleimanov - see [22] for more historical details; a rigorous proof including the con-

stant terms was obtained independently in [27, 41] - see also [18]). This remarkable

formula yields one of the most important results in random matrix theory, i.e. an

explicit evaluation of the large gap probability.

Equation (1.7) shows that in double scaling limits the basic statistical properties of

hermitian random matrices are still expressible in terms of Fredholm determinants.

This is also true for the first critical case, when ρV (x) vanishes quadratically at

an interior point x∗ ∈ ΣV . However, in this situation the scaling limit is more

complicated [10, 15]. Let ρV (x
∗) = ρ′V (x

∗) = 0, ρ′′V (x
∗) > 0 and n,N → ∞ such that

lim
n,N→∞

n2/3

(
n

N
− 1

)
= C

exists with C ∈ R. Then the critical bulk universality guarantees existence of positive

constants c and c1 such that

lim
n,N→∞

1

cn1/3
Kn,N

(
x∗ +

λ

cn1/3
, x∗ +

µ

cn1/3

)
= KPII(λ, µ; x) (1.9)

uniformly on compact subsets of R where the variable x is the scaling parameter

defined by the relation

lim
n,N→∞

n2/3

(
n

N
− 1

)
= xc1.

Here the limiting kernel KPII(λ, µ; x) is constructed out of the Ψ-function associated

with a special solution of the second Painlevé equation. The precise description of

the kernel KPII(λ, µ; x) is as follows.
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Let u(x) be the Hastings-McLeod solution of the Painlevé II equation [33], i.e.

the unique real-valued solution to the boundary value problem

uxx = xu + 2u3, u(x) ∼





Ai(x), x→ +∞;
√−x

2
, x→ −∞,

where Ai(x) is the Airy-function (the solution u(x) is in fact uniquely determined

by its Airy-asymptotics at x = +∞). Viewing x, u ≡ u(x) and ux ≡ du(x)
dx

as real

parameters, consider the 2× 2 system of linear ordinary differential equations,

∂Ψ

∂λ
= A(λ, x)Ψ, A(λ, x) = −4iλ2σ3 + 4iλ


 0 u

−u 0


+


−ix− 2iu2 −2ux

−2ux ix+ 2iu2


 .

(1.10)

Let Ψ(λ) ≡ Ψ(λ, x) be the fundamental solution of system (1.10) which is uniquely

fixed by the asymptotic condition,

Ψ(λ, x) =
(
I +O

(
λ−1
))
e−i( 4

3
λ3+xλ)σ3 , λ→ ∞, 0 < arg λ < π.

Then, the kernel KPII(λ, µ; x) is given by the formula,

KPII(λ, µ; x) ≡ KPII(λ, µ) =
1

2π

(
ψ21(λ, x)ψ11(µ, x)− ψ21(µ, x)ψ11(λ, x)

λ− µ

)
, (1.11)

where ψ11(λ, x) and ψ21(λ, x) are the entries of the matrix valued function Ψ(λ, x) ≡
(ψjk(λ, x))j,k=1,2.

Remark 1 The function Ψ(λ, x) can be alternatively defined as a solution of a certain

matrix oscillatory Riemann-Hilbert problem. The exact formulation of this Riemann-

Hilbert problem is given in chapter 2.

One object of this thesis is the study of the Fredholm determinant

det(I −KPII), (1.12)

where KPII is the trace class operator on L
2
(
(−s, s); dλ

)
with kernel (1.11). In virtue

of (1.9), this determinant replaces the sine - kernel determinant in the description of

the gap-probability near the critical point x∗, i.e. instead of (1.7) one has that

limProb

(
M ∈ M(n) has no eigenvalues ∈

(
x∗ − s

cn1/3
, x∗ +

s

cn1/3

))
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= det(I −KPII), (1.13)

as n,N → ∞ and

lim
n,N→∞

n2/3

(
n

N
− 1

)
= xc1.

(A proof can be obtained in a same manner as the proof of the similar equation (21)

in [19] with the help of the proper estimates from [10].)

1.2 Statement of results

Our main result is the following analogue of the Dyson formula (1.8) for the

Painlevé II - kernel determinant (1.12).

Theorem 1.2.1 Let KPII denote the trace class operator on L
2
(
(−s, s); dλ

)
with ker-

nel (1.11). Then as s→ ∞ the Fredholm determinant det(I −KPII) behaves as

ln det(I −KPII) = −2

3
s6 − s4x− 1

2
(sx)2 − 3

4
ln s+

∞∫

x

(y − x)u2(y)dy

−1

6
ln 2 + 3ζ ′(−1) +O

(
s−1
)
, (1.14)

and the error term in (1.14) is uniform on any compact subset of the set

{
x ∈ R : −∞ < x <∞

}
. (1.15)

The proof of Theorem 1.2.1 is based on a Riemann-Hilbert approach which is reviewed

in chapter 2. This approach (compare [22, 34]) uses the integrable form of the Fred-

holm operator (1.12), allowing us to connect the resolvent kernel to the solution of a

Riemann-Hilbert problem. The latter can be analysed rigorously via the Deift-Zhou

nonlinear steepest descent method.

In order to describe other spectral properties of large Hermitian matrices we need

to study the Fredholm determinant

det (I − γKPII) (1.16)
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for the values of γ which are different from γ = 1. Similar one-parameter families

of determinants already appear in connection with the sine - kernel determinant,

for instance in the famous Montgomery-Odlyzko conjecture [43, 46] concerning the

zeros of the Riemann zeta-function, in the description of the emptiness formation

probability and other correlation functions in one-dimensional impenetrable Bose gas

[35–37] as well as in a number of other important mathematical and theoretical physics

applications.

The analytical challenge of the determinants (1.16) is once again the large s asymp-

totics. In the case of the sine - kernel determinants, the result is well known (see

e.g. [2, 4, 44, 45, 50] and [18] for more on the history of the question)

1. As s→ ∞

ln det (I − γKsin) = 4iνπs+ 2(iν)2 ln (πs) + χsin +O
(
s−1
)

uniformly on any compact subset of the set {γ ∈ R : −∞ < γ < 1}, where

iν ≡ iν(γ) =
1

2π
ln (1− γ)

and the constant χsin ≡ χsin(γ) is given by the equation

χsin = 2(iν)2 + 4(iν)2 ln 2 + 2

γ∫

0

ν(t)

(
ln

Γ(ν(t))

Γ(−ν(t))

)′
dt. (1.17)

The latter constant was obtained by A. Budylin and V. Buslaev as a corollary

to their main result in [4], namely the asymptotics of the resolvent of the kernel

γKsin(λ, µ). Formula (1.17) also follows from the general theorem of E. Basor

and H. Widom concerning the determinants of Toeplitz integral operators with

piecewise continuous symbols [3].

2. For γ chosen from any compact subset of the set {γ ∈ R : 1 < γ < ∞},
the Fredholm determinant det (I − γKsin) has infinitely many zeros {sn} which

accumulate at infinity, see [44, 45, 50].
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In the given situation (1.16), we have the following analogues for the Painlevé II

- kernel determinants (1.16).

Theorem 1.2.2 Let KPII denote the trace class operator on L
2
(
(−s, s); dλ

)
with ker-

nel (1.11). As s→ ∞

ln det (I − γKPII) = iν

(
16

3
s3 + 4xs

)
+ 6(iν)2 ln s+ χPII +O

(
s−1
)

(1.18)

uniformly on any compact subset of the set

{
(γ, x) ∈ R

2 : −∞ < γ < 1, −∞ < x <∞
}
, (1.19)

where

iν ≡ iν(γ) =
1

2π
ln(1− γ)

and

χPII = 2 (iν)2 + 8 (iν)2 ln 2 + 2

γ∫

0

ν(t)

(
ln

Γ (ν(t))

Γ (−ν(t))

)′
dt (1.20)

with the Euler gamma-function Γ(z).

Theorem 1.2.3 For (γ, x) chosen from any compact subset of the set

{
(γ, x) ∈ R

2 : 1 < γ <∞, −∞ < x <∞
}

(1.21)

the Fredholm determinant det (I − γKPII) has infinitely many zeros {sn} with asymp-

totic distribution

8

3
s3n+2xsn+

1

π
ln(γ−1) ln

(
16s3n + 4xsn

)
−arg

Γ(1− ν)

Γ(ν)
∼ π

2
+nπ, n→ ∞. (1.22)

The asymptotic expansions given in (1.14), (1.18) and (1.22) contain several in-

teresting characteristica which we want to discuss in the next section.

1.3 Discussion and outline of thesis

We bring the reader’s attention to the following two interesting aspects of formula

(1.14). One is related to the Forrester-Chen-Eriksen-Tracy conjecture ( [14, 31]; see
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also [8]) concerning the behavior of the large gap probabilities. The conjecture states

that the probability E(s) of emptiness of the (properly scaled) interval (x∗−s, x∗+s)
around the point x∗ satisfies the estimate,

E(s) ∼ exp
(
−Cs2κ+2

)
, (1.23)

if the mean density ρ(x) behaves as ρ ∼ (x − x∗)κ. This conjecture is supported

by the classical results concerning the regular bulk point (κ = 0, the sine - kernel

determinant - equation (1.8)) and regular edge point (κ = 1/2, the Airy - kernel

determinant - the Tracy-Widom formula, see (1.24)). For higher order critical edge

points (κ = 2l + 1/2, the higher Painlevé I - kernel determinants), estimate (1.23)

follows from the asymptotic results of [16]. Our asymptotic equation (1.14) supports

the Forrester-Chen-Eriksen-Tracy conjecture for the first critical case in the bulk,

when κ = 2.

The second important feature of the estimate (1.14) is related to the constant (with

respect to s) term in this formula. Starting from the seminal works of Onsager and

Kaufman on the Ising model whose mathematical needs led to the birth of the Strong

Szegö Theorem in the theory of Toeplitz matrices (see e.g. [20] for more on the history

of the matter), the evaluation of the constant terms in the asymptotics of different

correlation and distribution functions of random matrix theory and of the theory of

solvable statistical mechanics models has always been a great challenge in the field1.

In addition to the Strong Szegö Theorem and the already mentioned works [27, 41]

and [18] devoted to the rigorous derivation of Dyson’s constant in (1.8), different

“constant” problems were considered (and solved) in the works [2, 4, 19, 51], and [1].

More questions in the area are still open, notably the generalization of the Dyson

formula to the large gap probabilities in the general β-ensembles. A comprehensive

account of the state of the art in this field, with formulation of the precise conjectures

1As soon as the leading term in the asymptotics of a correlation function is known, the small
corrections can be usually (but not always !) relatively easy determined via a relevant system of dif-
ferential equations. This, however, is not true for constant terms which always need an independent
derivation.
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concerning the Dyson constants for general β-ensembles, can be found in the recent

survey of Forrester and Sorrell [32].

Formula (1.14) provides, in particular, another generalization of the Dyson con-

stant formula, namely, it gives the constant term in the asymptotics of the gap prob-

ability in the bulk of the β = 2 ensemble for the first critical case when the mean

density is having a quadratic zero. An important new feature of the constant term

in formula (1.14) is the involvement of a Painlevé transcendent which describes the

dependence of this term on the scaling parameter x. This fact explains the failure of

the authors of [16] to find a closed expression for the similar constant in the case of the

higher universality classes corresponding to the edge behavior of the gap probability

(see Section “Constant Problem” in [16]). Indeed, our result shows that for higher

universality classes one has to expect that the relevant constant terms are functions

of the corresponding double scaling parameters which in turn are described via the

solutions of certain nonlinear systems of a generalized Painlevé type (the generalized

Schlesinger equations of isomonodromy deformations). These solutions, similar to

the Hastings-McLeod solution of PII participating in (1.14), are supposed to be the

“new” transcendents, i.e. not expressible in terms of the known special functions (i.e.

in terms of a finite number of contour integrals of elementary, elliptic or finite genus

algebraic functions).

It is also interesting to notice, that the constant term c0 in the asymptotics (1.14)

can be written as

c0 ≡ c0(x) = − lnFTW (x)− 1

6
ln 2 + 3ζ ′(−1).

where FTW (x) is the celebrated Tracy-Widom distribution function,

FTW (x) = e−
∫
∞

x
(y−x)u2(y)dy . (1.24)

Let us finish this introductory chapter with a brief outline for the rest of the dis-

sertation. Chapter 2 gives a short review of the Riemann-Hilbert approach for the

asymptotics of integrable Fredholm operators. We then apply the general framework
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to the Fredholm determinant det (I − γKPII) and formulate the associated “mas-

ter” Riemann-Hilbert problem (RHP). We will also evaluate logarithmic s and x

derivatives of the determinant det (I − γKPII) in terms of the solution of the under-

lying RHP and outline a derivation of an integrable system whose tau-function is

represented by det (I − γKPII). In chapter 3, following the Deift-Zhou scheme, we

construct the asymptotic solution of the master RHP. Comparing to the more usual

cases, an extra “undressing” step is needed to overcome the transcendentality of the

kernel KPII(λ, µ; x). Here, a crucial role is played by the aforementioned alternative

Riemann-Hilbert definition of the function Ψ(λ, x). Also, the situation γ > 1 requires

additional steps since we have to deal with a singular or solitonic type of Riemann-

Hilbert problem. The calculations of chapter 3 and 4 provide us with the asymptotics

of ln det (I − γKPII) given in (1.14), (1.18) up to the constant terms as well as the

distribution of zeros as stated in (1.22). In order to determine the constant terms, we

will, in chapter 5, go back to equation (1.11) and look at the behavior of the kernel

KPII(λ, µ; x) as x→ +∞. We will see that in the large x limit, the kernel KPII(λ, µ; x)

is replaced by the following cubic generalization of the sine kernel

KPII(λ, µ) 7→ Kcsin(λ, µ) =
sin
(
4
3
(λ3 − µ3) + x(λ− µ)

)

π(λ− µ)
. (1.25)

Introducing a parameter t ∈ [0, 1]

Kcsin(λ, µ) 7→ Ǩcsin(λ, µ) =
sin
(
4
3
t(λ3 − µ3) + x(λ− µ)

)

π(λ− µ)

we compute the large s behavior of det
(
I − γǨcsin

)
using again the Riemann-Hilbert

approach. This will be done in chapter 6. This analysis will indeed produce the

constant term in (1.14), since det
(
I − Ǩcsin

) ∣∣
t=0

reduces to the sine kernel with

known asymptotics, see (1.8)

ln det(I − Ǩcsin)
∣∣
t=0

= −(sx)2

2
− 1

4
ln(sx) +

1

12
ln 2 + 3ζ ′(−1) +O

(
s−1
)
, s→ ∞

uniformly on any compact subset of (1.15).
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On the other hand for γ < 1, we use the logarithmic γ derivative of the determinant

det (I − γKcsin) combined with the estimates from chapter 6 to derive the constant

given in (1.18).

Remark 2 We do not address in this dissertation the question of the higher correc-

tions to (1.14) and (1.18). After the leading and constant terms are determined, the

higher corrections can be in principal obtained by iterating the final ratio-Riemann-

Hilbert problems (see chapter 4 and 6). Alternatively, one can use the differential

system related to the determinant det(I − γKPII), which we have mentioned above,

and which we intend to discuss in detail in a future publication.

The analysis of the Fredholm determinants corresponding to (1.25) is of interest

on its own: The cubic sine - kernel determinant det (I −Kcsin) appears in condensed

matter physics [7], namely in the description of the Fermi distribution of semiclassical

non-equilibrium Fermi states. In order to understand perturbations to a degenerate

Fermi gas one studies the one parameter extension of determinants corresponding to

the cubic sine - kernel, that is

det (I − γKcsin) , γ ∈ R.

Although our interest in the cubic sine - kernel arises through the study of the Painlevé

II - kernel determinants, the analysis given in chapters 6 and 7 of the present thesis,

leads to the following asymptotic results.

Theorem 1.3.1 Let Kcsin denote the trace class operator on L2 ((−s, s); dλ) with

kernel (1.25). Then as s→ ∞

ln det (I − γKcsin) = iν

(
16

3
s3 + 4xs

)
+ 6 (iν)2 ln s−

∞∫

x

(y − x)u2(u, γ)dy

+χPII +O
(
s−1
)

(1.26)

uniformly on any compact subset of the set (1.19), where χPII is given in (1.20),

iν ≡ iν(γ) =
1

2π
ln(1− γ)
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and u = u(x, y) denotes the real-valued Ablowitz-Segur solution of the second Painlevé

equation uxx = xu+ 2u3 corresponding to the monodromy surface

M =
{
(s1, . . . , s6

∣∣ s1 = −iγ, s2 = 0, s3 = s̄1, sn+3 = −sn
}
.

We should mention that a large class of the generalized sine-kernel determinants has

already been considered in [40] (see eq. (1.6) there). In the case γ < 1 and after a

proper re-scaling, the determinant det (I − γKcsin) can be put in the form which is

very close to the one treated in [40]. However, an essential difference occurs: the fast

phase function, the function p(λ) in the notations of [40] (see eq. (1.7)), which appear

as a result of the re-scaling, does not satisfy one of the key conditions of [40]; moreover,

it becomes depended on the large parameter. This means that the results of [40] are

not directly applicable to our case. In fact, if one formally applies the main asymptotic

formula of [40] to our case, then the first two terms of our asymptotic equation (1.26)

are reproduced while the constant (in s) term is not. Most significantly, the integral

term with the Painlevé function does not show up. Also it is not possible to extend

the techniques in [40] beyond the situation γ < 1. In fact, for γ = 1, the relevant

asymptotics is given by a formula ignoring the Tracy-Widom term in (1.14).

Theorem 1.3.2 Let Kcsin denote the trace class operator on L2
(
(−s, s); dλ

)
with

kernel (1.25). Then as s→ ∞ the Fredholm determinant det(I −Kcsin) behaves as

ln det(I −Kcsin) = −2

3
s6− s4x− 1

2
(sx)2 − 3

4
ln s− 1

6
ln 2+ 3ζ ′(−1)+O

(
s−1
)
. (1.27)

and the error term in (1.27) is uniform on any compact subset of the set (1.15).

The Ablowitz-Segur solution [48] to the second Painlevé equation is given by the

unique solution of the boundary value problem

uxx = xu+ 2u3, u(x) ∼ γAi(x), x→ ∞, γ 6= 1. (1.28)

Such solutions are smooth in case γ < 1, with exponentially fast decay as x → +∞
and oscillatory behavior as x → −∞. On the other hand in case γ > 1, the solution
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has poles on the real axis, but is still pole-free for sufficiently large positive x, in fact

(cf. [6]) for (γ, x) chosen from any compact subset of the set

{
(γ, x) ∈ R

2 : 1 < γ <∞, x >

(
3

2
ln γ

)2/3
}

(1.29)

the solution u = u(x, γ) to (1.28) is pole-free. This in turn implies

Theorem 1.3.3 For (γ, x) chosen from any compact subset of the set (1.29), the

Fredholm determinant det (I − γKcsin) has infinitely many zeros {sn} with asymptotic

distribution given in (1.22).
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2. RIEMANN-HILBERT PROBLEM FOR INTEGRABLE FREDHOLM

OPERATORS

We define the integral kernel (1.11) in terms of the solution of a Riemann-Hilbert

problem, locate its structure within the algebra of integrable Fredholm operators,

set up the master RHP and perform certain preliminary steps within the Deift-Zhou

nonlinear steepest descent roadmap. Also the logarithmic s and x derivatives are

expressed in terms of “local” quantities associated to the master RHP and we briefly

discuss the underlying differential equations.

2.1 Riemann-Hilbert approach - setup and review

The classical theory of ordinary differential equations in the complex plane implies

that system (1.10) has precisely one irregular singular point of Poincaré rank 3 at

infinity. This observation leads to the existence of seven canonical solutions Ψn(λ)

which are fixed uniquely by their asymptotics (for more detail see e.g. [29])

Ψn(λ) ∼
(
I +O

(
λ−1
))
e−i( 4

3
λ3+xλ)σ3 , λ→ ∞, λ ∈ Ωn

where the canonical sectors Ωn (compare Figure 2.1) are defined by

Ωn =
{
λ ∈ C | arg λ ∈

(π
3
(n− 2),

π

3
n
)
, n = 1, . . . , 7

}
.

Moreover the presence of an irregular singularity gives us a non-trivial Stokes phe-

nomenon described by the Stokes matrices Sn:

Sn =
(
Ψn(λ)

)−1
Ψn+1(λ).

In the given situation (1.11) (see again [29]) these multipliers are

S1 =


 1 0

−i 1


 , S2 =


1 0

0 1


 , S4 =


1 i

0 1


 , S3 = S̄1, S5 = S̄2, S6 = S̄4, (2.1)
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Ω2

0 < arg λ < 2π
3

Ω3
π
3 < arg λ < π

Ω4

2π
3 < arg λ < 4π

3

π < arg λ < 5π
3

Ω5 Ω6

4π
3 < arg λ < 2π

Ω7

5π
3 < arg λ < 7π

3

Ω1

−π
3 < arg λ < π

3

Figure 2.1. Canonical sectors of system (1.10) with the dashed lines
indicating where Re λ3 = 0

hence the required solution in (1.10) is the second and third canonical solution

Ψ(λ, x) ≡ Ψ2(λ, x) = Ψ3(λ, x) with asymptotics

Ψ(λ, x) ∼
(
I +O

(
λ−1
))
e−i( 4

3
λ3+xλ)σ3 , λ→ ∞, 0 < arg λ < π (2.2)

and Stokes matrices as in (2.1). Now that we have defined the integral kernel (1.11)

let us connect it to a Riemann-Hilbert problem: The given kernel belongs to an

algebra of integrable operators first introduced in [34], see also [22]: Let Σ be an

oriented contour in the complex plane C such as a Jordan curve. We are interested in

operators of the form λI +K on L2(Σ), where K denotes an integral operator with

kernel

K(λ, µ) =

∑M
i=1 fi(λ)hi(µ)

λ− µ
,

M∑

i=1

fi(λ)hi(λ) = 0, M ∈ Z≥1 (2.3)

with functions fi, hi which are smooth up to the boundary of Σ. Given two operators

λI +K, λ̌I + Ǩ of this type, the composition (λI +K)(λ̌I + Ǩ) is again of the same

form, hence we have a ring. Moreover let Kt denote the real adjoint of K, i.e.

Kt(λ, µ) = −
∑M

i=1 hi(λ)fi(µ)

λ− µ
.
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Our results are based on the following facts of the theory of integrable operators (see

e.g. [22]). First an algebraic Lemma, showing that the resolvent of I − K is again

integrable.

Lemma 1 Given an operator I −K on L2(Σ) in the previous ring with kernel (2.3).

Suppose the inverse (I −K)−1 exists, then I +R = (I −K)−1 lies again in the same

ring with

R(λ, µ) =

∑M
i=1 Fi(λ)Hi(µ)

λ− µ
,

M∑

i=1

Fi(λ)Hi(λ) = 0 (2.4)

and the functions Fi, Hi are given by

Fi(λ) =
(
(I −K)−1 fi

)
(λ), Hi(λ) =

( (
I −Kt

)−1
hi

)
(λ). (2.5)

Secondly an analytical Lemma, which connects integrable operators to a Riemann-

Hilbert problem.

Lemma 2 Let K be of integrable type such that (I −K)−1 exists and let Y = Y (z)

denote the unique solution of the following M ×M Riemann-Hilbert problem (RHP)

• Y (z) is analytic for z ∈ C\Σ

• On the contour Σ, the boundary values of the function Y (z) satisfy the jump

relation

Y+(z) = Y−(z)
(
I − 2πif(z)ht(z)

)
, z ∈ Σ

where f(z) = (f1(z), . . . , fM(z))t and similarly h(z) = (h1(z), . . . , hM(z))t

• At an endpoint of the contour Σ, Y (z) has no more than a logarithmic singu-

larity

• As z → ∞
Y (z) = I +O

(
z−1
)

Then Y (z) determines the resolvent kernel via

F (z) = Y (z)f(z), H(z) =
(
Y t(z)

)−1
h(z) (2.6)
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and conversely the solution of the above RHP is expressible in terms of the function

F (z) using the Cauchy integral

Y (z) = I −
∫

Σ

F (w)ht(w)
dw

w − z
. (2.7)

Let us use this general setup in the given situation (1.11). We have

γKPII(λ, µ) =
f t(λ)h(µ)

λ− µ
, f(λ) = i

√
γ

2π

(
ψ11(λ)

ψ21(λ)

)
, h(µ) = i

√
γ

2π

(
ψ21(µ)

−ψ11(µ)

)
(2.8)

where we suppressed the x dependency in ψjk(λ) ≡ ψjk(λ, x) and
√
z is defined on

C\(−∞, 0] with its branch fixed by the condition
√
z > 0 as z > 0. Lemma 2 leads

us therefore to the following Y -RHP

• Y (λ) is analytic for λ ∈ C\[−s, s]

• Orienting the line segment [−s, s] from left to right, the following jump holds

Y+(λ) = Y−(λ)


1 + iγψ11(λ)ψ21(λ) −iγψ2

11(λ)

iγψ2
21(λ) 1− iγψ11(λ)ψ21(λ)


 , λ ∈ [−s, s]

• At the endpoints λ = ±s, Y (λ) has logarithmic singularities, i.e.

Y (λ) = O
(
ln(λ∓ s)

)
, λ→ ±s

• As λ→ ∞ we have

Y (λ) = I +
m1

λ
+O

(
λ−2
)
.

The given jump matrix on the segment [−s, s] can be factorized using the unimodular

fundamental solution Ψ(λ) of (1.10) corresponding to the choices (2.1) and (2.2)

G(λ) =


1 + iγψ11(λ)ψ21(λ) −iγψ2

11(λ)

iγψ2
21(λ) 1− iγψ11(λ)ψ21(λ)




=


ψ11(λ) ψ12(λ)

ψ21(λ) ψ22(λ)




1 −iγ
0 1




 ψ22(λ) −ψ12(λ)

−ψ21(λ) ψ11(λ)




= Ψ(λ)


1 −iγ
0 1


(Ψ(λ)

)−1
.
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This motivates a first series of transformations of the initial Y -RHP.

2.2 First transformations of the RHP - uniformization

We make the following substitution in the original Y -RHP

X̃(λ) = Y (λ)Ψ(λ), λ ∈ C\[−s, s] (2.9)

which leads to a RHP for the function X̃(λ):

• X̃(λ) is analytic for λ ∈ C\[−s, s]

• The following jump holds

X̃+(λ) = X̃−(λ)


1 −iγ
0 1


 , λ ∈ [−s, s] (2.10)

• As λ→ ±s, we have

X̃(λ) = O
(
ln(λ∓ s)

)

• At infinity,

X̃(λ) =
(
I +O

(
λ−1
))

Ψ(λ), λ→ ∞

In order to uniformize the behavior of X̃(λ) at infinity, we will now use the Stokes

phenomenon (2.1) of Ψ(λ) and introduce more cuts to the Riemann-Hilbert problem.

Let

X(λ) = X̃(λ)





I, λ ∈ Ω̂1,

S3, λ ∈ Ω̂2,

S3S4, λ ∈ Ω̂3,

S3S4S6, λ ∈ Ω̂4,

(2.11)

with

Γ1 =
{
λ ∈ C : arg (λ− s) =

π

6

}
, Γ3 =

{
λ ∈ C : arg (λ+ s) =

5π

6

}
,

Γ4 =
{
λ ∈ C : arg (λ+ s) = −5π

6

}
, Γ6 =

{
λ ∈ C : arg (λ− s) = −π

6

}
,

then X(λ) satisfies the following “master” RHP, depicted in Figure 2.2
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Γ1Γ3

Γ4 Γ6

−s s

Ω̂1

Ω̂2

Ω̂3

Ω̂4

Figure 2.2. Jump contours of the master RHP

• X(λ) is analytic for λ ∈ C\
(
[−s, s] ∪⋃k Γk

)

• Along the infinite rays Γk, X(λ) has jumps described by the Stokes matrices

X+(λ) = X−(λ)Sk, λ ∈ Γk,

whereas on the line segment [−s, s] we have the following jump

X+(λ) = X−(λ)


 0 −i
−i 1− γ


 , λ ∈ [−s, s]. (2.12)

• In a neighborhood of the endpoints λ = ±s,

X(λ) = X̌(λ)


1 − γ

2π
ln λ−s

λ+s

0 1








I, λ ∈ Ω̂1,

S3, λ ∈ Ω̂2,

S3S4, λ ∈ Ω̂3,

S3S4S6, λ ∈ Ω̂4,

(2.13)

where X̌(λ) is analytic at λ = ±s and the branch of the logarithm is fixed by

the condition −π < arg λ−s
λ+s

< π.1

• As λ→ ∞ the following asymptotical behavior holds

X(λ) =
(
I +

m1

λ
+O

(
λ−2
))(

I +
mHM

1

λ
+O

(
λ−2
))
e−i( 4

3
λ3+xλ)σ3 (2.14)

1The local behavior (2.13) of X(λ) at the endpoints ±s can be derived directly from the a-priori
information X̃(λ) = O(ln(λ∓ s)), λ → ±s and the jump condition (2.10).
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with

mHM
1 =

1

2


−iv u

u iv


 , v = (ux)

2 − xu2 − u4, vx = −u2.

As we are going to see in chapter 3, the latter master RHP can be solved asymptoti-

cally by approximating its solution with local model functions, however this analysis

is essentially different in the regimes γ = 1 and γ 6= 1. Before we start this analysis in

detail, we first connect the solution of the master RHP to the Fredholm determinant

det (I − γKPII).

2.3 Logarithmic derivatives - connection to X-RHP

We wish to express certain logarithmic derivatives of the Fredholm determinants

det (I − γKPII) in terms of the solution of the X-RHP. To this end recall the following

classical identity, valid for any differentiable family of trace class operators [49]

∂

∂s
ln det(I − γKPII) = −trace

(
(I − γKPII)

−1 ∂

∂s
(γKPII)

)
. (2.15)

In our situation

∂KPII

∂s
(λ, µ) = KPII(λ, µ)

(
δ(µ− s) + δ(µ+ s)

)
,

where, by definition
s∫

−s

δ(w ∓ s)f(w)dw = f(±s),

and therefore

−trace
(
(I − γKPII)

−1 ∂

∂s
(γKPII)

)
= −R(s, s)−R(−s,−s)

with R(λ, µ) denoting the kernel (see (2.4)) of the resolvent R = (I − γKPII)
−1γKPII.

The latter derivative can be simplified using the equations (see (2.8))

f1(λ) = −h2(λ), f2(λ) = h1(λ)
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as well as the identity det Y (λ) ≡ 1, which is a direct consequence of the unimodu-

larity of the jump matrix G(λ) and Liouville’s theorem. We have,

R(λ, µ) =
F1(λ)H1(µ) + F2(λ)H2(µ)

λ− µ
=
F1(λ)F2(µ)− F2(λ)F1(µ)

λ− µ
.

Since R(λ, µ) is continuous along the diagonal λ = µ we obtain further

R(s, s) = F ′
1(s)F2(s)− F ′

2(s)F1(s), R(−s,−s) = F ′
1(−s)F2(−s)− F ′

2(−s)F1(−s)
(2.16)

provided Fi is analytic at λ = ±s. One way to see this is a follows. Use the connection

X(λ) = Y (λ)Ψ(λ)





I, λ ∈ Ω̂1,

S3, λ ∈ Ω̂2,

S3S4, λ ∈ Ω̂3,

S3S4S6, λ ∈ Ω̂4,

≡ Y (λ)Ψ(λ)Ŝ(λ)

and (2.6)

F (λ) = X(λ)
(
Ŝ(λ)

)−1(
Ψ(λ)

)−1
f(λ) = X(λ)

(
Ŝ(λ)

)−1
i

√
γ

2π

(
1

0

)

as well as (2.13) to derive the following local identity

F (λ) = X̌(λ)


1 − γ

2π
ln λ−s

λ+s

0 1


 Ŝ(λ)

(
Ŝ(λ)

)−1 i√
2π

(
1

0

)
= X̌(λ)i

√
γ

2π

(
1

0

)
, (2.17)

valid in a vicinity of λ = ±s. But this proves analyticity of F (λ) at the endpoints

and as we shall see later on, (2.17) is all we need to connect (2.15) via (2.16) to the

solution of the X-RHP. We summarize

Proposition 2.3.1 The logarithmic s-derivative of the Fredholm determinant (1.12)

can be expressed as

∂

∂s
ln det(I − γKPII) = −R(s, s)− R(−s,−s), (2.18)

R(±s,±s) = F ′
1(±s)F2(±s)− F ′

2(±s)F1(±s)

and the connection to the X-RHP is established through

F (λ) = X̌(λ)i

√
γ

2π

(
1

0

)
,

where X̌(λ) is analytic in a neighborhood of λ = ±s, see (2.13).
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Besides the logarithmic s-derivative we also differentiate with respect to x

∂

∂x
ln det (I − γKPII) = −trace

(
(I − γKPII)

−1 ∂

∂x
(γKPII)

)
.

In our situation the kernel itself depends on x, since (see e.g. [29])

∂Ψ

∂x
= U(λ, x)Ψ, U(λ, x) = −iλσ3 + i


 0 u

−u 0


 ,

and we have

∂

∂x

(
γKPII(λ, µ)

)
=

iγ

2π

(
ψ21(λ, x)ψ11(µ, x) + ψ21(µ, x)ψ11(λ, x)

)

= i
(
f2(λ)h2(µ)− f1(λ)h1(µ)

)

and with (2.5)

−trace

(
(I − γKPII)

−1 ∂

∂x
(γKPII)

)
= −i

s∫

−s

(
F2(λ)h2(λ)− F1(λ)h1(λ)

)
dλ.

On the other hand the Cauchy integral (2.7) implies

Y (λ) = I +
m1

λ
+O

(
λ−2
)
, λ→ ∞; m1 =

s∫

−s

F (w)ht(w)dw

so
∂

∂x
ln det(I − γKPII) = i

(
m11

1 −m22
1

)
, m1 =

(
mij

1

)

and the connection to the X-RHP is established via (2.14). Again we summarize

Proposition 2.3.2 The logarithmic x-derivative of the given Fredholm determinant

can be expressed as

∂

∂x
ln det (I − γKPII) = i

(
X11

1 −X22
1

)
− v (2.19)

with

X(λ) =
(
I +

X1

λ
+O

(
λ−2
))
e−i( 4

3
λ3+xλ)σ3 , λ→ ∞; X1 =

(
X ij

1

)
.
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Proposition 2.3.1 and 2.3.2 are sufficient to determine the large s-asymptotics of

ln det(I − γKPII) up to the constant term. As indicated in chapter 1, those constant

terms will be determined through the asymptotical analysis of the cubic sine - kernel

determinant (1.25) in chapters 6 and 7.

2.4 Differential equations associated with det (I − γKPII)

Our considerations rely only on the underlying Riemann-Hilbert problems. Nev-

ertheless, before we move further ahead in the asymptotical analysis, we would like to

take a short look into the differential equations associated with the master X-RHP.

To this end we notice that the X-RHP has unimodular constant jump matrices,

thus the well-defined logarithmic derivatives XλX
−1(λ), XsX

−1(λ) and XxX
−1(λ) are

rational functions. Indeed using (2.13) as well as (2.14) we have

∂X

∂λ
=

[
−4iλ2σ3+4iλ


 0 n1

−n2 0


+


n3 n4

n5 −n3


+

N1

λ− s
− N2

λ+ s

]
X ≡ A(λ, s, x)X

(2.20)

where

N1 = − γ

2π
X̌(s)


0 1

0 0


(X̌(s)

)−1
; N2 = − γ

2π
X̌(−s)


0 1

0 0


(X̌(−s)

)−1

and with parameters ni which can be expressed in terms of the entries of m1 and

mHM
1 (see (2.14)). Moreover

∂X

∂s
=

[
− N1

λ− s
− N2

λ+ s

]
X ≡ B(λ, s, x)X

and also

∂X

∂x
=

[
− iλσ3 + i


 0 n1

−n2 0



]
X ≡ C(λ, s, x)X.

Hence we arrive at the Lax-system for the function X ,




∂X
∂λ

= A(λ, s, x)X

∂X
∂s

= B(λ, s, x)X,
∂X
∂x

= C(λ, s, x)X.
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Considering the compatibility conditions of the system,

As − Bλ = [B,A], Ax − Cλ = [C,A], Bx − Cs = [C,B] (2.21)

we are lead to a system of eighteen nonlinear ordinary differential equations for the

unknown quantities ni and the entries of N1 and N2. Since it is possible to express the

previous derivatives of ln det(I − γKPII) solely in terms of the unknowns ni, N1 and

N2, one could then try to derive a differential equation for the Fredholm determinant

(1.12) using (2.21). We shall devote to these issues a future publication.
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3. ASYMPTOTIC SOLUTION OF THE MASTER RIEMANN-HILBERT

PROBLEM

The integrable form of the Painlevé II - kernel (1.11) allowed us to connect certain

logarithmic derivatives to the solution of the X-RHP, the master RHP. We will now

solve the latter problem asymptotically according to the Deift-Zhou nonlinear steepest

descent roadmap [24, 25]. Various special functions of Painlevé, hypergeometric and

Bessel-type will be used to approximate the global solution X(λ) by local model

functions, parametrices and the iterative solution of a singular integral equation. We

present this asymptotical resolution first for γ 6= 1, followed then by the regime γ = 1.

3.1 Rescaling, normalization and opening of lenses, γ 6= 1

We scale the variables in (2.11) as λ = zs and normalize the asymptotics in (2.14)

by introducing

T (z) = X(zs)es
3ϑ(z)σ3 , z ∈ C\

(
[−1, 1] ∪

⋃

k

Γk

)
, ϑ(z) = i

(
4

3
z3 +

xz

s2

)
. (3.1)

This leads to the following RHP

• T (z) is analytic for z ∈ C\
(
[−1, 1] ∪⋃k Γk

)

• The jump properties of T (z) are given by the equations

T+(z) = T−(z)e
−s3ϑ(z)σ3


 0 −i
−i 1− γ


 es

3ϑ(z)σ3 , z ∈ [−1, 1]

T+(z) = T−(z)e
−s3ϑ(z)σ3Ske

s3ϑ(z)σ3 , z ∈ Γk
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• In a neighborhood of the endpoints z = ±1

T (z)e−s3ϑ(z)σ3 = X̌(zs)


1 − γ

2π
ln z−1

z+1

0 1








I, z ∈ Ω̂1,

S3, z ∈ Ω̂2,

S3S4, z ∈ Ω̂3,

S3S4S6, z ∈ Ω̂4,

• As z → ∞, we have T (z) = I +O
(
z−1
)

Our next move will deform the latter T -RHP to a RHP formulated according to the

sign-diagram of the function Re ϑ(z), depicted in Figure 3.1. In this Figure we choose

x from a compact subset of the real line, s > 0 is sufficiently large and

z± = ±i
√

3x

4s2

denote the two vertices of the depicted curves.

Reϑ < 0Reϑ < 0

Reϑ > 0 Reϑ > 0

Reϑ < 0Reϑ < 0

Reϑ > 0 Reϑ > 0

Reϑ > 0

Reϑ < 0 Reϑ < 0

Reϑ > 0

z+

z
−

z
−

z+

Figure 3.1. Sign-diagram for the function Re ϑ(z). In the left picture
we indicate the location of z± as x > 0 and in the right picture for a
particular choice of x < 0. Along the solid lines Re ϑ(z) = 0 and the
dashed lines resemble arg z = ±π

3
,±2π

3

With the matrix factorization

 0 −i
−i 1− γ


 =


1 − i

1−γ

0 1


 (1− γ)−σ3


 1 0

− i
1−γ

1


 ≡ SUSDSL,
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valid as long as γ 6= 1, we perform opening of lenses as follows. Let L±
j and Lk denote

the upper (lower) lens, shown in Figure 3.2, which is bounded by the contours γ±jk

and Γk, where

γ+12 =
{
z ∈ C : arg z =

π

6

}
, γ+21 =

{
z ∈ C : arg z =

5π

6

}
,

γ−32 =

{
z ∈ C : arg z = −5π

6

}
, γ−41 =

{
z ∈ C : arg z = −π

6

}
.

L+
1L+

2

L−

3 L−

4

γ+
11γ+

12γ+
21

γ+
22

γ−

31
γ−

32 γ−

41 γ−

42

+1−1

L1L3

L4 L6

Γ1

Γ6

Γ3

Γ4

Figure 3.2. Opening of lenses – T (z) 7→ S(z)

Define

S(z) = T (z)e−s3ϑ(z)σ3





S−1
1 es

3ϑ(z)σ3 , z ∈ L1,

S−1
L es

3ϑ(z)σ3 , z ∈ L+
1 ∪ L+

2 ,

S3e
s3ϑ(z)σ3 , z ∈ L3,

S−1
4 es

3ϑ(z)σ3 , z ∈ L4,

SUe
s3ϑ(z)σ3 , z ∈ L−

3 ∪ L−
4 ,

S6e
s3ϑ(z)σ3 , z ∈ L6,

es
3ϑ(z)σ3 , otherwise,

≡ T (z)L(z) (3.2)

then S(z) solves the following RHP

• S(z) is analytic for z ∈ C\ ([−1, 1] ∪ D) with D =
⋃

j,k

(
γ+jk ∪ γ−jk

)
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• With orientation fixed as in Figure 3.2, S(z) has jumps given by

S+(z) = S−(z)e
−s3ϑ(z)σ3ĜSe

s3ϑ(z)σ3 , z ∈ C\ ([−1, 1] ∪ D) (3.3)

≡ S−(z)GS(z)

where the piecewise constant matrix ĜS can be read from Figure 3.3.

SDSD

S1S
−1
L

SLS−1
L

SLS3

S4SU

S−1
U SU

S−1
U S6

Figure 3.3. The piecewise constant matrix ĜS

• As z → ±1, we have

S(z)L−1(z)e−s3ϑ(z)σ3 = X̌(zs)


1 − γ

2π
ln z−1

z+1

0 1








I, z ∈ Ω̂1,

S3, z ∈ Ω̂2,

S3S4, z ∈ Ω̂3,

S3S4S6, z ∈ Ω̂4,

(3.4)

• At infinity, S(z) = I +O
(
z−1
)
, z → ∞

Let us analyse the behavior of GS(z) along the infinite branches as s → ∞. To this

end recall the sign-diagram of the function Re ϑ(z), depicted in Figure 3.1. We have

in the upper half-plane

GS(z) = e−s3ϑ(z)σ3


1 0

a 1


 es

3ϑ(z)σ3 , z ∈ γ+jk, j, k = 1, 2
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with a constant a ∈ C which can be read from Figure 3.3. Since we choose x from

a compact subset of the real line and s > 0 is sufficiently large, Reϑ(z) is always

negative on γ+jk, j, k = 1, 2 outside a small neighborhood around the origin and the

endpoints z = ±1, hence for such z

GS(z) −→ I, s→ ∞ (3.5)

uniformly on any compact subset of the set (1.15) and the stated convergence is in

fact exponentially fast. A similar statement holds on the infinite branches in the

lower half-plane. There

GS(z) = e−s3ϑ(z)σ3


1 b

0 1


 es

3ϑ(z)σ3 , z ∈ γ−jk, j, k = 1, 2

again with some constant b ∈ C which is given in Figure 3.3. In this situation

Reϑ(z) > 0 outside a small neighborhood of the origin as well as the endpoints

z = ±1 and therefore

GS(z) −→ I, s→ ∞ (3.6)

also uniformly on any compact subset of the set (1.15). From (3.5) and (3.6) we

expect, and this will be justified rigorously, that as s → ∞, S(z) converges to a

solution of the model RHP, in which we only have to deal with the diagonal jump

matrix SD on the line segment [−1, 1]. Also this convergence is expected to be

uniform with respect to z outside some small neighborhood of the origin as well

as outside some vicinities of the endpoints z = ±1. Let us now move on to the

underlying model RHP as well as the construction of the relevant parametrices.

3.2 The model RHP and parametrices for γ 6= 1

The model RHP consists in finding the piecewise analytic 2×2 matrix valued function

M(z) such that

• M(z) is analytic for z ∈ C\[−1, 1]
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• Along [−1, 1], the following jump condition holds

M+(z) =M−(z)SD, z ∈ [−1, 1]

where

SD = (1− γ)−σ3

• M(z) = I + O
(
z−1
)
, z → ∞

Only assuming that γ 6= 1, we can always solve this diagonal and thus quasi-scalar

RHP (cf. [29])

M(z) = exp


 1

2πi

1∫

−1

ln(1− γ)−σ3

µ− z
dµ


 =

(
z + 1

z − 1

)νσ3

(3.7)

with

ν =
1

2πi
ln (1− γ) , arg (1− γ) ∈ (−π, π] (3.8)

and
(
z+1
z−1

)ν
is defined on C\[−1, 1] with its branch fixed by the condition

(
z+1
z−1

)ν → 1

as z → ∞. The function M(z) as introduced in (3.7) is not the unique solution to

the model RHP. But, we will see that the one we choose here will properly match

with the parametrices at z = ±1.

Remark 3 We bring the reader’s attention to the important fact, that in case γ < 1,

we have arg (1 − γ) = 0 and ν is therefore purely imaginary. However if γ > 1, then

arg (1− γ) = π and ν equals

ν =
1

2πi
ln (γ − 1) +

1

2
≡ ν0 +

1

2
, ν0 ∈ iR. (3.9)

Later on we will see that this difference will have a very substantial impact on the

whole steepest descent analysis.

We now construct a parametrix at the origin z = 0. The idea isto use a Ψ-function

associated to the system (1.10) for our construction. More precisely let

PII(ζ) = Ψ1(ζ) ≡ Ψ1(ζ, x), ζ ∈ C (3.10)
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be the first canonical solution of system (1.10) which is uniquely fixed by the asymp-

totics

PII(ζ) =
(
I +O

(
ζ−1
))
e−i( 4

3
ζ3+xζ)σ3, ζ → ∞, ζ ∈ Ω1.

Secondly, using the Stokes matrices in (2.1), we introduce

P̃RH
II (ζ) =





PII(ζ), arg ζ ∈ (−π
6
, π
6
) ∪ (5π

6
, 7π

6
),

PII(ζ)S1, arg ζ ∈ (π
6
, 5π

6
),

PII(ζ)S4, arg ζ ∈ (7π
6
, 11π

6
),

(3.11)

which solves the RHP depicted in Figure 3.4.

(
1 0
−i 1

)

(
1 −i
0 1

)

(
1 0
i 1

)

(
1 i
0 1

)

Figure 3.4. The model RHP near z = 0 which can be solved explicitly
using the Hastings-Mcleod solution of the second Painlevé equation

More precisely, the function P̃RH
II (ζ) possesses the following analytic properties.

• P̃RH
II (ζ) is analytic for ζ ∈ C\

{
arg ζ = π

6
, 5π

6
, 7π

6
, 11π

6

}

• The following jumps hold
(
P̃RH
II (ζ)

)
+

=
(
P̃RH
II (ζ)

)
−
S1, arg ζ =

π

6(
P̃RH
II (ζ)

)
+

=
(
P̃RH
II (ζ)

)
−
S3, arg ζ =

5π

6(
P̃RH
II (ζ)

)
+

=
(
P̃RH
II (ζ)

)
−
S4, arg ζ =

7π

6(
P̃RH
II (ζ)

)
+

=
(
P̃RH
II (ζ)

)
−
S6, arg ζ =

11π

6

• Recalling the discussion in chapter 2, the following uniform asymptotics holds,

valid in a full neighborhood of infinity (cf. [29])

P̃RH
II (ζ) =

(
I +

mHM
1

ζ
+
mHM

2

ζ
+O

(
ζ−3
))

e−i( 4
3
ζ3+xζ)σ3, ζ → ∞. (3.12)
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In (3.12) (compare (1.10) and the discussion in section 2.1) we have

mHM
1 =

1

2


−iv u

u iv


 , mHM

2 =
1

8


 u2 − v2 2i(ux + uv)

−2i(ux + uv) u2 − v2


 ,

where u = u(x) is the Hastings-McLeod solution of the second Painlevé equation and

we put v = (ux)
2 − xu2 − u4. Next we assemble the piecewise analytic matrix-valued

function PRH
II (ζ)

PRH
II (ζ) =





eπiνσ3P̃RH
II (ζ)e−πiνσ3 , Im ζ > 0,

eπiνσ3P̃RH
II (ζ)eπiνσ3 , Im ζ < 0.

(3.13)

Together with the RHP for P̃RH
II (ζ), we see at once that PRH

II (ζ) in addition to the

jumps on the rays depicted in Figure 3.4, also has a jump on the real line

(
PRH
II (ζ)

)
+
=
(
PRH
II (ζ)

)
− e

−2πiνσ3 ≡
(
PRH
II (ζ)

)
− SD, ζ ∈ R

where we orient the real line from left to right. Also on the rays, by construction,

(
PRH
II (ζ)

)
+

=
(
PRH
II (ζ)

)
− SL, arg ζ =

π

6
(
PRH
II (ζ)

)
+

=
(
PRH
II (ζ)

)
− S

−1
L , arg ζ =

5π

6
(
PRH
II (ζ)

)
+

=
(
PRH
II (ζ)

)
− S

−1
U , arg ζ =

7π

6
(
PRH
II (ζ)

)
+

=
(
PRH
II (ζ)

)
− SU , arg ζ =

11π

6
.

The model function PRH
II (ζ) will now be used to construct the parametrix to the

solution of the original S-RHP in a neighborhood of z = 0. We proceed in two steps.

First define

ζ(z) = sz, |z| < r. (3.14)

This change of variables is locally conformal and it enables us to define the origin

parametrix U(z) near z = 0 by the formula

U(z) = B0(z)P
RH
II

(
ζ(z)

)
ei(

4
3
ζ(z)+xζ(z))σ3 , |z| < r (3.15)
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with ζ(z) as in (3.14) and the matrix multiplier

B0(z) =

(
z + 1

z − 1

)νσ3





I, Im z > 0,

e−2πiνσ3 , Im z < 0,
B0(0) = e−πiνσ3 . (3.16)

By construction, in particular since B0(z) is analytic in a neighborhood of z = 0, the

parametrix U(z) has jumps along the curves depicted in Figure 3.5, which are locally

identical to the jump curves in the original RHP. Also these jumps are described by

the same jump matrices as in the S-RHP (see (3.3)), hence the ratio of S(z) with

U(z) is locally analytic, i.e.

S(z) = N0(z)U(z), |z| < r <
1

2
. (3.17)

e−s3ϑ(z)σ3SLe
s3ϑ(z)σ3

e−s3ϑ(z)σ3SUe
s3ϑ(z)σ3

e−s3ϑ(z)σ3S−1
L es

3ϑ(z)σ3

e−s3ϑ(z)σ3S−1
U es

3ϑ(z)σ3

SD SD

Figure 3.5. Jump graph of the parametrix U(z)

Let us explain the role of the left multiplier B0(z) in the definition (3.15). Observe

that

M(z) = B0(z)





I, Im z > 0,

e2πiνσ3 , Im z < 0.
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This relation together with the asymptotic equation (3.12) implies that,

U(z) = B0(z)e
πiνσ3

[
I +

1

2ζ


−iv u

u iv




+
1

8ζ2


 u2 − v2 2i(ux + uv)

−2i(ux + uv) u2 − v2


+O

(
ζ−3
)
]
e−πiνσ3B−1

0 (z)M(z)

=

[
I +

B0(z)

2ζ


 −iv ue2πiν

ue−2πiν iv


B−1

0 (z) +
B0(z)

8ζ2
(3.18)

×


 u2 − v2 2i(ux + uv)e2πiν

−2i(ux + uv)e−2πiν u2 − v2


B−1

0 (z) +O
(
ζ−3
)
]
M(z)

as s→ ∞ and 0 < r1 ≤ |z| ≤ r2 <
1
2
(so |ζ | → ∞). Since the function ζ(z) is of order

O(s) on the latter annulus and B0(z) is bounded, equation (3.18) yields the matching

relation between the model functions U(z) and M(z),

U(z) =
(
I + o(1)

)
M(z), s→ ∞, 0 < r1 ≤ |z| ≤ r2 <

1

2
,

which is crucial for the successful implementation of the nonlinear steepest descent

method as we shall see in the next section. This is the reason for choosing the left

multiplier B0(z) in (3.15) in the form (3.16).

For the parametrix at the right endpoint z = +1, we recall the Taylor expansion

ϑ(z) = ϑ(1) + i
(
4 +

x

s2

)
(z − 1) +O

(
(z − 1)2

)
, z → 1

and the singular endpoint behavior

S(z) = O
(
ln(z − 1)

)
, z → 1. (3.19)

Both observations suggest to use the confluent hypergeometric function U(a, b; ζ) for

our construction. We will justify this idea as follows. Recall that the listed confluent

hypergeometric function is defined as unique solution to Kummer’s equation

zw′′ + (b− z)w′ − aw = 0
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satisfying the asymptotic condition as ζ → ∞ and −3π
2
< arg ζ < 3π

2
(see [5])

U(a, b; ζ) = ζ−a

(
1− a(1 + a− b)

ζ
+
a(a+ 1)(1 + a− b)(2 + a− b)

2ζ2
+O

(
ζ−3
))
.

Also, using the notation U(a, ζ) ≡ U(a, 1; ζ), the following monodromy relation holds

on the entire universal covering of the punctured plane

U(1− a, eiπζ) = e2πiaU(1− a, e−iπζ)− eiπa
2πi

Γ2(1− a)
U(a, ζ)e−ζ (3.20)

and moreover we have an expansion at the origin (compare to (3.19))

U(a, ζ) = c0 + c1 ln ζ + c2ζ + c3ζ ln ζ +O
(
ζ2 ln ζ), ζ → 0 (3.21)

with coefficients ci given as

c0 = − 1

Γ(a)

(
ψ(a)+2γE), c1 = − 1

Γ(a)
, c2 = − a

Γ(a)

(
ψ(a+1)+2γE−2

)
, c3 = − a

Γ(a)

where γE is Euler’s constant and we introduced the Digamma function ψ(z) = Γ′(z)
Γ(z)

.

Keeping the latter properties in mind, we introduce on the punctured plane (cf. [38])

PCH(ζ) =


 U(ν, ei

π
2 ζ)e2πiνe−i ζ

2 −U(1 − ν, e−iπ
2 ζ)eπiνei

ζ
2
Γ(1−ν)
Γ(ν)

−U(1 + ν, ei
π
2 ζ)eπiνe−i ζ

2
Γ(1+ν)
Γ(−ν)

U(−ν, e−iπ
2 ζ)ei

ζ
2




×e−iπ
2
( 1
2
−ν)σ3 , ζ ∈ C\{0}, −π < arg ζ ≤ π (3.22)

with ν given in (3.8). Let us collect the following asymptotic expansions. First in the

sector −π
2
< arg ζ < π

2

PCH(ζ) =

[
I +

i

ζ


 ν2 −Γ(1−ν)

Γ(ν)
eπiν

Γ(1+ν)
Γ(−ν)

e−πiν −ν2




+
1

ζ2


 −ν2

2
(1 + ν)2 −Γ(1−ν)

Γ(ν)
(1− ν)2eπiν

−Γ(1+ν)
Γ(−ν)

(1 + ν)2e−πiν −ν2

2
(1− ν)2


+O

(
ζ−3
)
]
ζ−νσ3

×e−i ζ
2
σ3e−iπ

2
( 1
2
−ν)σ3


e

i 3π
2
ν 0

0 e−iπ
2
ν


 , ζ → ∞.
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For another sector, say π
4
< arg ζ < 5π

4
, we use (3.20) in the first column of (3.22)

and obtain instead

PCH(ζ) =

[
I +

i

ζ


 ν2 −Γ(1−ν)

Γ(ν)
eπiν

Γ(1+ν)
Γ(−ν)

e−πiν −ν2




+
1

ζ2


 −ν2

2
(1 + ν)2 −Γ(1−ν)

Γ(ν)
(1− ν)2eπiν

−Γ(1+ν)
Γ(−ν)

(1 + ν)2e−πiν −ν2

2
(1− ν)2


+O

(
ζ−3
)
]

×ζ−νσ3e−i ζ
2
σ3e−iπ

2
( 1
2
−ν)σ3


e

i 3π
2
ν 0

0 e−iπ
2
ν




 1 0

− 2πeiπν

Γ(1−ν)Γ(ν)
1


 , ζ → ∞,

as well as for −5π
4
< arg ζ < −π

4
with a similar argument in the second column of

(3.22)

PCH(ζ) =

[
I +

i

ζ


 ν2 −Γ(1−ν)

Γ(ν)
eπiν

Γ(1+ν)
Γ(−ν)

e−πiν −ν2




+
1

ζ2


 −ν2

2
(1 + ν)2 −Γ(1−ν)

Γ(ν)
(1− ν)2eπiν

−Γ(1+ν)
Γ(−ν)

(1 + ν)2e−πiν −ν2

2
(1− ν)2


+O

(
ζ−3
)
]

×ζ−νσ3e−i ζ
2
σ3e−iπ

2
( 1
2
−ν)σ3


e

i 3π
2
ν 0

0 e−iπ
2
ν




1 2πe−3πiν

Γ(1−ν)Γ(ν)

0 1


 , ζ → ∞.

Also of interest for future purposes is the following identity

PCH(ζ) = PCH(e
−2πiζ)


e

−2πiν +
(

2π
Γ(1−ν)Γ(ν)

)2
− 2πe−iπν

Γ(1−ν)Γ(ν)

− 2πe3πiν

Γ(1−ν)Γ(ν)
e2πiν


 . (3.23)

Let us now assemble the model function

PRH
CH (ζ) =





PCH(ζ)
(

1 0
2πeiπν

Γ(1−ν)Γ(ν)
1

)(
e−

3π
2 iν 0

0 e
π
2 iν

)
, arg ζ ∈ (π

3
, π),

PCH(ζ)
(

1 − 2πe−3πiν

Γ(1−ν)Γ(ν)

0 1

)(
e−

3π
2 iν 0

0 e
π
2 iν

)
, arg ζ ∈ (−π,−π

3
),

PCH(ζ)
(

e−
3π
2 iν 0

0 e
π
2 iν

)
, arg ζ ∈ (−π

3
, π
3
).

(3.24)

which solves the RHP depicted in Figure 3.6

In more detail, PRH
CH (ζ) possesses the following analytic properties
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(1 − γ)−σ3

(
1 0

2πe−iπν

Γ(1−ν)Γ(ν)
1

)

(
1 2πe−iπν

Γ(1−ν)Γ(ν)

0 1

)

Figure 3.6. The model RHP near z = +1 which can be solved explic-
itly using confluent hypergeometric functions

• PRH
CH (ζ) is analytic for ζ ∈ C\{arg ζ = −π,−π

3
, π
3
}

• The following jumps are valid, the jump contours being oriented as shown in

Figure 3.6

(
PRH
CH (ζ)

)
+

=
(
PRH
CH (ζ)

)
−(1− γ)−σ3, arg ζ = −π

(
PRH
CH (ζ)

)
+

=
(
PRH
CH (ζ)

)
−


 1 0

2πe−iπν

Γ(1−ν)Γ(ν)
1


 , arg ζ =

π

3

(
PRH
CH (ζ)

)
+

=
(
PRH
CH (ζ)

)
−


1 2πe−iπν

Γ(1−ν)Γ(ν)

0 1


 , arg ζ = −π

3

and in virtue of the classical identity

Γ(1− ν)Γ(ν) =
π

sin πν

the entries of the latter triangular matrices equal

2πe−iπν

Γ(1− ν)Γ(ν)
= iγ(1− γ)−1.
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• As ζ → ∞, the model function PRH
CH (ζ) shows the following asymptotic behavior,

which is valid in a full neighborhood of infinity

PRH
CH (ζ) =

[
I +

i

ζ


 ν2 −Γ(1−ν)

Γ(ν)
eπiν

Γ(1+ν)
Γ(−ν)

e−πiν −ν2




+
1

ζ2


 −ν2

2
(1 + ν)2 −Γ(1−ν)

Γ(ν)
(1− ν)2eπiν

−Γ(1+ν)
Γ(−ν)

(1 + ν)2e−πiν −ν2

2
(1− ν)2


 +O

(
ζ−3
)
]

×ζ−νσ3e−i ζ
2
σ3e−iπ

2
( 1
2
−ν)σ3 , ζ → ∞.

In order to construct the relevant parametrix near z = +1, define the locally conformal

change of variables

ζ(z) = −2is3
(
ϑ(z)− ϑ(1)

)
=
(
8s3 + 2xs

)
(z − 1)

(
1 +O(z− 1)

)
, |z − 1| < r. (3.25)

The parametrix is now given by

V (z) = Br(z)e
iπ
2
( 1
2
−ν)σ3e−s3ϑ(1)σ3PRH

CH

(
ζ(z)

)
e(

i
2
ζ(z)+s3ϑ(1))σ3 , |z − 1| < r (3.26)

with ζ(z) as in (3.25) and the matrix-valued function Br(z) equals

Br(z) =

(
ζ(z)

z + 1

z − 1

)νσ3

, Br(1) =
(
16s3 + 4xs

)νσ3 . (3.27)

Also here, following from analyticity of Br(z), parametrix jumps match original jumps

in the S-RHP. Moreover the parametrix V (z) has jumps along the curves depicted in

Figure 3.7, and we can always locally match the latter curves with the jump curves

in the S-RHP. Furthermore, and we shall elaborate this in full detail very soon, the

singular endpoint behavior of the parametrix V (z) matches (3.19), i.e.

V (z) = O
(
ln(z − 1)

)
, z → +1. (3.28)

Hence the ratio of S(z) with V (z) is locally analytic, i.e.

S(z) = Nr(z)V (z), |z − 1| < 1

2
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(1− γ)−σ3

e−s3ϑ(z)σ3
(

1 0
iγ(1−γ)−1 1

)
es

3ϑ(z)σ3

e−s3ϑ(z)σ3
(
1 iγ(1−γ)−1

0 1

)
es

3ϑ(z)σ3

Figure 3.7. Transformation of parametrix jumps to original jumps

In the end the role of the multiplier Br(z) follows again from the following asymp-

totical matching relation

V (z) = Br(z)e
iπ
2
( 1
2
−ν)σ3e−s3ϑ(1)σ3

[
I +

i

ζ


 ν2 −Γ(1−ν)

Γ(ν)
eπiν

Γ(1+ν)
Γ(−ν)

e−πiν −ν2




+
1

ζ2


 −ν2

2
(1 + ν)2 −Γ(1−ν)

Γ(ν)
(1− ν)2eπiν

−Γ(1+ν)
Γ(−ν)

(1 + ν)2e−πiν −ν2

2
(1− ν)2


+O

(
ζ−3
)
]
ζ−νσ3

×e−iπ
2
( 1
2
−ν)σ3es

3ϑ(1)σ3 (3.29)

=

[
I +

i

ζ


 ν2 −iΓ(1−ν)

Γ(ν)
e−2s3ϑ(1)β2

r (z)

−iΓ(1+ν)
Γ(−ν)

e2s
3ϑ(1)β−2

r (z) −ν2




+
1

ζ2


 −ν2

2
(1 + ν)2 −iΓ(1−ν)

Γ(ν)
(1− ν)2e−2s3ϑ(1)β2

r (z)

iΓ(1+ν)
Γ(−ν)

(1 + ν)2e2s
3ϑ(1)β−2

r (z) −ν2

2
(1− ν)2




+O
(
ζ−3
)
]
M(z) (3.30)

as s→ ∞ valid on the annulus 0 < r2 ≤ |z − 1| ≤ r2 <
1
2
(hence |ζ | → ∞) where we

use the notation

βr(z) =

(
ζ(z)

z + 1

z − 1

)ν

.

If we are dealing with the case γ < 1, then

β±2
r (z)

1

ζ
= O

(
s−3±6Re ν

)
= o(1), s→ ∞.

This would mean that equation (3.30) yields the matching relation between the model

functions V (z) and M(z),

V (z) =
(
I + o(1)

)
M(z), s→ ∞, 0 < r1 ≤ |z − 1| ≤ r2 <

1

2
(3.31)
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which is again crucial for the successful implementation of the nonlinear steepest

descent method. However, if γ > 1, then

ν =
1

2πi
ln(γ − 1) +

1

2
≡ ν0 +

1

2

and hence

β2
r (z)

1

ζ
= β̂2

r (z)
z + 1

z − 1
= O(1), s→ ∞; β̂r(z) =

(
ζ(z)

z + 1

z − 1

)ν0

.

With this notation, we have to replace (3.31) in case γ > 1 by

V (z) = Er(z)
(
I + o(1)

)
M(z), s→ ∞, 0 < r1 ≤ |z − 1| ≤ r2 <

1

2
(3.32)

where

Er(z) =


1 Γ(1−ν)

Γ(ν)
e−2s3ϑ(1)β̂2

r (z)
z+1
z−1

0 1


 . (3.33)

The appearance of the nontrivial matrix term Er(z) instead of the unit matrix in

estimate (3.32) yields a very serious change in the further asymptotic analysis com-

paring with the matching case (3.31). We will proceed with this analysis in section

3.4.

For now, we introduce the model RHP near the other endpoint z = −1. Opposed

to (3.22) consider

P̃CH(ζ) =


 U(−ν, e−i 3π

2 ζ)e−i ζ
2 U(1 + ν, e−iπ

2 ζ)eπiνei
ζ
2
Γ(1+ν)
Γ(−ν)

U(1 − ν, e−i 3π
2 ζ)eπiνe−i ζ

2
Γ(1−ν)
Γ(ν)

U(ν, e−iπ
2 ζ)e2πiνei

ζ
2




×eiπ2 ( 12−ν)σ3 = σ2PCH(e
−iπζ)σ2, 0 < arg ζ ≤ 2π.

and

P̃RH
CH (ζ) =





P̃CH(ζ)
(

1 0
2πe−3iπν

Γ(1−ν)Γ(ν)
1

)(
ei

π
2 ν 0

0 e−i 3π2 ν

)
, arg ζ ∈ (0, 2π

3
),

P̃CH(ζ)
(

1 − 2πeiπν

Γ(1−ν)Γ(ν)

0 1

)(
ei

π
2 ν 0

0 e−i 3π2 ν

)
, arg ζ ∈ (4π

3
, 2π),

P̃CH(ζ)
(

ei
π
2 ν 0

0 e−i 3π2 ν

)
, arg ζ ∈ (2π

3
, 4π

3
).

(3.34)

The model function P̃RH
CH (ζ) solves the RHP of Figure 3.8
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(1 − γ)−σ3

(
1 0

− 2πe−iπν

Γ(1−ν)Γ(ν)
1

)

(
1 − 2πe−iπν

Γ(1−ν)Γ(ν)

0 1

)

Figure 3.8. The model RHP near z = −1 which can be solved explic-
itly using confluent hypergeometric functions

• P̃RH
CH (ζ) is analytic for ζ ∈ C\{arg ζ = 0, 2π

3
, 4π

3
}

• Along the contour in Figure 3.8, the following jumps are valid (recall (3.23) and

the symmetry relation P̃RH
CH (ζ) = σ2PCH(e

−iπζ)σ2)

(
P̃RH
CH (ζ)

)
+

=
(
P̃RH
CH (ζ)

)
−e

−2πiνσ3 , arg ζ = 0

(
P̃RH
CH (ζ)

)
+

=
(
P̃RH
CH (ζ)

)
−


 1 0

− 2πe−iπν

Γ(1−ν)Γ(ν)
1


 , arg ζ =

2π

3

(
P̃RH
CH (ζ)

)
+

=
(
P̃RH
CH (ζ)

)
−


1 − 2πe−iπν

Γ(1−ν)Γ(ν)

0 1


 , arg ζ =

4π

3

• From symmetry P̃RH
CH (ζ) = σ2PCH(e

−iπζ)σ2 and the asymptotic information

derived earlier for PCH(ζ) in the different sectors, we deduce the following be-

havior, valid in a full neighborhood of infinity

P̃RH
CH (ζ) =

[
I +

i

ζ


 ν2 Γ(1+ν)

Γ(−ν)
e−πiν

−Γ(1−ν)
Γ(ν)

eπiν −ν2




+
1

ζ2


 −ν2

2
(1− ν)2 Γ(1+ν)

Γ(−ν)
(1 + ν)2e−πiν

Γ(1−ν)
Γ(ν)

(1− ν)2eπiν −ν2

2
(1 + ν)2


+O

(
ζ−3
)
]

×
(
e−iπζ

)νσ3e−i ζ
2
σ3ei

π
2
( 1
2
−ν)σ3 , ζ → ∞

The next steps are very similar to the construction of V (z). First define

ζ(z) = −2is3
(
ϑ(z)−ϑ(−1)

)
=
(
8s3+2xs

)
(z+1)

(
1+O(z+1)

)
, |z+1| < r (3.35)
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and secondly the parametrix W (z) near the left endpoint z = −1 via

W (z) = Bl(z)e
−iπ

2
( 1
2
−ν)σ3e−s3ϑ(−1)σ3 P̃RH

CH

(
ζ(z)

)
e(

i
2
ζ(z)+s3ϑ(−1))σ3 , |z + 1| < r. (3.36)

with ζ(z) as in (3.35) and

Bl(z) =

(
e−iπζ(z)

z − 1

z + 1

)−νσ3

, Bl(−1) =
(
16s3 + 4xs

)−νσ3
.

Also here parametrix jumps match with original jumps locally on the original jump

contour, see Figure 3.9,

(1− γ)−σ3

e−s3ϑ(z)σ3
(

1 0
−iγ(1−γ)−1 1

)
es

3ϑ(z)σ3

e−s3ϑ(z)σ3
(
1 −iγ(1−γ)−1

0 1

)
es

3ϑ(z)σ3

Figure 3.9. Transformation of parametrix jumps to original jumps

and with the singular endpoint behavior (see section 4.1 for a rigorous derivation)

W (z) = O (ln(z + 1)) , z → −1 (3.37)

we have a locally analytic ratio of S(z) and W (z)

S(z) = Nl(z)W (z), |z + 1| < 1

2
.

The role of the left multiplier follows once more from the asymptotical matchup

between the model functions

W (z) =

[
I +

i

ζ


 ν2 −iΓ(1+ν)

Γ(−ν)
e−2s3ϑ(−1)β2

l (z)

−iΓ(1−ν)
Γ(ν)

e2s
3ϑ(−1)β−2

l (z) −ν2




+
1

ζ2


 −ν2

2
(1− ν)2 −iΓ(1+ν)

Γ(−ν)
(1 + ν)2e−2s3ϑ(−1)β2

l (z)

iΓ(1−ν)
Γ(ν)

(1− ν)2e2s
3ϑ(−1)β−2

l (z) −ν2

2
(1 + ν)2




+O
(
ζ−3
)
]
M(z), (3.38)
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valid as s → ∞ on the annulus 0 < r1 ≤ |z + 1| ≤ r2 <
1
2
(thus |ζ | → ∞) and we

introduced

βl(z) =

(
e−iπζ(z)

z − 1

z + 1

)−ν

.

Similar to the situation at the right endpoint, estimate (3.38) implies on the annulus

for γ < 1

W (z) =
(
I + o(1)

)
M(z), s→ ∞,

whereas in case γ > 1, we have

W (z) = El(z)
(
I + o(1)

)
M(z), s→ ∞ (3.39)

with

El(z) =


 1 0

−Γ(1−ν)
Γ(ν)

e2s
3ϑ(−1)β̂−2

l (z) z−1
z+1

1


 , β̂l(z) =

(
e−iπζ(z)

z − 1

z + 1

)−ν0

.

At this point we can use the model functions M(z), U(z), V (z) and W (z) to employ

our next transformation.

3.3 The ratio problem – iterative solution for γ < 1

We put in this transformation

R(z) = S(z)





(
V (z)

)−1
, |z − 1| < r1,

(
U(z)

)−1
, |z| < r2,

(
W (z)

)−1
, |z + 1| < r1,

(
M(z)

)−1
, |z − 1| > r1, |z + 1| > r1, |z| > r2,

(3.40)

where 0 < r1, r2 <
1
2
is fixed. With C0,r,l denoting the clockwise oriented circles shown

in Figure 3.10, the ratio-function R(z) solves the following RHP

• R(z) is analytic for z ∈ C\ΣR with ΣR = C0,r,l ∪
⋃8

i=1 γi

• For the jumps, along the infinite branches γi

R+(z) = R−(z)M(z)GS(z)
(
M(z)

)−1
,
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γ1

γ2γ3

γ4

γ5

γ6 γ7

γ8

C0

Cl Cr

Figure 3.10. The jump graph for the ratio-function R(z)

with GS(z) denoting the corresponding jump matrix from (3.3). On the clock-

wise orientied circles C0 and Cr,l, the jumps are described by the equations

R+(z) = R−(z)U(z)
(
M(z)

)−1
, z ∈ C0,

R+(z) = R−(z)V (z)
(
M(z)

)−1
, z ∈ Cr,

R+(z) = R−(z)W (z)
(
M(z)

)−1
, z ∈ Cl.

• R(z) is analytic at z = ±1. This observation will follow directly from (3.28)

and (3.37), which shall be proved in section 4.1

• In a neighborhood of infinity, we have R(z) → I.

We emphasize that, by construction, R(z) has no jumps inside of the circles C0,r,l

and across the line segment in between. In order to apply the Deift-Zhou nonlinear

steepest descent method for the ratio-RHP, all jump matrices have to be close to

the unit matrix, as s → ∞, compare [25]. Hence it is now important to recall the

previosuly stated behavior of the jump matrices as s → ∞: As mentioned before,

due to the “correct” triangularity of S̃i combined with the sign-diagram of Reϑ(z),
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the jump matrices corresponding to the infinite parts
⋃8

i=1 γi of the R-jump contour

are in fact exponentially close to the unit matrix

‖MGS

(
M
)−1 − I‖L2∩L∞(γi) ≤ c1





e−c2s3|z|, emanating from C0;

e−c3s3|z∓1|, emanating from Cr,l,
(3.41)

as s → ∞ with constants ci > 0 whose values are not important. Also by virtue of

(3.18), U(z)
(
M(z)

)−1
approaches the unit matrix as s→ ∞,

‖U
(
M
)−1 − I‖L2∩L∞(C0) ≤ c4s

−1 (3.42)

with a constant c4 > 0. However, as we have already seen, compare (3.32), (3.39),

the jumps on Cr,l have to be treated more carefully. In case γ < 1, estimates (3.30)

and (3.38) yield

‖V
(
M
)−1 − I‖L2∩L∞(Cr) ≤ c5s

−3, ‖W
(
M
)−1 − I‖L2∩L∞(Cl) ≤ c6s

−3 (3.43)

as s → ∞. The estimations (3.41), (3.42) and (3.43), which are uniform on any

compact subset of the set (1.19)

{(γ, x) ∈ R
2 : −∞ < γ < 1, −∞ < x <∞},

enable us to solve the ratio-RHP for γ < 1 iteratively. Indeed the stated ratio-RHP

for the function R(z)

• R(z) is analytic for z ∈ C\ΣR

• Along the contour depicted in Figure 3.10

R+(z) = R−(z)GR(z), z ∈ ΣR.

• As z → ∞, we have R(z) = I +O
(
z−1
)
.

is equivalent to the singular integral equation

R−(z) = I +
1

2πi

∫

ΣR

R−(w)
(
GR(w)− I

) dw

w − z−
(3.44)
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and by the previous estimates (3.41), (3.42) and (3.43), we have

‖GR − I‖L2∩L∞(ΣR) ≤ c6s
−1 (3.45)

uniformly on any compact subset of the set (1.15). By standard arguments (see [25]),

we know that for sufficiently large s, the relevant integral operator is contracting and

equation (3.44) can be solved iteratively in L2(ΣR). Moreover, its unique solution

satisfies

‖R− − I‖L2(ΣR) ≤ cs−1, s→ ∞. (3.46)

The latter information is all we need to compute the asymptotic expansion for the

Fredholm determinant det(I − γKPII) in case γ < 1 up to the constant term. Before

we derive the relevant asymptotics let us first discuss the situation γ > 1. In this case

‖V
(
M
)−1 − I‖L2∩L∞(Cr) 9 0, ‖W

(
M
)−1 − I‖L2∩L∞(Cl) 9 0 (3.47)

and we need to employ further transformations.

3.4 Undressing and dressing – iterative solution for γ > 1

The presence of the multipliers Er(z) and El(z) in (3.32) and (3.39) requires

further transformations leading to a singular or solitonic type of Riemann-Hilbert

problem. Following [11, 28], we will show how to deal with the singular structure: A

key observation for our first move is that the jump matrices Gr(z) = V (z)
(
M(z)

)−1

and Gl(z) =W (z)
(
M(z)

)−1
admit the following algebraic factorizations

Gr(z) = Er(z)Ĝr(z) =


1 Γ(1−ν)

Γ(ν)
e−2s3ϑ(1)β̂2

r (z)
z+1
z−1

0 1


 (3.48)

×
[
I +

i

ζ


ν

2 −Γ(1−ν)
Γ(ν)

e−2s3ϑ(1)β̂2
r (z)

z+1
z−1

(1− 2ν)

0 −ν2


+O

(
ζ−2
)
]
,

Gl(z) = El(z)Ĝl(z) =


 1 0

−Γ(1−ν)
Γ(ν)

e2s
3ϑ(−1)β̂−2

l (z) z−1
z+1

1


 (3.49)

×
[
I +

i

ζ


 ν2 0

Γ(1−ν)
Γ(ν)

e2s
3ϑ(−1)β̂−2

l (z) z−1
z+1

(2ν − 1) −ν2


+O

(
ζ−2
)
]
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as s→ ∞ and 0 < r1 ≤ |z∓ 1| ≤ r2 <
1
2
. We observe that ‖Ĝr,l − I‖ → 0 as s→ ∞;

in fact, since |ζ(z)| ≥ cs3 on Cr ∪ Cl, we have that

‖Ĝr,l − I‖L2∩L∞(Cr ,l) ≤ c7s
−3, s→ ∞.

Hence, the natural idea is to pass from the function R(z) to the function P (z) defined

by the equations

P (z) =





R(z)Er(z), |z − 1| < r1,

R(z)El(z), |z + 1| < r1,

R(z), |z ∓ 1| > r1,

(3.50)

with 0 < r1 <
1
2
chosen as in (3.40). By definition, the function P (z) solves the

following RHP:

• P (z) is analytic for z ∈ C\
(
ΣR ∪ {±1}

)

• P+(z) = P−(z)GP (z), where

GP (z) =





Ĝr,l(z), z ∈ Cr,l,

U(z)
(
M(z)

)−1
, z ∈ C0,

M(z)S̃k

(
M(z)

)−1
, z ∈ γk, k = 1, . . . , 8.

• P (z) has first-order pole singularities at z = ±1. More precisely let P (z) =
(
P (1)(z), P (2)(z)

)
with P (i)(z) denoting the columns of the corresponding 2× 2

matrix valued function. We obtain from (3.48), (3.49) and (3.50)

resz=+1P
(2)(z) = P (1)(1)

(
2Γ(1− ν)

Γ(ν)
e−2s3ϑ(1)β̂2

r (1)

)
(3.51)

resz=−1P
(1)(z) = P (2)(−1)

(
2Γ(1− ν)

Γ(ν)
e2s

3ϑ(−1)β̂−2
l (−1)

)
. (3.52)

• As z → ∞, we have P (z) → I.

At this point it is important to notice that the latter four properties determine P (z)

uniquely.

Proposition 3.4.1 The stated singular Riemann-Hilbert problem for P (z) has a

unique solution.
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Proof The residue relations (3.51) and (3.52) imply

P (z) =





P̂ (+)(z)


1 2p

z−1

0 1


 , |z − 1| < r;

P̂ (−)(z)


 1 0

2p
z+1

1


 , |z + 1| < r,

p =
Γ(1− ν)

Γ(ν)
e−2s3ϑ(1)β̂2

r (1) (3.53)

with

ϑ(1) = i

(
4

3
+
x

s2

)
= −ϑ(−1), β̂2

r (1) =
(
16s3 + 4xs

)2ν0
= β̂−2

l (−1)

and where P̂ (±)(z) are analytic at z = ±1. Hence one establishes detP (z) ≡ 1 via

Liouville theorem using the normalization at infinity und unimodularity of the jump

matrices. From this and representation (3.53), the ratio of any two solutions P1(z)

and P2(z) of the given P -RHP, i.e.

P1(z)
(
P2(z)

)−1
,

is an entire function approaching identity at infinity; hence P1 = P2, showing unique-

ness.

Next, all jump matrices in the P -RHP approach the identity matrix as s → ∞;

however P (z) has singularities at z = ±1 whose structure is described by the residue

relations (3.51) and (3.52). This type of Riemann-Hilbert problem is a known one

in the theory of integrable systems. The way to deal with such RHPs is to use a

certain “dressing” procedure which reduces the problem to the one without the pole

singularities. We put

P (z) = (zI +B)Q(z)




1
z+1

0

0 1
z−1


 , (3.54)

where B ∈ C2×2 is constant and see immediately that Q(z) solves the following RHP:

• Q(z) is analytic for z ∈ C\ΣR
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• Q+(z) = Q−(z)GQ(z), where

GQ(z) =




1
z+1

0

0 1
z−1


 Ĝr,l(z)


z + 1 0

0 z − 1


 , z ∈ Cr,l

and

GQ(z) =




1
z+1

0

0 1
z−1


U(z)

(
M(z)

)−1


z + 1 0

0 z − 1


 , z ∈ C0

as well as

GQ(z) =




1
z+1

0

0 1
z−1


M(z)S̃k

(
M(z)

)−1


z + 1 0

0 z − 1


 , z ∈ γk.

• Q(z) → I, as z → ∞

The Q-jump matrix GQ(z) is uniformly close to the unit matrix: therefore the Q-RHP

admits direct asymptotic analysis, which can be performed after we have determined

the unknown matrix B. Using the conditions (3.51) and (3.52)

resz=+1P
(2)(z) = (I +B)Q(2)(1) = (I +B)pQ(1)(1),

resz=−1P
(1)(z) = (−I +B)Q(1)(−1) = (−I +B)

(
− p
)
Q(2)(−1),

so

B =

(
Q(−1)


1

p


 , Q(1)


−p

1



)
σ3

(
Q(−1)


1

p


 , Q(1)


−p

1



)−1

. (3.55)

Let us now see for which values of s the latter matrix inverse is well-defined: Since

‖GQ − I‖L2∩L∞(ΣR) ≤ c8s
−1, s→ ∞ (3.56)

we can solve the Q-RHP via iteration. Indeed, it is equivalent to the singular integral

equation

Q−(z) = I +
1

2πi

∫

ΣR

Q−(w)
(
GQ(w)− I

) dw

w − z−
(3.57)
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which can be solved iteratively in L2(ΣR), its unique solution satisfies

‖Q− − I‖L2(ΣR) ≤ c̃s−1, s→ ∞. (3.58)

Combining the integral representation

Q(z) = I +
1

2πi

∫

ΣR

Q−(w)
(
GQ(w)− I

) dw

w − z
, z /∈ ΣR (3.59)

with (3.56) and (3.58), we conclude

Q(±1) = I +O
(
s−1
)
, s→ ∞.

Hence the matrix inverse in the right hand side of (3.55) exists for all sufficiently

large s lying outside of the zero set of the function

1 + p2

which consists of the points {sn} defined by the equation

8

3
s3n + 2xsn +

1

π
ln(γ − 1) ln

(
16s3 + 4xs

)
− arg

Γ(1− ν)

Γ(ν)
=
π

2
+ nπ, n = 1, 2, . . .

and which will eventually form the zeros of the Fredholm determinant as written in

Theorem 1.22. Henceforth, when dealing with the situation γ > 1, we shall always

assume that s stays away from the small neighborhood of the points sn.

At this point we have gathered enough information to derive the asymptotics of

det (I − γKPII) for γ 6= 1 as stated in Theorem 1.18 and 1.22 up to the constant term.

However we will postpone these derivations until chapter 4, right now we will focus

on the asymptotic resolution of the X-RHP in case γ = 1.

3.5 Rescaling and g-function transformation, γ = 1

We go back to section 2.2, equation (2.12) and recall that on the line segment

[−s, s]

X+(λ) = X−(λ)


 0 −i
−i 0


 , λ ∈ [−s, s],
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i.e. we face a permutation jump matrix. This behavior (cf. [22]) motivates the

introduction of the following g-function,

g(z) =
4i

3

√
z2 − 1

(
z2 +

1

2
+

3x

4s2

)
,

√
z2 − 1 ∼ z, z → ∞. (3.60)

This function is analytic outside the segment [−1, 1] and as z → ∞

g(z) = ϑ(z) +O
(
z−1
)
, ϑ(z) = i

(
4

3
z3 +

xz

s2

)
.

Also,

g+(z) + g−(z) = 0, z ∈ [−1, 1]. (3.61)

We put

A(z) = X(zs)es
3g(z)σ3 , z ∈ C\

(
[−1, 1] ∪

⋃

k

Γk

)
(3.62)

and, taking into account (3.61), are lead to the following RHP

• A(z) is analytic for z ∈ C\
(
[−1, 1] ∪⋃k Γk

)

• The jump properties of T (z) are given by the equations

A+(z) = A−(z)


 0 −i
−i 0


 , z ∈ [−1, 1]

A+(z) = A−(z)e
−s3g(z)σ3Ske

s3g(z)σ3 , z ∈ Γk.

• In a neighborhood of the endpoints z = ±1

A(z)e−s3g(z)σ3 = X̌(zs)


1 − 1

2π
ln z−1

z+1

0 1








I, z ∈ Ω̂1,

S3, z ∈ Ω̂2,

S3S4, z ∈ Ω̂3,

S3S4S6, z ∈ Ω̂4,

(3.63)

• As z → ∞, we have A(z) = I +O(z−1)

Let us analyse the behavior of the jumps along the infinite branches Γk as s→ ∞. To

this end consider the sign-diagram of the function Re g(z), depicted in Figure 3.11,
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−1 1

Re g < 0 Re g < 0

Re g > 0 Re g > 0

Re g > 0

Re g < 0

Figure 3.11. Sign-diagram for the function Re g(z). Along the solid
lines Re g(z) = 0, the dashed lines resemble arg z = ±π

3
,±2π

3
and the

dotted line indicates the branch cut of g(z)

where x is chosen from a compact subset of the real line and s > 0 is sufficiently

large.

Since Re g(z) is negative resp. positive along the rays Γ1,Γ3 resp. Γ4,Γ6,

e−s3g(z)σ3Ske
s3g(z)σ3 −→ I, s→ ∞ (3.64)

uniformly on any compact subset of the set (1.15) and the stated convergence is

exponentially fast. Therefore, similar to our discussion in section 3.1 for γ 6= 1, we

expect, and again this will be justified rigorously, that as s → ∞, A(z) converges to

a solution of a model RHP, in which we only have to deal with the constant jump

matrix on the line segment [−1, 1].

3.6 The model RHP and parametrices for γ = 1

The problem is as follows: Find the piecewise analytic 2×2 matrix valued function

D(z) such that

• D(z) is analytic for z ∈ C\[−1, 1]
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• Along [−1, 1] the following jump condition holds

D+(z) = D−(z)


 0 −i
−i 0


 , z ∈ [−1, 1]

• D(z) = I +O
(
z−1
)
, z → ∞

A solution to this problem can be obtained explicitly via diagonalization (cf. [22])

D(z) =


1 1

1 −1


 β(z)σ3

1

2


1 1

1 −1


 =

1

2


β + β−1 β − β−1

β − β−1 β + β−1


 , (3.65)

with

β(z) =

(
z + 1

z − 1

)1/4

and
(
z+1
z−1

)1/4
is defined on C\[−1, 1] with its branch fixed by the condition

(
z+1
z−1

)1/4 →
1 as z → ∞. Following the same strategy as presented in previous sections, we

continue with the construction of parametrices.

For the right endpoint z = +1 use the local expansion

g(z) =
4
√
2

3
i

(
3

2
+

3x

4s2

)√
z − 1

(
1 +O

(
(z − 1)1/2

))
, z → 1, −π < arg(z − 1) ≤ π

and the singular endpoint behavior (2.13)

A(z) = O
(
ln(z − 1)

)
, z → 1.

Both observations suggest (cf. [22]) to use the Bessel functions H
(1)
0 (ζ) and H

(2)
0 (ζ)

for our construction. The latter Hankel functions of first and second kind are unique

independent solutions to Bessel’s equation

zw′′ + w′ + w = 0

satisfying the following asymptotic conditions as ζ → ∞ and −π < arg ζ < π (see [5])

H
(1)
0 (ζ) =

√
2

πζ
ei(ζ−

π
4
)

(
1− i

8ζ
− 9

128ζ2
+

75i

1024ζ3
+O

(
ζ−4
))

H
(2)
0 (ζ) =

√
2

πζ
e−i(ζ−π

4
)

(
1 +

i

8ζ
− 9

128ζ2
− 75i

1024ζ3
+O

(
ζ−4
))
.
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Secondly H
(1)
0 (ζ), H

(2)
0 (ζ) satisfy monodromy relations, valid on the entire universal

covering of the punctured plane

H
(1)
0

(
ζeπi

)
= −H(2)

0 (ζ), H
(2)
0

(
ζeπi

)
= H

(1)
0 (ζ) + 2H

(2)
0 (ζ), H

(2)
0

(
ζe−πi

)
= −H(1)

0 (ζ)

(3.66)

and finally the following expansions at the origin are valid (compare to (2.13))

H
(1)
0 (ζ) = a0 + a1 ln ζ + a2ζ

2 + a3ζ
2 ln ζ +O

(
ζ4 ln ζ), ζ → 0 (3.67)

with coefficients ai given as

a0 = 1 +
2iγE
π

− 2i

π
ln 2, a1 =

2i

π
, a2 =

i

2π
(1− γE)−

1

4
+

i

2π
ln 2, a3 = − i

2π

where γE is Euler’s constant and the expansion for H
(2)
0 (ζ) is up to the replacement

ai 7→ āi identical to (3.67). The latter properties in mind, define on the punctured

plane ζ ∈ C\{0}

PBE(ζ) = ei
π
4
σ3


 H

(2)
0 (

√
ζ) H

(1)
0 (

√
ζ)

√
ζ
(
H

(2)
0

)′
(
√
ζ)

√
ζ
(
H

(1)
0

)′
(
√
ζ)


 e−iπ

4
σ3 , −π < arg ζ ≤ π.

(3.68)

From the behavior of H
(1)
0 (ζ) and H

(2)
0 (ζ) at infinity we deduce

PBE(ζ) =

√
2

π
ζ−σ3/4ei

π
4


 1 1

−1 1



[
I +

i

8
√
ζ


−1 −2

2 1


 +

3

128ζ


 1 −4

−4 1




+
15i

1024ζ3/2


 1 6

−6 −1


+O

(
ζ−2
)]
e−i

√
ζσ3 ,

as ζ → ∞ and −π < arg ζ ≤ π. We now assemble the following model function

PRH
BE (ζ) =





PBE(ζ)


 1 0

−i 1


 , arg ζ ∈ (π

6
, π),

PBE(ζ)


1 i

0 1


 , arg ζ ∈ (−π,−π

6
),

PBE(ζ), arg ζ ∈ (−π
6
, π
6
).

(3.69)
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(
0 −i
−i 0

)

(
1 0
−i 1

)
= S1

(
1 −i
0 1

)
= S6

Figure 3.12. The model RHP near z = +1 which can be solved
explicitly using Hankel functions

which solves the RHP depicted in Figure 3.12.

More precisely, the function PRH
BE (ζ) possesses the following analytic properties.

• PRH
BE (ζ) is analytic for ζ ∈ C\{arg ζ = −π,−π

6
, π
6
}

• The following jumps hold

(
PRH
BE (ζ)

)
+

=
(
PRH
BE (ζ)

)
−


 1 0

−i 1


 , arg ζ =

π

6

(
PRH
BE (ζ)

)
+

=
(
PRH
BE (ζ)

)
−


1 −i
0 1


 , arg ζ = −π

6

And for the jump on the line arg ζ = π we notice that the monodromy relations

imply

H
(2)
0

(√
ζ+
)

= H
(2)
0

(√
ζ−e

πi
)
= H

(1)
0

(√
ζ−
)
+ 2H

(2)
0

(√
ζ−
)

(
H

(2)
0

)′(√
ζ+
)

= e−iπ
(
H

(1)
0

)′(√
ζ−
)
+ 2e−iπ

(
H

(2)
0

)′(√
ζ−
)

and

H
(1)
0

(√
ζ+
)

= H
(1)
0

(√
ζ−e

πi
)
= −H(2)

0

(√
ζ−
)

(
H

(1)
0

)′(√
ζ+
)

=
(
H

(2)
0

)′(√
ζ−
)
.

Therefore

(
PBE(ζ)

)
+
=
(
PBE(ζ)

)
−e

iπ
4
σ3


2 −1

1 0


 e−iπ

4
σ3 =

(
PBE(ζ)

)
−


 2 −i
−i 0



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and hence

(
PRH
BE (ζ)

)
+
=
(
PRH
BE (ζ)

)
−


 0 −i
−i 0


 , arg ζ = π,

• In order to determine the behavior of PRH
BE (ζ) at infinity we make the following

observations. First let arg ζ ∈ (π
6
, π) and consider

e−i
√
ζσ3


 1 0

−i 1


 ei

√
ζσ3 =


 1 0

−ie2i
√
ζ 1


 .

Observe that Re
(
i
√
ζ
)
< 0, hence the given product approaches the identity

exponentially fast as ζ → ∞. Secondly for arg ζ ∈ (−π,−π
6
)

e−i
√
ζσ3


1 i

0 1


 ei

√
ζσ3 =


1 ie−2i

√
ζ

0 1




and in this situation Re
(
− i

√
ζ
)
< 0, so again the product approaches the

identity exponentially fast as ζ → ∞. Both cases together with the previously

stated asymptotics for PBE(ζ) imply therefore

PRH
BE (ζ) =

√
2

π
ζ−σ3/4ei

π
4


 1 1

−1 1



[
I +

i

8
√
ζ


−1 −2

2 1


 (3.70)

+
3

128ζ


 1 −4

−4 1


+

15i

1024ζ3/2


 1 6

−6 −1


 +O

(
ζ−2
)]
e−i

√
ζσ3 ,

as ζ → ∞ in a whole neighborhood of infinity.

The model function PRH
BE (ζ) will now be used to construct the parametrix to the

solution of the original A-RHP in a neighborhood of z = +1. We proceed in two

steps. First define

ζ(z) = −s6g2(z), |z − 1| < r, −π < arg ζ ≤ π (3.71)

or respectively

√
ζ(z) = −is3g(z) = 4s3

3

√
z2 − 1

(
z2 +

1

2
+

3x

4s2

)
.
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This change of variables is indeed locally conformal, since

ζ(z) =
32s6

9

(
3

2
+

3x

4s2

)2

(z − 1)
(
1 +O(z − 1)

)
, |z − 1| < r

and it enables us to define the right parametrix I(z) near z = +1 by the formula:

I(z) = Cr(z)
σ3
2

√
π

2
e−iπ

4PRH
BE

(
ζ(z)

)
es

3g(z)σ3 , |z − 1| < r (3.72)

with ζ(z) as in (3.71) and the matrix multiplier

Cr(z) =


1 1

1 −1



(
ζ(z)

z + 1

z − 1

)σ3/4

, Cr(1) =


1 1

1 −1



(
8s3

3

(
3

2
+

3x

4s2

))σ3/2

.

(3.73)

By construction, in particular since Cr(z) is analytic in a neighborhood of z = +1,

the parametrix I(z) has jumps along the curves depicted in Figure 3.13, and we can

always locally match the latter curves with the jump curves of the original RHP. Also

these jumps are described by the same Stokes matrices as in the original A-RHP.

Furthermore, and we will elaborate this in full detail very soon, the singular behavior

of I(z) at the endpoint z = +1 matches the singular behavior of A(z):

I(z) = O
(
ln(z − 1)

)
, |z − 1| < r. (3.74)

Hence the ratio of A(z) with I(z) is locally analytic, i.e.

A(z) = Nr(z)I(z), |z − 1| < r <
1

2
. (3.75)

Let us once more explain the role of the left multiplier Cr(z) in the definition

(3.72). Observe that

Cr(z)ζ(z)
−σ3/4

1

2


1 1

1 −1


 = D(z).
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(
0 −i
−i 0

)
e−s3g(z)σ3S1e

s3g(z)σ3

e−s3g(z)σ3S6e
s3g(z)σ3

Figure 3.13. Transformation of parametrix jumps to original jumps

This relation together with the asymptotic equation (3.70) implies that,

I(z) =


1 1

1 −1


 β(z)σ3

1

2


1 1

1 −1



[
I +

i

8
√
ζ


−1 −2

2 1


 +

3

128ζ


 1 −4

−4 1




+
15i

1024ζ3/2


 1 6

−6 −1


 +O

(
ζ−2
)]1

2


1 1

1 −1


 β(z)−σ3


1 1

1 −1


D(z)

=

[
I +

i

16
√
ζ


β

2 − 3β−2 −(β2 + 3β−2)

β2 + 3β−2 −(β2 − 3β−2)


 +

3

128ζ


 1 −4

−4 1




+
15i

2048ζ3/2


−(5β2 − 7β−2) 5β2 + 7β−2

−(5β2 + 7β−2) 5β2 − 7β−2


+O

(
ζ−2
)]
D(z) (3.76)

as s → ∞ and 0 < r1 ≤ |z − 1| ≤ r2 < 1 (so |ζ | → ∞). Since the function ζ(z) is

of order O
(
s6
)
on the latter annulus and β(z) is bounded, equation (3.76) yields the

desired matching relation between the model functions I(z) and D(z),

I(z) =
(
I + o(1)

)
D(z), s→ ∞, 0 < r1 ≤ |z − 1| ≤ r2 < 1,

which in turn explains the choice of the left multiplier Cr(z) in (3.72) in the form

(3.73). We continue with the model problem near the other endpoint z = −1.

Consider on the punctured plane ζ ∈ C\{0}

P̃BE(ζ) =


e

−i 3π
2

√
ζ
(
H

(1)
0

)′(
e−iπ

2

√
ζ
)

−√
ζ
(
H

(2)
0

)′(
e−iπ

2

√
ζ
)

−eiπ2H(1)
0

(
e−iπ

2

√
ζ
)

H
(2)
0

(
e−iπ

2

√
ζ
)


 , 0 < arg ζ ≤ 2π
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which satisfies

P̃BE(ζ) =

√
2

π
ζσ3/4


−1 −1

−i i



[
I +

1

8
√
ζ


−1 2

−2 1


 +

3

128ζ


−1 −4

−4 −1




+
15

1024ζ3/2


−1 6

−6 1


+O

(
ζ−2
)]
e
√
ζσ3

as ζ → ∞ and 0 < arg ζ ≤ 2π. Next, instead of (3.69), define

P̃RH
BE (ζ) =





P̃BE(ζ)


 1 0

−i 1


 , arg ζ ∈ (0, 5π

6
),

P̃BE(ζ)


1 i

0 1


 , arg ζ ∈ (7π

6
, 2π),

P̃BE(ζ), arg ζ ∈ (5π
6
, 7π

6
).

(3.77)

which solves the model RHP of Figure 3.14. More precisely, the function P̃RH
BE (ζ) has

the following analytic properties

(
0 −i
−i 0

)
S3 =

(
1 0
i 1

)

S4 =
(
1 i
0 1

)

Figure 3.14. The model RHP near z = −1 which can be solved
explicitly using Hankel functions

• P̃RH
BE (ζ) is analytic for ζ ∈ C\{arg ζ = 5π

6
, 7π

6
, 2π}
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• We have the following jumps on the contour depicted in Figure 3.14

(
P̃RH
BE (ζ)

)
+

=
(
P̃RH
BE (ζ)

)
−


1 0

i 1


 , arg ζ =

5π

6

(
P̃RH
BE (ζ)

)
+

=
(
P̃RH
BE (ζ)

)
−


1 i

0 1


 , arg ζ =

7π

6

and on the line segment arg ζ = 2π

H
(1)
0

(
e−iπ

2

√
ζ+
)

= H
(1)
0

(
e−iπ

2

√
ζ−e

−iπ
)

= H
(2)
0

(
e−iπ

2

√
ζ−
)
+ 2H

(1)
0

(
e−iπ

2

√
ζ−
)

(
H

(1)
0

)′(
e−iπ

2

√
ζ+
)

= eiπ
(
H

(2)
0

)′(
e−iπ

2

√
ζ−
)
+ 2eiπ

(
H

(1)
0

)′(
e−iπ

2

√
ζ−
)

as well as

H
(2)
0

(
e−iπ

2

√
ζ+
)

= H
(2)
0

(
e−iπ

2

√
ζ−e

−iπ
)
= −H(1)

0

(
e−iπ

2

√
ζ−
)

(
H

(2)
0

)′(
e−iπ

2

√
ζ+
)

=
(
H

(1)
0

)′(
e−iπ

2

√
ζ−
)

hence

(
P̃RH
BE (ζ)

)
+
=
(
P̃RH
BE (ζ)

)
−


 0 −i
−i 0


 , arg ζ = 2π.

• A similar argument as given in the construction of PRH
BE (ζ) implies

P̃RH
BE (ζ) =

√
2

π
ζσ3/4


−1 −1

−i i



[
I +

1

8
√
ζ


−1 2

−2 1


 +

3

128ζ


−1 −4

−4 −1




+
15

1024ζ3/2


−1 6

−6 1


+O

(
ζ−2
)]
e
√
ζσ3 (3.78)

as ζ → ∞, valid in a full neighborhood of infinity.

Again we use the model function P̃RH
BE (ζ) in the construction of the parametrix to the

solution of the original A-RHP near z = −1. Instead of (3.71)

ζ(z) = s6g2(z), |z + 1| < r, 0 < arg ζ ≤ 2π (3.79)
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or equivalently

√
ζ(z) = −s3g(z) = −4is3

3

√
z2 − 1

(
z2 +

1

2
+

3x

4s2

)
.

This change of the independent variable is locally conformal

ζ(z) =
32s6

9

(
3

2
+

3x

4s2

)2

(z + 1)
(
1 +O(z + 1)

)
, |z + 1| < r

and allows us to define the left parametrix J(z) near z = −1 by the formula:

J(z) = Cl(z)
1

2


−1 0

0 i



√
π

2
P̃RH
BE

(
ζ(z)

)
es

3g(z)σ3 , |z + 1| < r (3.80)

with the matrix multiplier

Cl(z) =


1 1

1 −1



(
ζ(z)

z − 1

z + 1

)−σ3/4

, Cl(−1) =


1 1

1 −1



(
8is3

3

(
3

2
+

3x

4s2

))−σ3/2

.

(3.81)

Similar to the previous situation, J(z) has jumps on the contour depicted in Figure

3.15 which are described by the same Stokes matrices as in the original A-RHP.

(
0 −i
−i 0

)
e−s3g(z)σ3S3e

s3g(z)σ3

e−s3g(z)σ3S4e
s3g(z)σ3

Figure 3.15. Transformation of parametrix jumps to original jumps

Also here, as we shall see in detail in the section 4.4, the singular behavior at

z = −1 matches:

J(z) = O
(
ln(z + 1)

)
, |z + 1| < r (3.82)

Hence the ratio of parametrix J(z) with A(z) is locally analytic

A(z) = Nl(z)J(z), |z + 1| < r <
1

2
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and the left multiplier (3.81) in (3.80) provides us with the following asymptotic

matchup between J(z) and D(z):

J(z) =


1 1

1 −1


 β(z)σ3

1

2


1 1

1 −1



[
I +

1

8
√
ζ


−1 2

−2 1


+

3

128ζ


−1 −4

−4 −1




+
15

1024ζ3/2


−1 6

−6 1


+O

(
ζ−2
)]1

2


1 1

1 −1


 β(z)−σ3


1 1

1 −1


D(z)

=

[
I +

1

16
√
ζ


 β−2 − 3β2 β−2 + 3β2

−(β−2 + 3β2) −(β−2 − 3β2)


+

3

128ζ


−1 −4

−4 −1




+
15

2048ζ3/2


 5β−2 − 7β2 5β−2 + 7β2

−(5β−2 + 7β2) −(5β−2 − 7β2)


 +O

(
ζ−2
)]
D(z) (3.83)

as s→ ∞ and 0 < r1 ≤ |z + 1| ≤ r2 < 1, thus

J(z) =
(
I + o(1)

)
D(z), s→ ∞, 0 < r1 ≤ |z + 1| ≤ r2 < 1.

At this point we can use the model functions D(z), F (z) and H(z) to employ the final

transformation.

3.7 The ratio problem – iterative solution for γ = 1

In this final transformation we put

K(z) = A(z)





(
I(z)

)−1
, |z − 1| < r,

(
J(z)

)−1
, |z + 1| < r,

(
D(z)

)−1
, |z ∓ 1| > r

(3.84)

where 0 < r < 1
4
remains fixed. With Cr and Cl denoting the clockwise oriented

circles shown in Figure 3.16, the ratio-function K(z) solves the following RHP

• K(z) is anlytic for z ∈ C\
{
Cr ∪ Cl ∪

⋃
k γk
}

• Along the infinite branches γk

K+(z) = K−(z)D(z)e−s3g(z)σ3Ske
s3g(z)σ3

(
D(z)

)−1
, z ∈ γk,
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CrCl

γ1γ3

γ4 γ6

Figure 3.16. The jump graph for the ratio-function K(z)

and on the clockwise oriented circles Cr,l

K+(z) = K−(z)I(z)
(
D(z)

)−1
, z ∈ Cr

K+(z) = K−(z)J(z)
(
D(z)

)−1
, z ∈ Cl

• K(z) is analytic at z = ±1. This observation follows from (3.74) and (3.82),

which will be proved in section 4.4.

• In a neigborhood of infinity, we have K(z) → I

Due to the triangularity of all Stokes matrices Sk, the jump matrices corresponding

to the infinite parts
⋃

k γk of the K-jump contour are exponentially close to the unit

matrix

‖Me−s3g(·)σ3Ske
s3g(·)σ3

(
M
)−1 − I‖L2∩L∞(γk) ≤ c1e

−c2s3|z∓1| (3.85)

emanating from Cr,l as s→ ∞ with constants ci > 0 whose values are not important.

Moreover, by virtue of (3.76), I(z)
(
D(z)

)−1
approaches the unit matrix as s→ ∞

‖I
(
D
)−1 − I‖L2∩L∞(Cr) ≤ c3s

−3 (3.86)

and from (3.83), also J(z)
(
D(z)

)−1

‖J
(
D
)−1 − I‖L2∩L∞(Cl) ≤ c4s

−3, s→ ∞. (3.87)
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All together, with GK denoting the jump matrix in the latter ratio-RHP and ΣK the

underlying contour

‖GK − I‖L2∩L∞(ΣK) ≤ cs−3, s→ ∞ (3.88)

uniformly on any compact subset of the set (1.15). The latter estimation enables us

to solve the ratio-RHP iteratively, its unique solution satisfies

‖K− − I‖L2(ΣK) ≤ cs−3, s→ ∞. (3.89)
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4. ASYMPTOTICS OF ln det (I − γKPII) UP TO CONSTANT TERMS

Using the Deift-Zhou nonlinear steepest descent method, we were able to solve the

master RHP asymptotically for all values of γ. Using the latter information, we will

now derive the asymptotic expansions given in Theorem 1.2.1 and 1.2.2 up to the

contant terms and in addition prove the large zero distribution of det (I − γKPII)

as stated in Theorem 1.2.3. Our proofs rely on the logarithmic derivative identities

obtained in Proposition 2.3.1 and 2.3.2.

4.1 The situation γ 6= 1 – preliminary steps

Let us recall the common part of the series of transformations, which has been

used in the asymptotical solution of the original Y -RHP in case γ 6= 1

Y (λ) 7→ X̃(λ) 7→ X(λ) 7→ T (z) 7→ S(z) 7→ R(z).

In order to determine ln det (I − γKPII) via Proposition 2.3.1, we need to connect

X̌(±s) and X̌ ′(±s) to the values of R(±1) and R′(±1) of the ratio-function. This

can be done as follows: From (3.40) and (3.4) for |z − 1| < r

R(z)V (z)L−1(z)e−s3ϑ(z)σ3 = X̌(zs)


1 − γ

2π
ln z−1

z+1

0 1


 Ŝ(z), (4.1)

and for |z + 1| < r

R(z)W (z)L−1(z)e−s3ϑ(z)σ3 = X̌(zs)


1 − γ

2π
ln z−1

z+1

0 1


 Ŝ(z). (4.2)
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This shows that the required values of X̌(±s) and X̌ ′(±s) can be determined via

comparison in (4.1) and (4.2), once we know the local expansions of V (z), respectively

W (z) at z = ±1. Our starting point is (3.21)

PCH(ζ) =

[
 d1(ζ, ν)e

2πiν −d2(ζ, 1− ν)eπiν Γ(1−ν)
Γ(ν)

−d1(ζ, 1 + ν)eπiν Γ(1+ν)
Γ(−ν)

d2(ζ,−ν)




+ζ


 d3(ζ, ν)e

2πiν −d4(ζ, 1− ν)eπiν Γ(1−ν)
Γ(ν)

−d3(ζ, 1 + ν)eπiν Γ(1+ν)
Γ(−ν)

d4(ζ,−ν)


+O

(
ζ2 ln ζ

)
]

×e−iπ
2
( 1
2
−ν)σ3 , ζ → 0 (4.3)

with

d1(ζ, ν) = c0(ν) + c1(ν)
(
ln ζ + i

π

2

)
, d2(ζ, ν) = c0(ν) + c1(ν)

(
ln ζ − i

π

2

)

and

d3(ζ, ν) = − i

2
d1(ζ, ν) + i

(
c2(ν) + c3(ν)

(
ln ζ + i

π

2

))

as well as

d4(ζ, ν) =
i

2
d2(ζ, ν)− i

(
c2(ν) + c3(ν)

(
ln ζ − i

π

2

))
.

Now trace back the changes of variables

ζ = ζ(z) = −2is3
(
ϑ(z)− ϑ(1)

)
, |z − 1| < r1, λ = zs

and deduce from (4.3) and (3.24)

PRH
CH

(
ζ

(
λ

s

))
=

[
P1

(
ln(λ− s)

)
+ (λ− s)P2

(
ln(λ− s)

)

+O
(
(λ− s)2 ln(λ− s)

)]

e

−i 3π
2
ν 0

0 ei
π
2
ν


 , λ→ s,

valid in the sector −π
3
< arg (λ−s) < π

3
. Here the matrix functions P1(λ) =

(
P ij
1 (λ)

)

and P2(λ) =
(
P ij
2 (λ)

)
can be determined from (4.3) and for the remaining sectors

−π < arg (λ− s) < −π
3
and π

3
< arg (λ − s) < π we can derive similar expansions,
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they differ from the latter only by multiplication with a triangular matrix, see (3.24).

Combining now (3.26) with the latter expansion, the left hand side of (4.1) satisfies

R(z)V (z)L−1(z)e−s3ϑ(z)σ3

∣∣∣
z=λ

s

= R(z)Br(z)e
iπ
2
( 1
2
−ν)σ3e−s3ϑ(1)σ3PRH

CH

(
ζ(z)

)∣∣∣
z=λ

s

= R(1)Br(1)e
iπ
2
( 1
2
−ν)σ3e−s3ϑ(1)σ3P1

(
ln(λ− s)

)

e

−i 3π
2
ν 0

0 ei
π
2
ν




+(λ− s)

[
R(1)Br(1)e

iπ
2
( 1
2
−ν)σ3e−s3ϑ(1)σ3P2

(
ln(λ− s)

)
+

1

s

(
R′(1)Br(1)

+R(1)B′
r(1)

)
ei

π
2
( 1
2
−ν)σ3e−s3ϑ(1)σ3P1

(
ln(λ− s)

)
]
e

−i 3π
2
ν 0

0 ei
π
2
ν




+O
(
(λ− s)2 ln(λ− s)

)
, λ→ s, −π

3
< arg (λ− s) <

π

3
.

On the other hand, the right hand side in (4.1) can be expanded in the latter sector

as well:

R(z)V (z)L−1(z)e−s3ϑ(z)σ3

∣∣∣
z=λ

s

=
(
X̌(s) + (λ− s)X̌ ′(s) +O

(
(λ− s)2

))

×


1 − γ

2π
ln λ−s

λ+s

0 1




1 0

i 1


 =

[
X̌11(s) X̌12(s)

X̌21(s) X̌22(s)




+(λ− s)


X̌

′
11(s) X̌ ′

12(s)

X̌ ′
21(s) X̌ ′

22(s)


+O

(
(λ− s)2

)
]
1− iγ

2π
ln λ−s

λ+s
− γ

2π
ln λ−s

λ+s

i 1




which implies after comparison

X̌11(s) = −2πi

γ
ei

π
2
ν

((
R(1)Br(1)

)
11

e−s3ϑ(1)

Γ(ν)
+ i
(
R(1)Br(1)

)
12

es
3ϑ(1)

Γ(−ν)

)

X̌21(s) = −2πi

γ
ei

π
2
ν

((
R(1)Br(1)

)
21

e−s3ϑ(1)

Γ(ν)
+ i
(
R(1)Br(1)

)
22

es
3ϑ(1)

Γ(−ν)

)
.

Although we currently derived the last two identities from a comparison in the sector

−π
3
< arg (λ− s) < π

3
, the same identities follow from a comparison in the other two

sectors as well. There one uses the correct triangular matrices in (3.24) on the left
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hand side as well as a careful trace back of the contour deformations, and on the right

hand side the corresponding matrices from (2.13). Also by comparison

X̌ ′
11(s) =

2πi

γs
ei

π
2
ν

((
R(1)Br(1)

)
11

(
− 2is3ϑ′(1)

)( i
2
− iν

)
e−s3ϑ(1)

Γ(ν)

+
(
R(1)Br(1)

)
12

(
− 2is3ϑ′(1)

)(1

2
+ ν

)
es

3ϑ(1)

Γ(−ν)

−
(
R(1)B′

r(1) +R′(1)Br(1)
)
11

e−s3ϑ(1)

Γ(ν)
−
(
R(1)B′

r(1) +R′(1)Br(1)
)
12

ies
3ϑ(1)

Γ(−ν)

)

and

X̌ ′
21(s) =

2πi

γs
ei

π
2
ν

((
R(1)Br(1)

)
21

(
− 2is3ϑ′(1)

)( i
2
− iν

)
e−s3ϑ(1)

Γ(ν)

+
(
R(1)Br(1)

)
22

(
− 2is3ϑ′(1)

)(1

2
+ ν

)
es

3ϑ(1)

Γ(−ν)

−
(
R(1)B′

r(1) +R′(1)Br(1)
)
21

e−s3ϑ(1)

Γ(ν)
−
(
R(1)B′

r(1) +R′(1)Br(1)
)
22

ies
3ϑ(1)

Γ(−ν)

)
.

In order to obtain the corresponding identities for X̌(−s) and X̌ ′(−s) we would use

the same strategy as sketched above with the only difference that we have to work

now with (4.2) rather than (4.1). We choose to skip the details and simply state the

results: First

X̌11(−s) =
2πi

γ
ei

π
2
ν

((
R(−1)Bl(−1)

)
11

e−s3ϑ(−1)

Γ(−ν) + i
(
R(−1)Bl(−1)

)
12

es
3ϑ(−1)

Γ(ν)

)

X̌21(−s) =
2πi

γ
ei

π
2
ν

((
R(−1)Bl(−1)

)
21

e−s3ϑ(−1)

Γ(−ν) + i
(
R(−1)Bl(−1)

)
22

es
3ϑ(−1)

Γ(ν)

)
,

followed by

X̌ ′
11(−s) = −2πi

γs
ei

π
2
ν

((
R(−1)Bl(−1)

)
11

(
− 2is3ϑ′(−1)

)( i
2
+ iν

)
e−s3ϑ(−1)

Γ(−ν)

+
(
R(−1)Bl(−1)

)
12

(
− 2is3ϑ′(−1)

)(1

2
− ν

)
es

3ϑ(−1)

Γ(ν)

−
(
R(−1)B′

l(−1) +R′(−1)Bl(−1)
)
11

e−s3ϑ(−1)

Γ(−ν)

−
(
R(−1)B′

l(−1) +R′(−1)Bl(−1)
)
12

ies
3ϑ(−1)

Γ(ν)

)
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and moreover

X̌ ′
21(−s) = −2πi

γs
ei

π
2
ν

((
R(−1)Bl(−1)

)
21

(
− 2is3ϑ′(−1)

)( i
2
+ iν

)
e−s3ϑ(−1)

Γ(−ν)

+
(
R(−1)Bl(−1)

)
22

(
− 2is3ϑ′(−1)

)(1

2
− ν

)
es

3ϑ(−1)

Γ(ν)

−
(
R(−1)B′

l(−1) +R′(−1)Bl(−1)
)
21

e−s3ϑ(−1)

Γ(−ν)

−
(
R(−1)B′

l(−1) +R′(−1)Bl(−1)
)
22

ies
3ϑ(−1)

Γ(ν)

)
.

We finish the currect section by evaluating the resolvent kernel R(λ, µ) at λ = µ = ±s.
Recall (2.17)

F1(±s) = i

√
γ

2π
X̌11(±s), F2(±s) = i

√
γ

2π
X̌21(±s)

F ′
1(±s) = i

√
γ

2π
X̌ ′

11(±s), F ′
2(±s) = i

√
γ

2π
X̌ ′

21(±s)

and (2.18)

R(s, s) = F ′
1(s)F2(s)− F ′

2(s)F1(s).

The last two identities combined with the formulae for X̌jk(s) and X̌
′
jk(s), we obtain

R(s, s) =
2π

γs
eiπν

[(
R11(1)R22(1)− R12(1)R21(1)

)(− 2is3ϑ′(1)
)

Γ(ν)Γ(−ν)

+
(
R11(1)R22(1)− R12(1)R21(1)

)(
1 +

ϑ′′(1)

ϑ′(1)

)
iν

Γ(ν)Γ(−ν)
+
(
R′

11(1)R22(1)− R′
22(1)R11(1) +R′

12(1)R21(1)− R′
21(1)R12(1)

) i

Γ(ν)Γ(−ν)

+
(
R′

11(1)R21(1)− R′
21(1)R11(1)

)
(16s3 + 4xs)2ν

e−2s3ϑ(1)

Γ2(ν)

−
(
R′

12(1)R22(1)−R′
22(1)R12(1)

)
(16s3 + 4xs)−2ν e

2s3ϑ(1)

Γ2(−ν)

]
.

In order to simplify this identity, we use

Proposition 4.1.1 R(z) is unimodular for any x, γ ∈ R, i.e. detR(z) ≡ 1.
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Proof It is easy to verify that detPRH
II (ζ) ≡ 1 as well as detPRH

CH (ζ) = det P̃RH
CH (ζ) ≡

1. Therefore one establishes from (3.15),(3.26) and (3.36)

detU(z) = det V (z) = detW (z) ≡ 1.

Moreover the model function M(z) is unimodular, hence the ratio function R(z) has

a unimodular jump matrix GR(z). But this shows that detR(z) is in fact an entire

function, normalized at infinity, so by Liouville theorem

detR(z) = R11(z)R22(z)− R12(z)R21(z) ≡ 1, z ∈ C.

In light of the last proposition

R(s, s) =
2π

γs
eiπν

[
8s3 + 2xs

Γ(ν)Γ(−ν) +
iν

Γ(ν)Γ(−ν)
12 + x

s2

4 + x
s2

+
i

Γ(ν)Γ(−ν)

×
(
R′

11(1)R22(1)− R′
22(1)R11(1) +R′

12(1)R21(1)−R′
21(1)R12(1)

)

+
(
R′

11(1)R21(1)−R′
21(1)R11(1)

)
(16s3 + 4xs)2ν

e−2s3ϑ(1)

Γ2(ν)

−
(
R′

12(1)R22(1)− R′
22(1)R12(1)

)
(16s3 + 4xs)−2ν e

2s3ϑ(1)

Γ2(−ν)

]
(4.4)

and we notice that the current derivation did not distinguish between the cases γ <

1 and γ > 1, hence the latter identity holds as long as γ 6= 1. Similarly, using

Proposition 4.1.1 once more, we also have

R(−s,−s) = 2π

γs
eiπν

[
8s3 + 2xs

Γ(ν)Γ(−ν) +
iν

Γ(ν)Γ(−ν)
12 + x

s2

4 + x
s2

+
i

Γ(ν)Γ(−ν) (4.5)

×
(
R′

11(−1)R22(−1)−R′
22(−1)R11(−1) +R′

12(−1)R21(−1)− R′
21(−1)R12(−1)

)

+
(
R′

11(−1)R21(−1)− R′
21(−1)R11(−1)

)
(16s3 + 4xs)−2ν e

−2s3ϑ(−1)

Γ2(−ν)

−
(
R′

12(−1)R22(−1)−R′
22(−1)R12(−1)

)
(16s3 + 4xs)2ν

e2s
3ϑ(−1)

Γ2(ν)

]
.

We will now derive (1.18) up to the constant term.
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4.2 Proof of Theorem 1.2.2 up to constant terms

Using estimations (3.45) and (3.46) in (3.44), we see that as s→ ∞

R(±1) = I +O
(
s−1
)
, R′(±1) = O

(
s−1
)

uniformly on any compact subset of the set (1.19). Also in case γ < 1, the functions

(16s3 + 4xs)±2νe∓2ϑ(1)σ3

are bounded as s→ ∞. From Proposition 2.3.1 and (4.4), (4.5), we obtain therefore

∂

∂s
ln det (I − γKPII) = −R(s, s)−R(−s,−s)

= −4π

γs
eiπν

[
8s3 + 2xs

Γ(ν)Γ(−ν) +
iν

Γ(ν)Γ(−ν)
12 + x

s2

4 + x
s2

]
+O

(
s−2
)

= iν
(
16s2 + 4x

)
+

6(iν)2

s
+O

(
s−2
)
, s→ ∞ (4.6)

uniformly on any compact subset of the set (1.19). Integrating with respect to s, we

obtain the leading terms in (1.18) up to a term which still might depend on x and

γ. In order to show that this term is in fact x-independent, we use Proposition 4.1.1:

Trace back the transformations

X(λ) 7→ T (z) 7→ S(z) 7→ R(z)

and obtain with (3.7) and (3.44)

X1 = lim
λ→∞

(
λ
(
X(λ)ei(

4
3
λ3+xλ)σ3 − I

))
= 2sνσ3 +

is

2π

∫

ΣR

R−(w)
(
GR(w)− I

)
dw.

From (3.18), (3.43) and (3.46)

i

2π

∫

ΣR

R−(w)
(
GR(w)− I

)
dw =

i

2π

∫

C0

(
GR(w)− I

)
dw +O

(
s−2
)

=
i

2π

∫

C0

B0(w)


 −iv ue2πiν

ue−2πiν iv


B−1

0 (w)
dw

2ζ(w)
+O

(
s−2
)
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where the last integral can be computed by residue theorem. We obtain

X1 = 2sνσ3 +
1

2


−iv u

u iv


+O

(
s−1
)
, s→ ∞

uniformly on any compact subset of the set (1.19). Back to (2.19)

∂

∂x
ln det (I − γKPII) = i

(
X11

1 −X22
1

)
− v

= 4siν +O
(
s−1
)
, s→ ∞

which, combined with (4.6), implies

ln det (I − γKPII) = iν

(
16

3
s3 + 4xs

)
+ 6(iν)2 ln s+ χPII +O

(
s−1
)
, (4.7)

that is Theorem 1.18 up to a γ-dependent term χPII.

4.3 Proof of Theorem 1.2.3

In order to verify the large zero distribution of det (I − γKPII) in case γ > 1, we

will again use Propositions 2.3.1 and 2.3.2. This time however we need to trace back

the full series of transformations,

Y (λ) 7→ X̃(λ) 7→ X(λ) 7→ T (z) 7→ S(z) 7→ R(z) 7→ P (z) 7→ Q(z)

and recall (see section 3.4), that in case γ > 1, all large values of s stay away from

the small neighborhoods of the points {sn} defined by the equation

8

3
s3n + 2xsn +

1

π
ln(γ − 1) ln

(
16s3 + 4xs

)
− arg

Γ(1− ν)

Γ(ν)
=
π

2
+ nπ, n = 1, 2, . . .

Still we make use of (4.4) and (4.5), however we now need to connect the required

values of R(±1) and R′(±1) to Q(±1) and Q′(±1). To this end recall (3.50), (3.54)

and the residue relations (3.51),(3.52). This gives

R(1) = (I +B)Q(1)




1
2

−pν0
12+ x

s2

4+ x
s2

0 0


+

(
(I +B)Q′(1) +Q(1)

)

0 −p
0 1



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where (compare (3.53))

p =
Γ(1− ν)

Γ(ν)
e−2s3ϑ(1)β̂2

r (1) = e−iσ, ν0 =
1

2πi
ln(γ − 1)

with

σ ≡ σ(s, x, γ) =
8

3
s3 + 2xs+

1

π
ln(γ − 1) ln

(
16s3 + 4xs

)
− arg

Γ(1− ν)

Γ(ν)
. (4.8)

Also

R′(1) = (I +B)Q(1)


−1

4
−pν0κ(s, x)

0 0


+

(
(I +B)

Q′′(1)

2
+Q′(1)

)

0 −p
0 1




+
(
(I +B)Q′(1) +Q(1)

)



1
2

−pν0
12+ x

s2

4+ x
s2

0 0




where we introduced

κ(s, x) =
3(2ν0 − 1)(12 + x

s2
)2 + 80(4 + x

s2
)

12(4 + x
s2
)2

.

Furthermore

R(−1) = (−I +B)Q(−1)


 0 0

−pν0
12+ x

s2

4+ x
s2

−1
2


+

(
(−I +B)Q′(−1)+Q(−1)

)

1 0

p 0




and

R′(−1) = (−I +B)Q(−1)


 0 0

pν0κ(s, x) −1
4


+

(
(−I +B)

Q′′(−1)

2

+Q′(−1)
)

1 0

p 0


+

(
(−I +B)Q′(−1) +Q(−1)

)

 0 0

−pν0
12+ x

s2

4+ x
s2

−1
2


 .

Next we compute the values of Q(±1) and Q′(±1) via (3.59) as s→ ∞. Since we are

going to need terms of O(s−2), we have to iterate (3.57). First for any z ∈ ΣR

Q−(z)− I =
1

2πi

∫

ΣR

Q−(w)
(
GQ(w)− I

) dw

w − z−

=
1

2πi

∫

ΣR

(
GQ(w)− I

) dw

w − z−
+O

(
s−2
)
=

1

2sz

[
−iv −u

−u iv




−




1
z+1

0

0 1
z−1


B0(z)


 −iv ue2πiν

ue−2πiν iv


B−1

0 (z)


z + 1 0

0 z − 1



]
+O

(
s−2
)
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where we used that


1
z+1

0

0 1
z−1


B0(z)


 −iv ue2πiν

ue−2πiν iv


B−1

0 (z)


z + 1 0

0 z − 1




=


−iv −u

−u iv


+ 4ν0


0 −u
u 0


 z +O

(
z2
)
, z → 0.

This leads to

Q(±1) = I ∓ 1

2s


iv u

u −iv


∓ ν0

s2


 u2 iux

iux −u2


 (4.9)

+
1

8s2


 u2 − v2 −2i(ux + uv)

2i(ux + uv) u2 − v2


 +O

(
s−3
)
, s→ ∞

as well as

Q′(±1) =
1

2s


iv u

u −iv


+

ν0
s2


 u2 iux

iux −u2


 (4.10)

∓ 1

4s2


 u2 − v2 −2i(ux + uv)

2i(ux + uv) u2 − v2


+O

(
s−3
)
, s→ ∞.

At this point we consider the matrix

N =

(
Q(−1)


1

p


 , Q(1)


−p

1



)

which appears in (3.55). In order to find the large s-asymptotics of B, we first

compute an expansion for the determinant of N . From (4.9)

detN = 2p

(
cosσ +

1

s

(
u− v sin σ

)
+

cos σ

2s2
(
u2 − v2

)
+

2iν0
s2
(
ux + u2 sin σ

)

+O
(
s−3
))
, s→ ∞

and since we agreeded to stay away from the small neighborhoods of the zeros of cosσ,

the latter determinant is non-zero and we can asymptotically compute the matrix B:

B11 =
2ip

detN

(
sin σ +

v

s
cosσ − v2

2s2
sin σ − 2iν0

s2
u2 cosσ − ux

2s2
+O

(
s−3
))

B12 =
2p

detN

(
1 +

u

s
cos σ +

2iν0
s2

ux cos σ +
u2

2s2
− ux

2s2
sin σ − uv

s2
sin σ +O

(
s−3
))

B21 = B12 +O
(
s−3
)
, B22 = −B11 +O

(
s−3
)
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and with

2p

detN
=

1

cosσ

[
1 +

1

s

(
v tanσ − u

cosσ

)
+

1

s2

(
v2 tan2 σ − 2uv sin σ

cos2 σ

+
u2

cos2 σ
− u2 − v2

2
− 2iν0u

2 tanσ − 2iν0ux
cos σ

)
+O

(
s−3
)]

we obtain

B11 = i

[
tan σ +

1

s

(
v sin σ − u

cos3 σ
sin σ +

v

cosσ

)
+

1

s2

(
2v2 sin σ − u2 sin σ − ux

2 cos2 σ

−2iν0(u
2 sin σ + ux) sin σ

cos3 σ
+

(v sin σ − u)2 sin σ

cos4 σ
− uv cos σ + 2iν0u

2

cos σ

+O
(
s−3
)]

and similarly

B12 =
1

cosσ
+

1

s

(
v sin σ − u

cos2 σ
+ u

)
+

1

s2

(
v2 − ux sin σ

2 cosσ

−2iν0(u
2 sin σ + ux)

cos2 σ
+

(v sin σ − u)2

cos3 σ
− u2 cosσ + 2iν0ux

)
+O

(
s−3
)
.

At this point we have gathered enough information to go back to (4.4) and (4.5).

Since ν = ν0 +
1
2
, notice that

R(s, s) = −iν0(8s2 + 2x)− i(4s2 + x)

+ip
(
16s2 + 4x

) (
R′

11(1)R21(1)− R′
21(1)R11(1)

)
+O

(
s−1
)

and similarly

R(−s,−s) = −iν0(8s2 + 2x)− i(4s2 + x)

−ip
(
16s2 + 4x

) (
R′

12(1)R22(1)−R′
22(1)R12(1)

)
+O

(
s−1
)
.

Next

R′
11(1) = −1

4

(
(I +B)Q(1)

)
11
+

1

2

(
(I +B)Q′(1) +Q(1)

)
11

R21(1) =
1

2

(
(I +B)Q(1)

)
21

R′
21(1) = −1

4

(
(I +B)Q(1)

)
21
+

1

2

(
(I +B)Q′(1) +Q(1)

)
21

R11(1) =
1

2

(
(I +B)Q(1)

)
11
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and we can now combine the previously derived information on Q(1), Q′(1) as well as

B to derive

ip
(
16s2 + 4x

) (
R′

11(1)R21(1)− R′
21(1)R11(1)

)
= (4s2 + x)

(
i+ tanσ

)
+ α+ +O

(
s−1
)

with a function α+ = α+(s, x, γ) such that

∫
α+(s, x, γ) ds = O

(
ln s
)
, s→ ∞.

Following the same computations for R(−s,−s), we end with

R(−s,−s) = −iν0(8s2 + 2x) + (4s2 + x) tanσ + α− +O
(
s−1
)

where α− = α−(s, x, γ) is such that

∫
α−(s, x, γ) ds = O

(
ln s
)
, s→ ∞.

By Proposition 2.3.1, we obtain

∂

∂s
ln det (I − γKPII) = −R(s, s)− R(−s,−s)

= iν0
(
16s2 + 4x

)
−
(
8s2 + 2x

)
tan σ(s, x, γ)

− (α+ + α−) +O
(
s−1
)
, s→ ∞

uniformly on any compact subset of the set (1.21), outside a small neighborhood of

the points {sn} defined by

σ(sn, x, γ) =
8

3
s3n + 2xsn +

1

π
ln(γ − 1) ln

(
16s3n + 4xsn

)
− arg

Γ(1− ν)

Γ(ν)
=
π

2
+ nπ.

as n → ∞. In order to finish the proof of Theorem 1.2.3, we use again Proposition

2.3.2. Tracing back all transformations, one obtains

X1 = 2sνσ3 + s (B − σ3) +
is

2π

∫

ΣR

Q−(w)
(
GQ(w)− I

)
dw

= 2sνσ3 + s (B − σ3) +
1

2


−iv −u

−u iv


+O

(
s−1
)
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and therefore with (2.19) and previously derived expansions

∂

∂x
ln det (I − γKPII) = 4iν0s− 2s tanσ +O

(
s−1
)
, s→ ∞

which proves Theorem 1.2.3.

Remark 4 We want to emphasize that our strategy in fact produced an asymptotic

series for ln det (I − γKPII) of the form

ln det (I − γKPII) = iν0

(
16

3
s3 + 4xs

)
+ ln |cosσ(s, x, γ)|

+c0 ln s+ c1(γ) +O
(
s−1
)
, s→ ∞, (4.11)

uniformly on any compact subset of the set (1.21) and outside a neigbhorhood of the

points {sn}. Here, the universal constant c0, can be computed by a direct, although

tedious, refinement of our approach.

4.4 The situation γ = 1 – preliminary steps

We will use the same strategy as presented in sections 4.1 and 4.2 only this time

customized to the series of transformations

Y (λ) 7→ X̃(λ) 7→ X(λ) 7→ A(z) 7→ K(z).

In the current situation γ = 1, we need to connect the values of X(±s) and X ′(±s)
to the corresponding ones of K(±1) and K ′(±1). With

K(z)I(z)e−s3g(z)σ3 = X̌(zs)


1 − 1

2π
ln z−1

z+1

0 1








I, λ ∈ Ω̂1,

S3S4, λ ∈ Ω̂3,

S3S4S6, λ ∈ Ω̂4,

(4.12)

valid for |z − 1| < r, and

K(z)J(z)e−s3g(z)σ3 = X̌(zs)


1 − 1

2π
ln z−1

z+1

0 1








I, λ ∈ Ω̂1,

S3, λ ∈ Ω̂2,

S3S4, λ ∈ Ω̂3,

(4.13)
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which is valid for |z+1| < r, we can again obtain the required values via comparison

in (4.12) and (4.13), once we know the local expansions of I(z) and J(z) at z = ±1.

This time our starting point is (3.67)

PRH
BE (ζ) =


ā0 +

ā1
2
ln ζ i(a0 +

a1
2
ln ζ)

ā1 a1




+ζ


 ā2 +

ā3
2
ln ζ i(a2 +

a3
2
ln ζ)

2ā2 + ā3 + ā3 ln ζ 2a2 + a3 + a3 ln ζ


+O

(
ζ2 ln ζ), (4.14)

as ζ → 0 and −π
6
< arg ζ < π

6
. The latter expansion together with the changes of

variables ζ = ζ(z) = −s6g2(z) and λ = zs implies for −π
6
< arg (λ− s) < π

6

PRH
BE

(
ζ(z)

)
= P3

(
ln(λ− s)

)
+ (λ− s)P4

(
ln(λ− s)

)
+O

(
(λ− s)2 ln(λ− s)

)
, λ→ s

with the matrix functions P3 = (P ij
3 ) and P4 = (P ij

4 ) being determined from (4.14).

Now we combine the latter expansion with (3.72) and (3.84)

K(z)I(z)e−s3g(z)σ3

∣∣∣
z=λ

s

= K(z)Cr(z)
σ3
2

√
π

2
e−iπ

4PRH
BE

(
ζ(z)

)∣∣∣
z=λ

s

= K(1)Cr(1)
σ3
2

√
π

2
e−iπ

4P3

(
ln(λ− s)

)
+ (λ− s)

{
K(1)Cr(1)

σ3
2

√
π

2
e−iπ

4

×P4

(
ln(λ− s)

)
+
(
K ′(1)Cr(1) +K(1)C ′

r(1)
)σ3
2s

√
π

2
e−iπ

4P3

(
ln(λ− s)

)}

+O
(
(λ− s)2 ln(λ− s)

)
, λ→ s, −π

6
< arg (λ− s) <

π

6
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and similar identities hold for −π < arg (λ− s) < −π
6
and π

6
< arg (λ− s) < π, they

differ from (4.14) only by right multiplication with a Stokes matrix (see (3.69)). On

the other hand the right hand side in (4.12) implies for −π
6
< arg (λ− s) < π

6

K

(
λ

s

)
I
(λ
s

)
e−s3g(λ

s
)σ3 =

(
X̌(s) + (λ− s)X̌ ′(s) +O

(
(λ− s)2

))

×


1 − 1

2π
ln λ−s

λ+s

0 1




1 0

i 1


 =

[
X̌11(s)

1
2π

ln(2s)X̌11(s) + X̌12(s)

X̌21(s)
1
2π

ln(2s)X̌21(s) + X̌22(s)




+(λ− s)


X̌

′
11(s)

1
2π
(ln(2s)X̌ ′

11(s) +
1
2s
X̌11(s)) + X̌ ′

12(s)

X̌ ′
21(s)

1
2π
(ln(2s)X̌ ′

21(s) +
1
2s
X̌21(s)) + X̌ ′

22(s)



]

×


1− i

2π
ln(λ− s) − 1

2π
ln(λ− s)

i 1


+O

(
(λ− s)2 ln(λ− s)

)
, λ→ s

where we used the same notations for X̌(λ) as in section 4.1, hoping this ambiguity

won’t lead to any confusion in the following. From a comparison of the left and right

hand side in (4.12)

X̌11(s) =

√
π

2
e−iπ

4

(
K(1)Cr(1)

)
11
, X̌21(s) =

√
π

2
e−iπ

4

(
K(1)Cr(1)

)
21
, (4.15)

and these identities have been derived in the sector −π
6
< arg (λ− s) < π

6
. However

by multiplying in the other sectors with the right Stokes matrices from (4.14) as well

as using the appropriate Stokes matrices in (2.13), we can easily show that (4.15)

follows in fact from comparison in a full neighborhood of λ = +s. Comparing now

terms of O
(
(λ− s) ln(λ− s)

)
we also derive

X̌ ′
11(s) = −

√
π

2
e−iπ

4

[
8s5

9

(
3

2
+

3x

4s2

)2((
K(1)Cr(1)

)
11
+ 2i

(
K(1)Cr(1)

)
12

)

−1

s

(
K ′(1)Cr(1) +K(1)C ′

r(1)
)
11

]
(4.16)

and

X̌ ′
21(s) = −

√
π

2
e−iπ

4

[
8s5

9

(
3

2
+

3x

4s2

)2((
K(1)Cr(1)

)
21
+ 2i

(
K(1)Cr(1)

)
22

)

−1

s

(
K ′(1)Cr(1) +K(1)C ′

r(1)
)
21

]
. (4.17)
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This implies the identities

F1(s) =
i√
2π
X̌11(s), F2(s) =

i√
2π
X̌21(s), F

′
1(s) =

i√
2π
X̌ ′

11(s), F
′
2(s) =

i√
2π
X̌ ′

21(s)

related to the solution of the K-RHP via (4.15), (4.16) and (4.17). A similar analysis

for the left endpoint λ = −s provides us with

F1(−s) =
i

2

(
K(−1)Cl(−1)

)
12
, F2(−s) =

i

2

(
K(−1)Cl(−1)

)
22

(4.18)

and

F ′
1(−s) =

i

2

[
8s5

9

(
3

2
+

3x

4s2

)2((
K(−1)Cl(−1)

)
12
+ 2
(
K(−1)Cl(−1)

)
11

)

+
1

s

(
K(−1)C ′

l(−1) +K ′(−1)Cl(−1)
)
12

]
(4.19)

as well as

F ′
2(−s) =

i

2

[
8s5

9

(
3

2
+

3x

4s2

)2((
K(−1)Cl(−1)

)
22
+ 2
(
K(−1)Cl(−1)

)
21

)

+
1

s

(
K(−1)C ′

l(−1) +K ′(−1)Cl(−1)
)
22

]
. (4.20)

We can now derive

R(s, s) = F ′
1(s)F2(s)− F ′

2(s)F1(s)

= −4s5

9

(
3

2
+

3x

4s2

)2[(
K(1)Cr(1)

)
11

(
K(1)Cr(1)

)
22
−
(
K(1)Cr(1)

)
21

×
(
K(1)Cr(1)

)
12

]
+

i

4s

[(
K ′(1)Cr(1) +K(1)C ′

r(1)
)
11

×
(
K(1)Cr(1)

)
21
−
(
K ′(1)Cr(1) +K(1)C ′

r(1)
)
21

(
K(1)Cr(1)

)
11

]

as well as

R(−s,−s) = F ′
1(−s)F2(−s)− F ′

2(−s)F1(−s)

= −4s5

9

(
3

2
+

3x

4s2

)2[(
K(−1)Cl(−1)

)
11

(
K(−1)Cl(−1)

)
22
−
(
K(−1)Cl(−1)

)
21

×
(
K(−1)Cl(−1)

)
12

]
− 1

4s

[(
K(−1)C ′

l(−1) +K ′(−1)Cl(−1)
)
12

×
(
K(−1)Cl(−1)

)
22
−
(
K(−1)C ′

l(−1) +K ′(−1)Cl(−1)
)
22

(
K(−1)Cl(−1)

)
12

]
.
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The following analogue of Proposition 4.1.1 will allow us to simplify the identities for

R(s, s) and R(−s,−s)

Proposition 4.4.1 R(z) is unimodular for any x ∈ R, i.e. detR(z) ≡ 1.

Proof From (3.69) we obtain that detPRH
BE (ζ) = 4i

π
, hence det I(z) = 1. Similarly

det P̃RH
BE (ζ) = −4i

π
leading to det J(z) = 1. Since the model function D(z) is uni-

modular as well, the ratio function K(z) has a unimodular jump matrix GK(z). This

shows that detK(z) is entire, and by normalization at infinity therefore

detK(z) = K11(z)K22(z)−K21(z)K12(z) ≡ 1, z ∈ C.

Applying the latter Proposition, one checks readily

(
K(1)Cr(1)

)
11

(
K(1)Cr(1)

)
22
−
(
K(1)Cr(1)

)
21

(
K(1)Cr(1)

)
12

= −2

and

(
K(−1)Cl(−1)

)
11

(
K(−1)Cl(−1)

)
22
−
(
R(−1)Cl(−1)

)
21

(
K(−1)Cl(−1)

)
12

= −2.

We combine these two identities with the values of C ′
r(1) and C

′
l(−1) to deduce

R(s, s) =
8s5

9

(
3

2
+

3x

4s2

)2

+
2is2

3

(
3

2
+

3x

4s2

)[(
R′

11(1) +R′
12(1)

)

×
(
R21(1) +R22(1)

)
−
(
R′

21(1) +R′
22(1)

)(
R11(1) +R12(1)

)]

as well as

R(−s,−s) = 8s5

9

(
3

2
+

3x

4s2

)2

− 2is2

3

(
3

2
+

3x

4s2

)[(
R′

11(−1)− R′
12(−1)

)

×
(
R21(−1)−R22(−1)

)
−
(
R′

21(−1)−R′
22(−1)

)(
R11(−1)− R12(−1)

)]
.

At this point we can derive (1.14) up to the constant term.
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4.5 Proof of Theorem 1.2.1 up to constant terms

We first estimate K(±1). From the integral representation and (3.88), (3.89)

K(±1) = I +
1

2πi

∫

ΣK

K−(w)
(
GK(w)− I

) dw

w ∓ 1

= I +
1

2πi

∫

Cr,l

(
GK(w)− I

) dw

w ∓ 1
+O

(
s−6
)
= I +O

(
s−3
)
, s→ ∞

so

R(s, s) =
8s5

9

(
3

2
+

3x

4s2

)2

+
2is2

3

(
3

2
+

3x

4s2

)[
K ′

11(1)−K ′
22(1)

+K ′
12(1)−K ′

21(1)
]
+O

(
s−4
)

and

R(−s,−s) =
8s5

9

(
3

2
+

3x

4s2

)2

+
2is2

3

(
3

2
+

3x

4s2

)[
K ′

11(−1)−K ′
22(−1)

−K ′
12(−1) +K ′

21(−1)
]
+O

(
s−4
)
, s→ ∞.

In order to compute the values K ′(±1) one uses (3.76) and (3.83)

K ′(±1) =
1

2πi

∫

Cr,l

(
GK(w)− I

) dw

(w ∓ 1)2
+O

(
s−6
)

=
1

2πi

∫

Cr

i

16
√
ζ(w)


β

2 − 3β−2 −(β2 + 3β−2)

β2 + 3β−2 −(β2 − 3β−2)


 dw

(w ∓ 1)2

+
1

2πi

∫

Cl

1

16
√
ζ(w)


 β−2 − 3β2 β−2 + 3β2

−(β−2 + 3β2) −(β−2 − 3β2)


 dw

(w ∓ 1)2

+O
(
s−6
)
, s→ ∞

with the local variables given in (3.71), (3.79):

w ∈ Cr :
β2(w)√
ζ(w)

=
3

4s3

(
w2 +

1

2
+

3x

4s2

)−1
1

w − 1
,

β−2(w)√
ζ(w)

=
3

4s3

(
w2 +

1

2
+

3x

4s2

)−1
1

w + 1
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and

w ∈ Cl :
β2(w)√
ζ(w)

=
3i

4s3

(
w2 +

1

2
+

3x

4s2

)−1
1

w − 1
,

β−2(w)√
ζ(w)

=
3i

4s3

(
w2 +

1

2
+

3x

4s2

)−1
1

w + 1
.

By residue theorem

K ′(±1)

(
3

2
+

3x

4s2

)
=

3i

256s3


−1 ∓1

±1 1




+
3i

64s3

(
3

2
+

3x

4s2

)−1

 −25

8
− 9x

16s2
∓(41

8
+ 9x

16s2
)

±(41
8
+ 9x

16s2
) 25

8
+ 9x

16s2




+
3i

16s3

(
3

2
+

3x

4s2

)−2

−1 ±1

∓1 1


 +O

(
s−6
)
,

and we obtain

R(s, s) = R(−s,−s) = 8s5

9

(
3

2
+

3x

4s2

)2

+
3

8s
+O

(
s−3
)
, s→ ∞. (4.21)

Combining (4.21) with (2.18) we have thus derived the following asymptotics

∂

∂s
ln det (I −KPII) = −4s5 − 4xs3 − x2s− 3

4s
+O

(
s−3
)
, s→ ∞ (4.22)

uniformly on any compact subset of the set (1.15). Integrating with respect to s,

we have verified (1.14) up to an s-independent term. In order to determine the x-

dependency of this term we are now going to determine det (I −KPII) via Proposition

2.3.2:
∂

∂x
ln det (I −KPII) = i

(
X11

1 −X22
1

)
− v

where

X1 = lim
λ→∞

(
λ
(
X(λ)ei(

4
3
λ3+xλ)σ3 − I

))
.

We first recall the definition of β(z) and g(z), hence as z → ∞

M(z) = I +
1

2z


0 1

1 0


+O

(
z−2
)
, es

3(ϑ(z)−g(z))σ3 = I +
is3

2z

(
1 +

x

s2

)
σ3 +O

(
z−2
)
,
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which gives

X1 =
is4

2

(
1 +

x

s2

)
σ3 +

s

2


0 1

1 0


+

is

2π

∫

Cr,l

K−(w)
(
GK(w)− I

)
dw,

already neglecting exponentially small contributions in the last equality. The integral

can be evaluated in a similar way as we did it during the computation of (4.22), we

end up with

i

2π

∫

Cr,l

(
K−(w)

(
GK(w)− I

))
11
dw =

3i

32s3

(
3

2
+

3x

4s2

)−1

+O
(
s−6
)

= − i

2π

∫

Cr,l

(
K−(w)

(
GK(w)− I

))
22
dw,

i.e. together

∂

∂x
ln det (I −KPII) = 2is

[
it

2

(
1 +

x

s2

)
+

3i

32t

(
3

2
+

3x

4s2

)−1]
− v +O

(
s−5
)

= −s4 − s2x− v − 1

8s2
+O

(
s−4
)
, s→ ∞, (4.23)

again uniformly on any compact subset of the set (1.15). Given the asymptotic expan-

sions (4.22) and (4.23) we can now determine the large s-asymptotics of det (I −KPII)

via integration

ln det (I −KPII) = −2

3
s6−xs4−x2s2− 3

4
ln s+

∞∫

x

(y−x)u2(y)dy+ω+O
(
s−1
)
, (4.24)

recalling that u(x) ∼ Ai(x) as x → +∞. As we see, (4.24) matches (1.14) up to a

universal constant ω.
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5. KERNEL APPROXIMATION: FROM KPII TO Kcsin

We were able to prove Theorem 1.2.3 on the zero distribution of det (I − γKPII) in case

γ > 1 as well as Theorems 1.2.1 and 1.2.2 up to constant terms. In this section we will

calculate the remaining constant terms. To this end we make use of an approximation

argument which replaces the initial kernel KPII(λ, µ; x) in the large positive x-limit

by a cubic generalization of the sine - kernel. The latter is of integrable type and its

asymptotics can be computed via an auxiliary Riemann-Hilbert problem. We prove

the necessary estimates which allow us to compute the constant terms in Theorem

1.2.1 and 1.2.2 through the asymptotical solution of the auxiliary RHP, set up the

auxiliary RHP and derive another set of logarithmic derivatives.

5.1 Large positive x-limit in KPII(λ, µ; x)

Within the asymptotical analysis of the master RHP, the X-RHP in chapter 3,

one of the first steps allowed us to transform jumps on the infinite branches Γk to

exponentially small contributions. This was established for γ 6= 1 via the set of

transformations

X(λ) 7→ T (z) 7→ S(z)

and for γ = 1 via

X(λ) 7→ A(z).

Both transformations heavily rely on the underlying sign diagrams: For γ 6= 1, we

pictured Re ϑ(z) in Figure 3.1, respectively for γ = 1, Re g(z) in Figure 3.11. In both

cases it was important that for x chosen from a compact subset of the real line and

s sufficiently large, one always has that the corresponding real parts are negative in

the upper half-plane on the infinite parts Γ1,Γ3 and positive on the infinite contours
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Γ4,Γ6 in the lower half-plane. This fact however also holds in the limit x→ +∞, on

the other hand it fails for x→ −∞: Let

z± = ±i
√

3x

4s2
, γ 6= 1 ẑ± = ±i

√
1

2
+

3x

4s2
, γ = 1

denote the intersection points of the algebraic curves

Re ϑ(z) = 0, γ 6= 1 Re g(z) = 0, γ = 1

with the coordinate axes Re z = 0 = Im z. In case x, s > 0, they are (independently

of the distinction in γ) purely imaginary, hence the statement on the sign of Re ϑ(z)

respectively Re g(z) on Γi follows. This implies the following important Proposition,

where an analogue for the cubic sine determinants (1.3.1) and (1.26) also holds, see

chapter 6.

Proposition 5.1.1 The asymptotic expansions (4.7) for γ < 1 and (4.24) for γ = 1

are uniform in the parameter x chosen from the set

{x ∈ R : x ≥ α, α < 0} .

Our approach henceforth will be to study the large positive x-limit of (1.11), i.e. the

large positive x-limit of the associated function Ψ(λ, x). We begin with the following

Riemann-Hilbert problem depicted in Figure 5.1, compare [29]

S1S3

S4 S6

Figure 5.1. The RHP jump graph associated with the Hastings-
McLeod transcendent
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• Ψ∞(λ) is analytic for λ ∈ C\
(⋃

k Rk

)
where Rk denote the rays

Rk = {λ ∈ C| arg λ =
π

6
+
π

3
(k − 1)}, k = 1, 3, 4, 6

• On the rays Rk, the boundary values of the function Ψ∞ satisfy the jump

relation

Ψ∞
+ (λ) = Ψ∞

− (λ)Sk, λ ∈ Rk, k = 1, 3, 4, 6

• At λ = ∞ the following asymptotic behavior takes place

Ψ∞(λ)ei(
4
3
λ3+xλ)σ3 = I +O

(
λ−1
)

which is connected to the given Ψ-function of (1.11) by

Ψ(λ, x) = Ψ∞(λ, x)S1.

As we see, determining the large positive x behavior of Ψ(λ, x) therefore reduces to

an analysis of the oscillatory Ψ∞-RHP. However the latter RHP is very well known

since it is used to determine the large x-asymptotics of the Hastings-McLeod solution

of the second Painlevé transcendent given in the introduction (cf. [29]). We have in

fact for λ ∈ (−s, s)

Ψ∞(λ, x)ei(
4
3
λ3+xλ)σ3 − I = O

(
x−1/4e−

2
3
x3/2

√
4λ2 + x

)
, x→ +∞

hence

ψ11(λ, x) = e−i( 4
3
λ3+xλ) +O

(
x−1/4e−

2
3
x3/2

√
4λ2 + x

)

ψ21(λ, x) = −iei( 43λ3+xλ) +O

(
x−1/4e−

2
3
x3/2

√
4λ2 + x

)

as x→ +∞ and λ ∈ (−s, s). Going back to (1.11) we obtain

KPII(λ, µ) = Kcsin(λ, µ) +O
(
x1/4e−

2
3
x3/2
)
, x→ +∞, λ, µ ∈ (−s, s) (5.1)

where

Kcsin(λ, µ) =
sin
(
4
3
(λ3 − µ3) + x(λ− µ)

)

π(λ− µ)
. (5.2)



88

The latter integral kernel is a cubic generalization of the sine - kernel, see (1.6)

sin x(λ− µ)

π(λ− µ)

acting on L2
(
(−s, s); dλ

)
. In order to compute the constant term in (1.14) we will

introduce a parameter t ∈ [0, 1] and pass from (5.2) to

Kcsin(λ, µ) 7→ Ǩcsin(λ, µ) =
sin
(
4
3
t(λ3 − µ3) + x(λ− µ)

)

π(λ− µ)
(5.3)

and compute the large s-asymptotics of

∂

∂t
ln det

(
I − Ǩcsin

)
(5.4)

with the Riemann-Hilbert approach of chapter 2. Afterwards, using uniformity of the

asymptotic expansion with respect to t ∈ [0, 1] we shall integrate

1∫

0

∂

∂t
ln det(I − Ǩcsin) dt = ln det(I −Kcsin)− ln det(I −Ksin);

but since the asymptotic expansion of the sine kernel as s → ∞ is known including

the constant term, we know the large s-asymptotics of

ln det(I −Kcsin)

also up to order O(s−1), in fact

ln det(I −Kcsin) = A1(s, x) + ω0 +O
(
s−1
)
, s→ ∞ (5.5)

uniformly on any compact subset of the set (1.15) with

A1(s, x) = −2

3
s6 − s4x− 1

2
(sx)2 − 3

4
ln s, ω0 = −1

6
ln 2 + 3ζ ′(−1),

which is the statement of Theorem 1.3.2. But we already know from (4.24)

ln det(I −KPII) = A1(s, x) +

∞∫

x

(y − x)u2(y)dy + ω +O
(
s−1), s→ ∞ (5.6)
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hence considering (5.1), Proposition 5.1.1 as well as

lim
x→∞

∞∫

x

(y − x)u2(y) = 0 (5.7)

we might conjecture that ω = ω0, which is proven in Proposition 5.1.2 below.

For the constant term χPII in Theorem 1.2.2 use a similar strategy: We compute

the large s-asymptotics of
∂

∂γ
ln det (I − γKcsin)

within the approach of chapter 2. After that integrate

∫ γ

0

∂

∂γ′
ln det (I − γ′Kcsin) dγ

′ = ln det (I − γKcsin) , γ < 1

and obtain

ln det (I − γKcsin) = A2(s, x) + χ0 +O
(
s−1
)

(5.8)

uniformly on any compact subset of the set (1.19) with

A2(s, x) = iν

(
16

3
s3 + 4xs

)
+ 6(iν)2 ln s−

∞∫

x

(y − x)u2(y, γ)dy

and

χ0 = 2 (iν)2 + 8 (iν)2 ln 2 + 2

γ∫

0

ν(t)

(
ln

Γ (ν(t))

Γ (−ν(t))

)′
dt,

which is the statement of Theorem 1.3.1. On the other hand we know from (4.7)

ln det (I − γKPII) = A2(s, x) + χPII +O
(
s−1
)
, (5.9)

hence again with (5.1), Proposition 5.1.1 as well as (compare (1.28))

lim
x→∞

∞∫

x

(y − x)u2(y, γ)dy = 0 (5.10)

we conjecture χPII = χ0.

Proposition 5.1.2 With the latter notations

ω0 = ω and χ0 = χPII.
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Proof We start from the following identity for trace class operators (cf. [49])

det(I − A)(I −B) = det(I − A) det(I −B)

which gives in our situation

det(I − γKPII)− det(I − γKcsin) = − det(I − γKcsin)

×
[
1− det

(
I − (I − γKcsin)

−1(γKPII − γKcsin)
)]
, γ ≤ 1

provided

(I − γKcsin)
−1 = I +Rcsin (5.11)

exists as a bounded operator. The latter statement will follow from the Riemann-

Hilbert analysis of the auxiliary RHP given in chapter 6. Since from (5.1)

(KPIIf)(λ) =

s∫

−s

KPII(λ, µ)f(µ)dµ = (Kcsinf)(λ) + (Ef)(λ)

where the trace class operator E has a kernel satisfying

E(λ, µ) = O
(
x1/4e−

2
3
x3/2
)
, x→ ∞, (λ, µ) ∈ [−s, s]× [−s, s] (5.12)

we obtain

det(I − γKPII)− det(I − γKcsin) = − det(I − γKcsin)
[
1− det

(
I − (I +Rcsin)γE

)]

and therefore

det(I − γKPII)

det(I − γKcsin)
= det

(
I − (I +Rcsin)γE

)
, γ ≤ 1.

Now from the boundedness of I +Rcsin as well as (5.12), we see that the convolution

kernel of the operator

(I +Rcsin)γE

approaches zero exponentially fast as x→ ∞, thus via Hadamard’s inequality in the

same limit

det
(
I − (I + Řcsin)γE

)

= 1 +
∞∑

n=1

(−1)n

n!

s∫

−s

· · ·
s∫

−s

det
[(
I + Řcsin)γE

]
(xi, xj)dx1 · · · dxn = 1 + os(1)
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or similarly

ln det(I − γKPII) = ln det(I − γKcsin) + os(1), x→ ∞ (5.13)

We now combine (5.5),(5.6), (5.13) and obtain

|ω0 − ω| ≤ α1

s
+
β1(s)

x
+

∞∫

x

(y − x)u2(y)dy

for all x ≥ x0 and s ≥ s0, with a universal constant α1 and a positive function

β1 = β1(s). Recalling (5.7) we first take the limit x → ∞ and afterwards s → ∞ to

conclude ω0 = ω. Secondly from (5.8), (5.9) and (5.13)

|χ0 − χPII| ≤
α2

s
+
β2(s)

x
+

∞∫

x

(y − x)u2(y, γ)dy

which by (5.10) and the same reasoning as before yields χ0 = χPII.

5.2 Riemann-Hilbert problem associated with det (I − γKcsin)

We introduce the auxiliary RHP related to the cubic sine - kernel (5.2) or (5.3).

The underlying kernel is of integrable type with

γǨcsin(λ, µ) =
dt(λ)e(µ)

λ− µ
, d(λ) =

√
γ

2πi

(
ei(

4
3
tλ3+xλ)

e−i( 4
3
tλ3+xλ)

)
, e(λ) =

√
1

2πi

(
e−i( 4

3
tλ3+xλ)

−ei( 43 tλ3+xλ)

)

where we slightly abuse notation, since the appearance of t will only be used in case

γ = 1, for γ < 1 we will analyse the problem without the parameter t. Lemma 2

implies the following Θ-RHP

• Θ(λ) is analytic for λ ∈ C\[−s, s]

• On the line segment [−s, s] oriented from left to right, the following jump holds

Θ+(λ) = Θ−(λ)


 1− γ γe2i(

4
3
tλ3+xλ)

−γe−2i( 4
3
tλ3+xλ) 1 + γ


 , λ ∈ [−s, s]
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• Θ(λ) has at most logarithmic endpoint singularities at λ = ±s

Θ(λ) = O
(
ln(λ∓ s)

)
, λ→ ±s (5.14)

• Θ(λ) → I as λ→ ∞.

We can factorize the jump matrix


 1− γ γe2i(

4
3
tλ3+xλ)

−γe−2i( 4
3
tλ3+xλ) 1 + γ


 = ei(

4
3
tλ3+xλ)σ3


1− γ γ

−γ 1 + γ


 e−i( 4

3
tλ3+xλ)σ3

and employ the following transformation

Φ(λ) = Θ(λ)ei(
4
3
tλ3+xλ)σ3 , λ ∈ [−s, s] (5.15)

which leads to a RHP for the function Φ(λ), the auxiliary RHP:

• Φ(λ) is analytic for λ ∈ C\[−s, s]

• The following jump holds

Φ+(λ) = Φ−(λ)


1− γ γ

−γ 1 + γ


 , λ ∈ [−s, s] (5.16)

• From (5.14), we deduce the following refined endpoint behavior

Φ(λ) = Φ̌(λ)

[
I +

γ

2πi


−1 1

−1 1


 ln

(
λ− s

λ+ s

)]
(5.17)

where Φ̌(λ) is analytic at λ = ±s and the branch of the logarithm is fixed by

the condition −π < arg λ−s
λ+s

< π.

• At infinity, Φ(λ) is normalized as follows

Φ(λ) =
(
I +O

(
λ−1
))
ei(

4
3
tλ3+xλ)σ3 , λ→ ∞. (5.18)
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As we are going to see in chapter 6 the latter RHP admits direct asymptotical analysis

via the nonlinear steepest descent method. This analysis shows a lot of similarities to

the analysis of the Painlevé II - kernel presented in chapter 3 of the current disserta-

tion. However one major difference to (1.11) is the absence of infinite jump contours

in the given Φ-RHP, hence we should not start our analysis from the X-RHP in

chapter 2 and use the previously discussed large x-approximation Ψ∞(λ, x). Again,

before we start this asymptotical analysis, we first connect the relevant logarithmic

derivatives to the solution of the auxiliary RHP, the Φ-RHP.

5.3 Logarithmic derivatives – connection to Φ-RHP

We will derive four identities for logarithmic derivatives. The first two are with

respect to s and x and will be used to determine the expansion given in Theorem

1.3.1 up to the constant term and the zero distribution of Theorem 1.3.3. Since their

derivation is almost identical to the identities given in Proposition 2.3.1 and 2.3.2, we

limit ourselves to a statement of results:

Proposition 5.3.1 The logarithmic s-derivative of the cubic sine - kernel determi-

nant (5.2) can be expressed as

∂

∂s
ln det(I − γKcsin) = −R(s, s)− R(−s,−s),

R(±s,±s) = Π′
1(±s)Π2(±s)− Π′

2(±s)Π1(±s)

with R(λ, µ) denoting the kernel of the resolvent R = (I − γKcsin)
−1γKcsin, that is

R(λ, µ) =
Πt(λ)E(µ)

λ− µ
, Π(λ) = Θ(λ)d(λ),

and where the connection to the Φ-RHP is established through

Π(λ) = Φ̌(λ)

√
γ

2πi

(
1

1

)
, λ→ ±s.

Next
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Proposition 5.3.2 The logarithmic x-derivative of the cubic sine - kernel determi-

nant (5.2) can be expressed as

∂

∂x
ln det(I − γKcsin) = i

(
Φ22

1 − Φ11
1

)

with

Φ(λ) =
(
I +

Φ1

λ
+

Φ2

λ2
+

Φ3

λ3
+O

(
λ−4
))
ei(

4
3
λ3+xλ)σ3 , λ→ ∞; Φ1 =

(
Φij

1

)
.

Much more interesting is the derivation of an identity for the logarithmic γ-derivative,

which will be used in the end to determine the constant term in Theorem 1.2.2

respectively Theorem 1.3.1. This identity is derived for γ < 1 and inspired by a

similar approach which was used in [21] in the asymptotics of Toeplitz determinants.

We start with

∂

∂γ
ln det (I − γKcsin) = −trace

((
I − γKcsin

)−1
Kcsin

)
= −1

γ

s∫

−s

R(λ, λ)dλ.

and now wish to express the latter integral over the resolvent kernel in terms of

the solution of the auxiliary RHP. Recall to this end the definition of the functions

d(λ), e(λ) and unimodularity of Θ(λ)

R(λ, λ) = Π′
1(λ)Π2(λ)− Π′

2(λ)Π1(λ) =
γ

π

(
4λ2 + x

)
+

γ

2πi

(
Θ′

11(λ)Θ22(λ)

−Θ11(λ)Θ
′
22(λ) + Θ′

12(λ)Θ21(λ)−Θ′
21(λ)Θ12(λ)

)
+
(
Θ′

11(λ)Θ21(λ)

−Θ11(λ)Θ
′
21(λ)

)
d21(λ) +

(
Θ′

12(λ)Θ22(λ)−Θ12(λ)Θ
′
22(λ)

)
d22(λ)

where (′) indicates differentiation with respect to λ. In terms of Φ(λ)

R(λ, λ) =
γ

2πi

[(
Φ′

11(λ) + Φ′
12(λ)

)(
Φ21(λ) + Φ22(λ)

)

−
(
Φ11(λ) + Φ12(λ)

)(
Φ′

21(λ) + Φ′
22(λ)

)]
(5.19)

Our next move will replace all terms involving derivatives with respect to λ. To

this end we consider the differential equations associated with the Φ-RHP (compare

section 2.4 where we studied the differential equations associated with the X-RHP):
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All jump matrices in the Φ-RHP are unimodular and constant with respect to

λ, s and x, thus the well-defined logarithmic derivatives ΦλΦ
−1(λ),ΦsΦ

−1(λ) and

ΦxΦ
−1(λ) are rational functions. Indeed using (5.18) and (5.14)

∂Φ

∂λ
=

[
4iλ2σ3 − 4iλ


 0 b

−c 0


 +


d e

f −d


+

A

λ− s
− B

λ+ s

]
Φ (5.20)

where

A =
γ

2πi
Φ̌(s)


−1 1

−1 1


(Φ̌(s)

)−1
; B =

γ

2πi
Φ̌(−s)


−1 1

−1 1


(Φ̌(−s)

)−1
(5.21)

and with parameters b, c, d, e, f which can be expressed in terms of the entries of Φ1

and Φ2

b = 2Φ12
1 , c = 2Φ21

1 , d = ix+ 8iΦ12
1 Φ21

1 (5.22)

e = 8i
(
Φ12

1 Φ22
1 − Φ12

2

)
, f = −8i

(
Φ21

1 Φ11
1 − Φ21

2

)
. (5.23)

Substituting (5.20) into (5.19) and recalling (5.21) we obtain with A = (Aij), B =

(Bij)

R(λ, λ) =
γ

2πi

[(
8iλ2 + 2d+

A11 −A22

λ− s
− B11 − B22

λ+ s

)(
Φ11(λ) + Φ12(λ)

)

×
(
Φ21(λ) + Φ22(λ)

)

+

(
− 4iλb+ e+

A12

λ− s
− B12

λ+ s

)(
Φ21(λ) + Φ22(λ)

)2

+

(
− 4iλc− f − A21

λ− s
+

B21

λ+ s

)(
Φ11(λ) + Φ12(λ)

)2
]
. (5.24)

Next, we γ-differentiate the Φ-RHP in (5.16) to obtain the following additive RHP

for the function φ(λ) = ∂Φ
∂γ
(λ)
(
Φ(λ)

)−1

• φ(λ) is analytic for λ ∈ C\[−s, s]

• Along the line segment [−s, s], oriented from left to right

φ+(λ) = φ−(λ) + Φ−(λ)


−1 1

−1 1


(Φ−(λ)

)−1
, λ ∈ [−s, s]
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• φ(λ) has at most logarithmic singularities at the endpoints λ = ±s

φ(λ) =
∂Φ̌

∂γ
(λ)
(
Φ̌(λ)

)−1
+ Φ̌(λ)

1

2πi


−1 1

−1 1


(Φ̌(λ)

)−1
ln
λ− s

λ+ s
, λ→ ±s

(5.25)

• As λ→ ∞, we have φ(λ) → 0

If we let

γ(λ) = Φ(λ)


−1 1

−1 1


(Φ(λ)

)−1
, λ ∈ C\[−s, s],

then γ+(λ) = γ−(λ), λ ∈ [−s, s] and γ(λ) is bounded as λ→ ±s. Hence γ(λ) is entire
and we have a solution to the φ-RHP

φ(λ) =
1

2πi

s∫

s

γ−(w)

w − λ
dw =

1

2πi

s∫

−s

γ(w)

w − λ
dw

=
1

2πi

s∫

−s

(
−(Φ11(w)+Φ12(w))(Φ21(w)+Φ22(w)) (Φ11(w)+Φ12(w))2

−(Φ21(w)+Φ22(w))2 (Φ11(w)+Φ12(w))(Φ21(w)+Φ22(w))

)
dw

w − λ
.

This solution enables us to rewrite
∫ s

−s
R(λ, λ)dλ with the help of (5.24), for instance

s∫

−s

λn
(
Φ11(λ) + Φ12(λ)

)(
Φ21(λ) + Φ22(λ)

)
dλ =

∫

Σ

wnφ11(w)dw, n ∈ Z≥0

with Σ denoting a closed Jordan curve around the interval [−s, s] and where we used

λn =
1

2πi

∫

Σ

wn

w − λ
dw, λ ∈ [−s, s].

Similarly

s∫

−s

λn
(
Φ21(λ) + Φ22(λ)

)2
dλ =

∫

Σ

wnφ21(w)dw,

s∫

−s

λn
(
Φ11(λ) + Φ12(λ)

)2
dλ = −

∫

Σ

wnφ12(w)dw
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and we obtain

∂

∂γ
ln det (I − γKcsin) = −1

γ

s∫

−s

R(λ, λ)dλ = − 1

2πi

[
8i

∫

Σ

w2φ11(w)dw

+

∫

Σ

(
2dφ11(w) + eφ21(w) + fφ12(w)

)
dw − 4i

∫

Σ

w
(
bφ21(w)− cφ12(w)

)
dw

−
s∫

−s

(
(A11 − A22)γ11(λ) + A12γ21(λ) + A21γ12(λ)

) dλ

λ− s

+

s∫

−s

(
(B11 −B22)γ11(λ) +B12γ21(λ) +B21γ12(λ)

) dλ

λ+ s

]
. (5.26)

Since

γ(λ) =
2πi

γ
A+O(λ− s), λ→ s, γ(λ) =

2πi

γ
B +O(λ+ s), λ→ −s

and

(A11 −A22)A11 + 2A12A21 = 0 = (B11 −B22)B11 + 2B12B21,

we deduce that the last two integrals in (5.26) are indeed well-defined. To evaluate

them, let

φ̂(λ) = φ(λ)− Φ̌(s)


−1 1

−1 1


(Φ̌(s)

)−1 1

2πi
ln
λ− s

λ+ s
, λ ∈ C\[−s, s]

φ̃(λ) = φ(λ)− Φ̌(−s)


−1 1

−1 1


(Φ̌(−s)

)−1 1

2πi
ln
λ− s

λ+ s
, λ ∈ C\[−s, s].

From (5.25) we see that φ̂(λ) is bounded as λ → s and φ̃(λ) is bounded as λ → −s,
more precisely

φ̂(s) =
∂Φ̌

∂γ
(s)
(
Φ̌(s)

)−1
, φ̃(−s) = ∂Φ̌

∂γ
(−s)

(
Φ̌(−s)

)−1
,

also

φ̂+(λ) = φ̂−(λ) + γ(λ)− γ(s), φ̃+(λ) = φ̃−(λ) + γ(λ)− γ(−s), λ ∈ [−s, s],
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hence

φ̂(λ) =
1

2πi

s∫

−s

γ(w)− γ(s)

w − λ
dw, φ̃(λ) =

1

2πi

s∫

−s

γ(w)− γ(−s)
w − λ

dw (5.27)

and we conclude

s∫

−s

(
(A11 −A22)γ11(λ) + A12γ21(λ) + A21γ12(λ)

) dλ

λ− s

= (A11 − A22)

s∫

−s

γ11(λ)− γ11(s)

λ− s
dλ+ A12

∫ s

−s

γ21(λ)− γ21(s)

λ− s
dλ

+A21

s∫

−s

γ12(λ)− γ12(s)

λ− s
dλ = 2πi

(
(A11 − A22)φ̂11(s) + A12φ̂21(s) + A21φ̂12(s)

)
.

Similarly

s∫

−s

(
(B11 −B22)γ11(λ) +B12γ21(λ) + B21γ12(λ)

) dλ

λ+ s

= 2πi
(
(B11 −B22)φ̃11(−s) +B12φ̃21(−s) +B21φ̃12(−s)

)
.

In order to evaluate the remaining integrals in (5.26), we recall

φ(λ) =
1

λ
(Φ1)γ +

1

λ2
(
(Φ2)γ − (Φ1)γΦ1

)

+
1

λ3
(
(Φ3)γ + (Φ1)γ(Φ

2
1 − Φ2)− (Φ2)γΦ1

)
+O

(
λ−4
)
, λ→ ∞

and apply residue theorem

∫

Σ

φ(w)dw = 2πi(Φ1)γ,

∫

Σ

wφ(w)dw = 2πi
(
(Φ2)γ − (Φ1)γΦ1

)

∫

Σ

w2φ(w)dw = 2πi
(
(Φ3)γ + (Φ1)γ(Φ

2
1 − Φ2)− (Φ2)γΦ1

)
.

At this point we can summarize our computations.
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Proposition 5.3.3 The logarithmic γ-derivative of the cubic sine - kernel determi-

nant (5.2) can be expressed as

∂

∂γ
ln det (I − γKcsin) = −8i

(
(Φ3)γ + (Φ1)γ(Φ

2
1 − Φ2)− (Φ2)γΦ1

)11

−2d
(
(Φ1)γ

)11
+ 4ib

(
(Φ2)γ − (Φ1)γΦ1

)21
− 4ic

(
(Φ2)γ − (Φ1)γΦ1

)12

−e
(
(Φ1)γ

)21
− f

(
(Φ1)γ

)12
+
(
(A11 − A22)φ̂11(s) + A12φ̂21(s) + A21φ̂12(s)

)

−
(
(B11 −B22)φ̃11(−s) +B12φ̃21(−s) +B21φ̃12(−s)

)
(5.28)

where

Φ(λ) ∼
(
I +

Φ1

λ
+

Φ2

λ2
+

Φ3

λ3
+O

(
λ−4
))
ei(

4
3
λ3+xλ)σ3 , λ→ ∞, (5.29)

with

φ̂(s) =
∂Φ̌

∂γ
(s)
(
Φ̌(s)

)−1
, φ̃(−s) = ∂Φ̌

∂γ
(−s)

(
Φ̌(−s)

)−1
,

and the functions b, c, d, e, f, A,B are defined in (5.22),(5.23) and (5.21).

The last proposition will allow us to compute the constant term in Theorems 1.3.1

and 1.18 using Proposition 5.1.2. For Theorem 1.14, we use the Φ-RHP with γ = 1

and the parameter t ∈ [0, 1] involved. Hence the following identity, which was derived

in much more generality in [40], will be useful:

∂

∂t
ln det

(
I − Ǩcsin

)
=

1

2π

∫

Σ

trace
[
Θ′(w)σ3Θ

−1(w)
]4
3
w3dw

where Σ denotes a closed Jordan curve around the line segment [−s, s]. Applying

residue theorem, we have

Proposition 5.3.4 The logarithmic t-derivative of the Fredholm determinant det(I−
Ǩcsin) can be expressed as

∂

∂t
ln det

(
I − Ǩcsin

)
=

4i

3
trace

(
−Θ1σ3

(
Θ2

1 −Θ2

)
+ 2Θ2σ3Θ1 − 3Θ3σ3

)
(5.30)

with

Θ(λ) ∼ I +
Θ1

λ
+

Θ2

λ2
+

Θ3

λ3
+O

(
λ−4
)
, λ→ ∞

and the connection to the auxiliary RHP is established through (5.15).
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At this point we set up all necessary steps to start the asymptotical analysis of the

auxiliary RHP. Similar to the situation in chapter 3, our approach is based on the

Riemann-Hilbert method and its underlying integral equations, not on an interplay

of the RHP with differential equations connected to det (I − γKcsin) - we face for

the cubic sine - kernel a similar situation as the one described in section 2.4. The

analysis this time will be more involved, see (5.28) and (5.30): both equations involve

contributions arising from terms of order O (λ−3), hence we will have to iterate the

underlying integral equations.
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6. ASYMPTOTIC SOLUTION OF THE AUXILIARY RIEMANN-HILBERT

PROBLEM

We solve the Φ-RHP according to the Deift-Zhou nonlinear steepest descent method.

Most parts in the chapter below have their counterpart in the asymptotical solution

of the X-RHP presented in chapter 3, the differences are only of technical nature, but

not of conceptual. Again this resolution is first presented for γ 6= 1, followed then by

γ = 1 which involves the Φ-RHP with a parameter t.

6.1 Rescaling and opening of lenses, γ 6= 1

We rescale Θ(λ) and introduce

Υ(z) = Φ(zs)e−s3ϑ(z)σ3 ≡ Θ(zs), z ∈ C\[−1, 1] (6.1)

whose underlying RHP, up to the rescaling λ = zs, is identical to the initial Θ-RHP.

To move to a RHP posed according to the sign of Reϑ(z), we recall Figure 3.1 and

the LDU-factorization

1− γ γ

−γ 1 + γ


 =


 1 0

−γ(1− γ)−1 1


 (1− γ)σ3


1 γ(1− γ)−1

0 1




≡ ŜLS
−1
D ŜU , (6.2)

valid whenever γ 6= 1. With the same notations as in section 3.1, see also Figure 6.1

below, we define

∆(z) =





Υ(z)es
3ϑ(z)σ3 Ŝ−1

U e−s3ϑ(z)σ3 , z ∈ L+
1 ∪ L+

2 ,

Υ(z)es
3ϑ(z)σ3 ŜLe

−s3ϑ(z)σ3 , z ∈ L−
3 ∪ L−

4 ,

Υ(z), otherwise,

≡ Υ(z)L̂(z) (6.3)

and are lead to the following RHP
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L+
1L+

2

L−

3 L−

4

γ+
11

γ+
12γ+

21

γ+
22

γ−

31

γ−

32 γ−

41

γ−

42

+1−1

Figure 6.1. Opening of lenses – Υ(z) 7→ ∆(z)

• ∆(z) is analytic for z ∈ C\([−1, 1] ∪ D), with D =
⋃

i,j

(
γ+ji ∪ γ−ji

)

• The following jumps hold, with orientation fixed as in Figure 6.1

∆+(z) = ∆−(z)e
s3ϑ(z)σ3Ĝ∆(z)e

−s3ϑ(z)σ3 , z ∈ [−1, 1] ∪ D (6.4)

where the piecewise constant function Ĝ∆(z) is given by

Ĝ∆(z) =





Ŝ−1
U , z ∈ γ+11 ∪ γ+21,

ŜU , z ∈ γ+12 ∪ γ+22,

(1− γ)σ3 , z ∈ [−1, 1],

ŜL, z ∈ γ−31 ∪ γ−41,

Ŝ−1
L , z ∈ γ−32 ∪ γ−42.

• As z → ±1, we have

∆(z)L̂−1(z)es
3ϑ(z)σ3 = Φ̌(zs)

[
I +

γ

2πi


−1 1

−1 1


 ln

(
z − 1

z + 1

)]
(6.5)

• At infinity, ∆(z) = I +O(z−1), z → ∞.

On the infinite branches in the upper half-plane, we have

G∆(z) = es
3ϑ(z)σ3


1 a

0 1


 e−s3ϑ(z)σ3 , z ∈ γ+jk, j, k = 1, 2
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and since also here x is chosen from a compact subset of the real line, the sign-diagram

implies

G∆(z) −→ I, s→ ∞, z ∈ γ+jk, |z| > ε > 0

uniformly on any compact subset of the set (1.19). With a similar statement valid in

the lower half-plane we are thus lead to a model problem in which we have to solve

a RHP with S−1
D as jump matrix on the line segment [−1, 1].

6.2 The model RHP and parametrices for γ 6= 1

Find the piecewise analytic 2× 2 matrix valued function Ξ(z) such that

• Ξ(z) is analytic for z ∈ C\[−1, 1]

• Along the line segment [−1, 1], we have

Ξ+(z) = Ξ−(z)S
−1
D , SD = (1− γ)−σ3

• At infinity, Ξ(z) = I +O
(
z−1
)
, z → ∞

This diagonal problem can always be solved (compare section 3.2) and we obtain

Ξ(z) =

(
z + 1

z − 1

)−νσ3

, ν =
1

2πi
ln (1− γ)

where ν was introduced and its branch fixed in (3.7). We also note that ν is purely

imaginary if and only if γ < 1.

In the construction of an origin parametrix, we won’t use the Hastings-Mcleod

solution in the given situation. Instead, start with

PII(ζ) = Ψ1(ζ), arg ζ ∈
(
−π
6
,
π

6

)

as the first canonical solution of (1.10), where u = u(x, γ) is chosen from the Ablowitz-

Segur family of solutions to the second Painlevé equation, that is u solves the bound-

ary value problem

uxx = xu+ 2u3, u(x) ∼ γAi(x), x→ +∞, γ 6= 1
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Remark 5 Recall that u = u(x, γ), might have poles on the real line. However from

our discussion in section 1.3 we know that u is pole free on the entire real line in case

γ < 1 and for γ > 1 we restrict ourselves to values of x chosen from the set (1.29).

Thus in either case, u = u(x, γ) is smooth in x and therefore also PII(ζ) ≡ PII(ζ ; x).

Now, opposed to (3.11), define

P̂RH
II (ζ) =





PII(ζ), arg ζ ∈ (−π
6
, π
6
) ∪ (5π

6
, 7π

6
),

PII(ζ)M1, arg ζ ∈ (π
6
, 5π

6
),

PII(ζ)M2, arg ζ ∈ (7π
6
, 11π

6
),

(6.6)

with

M1 =


 1 0

−iγ 1


 , M2 = σ2M1σ2 =


1 iγ

0 1


 .

One checks directly that P̂RH
II (ζ) solves the model RHP shown in Figure 6.2

(
1 0

−iγ 1

)

(
1 −iγ
0 1

)

(
1 0
iγ 1

)

(
1 iγ
0 1

)

Figure 6.2. The model RHP near z = 0 which can be solved explicitly
using the real-valued Ablowitz-Segur solution of the second Painlevé
equation

• P̂RH
II (ζ) is analytic for ζ ∈ C\{arg ζ = π

6
, 5π

6
, 7π

6
, 11π

6
}.
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• On the infinite rays, the following jumps hold

(
P̂RH
II (ζ)

)
+

=
(
P̂RH
II (ζ)

)
−M1, arg ζ =

π

6
(
P̂RH
II (ζ)

)
+

=
(
P̂RH
II (ζ)

)
−M

−1
1 , arg ζ =

5π

6
(
P̂RH
II (ζ)

)
+

=
(
P̂RH
II (ζ)

)
−M2, arg ζ =

7π

6
(
P̂RH
II (ζ)

)
+

=
(
P̂RH
II (ζ)

)
−M

−1
2 , arg ζ =

11π

6

• In (6.6) we chose a specific Stokes phenomenon described by the following Stokes

matrices

S1 =M1, S2 =


1 0

0 1


 , S4 =M2, S3 = S̄1, S5 = S̄2, S6 = S̄4. (6.7)

This leads now [29] to the following uniform asymptotics, valid in a full neigh-

borhood of infinity

P̂RH
II (ζ) ∼

(
I +

m1

ζ
+
m2

ζ2
+
m3

ζ3
+O

(
ζ−4
))
e−i( 4

3
ζ3+xζ)σ3 , ζ → ∞ (6.8)

with

m1 =
1

2


−iv u

u iv


 , m2 =

1

8


 u2 − v2 2i(ux + uv)

−2i(ux + uv) u2 − v2


 ,

and

m3 =
1

48


 i(v3 − 3vu2 + 2(xv − uux)) −3(u(u2 + v2) + 2(vux + xu))

−3(u(u2 + v2) + 2(vux + xu)) −i(v3 − 3vu2 + 2(xv − uux))


 .

where we use the abbreviation v = (ux)
2 − xu2 − u4.

The model function (6.6) will now be used to construct the parametrix to the solution

of the original ∆-RHP in a neighborhood of z = 0. First set

PRH
II (ζ) =





eπiνσ3P̂RH
II (ζ)e−πiνσ3, Im ζ > 0;

eπiνσ3P̂RH
II (ζ)eπiνσ3, Im ζ < 0;
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leading to a model RHP with jumps on the positive oriented real line

(
PRH

II (ζ)
)
+
=
(
PRH

II (ζ)
)
−(1− γ)−σ3

as well as on the infinite rays arg ζ = π
6
, 5π

6
, 7π

6
, 11π

6

(
PRH

II (ζ)
)
+

=
(
PRH

II (ζ)
)
−


 1 0

−iγ(1 − γ)−1 0


 , arg ζ =

π

6

(
PRH

II (ζ)
)
+

=
(
PRH

II (ζ)
)
−


 1 0

iγ(1− γ)−1 1


 , arg ζ =

5π

6

(
PRH

II (ζ)
)
+

=
(
PRH

II (ζ)
)
−


1 iγ(1− γ)−1

0 1


 , arg ζ =

7π

6

(
PRH

II (ζ)
)
+

=
(
PRH

II (ζ)
)
−


1 −iγ(1 − γ)−1

0 1


 , arg ζ =

11π

6

and with behavior at infinity

PRH
II (ζ) =

(
I +

m̃1

ζ
+
m̃2

ζ2
+
m̃3

ζ3
+O

(
ζ−4
))
e−i( 4

3
ζ3+xζ)σ3





I, Im ζ > 0;

e2πiνσ3 , Im ζ < 0;

where

m̃1 =
1

2


 −iv ue2πiν

ue−2πiν iv


 , m̃2 =

1

8


 u2 − v2 2i(ux + uv)e2πiν

−2i(ux + uv)e−2πiν u2 − v2


 .

and

m̃3 =
1

48


 i(v3 − 3vu2 + 2(xv − uux)) −3(u(u2 + v2) + 2(vux + xu))e2πiν

−3(u(u2 + v2) + 2(vux + xu))e−2πiν −i(v3 − 3vu2 + 2(xv − uux))


 .

We use the same change of variables as in (3.14)

ζ(z) = sz, |z| < r

but a slightly different form for the parametrix. Instead of (3.15), define

U(z) = σ1B0(z)e
−iπ

4
σ3PRH

II

(
ζ(z)

)
ei(

4
3
ζ(z)+xζ(z))σ3ei

π
4
σ3σ1, |z| < r (6.9)
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with (compare (3.16))

B0(z) =

(
z + 1

z − 1

)νσ3





I, Im z > 0,

e−2πiνσ3 , Im z < 0,
B0(0) = e−πiνσ3 .

By construction, the parametrix U(z) has jumps along the curves depicted in Figure

6.3 and these jumps are described by the same matrices as in the original ∆-RHP.

Thus, the ratio of ∆(z) with U(z) is locally analytic, i.e.

∆(z) = N0(z)U(z), |z| < r <
1

2
.

es
3ϑ(z)σ3 ŜUe

−s3ϑ(z)σ3

es
3ϑ(z)σ3 ŜLe

−s3ϑ(z)σ3

es
3ϑ(z)σ3 Ŝ−1

U e−s3ϑ(z)σ3

es
3ϑ(z)σ3 Ŝ−1

L e−s3ϑ(z)σ3

S−1
D S−1

D

Figure 6.3. Jump graph of the parametrix U(z)

The role of the multiplier B0(z) follows also here from the asymptotic matching

condition

U(z) = σ1B0(z)e
−iπ

4
σ3

(
I +

m̃1

ζ
+
m̃2

ζ2
+
m̃3

ζ3
+O

(
ζ−4
))
ei

π
4
σ3B−1

0 (z)σ1Ξ(z)

=

[
I +

i

2ζ
B0(z)

−1


 v ue−2πiν

−ue2πiν −v


B0(z)

+
1

8ζ2
B0(z)

−1


 u2 − v2 2(ux + uv)e−2πiν

2(ux + uv)e2πiν u2 − v2


B0(z) +

i

48ζ3
B0(z)

−1

×


 −(v3 − 3vu2 + 2(xv − uux)) −3(u(u2 + v2) + 2(vux + xu))e−2πiν

3(u(u2 + v2) + 2(vux + xu))e2πiν v3 − 3vu2 + 2(xv − uux)




×B0(z) +O
(
ζ−3
)]
Ξ(z) (6.10)
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as s→ ∞ and 0 < r1 ≤ |z| ≤ r2 < 1 (so |ζ | → ∞). Since the function ζ(z) is of order

O(s) on the latter annulus and B0(z) is bounded, equation (6.10) yields the desired

matching relation between the model functions U(z) and Ξ(z)

U(z) =
(
I + o(1)

)
Ξ(z), s→ ∞, 0 < r1 ≤ |z| ≤ r2 < 1.

The parametrices for the endpoints z = ±1 are almost identical to the ones

constructed in section 3.2. For the right endpoint we use PCH(ζ) as introduced in

(3.22) and PRH
CH (ζ) as in (3.24). With the same change of variables

ζ(z) = −2is3
(
ϑ(z)− ϑ(1)

)
, |z − 1| < r

define for |z − 1| < r

V(z) = σ1e
−iπ

4
σ3Br(z)e

iπ
2
( 1
2
−ν)σ3e−s3ϑ(1)σ3PRH

CH

(
ζ(z)

)
e(

i
2
ζ(z)+s3ϑ(1))σ3ei

π
4
σ3σ1, (6.11)

where (compare (3.27))

Br(z) =

(
ζ(z)

z + 1

z − 1

)νσ3

, Br(1) =
(
16s3 + 4xs

)νσ3 .

The latter model function solves the RHP depicted in Figure 6.4 below and we expect

(1− γ)σ3

es
3ϑ(z)σ3

(
1 −γ(1−γ)−1

0 1

)
e−s3ϑ(z)σ3

es
3ϑ(z)σ3

(
1 0

γ(1−γ)−1 1

)
e−s3ϑ(z)σ3

Figure 6.4. Transformation of parametrix jumps to original jumps

the singular endpoint behavior to match (6.5) (see section 4.1 or section 7.1)

V(z) = O
(
ln(z − 1)

)
, z → +1.

Hence the ratio of ∆(z) with V(z) is locally analytic, i.e.

∆(z) = Nr(z)V(z), |z − 1| < 1

2
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and we also have an asymptotical matchup

V(z) = σ1e
−iπ

4
σ3Br(z)e

iπ
2
( 1
2
−ν)σ3e−s3ϑ(1)σ3

[
I +

i

ζ


 ν2 −Γ(1−ν)

Γ(ν)
eπiν

Γ(1+ν)
Γ(−ν)

e−πiν −ν2




+
1

ζ2


 −ν2

2
(1 + ν)2 −Γ(1−ν)

Γ(ν)
(1− ν)2eπiν

−Γ(1+ν)
Γ(−ν)

(1 + ν)2e−πiν −ν2

2
(1− ν)2


+O

(
ζ−3
)
]

×ζ−νσ3es
3ϑ(1)σ3e−iπ

2
( 1
2
−ν)σ3ei

π
4
σ3σ1

=

[
I +

i

ζ


 −ν2 Γ(1+ν)

Γ(−ν)
e2s

3ϑ(1)β−2
r (z)

−Γ(1−ν)
Γ(ν)

e−2s3ϑ(1)β2
r (z) ν2




+
1

ζ2


 −ν2

2
(1− ν)2 −Γ(1+ν)

Γ(−ν)
(1 + ν)2e2s

3ϑ(1)β−2
r (z)

−Γ(1−ν)
Γ(ν)

(1− ν)2e−2s3ϑ(1)β2
r (z) −ν2

2
(1 + ν)2




+O
(
ζ−3
)
]
Ξ(z) (6.12)

as s → ∞, valid on the annulus 0 < r1 ≤ |z − 1| ≤ r2 < 1 (hence |ζ | → ∞) with the

abbreviation

βr(z) =

(
ζ(z)

z + 1

z − 1

)ν

.

Also here, similar to section 3.3, the estimate (6.12), yields for γ < 1

V(z) =
(
I + o(1)

)
Ξ(z), s→ ∞, 0 < r1 ≤ |z − 1| ≤ r2 < 1

but for γ > 1 this needs to be replaced by

V(z) = σ1e
−iπ

4
σ3Er(z)e

iπ
4
σ3σ1

(
I + o(1)

)
Ξ(z), s→ ∞

with

σ1e
−iπ

4
σ3Er(z)e

iπ
4
σ3σ1 =


 1 0

−iΓ(1−ν)
Γ(ν)

e−2s3ϑ(1)β̂2
r (z)

z+1
z−1

1


 , β̂r(z) =

(
ζ(z)

z + 1

z − 1

)ν0

.

Hence, also in the given situation, we will have to account for the nontrivial matrix

Er(z) as long as γ > 1.

For the remaining left endpoint, we use P̃CH(ζ) and P̃RH
CH (ζ) as introduced in

(3.34) and the change of variables

ζ(z) = −2is3
(
ϑ(z)− ϑ(−1)

)
, |z + 1| < r.
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Introduce for |z + 1| < r

W(z) = σ1e
−iπ

4
σ3Bl(z)e

−iπ
2
( 1
2
−ν)σ3e−s3ϑ(−1)σ3 P̃RH

CH

(
ζ(z)

)
e(

i
2
ζ(z)+s3ϑ(−1))σ3ei

π
4
σ3σ1,

(6.13)

with

Bl(z) =

(
e−iπζ(z)

z − 1

z + 1

)−νσ3

, Bl(−1) =
(
16s3 + 4xs

)−νσ3 .

Using the stated conjugation with σ1e
−iπ

4
σ3 , we again match parametrix jumps with

original jumps locally on the original jump contour, see Figure 6.5, and the singular

(1− γ)σ3

es
3ϑ(z)σ3

(
1 γ(1−γ)−1

0 1

)
e−s3ϑ(z)σ3

es
3ϑ(z)σ3

(
1 0

−γ(1−γ)−1 1

)
e−s3ϑ(z)σ3

Figure 6.5. Transformation of parametrix jumps to original jumps

endpoint behavior matches (6.5):

W(z) = O
(
ln(z + 1)

)
, z → −1.

Thus the ratio of ∆(z) with W(z) is locally analytic,

∆(z) = Nl(z)W(z), |z + 1| < 1

2

and the model functions ∆(z),Ξ(z) are related through the following asymptotical

matchup

W(z) =

[
I +

i

ζ


 −ν2 Γ(1−ν)

Γ(ν)
e2s

3ϑ(−1)β2
l (z)

−Γ(1+ν)
Γ(−ν)

e−2s3ϑ(−1)β−2
l (z) ν2




+
1

ζ2


 −ν2

2
(1 + ν)2 −Γ(1−ν)

Γ(ν)
(1− ν)2e2s

3ϑ(−1)β2
l (z)

−Γ(1+ν)
Γ(−ν)

(1 + ν)2e−2s3ϑ(−1)β−2
l (z) −ν2

2
(1− ν)2




+O
(
ζ−3
)
]
Ξ(z), (6.14)
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valid as s→ ∞ on the annulus 0 < r1 ≤ |z + 1| ≤ r2 < 1 (thus |ζ | → ∞) and we put

βl(z) =

(
e−iπζ(z)

z − 1

z + 1

)−ν

.

For γ < 1, (6.14) implies on the annulus

W(z) =
(
I + o(1)

)
Ξ(z), s→ ∞,

whereas for γ > 1, it needs to be replaced by

W(z) = σ1e
−iπ

4
σ3El(z)e

iπ
4
σ3σ1

(
I + o(1)

)
Ξ(z), s→ ∞

with

σ1e
−iπ

4
σ3El(z)e

iπ
4
σ3σ1 =


1 −iΓ(1−ν)

Γ(ν)
e2s

3ϑ(−1)β̂−2
l (z) z−1

z+1

0 1


 ,

where

β̂l(z) =

(
e−iπζ(z)

z − 1

z + 1

)−ν0

.

We now summarize the model functions Ξ(z),U(z),V(z) andW(z) in order to employ

our next transformation.

6.3 The ratio problem – iterative solution for γ < 1

Similarly to (3.40), put

R(z) = ∆(z)





(
U(z)

)−1
, |z − 1| < r1,

(
V(z)

)−1
, |z| < r2,

(
W(z)

)−1
, |z + 1| < r1,

(
Ξ(z)

)−1
, |z − 1| > r1, |z + 1| > r1, |z| > r2,

with 0 < r1, r2 <
1
2
fixed. This implies a RHP for the ratio-function R(z) as depicted

in Figure 6.6.

• R(z) is analytic for z ∈ C\
{
C0,r,l ∪

⋃8
i=1 γi

}
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γ1

γ2γ3

γ4

γ5

γ6 γ7

γ8

C0

Cl Cr

Figure 6.6. The jump graph for the ratio-function R(z)

• For the jumps, along the infinite branches γi

R+(z) = R−(z)Ξ(z)e
s3ϑ(z)σ3Ĝ∆(z)e

−s3ϑ(z)σ3
(
Ξ(z)

)−1
.

On the clockwise oriented circles C0 and Cr,l, the jumps are described by the

equations

R+(z) = R−(z)U(z)
(
Ξ(z)

)−1
, z ∈ C0,

R+(z) = R−(z)V(z)
(
Ξ(z)

)−1
, z ∈ Cr,

R+(z) = R−(z)W(z)
(
Ξ(z)

)−1
, z ∈ Cl.

• R(z) is analytic at z = ±1. This observation will be proven in the same way,

as we verified the same statement for the function R(z) in section 4.1

• In a neighborhood of infinity, we have R(z) → I.

Without recalling all underlying estimates (see section 3.3 for an almost identical

situation), the latter ratio-RHP can be solved iteratively in case γ < 1. Indeed its

underlying jump matrix GR(z) satifies on the contour ΣR as shown in Figure 6.6

‖GR − I‖L2∩L∞(ΣR) ≤ cs−1, s→ ∞ (6.15)

uniformly on any compact subset of the set (1.19)

{
(γ, x) ∈ R

2 : −∞ < γ < 1, −∞ < x <∞
}
.
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Since the ratio problem is equivalent to the singular integral equation

R−(z) = I +
1

2πi

∫

ΣR

R−(w)
(
GR(w)− I

) dw

w − z−
,

we know that for sufficiently large s, the relevant integral operator is contracting and

we can solve the latter equation iteratively in L2 (ΣR), its unique solution satifies

‖R− − I‖L2(ΣR) ≤ cs−1, s→ ∞. (6.16)

Estimations (6.15) and (6.16) allow us to derive the asymptotics of det (I − γKcsin)

as stated in Theorem 1.3.1 up to the constant term for γ < 1. Also, tracing back the

transformations

Θ(λ) 7→ Φ(λ) 7→ ∆(z) 7→ R(z)

we obtain existence and boundedness of Θ(λ), λ ∈ [−s, s] and hence existence and

boundedness of the resolvent I+Rcsin for sufficiently large s which is needed in (5.11).

In case γ > 1, the jump matrices on Cr and Cl are not uniformly close to the unit

matrix as s→ ∞

‖V
(
Ξ
)−1 − I‖L2∩L∞(Cr) 9 0, ‖W

(
Ξ
)−1 − I‖L2∩L∞(Cl) 9 0.

Again, we will use the undressing-dressing transformations of section 3.4.

6.4 Undressing and dressing – iterative solution for γ > 1

We use the notation of section 3.4 and recall that the jump matrices Gr(z) =

V(z) (Ξ(z))−1 and Gl(z) = W(z)
(
Ξ(z)

)−1
can be written as

Gr(z) = σ1e
−iπ

4
σ3Gr(z)e

iπ
4
σ3σ1, Gl(z) = σ1e

−iπ
4
σ3Gl(z)e

iπ
4
σ3σ1. (6.17)

Hence the following steps are completely analogous to those described in section 3.4.

Put

P(z) =





R(z)σ1e
−iπ

4
σ3Er(z)e

iπ
4
σ3σ1, |z − 1| < r1,

R(z)σ1e
−iπ

4
σ3El(z)e

iπ
4
σ3σ1, |z + 1| < r1,

R(z), |z ∓ 1| > r1.
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which leads to a singular RHP posed on the contour depicted in Figure 6.6 with pole

singularities at the points z = ±1. The jump matrix GP(z) is uniformly close to the

unit matrix as s→ ∞,

‖GP − I‖L2∩L∞(ΣR) ≤ cs−1, s→ ∞

and with P(z) =
(
P(1)(z),P(2)(z)

)
written in terms of its columns, the residue rela-

tions (3.51) and (3.52) need to be replaced by

resz=+1P(1)(z) = P(2)(1)

(
− 2i

Γ(1− ν)

Γ(ν)
e−2s3ϑ(1)β̂2

r (1)

)
(6.18)

resz=−1P(2)(z) = P(1)(−1)

(
2i
Γ(1− ν)

Γ(ν)
e2s

3ϑ(−1)β̂−2
l (−1)

)
. (6.19)

Similarly to Proposition 3.4.1, we have

Proposition 6.4.1 The Riemann-Hilbert problem for P(z) has a unique solution

Proof The residue relations (6.18),(6.19) imply

P(z) =





P̂(+)(z)


 1 0

− 2ip
z−1

1


 , |z − 1| < r;

P̂(−)(z)


1 2ip

z+1

0 1


 , |z + 1| < r,

p =
Γ(1− ν)

Γ(ν)
e−2s3ϑ(1)β̂2

r (1)

where P(±)(z) are analytic at z = ±1. Using the same arguments as in Proposition

3.4.1, we establish uniqueness.

Our last transformation reduces the P-RHP to one without pole singularities. Intro-

duce

P(z) =
(
zI + B̂

)
Q(z)




1
z−1

0

0 1
z+1




where B̂ ∈ C2×2 is constant and obtain the following RHP

• Q(z) is analytic for z ∈ C\
{
C0,r,l ∪

⋃8
i=1 γi

}
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• Q+(z) = Q−(z)GQ(z), where

GQ(z) =




1
z−1

0

0 1
z+1


 σ1e

−iπ
4
σ3Ĝr,l(z)e

iπ
4
σ3σ1


z − 1 0

0 z + 1


 , z ∈ Cr,l

and

GQ(z) =




1
z−1

0

0 1
z+1


U(z)

(
Ξ(z)

)−1


z − 1 0

0 z + 1


 , z ∈ C0

as well as on the infinite branches γi

GQ(z) =




1
z−1

0

0 1
z+1


Ξ(z)es

3ϑ(z)σ3Ĝ∆(z)e
−s3ϑ(z)σ3

(
Ξ(z)

)−1


z − 1 0

0 z + 1


 .

• Q(z) → I, as z → ∞

As we already found out, the Q-jump matrix GQ(z) is uniformly close to the unit

matrix and therefore the Q-RHP can be solved iteratively. We will do that once we

have determined the unknown matrix B̂. Using the conditions (6.18) and (6.19), we

have

B̂ =

(
Q(1)


 1

ip


 , Q(−1)


ip

1



)
−1 0

0 1



(
Q(1)


 1

ip


 , Q(−1)


ip

1



)−1

.

(6.20)

Now we check for which values of s the latter matrix inverse is well-defined. Since

‖GQ − I‖L2∩L∞(ΣR) ≤ cs−1, s→ ∞

we can solve the singular integral equation

Q−(z) = I +
1

2πi

∫

ΣR

Q−(w)
(
GQ(w)− I

) dw

w − z−

iteratively in L2 (ΣR), its unique solution satisfies

‖Q− − I‖L2(ΣR) ≤ cs−1, s→ ∞.
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Since this implies

Q(±1) = I +O
(
s−1
)
, s→ ∞,

we see that the matrix inverse in (6.20) exists for all sufficiently large s lying outside

of the zero set of the function

1 + p2

and these are precisely all points {sn} defined by the equation

cos σ(sn, x, γ) = 0, n = 1, 2, ...

where σ = σ(s, x, γ) was already introduced in (4.8). As we did it in section 3.4

we will henceforth, when dealing with the case γ > 1, stay away from the small

neigbhorhood of the points sn. Let us now move on to the asymptotic resolution of

the Φ-RHP in case γ = 1.

6.5 Rescaling and g-function transformation, γ = 1

Let us go back to (5.16) and notice that in the given situation the jump contour

of the Φ-RHP consists only of the line segment [−s, s] oriented from left to right with

Φ+(λ) = Φ−(λ)


 0 1

−1 2


 , λ ∈ [−s, s].

This jump equals the jump one faces during the asymptotical analysis of the sine

kernel determinant (cf. [22]). Here and there we use a g-function together with the

scaling z = λ
s
. Introduce

ĝ(z) =
4i

3

√
z2 − 1

(
z2t +

t

2
+

3x

4s2

)
,

√
z2 − 1 ∼ z, z → ∞ (6.21)

being analytic outside the segment [−1, 1] and as z → ∞

ĝ(z) = i

(
4

3
tz3 +

xz

s2

)
+O

(
z−1
)
.
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In the situation t = 1, (6.21) reduces to the previously used g-function (3.60), whereas

for t = 0, we obtain the g-function used in the analysis of the sine kernel (see [22]).

We put

Λ(z) = Φ(zs)e−s3 ĝ(z)σ3 , z ∈ C\[−1, 1] (6.22)

and are lead to the following RHP

• Λ(z) is analytic for z ∈ C\[−1, 1]

• The following jump holds

Λ+(z) = Λ−(z)


 0 1

−1 2e2s
3ĝ+(z)


 , z ∈ (−1, 1)

since

ĝ+(z) + ĝ−(z) = 0, z ∈ [−1, 1].

• Λ(z) has at most logarithmic singularities at the endpoints z = ±1

• As z → ∞, Λ(z) = I +O
(
z−1
)
.

Since Im
√
z2 − 1+ > 0 for z ∈ (−1, 1), we have Re ĝ+(z) < 0 for z ∈ (−1, 1) showing

that 
 0 1

−1 2e2s
3ĝ+(z)


 −→


 0 1

−1 0


 , s→ ∞, z ∈ (−1, 1)

exponentially fast. Thus, also here, we expect, that as s → ∞, Λ(z) converges to a

solution of a model RHP posed on the line segment [−1, 1].

6.6 The model RHP and parametrices for γ = 1

The model problem on [−1, 1] consists in finding the piecewise analytic 2 × 2

matrix valued function N (z) such that

• N (z) is analytic for z ∈ [−1, 1]
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• On the line segment [−1, 1] the following jump holds

N+(z) = N−(z)


 0 1

−1 0


 , z ∈ [−1, 1]

• N (z) has at most logarithmic singularities at the endpoints z = ±1

• N (z) = I +O
(
z−1
)
, z → ∞

This problem has an explicit solution

N (z) =


1 1

i −i


 β(z)−σ3

1

2


1 −i
1 i


 , β(z) =

(
z + 1

z − 1

)1/4

(6.23)

and
(
z+1
z−1

)1/4
is defined on C\[−1, 1] with its branch fixed by the condition

(
z+1
z−1

)1/4 →
1 as z → ∞, compare section 3.5.

The construction of endpoint parametrices is very similar to the constructions

given in section 3.6. We use again Bessel functions. First for the right endpoint

z = +1, define on the punctured plane ζ ∈ C\{0}

QRH
BE (ζ) =



√
ζ
(
H

(1)
0

)′
(
√
ζ)

√
ζ
(
H

(2)
0

)′
(
√
ζ)

H
(1)
0 (ζ) H

(2)
0 (ζ)


 , −π < arg ζ ≤ π. (6.24)

Since QRH
BE (ζ) = σ1e

−iπ
4
σ3PBE(ζ)e

iπ
4
σ3σ1 we can use (3.70) and deduce

QRH
BE (ζ) =

√
2

π
ζσ3/4ei

π
4


 1 −i
−i 1



[
I +

i

8
√
ζ


 1 2i

2i −1


+

3

128ζ


 1 −4i

4i 1




+
15i

1024ζ3/2


−1 −6i

−6i 1


+O

(
ζ−2
)]
ei

√
ζσ3 (6.25)

as ζ → ∞, valid in a full neighborhood of infinity. Also on the line arg ζ = π we

obtain

(
QRH

BE (ζ)
)
+
=
(
QRH

BE (ζ)
)
−


 0 1

−1 2




thus (6.24) solves the RHP depicted in Figure 6.7. We use the model function QRH
BE (ζ)
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es
3ĝ(z)σ3

(
0 1
−1 2

)
e−s3ĝ(z)σ3

z = +1

Figure 6.7. The model RHP near z = +1 which can be solved in
terms of Hankel functions

in the construction of the parametrix to the solution of the original Φ-RHP in a

neighborhood of z = +1. First (compare (3.71))

ζ(z) = −s6ĝ2(z), |z − 1| < r, −π < arg ζ ≤ π (6.26)

with
√
ζ(z) = −is3ĝ(z) = 4s3

3

√
z2 − 1

(
z2t+

t

2
+

3x

4s2

)

which gives a locally conformal change of variables

ζ(z) =
32s6

9

(
3t

2
+

3x

4s2

)2

(z − 1)
(
1 +O(z − 1)

)
, |z − 1| < r.

Secondly define the right parametrix I(z) near z = +1 by the formula

I(z) = Cr(z)
1

2


1 0

0 i



√
π

2
e−iπ

4QRH
BE

(
ζ(z)

)
e−s3ĝ(z)σ3 , |z − 1| < r (6.27)

with ζ(z) as in (6.26) and

Cr(z) =


1 1

i −i



(
ζ(z)

z + 1

z − 1

)−σ3/4

, Cr(1) =


1 1

i −i



(
8s3

3

(
3t

2
+

3x

4s2

))−σ3/2

.

As a result of our construction the parametrix has jumps only on the line segment

depicted in Figure 6.7, described by the same jump matrix as in the original Φ-

RHP. Also, since QRH
BE (ζ) = σ1e

−iπ
4
σ3PBE(ζ)e

iπ
4
σ3σ1, the singular endpoint behavior

matches. Therefore the ratio of Λ(z) with I(z) is locally analytic, i.e.

Λ(z) =Mr(z)I(z), |z − 1| < r <
1

2
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and moreover from (6.25)

I(z) =


1 1

i −i


 β(z)−σ3

1

2


1 −i
1 i



[
I +

i

8
√
ζ


 1 2i

2i −1


+

3

128ζ


 1 −4i

4i 1




+
15i

1024ζ3/2


−1 −6i

−6i 1


+O

(
ζ−2
)]1

2


1 1

i −i


 β(z)σ3


1 −i
1 i


N (z)

=

[
I +

i

16
√
ζ


 3β−2 − β2 i(3β−2 + β2)

i(3β−2 + β2) −(3β−2 − β2)


+

3

128ζ


 1 −4i

4i 1




+
15i

2048ζ3/2


 5β2 − 7β−2 −i(5β2 + 7β−2)

−i(5β2 + 7β−2) −(5β2 − 7β−2)


+O

(
ζ−2
)]
N (z) (6.28)

as s → ∞ and 0 < r1 ≤ |z − 1| ≤ r2 < 1 (so |ζ | → ∞). It is very important that

the function ζ(z) is or order O
(
s2
)
on the latter annulus for all t ∈ [0, 1]. Hence,

since β(z) is bounded, equation (6.28) yields the desired matching relation between

the model functions I(z) and N (z),

I(z) =
(
I + o(1)

)
N (z), s→ ∞, 0 < r1 ≤ |z − 1| ≤ r2 < 1

uniformly on any compact subset of the set

{
(t, x) ∈ R

2 : 0 ≤ t ≤ 1,−∞ < x <∞
}
. (6.29)

For the left endpoint z = −1 define for ζ ∈ C\{0} with 0 < arg ζ ≤ 2π

Q̃RH
BE (ζ) =


 H

(2)
0 (e−iπ

2

√
ζ) H

(1)
0 (e−iπ

2

√
ζ)

−e−iπ
2

√
ζ
(
H

(2)
0

)′
(e−iπ

2

√
ζ) e−i 3π

2

√
ζ
(
H

(1)
0

)′
(e−iπ

2

√
ζ)


 , (6.30)

hence, since Q̃RH
BE (ζ) = σ1e

−iπ
4
σ3P̃BE(ζ)e

iπ
4
σ3σ1 we obtain from (3.78)

Q̃RH
BE (ζ) =

√
2

π
ζ−σ3/4


i 1

i −1



[
I +

1

8
√
ζ


 1 −2i

−2i −1


 +

3

128ζ


−1 −4i

4i −1




+
15

1024ζ3/2


 1 −6i

−6i −1


+O

(
ζ−2
)]
e−

√
ζσ3 (6.31)
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as ζ → ∞ and on the line arg ζ = 2π

(
Q̃RH

BE (ζ)
)
+
=
(
Q̃RH

BE (ζ)
)
−


 0 1

−1 2




which shows that (6.30) solves the model problem of Figure 6.8.

es
3ĝ(z)σ3

(
0 1
−1 2

)
e−s3ĝ(z)σ3

z = −1

Figure 6.8. The model RHP near z = −1 which can be solved in
terms of Hankel functions

This model problem enables us to introduce the parametrix J (z) in a neighbor-

hood of z = −1. Define

ζ(z) = s6ĝ2(z), |z + 1| < r, 0 < arg ζ ≤ 2π (6.32)

with
√
ζ(z) = −s3ĝ(z) = −4is3

3

√
z2 − 1

(
z2t+

t

2
+

3x

4s2

)
,

a locally conformal change of variables

ζ(z) =
32s6

9

(
3t

2
+

3x

4s2

)2

(z + 1)
(
1 +O(z + 1)

)
, |z + 1| < r.

Given the left parametrix J (z) near z = −1 by the formula

J (z) = Cl(z)
(
− i

2

)√
π

2
Q̃RH

BE

(
ζ(z)

)
e−s3ĝ(z)σ3 , |z + 1| < r (6.33)

where

Cl(z) =


1 1

i −i



(
ζ(z)

z − 1

z + 1

)σ3/4

, Cl(−1) =


1 1

i −i



(
8is3

3

(
3t

2
+

3x

4s2

))σ3/2
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and ζ = ζ(z) as in (6.32), we see that the model jump matches the jump in the

original S-RHP and by the symmetry relation Q̃RH
BE (ζ) = σ1e

−iπ
4
σ3P̃BE(ζ)e

iπ
4
σ3σ1 also

J (z) = O
(
ln(z + 1)

)
, z → −1.

Hence the ratio of Λ(z) with J (z) is locally analytic

Λ(z) =Ml(z)J (z), |z + 1| < r <
1

2

and via (6.31)

J (z) =

[
I +

1

16
√
ζ


 3β2 − β−2 −i(3β2 + β−2)

−i(3β2 + β−2) −(3β2 − β−2)


+

3

128ζ


−1 −4i

4i −1




+
15

2048ζ3/2


 7β2 − 5β−2 −i(7β2 + 5β−2)

−i(7β2 + 5β−2) −(7β2 − 5β−2)


+O

(
ζ−2
)]
N (z)

as s → ∞ and 0 < r1 ≤ |z + 1| ≤ r2 < 1 (hence |ζ | → ∞). Also here the function

ζ(z) in (6.32) is of order O
(
s2
)
on the latter annulus for all t ∈ [0, 1]. Therefore

J (z) =
(
I + o(1)

)
N (z), s→ ∞, 0 < r1 ≤ |z + 1| ≤ r2 < 1

again uniformly on any compact subset of the set (6.29).

6.7 The ratio problem – iterative solution for γ = 1

Similar to (3.84) we define

K(z) = Λ(z)





(
I(z)

)−1
, |z − 1| < ε,

(
J (z)

)−1
, |z + 1| < ε,

(
N (z)

)−1
, |z ∓ 1| > ε

(6.34)

with 0 < ε < 1
4
fixed and are lead to the ratio-RHP depicted in Figure 6.9

More precisely, the function K(z) has the following analytic properties.

• K(z) is analytic for z ∈ C\{(−1 + ε, 1− ε) ∪ Ĉr ∪ Ĉl}
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ĈrĈl

Figure 6.9. The jump graph for the ratio-function K(z)

• The following jumps are valid on the clockwise oriented circles

K+(z) = K−(z)I(z)
(
N (z)

)−1
, |z − 1| = ε

K+(z) = K−(z)J (z)
(
N (z)

)−1
, |z + 1| = ε

whereas on the line segment (−1 + ε, 1− ε)

K+(z) = K−(z)N+(z)


1 −2

0 1


(N+(z)

)−1
.

• K(z) is analytic at z = ±1

• As z → ∞ we have K(z) → I.

As a result of our construction (6.34), K(z) has no jumps in the parts of the original

jump contour which lie inside the circles Ĉr,l and as we shall see now, the latter K-

RHP admits direct asymptotical analysis. To this end recall the matching relations

and deduce

‖I
(
N
)−1 − I‖L2∩L∞(Ĉr)

≤ c1s
−1, ‖J

(
N
)−1 − I‖L2∩L∞(Ĉl)

≤ c2s
−1 s→ ∞ (6.35)

which holds uniformly on any compact subset of the set (6.29) with some constants

ci > 0. Secondly recall (6.23)

N+(z)


1 −2

0 1


(N+(z)

)−1
=


 β+ + β−1

+ i(β+ − β−1
+ )

−i(β+ − β−1
+ ) β+ + β−1

+




1 −2e2s

3ĝ+(z)

0 1




×


 β+ + β−1

+ i(β+ − β−1
+ )

−i(β+ − β−1
+ ) β+ + β−1

+




−1
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however, as we mentioned previously, for z ∈ (−1 + ε, 1− ε)

Re ĝ+(z) < 0,

i.e.

‖N+

(
1 −2
0 1

)(
N+

)−1 − I‖L2∩L∞(−1+ε,1−ε) ≤ c3e
−c4εs, s→ ∞ (6.36)

also here uniformly on any compact subset of the set (6.29). Thus together in the limit

s → ∞, with GK denoting the jump matrix in the K-RHP and ΣK the underlying

contour,

‖GK − I‖L2∩L∞(ΣK) ≤ c5s
−1, s→ ∞ (6.37)

uniformly on any compact subset of (6.29). The last estimate provides us with the

unique solvability of the K-RHP, its unique solution satifies

‖K− − I‖L2(ΣK) ≤ ĉs−1. (6.38)

uniformly on any compact subset of (6.29). Tracing back the transformations

Θ(λ) 7→ Φ(λ) 7→ ∆(z) 7→ K(z)

we also obtain existence and boundedness of Θ(λ), λ ∈ [−s, s] and hence existence

and boundedness of the resolvent I +Rcsin for sufficiently large s which is needed in

(5.11).

The information derived in this chapter enables us to determine the large s-

asymptotics of det (I − γKcsin) and complete the proofs of Theorems 1.3.1, 1.27 and

1.3.3. The following computations however will be more involved than in chapter 4.
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7. ASYMPTOTICS OF ln det (I − γKcsin)

We solved the auxiliary RHP according to the Deift-Zhou nonlinear steepest descent

method in the last chapter. Using the four logarithmic derivative identities derived

in section 5.3 we will now compute the relevant expansions. The major techniqual

obstacle in the current section arises from the fact that we need to obtain all expanions

including the constant terms. Hence we will have to iterate the relevant integral

equations.

7.1 The situation γ 6= 1 – preliminary steps

We recall the transformations which have been used in the asymptotical solution

of the Θ-RHP in case γ < 1

Θ(λ) 7→ Φ(λ) 7→ Υ(z) 7→ ∆(z) 7→ R(z).

In order to determine det (I − γKcsin) from Proposition 5.3.1, we will again connect

Φ̌(±s) and Φ̌′(±s) to the values of R(±1) and R′(±1) using the same strategy as

in section 4.1. Since the relevant parametrices V(z) and W(z) are up to conjugation

with σ1e
−iπ

4
σ3 identical with V (z) and W (z) of section 3.2, we skip various steps in

the relevant comparison and simply state the results. By proposition 5.3.1, locally

Π(λ) = Φ̌(λ)

√
γ

2πi

(
1

1

)
, Φ̌(λ) = Φ̌(±s) + Φ̌′(±s)

(
λ∓ s

)
+O

(
(λ∓ s)

)
, λ→ ±s

and from comparison

Φ̌11(s) + Φ̌12(s) =
2πi

γ
ei

π
2
ν

((
R(1)

(
Br(1)

)−1
)
11

es
3ϑ(1)

Γ(−ν)

−
(
R(1)

(
Br(1)

)−1
)
12

e−s3ϑ(1)

Γ(ν)

)
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as well as

Φ̌21(s) + Φ̌22(s) =
2πi

γ
ei

π
2
ν

((
R(1)

(
Br(1)

)−1
)
21

es
3ϑ(1)

Γ(−ν)

−
(
R(1)

(
Br(1)

)−1
)
22

e−s3ϑ(1)

Γ(ν)

)
.

Moreover

Φ̌′
11(s) + Φ̌′

12(s) =
2πi

γ
ei

π
2
ν

(((
R′(1)−R(1)

νσ3
2

3 + x
4s2

1 + x
4s2

)(
Br(1)

)−1
)

11

es
3ϑ(1)

sΓ(−ν)

−
((

R′(1)−R(1)
νσ3
2

3 + x
4s2

1 + x
4s2

)(
Br(1)

)−1
)

12

e−s3ϑ(1)

sΓ(ν)
+ (8s2 + 2x)

×
{(

R(1)
(
Br(1)

)−1
)
11

( i
2
+ iν

) es3ϑ(1)
Γ(−ν) −

(
R(1)

(
Br(1)

)−1
)
12

×
(
− i

2
+ iν

)e−s3ϑ(1)

Γ(ν)

})

and

Φ̌′
21(s) + Φ̌′

22(s) =
2πi

γ
ei

π
2
ν

(((
R′(1)−R(1)

νσ3
2

3 + x
4s2

1 + x
4s2

)(
Br(1)

)−1
)

21

es
3ϑ(1)

sΓ(−ν)

−
((

R′(1)−R(1)
νσ3
2

3 + x
4s2

1 + x
4s2

)(
Br(1)

)−1
)

22

e−s3ϑ(1)

sΓ(ν)
+ (8s2 + 2x)

×
{(

R(1)
(
Br(1)

)−1
)
21

( i
2
+ iν

) es3ϑ(1)
Γ(−ν) −

(
R(1)

(
Br(1)

)−1
)
22

×
(
− i

2
+ iν

)e−s3ϑ(1)

Γ(ν)

})
.

Next

Φ̌11(−s) + Φ̌12(−s) =
2πi

γ
ei

π
2
ν

((
R(−1)

(
Bl(−1)

)−1
]
12

e−s3ϑ(−1)

Γ(−ν)

−
(
R(−1)

(
Bl(−1)

)−1
)
11

es
3ϑ(−1)

Γ(ν)

)

and

Φ̌21(−s) + Φ̌22(−s) =
2πi

γ
ei

π
2
ν

((
R(−1)

(
Bl(−1)

)−1
)
22

e−s3ϑ(−1)

Γ(−ν)

−
(
R(−1)

(
Bl(−1)

)−1
)
21

es
3ϑ(−1)

Γ(ν)

)
.
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And finally

Φ̌′
11(−s) + Φ̌′

12(−s) =
2πi

γ
ei

π
2
ν

(((
R′(−1)−R(−1)

νσ3
2

3 + x
4s2

1 + x
4s2

)(
Bl(−1)

)−1
)
12

×e
−s3ϑ(−1)

sΓ(−ν) −
((

R′(−1)−R(−1)
νσ3
2

3 + x
4s2

1 + x
4s2

)(
Bl(−1)

)−1
)
11

es
3ϑ(−1)

sΓ(ν)

+(8s2 + 2x)

{(
R(−1)

(
Bl(−1)

)−1
)
11

( i
2
+ iν

)es3ϑ(−1)

Γ(ν)

−
(
R(−1)

(
Bl(−1)

)−1
)
12

(3i
2
+ iν

)e−s3ϑ(−1)

Γ(−ν)

})

as well as

Φ̌′
21(−s) + Φ̌′

22(−s) =
2πi

γ
ei

π
2
ν

(((
R′(−1)−R(−1)

νσ3
2

3 + x
4s2

1 + x
4s2

)(
Bl(−1)

)−1
)
22

×e
−s3ϑ(−1)

sΓ(−ν) −
((

R′(−1)−R(−1)
νσ3
2

3 + x
4s2

1 + x
4s2

)(
Bl(−1)

)−1
)
21

es
3ϑ(−1)

sΓ(ν)

+(8s2 + 2x)

{(
R(−1)

(
Bl(−1)

)−1
)
21

( i
2
+ iν

)es3ϑ(−1)

Γ(ν)

−
(
R(−1)

(
Bl(−1)

)−1
)
22

(3i
2
+ iν

)e−s3ϑ(−1)

Γ(−ν)

})
.

By Proposition 5.3.1, the connection to the resolvent kernel R(λ, µ) is established via

Π1(±s) =
√

γ

2πi

(
Φ̌11(±s) + Φ̌12(±s)

)
, Π2(±s) =

√
γ

2πi

(
Φ̌21(±s) + Φ̌22(±s)

)

Π′
1(±s) =

√
γ

2πi

(
Φ̌′

11(±s) + Φ̌′
12(±s)

)
, Π′

2(±s) =
√

γ

2πi

(
Φ̌′

21(±s) + Φ̌′
22(±s)

)

which, in terms of the previous identities, leads to

R(s, s) =
2πi

γ
eiπν

([
R′

11(1)R21(1)−R′
21(1)R11(1)

]
(16s3 + 4xs)−2ν e2s

3ϑ(1)

sΓ2(−ν)

+
(
R′

12(1)R22(1)−R′
22(1)R12(1)

)
(16s3 + 4xs)2ν

e−2s3ϑ(1)

sΓ2(ν)

−
(
R′

11(1)R(1)22 −R′
22(1)R11(1) +R′

12(1)R21(1)−R′
21(1)R12(1)

−
(
R11(1)R22(1)−R21(1)R12(1)

)
ν
3 + x

4s2

1 + x
4s2

)
1

sΓ(ν)Γ(−ν)

−
(
R11(1)R22(1)−R21(1)R12(1)

)
i
8s2 + 2x

Γ(ν)Γ(−ν)

)
.
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In order to simplify the latter identity for R(s, s), we use again unimodularity of

R(z).

Proposition 7.1.1 The ratio function R(z) is unimodular for any x, γ ∈ R, i.e.

detR(z) ≡ 1.

Proof The parametrices V(z) and W(z) are up to conjugation with the factor

σ1e
−iπ

4
σ3 identical to the parametrices V (z) and W (z) of section 3.2, thus detV(z) =

detW(z) = 1. Also, the parametrix U(z) was constructed in terms of a unimodular

canonical solution of system (1.10), i.e. detU(z) = 1 as well. Thus the ratio function

R(z) has a unimodular jump matrix GR(z), and we obtain as in Proposition 4.1.1

the statement.

This implies

R(s, s) = −ieiπν 2πi
γ

8s2 + 2x

Γ(ν)Γ(−ν) +
2πi

γ

νeiπν

sΓ(ν)Γ(−ν)
3 + x

4s2

1 + x
4s2

− 2πi

γ

eiπν

sΓ(ν)Γ(−ν)
×
(
R′

11(1)R22(1)−R′
22(1)R11(1) +R′

12(1)R21(1)−R′
21(1)R12(1)

)

+
2πi

γ
eiπν
((

R′
11(1)R21(1)−R′

21(1)R11(1)
)
(16s3 + 4xs)−2ν e2s

3ϑ(1)

sΓ2(−ν)

+
(
R′

12(1)R22(1)−R′
22(1)R12(1)

]
(16s3 + 4xs)2ν

e−2s3ϑ(1)

sΓ2(ν)

)
. (7.1)

With the same reasoning

R(−s,−s) = −ieiπν 2πi
γ

8s2 + 2x

Γ(ν)Γ(−ν) +
2πi

γ

νeiπν

sΓ(ν)Γ(−ν)
3 + x

4s2

1 + x
4s2

− 2πi

γ

eiπν

sΓ(ν)Γ(−ν)(
R′

11(−1)R22(−1)−R′
22(−1)R11(−1) +R′

12(−1)R21(−1)−R′
21(−1)R12(−1)

)

+
2πi

γ
eiπν
((

R′
11(−1)R21(−1)−R′

21(−1)R11(−1)
)
(16s3 + 4xs)2ν

e−2s3ϑ(1)

sΓ2(ν)

+
(
R′

12(−1)R22(−1)−R′
22(−1)R12(−1)

)
(16s3 + 4xs)−2ν e2s

3ϑ(1)

sΓ2(−ν)

)
(7.2)

and we notice that our derivation of the latter two identities did not distinguish

between the cases γ < 1 and γ > 1. At this point we will prove Theorem 1.3.1

including the constant term. Our proof uses primarily the γ-derivative of Proposition
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5.3.3, the s-derivative of Proposition 5.3.1 will only be used in certain intermediate

steps and to verify the stated error term.

7.2 Proof of Theorem 1.3.1

We have to determine the large s-asymptotics of the matrix coefficients Φ1,Φ2

and Φ3 in (5.29). Tracing back the relevant transformations

Φ1 = lim
λ→∞

(
λ
(
Φ(λ)e−i( 4

3
λ3+xλ)σ3 − I

))
= −2νσ3s+

is

2π

∫

ΣR

R−(w)
(
GR(w)− I

)
dw

= −2νσ3s +
is

2π

∫

ΣR

(
R−(w)− I

)(
GR(w)− I

)
dw +

is

2π

∫

ΣR

(
GR(w)− I

)
dw

and from the standard integral representation of R−(z), z ∈ ΣR as well as (6.16) and

(6.10)

R−(z)− I =
1

2πi

∫

C0

(
GR(w)− I

) dw

w − z−
+O

(
s−2
)

=
1

2πi

∫

C0

(
B0(w)

)−1


 v ue−2πiν

−ue2πiν −v


B0(w)

idw

2sw(w − z−)
+O

(
s−2
)

=
i

2sz

[
 v u

−u −v


−

(
B0(z)

)−1


 v ue−2πiν

−ue2πiν −v


B0(z)

]
+O

(
s−2
)
.

We now improve the last estimation via iteration:

R−(z)− I = R1(z) +R2(z) +O
(
s−3
)
, z ∈ ΣR

where

R1(z) =
1

2πi

∫

C0

(
GR(w)− I

) dw

w − z−

R2(z) =
1

2πi

∫

C0

R1(w)
(
GR(w)− I

) dw

w − z−
.
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Carrying out the computations we are lead to

R−(z)− I =
i

2sz

[
 v u

−u −v


−

(
B0(z)

)−1


 v ue−2πiν

−ue2πiν −v


B0(z)

]

− 1

4s2z2


 v u

−u −v



[
 v u

−u −v


−

(
B0(z)

)−1


 v ue−2πiν

−ue2πiν −v


B0(z)

]

+
1

8s2z2

[
 u2 − v2 2(ux + uv)

2(ux + uv) u2 − v2


−

(
B0(z)

)−1

×


 u2 − v2 2(ux + uv)

2(ux + uv) u2 − v2


B0(z)

]
+

ν

s2z


u

2 −ux
ux −u2


 +O

(
s−3
)
, s→ ∞,

valid for any z ∈ ΣR. Back to our first identity for Φ1, one starts with

∫

ΣR

(
R−(w)− I

)(
GR(w)− I

)
dw =

2πiν

s2


−u2 −uv
uv u2


+

i(−2πi)ν2

s3

×


 2uux −2u3 + v(ux + uv) + u

2
(u2 − v2)

2u3 − v(ux + uv)− u
2
(u2 − v2) −2uux




+O
(
s−4
)
, s→ ∞

and moves on to

∫

ΣR

(
GR(w)− I

)
dw =

(−2πi)i

2s


 v u

−u −v


 +

(−2πi)ν

s2


 0 −(ux + uv)

ux + uv 0




+
i(−2πi)ν2

s3


 0 −(u

2
(u2 + v2) + vux + xu)

u
2
(u2 + v2) + vux + xu 0




+
(−2πi)i

4s3 + xs


 −ν2

√
−ν2 cosσ

−
√
−ν2 cosσ ν2


+O

(
s−4
)
, s→ ∞

with

σ = σ(s, x, γ) =
8

3
s3 + 2xs+

ln |1− γ|
π

ln
(
16s3 + 4xs

)
− arg

Γ(1− ν)

Γ(ν)
.



131

Adding up

∫

ΣR

R−(w)
(
GR(w)− I

)
dw =

(−2πi)i

2s


 v u

−u −v


 +

(−2πi)ν

s2


u

2 −ux
ux −u2




+
(−2πi)iν2

s3


 2uux −(xu+ 2u3)

xu+ 2u3 −2uux




+
(−2πi)i

4s3 + xs


 −ν2

√
−ν2 cosσ

−
√
−ν2 cosσ ν2


 +O

(
s−4
)
.

This leads to the following expansion for Φ1

Φ1 = −2νσ3s+
i

2


 v u

−u −v


 +

ν

s


u

2 −ux
ux −u2


 +

iν2

s2


2uux −uxx
uxx −2uux




+
i

4s2 + x


 −ν2

√
−ν2 cosσ

−
√
−ν2 cosσ ν2


 +O

(
s−3
)
, s→ ∞, (7.3)

uniformly on any compact subset of the set (1.19) and where we used that u = u(x, γ)

solves the second Painlevé equation. Secondly

Φ2 = 2ν2s2I − iνs2

π

(
I1 + I2

)
σ3 +

is2

2π

∫

ΣR

R−(w)
(
GR(w)− I

)
w dw. (7.4)

We need to compute

I1 =

∫

ΣR

(
R−(w)− I

)(
GR(w)− I

)
w dw

=
(−2πi)iν

2s3


u

2v + uux
u
2
(u2 − v2)

u
2
(u2 − v2) u2v + uux


+O

(
s−4
)

as well as

I2 =

∫

ΣR

(
GR(w)− I

)
w dw =

(−2πi)

8s2


 u2 − v2 2(ux + uv)

2(ux + uv) u2 − v2




+
(−2πi)iν

4s3


 0 u(u2 + v2) + 2(vux + xu)

u(u2 + v2) + 2(vux + xu) 0




+
2πi

4s3 + xs


 0

√
−ν2 sin σ

−
√
−ν2 sin σ 0


+O

(
s−4
)
,
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in order to obtain

Φ2 = 2ν2s2I − iνs


 v −u
−u v


− 2ν2


u

2 ux

ux u2


+

1

8


 u2 − v2 2(ux + uv)

2(ux + uv) u2 − v2




−2iν3

s


 2uux xu+ 2u3

xu+ 2u3 2uux


 +

iν

2s


 u2v + uux u3 + vux + xu

u3 + vux + xu u2v + uux




+
2iνs

4s2 + x


 ν2

√
−ν2 cosσ

√
−ν2 cosσ ν2


− s

4s2 + x


 0

√
−ν2 sin σ

√
−ν2 sin σ 0




+O
(
s−2
)
, s→ ∞. (7.5)

Finally the computation of Φ3

Φ3 = −2ν

3
s3(1 + 2ν2)σ3 +

iν2s3

π

∫

ΣR

R−(w)
(
GR(w)− I

)
dw − iνs3

π

(
I3 + I4

)
σ3

+
is3

2π

∫

ΣR

R−(w)
(
GR(w)− I

)
w2 dw. (7.6)

Since ∫

ΣR

(
R−(w)− I

)(
GR(w)− I

)
w2 dw = O

(
s−4
)

and

∫

ΣR

R−(w)
(
GR(w)− I

)
w2 dw =

(−2πi)i

4s3 + xs


 −ν2

√
−ν2 cosσ

−
√
−ν2 cosσ ν2




+
(−2πi)i

48s3


−(v3 − 3vu2 + 2(xv − uux)) −3(u(u2 + v2) + 2(vux + xu))

3(u(u2 + v2) + 2(vux + xu)) v3 − 3vu2 + 2(xv − uux)




+O
(
s−4
)
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we obtain

Φ3 = −2ν

3
s3(1 + 2ν2)σ3 + iν2s2


 v u

−u −v


 + 2ν3s


u

2 −ux
ux −u2




−νs
4


 u2 − v2 −2(ux + uv)

2(ux + uv) −(u2 − v2)


 + 2iν4


2uux −uxx
uxx −2uux




+
2iν2s2 + is2

4s2 + x


 −ν2

√
−ν2 cosσ

−
√
−ν2 cos σ ν2


− 2iνs2

4s2 + x

√
−ν2 sin σ σ2

−iν2

 u2v + uux −(u3 + vux + xu)

u3 + vux + xu −(u2v + uux)




+
i

48


−(v3 − 3vu2 + 2(xv − uux)) −3(u(u2 + v2) + 2(vux + xu))

3(u(u2 + v2) + 2(vux + xu)) v3 − 3vu2 + 2(xv − uux)


+O

(
s−1
)
.

With the given information at hand, (5.22) and (5.23) lead to

b = 2Φ12
1 = iu− 2ν

s
ux −

2iν2

s2
(xu+ 2u3) +

2i
√
−ν2

4s2 + x
cos σ +O

(
s−3
)

(7.7)

as well as

c = 2Φ21
1 = −b+O

(
s−3
)
, s→ ∞ (7.8)

and

d = ix+ 8iΦ12
1 Φ21

1 (7.9)

= ix+ 2iu2 − 8ν

s
uux −

8iν2

s2
(
(ux)

2 + xu2 + 2u4
)
+

8iu
√
−ν2

4s2 + x
cos σ +O

(
s−3
)
.

Furthermore

e = 8i
(
Φ12

1 Φ22
1 − Φ12

2

)
= −2iux +

4ν

s
(xu+ 2u3) +

8is
√
−ν2

4s2 + x
sin σ +O

(
s−2
)

and

f = −e +O
(
s−2
)

(7.10)

where we made use of the following identities, see (7.3) and (7.5)

Φ21
1 = −Φ12

1 +O
(
s−3
)
, Φ11

1 = −Φ22
1 +O

(
s−3
)
, Φ21

2 = Φ12
2 +O

(
s−2
)
, s→ ∞. (7.11)
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We have now derived enough information to evaluate the first terms listed in Propo-

sition 5.3.3. Put

P1(s, x, γ) = −8i
(
(Φ3)γ + (Φ1)γ(Φ

2
1 − Φ2)− (X2)γΦ1

)11
− 2d

(
(Φ1)γ

)11

+4ib
(
(Φ2)γ − (Φ1)γΦ1

)21
− 4ic

(
(Φ2)γ − (Φ1)γΦ1

)12

−e
(
(Φ1)γ

)21
− f

(
(Φ1)γ

)12

and notice that (
∂

∂γ
Φk

)ij

=
∂

∂γ

(
Φij

k

)
, i, j, k = 1, 2.

From (7.10) and (7.11) we obtain therefore

−e
(
(Φ1)γ

)21
= −f

(
(Φ1)γ

)12
+O

(
s−2
)

and via (7.7) and (7.11)

4ib
(
(Φ2)γ

)21
= −4ic

(
(Φ2)γ

)12
+O

(
ln s

s2

)
.

Since also

−4ib
((

Φ1

)
γ
Φ1

)21
= −4ib

((
Φ21

1

)
γ
Φ11

1 +
(
Φ22

1

)
γ
Φ21

1

)

= 4ic
((

Φ12
1

)
γ
Φ22

1 +
(
Φ11

1

)
γ
Φ12

1

)
+O

(
ln s

s2

)

= 4ic
((

Φ1

)
γ
Φ1

)12
+O

(
ln s

s2

)

as s → ∞ uniformly on any compact subset of the set (1.19), we can simplify the

expression for P1(s, x, γ) asymptotically

P1(s, x, γ) = −8i
((

Φ3

)
γ
+
(
Φ1

)
γ
(Φ2

1 − Φ2)−
(
Φ2

)
γ
Φ1

)11
− 2d

((
Φ1

)
γ

)11

+8ib
((

Φ2

)
γ
−
(
Φ1

)
γ
Φ1

)21
− 2e

((
Φ1

)
γ

)21
+O

(
ln s

s2

)
. (7.12)

Next from (7.3)

Φ2
1 =

(
4ν2s2 − 2iνvs− 4ν2u2 +

u2 − v2

4
− 8iν3

s
uux +

4iν3s

4s2 + x
+
iν

s
(vu2 + uux)

)
I

+O
(
s−2
)
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with I denoting the 2× 2 identity matrix. Thus

((
X1

)
γ
X2

1

)11
=
(
− 2νγs+

i

2
vγ +

(νu2)γ
s

+
i

s2
(
2ν2uux

)
γ
− i

4s2 + x

(
ν2
)
γ

+O

(
ln s

s3

))(
4ν2s2 − 2iνvs− 4ν2u2 +

u2 − v2

4
− 8iν3

s
uux +

4iν3s

4s2 + x

+
iν

s
(vu2 + uux) +O

(
s−2
))

= −8ν2νγs
3 + 4iννγvs

2 + 2iν2s2vγ + 8ν2νγu
2s− νγs

u2 − v2

2
+ νsvvγ

+4ν2s
(
νu2
)
γ
+ 16iνγν

3uux −
8iν3νγs

2

4s2 + x
− 2iννγ

(
vu2 + uux

)
− 2iν2u2vγ

+
i

2
vγ
u2 − v2

4
− 2iνv

(
νu2
)
γ
+ 4iν2

(
2ν2uux

)
γ
− 4iν2s2

4s2 + x

(
ν2
)
γ
+O

(
ln s

s

)
.

Moving on, we use

((
Φ1

)
γ
Φ2 +

(
Φ2

)
γ
Φ1

)11
=
(
Φ11

1 Φ11
2

)
γ
+
(
Φ12

1

)
γ
Φ21

2 +
(
Φ12

2

)
γ
Φ21

1

and obtain

((
Φ1

)
γ
Φ2 +

(
Φ2

)
γ
Φ1

)11
=

(
− 4ν3s3 + 3iν2s2v + 6ν3u2s− 3iν2u2v + 12iν4uux

−iν2uux −
6iν4s2

4s2 + x
− νs

u2 − 3v2

4
+
iv

2

u2 − v2

8
+O

(
s−1
))

γ

− νs

2
uuγ +

s

2
u
(
νu
)
γ

−iν2uxuγ +
i

2
uγ
ux + uv

4
− iνu

(
νux
)
γ
+ iνux

(
νu
)
γ
+ iu

(
ν2ux

)
γ
− i

2
u
(ux + uv)γ

4

+O
(
s−1
)
.

Furthermore

((
Φ2

)
γ
−
(
Φ1

)
γ
Φ1

)21
= is(νu)γ + iνγsu− iνsuγ − 2(ν2ux)γ +

(ux + uv)γ
4

−2ννγux +
1

4
(uvγ − vuγ) + 2ν(νux)γ +O

(
s−1
)
,

which implies

b
((

Φ2

)
γ
−
(
Φ1

)
γ
Φ1

)21
= −su(νu)γ − su2νγ + sνuuγ − 2iu(ν2ux)γ

+iu
(ux + uv)γ

4
− 2iννγuux + iu

uvγ − vuγ
4

+ 2iνu(νux)γ − 2iνux(νu)γ

−2iννγuux + 2iν2uxuγ +O
(
s−1
)
,
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and finally

d
((

Φ1

)
γ

)11
= −2iνγsx− 4iνγu

2s− xvγ
2

− u2vγ + 16ννγuux +O
(
s−1
)

as well as

e
((
X1

)
γ

)21
= −uxuγ +O

(
s−1
)
.

At this point, we write

P1(s, x, γ) = s3P(3)
1 (x, γ) + s2P(2)

1 (x, γ) + sP(1)
1 (x, γ) + P(0)

1 (x, γ) +O

(
ln s

s

)

where P(i)
1 (x, γ) are independent of s. Since

ν
∣∣
γ=0

= 0

we get from (7.12) and the previous computations

γ∫

0

P(3)
1 (x, t)dt =

γ∫

0

[
− 8i

(
− 2ν

3

(
1 + 2ν2

))

t

− 8i
(
− 8ν2νt

)
+ 8i

(
− 4ν3

)
t

]
dt

=
16

3
iν.

Next

γ∫

0

P(2)
1 (x, t)dt =

γ∫

0

[
− 8i

(
iν2v

)
t
− 8i

(
4iννtv + 2iν2vt

)
+ 8i

(
3iν2v

)
t

]
dt

= 0.

and

γ∫

0

P(1)
1 (x, t)dt =

γ∫

0

[
− 8i

(
2t3u2 − t

4
(u2 − v2)

)

t

− 8i

(
8ν2νtu

2 − νt
u2 − v2

2

+νvvt + 4ν2(νu2)t

)
+ 8i

(
6ν3u2 − ν

u2 − 3v2

4

)

t

+ 8i

(
− ν

2
uut +

u

2
(νu)t

)

+8i

(
iu
(
i(νu)t + iνtu− iνut

))
− 2

(
− 2iνtx− 4iνtu

2

)]
dt

= 4iνx.
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We complete the computations for P1(s, x, γ) by evaluating

γ∫

0

P(0)
1 (x, t)dt =

γ∫

0

[
− 8i

(
4iν4uux −

2iν4s2

4s2 + x
− is2ν2

4s2 + x
− iν2(u2v + uux)

− i

48
(v3 − 3vu2 + 2(xv − uux))

)

t

− 8i

(
16iν3νtuux −

8iν3νts
2

4s2 + x
− 2iννt(vu

2

+uux)− 2iν2u2vt + ivt
u2 − v2

8
− 2iνv(νu2)t + 8iν2(ν2uux)t −

4iν2s2

4s2 + x
(ν2)t

)

+8i

(
− 3iν2u2v + 12iν4uux − iν2uux −

6iν4s2

4s2 + x
+ iv

u2 − v2

16

)

t

+8i

(
− iν2uxut + iut

ux + uv

8
− iνu(νux)t + iνux(νu)t + iu(ν2ux)t

−iu(ux + uv)t
8

)
− 2

(
− xvt

2
− u2vt + 16ννtuux

)
+ 8i

(
− 2iu(ν2ux)t

+iu
(ux + uv)t

4
− 2iννtuux + iu

uvt − vut
4

+ 2iνu(νux)t − 2iνux(νu)t

−2iννtuux + 2iν2uxut

)
− 2
(
− uxut

)]
dt

= −2ν2 +
2

3
(xv − uux) + 2

∫ γ

0

uxutdγ.

The next Proposition will be useful

Proposition 7.2.1 Let u = u(x, γ), γ < 1 denote the Ablowitz-Segur solution of the

boundary value problem

uxx = xu+ 2u3, u(x) ∼ γAi(x), x→ +∞.

Then

2

3

(
xv(x, γ)− u(x, γ)ux(x, γ)

)
+2

γ∫

0

ux(x, t)ut(x, t)dt = −
∞∫

x

(y− x)u2(y, γ)dy (7.13)

where v = (ux)
2 − xu2 − u4.

Proof Let F (x, γ) denote the left hand side in (7.13). Using the differential equation

for u as well as integration by parts, we have

∂

∂x
F (x, γ) = v(x, γ) =

(
ux(x, γ)

)2 − xu2(x, γ)− u4(x, γ)
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and hence after integration

F (x, γ) = −
∞∫

x

(y − x)u2(y, γ)dy + C(γ) (7.14)

with a constant C, only depending on γ. Since u decays exponentially fast as x→ ∞,

the same limit on both sides of (7.14) gives us the stated identity.

Let us summarize our previous computations. As s→ ∞, uniformly on any compact

subset of the set (1.19)

γ∫

0

P1(s, x, t)dt = iν

(
16

3
s3 + 4sx

)
−

∞∫

x

(y − x)u2(y)dy + 2(iν)2 +O

(
ln s

s

)
(7.15)

To move further ahead in the equation of the γ-derivative, let us define

P2(s, x, γ) =
(
A11 − A22

)
φ̂11(s) + A12φ̂21(s) + A21φ̂12(s), φ̂(s) =

∂Φ̌

∂γ
(s)
(
Φ̌(s)

)−1

with (compare (5.21))

A =
γ

2πi
Φ̌(s)


−1 1

−1 1


(Φ̌(s)

)−1
.

Since

A11 = − γ

2πi

(
Φ̌11(s) + Φ̌12(s)

)(
Φ̌21(s) + Φ̌22(s)

)

we can now use the identities derived in section 7.1 for Φ̌ij(±s). With

R(±1) = I +
1

2πi

∫

ΣR

R−(w)
(
GR(w)− I

) dw

w ∓ 1

= I +
1

2πi

∫

C0

(
GR(w)− I

) dw

w ∓ 1
+O

(
s−2
)

= I ± i

2s


 v u

−u −v


 +O

(
s−2
)

(7.16)

and the classical identity

Γ(z)Γ(1− z) =
π

sin πz
, z ∈ C\Z
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one concludes

A11 = ν +O
(
s−1
)
, A22 = −ν +O

(
s−1
)

uniformly on any compact subset of the set (1.19). Also

A12 = ν(16s3 + 4xs)−2νe2s
3ϑ(1) Γ(ν)

Γ(−ν) +O
(
s−1
)

(7.17)

and

A21 = −ν(16s3 + 4xs)2νe−2s3ϑ(1)Γ(−ν)
Γ(ν)

+O
(
s−1
)
. (7.18)

Next we use (7.16) to evaluate asymptotically the identities for Φ̌ij(s) obtained in

section 7.1

Φ̌11(s) = (16s3 + 4xs)−νei
π
2
νes

3ϑ(1)
(
c0(−ν) + c1(−ν)

(
ln(16s3 + 4xs)− i

π

2

))

+O

(
ln s

s

)

Φ̌12(s) = −(16s3 + 4xs)−νei
π
2
νes

3ϑ(1)
(
c0(1 + ν)

Γ(1 + ν)

Γ(−ν) + c1(−ν)
(
ln(16s3 + 4xs)

+i
π

2

))
+O

(
ln s

s

)

Φ̌21(s) = −(16s3 + 4xs)νei
π
2
νe−s3ϑ(1)

(
c0(1− ν)

Γ(1− ν)

Γ(ν)
+ c1(ν)

(
ln(16s3 + 4xs)

−iπ
2

))
+O

(
ln s

s

)

Φ̌22(s) = (16s3 + 4xs)νei
π
2
νe−s3ϑ(1)

(
c0(ν) + c1(ν)

(
ln(16s3 + 4xs) + i

π

2

))

+O

(
ln s

s

)
.
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Combined with (7.17) and (7.18), we deduce the following asymptotics for P2(s, x, γ)

P2(s, x, γ) = 2νeiπν
(
c0(ν) + c1(ν)

(
ln(16s3 + 4xs) + i

π

2

))[
νγ

(
i
π

2

− ln(16s3 + 4xs)

)(
c0(−ν) + c1(−ν)

(
ln(16s3 + 4xs)− i

π

2

))
+
(
c0(−ν)

+c1(−ν)
(
ln(16s3 + 4xs)− i

π

2

))
γ

]
− 2νeiπν

(
c0(1− ν)

Γ(1− ν)

Γ(ν)
+ c1(ν)

×
(
ln(16s3 + 4xs)− i

π

2

))[
νγ

(
i
π

2
− ln(16s3 + 4xs)

)(
c0(1 + ν)

Γ(1 + ν)

Γ(−ν)

+c1(−ν)
(
ln(16s3 + 4xs) + i

π

2

))
+
(
c0(1 + ν)

Γ(1 + ν)

Γ(−ν) + c1(−ν)

×
(
ln(16s3 + 4xs) + i

π

2

))
γ

]
− νeiπν

Γ(ν)

Γ(−ν)
(
c0(ν) + c1(ν)

(
ln(16s3 + 4xs)

+i
π

2

))(
c0(1− ν)

Γ(1− ν)

Γ(ν)
+ c1(ν)

(
ln(16s3 + 4xs)− i

π

2

))
γ
+ νeiπν

Γ(ν)

Γ(−ν)

×
(
c0(ν) + c1(ν)

(
ln(16s3 + 4xs) + i

π

2

))
γ

(
c0(1− ν)

Γ(1− ν)

Γ(ν)
+ c1(ν)

×
(
ln(16s3 + 4xs)− i

π

2

))
+ νeiπν

Γ(−ν)
Γ(ν)

(
c0(−ν) + c1(−ν)

(
ln(16s3 + 4xs)

−iπ
2

))(
c0(1 + ν)

Γ(1 + ν)

Γ(−ν) + c1(−ν)
(
ln(16s3 + 4xs) + i

π

2

))
γ
− νeiπν

Γ(−ν)
Γ(ν)

×
(
c0(−ν) + c1(−ν)

(
ln(16s3 + 4xs)− i

π

2

))
γ

(
c0(1 + ν)

Γ(1 + ν)

Γ(−ν)

+c1(−ν)
(
ln(16s3 + 4xs) + i

π

2

))
+O

(
(ln s)3

s

)
, s→ ∞.

What is left in the identitiy stated in Proposition 5.3.3 is the term

P3(s, x, γ) =
(
B11 − B22

)
φ̃11(−s) +B12φ̃21(−s) +B21φ̃12(−s),

with

B11 = ν +O
(
s−1
)
, B12 = ν(16s3 + 4xs)2νe−2s3ϑ(1)Γ(−ν)

Γ(ν)
+O

(
s−1
)

and

B21 = −ν(16s3 + 4xs)−2νe2s
3ϑ(1) Γ(ν)

Γ(−ν) +O
(
s−1
)
, s→ ∞
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which, also here, holds uniformly on any compact subset of (1.19). Again (7.16)

allows us to simplify the idenitites for Φ̌ij(−s) obtained in section 7.1 and we are lead

to the following asymptotics for P3(s, x, γ)

P3(s, x, γ) = 2νeiπν
(
c0(−ν) + c1(−ν)

(
ln(16s3 + 4xs)− i

π

2

))[
νγ

(
i
π

2

+ ln(16s3 + 4xs)

)(
c0(ν) + c1(ν)

(
ln(16s3 + 4xs) + i

π

2

))
+
(
c0(ν) + c1(ν)

×
(
ln(16s3 + 4xs) + i

π

2

))
γ

]
− 2νeiπν

(
c0(1 + ν)

Γ(1 + ν)

Γ(−ν) + c1(−ν)

×
(
ln(16s3 + 4xs) + i

π

2

))[
νγ

(
i
π

2
+ ln(16s3 + 4xs)

)(
c0(1− ν)

Γ(1− ν)

Γ(ν)

+c1(ν)

(
ln(16s3 + 4xs)− i

π

2

))
+
(
c0(1− ν)

Γ(1− ν)

Γ(ν)

+c1(ν)

(
ln(16s3 + 4xs)− i

π

2

))
γ

]
− νeiπν

Γ(−ν)
Γ(ν)

(
c0(−ν) + c1(−ν)

×
(
ln(16s3 + 4xs)− i

π

2

))(
c0(1 + ν)

Γ(1 + ν)

Γ(−ν) + c1(−ν)
(
ln(16s3 + 4xs)

+i
π

2

))
γ
+ νeiπν

Γ(−ν)
Γ(ν)

(
c0(−ν) + c1(−ν)

(
ln(16s3 + 4xs)− i

π

2

))
γ

×
(
c0(1 + ν)

Γ(1 + ν)

Γ(−ν) + c1(−ν)
(
ln(16s3 + 4xs) + i

π

2

))
+ νeiπν

Γ(ν)

Γ(−ν)
(
c0(ν)

+c1(ν)

(
ln(16s3 + 4xs) + i

π

2

))(
c0(1− ν)

Γ(1− ν)

Γ(ν)
+ c1(ν)

(
ln(16s3 + 4xs)

−iπ
2

))
γ
− νeiπν

Γ(ν)

Γ(−ν)
(
c0(ν) + c1(ν)

(
ln(16s3 + 4xs) + i

π

2

))
γ

×
(
c0(1− ν)

Γ(1 − ν)

Γ(ν)
+ c1(ν)

(
ln(16s3 + 4xs)− i

π

2

))
+O

(
(ln s)3

s

)
, s→ ∞.

The two expansions for P2(s, x, γ) and P3(s, x, γ) combined together allow us to

evaluate
γ∫

0

(
P2(s, x, t)−P3(s, x, t)

)
dt. (7.19)

In this evaluation it is important to recall the definitions of c0(ν) and c1(ν)

c0(ν) = − 1

Γ(ν)

(
ψ(ν) + 2γE

)
, c1(ν) = − 1

Γ(ν)
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as well as the functional equation of the Digamma function (see e.g. [5])

ψ(z) = ψ(z + 1)− 1

z
= ψ(1− z)− π cotπz, z ∈ C\{0,−1,−2, . . .}.

It implies

c0(ν)c1(−ν) + c1(ν)c0(−ν)− c0(1 + ν)
Γ(1 + ν)

Γ(−ν) c1(ν)− c1(−ν)c0(1− ν)
Γ(1− ν)

Γ(ν)
= 0

and shows therefore that all terms of O
(
(ln s)2

)
in (7.19) vanish. The remaining terms

of O(ln s) and O(1) can be computed in a similar way, we obtain

∫ γ

0

(
P2(s, x, t)− P3(s, x, t)

)
dt = 6(iν)2 ln s+ 8(iν)2 ln 2 (7.20)

+2

γ∫

0

ν(t)
(
ln Γ(ν(t))− ln Γ(−ν(t))

)
t
dt+O

(
(ln s)3

s

)

as s → ∞ uniformly on any compact subset of the set (1.19). The latter statement

combined with (7.15) implies Theorem 1.3.1 with the “constant” term

χ0 = 2(iν)2 + 8(iν)2 ln 2 + 2

γ∫

0

ν(t)

(
ln

Γ(ν(t))

Γ(−ν(t))

)

t

dt

and in terms of Proposition 5.1.2 therefore completes the proof of Theorem 1.18. Up

to this point, we have verified Theorem 1.3.1 with an error term of

O

(
(ln s)3

s

)
.

We can use Proposition 5.3.1 to improve this error estimate. With (7.16) after sim-

plification

R(s, s) = −iν(8s2 + 2x)− 3(iν)2

s
+O

(
s−2
)

and also

R(−s,−s) = −iν(8s2 + 2x)− 3(iν)2

s
+O

(
s−2
)

which implies via (2.18)

∂

∂s
ln det(I − γKcsin) = iν(16s3 + 4x) +

6(iν)2

s
+O

(
s−2
)
, s→ ∞
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uniformly on any compact subset of the set (1.19). Integrating the latter equation

with respect to s and comparing with (7.20), we have completed the proof of Theorem

1.3.1.

7.3 Proof of Theorem 1.3.3

In order to derive the large zero distribution of det (I − γKcsin) for γ > 1, we trace

back all relevant transformations and use (7.1),(7.2). First

θ(λ) 7→ Φ(λ) 7→ Υ(z) 7→ ∆(z) 7→ R(z) 7→ P(z) 7→ Q(z)

and we connect the values of R(±1) and R′(±1) to Q(±1) and its derivative:

R(1) =
(
Q(1) + (I + B̂)Q′(1)

)

 1 0

ip 0


 + (I + B̂)Q(1)


 0 0

ν0ip
3+ x

4s2

1+ x
4s2

1
2


 (7.21)

and

R′(1) =
(
Q(1) + (I + B̂)Q′(1)

)

 0 0

ν0ip
3+ x

4s2

1+ x
4s2

1
2


+ (I + B̂)Q(1) (7.22)

×


 0 0

ν0ipκ̂(s, x) −1
4


+

(
Q′(1) + (I + B̂)

Q′′(1)

2

)
 1 0

ip 0




where

κ̂(s, x) =
1

2

(
10

3

(
1 +

x

4s2

)
+
(
ν0 −

1

2

)(
3 +

x

4s2

)2)(
1 +

x

4s2

)−2

.

Also

R(−1) =
(
Q(−1)− (I − B̂)Q′(−1)

)

0 ip

0 1


− (I − B̂)Q(−1)


−1

2
−ν0ip

3+ x
4s2

1+ x
4s2

0 0




and

R′(−1) =
(
Q(−1)− (I − B̂)Q′(−1)

)

−1

2
−ν0ip

3+ x
4s2

1+ x
4s2

0 0


 (7.23)

+

(
Q′(−1)− (I − B̂)

Q′′(−1)

2

)
0 ip

0 1


− (I − B̂)Q(−1)


−1

4
ν0ipκ̂(s, x)

0 0


 .
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Next we evaluate Q(±1): For any z ∈ ΣQ

Q−(z) = I +
1

2πi

∫

ΣR

Q−(w)
(
GQ(w)− I

) dw

w − z−

= I +
i

2sz

(
v −u
u −v


−




1
z−1

0

0 1
z+1


(B0(z)

)−1

×


 v ue−2πiν

−ue2πiν −v


B0(z)


z − 1 0

0 z + 1



)

+O
(
s−2
)
,

and thus

Q(±1) = I ± i

2s


v −u
u −v


∓ ν0

s2


−u2 −ux
ux u2




+
1

8s2


 u2 − v2 −2(ux + uv)

−2(ux + uv) u2 − v2


 +O

(
s−3
)
, s→ ∞.

Similarly

Q′(±1) = − i

2s


v −u
u −v


+

ν0
s2


−u2 −ux
ux u2




∓ 1

4s2


 u2 − v2 −2(ux + uv)

−2(ux + uv) u2 − v2


+O

(
s−3
)
.

These computations imply for the matrix

N =

(
Q(1)

(
1

ip

)
, Q(−1)

(
ip

1

))
,

which appears in (6.20), that

detN = 2p
(
cosσ − v

s
sin σ +

u

s

+
2iν0
s2
(
ux + u2 sin σ

)
+
u2 − v2

2s2
cosσ +O

(
s−3
))
. (7.24)

We agreed that s stays away from the small neighborhood of the points {sn} defined

by cosσ(sn, x, γ) = 0 and therefore, for sufficiently large s lying outside of the zero
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set of the latter transcendental equation, the stated determinant is non-zero. Back

to (6.20), this implies

B̂ = − 2ip

detN

[
sin σ −1

1 − sin σ


+

cosσ

s


v −u
u −v


+

1

s2

{
2iν0 cosσ

×


−u2 −ux
ux u2


 +

1

2


−v2 sin σ −u2

u2 v2 sin σ


+

ux
2


 −1 sin σ

− sin σ 1




+uv sin σ


 0 1

−1 0



}
+O

(
s−3
)
]
, s→ ∞

and with

− 2ip

detN =
1

cosσ

[
1 +

1

s

(
v tan σ − u

cosσ

)
+

1

s2

(
v2 tan2 σ − 2uv sin σ

cos2 σ
+

u2

cos2 σ

−u
2 − v2

2
− 2iν0u

2 tan σ − 2iν0ux
cosσ

)
+O

(
s−3
)
]

we obtain in turn

B̂ =
1

cosσ


sin σ −1

1 − sin σ


+

1

s

{
v sin σ − u

cos2 σ


sin σ −1

1 − sin σ


 +


v −u
u −v



}

+
1

s2

{
1

2 cosσ


2v2 sin σ − u2 sin σ − ux −v2 + ux sin σ

v2 − ux sin σ −2v2 sin σ + u2 sin σ + ux




−2iν0(u
2 sin σ + ux)

cos2 σ


sin σ −1

1 − sin σ


 +

(v sin σ − u)2

cos3 σ


sin σ −1

1 − sin σ




+


−uv cosσ − 2iν0u

2 u2 cosσ − 2iν0ux

−u2 cosσ + 2iν0ux uv cosσ + 2iν0u
2



}
+O

(
s−3
)
, s→ ∞

where all expansions are uniformly on any compact subset of the set (1.29). Let us

go back to (7.1) and (7.2). Since ν = ν0 +
1
2
, we notice

R(s, s) = −iν0(8s2 + 2x)− i(4s2 + x)

−(16s2 + 4x)
[
R′

12(1)R22(1)−R′
22(1)R12(1)

]
+O

(
s−1
)
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and similarly

R(−s,−s) = −iν0(8s2 + 2x)− i(4s2 + x)− (16s2 + 4x)

×
[
R′

11(−1)R21(−1)−R′
21(−1)R11(−1)

]
+O

(
s−1
)
.

Next

R′
12(1) =

1

2

(
Q(1) + (I + B̂)Q′(1)

)
12
− 1

4

(
(I + B̂)Q(1)

)
12

R22(1) =
1

2

(
(I + B̂)Q(1)

)
22

R′
22(1) =

1

2

(
Q(1) + (I + B̂)Q′(1)

)
22
− 1

4

(
(I + B̂)Q(1)

)
22

R12(1) =
1

2

(
(I + B̂)Q(1)

)
12

and therefore

R′
12(1)R22(1)−R′

22(1)R12(1) =
1

4

[(
Q(1) + (I + B̂)Q′(1)

)
12

(
(I + B̂)Q(1)

)
22

−
(
Q(1) + (I + B̂)Q′(1)

)
22

(
(I + B̂)Q(1)

)
12

]
.

We combine the previously derived information on Q(1),Q′(1) and B̂ to derive

−(16s2 + 4x)
[
R′

12(1)R22(1)−R′
22(1)R12(1)

]
= (4s2 + x)

(
i+ tanσ

)
+ α̂+ +O

(
s−1
)

with a function α̂+ = α̂+(s, x, γ) such that

∫
α̂+(s, x, γ)ds = O(ln s), s→ ∞.

Also for R(−s,−s)

R(−s,−s) = −iν0(8s2 + 2x) + (4s2 + x) tan σ + α̂− +O
(
s−1
)
. (7.25)

where ∫
α̂−(s, x, γ)ds = O(ln s).

All together from Proposition 5.3.1

∂

∂s
ln det (I − γKcsin) = iν0(16s

2+4x)−(8s2+2x) tanσ−
(
α̂++α̂−

)
+O

(
s−1
)
. (7.26)
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Opposed to the latter equation, we now recall Proposition 5.3.2 and evaluate the

logarithmic x-derivative. For γ > 1,

Φ1 = lim
λ→∞

(
λ
(
Φ(λ)e−i( 4

3
λ3+xλ)σ3 − I

))

= −2νsσ3 + s(σ3 + B̂) +
is

2π

∫

ΣR

Q−(w)(w)
(
GQ(w)− I

)
dw

where the expansion for B̂ has already been computed. From this and residue theorem

Φ1 = −2νsσ3 + sσ3 −
is

cosσ


sin σ −1

1 − sin σ


− i

2


v −u
u −v




−i(v sin σ − u)

cos2 σ


sin σ −1

1 − sin σ


+O

(
s−1
)
,

hence

∂

∂x
ln det (I − γKcsin) = 4iν0s+ v − 2s tanσ − 2v

cos2 σ
+

2u sinσ

cos2 σ
+O

(
s−1
)
. (7.27)

Integrating both identities (7.26), (7.27) and comparing the result, we conclude for

s→ ∞ away from the zeros of cosσ = 0

ln det(I − γKcsin) = iν0

(
16

3
s3 + 4sx

)
+ ln | cosσ(s, x, γ)|+ c2 ln s

−
∞∫

x

(y − x)u2(y, γ)dy + c3(γ) +O
(
s−1
)
, (7.28)

with real-valued constants ci, solely depending on γ and the error term is uniform on

any compact subset of the set (1.29). The given expansion (7.28) verifies the claim

on the asymptotic distribution of the zeros of the Fredholm determinant as given in

Theorem 1.3.3.

7.4 Proof of Theorem 1.3.2

The final two sections of this dissertation complete the proofs of Theorems 1.2.1

and 1.3.2. We use the logarithmic t-derivative as prepared in Proposition 5.3.4, i.e.
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we need to derive the large s-asymptotics of the coefficients Θ1,Θ2 and Θ3 in the

asymptotic series

Θ(λ) = I +
Θ1

λ
+

Θ2

λ2
+

Θ3

λ3
+O

(
λ−4
)
, λ→ ∞.

First trace back the relevant transformations

Θ(λ) 7→ Φ(λ) 7→ Λ(z) 7→ K(z)

and recall the important estimations (6.37) and (6.38)

‖GK − I‖L2∩L∞(ΣK) ≤ cs−1, ‖K− − I‖L2(ΣK) ≤ cs−1, s→ ∞

which are uniform in the parameters (x, t) chosen from any compact subset of the set

{
(x, t) ∈ R

2 : −∞ < x <∞, 0 ≤ t ≤ 1
}
. (7.29)

We compute

Θ1 = lim
λ→∞

(
λ
(
Θ(λ)− I

))
, Θ2 = lim

λ→∞

(
λ2
(
Θ(λ)− I − Θ1

λ

))
,

Θ3 = lim
λ→∞

(
λ3
(
Θ(λ)− I − Θ1

λ
− Θ2

λ2

))
.

and therefore need the following expansions:

N (z) = I +
i

2z


 0 1

−1 0


+

1

8z2


1 0

0 1


+

3i

16z3


 0 1

−1 0


 +O

(
z−4
)
,

as well as

ĝ(z) = i

(
4

3
tz3 +

xz

s2

)
− i

2z

(
t+

x

s2

)
− i

2z3

(
t

3
+

x

4s2

)
+O

(
z−5
)
.

and

K(z) = I +
i

2πz

∫

ΣK

K−(w)
(
GK(w)− I

)
dw +

i

2πz2

∫

ΣK

K−(w)
(
GK(w)− I

)
w dw

+
i

2πz3

∫

ΣK

K−(w)
(
GK(w)− I

)
w2 dw +O

(
z−4
)
,
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and also

e(s
3ĝ(z)−is3( 4

3
tz3+xz

s2
))σ3 = I − i

2z
(ts3 + xs)σ3 −

1

8z2
(ts3 + xs)2I

− i

2z3

(
ts3

3
+
xs

4

)
σ3 +

i

48z3
(ts3 + xs)3σ3 +O

(
z−4
)
.

They imply

Θ1 = s lim
z→∞

(
z
(
R(z)N (z)e(s

3 ĝ(z)−is3( 4
3
tz3+xz

s2
))σ3 − I

))

= s

(
− i

2

(
ts3 + xs

)
σ3 −

σ2
2

+
i

2π

∫

ΣK

K−(w)
(
GK(w)− I

)
dw

)

and

Θ2 = s2
(
− 1

8

(
ts3 + xs

)2
I − 1

4

(
ts3 + xs

)
σ1 +

I

8

+
1

4π

∫

ΣK

K−(w)
(
GK(w)− I

)
dw
(
ts3 + xs

)
σ3

− i

4π

∫

ΣK

K−(w)
(
GK(w)− I

)
dwσ2 +

i

2π

∫

ΣK

K−(w)
(
GK(w)− I

)
w dw

)
.

Moreover

Θ3 = s3
(
i

48

(
ts3 + xs

)3
σ3 +

1

16

(
ts3 + xs

)2
σ2 −

i

16

(
ts3 + xs

)
σ3

− i

2

(
ts3

3
+
xs

4

)
σ3 −

3i

16
σ2 −

i

16π

∫

ΣK

K−(w)
(
GK(w)− I

)
dw
(
ts3 + xs

)2

− i

8π

∫

ΣK

K−(w)
(
GK(w)− I

)
dw (ts3 + xs)σ1 +

i

16π

∫

ΣK

K−(w)
(
GK(w)− I

)
dw

+
1

4π

∫

ΣK

K−(w)
(
GK(w)− I

)
w dw (ts3 + xs)σ3

− i

4π

∫

ΣK

K−(w)
(
GK(w)− I

)
w dwσ2 +

i

2π

∫

ΣK

K−(w)
(
GK(w)− I

)
w2dw

)
.

Our next move focuses on the computation of Jn =
∫
ΣK

K−(w)
(
GK(w)−I

)
wn dw, n =

0, 1, 2. As we see from (6.37) and (6.38)

Jn = O
(
s−3
)
, s→ ∞, t > 0 Jn = O

(
s−1
)
, s→ ∞, t = 0



150

on the other hand (5.30) has to be evaluated up to O
(
s−1
)
in order to determine

the constant term in Theorem 1.27. Hence we need to iterate the underlying integral

equation. First in case t > 0 for z ∈ ΣK

K−(z)− I =
1

2πi

∫

Ĉr

(
GK(w)− I

) dw

w − z−
+

1

2πi

∫

Ĉl

(
GK(w)− I

) dw

w − z−
+O

(
s−6
)

and if t = 0 the latter error term is of order O
(
s−2
)
. Thus as s→ ∞

K−(z)− I =
1

2πi

∫

Ĉr

i

16
√
ζ


 3β−2 − β2 i(3β−2 + β2)

i(3β−2 + β2) −(3β−2 − β2)


 dw

w − z−

+
1

2πi

∫

Ĉl

1

16
√
ζ


 3β2 − β−2 −i(3β2 + β−2)

−i(3β2 + β−2) −(3β2 − β−2)


 dw

w − z−

modulo a correction term. Since

∫

Ĉr

β−2(w)√
ζ(w)(w − z−)

dw = − 3

4s3

(
z2t +

t

2
+

3x

4s2

)−1
2πi

z + 1

∫

Ĉr

β2(w)√
ζ(w)(w − z−)

dw =
3

4s3

((
3t

2
+

3x

4s2

)−1

−
(
z2t +

t

2
+

3x

4s2

)−1
)

2πi

z − 1

∫

Ĉl

β2(w)√
ζ(w)(w − z−)

dw = − 3i

4s3

(
z2t +

t

2
+

3x

4s2

)−1
2πi

z − 1

∫

Ĉl

β−2(w)√
ζ(w)(w − z−)

dw =
3i

4s3

((
3t

2
+

3x

4s2

)−1

−
(
z2t +

t

2
+

3x

4s2

)−1
)

2πi

z + 1

we obtain

K−(z)− I =
3i

64s3

(
− 2

(
z2t+

t

2
+

3x

4s2

)−1

−
(
3t

2
+

3x

4s2

)−1
)

×
[

1

z − 1


 1 −i
−i −1


+

1

z + 1


1 i

i −1



]
+O

(
s−6
)

(7.30)

≡ 3i

64s3
f(z, t)

[
1

z − 1


 1 −i
−i −1


+

1

z + 1


1 i

i −1



]
+O

(
s−6
)
,
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for t > 0 respectively with a correction term of order O
(
s−2
)
in case t = 0. We are

going to improve the latter estimation via iteration

K−(z)− I =

∫

ΣK

(
K−(w)− I

)(
GK(w)− I

) dw

w − z−
+

∫

ΣK

(
GK(w)− I

) dw

w − z−

and the first integral K−(z)− I is given by (7.30). By residue theorem

K−(z)− I =
3i

64s3
f(z, t)

[
1

z − 1


 1 −i
−i −1


+

1

z + 1


1 i

i −1



]

− 27i

128s6

(
3t

2
+

3x

4s2

)−2[
1

z − 1


 1 + i

32
2i+ 1

8

−2i− 1
8

1 + i
32


− 1

z + 1


1 + i

32
−2i− 1

8

2i+ 1
8

1 + i
32



]

+
9i

16s6
h(z, t)


1 0

0 1


+O

(
s−9
)
, s→ ∞

with

h(z, t) =

(
z2t + t

2
+ 3x

4s2

)−1

(z + 1)(z − 1)

[(
z2t+

t

2
+

3x

4s2

)−1(
1 +

3i

64

)
+

(
3t

2
+

3x

4s2

)−1
]

for t > 0 and with an error term of order O
(
s−3
)
in case t = 0. Having the latter

information we first compute J0

J0 =

∫

ΣK

(
K−(w)− I

)(
GK(w)− I

)
dw +

∫

ΣK

(
GK(w)− I

)
dw.

All integrals can be evaluated via residue theorem, we summarize the results

1

2πi

∫

ΣK

(
GK(w)− I

)
dw =

3i

32s3

(
3t

2
+

3x

4s2

)−1

σ3 −
27

512s6

(
3t

2
+

3x

4s2

)−2

σ2

+
405i

65536s9

(
3t

2
+

3x

4s2

)−3
[
5

4

27t
2
+ 3x

4s2

3t
2
+ 3x

4s2

+
7

4

]
σ3 +O

(
s−12

)
,
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as s→ ∞ for t > 0 and with an error term of order O
(
s−4
)
in case t = 0. Similarly

1

2πi

∫

Ĉr,l

(
K−(w)− I

)(
GK(w)− I

)
dw =

27

512s6

(
3t

2
+

3x

4s2

)−2

σ2

+
81

1024s9

(
3t

2
+

3x

4s2

)−3(
1− 3i

256

)
σ3 +

81

8192s9

(
3t

2
+

3x

4s2

)−3(
1− 5i

32

)
σ3

+
27

32768s9

(
3t

2
+

3x

4s2

)−4[
49t+ 3it +

(211
2

+ 3i
)(19t

2
+

3x

4s2

)]
σ3

− 81

8192s9

(
3t

2
+

3x

4s2

)−3[(
1 +

i

32

)(
3i− 4it

(
3t

2
+

3x

4s2

)−1)

−
(
2i+

1

8

)(
3 + 4t

(
3t

2
+

3x

4s2

)−1)]
σ1 +O

(
s−12

)
, s→ ∞

and we summarize

J0
2πi

=
3i

32s3

(
3t

2
+

3x

4s2

)−1

σ3 +
27

64s9

(
3t

2
+

3x

4s2

)−3(
a(s, t)σ3 + b(s, t)σ1

)
+O

(
s−12

)

(7.31)

as s → ∞ for t > 0 respectively with an error term of order O
(
s−4
)
for t = 0. Here

the functions a = a(s, t) and b = b(s, t) can be read of from the previous lines, we

state J0 in this form since as we will see, only the structure of the term of order

O
(
s−9
)
matters. Moving on to J1 and J2 similar computations imply

J1
2πi

=
3

32s3

(
3t

2
+

3x

4s2

)−1

σ1 −
81

2048s6

(
3t

2
+

3x

4s2

)−2

I +O
(
s−9
)

(7.32)

and
J2
2πi

=
3i

32s3

(
3t

2
+

3x

4s2

)−1

σ3 +O
(
s−9
)

(7.33)

in the limit s → ∞ for t > 0 or in case t = 0 with adjusted error terms. It is now

straight forward to use the given information (7.31), (7.32) and (7.33) to obtain the

large s-asymptotics for Θ1,Θ2 and Θ3. Once we have the latter expansions we go

back to (5.30)

4i

3
trace

(
− 3Θ3σ3

)
=
s3

6

(
ts3 + xs

)3 − s3

2

(
ts3 + xs

)
− 4s3

(
ts3

3
+
xs

4

)

+
3

32

(
3t

2
+

3x

4s2

)−1(
ts3 + xs

)2 − 27i

64s6

(
3t

2
+

3x

4s2

)−3(
ts3 + xs

)2
a(s, t)

−15

32

(
3t

2
+

3x

4s2

)−1

− 81

512s3

(
3t

2
+

3x

4s2

)−2(
ts3 + xs

)
+O

(
s−3
)
, s→ ∞
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and

4i

3
trace

(
2Θ2σ3Θ1

)
= − 3

16

(
3t

2
+

3x

4s2

)−1(
ts3 + xs

)2

+
27i

32s6

(
3t

2
+

3x

4s2

)−3(
ts3 + xs

)2
a(s, t)− s3

3

(
ts3 + xs

)3
+ s3

(
ts3 + xs

)

+
3

16

(
3t

2
+

3x

4s2

)−1

+
21

256s3

(
3t

2
+

3x

4s2

)−2(
ts3 + xs

)
+O

(
s−3
)

as well as

4i

3
trace

(
−Θ1σ3(Θ

2
1 −Θ2)

)
=

39

512s3

(
3t

2
+

3x

4s2

)−2(
ts3 + xs

)

+
3

32

(
3t

2
+

3x

4s2

)−1(
ts3 + xs

)2 − 27i

64s6

(
3t

2
+

3x

4s2

)−3(
ts3 + xs

)2
a(s, t)

−s
3

2

(
ts3 + xs

)
+
s6

6

(
ts3 + xs

)3 − 3

32

(
3t

2
+

3x

4s2

)−1

+O
(
s−3
)

in all cases as s → ∞ uniformly on any compact subset of the set (7.29). Now use

Proposition 5.3.4 and add up the latter three identities

∂

∂t
ln det

(
I − Ǩcsin

)
= −4

3
ts6 − xs4 − 3

8

(
3t

2
+

3x

4s2

)−1

+O
(
s−3
)
, s→ ∞

uniformly on any compact subset of the set (7.29). Now integrate and obtain

1∫

0

∂

∂t
ln det(I − Ǩcsin) dt = −2

3
s6 − s4x− 1

4
ln

(
3

2
+

3x

4s2

)
+

1

4
ln

(
3x

4s2

)
+O

(
s−3
)

= −2

3
s6 − s4x− 1

2
ln s+

1

4
ln x− 1

4
ln 2 +O

(
s−2
)
.

On the other hand

1∫

0

∂

∂t
ln det(I − Ǩcsin) dt = ln det(I −Kcsin)− ln det(I −Ksin)

and we know (see [26])

ln det(I −Ksin) = −(xs)2

2
− 1

4
ln(sx) +

1

12
ln 2 + 3ζ ′(−1) +O

(
s−1
)
, s→ ∞

hence together as s→ ∞

ln det(I −Kcsin) = −2

3
s6 − xs4 − (xs)2

2
− 3

4
ln s− 1

6
ln 2 + 3ζ ′(−1) +O

(
s−1
)
(7.34)



154

and the error term is uniform on any compact subset of the set (1.15). This proves

Theorem 1.3.2.

7.5 Proof of Theorem 1.2.1 with constant term

From Proposition 5.1.2 and equations (4.24), (7.34) we obtain immediately

ln det(I −KPII) = −2

3
s6 − s4x− 3

4
ln s +

∞∫

x

(y − x)u2(y)dy + ω +O
(
s−1
)

uniformly on any compact subset of the set (1.15) with ω = −1
6
ln 2 + 3ζ ′(−1). This

proves Theorem 1.2.1.
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8. SUMMARY

The current thesis focused on the asymptotical analysis of two one-parameter families

of Fredholm determinants det (I − γK) , γ ∈ R with the trace class operators K =

KPII and K = Kcsin acting on L2
(
(−s, s); dλ

)
. We were able to derive the large s-

asymptotics in both cases for γ ≤ 1 including the “constant” terms and stated the

large zero distributions for γ > 1. We want to discuss some possibilities for future

projects related to the determinants studied in this thesis.

• The stated expansions show, that for both kernels, the point γ = 1 is a critical

point, i.e. at this value of the parameter the large s-behavior of all determinants

undergoes a qualitative change. Hence it is a natural question to ask for the

relevant double-scale asymptotics as s → ∞, γ → 1. So far the only attempt

to describe such transitional behavior was done by Dyson in case of the sine

- kernel determinant. He uses a Coulomb gas interpretation and derives a

heuristic formula for the double-scale asymptotics which involves Jacobi theta-

functions associated with a certain elliptic curve. It is desirable to turn Dyson’s

analysis into a rigorous approach and to extend the strategy to the kernels

K = KPII and K = Kcsin.

• We mentioned in section 2.4 the possibility to derive a differential equation

associated with det (I − γKPII). If available, this equation considerably reduces

the computational effort in the asymptotical analysis. In case of the sine - kernel

Jimbo, Miwa, Mori and Sato derived an integrable system whose tau-function

is represented by det (I −Ksin). This result connects the latter determinant to

the fifth Painlevé equation and gives hope that similar systems can be derived

for K = KPII as well as K = Kcsin.
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• In case γ > 1 we mainly focused on the large zero distribution of det(I − γK),

although our analysis produces asymptotic series up to certain “constant” terms,

see (4.11) and (7.34). On one hand it would be nice to compute those constants,

on the other hand the appearance of the Ablowitz-Segur solution in (7.34) leads

to the interesting question of what happens to det (I − γKcsin), the underlying

Riemann-Hilbert problem and expansion (7.34) in case we choose x to coincide

with one of the poles of u?
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distribution and the Painlevé II hierarchy, Comm. Pure. Appl. Math., 63 no. 3
(2010), 362 - 412

[17] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann- Hilbert
Approach, Courant Lecture Notes in Mathematics 3, Amer. Math. Soc., Provi-
dence, RI, 1999

[18] P. Deift, A. Its, I. Krasovsky, and X. Zhou, The Widom-Dyson constant for the
gap probability in random matrix theory, J. Comput. Appl. Math. 202 (2007),
no. 1, 26 - 47

[19] P. Deift, A. Its, and I. Krasovsky, Asymptotics of the Airy-kernel determinant,
Communications in Mathematical Physics, 278 (2008), no. 3, 643 - 678

[20] P. Deift, A. Its, and I. Krasovsky, Toeplitz matrices and Toeplitz determinants
under the impetus of the Ising model. Some history and some recent results,
preprint: arXiv:1207.4990 (2012)

[21] P. Deift, A. Its, and I. Krasovsky, On Asymptotics of a Toeplitz determinant
with singularities, preprint: arXiv:1206.1292 (2012)

[22] P. Deift, A. Its, and X. Zhou, A Riemann-Hilbert approach to asymptotic prob-
lems arising in the theory of random matrix models, and also in the theory of
integrable statistical mechanics, Ann. Math. 146 (1997), 149 - 235

[23] P. Deift, T. Kriecherbauer, and K.T-R McLaughlin, New results on the equi-
librium measure for logarithmic potentials in the presence of an external field,
J. Approx. Theory 95 (1998), 388 - 475

[24] P. Deift, T. Kriecherbauer, K.T-R McLaughlin, S. Venakides, and X. Zhou,
Uniform asymptotics for polynomials orthogonal with respect to varying ex-
ponential weights and applications to universality questions in random matrix
theory, Comm. Pure Appl. Math. 52 (1999), 1335 - 1425

[25] P.A. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert
problems. Asymptotics for the MKdV equation, Ann. of Math., 137 (1993) 295
- 368

[26] F. Dyson, Fredholm determinants and inverse scattering problems, Commun.
Math. Phys. 47 (1976), 171 - 183

[27] T. Ehrhardt, Dyson’s constant in the asymptotics of the Fredholm determinant
of the sine kernel, Comm. Math. Phys. 262 (2006), 317 - 341

[28] L. Faddeev, L. Takhtajan, Hamiltonian methods in the theory of solitons,
Springer-Verlag, Berlin, Heidelberg, 1987

[29] A. Fokas, A. Its, A. Kapaev, V. Novokshenov, Painlevé transcendents. The
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δ-function Bose gas problem, Physica D 20 (1986), 187 - 216

[46] A. Odlyzko, On the distribution of spacings between zeros of the zeta function,
Math. Comp., 48 (1987), 273 - 308



160

[47] L. Pastur, M. Shcherbina, Universality of the local eigenvalue statistics for a
class of unitary invariant random matrix ensembles, J. Statist. Phys. 86 (1996),
109 - 147

[48] H. Segur, M. Ablowitz, Asymptotic solution of nonlinear evolution equations
and a Painlevé transcendent, Physica D 3 (1981), 165 - 184

[49] B. Simon, Trace ideals and their applications, London Mathematical Society
Lecture Note Series, 35. Cambridge University Press, Cambridge-New York,
(1979)

[50] B.I. Suleimanov, On Asymptotics of Regular Solutions for a Special Kind of
Painleve V Equation, Lect. Notes in Math., Springer Verlag, 1191 (1986) 230 -
255

[51] C. A. Tracy, Asymptotics of the τ -function arising in the two-dimensional Ising
model, Communications in Mathematical Physics, 142 (1991), 297 - 311



VITA



161

VITA

Thomas Bothner was born on December 1st, 1984 in Ludwigsburg, Germany. He

spent his childhood in a small town in southwest Germany, graduating from Friedrich

List Gymnasium Asperg in 2004. After one year of social services, Thomas entered

Ulm university with the intention to become a physicist. However at the same time

he got interested in mathematics and received in the end bachelor degrees in both

disciplines as well as a master degree in mathematics. In fall 2009 he entered the Ph.D

program at Indiana University-Purdue University Indianapolis, studying mathemat-

ical physics and obtaining a Ph.D. in mathematics under the guidance of Professor

Alexander Its in 2013.


	ETDForm9a1
	thesis

