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ABSTRACT

McBride, Matthew Scott Ph.D., Purdue University, August 2012. D-bar and Dirac
Type Operators on Classical and Quantum Domains. Major Professor: Slawomir
Klimek.

I study d-bar and Dirac operators on classical and quantum domains subject to the

APS boundary conditions, APS like boundary conditions, and other types of global

boundary conditions. Moreover, the inverse or inverse modulo compact operators

to these operators are computed. These inverses/parametrices are also shown to be

bounded and are also shown to be compact, if possible. Also the index of some of the

d-bar operators are computed when it doesn’t have trivial index. Finally a certain

type of limit statement can be said between the classical and quantum d-bar operators

on specialized complex domains.
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1. INTRODUCTION

Analysis of operators, especially unbounded operators is rich in theory and has di-

verse applications to other fields of mathematics. For example if one was studying

differential operators, one particular thing that can be studied is the spectrum of that

operator. This can lead to expansion theorems given a certain potential which allows

solutions to a vast amount of differential and partial differential equations to be com-

puted and studied. Also with the theory of partial differential equations, knowing

how a differential operator behaves will allow people to esitmate solutions to certain

types of partial differential equations through integral estimates of the differential

operator. A priori the operator is of course unbounded however when restricted to a

proper domain, usually some kind of initial value or boudary value such as Dirichlet

or Von Neumann is assumed to be satisfied, the operator on that domain will then

usually be bounded. However different types of initial or boundary values do lead to

of course different types of restrictions to the operator.

Another useful application of analysis of unbounded operators is in noncommuta-

tive geometry. In this theory one tries to describe what a noncommutative space is

and the types of operators that act there. When one tries to describe the space’s struc-

ture, as one would describe geometrical and differential-geometrical properties of say,

L2(R), differential-difference operators arise naturally in this description. Knowing

how differential operators behave on known commutative spaces, one expects there

to be a very close analogy and similar theory in the quantum case. One particular

operator that comes up is the Dirac operator, a first order differential operator whose

square is a second order elliptic operator, such as the Laplacian. Knowing how Dirac

operators behave, one expects their quantum analogs to be similar and to be some

type of commutator. One differential-geometrical concept that comes to play is the

index of the operator.



2

The Atiyah-Patodi-Singer Index Theorem (APS) establishs an index formlua for

Dirac operators on a closed manifold with boundary which depends only on the

differential-geometric properties of the manifold. The original proof of the Atiyah-

Singer Index Theorem, also only had closed manifolds without boundary, was quite

complicated and in [2], Aityah, Patodi, and Singer devised a new proof using heat

kernels. If D is a Dirac or d-bar operator, meaning it is the square root of a second

order elliptic operator, and D∗ is its adjoint, then DD∗ and D∗D are self adjoint and

their non-zero eigenvalues have the same multiplicities, however their zero eigenspaces

may have different multplicities. Then it was shown in [2] that for t ≥ 0

Index(D) := dim Ker(D)− dim Ker(D∗) = tr
(
e−tD

∗D
)
− tr

(
e−tDD

∗)
.

For this to be established, the authors first had to show that D was a Fredholm

operator, meaning, that D was closed; and has closed range since D is unbounded, and

that D also had finite dimensional kernel and cokernel. They were able to establish

this by showing D was invertible modulo compact operators. This is when the APS

boundary condition had to be initially setup. If we let M be a closed manifold with

boundary, then the main idea the authors exploited was to attach an infinite cylinder

on the collar of the boundary and required that the Dirac operator decomposes into a

certain form. In otherwords if Y is the boundary of M and Y ×R≥0 is the attachment

of the infinite (half-infinite) cylinder to the boundary and D is the Dirac operator on

M , then the decomposition of D that was required is

D =
∂

∂t
+B

over Y ×R≥0, where B is a first order self adjoint elliptic operator acting on C∞(Y,E)

and E is a vector bundle over Y . The APS boundary condition is that for sections

f(y, t) of E lifted to Y × R≥0, then one requires that

Pf(· , 0) = 0 (1.1)
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where P is the spectral projection of B. This is a non-local boundary condition that

aleviates problems that classical boundary conditions, such as Dirichlet, have when

trying to do global analysis. Since most of this thesis is spent finding inverses or

inverses modulo compact operators to classical and quantum Dirac operators over

different closed manifolds with boundary, time will be taken now to state the main

technical theorem that was established in [2]. First more notation must be added.

The space of all C∞ functions satisfying (1.1) will be denoted by C∞(Y ×R≥0, E;P )

and C∞comp will denote functions vanishing for t ≥ C for some C. Also Hk will denote

the Sobolev space of sections with derivatives up to order k in L2. Now the theorem

can be stated and it is

Theorem 1.0.1 There is a linear operator

Q : C∞comp(Y × R≥0, E)→ C∞(Y × R≥0, E;P )

such that

(i) DQg = g for all g ∈ C∞comp(Y × R≥0, E)

(ii) QDf = f for all f ∈ C∞(Y × R≥0, E;P )

(iii) The kernel Q(y, t; z, v) of Q is C∞ for t 6= v; y, z ∈ Y and t, v ∈ R≥0

(iv) Q extends to a continuous map Hk−1 → Hk
loc for all integers k ≥ 1.

The main technique the authors used to prove this was expanding the solutions

in terms of the eigenfunctions of B, in otherwords they did a spectral/Fourier de-

composition and then used some functional analysis techniques in estimations. In

their paper, [2], the authors only considered Dirac operators on closed manifolds with

boundary where the functions on the manifold commuted.

Over the years, applications to quantum mechanics have given the rise for a non-

commutative analog to the APS theorem. As of now, there is no known generic index

formula, or even a standard technique, like the above theorem, that generalizes the

index theorem to non-commutative spaces. The goal of this thesis is to find an inverse
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or inverse modulo compact operators, sometimes called parametrices (parametrix s.)

of classical Dirac operators and quantum Dirac operators on simple domains subject to

APS-like boundary conditions, the important fact being that the boundary condition

is a non-local condition. These domains will be the disk, the annulus, sometimes

called the finite cylinder, the punctured disk and the solid torus. It’s important to

note that all these domains with the exception of the finite cylinder, do not have the

cylindrical structure on the boundary that the APS theory requires, thus the need

for a slightly different but similar global boundary condition when compared to the

exact APS boundary condition is necessary. Also another goal is showing that under

mild conditions these parametrices are compact operators in their own right and if the

indices of the classical and quantum Dirac operators are not trivial, then they must be

the same. The last goal is showing that on two of the domains, the disk and annulus,

the quantum parametrix converges to the classical one in some sense described later.

The overall point of these goals is that through out this thesis, a generic technique

emerges that works for all the cases considered here and may be a technique that is

needed to discovering the general method that would yield a quantum analog of an

APS-like Theorem. Another goal is that there is no generic framework when dealing

with non-commutative spaces, no standards, etc. In order to understand these spaces

better, non-trivial examples must be developed and understood.

This thesis is divided into five chapters not including this chapter or the summary

chapter. The first chapter discusses classical d-bar operators on the disk and annulus.

It also discusses a natural choice for a quantum d-bar operator on the quantum

versions of the disk and annulus through C∗−algebras. The second chapter is a

shorter chapter that discusses classical Dirac type operators on the punctured disk

and it also discusses the non-commutative analongs. In third chapter, a quantization-

deformation of the d-bar operator on the disk and annulus is discussed. It shows

that through continuous fields of Hilbert spaces and under suitable conditions, the

quantum parametrix converges to the classical one. In the fourth chapter, Dirac type

operators on the classical solid torus are discussed. Moreover a different type of non-
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local boundary condition is discussed that is similar in spirit to the APS boundary

condition and similar to the APS-like boundary condition used in the first three

chapters. Finally in the last chapter quantum Dirac type operators are discussed

on the quanutm solid torus subject to the non-local boundary condition that was

discussed in chapter four but of course in the noncoummtative sense. Throughout

this entire thesis, there are infinite products that arise and a convention needs to be

made. Let {an} be a sequence of complex numbers for n ∈ N or n ∈ Z. For n ∈ N,

we say the infinite product

∞∏
n=0

an

exists and will be denoted

∞∏
n=0

an <∞

if for N > 0

lim
N→∞

N∏
n=0

an

exists and is nonzero. For n ∈ Z, we say the infinite product

∏
n∈Z

an

exists and will be denoted

∏
n∈Z

an <∞

if for M,N > 0

lim
M,N→∞

N∏
n=−M

an

exists and is nonzero. Let {An} be a sequence of complex invertible matices for n ∈ N.

We say the infinite product, here we multiply from the left,
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∞∏
n=0

An

exists if for N > 0

lim
N→∞

N∏
n=0

An

exists and the resulting limit is an invertible matrix.
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2. SUMMARY

The sections of this chapter summarize each chapter by describing the main problem

in each chapter and gives a short explaination of the rest of the sections in that

chapter.

2.1 Summary of Chapter 3

In this chapter one considers noncommutative analogs of the d-bar operator on

simple complex plane domains with boundary: disk and annulus. In both cases the

corresponding quantum domain, its boundary, a d-bar operator, and an analog of the

L2 Hilbert space of functions on the domain is constructed using a weighted shift,

subject to suitable assumptions. The weighted shift plays the role of the complex

coordinate z.

For such d-bar operators one also considers boundary conditions of Atiyah, Patodi,

Singer (APS) type [2]. This can be done so that both the commutative and the

noncommutative setup appear in close analogy. The main result of the chapter is that

of the quantum d-bar operators subject to APS conditions are unbounded Fredholm

operators. Additionally their index is computed.

Recall that an unbounded operator D is called a Fredholm operator if D is closed,

has closed range, and finite dimensional kernel and cokernel. Equivalently, see [27],

a closed opearotor D is Fredholm if it has a bounded parametrix Q such that both

QD − I and DQ− I are compact. The technical part of the paper consist of finding

such a parametrix.

The celebrated APS boundary condition was introduced in [2] to handle the index

theory for geometrical operators on manifolds with boundary when usual local bound-

ary conditions were not available. Because it is non-local, the APS condition seems
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to be naturally suited to consider in noncommutative geometry. A more general class

of APS-type boundary conditions was described in [5]. Here only simple APS-type

boundary conditions given by spectral projections are considered.

This chapter is a continuation and an extension of [6], which considered APS

theory on the noncommutative unit disk. Here the chapter is presented in a somewhat

different and more detailed treatment of the disk case as well as a similar theory on

the cylinder. In particular the modifications that is considered here yield a compact

parametrix for the d-bar operators, which was not the case in [6].

Noncommutative domains considered in this chapter were previously discussed

in [15, 16]. Other papers that studied d-bar operator in similar situations (but not

the APS boundary conditions) are: [4], [14], [26], [28]- [32]. A related study of an

example of APS boundary conditions in the context of noncommutative geometry is

contained in [7], another one is in [23].

The ideas in this chapter can be further extended in several directions. The

present setup fits into deformation-quantization scheme and so it will be desirable

to consider classical limit of the quantum d-bar operators. Other, different, possibly

higher dimensional examples should also be constructed. Because of the compact

parametrix, the d-bar operators of this paper can be used to define Fredholm modules

over quantum domains (with boundary), which will be interesting to explore. While

the computation of the index in the present work is fairly straightforward, it is a

challenging question to find a noncommutative framework for such calculations in

general.

The chapter is organized as follows. In the preliminary section 3.1 we describe the

classical d-bar operators on domains in complex plane subject to APS-type boundary

conditions and compute their index. Section 3.2 contains the main constructions of

the paper: quantum disk, quantum annulus, Hilbert spaces, d-bar operators, APS-

type boundary conditions. The main results are also stated in this section. Section

3.3 is the longest of the chapter. It contains detailed analysis of some finite differ-

ence operators in weighted `2 spaces. The operators are essentially unbounded Jacobi
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operators, see [34]. That analysis constitutes the technical backbone of the paper.

Section 3.4 introduces noncommutative Fourier transform on our quantum domains.

The Fourier transform essentially diagonalizes the d-bar operators and thus reduces

their analysis to the analysis of the difference operators of the previous section. Fi-

nally, section 3.5 describes proofs of the main results.

2.2 Summary of Chapter 4

The main technical and computational part of the Atiyah, Patodi, Singer paper

[2] is the initial section containing a study of a nonlocal boundary value problem

for the first order differential operators of the form Γ( ∂
∂t

+ B) on the semi-infinite

cylinder R+× Y , where t ∈ R+ and B,Γ live on the boundary Y . The novelty of the

chapter was the boundary condition, now called the APS boundary condition, that

involved a spectral projection of B. The authors explicitly compute and estimate the

fundamental solutions on the cylinder. This is later used to construct a parametrix

for the analogical boundary value problem on a manifold with boundary by gluing it

with a contribution from the interior, see also [5].

This chapter aims, in a special case, to reproduce such results in the noncommu-

tative setup of [8]. A similar but different study of an example of APS boundary

conditions in the context of noncommutative geometry is contained in [7].

This chapter is a continuation of the analysis started in [6] and chapter 3. The goal

of the article and chapter was to provide simple examples of Dirac type operators on

noncommutative compact manifolds with boundary and then study Atiyah-Patodi-

Singer type boundary conditions and the corresponding index problem. This was done

for the noncommutative disk and the noncommutative annulus and for two somewhat

different types of operators constructed by taking commutators with weighted shifts.

In this chapter one considers such non-commutative analogs of the Dirac type

operator ∂
∂t

+ 1
i
∂
∂ϕ

on the cylinder R+ × S1, which is viewed as a punctured disk.

Using a weighted shift, which plays the role of the complex coordinate z on the
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disk, quantum Dirac operators, and analogs of the L2 Hilbert space of functions in

which they act are constructed. One then consider the boundary condition of Atiyah,

Patodi, Singer. This is done in close analogy with the commutative case. The main

result of this chapter is that a quantum Dirac operator has an inverse which, minus

the zero mode, is bounded just like in Proposition 2.5 of [2]. In contrast with the

previous chapter the analysis here is more subtle because of the noncompactness of

the cylinder. In particular the components of a parametrix are not compact operators

and we use the Schur-Young inequality to estimate their norms. It is hoped that in the

future such results will be needed to contruct spectral triples and a noncommutative

index theory of quantum manifolds with boundary.

The chapter is organized as follows. In section 4.1 the classical APS result for

the operator −2z ∂
∂z

on the cylinder is stated and re-proved using the Schur-Young

inequality. Section 4.2 contains the construction of the non-commutative punctured

disk and the first type of noncommutative analogs of the operator from the previ-

ous section. The operators here are similar to those of [6]. Also in this section a

non-commutative Fourier decomposition of the Hilbert spaces and the operators is

discussed. Section 4.3 contains the construction and the analysis of the Fourier com-

ponents of the parametrix and the proof of the main result. Finally in section 4.4

one considers the “balanced” versions of the quantum Dirac operators in the spirit

of chapter 3 and it is shown how to modify the previous arguments to estimate the

parametrix.

2.3 Summary of Chapter 5

According to the broadest and the most flexible definition, a quantum space is

simply a noncommutative algebra. Noncommutative geometry [8] studies what could

be considered “geometric properties” of such quantum spaces.

One of the most basic examples of a quantum space is the quantum unit disk

C(Dt) of [15]. It is defined as the universal unital C∗-algebra with the generators zt
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and zt which are adjoint to each other, and satisfy the following commutation relation:

[zt, zt] = t(I − ztzt)(I − ztzt), for a continuous parameter 0 < t < 1.

It was proved in [15] that C(Dt) has a more concrete representation as the C∗-

algebra generated by the unilateral weighted shift with the weights given by the

formula:

wt(k) =

√
(k + 1)t

1 + (k + 1)t
. (2.1)

In fact, as a C∗-algebra, C(Dt) is isomorphic to the Toeplitz algebra. Moreover the

family C(Dt) is a deformation, and even deformation - quantization of the algebra

of continuous functions on the disk C(D) obtained in the limit as t → 0, called the

classical limit.

The quantum unit disk is one of the simplest examples of a quantum manifold

with boundary. It is also an example of a quantum complex domain, with zt playing

the role of a quantum complex coordinate. Additionally, biholomorphisms of the unit

disk naturally lift to automorphisms of C(Dt), see [15].

In view of this complex analytic interpretation of the quantum unit disk, there

is a natural need to define analogs of complex partial derivatives as some kind of

unbounded operators on C(Dt) and its various Hilbert space completions. Such

constructions have been described in several places in the literature, see for exam-

ple [4], [6], [14], [17], [18], [36]. In this chapter one is primarily concerned with one

such choice, the so-called balanced d and d-bar operators of [17] which is describe

below.

One notices that St := [zt, zt] is an invertible trace class operator (with an un-

bounded inverse) and defines

Dta = S
−1/2
t [a, zt]S

−1/2
t

and

Dta = S
−1/2
t [zt, a]S

−1/2
t ,
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for appropriate a ∈ C(Dt). These two operators have the following easily seen prop-

erties

Dt(1) = 0, Dt(zt) = 0, Dt(zt) = 1

Dt(1) = 0, Dt(zt) = 1, Dt(zt) = 0

which makes them plausible candidates for quantum complex partial derivatives. To

make an even better case of their suitability, one would like to know that in some

kind of interpretation of the limit as t→ 0, they indeed become the classical partial

derivatives. This problem was posed at the end of [14] and it is the subject of the

present chapter.

In fact one considers here a broader classical limit problem by studying quite

general families of unilateral weights wt(k), and not just those given by (2.1). Like

in [17] such unilateral shifts are still considered coordinates of quantum disks. Addi-

tionally one also considers bilateral shifts and the C∗-algebras they generate. They

are quantum analogs of annuli and can be analyzed very similarly to the quantum

disks.

One starts with giving a concrete meaning to the classical limit t → 0, which

involves two important steps. The first step is to consider certain bounded functions

of the quantum d and d-bar operators to properly manage their unboundedness. In

this chapter one chooses to work with the inverses of the operators Dt subject to APS

boundary conditions [2] since they are easy to describe and the results of [6], [17] can

be utilized.

The second step of this chapter’s approach to the classical limit is the choice of

framework for studying limits of objects living in different spaces. Such a natural

framework is provided by the language of continuous fields, in this case of continuous

fields of Hilbert spaces, see [11]. Following [6] and [17] one defines, using operators St,

weighted Hilbert space completions Ht, 0 < t < 1, of the above quantum domains,

while H0 is the classical L2 space. One then equips that family of Hilbert spaces
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with a natural structure of continuous field, namely the structure generated by the

polynomials in complex quantum and classical coordinates.

In this setup the study of the classical limit becomes a question of continuity, a

property embedded in the definition of the continuous field. Consequently, inverses of

the operators Dt subject to APS boundary conditions, are considered as morphisms

of the continuous fields of Hilbert spaces. The main result of this chapter is that in

such a sense the limit of Dt is indeed ∂
∂z

.

The chapter is organized as follows. In section 5.1 a review of the definitions and

properties of continuous fields of Hilbert spaces and their morphisms is presented.

In section 5.2 one describes the constructions of the quantum disk, the quantum

annulus, Hilbert spaces of L2 “functions” on those quantum spaces, d-bar operators

and their inverses subject to APS conditions. One states the conditions on weights

wt(k) and provide example of such weights. A construction of the generating subspace

Λ needed for the construction of the continuous field of Hilbert spaces is done. The

main results of this chapter are also formulated at the end of that section. Finally,

section 5.3 contains the proofs of the results.

2.4 Summary of Chapter 6

The celebrated Atiyah-Patodi-Singer boundary condition [2] for Dirac operators

on closed manifolds with boundary was introduced as a key ingredient in the gener-

alization of the Atiyah-Singer index theorem. It is a non-local boundary condition

which makes the Dirac operator Fredholm. An advantage of the APS condition is that

further detailed analysis can be carried out where local conditions such as Dirichlet

and Neumann may not be well behaved.

That theory works, however, under the assumption that both the manifold and the

operator have a cylindrical structure near the boundary. A semi-infinite cylinder can

then be smoothly attached to the manifold and the Dirac operator can be naturally

extended over to the cylinder. The APS boundary condition can be then described
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in the following geometrical terms: a sufficiently regular section is in the domain of

the operator if it extends to a square integrable solution on the cylinder. The issue

though is that many concrete natural operators do not have a cylindrical structure

near the boundary. Even a simple d-bar operator ∂/∂z on a disk in the complex plane

does not have this structure. The solid torus example studied here is not cylindrical

near boundary either.

In this chapter one considers a Dirac operator on the solid torus considered geomet-

rically as the product of the unit disk and the unit circle. A construction of another

non-local boundary condition similar in spirit to the APS boundary condition is done.

It was inspired by the non-local boundary conditions discussed in [25] and [12] to get

around the necessity of having a cylindrical structure near the boundary. The bound-

ary condition that is proposed in this chapter has the same geometrical interpretation

as the APS condition. Namely, one cam consider the solid torus as a subset of the

bigger noncompact space of the plane cross the unit circle. The domain of the Dirac

operator is defined in full analogy with APS as consisting of those sufficiently regular

sections which extend to square integrable solutions on the complement of the solid

torus.

The motivation for studying this particular example comes from the larger project

of developing a concept of a noncommutative manifold with boundary and noncom-

mutative elliptic boundary conditions. This is done by studying examples, starting

with two-dimensional domains and continuing with more complex cases. In particular

the efforts of the whole project were concentrated on studying quantum analogs of

Dirac operators subject to APS like boundary conditions, see [6], [17], [18], and [19]

as well as chapters 3, 4, and 5. The solid torus studied in this chapter is possi-

bly the simplest three dimensional example, yet significantly more difficult then the

two-dimensional examples studied in the previous chapters. While the standard APS

theory does not apply, the example however seems to have an attractive noncommu-

tative version. This noncommutative version is the topic of the next chapter. It is

shown in this chapter that the Dirac operator on the solid torus subject to the non-
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local boundary condition is self-adjoint and has no kernel. Using a partial Fourier

transform one obtains an explicit formula for its inverse. One then shows that the

inverse is a compact operator, which is the main feature of elliptic boundary condi-

tions. It is proven that the inverse is a p-th Schatten class operator for p > 3. This

is obtained by direct analysis of the formula for the inverse using subtle estimates

involving modified Bessel functions.

The chapter is organized as follows. In section 6.1 the Hilbert space and the

Dirac operator D are defined, and the boundary condition is stated. The section also

contains the computation of the kernel of the Dirac operator, and the computation

of its inverse Q. The proof of the main theorem, the compactness of Q, and the

Schatten class computation is contained in section 6.2. In the last section, section

6.3, a collection of numerous facts about the modified Bessel functions are stated.

Some of these facts are classical and some are more recent.

2.5 Summary of Chapter 7

Finding quantum analogs of Dirac type operators on manifolds with boundary

and global boundary conditions has been a hot topic ever since Atiyah, Patodi, and

Singer had the break-through index theorem for in their paper [2]. Their theorem

didn’t consider the case for non-commutative spaces. One of the aspects is to find an

appropriate analog to Dirac type operators on some domain and finding an inverse

or inverse modulo compact operators. Some examples in simple domains, such as

the disk, annulus, and punctured disk have been made in [17] and [18]. Moreover in

these papers, the authors showed how similar the setup and results are between the

commutative and quantum cases. Also in those papers the global boundary condition

imposed was the classical APS boundary condition. In chapter 6, we will discuss Dirac

type operators on the solid torus, in the commutative sense, with a different type of

nonlocal boundary condition that was inspired by [25]. This chapter will follow up
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the same type of analysis done with commutative solid torus only now the quantum

analogs will be considered.

In this chapter we use the non-local boundary condition that will be used in

chapter 6 and construct the quantum analog of it. Of course the first issue is too

describe what the quantum solid torus even is. The boundary condition can be

thought of extending functions beyond the boundary of the solid torus which makes

sense geometrically in the classical case. However in the quantum analog, there are

obvious obstructions that need to be addressed. For example what does one mean for

the “outside” of the boundary to the quantum solid torus. The idea is to translate

the boundary condition into an equivalent scaling requirement. With this established

the same exact scaling condition can be easily translated to the quantum case.

Also in this chapter we consider the non-commutative analog of a Dirac type

operator D on the solid torus with boundary. The quantum domain, its boundary,

and a quantum analog of the Dirac type operator are all constructed. Also an analog

of the L2 Hilbert space of functions on the domain is constructed using two weighted

shifts subject to suitable assumptions. The analysis done here is to compute the

kernel of the Dirac type operator, calculate its parametrix and analyze it. It will also

be shown that the parametrix is a compact operator. It was shown in chapter 6 that

the parametrix to the classical Dirac type operator was also compact. In [17], the

balanced d-bar operator was introduced to produce a compact parametrix.

The chapter is organized as follows. In section 2 the quantum solid torus is

discussed. The Hilbert space and the Dirac operator, D, used are also defined in the

noncommutative sense. As in [17], the Hilbert space is formed through C∗−algebras.

The boundary condition is defined and the domain of the Dirac operator is also

stated. Finally at the end of this section the statement of the main theorem is stated.

Section 3 contains the computation of the kernel of the Dirac operator. It also houses

the special solutions that are in the kernel as well as a few properties of special

solutions. The last part of the section contains the analysis of the kernel of D subject

to its domain. In section 4 the computation of the parametrix, Q, to the Dirac type



17

operator D is made. Properties of the special solutions are also discussed here as

these properties are relavent for the analysis done on the parametrix which is also

done in the section. Finally at the end of the section the proof of the main theorem

is shown.
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3. D-BAR OPERATORS ON THE CLASSICAL AND

QUANTUM DISK AND ANNULUS

3.1 The d-bar operator on domains in the complex plane

In this section a review of the basic aspects of the APS theory for the d-bar operator

on simple domains in the complex plane C is done. First some notation is made. The

first domain is the disk:

D = {z ∈ C : |z| ≤ ρ+}

∂D = {z ∈ C : |z| = ρ+} ' S1.

The second domain is an annulus in the complex plane C:

Aρ−,ρ+ = {z ∈ C : 0 < ρ− ≤ |z| ≤ ρ+}

∂Aρ−,ρ+ = {z ∈ C : |z| = ρ±} ' S1 ∪ S1,

which can also be viewed as a finite cylinder.

For each of those domains we will consider the d-bar operator:

D =
∂

∂z

defined on the space of smooth functions.

Concentration on the unit disk will be done first. In this case one has the short

exact sequence:

0 −→ C∞0 (D) −→ C∞(D)
r−→ C∞(∂D) −→ 0 (3.1)
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where r : C∞(D) → C∞(∂D) is the restriction map to the boundary, rf(ϕ) =

f(ρ+e
iϕ). Here C∞0 (D) is the space of smooth functions on D vanishing at the bound-

ary and z ∈ D has polar representation z = ρeiϕ.

Next one considers the APS-like boundary conditions on D. Notice that the APS

theory cannot be applied directly in this case since the operator D does not quite

decompose into tangential (boundary) and transverse parts near boundary. However

this is only a minor technical annoyance, and it is clear that −i∂/∂ϕ is the correct

boundary operator. The APS-type boundary conditions considered in this chapter

are given in terms of the spectral projections of the boundary operator −i∂/∂ϕ as

follows. Let πA (I) be the spectral projection of a self-adjoint operator A onto interval

I. For an integer N one introduces PN :

PN = π 1
i
∂
∂ϕ

(−∞, N ]. (3.2)

In other words PN is the orthogonal projection in L2(S1) onto span{einϕ}n≤N .

The main object of the APS theory is the operator DN defined to be the operator

D with the domain:

dom(DN) = {f ∈ C∞(D) ⊂ L2(D) : rf ∈ Ran PN}.

The following theorem is stated, see [6] for details.

Theorem 3.1.1 The closure of the operator DN is an unbounded Fredholm operator

in L2(D) and it has the following index: Index(DN) = N + 1.

Next a discussion of the annulus is presented. Some functional analytic details

are skipped, however the index calculation shown is done in a similar fashion to what

was done in [6] in the disk case.

If one lets r± be the restriction to the boundary map i.e. r±f(ϕ) = f(ρ±e
iϕ), then

one has the short exact sequence:

0 −→ C∞0 (Aρ−,ρ+) −→ C∞(Aρ−,ρ+)
r=r+⊕r−−→ C∞(S1)⊕ C∞(S1) −→ 0 (3.3)
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where C∞0 (Aρ−,ρ+) is the space of smooth functions on Aρ−,ρ+ which are zero on the

boundary.

The key to index calculation of the d-bar operator is the following proposition. In

what follows we use the usual inner product on L2(Aρ−,ρ+):

〈f, g〉 =

∫
Aρ−,ρ+

f(z)g(z)
dz ∧ dz
−2iπ

.

Proposition 3.1.2 Let D be the operator

D =
∂

∂z

on C∞(Aρ−,ρ+). Then the kernel of D is the set of bounded holomorphic functions on

Aρ−,ρ+. Moreover

〈Df, g〉 = 〈f,Dg〉+

∫ 2π

0

r+f(ϕ)r+g(ϕ)ρ+e
−iϕdϕ

2π
−
∫ 2π

0

r−f(ϕ)r−g(ϕ)ρ−e
−iϕdϕ

2π

where f, g ∈ C∞(Aρ−,ρ+) and

D = − ∂

∂z
.

Proof The first conclusion is clear. The integration by parts formula follows imme-

diately from Stokes’ Theorem.

In order to define APS-type boundary conditions here we take extra caution since

the boundary has two components. Let P±N be the spectral projections in L2(S1) of

the boundary operators ±1
i
∂
∂ϕ

onto interval (−∞, N ] i.e.:

P±N = π± 1
i
∂
∂ϕ

(−∞, N ] (3.4)

where ± is introduced due to the boundary orientations of the inner circle and outer

circle. Then, for integers M , N , we define the operator DM,N to be equal to D with

domain
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dom(DM,N) = {f ∈ C∞(Aρ−,ρ+) : r+f ∈ Ran P+
M , r−f ∈ Ran P−N }.

An immediate corollary of this definition is the description of the kernel of DM,N .

Corollary 3.1.3 Let DM,N be as defined above, then

Ker(DM,N) =


{
f : f(z) =

∑M
n=−N cnz

n
}

if N +M ≥ 0

0 otherwise.

It follows from Proposition 3.1.2 that the adjoint of DM,N , is (the closure of) the

operator DM,N which is equal to D but with the following domain

dom(DM,N) = {f ∈ C∞(Aρ−,ρ+) : e−iϕr+f ∈ Ker P+
M , e

−iϕr−f ∈ Ker P−N }.

Moreover, one has the following description of the kernel of DM,N

Ker(DM,N) =


{
f : f(z) =

∑−(M+2)
n=N cnz

n
}

if N +M < 0

0 otherwise.

The following theorem is the corresponding index theorem for the commutative

cylinder.

Theorem 3.1.4 The closure of the operator DM,N is an unbounded Fredholm opera-

tor. Its index is given by: Index(DM,N) = M +N + 1.

Proof To show the Fredholm property one follows [2]. If f ∈ C∞(Aρ−,ρ+) then f(z)

has the following Fourier representation:

f(z) =
∑
n∈Z

fn(ρ)einϕ.

This Fourier representation is exactly the spectral decomposition of [2] using the

eigenvectors of the boundary operators±i∂/∂ϕ. In the Fourier transform the operator



23

D decomposes into sum of ordinary differential operators which allows for explicit

calculation of a parametrix just like in [2].

The index computation is as follows. Indeed one has:

dim Ker(DM,N) = #{n | −N ≤ n ≤M}

=

 0 if M +N < 0

M +N + 1 if M +N ≥ 0.

In a similar fashion

dim Ker(D∗M,N) = #{n | N ≤ n ≤ −(M + 2)}

=

 −(M +N + 1) if N < 0

0 if N ≥ 0.

Consequently

Index(DM,N) = dim Ker(DM,N)− dim Ker(D∗M,N) = M +N + 1.

Attention is now turned to the d-bar operator in the quantum domains.

3.2 The d-bar operator on the non-commutative domains

In this section one defines the main objects of this chapter: quantum disk, quan-

tum annulus, Hilbert spaces of L2 “functions”, and d-bar operators. The main results

are also stated at the end of this section.

In the following definitions we let S be either N or Z. The main input of the theory

is a weighted shift UW in `2(S). Conceptually, UW is a noncommutative complex

coordinate on the corresponding noncommutative domain.

Definition: Let {ek}, k ∈ S be the canonical basis for `2(S). Given a bounded

sequence of numbers {wk}, called weights, the weighted shift UW is an operator in

`2(S) defined by:



24

UW ek = wkek+1.

Also one will need the usual shift operator U which is defined by

Uek = ek+1

and the diagonal operator W defined by

Wek = wkek. (3.5)

Note that UW decomposes to UW = UW and W = (U∗WUW )1/2 as in the polar

decomposition. If S = N then the shift UW is called unilateral and it will be used to

define a quantum disk. If S = Z then the shift UW is called bilateral and it will be

used to define a quantum annulus (also called a quantum cylinder).

The following conditions on UW are required:

Condition 1. The weights are uniformly positive wk ≥ ε > 0, for every k ∈ S.

Condition 2. The shift UW is hyponormal, i.e.

S = [U∗W , UW ] ≥ 0.

Condition 3. The operator S defined in condition 2 is injective.

These conditions have some implications that need a remark. First note how S

acts on the basis {ek}

Sek = (U∗WUW − UWU∗W ) ek

= (w2
k − w2

k−1) ek = skek,
(3.6)

where sk := w2
k−w2

k−1. It follows that the conditions 2 and 3 mean that the weights wk

form a strictly increasing sequence. Hence the following limits exist and are positive

numbers:

w± := lim
k→±∞

wk.
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Secondly, observe that S is a trace class operator with easily computable trace:

tr(S) = (w+)2 in the unilateral case and tr(S) = (w+)2 − (w−)2 in the bilateral case.

Moreover S is invertible with unbounded inverse.

Let C∗(W ) be the C∗ − algebra generated by UW . Then it is known that there

are short exact sequences analogous to (3.1) and (3.3). Let K be the ideal of compact

operators. Then in the unilateral case the C∗ − algebra generated by UW is the

Non-Commutative Disk of [15] with the following short exact sequence:

0 −→ K −→ C∗(W )
r−→ C(S1) −→ 0.

Similarly, in the bilateral case the C∗ − algebra generated by UW is the Non-

Commutative Cylinder, see [16], with the following short exact sequence:

0 −→ K −→ C∗(W )
r=r+⊕r−−→ C(S1)⊕ C(S1) −→ 0.

In the above we let again, abusing notation, r be the restriction map in the disk case

and r± in the cylinder case. These two sequences are described in [10].

Now the definitions of the quantum d-bar operators are next to discuss. With

slight abuse, we will use the same notation for both classical and quantum operators.

Define the Hilbert space H as the completion of C∗(W ) with respect to the inner

product 〈 , 〉S defined as follows:

〈a, b〉S = tr(S1/2bS1/2a∗)

where a, b ∈ C∗(W ). It is easy to verify that 〈a, a〉S is well-defined and positive. Note

that the inner product 〈 , 〉S is slightly different than the one defined in [6]. This is

done (among other reasons) to make definitions more symmetric.

The basic idea of the definition of a quantum d-bar operator, explained in [6],

is to replace derivatives with commutators and so to consider operators of the form

a 7→ P [Q, a]R, where P,Q,R are possibly unbounded operators affiliated with C∗(W ).

The choices are made so that it is possible to impose APS like boundary conditions,
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prove the Fredholm property and compute the index. Additionally it is advantageous

for the operator D to have algebraic relations with UW and UW similar to the relations

of the complex partial derivative with z and z̄. With that in mind, the following

definition of a quantum d-bar operator is made D in H:

Da = S−1/2 [a, UW ]S−1/2

where the domain of D is the set of those a ∈ H for which S1/2DaS1/2(Da)∗ is trace

class. It will be verified later that Dom(D) is dense and that for a ∈ Dom(D), r(a) is

a square integrable function on the boundary of the domain. This definition is again

somewhat different than the one considered in [6]: it is symmetric with respect to

left/right multiplication, and the operatorD has better functional-analytic properties.

A straightforward computation shows the following identities:

D(Un
W ) = 0

D(U∗W ) = 1

D((U∗W )n) = S−1/2 [(U∗W )n, UW ]S−1/2

= S−1/2(U∗W )n−1S1/2

− S−1/2(U∗W )n−2SU∗WS
−1/2 − · · · − S1/2(U∗W )n−1S−1/2.

The first two computations show that D looks like ∂
∂z

if UW was z and the third

computation illustrates the non-commutativity of the situation.

We proceed to the definitions of the APS-type boundary conditions on D. Let

again PN be the orthogonal projection in L2(S1) defined in equation (3.2), and let

P±N be the orthogonal projections defined in equation (3.4). Now we can define DN ,

DM,N in full analogy with the previous section. The operator DN equals the unilateral

operator D with domain

dom(DN) = {a ∈ Dom(D) : r(a) ∈ Ran PN} .

Similarly, the operator DM,N equals the bilateral operator D with domain
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dom(DM,N) =
{
a ∈ Dom(D) : r+(a) ∈ Ran P+

N , r−(a) ∈ Ran P−M
}
.

The main results of this chapter can now be stated.

Theorem 3.2.1 For the non-commutative disk case, the operator DN is an un-

bounded Fredholm operator. Moreover ind(DN) = N + 1.

This is a slight modification from [6], where a somewhat different version of DN

was considered. Additionally one has:

Theorem 3.2.2 For the non-commutative cylinder case, the operator DM,N is an

unbounded Fredholm operator. Moreover ind(DM,N) = M +N + 1.

The proofs are contained in the last section of this chapter.

3.3 Analysis of finite difference operators

In this section a detailed analysis of certain finite difference operators related to

Jacobi matrices is presented. As indicated in the introduction, these operators come

up as components of D and its adjoint in Fourier transforms. This will be fully

explained in the following section.

As before S is either Z or N. Given a sequences of positive numbers a = {an}n∈S
called weights, the Hilbert Space `2

a(S) is defined by

`2
a(S) =

{
f = {fn}n∈S :

∑
n∈S

1

an
|fn|2 <∞

}

with inner product given by 〈f, g〉 =
∑
n∈S

1

an
fngn. If a sequence {fn} ∈ `2

a(S) has

limits, lim
n→±∞

fn, they will be denoted f±∞.

Given two weight sequences a and a′ we will be studying throughout this section

the following unbounded Jacobi type difference operators between `2
a(S) and `2

a′(S):
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Afn = an(fn − cn−1fn−1) where

dom(A) =
{
f ∈ `2

a′(S) : ‖Af‖`2a(S) <∞
}

and

Afn = a′n(fn − cnfn+1) where

dom(A) =
{
f ∈ `2

a(S) : ‖Af‖`2
a′ (S) <∞

}
for n ∈ S. If S = N it is assumed in the above that f−1 = 0.

The coefficients an, a′n, and cn ∈ C are assumed to satisfy:

0 < |cn| ≤ 1 ,
∑
n∈S

1

a′n
= C ′ <∞ ,

∑
n∈S

1

an
= C <∞ ,

∏
n∈S

1

cn
<∞. (3.7)

Also define:

K =
∏
n∈S

1

|cn|
.

For the product involving the complex cn, when one says the product is finite it is

meant that the limit of a finite product exists. The goal of this section is to establish

the Fredholm properties of the operators A, A and related operators obtained by

imposing conditions at infinities. This is done by constructing a parametrix for each

operator. The discussion will be split into two separate but similar cases: unilateral

and bilateral.

3.3.1 Unilateral case

First one needs to study the kernels of A and A, in order to see if these operators

have inverses or not.

Proposition 3.3.1 Given A and A above one has

KerA = {0}

dim KerA = 1.
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Proof First consider the equation Afn = 0 which is an(fn − cn−1fn−1) = 0 for

n = 0, 1, 2 . . . Then solving recursively one can see that the only solution to the

equation is f0 = f1 = · · · = fn = 0 for all n. This shows that Ker A is trivial and

thus A is an invertible operator.

Secondly consider the equation Afn = 0 which is a′n(fn − cnfn+1) = 0 for n =

0, 1, 2 . . . Then solving recursively one has

n = 0⇒ f1 = 1
c0
f0

n = 1⇒ f2 = 1
c0c1

f0

...
...

which in general gives

fn =
1

c0c1 · · · cn−1

f0,

thus showing that A has a one dimensional kernel provided that fn ∈ `2
a(N). Notice

the following

|fn| =
1

|c0 · · · cn−1|
|f0| ≤

∞∏
i=0

1

|ci|
|f0| = K|f0|

since |ci| ≤ 1 for all i = 0, 1, . . . From this it follows that

‖f‖2 ≤
∞∑
n=0

1

an
K2|f0|2 = CK2|f0|2 <∞

with the constants defined at the beginning of the section. Thus this completes the

proof.

Next it’s shown how to find the inverse T of A and one studies its properties.

Proposition 3.3.2 There exists an operator T ∈ B(`2
a(N), `2

a′(N)) such that TA =

I`2a(N) and AT = I`2
a′ (N). Indeed it is given by the formula 3.8 below. In particular A

is an unbounded Fredholm operator with zero index.
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Proof From Proposition 3.3.1 we know that A is invertible so let {gn} ∈ `2
a(N) and

{fn} ∈ dom(A) and consider the equation Afn = gn which is an(fn − cn−1fn−1) = gn

for n = 0, 1, 2 . . . As above, solving for each n recursively one arrives at the following

formula

(Tg)n =
n∑
i=0

1

ai

(
n−1∏
j=i

cj

)
gi, (3.8)

where in the above one sets, for convenience:

n−1∏
j=n

cj = 1.

The next item shown is that T ∈ B(`2
a(N), `2

a′(N)). Divide and multiply each term

as follows

(Tg)n =
1

an
gn +

cn−1

an−1

gn−1 + · · ·+ cn−1 · · · c0

a0

g0 =

=

√
an
an

gn√
an

+
cn−1
√
an−1

an−1

gn−1√
an−1

+ · · ·+
cn−1 · · · c0

√
a0

a0

g0√
a0

.

Since ‖Tg‖2 =
∞∑
n=0

1

a′n
|Tgn|2 and since |cn| ≤ 1 for every n, using the Cauchy - Schwarz

inequality one has

|(Tg)n|2 ≤

((√
an
an

)2

+ · · ·+
(√

a0

a0

)2
)(

1

an
|gn|2 + · · ·+ 1

a0

|g0|2
)
≤

≤

(
∞∑
n=0

1

an

)
‖g‖2 = C‖g‖2.

Consequently:

‖Tg‖2 ≤
∞∑
n=0

1

a′n
C‖g‖2 =

= C ′C‖g‖2,
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which implies that ‖T‖ ≤
√
C ′C, thus one has T ∈ B(`2

a(N), `2
a′(N)). A straightfor-

ward calculation shows that TA = I`2a(N) and AT = I`2
a′ (N).

An important corollary from this proposition is the existence of limits at infinity

for sequences which are in the domain of A.

Corollary 3.3.3 Let f = {fn} ∈ dom(A), then lim
n→∞

fn = f∞ exists and is given by

the following formula

f∞ =
∞∑
i=0

1

ai

(
∞∏
j=i

cj

)
Afi. (3.9)

Proof If f ∈ dom(A), then write f as, f = T (Af), then one has the following

fn =
n∑
i=0

1

ai

(
n−1∏
j=i

cj

)
Afi.

Using assumptions 3.7 and estimating as above, we see that the formula 3.9 is well

defined. Now the fact that lim
n→∞

fn = f∞ follows from a simple ε/2 argument.

We now wish to consider the operator A and determine if it has bounded right

inverse since Proposition 3.3.1 tells us that A has a one dimensional kernel. The next

proposition will show this. The following notation will be used: if V be a closed

subspace of a Hilbert space H, then we denote ProjV , to be the orthogonal projection

onto V .

Proposition 3.3.4 Given A from above then there exists a T ∈ B(`2
a′(N), `2

a(N))

such that AT = I`2
a′ (N) and TA = I`2a(N) − ProjKer A. In particular A is an unbounded

Fredholm operator with index equal to one.

Proof From Proposition 3.3.1 we know that A has a one dimensional kernel spanned

by the following vector Ω ∈ Ker(A):

Ωn =
∞∏
i=n

ci =

(
n−1∏
i=0

1

ci

)(
∞∏
i=0

ci

)
.
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Next consider the equation Agn = a′n(gn − cngn+1) = fn for n = 0, 1, 2, . . . As

before solve the equation recursively and one will arrive at the formula

gn+1 =
n∏
i=0

1

ci
g0 −

n∑
i=0

1

a′i

(
n∏
j=i

1

cj

)
fi.

where g0 is arbitrary. To finish the construction of T one needs to choose g0 so that

TA = I`2a(Z) − ProjKer A as it’s clear that AT = I`2
a′ (Z).

The disadvantage of the above formula for T is that it does not translate easily

to the bilateral case. Anticipating it, we rewrite the above solution in an equivalent

but different looking form:

(Tf)n = gn =
∞∑
i=n

1

a′i

(
i−1∏
j=n

cj

)
fi −

(
∞∏
i=n

ci

)
L(f)

= (T0f)n − Ωn L(f),

(3.10)

where we set
∏n−1

j=n cj = 1 and L(f) is an arbitrary constant. This form of solution is

also explained conceptually when considering bilateral case.

For Tf to be orthogonal to Ker A, one needs 〈Ω, T f〉 = 0 for the above Ω ∈ Ker A.

From this one can deduce that L(f) is the following following linear functional of f :

L(f) :=
〈Ω, T0f〉
||Ω||2

=

∑∞
n=0

∑∞
i=n

1
a′n

1
a′i

(∏i−1
j=n cj

)
(
∏∞

k=n ck) fi∑∞
n=0

1
a′n

(
∏∞

i=n |ci|2)
.

It is straightforward to verify now that TA = I`2a(Z) − ProjKer A and that AT =

I`2
a′ (Z). All that remains is to show the boundedness of T . The operator T0 is bounded

by
√
CC ′ in exactly the same way as the operator T is Proposition 3.3.2. To estimate

L(f) notice that

C ′ ≥ ||Ω||2 =
∞∑
n=0

1

a′n

(
∞∏
i=n

|ci|2
)
≥

∞∑
n=0

1

a′n

(
∞∏
i=0

|ci|2
)

=
C ′

K2
,

which implies that |L(f)| ≤ K
√
C||f || and ||T || ≤

√
CC ′ +K

√
CC ′. This completes

the proof.
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Again one gets a corollary on the existence of limits at infinity for sequences which

are in the domain of A.

Corollary 3.3.5 Let f ∈ dom(A), then f∞ exists and is given by the following for-

mula

f∞ = −L(Af).

Proof The proof for the T0 term is identical to the proof of the Corollary 3.3.3. To

compute the limit of the other term notice that:

Ωn =
∞∏
i=n

ci =

∏∞
i=0 ci∏n−1
i=0 ci

→ 1

as n→∞.

The above corollaries allow us to consider “boundary” conditions on A and A.

Define the operators A0 and A0 as follows: A0 is the operator A but with domain

dom(A0) = {f ∈ dom(A) : f∞ = 0},

and A0 is the operator A with domain

dom(A0) = {f ∈ dom(A) : f∞ = 0}.

The four operators are closely related as shown by the following computation of

the adjoint of A.

Proposition 3.3.6 The adjoint of A has the following formula

A∗ = A0.

Moreover the adjoint of A has the following formula

A
∗

= A0.
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Proof Computing the inner product one has:

〈Af, g〉 =
∞∑
n=0

1

an
an(fn − cn−1fn−1)gn =

∞∑
n=0

(fn − cn−1fn−1)gn =

= lim
N→∞

N∑
n=0

(fn − cn−1fn−1)gn = lim
N→∞

(
N∑
n=0

fngn −
N∑
n=0

cn−1fn−1gn

)
.

Then, setting n− 1 7→ n one arrives at

〈Af, g〉 = lim
N→∞

(
N∑
n=0

fn(gn − cngn+1)− cNfNgN+1

)
=

=
∞∑
n=0

1

a′n
fna

′
n(gn − cngn+1)− f∞g∞ =

= 〈f, Ag〉 − f∞g∞.

Here note that
∏
c−1
n <∞ and |cn| ≤ 1 implies that the cn converge to 1.

The functional f → f∞ is not continuous thus implying that if f ∈ dom(A∗), then

f∞ = 0 and if g ∈ dom(A
∗
), then g∞ = 0. This completes the proof.

It follows that all four operators are Fredholm operators where the parametrix in

each case is T , T , or their adjoints. For completeness we compute the adjoint of T

and of T : this is not necessary for the main argument but may possibly be useful in

future applications.

Proposition 3.3.7 The adjoint of T is equal to T0 of 3.10, i.e. it has the following

formula:

(T ∗f)n = T0fn =
∞∑
k=n

1

a′k

(
k−1∏
j=n

cj

)
fk.

Similarly:

T
∗
f = Tf − 〈Ω, f〉

||Ω||
TΩ.
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Proof Looking at the inner product one has

〈Tg, f〉 =
∞∑
n=0

1

an
(Tg)nfn =

∞∑
n=0

1

an

(
1

an
gn +

cn−1

an−1

gn−1 + · · ·+ cn−1 · · · c0

a0

g0

)
fn =

=
∞∑
n=0

1

an

(
1

an
gnfn

)
+
∞∑
n=0

1

an

(
cn−1

an−1

gn−1fn

)
+ · · ·+

∞∑
n=0

1

an

(
cn−1 · · · c0

a0

g0fn

)
.

Then using n 7→ j + 1 in the second sum, n 7→ j + 2 in the third sum and so on

and relabeling the indices, one has

〈Tg, f〉 =
∞∑
n=0

1

an
gn

(
1

an
fn

)
+
∞∑
n=0

1

an
gn

(
cn
an+1

fn+1

)
+ · · ·

=
∞∑
n=0

1

a′n
gn

(
1

a′n
fn

)
+
∞∑
n=0

1

a′n
gn

(
cn
a′n+1

fn+1

)
+ · · ·

+
∞∑
n=0

1

a′n
gn

(
cn · · · cn+k

a′n+(k+1)

fn+(k+1)

)
+ · · ·

=
∞∑
n=0

1

a′n
gn

(
1

a′n
fn +

cn
a′n+1

fn+1 + · · ·+ cn · · · cn+k

a′n+(k+1)

fn+(k+1) + · · ·

)
= 〈g, T ∗f〉.

This then shows the first result. For the second formula we notice that we just showed

that T0
∗

= T and the second term comes from an easy computation of the adjoint of

the projection f → L(f)Ω.

Combining Propositions 3.3.2, 3.3.4, and 3.3.6 we get the following results about

A0 and A0.

Corollary 3.3.8 A0 is an unbounded Fredholm operator with index equal to minus

one. One has

A0T0 = I`2
a′ (N) − ProjCoker(A0)

T0A0 = I`2a(N)

where T0 := T
∗
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One also has:

Corollary 3.3.9 A0 is an unbounded Fredholm operator with index zero, and

A0T0 = I`2a(N)

T0A0 = I`2
a′ (N).

It turns out that more can be said about the parametrices introduced above.

Proposition 3.3.10 Each of the parametrix operators: T , T0, T , T0 is a Hilbert-

Schmidt operator.

Proof Only the details for the operator T are presented, as other cases are similar.

In fact the proposition already follows from the way we estimated the norm of T

since T is an integral operator. An alternative proof is given here. First note that

‖T‖2
HS = tr(T ∗T ) =

∞∑
i=0

‖Tei‖2 where {ei} is the canonical basis for `2
a(N). So

(Tei)n =
1

an
(ei)n +

cn−1

an−1

(ei)n−1 + · · ·+ cn−1 · · · c0

a0

(ei)0.

It follows that (Tei)n = 0 ∀n < i, and

(Tei)i =

√
ai
ai

(Tei)i+1 =
ci
ai

√
ai

(Tei)i+2 =
ci+1ci
ai

√
ai

...

Then we estimate

‖Tei‖2 =
1

ai

∞∑
k=0

1

a′i+k
|cici+1 · · · ci+k|2 ≤

1

ai
C ′,

and consequently

‖T‖2
HS =

∞∑
i=0

‖Tei‖2 ≤ C ′
∞∑
i=0

1

ai
≤ CC ′ ⇒ ‖T‖HS ≤

√
CC ′.
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Now the attention will be shifted to the bilateral case and one would like to study

the same type of properties as considered in the unilateral case. It turns out that both

A and A have one dimensional kernels in that case, one has to use infinite products

for some expressions, and there are more options of imposing conditions at infinities.

However the analytic aspects of the theory are no different than the unilateral case

and so we provide less detail in some estimates to avoid repetitiveness.

3.3.2 Bilateral case

As in the unilateral case oen starts with the study of the kernels of A and A. It

turns out that both A and A have one dimensional kernels. First recall the constants

defined at the beginning of this section

C =
∑
n∈Z

1

an
<∞ , C ′ =

∑
n∈Z

1

a′n
<∞ and K =

∏
n∈Z

1

|cn|
<∞.

Proposition 3.3.11 Given A and A above we have:

dim KerA = 1

dim KerA = 1.

Proof First the investigation of the kernel of A is done. To this end one needs to

solve the equation Afn = an(fn − cn−1fn−1) = 0 for n ∈ Z. This is done recursively

and, for n ≥ 0, one arrives at the following

fn =

(
n−1∏
i=−1

ci

)
f−1, n ≥ 0.

Next, in a similar fashion, solve the equation for n < 0 to get the following

f−n =

(
−n∏
i=−2

1

ci

)
f−1, n ≥ 1.

The two formulas above can be written compactly in the following semi-infinite prod-

uct
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fn =

(
n−1∏
i=−∞

ci

)
α

for any constant α. To see that the kernel of A is indeed one dimensional, we need

to verify that {fn} ∈ `2
a′(Z). Using the fact that |ci| ≤ 1 for all i one has that

‖f‖2
`2
a′ (Z) =

∑
n∈Z

1

a′n

∣∣∣∣∣
n−1∏
i=−∞

ci

∣∣∣∣∣
2

|α|2 ≤ |α|2
∑
n∈Z

1

a′n
= |α|2C ′ <∞,

thus {fn} ∈ `2
a′(Z).

Next the equation Afn = a′n(fn− cnfn+1) = 0 for n ∈ Z needs to be studied. One

gets

fn =

(
n−1∏
i=0

1

ci

)
f0 for n ≥ 0

and the similar formula for n < 0

f−n =

(
−n∏
i=1

ci

)
f0 for n ≥ 1.

Also one has the same type of semi-infinite product for A:

fn =

(
∞∏
i=n

ci

)
β

for any constant β. As with A, to guarantee that the kernel of A is one dimensional,

we need to verify that {fn} ∈ `2
a(Z). Using the fact that |ci| ≤ 1 for all i one has that

‖f‖2
`2a(Z) =

∑
n∈Z

1

an

∣∣∣∣∣
∞∏
i=n

ci

∣∣∣∣∣
2

|β|2 ≤ |β|2
∑
n∈Z

1

an
= |β|2C <∞.

This completes the proof.

Next we construct a parametrix for A.

Proposition 3.3.12 There exists a T ∈ B(`2
a(Z), `2

a′(Z)) such that AT = I`2a(Z) and

TA = I`2
a′ (Z) − ProjKerA. In particular A is an unbounded Fredholm operator with

index equal to one.
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Proof We start by looking at the equation Afn = an(fn− cn−1fn−1) = gn which can

be written as:

fn − cn−1fn−1 =
gn
an
. (3.11)

The variation of constants method is usded to solve (3.11). First observe that the

homogeneous equation fn− cn−1fn−1 = 0 has the following solution by the kernel cal-

culation in Proposition 3.3.11: fn =
(∏n−1

i=−∞ ci
)
α for some constant α. Consequently

set

fn =

(
n−1∏
j=−∞

cj

)
αn

and substitute this into equation (3.11). This leads to the following equation for αn:

αn − αn−1 =

(
n−1∏
j=−∞

1

cj

)
gn
an

which has a solution given by:

αn =
n∑

i=−∞

1

ai

(
i−1∏

j=−∞

1

cj

)
gi.

Therefore one has a particular solution of equation (3.11):

fn =
n∑

i=−∞

1

ai

(
n−1∏
j=i

cj

)
gi,

and the general solution is

fn =
n∑

i=−∞

1

ai

(
n−1∏
j=i

cj

)
gi −

(
n−1∏
i=−∞

ci

)
α.

The above expression gives the formula for T :

(Tg)n = (T1g)n − α(g)Ω−n , (3.12)

where

(T1g)n :=
n∑

i=−∞

1

ai

(
n−1∏
j=i

cj

)
gi (3.13)
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and Ω−n :=
∏n−1

i=−∞ ci, and α(g) arbitrary.

It’s is clear from the construction that AT = I`2a(Z). To make sure that one gets

TA = I`2
a′ (Z)−ProjKer A, a choice on α(g) must be made just as in the unilateral case:

α(g) :=
〈Ω−, T1g〉
||Ω−||2

=

∑
n∈Z
∑n

i=−∞
1
an

1
ai

(∏n−1
k=−∞ ck

) (∏n−1
j=i cj

)
gi∑

n∈Z
1
an

(∏n−1
i=−∞ |ci|2

) .

Convergence of the sums and products and the boundedness of T is established

just as in the unilateral case. The operator T1 is bounded by
√
CC ′ in essentially the

same way as the operator T is Proposition 3.3.2. To see that we write

(T1g)n =

√
an
an

1
√
an
gn +

cn−1
√
an−1

an−1

1
√
an−1

gn−1 + · · ·

and estimate using the Cauchy-Schwarz inequality and the fact that the |ci| ≤ 1 for

all i:

|(T1g)n|2 ≤

[(√
an
an

)2

+

(√
an−1

an−1

)2

+ · · ·

](
1

an
|gn|2 +

1

an−1

|gn−1|2 + · · ·
)

≤

(
n∑

i=−∞

1

ai

)
‖g‖2.

Consequently

‖T1g‖2 =
∑
n∈Z

1

a′n
|T1gn|2 ≤

∑
n∈Z

1

a′n
C‖g‖2 = (C ′C)‖g‖2.

To estimate α(g) we notice that

C ′ ≥ ||Ω||2 =
∑
n∈Z

1

a′n

(
∞∏
i=n

|ci|2
)
≥
∑
n∈Z

1

a′n

(∏
i∈Z

|ci|2
)

=
C ′

K2
,

which implies that |α(g)| ≤ K
√
C||g|| and ||T || ≤

√
CC ′ +K

√
CC ′. This completes

the proof.

An important corollary from this proposition is the existence of limits at infinities

for the sequences which are in the domain of A.
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Corollary 3.3.13 Let f ∈ dom(A), then f±∞ exist and are given by the following

formulas:

f∞ =
∞∑

i=−∞

1

ai

(
∞∏
j=i

cj

)
Afi −

(
∞∏

i=−∞

ci

)
α(Af)

f−∞ = α(Af).

Proof Using the previous proposition and the methods invoked in Corollaries 3.3.3

and 3.3.5 yields the desired result.

Next analogous results about the A are stated.

Proposition 3.3.14 There exists a T ∈ B(`2
a′(Z), `2

a(Z)) such that AT = I`2
a′ (Z) and

TA = I`2
a′ (Z) − ProjKerA. In particular A is an unbounded Fredholm operator with

index equal to one.

Proof The solution of the equation

a′n(fn − cnfn+1) = gn for n ∈ Z

is given the following formula

(Tg)n =
∞∑
i=n

1

a′i

(
i−1∏
j=n

cj

)
gi −

(
∞∏
i=n

ci

)
β(g) = T0gn − β(g)Ω+

n , (3.14)

where we set
∏n−1

j=n cj = 1 and β(g) is an arbitrary constant. Here

(T0g)n :=
∞∑
i=n

1

a′i

(
i−1∏
j=n

cj

)
gi, (3.15)

and Ω+
n :=

∏∞
i=n ci.

One has the relation AT = I`2
a′ (Z), however to make sure one has TA = I`2a(Z) −

ProjKer A, one needs to make the following choice of β(g):

β(g) =
〈Ω+, T0g〉
||Ω+||2

=

∑
n∈Z
∑∞

i=n
1
a′n

1
a′i

(∏i−1
j=n cj

)
(
∏∞

k=n ck) gi∑
n∈Z

1
a′n

(
∏∞

i=n |ci|2)
.
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The previous methods yield

‖T‖ ≤
√
CC ′ +K

√
CC ′ <∞,

and the statement of the proposition follows.

An immediate corollary is the following:

Corollary 3.3.15 Let f ∈ dom(T ), then f±∞ exist and

f∞ = β(Af)

f−∞ =
∞∑

i=−∞

1

a′i

(
i−1∏

j=−∞

cj

)
Afi −

(
∞∏

i=−∞

ci

)
β(Af).

Imposing vanishing conditions at infinities one can construct the following six

operators. A0 is the operator A but with domain

dom(A0) = {f ∈ dom(A) : f∞ = 0}

and A0 is the operator A with domain

dom(A0) = {f ∈ dom(A) : f∞ = 0}.

A1 is the operator A with domain

dom(A1) = {f ∈ dom(A) : f−∞ = 0}

and A1 is the operator A with domain

dom(A1) = {f ∈ dom(A) : f−∞ = 0}.

Finally A2 is the operator A with domain

dom(A2) = {f ∈ dom(A) : f±∞ = 0}

and A2 is the operator A with domain
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dom(A2) = {f ∈ dom(A) : f±∞ = 0}.

The above operators are related by the calculation of adjoints of A and A.

Proposition 3.3.16 With the above definitions we have:

A∗ = A2, A
∗
0 = A1, A

∗
1 = A0, A

∗
2 = A, A

∗
= A2, A0

∗
= A1, A1

∗
= A0, A2

∗
= A.

Proof This easily follows from the integration by parts formula:

〈Af, g〉 = 〈f, Ag〉 − f∞g∞ + f−∞g−∞.

It follows from the definitions and the kernel calculations for A and A that the

just introduced six operators A0, A1, A2, A0, A1, A2 have no kernel, while the adjoint

calculation shows that only A2, A2 have cokernel (of dimension one).

Next a parametrix for each of the above operators is built. So far we have con-

structed T , formula 3.12, and T , formula (3.14). In view of the above proposition

we set T2 := T
∗

and T2 := T ∗. We have also introduced T1, formula (3.13), and

T0, formula (3.15) and one can verify like in Proposition 3.3.7 that T ∗1 = T0. The

following similar looking operators are introduced:

(T1g)n :=
n∑

i=−∞

1

ai

(
n−1∏
j=i

cj

)
gi

and

(T0g)n :=
∞∑
i=n

1

a′i

(
i−1∏
j=n

cj

)
gi,

for which one has T ∗0 = T1. Then we get the following summary of the Fredholm

properties of our operators.
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Proposition 3.3.17 With the above definitions one has

A0T0 = I`2a(Z) and T0A0 = I`2
a′ (Z)

A1T1 = I`2a(Z) and T1A1 = I`2
a′ (Z)

A2T2 = I`2a(Z) − ProjCoker(A2) and T2A2 = I`2
a′ (Z)

T0A0 = I`2
a′ (Z) and A0T0 = I`2a(Z)

T1A1 = I`2
a′ (Z) and A1T1 = I`2a(Z)

T2A2 = I`2
a′ (Z) and A2T2 = I`2a(Z) − ProjCoker(A2).

In particular all six operators are unbounded Fredholm operators with index zero for

A0, A1, A0, A1 and index minus one for A2, A2.

We conclude this section with a simple observation on functional-analytic proper-

ties of the parametrices.

Proposition 3.3.18 Each of the 8 parametrix operators: T , T0, T1, T2, T , T0, T1,

T2 is a Hilbert-Schmidt operator.

3.4 Fourier Transform in quantum domains

In this section the Fourier Transform in the quantum domains is consided, and

one will get decomposition theorems for the Hilbert space H and the operator D,

defined in section 3.2. The following discussion covers both cases S = N and S = Z

in a fairly uniform manner: there are only a few places where the difference between

the unilateral and the bilateral cases needs to be covered separately. An extensive

use of the label operator will be made and it is defined as:

Kek = kek,

where {ek}, k ∈ S is the canonical basis for `2
a(S). The label operator lets one write

different diagonal operators as its functions. For example two previously introduced
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operators can be expressed, with some notational abuse, as W = W (K), and S =

S(K), see 3.5 and 3.6, with W (k) = wk, and S(k) = sk = w2
k−w2

k−1. Additionally, the

elements of `2
a(S) will also be written using the function notation i.e. {fk} = {f(k)}.

If {f(k)} has a limit at ±∞ it is denoted by f(±∞).

For the purpose of the following discussion define

a(n)(k) = S−1/2(k)S−1/2(k + n). (3.16)

Then one has the following lemma which is essentially a Fourier decomposition of the

Hilbert space H.

Lemma 3.4.1 Let a(n) = {a(n)(k)} be the sequence of positive numbers defined above.

The map I :
⊕∞

m=0 `
2
a(m)(S)⊕

⊕∞
n=1 `

2
a(n)

(S)→ H given by

∞⊕
m=0

{fm(k)}k∈S ⊕
∞⊕
n=1

{gn(k)}k∈S
I→
∞∑
m=0

Umfm(K) +
∞∑
n=1

gn(K)(U∗)n

is well-defined and is an isomorphism of Hilbert spaces.

Proof First we need to show that I is an isometry. This will only be done for the

gn(K) terms as the calculation for the fn(K) terms is essentially identical. It follows

that ∥∥∥∥∥
∞∑
n=1

gn(K)(U∗)n

∥∥∥∥∥
2

H

= tr

(
S1/2(K)

∞∑
n=1

gn(K)(U∗)nS1/2(K)
∞∑
l=1

Ungl(K)

)

= tr

(
S1/2(K)S1/2(K + n)

∞∑
n=1

|gn(K)|2
)

=
∞∑
n=1

∞∑
k=0

1

a(n)(k)
|gn(k)|2 =

∞∑
n=1

‖{gn(k)}‖2
`2
a(n)

= ‖{gn(k)}‖2⊕∞
n=1 `

2

a(n)

and thus the norms are the same and I is an isometry on its range. To show that

Ran I = H it must be demonstrated that Ran I is dense in H.
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First note that C∗(W ) is dense in H by construction. Define δl(k) to be the

following function:

δl(k) =

 1 k = l

0 k 6= l.

Then the (not normalized) canonical basis in `2
a(m)(S) corresponds through the map I

to Umδl(K) and similarly the canonical basis in `2
a(n)

(S) corresponds to δl(K)(U∗)n.

Note that Umδl(K) and δl(K)(U∗)n sit inside C∗(W ), so all that is required is to

show they generate a dense set in C∗(W ) in the topology induced by H (they do not

in the usual topology of C∗(W )). However this is clear since

∑
l≤L

δl(K) →
L→∞

I in H

because the operator S is trace class. It follows that U,U∗ are in Ran I, and thus

Ran I is a dense subspace of H.

In what follows it will be convenient sometimes to write the Fourier series for

a ∈ H in one of two ways:

a =
∞∑
m=0

Umfm(K) +
∞∑
n=1

gn(K)(U∗)n =
∞∑
m=1

Umfm(K) +
∞∑
n=0

gn(K)(U∗)n

where we always set f0(k) = g0(k).

The Fourier transform described in the above lemma will now be used to find a

decomposition of D in terms of the operators A and A defined in the previous section.

Recall that those operators depend on sequences of weights a, a′ and coefficients c

subject to conditions 3.7. Since in the following the parameters vary, one will need

appropriate decorations on A and A. To do that, in addition to sequences (3.16), the

following is introduced:

c(n)(k) := W (k)W−1(k + n+ 1). (3.17)

Next define the operators A(n) as follows:
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A(n) : dom(A(n)) ⊂ `2
a(n+1)(S)→ `2

a(n)(S)

where dom(A(n)) = {f ∈ `2
a(n+1)(S) : ‖A(n)f‖`2

a(n)
(S) <∞}

A(n)f(k) = a(n)(k)
(
f(k)− c(n)(k − 1) f(k − 1)

)
.

The corresponding formal adjoints A
(n)

are defined in the same way as in the previous

section i.e.

A
(n)

: dom(A
(n)

) ⊂ `2
a(n)(S)→ `2

a(n+1)(S)

where dom(A
(n)

) = {f ∈ `2
a(n)(S) : ‖A(n)

f‖`2
a(n+1)

(S) <∞}

A
(n)
f(k) = a(n+1)(k)(f(k)− c(n)(k)f(k + 1)).

Additionally one will need the following diagonal operator W (m)(K) := W (K + m)

i.e.

W (m)f(k) := W (k +m)f(k)

for f ∈ `2
a(n)

(S). Clearly W (m) is a bounded, invertible, self-adjoint operator with a

bounded inverse.

Now the main decomposition theorem can be stated. A minor difficulty here is

that D is not diagonal with respect to the Fourier decomposition of the Hilbert space

but rather shifts the components by one.

Theorem 3.4.2 With the above notation the operator D has the following decompo-

sition: Da =
∞∑
m=1

Umf ′m(K) +
∞∑
n=0

g′n(K)(U∗)n, where

a =
∞∑
m=0

Umfm(K) +
∞∑
n=1

gn(K)(U∗)n and f ′m+1 = −A(m)
W (m)fm and g′n−1 =

W (n−1)A(n−1)gn. We write symbolically:

D ∼=
(

(−A(m)
W (m))∞m=0, (W

(n−1)A(n−1))∞n=1

)
.

Proof We compute the expression Da = S−1/2(K) [a, UW (K)]S−1/2(K) using the

Fourier decomposition: a =
∞∑
m=0

Umfm(K) +
∞∑
n=1

gn(K)(U∗)n. We use the following

commutation relation
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f(K)U = Uf(K + 1).

Then one obtains, setting in the unilateral case W (−1) = fn(−1) = gn(−1) = 0,

Da = S−1/2(K) [a, UW (K)]S−1/2(K)

=
∞∑
m=0

S−1/2(K) (Umfm(K)UW (K)− UW (K)Umfm(K))S−1/2(K)

+
∞∑
n=1

S−1/2(K)
(
gn(K)(U∗)n−1W (K)− UW (K)gn(K)(U∗)n

)
S−1/2(K).

The above expression is equal to

−
∞∑
m=0

Um+1S−1/2(K)S−1/2(K +m+ 1) (W (K +m)fm(K)−W (K)fm(K + 1))

+
∞∑
n=1

S−1/2(K)S−1/2(K + n− 1)

× (W (K + n− 1)gn(K)−W (K − 1)gn(K − 1)) (U∗)n−1,

which can be written as:

−
∞∑
m=0

Um+1a(m+1)(K)

×
(
W (K +m)fm(K)− W (K)

W (K +m+ 1)
W (K +m+ 1)fm(K + 1)

)
+
∞∑
n=1

W (K + n− 1)a(n−1)(K)

(
gn(K)− W (K − 1)

W (K + n− 1)
gn(K − 1)

)
(U∗)n−1.

This is equal to:

−
∞∑
m=0

Um+1a(m+1)(K)
(
W (m)(K)fm(K)− c(m)(K)W (m)(K + 1)fm(K + 1)

)
+
∞∑
n=1

W (n−1)(K)a(n−1)(K)
(
gn(K)− c(n−1)(K − 1)gn(K − 1)

)
(U∗)n−1.

Consequently

Da = −
∞∑
m=0

Um+1A
(m)
W (m)fm(K) +

∞∑
n=1

W (n−1)A(n−1)gn(K)(U∗)n−1.
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Next we need to verify that the a(n), see (3.16), and the c(n), see (3.17), satisfy the

conditions 3.7. Note that since wk is an increasing sequence converging to w+ > 0

one has |c(n)(k)| =
∣∣∣ wk
wk+n+1

∣∣∣ ≤ 1.

In the unilateral case, S = N, we compute

K(n) :=
∞∏
k=0

1

c(n)(k)
=

(w+)n+1

w0 · · ·wn
<∞.

Next note that

C(n) :=
∞∑
k=0

1

a(n)(k)
=
∞∑
k=0

√
sksk+n ≤

√√√√ ∞∑
k=0

sk

√√√√ ∞∑
k=0

sk+n

=
√
w+

√√√√ ∞∑
k=n

sk <∞,

with the constant C(n) going to zero as n→∞.

In the bilateral case (k ∈ Z) we have

K(n) :=
∞∏

k=−∞

1

c(n)(k)
=

(w+)n+1

(w−)n+1
<∞.

Next we estimate

C(n) :=
∞∑

k=−∞

1

a(n)(k)
=

∑
k≤−n/2

√
sksk+n +

∑
k>−n/2

√
sksk+n

≤
√
w+ − w−

√ ∑
k≤−n/2

sk +
√
w+ − w−

√∑
k>n/2

sk <∞,

and again the constant C(n) goes to zero as n→∞.

As we will see later on, the significance of lim
n→∞

C(n) = 0 is that it implies com-

pactness of a parametrix of D, subject to APS boundary conditions.

It is stated here without a proof the analogous result for the formal adjoint D of

D. We define

Db := S−1/2(K)[b,W (K)U∗]S−1/2(K).

on the maximal domain, like the operator D. One has the following decomposition.
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Theorem 3.4.3 With the above notation the operator D can be written as

D ∼=
(

(−W (m)A(m))∞m=0, (A
(n−1)

W (n−1))∞n=1

)
.

3.5 Proofs of the index theorems in the quantum disk and annulus

One is now in a position to consider the proofs of the main results of this chapter.

A rephrasement of the statements of the theorems from section 3.2 is made here

adding more detail. The operator DN equals the unilateral operator D with domain

dom(DN) = {a ∈ Dom(D) : r(a) ∈ Ran PN} .

The first of the main results of this chapter will now be proven.

Theorem 3.5.1 The operator DN defined above is an unbounded Fredholm operator

with index ind(DN) = N + 1. In fact, there is a bounded operator QN such that

Ker(QN) = Coker(DN), DNQN = I−ProjCoker(DN ), and QNDN = I−ProjKer(DN ).

Moreover the parametrix QN is a compact operator.

Proof All the hard work has been done. It’s now just a matter of piecing together

appropriate results from the previous sections. First we analyze the APS boundary

conditions. Let a =
∑∞

n=0 U
nfn(K) +

∑∞
n=1 gn(K)(U∗)n be in dom(DN). Then the

restriction r(a) from section 3.2 is well defined. We note that r acts on U , U∗, and

f(K) in the following way

r(U) = eiϕ

r(U∗) = e−iϕ

r(f(K)) = f(∞) · I := lim
k→∞

f(k) · I.

The third equation holds because the difference f(K)−f(∞)·I is a compact operator,

and r vanishes on compact operators. Consequently one sees that r acts on a ∈

Dom(D) in the following way:
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r(a) =
∞∑
n=0

einϕfn(∞) +
∞∑
n=1

gn(∞)e−inϕ.

This means that for r(a) to be in the range of PN , where Ran PN = span
n≤N
{einϕ}, one

has the following: if N ≥ 0, then fn(∞) = 0 for n > N , and if N < 0, then fn(∞) = 0

for all n and gn(∞) = 0 for n < −N . Thus from Theorem 3.4.2 and from Proposition

3.3.6 one can represent DN subject to the APS boundary conditions as follows

DN =



(
(−A(m)

W (m))Nm=0, (−A0
(m)
W (m))∞m=N+1, (W

(n−1)A(n−1))∞n=1

)
for N ≥ 0(

(−A0
(m)
W (m))∞m=0, (W

(n−1)A
(n−1)
0 )−N−1

n=1 , (W (n−1)A(n−1))∞n=−N

)
for N < 0

Also note from Theorem 3.4.2, Proposition 3.3.6 and the above analysis of the

APS conditions, one can represent D∗N as follows

DN
∗ =



(
(−W (m)A

(m)
0 )Nm=0, (−W (m)A(m))∞m=N+1, (A0

(n−1)
W (n−1))∞n=1

)
for N ≥ 0(

(−W (m)A(m))∞m=0, (A
(n−1)

W (n−1))−N−1
n=1 , (A0

(n−1)
W (n−1))∞n=−N

)
for N < 0

From these representations and from Proposition 3.3.1, one gets the following

dim KerDN =

 N + 1 for N ≥ 0

0 for N < 0

and

dim KerDN
∗ =

 0 for N ≥ 0

−(N + 1) for N < 0

and thus the index calculation follows. To conclude that DN is a Fredholm operator

we need to construct a parametrix. One builds QN in the following fashion:
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QN =



(
(−V (m)T

(m)
)Nm=0, (−V (m)T0

(m)
)∞m=N+1, (T

(n−1)V (n−1))∞n=1

)
for N ≥ 0(

(−V (m)T0
(m)

)∞m=0, (T0
(n−1)V (n−1))−N−1

n=1 , (T (n−1)V (n−1))∞n=−N

)
for N < 0

where T (n), T
(n)

, T
(n)
0 , and T0

(n)
are, correspondingly, the parametrices for A(n), A

(n)
,

A
(n)
0 and A0

(n)
, as defined in section 3.3, and

V (m) :=
(
W (m)

)−1
.

From Corollary 3.3.8 and Propositions 3.3.4 and 3.3.2, it follows that

QNDN =

 I − ProjKer DN
for N ≥ 0

I for N < 0

and

DNQN =

 I for N ≥ 0

I − ProjKer DN
∗ for N < 0.

From the construction, the kernel of each T operator is the cokernel of the corre-

sponding A operator, which implies that Ker(QN) = Coker(DN).

Finally all that remains is to show that QN is a bounded, and in fact, a compact

operator. Notice that T (n−1)V (n−1) and −V (m)T0
(m)

are compact operators (in fact

Hilbert-Schmidt operators) with norms that can be estimated as follows:

||T (n−1)V (n−1)|| ≤ 1

w0

√
C(n−1)C(n)

and similarly

||V (m)T0
(m)|| ≤ 1

w0

√
C(m)C(m+1).

Since C(n) → 0 as n→∞, it follows from the decomposition that QN is compact as

a uniform limit of compact operators. Thus this completes the proof.
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Now one considers the non-commutative cylinder case. The operator DM,N equals

the bilateral operator D with domain

dom(DM,N) =
{
a ∈ Dom(D) : r+(a) ∈ Ran P+

N , r−(a) ∈ Ran P−M
}
.

Theorem 3.5.2 The operator DM,N above is an unbounded Fredholm operator with

index ind(DM,N) = M+N+1. In fact, there is a bounded operator QM,N such that that

Ker(QM,N) = Coker(DM,N), DM,NQM,N = I − ProjCoker(DM,N ), and QM,NDM,N =

I − ProjKer(DM,N ). Moreover the parametrix QM,N is a compact operator.

Proof The proof is analogous to the previous proof, however there are more cases

to consider. This is due to the way how this chapter treated both the disk and

the cylinder in complete parallel so far. A different Fourier transform of the Hilbert

space could also have been considered leading to an easier index calculation. However

that would have made the corresponding decompositions of D different and more

complicated to analyze.

Let a =
∑∞

n=0 U
nfn(K) +

∑∞
n=1 gn(K)(U∗)n be in dom(DM,N). Then we have

r±(a) =
∞∑
n=0

einϕfn(±∞) +
∞∑
n=1

gn(±∞)e−inϕ.

We need r+(a) to be in Ran P+
N = span

n≤N
{einϕ}, and for r−(a) to be in Ran P−M =

span
−M≤n

{einϕ}, so one is led to consider the following six cases. In each case we list

the decomposition of the operator DM,N (in the first line), its adjoint DM,N
∗ (in the

second line), and the parametrix QM,N (in the third line).

Case 1 : M +N ≥ 0

Case 1(a) : N ≥ 0, M > 0

(
(−A(m)

W (m))Nm=0, (−A0
(m)
W (m))∞m=N+1,

(W (n−1)A(n−1))Mn=1, (W
(n−1)A

(n−1)
1 )∞n=M+1

)
(

(−W (m)A2
(m))Nm=0, (−W (m)A1

(m))∞m=N+1,

(A2
(n−1)

W (n−1))Mn=1, (A0
(n−1)

W (n−1))∞n=M+1

)
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(
(−V (m)T

(m)
)Nm=0, (−V (m)T0

(m)
)∞m=N+1,

(T (n−1)V (n−1))Mn=1, (T
(n−1)
1 V (n−1))∞n=M+1

)
Case 1(b) : N < 0, M > 0

(
(−A0

(m)
W (m))∞m=0, (W

(n−1)A
(n−1)
0 )−N−1

n=1 ,

(W (n−1)A(n−1))Mn=−N , (W
(n−1)A

(n−1)
1 )∞n=M+1

)
(

(−W (m)A1
(m))∞m=0, (A1

(n−1)
W (n−1))−N−1

n=1 ,

(A2
(n−1)

W (n−1))Mn=−N , (A0
(n−1)

W (n−1))∞n=M+1

)
(

(−V (m)T0
(m)

)∞m=0, (T
(n−1)
0 V (n−1))−N−1

n=1 ,

(T (n−1)V (n−1))Mn=−N , (T
(n−1)
1 V (n−1))∞n=M+1

)
In the formulas above there is no second term when N = −1.

Case 1(c) : M ≤ 0, N ≥ 0

(
(−A1

(m)
W (m))−M−1

m=0 , (−A(m)
W (m))Nm=−M ,

(−A0
(m)
W (m))∞m=N+1, (W

(n−1)A
(n−1)
1 )∞n=1

)
(

(−W (m)A0
(m))−M−1

m=0 , (−W (m)A2
(m))Nm=−M ,

(−W (m)A1
(m))∞m=N+1, (A0

(n−1)
W (n−1))∞n=1

)
(

(−V (m)T1
(m)

)−M−1
m=0 , (−V (m)T

(m)
)Nm=−M ,

(−V (m)T0
(m)

)∞m=N+1, (T
(n−1)
1 V (n−1))∞n=1

)
When M = 0 in the above formulas we simply omit the first term.

Case 2 : M +N < 0

Case 2(a) : N < 0, M ≤ 0

(
(−A2

(m)
W (m))−M−1

m=0 , (−A0
(m)
W (m))∞m=−M ,

(W (n−1)A
(n−1)
2 )−N−1

n=1 , (W (n−1)A
(n−1)
1 )∞n=−N

)
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(
(−W (m)A(m))−M−1

m=0 , (−W (m)A1
(m))∞m=−M ,

(A
(n−1)

W (n−1))−N−1
n=1 , (A0

(n−1)
W (n−1))∞n=−N

)
(

(−V (m)T2
(m)

)−M−1
m=0 , (−V (m)T0

(m)
)∞m=−M ,

(T
(n−1)
2 V (n−1))−N−1

n=1 , (T
(n−1)
1 V (n−1))∞n=−N

)
In the formulas above there is no first term when M = 0.

Case 2(b) : N < 0, M > 0

(
(−A0

(m)
W (m))∞m=0, (W

(n−1)A
(n−1)
0 )Mn=1,

(W (n−1)A
(n−1)
2 )−N−1

n=M+1, (W
(n−1)A

(n−1)
1 )∞n=−N

)
(

(−W (m)A1
(m))∞m=0, (A1

(n−1)
W (n−1))Mn=1,

(A
(n−1)

W (n−1))−N−1
n=M+1, (A0

(n−1)
W (n−1))∞n=−N

)
(

(−V (m)T0

(m)
)∞m=0, (T

(n−1)
0 V (n−1))Mn=1,

(T
(n−1)
2 V (n−1))−N−1

n=M+1, (T
(n−1)
1 V (n−1))∞n=−N

)
Case 2(c) : N ≥ 0, M < 0

(
(−A1

(m)
W (m))N−1

m=0, (−A2
(m)
W (m))−M−1

m=N ,

(−A0
(m)
W (m))∞m=−M , (W

(n−1)A
(n−1)
1 )∞n=1

)
(

(−W (m)A0
(m))N−1

m=0, (−W (m)A(m))−M−1
m=N ,

(−W (m)A1
(m))∞m=−M , (A0

(n−1)
W (n−1))∞n=1

)
(

(−V (m)T1
(m)

)N−1
m=0, (−V (m)T2

(m)
)−M−1
m=N ,

(−V (m)T0
(m)

)∞m=−M , (T
(n−1)
1 V (n−1))∞n=1

)
In the formulas above there is again no first term when N = 0.

From these representations and from Proposition 3.3.11, one gets the following
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dim Ker(DM,N) =

 M +N + 1 for M +N ≥ 0

0 for M +N < 0,

and

dim Ker(DM,N
∗) =

 0 for M +N ≥ 0

−(M +N + 1) for M +N < 0.

Thus index calculation follows. Using the analysis done in section 3.3, one gets the

following two relations

QM,NDM,N =

 I − ProjKerDM,N
for M +N ≥ 0

I for M +N < 0,

and

DM,NQM,N =

 I for M +N ≥ 0

I − ProjKerDM,N
∗ for M +N < 0.

The relation Ker(QM,N) = Coker(DM,N) follows from the same property of the

parametrix of each component of QM,N .

The proof that QM,N is compact is the same as in the unilateral case.
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4. DIRAC TYPE OPERATORS ON THE CLASSICAL

AND QUAUNTUM PUNCTURED DISK

4.1 Classical Dirac operator on the punctured disk

In this section the analysis of Atiyah, Patodi, Singer is revisited in the simple case

of semi-infinite cylinder R+ × S1, or equivalently a punctured disk. Using complex

coordinates of the latter, the construction of a parametrix of a version of the d-bar

operator is made and one proves norm estimates on its components by using different

techniques than those in [2].

Let D∗ = {z ∈ C : 0 < |z| ≤ 1} be the punctured disk. Consider the following

Dirac type operator on D∗:

D = −2z
∂

∂z
.

In polar coordinates z = reiϕ the operator D has the following representation:

D = −r ∂
∂r

+
1

i

∂

∂ϕ
= −r ∂

∂r
+B

where B = 1
i
∂
∂ϕ

is the boundary operator.

Studying D, subject to the APS boundary condition would like to be done, on

the Hilbert space L2(D∗, dµ) with measure µ(z) given by the following formula:

dµ(z) =
1

2i|z|2
dz ∧ dz. (4.1)

Recall the APS condition. Define P≥0 to be the spectral projection of B in L2(S1)

onto the non-negative part of the spectrum of B. Equivalently, P≥0 is the orthogonal

projection onto span{einϕ}n≥0. Then one says that D satisfies the APS boundary

condition when its domain consists of those functions f(z) = f(r, ϕ) on D∗ which
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have only negative frequencies at the boundary, see [2] and [5] for more details. More

precisely:

dom(D) =
{
f ∈ L2(D∗, dµ) : Df ∈ L2(D∗, dµ), P≥0f(1, ·) = 0

}
. (4.2)

Notice that, by the change of variable, t = − ln r, the Dirac operator, D on

L2(D∗, dµ), is equivalent to the operator, ∂
∂t

+ 1
i
∂
∂ϕ

on L2(R+ × S1), since one has:

dϕ ∧ dt =
1

2i|z|2
dz ∧ dz.

This matches the APS setup.

One proceeds the in the same way as in [2] by considering the spectral decomposi-

tion of the boundary operator B, which in our case amounts to Fourier decomposition:

f(z) =
∑
n∈Z

fn(r)e−inϕ. (4.3)

This yields the following decomposition of the Hilbert space L2(D∗, dµ):

L2(D∗, dµ) =
⊕
n∈Z

(
L2((0, 1],

dr

r
)⊗

[
e−inϕ

])
. ∼=

⊕
n∈Z

L2

(
(0, 1],

dr

r

)
(4.4)

Now one considers the decomposition of D and its inverse. The theorem below

is a special case of Proposition 2.5 of [2] but a proof is supplied that generalizes

to the noncommutative setup. Define A
(n)
f(r) := −rf ′(r) − nf(r) on the maximal

domain in L2((0, 1], dr
r

), and let A0
(n)

be the operator A
(n)

but with domain {f(r) ∈

dom(A
(n)

) : f(1) = 0}. One has:

Theorem 4.1.1 Let D be the Dirac operator defined above on the domain (4.2).

With respect to the decomposition 4.4 one has

D ∼=
⊕
n>0

A
(n) ⊕

⊕
n≤0

A0
(n)
.

Moreover, there exists an operator Q such that DQ = I = QD, and
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Q =
⊕
n∈Z

Q(n) = Q(0) + Q̃

where Q̃ is bounded.

Proof Staring with a function g(z) ∈ L2(D∗, dµ) we want to solve the following

equation

Df(z) = g(z)

with f(z) satisfying the APS boundary condition. The Fourier decomposition (4.3)

yields

∑
n∈Z

(−rf ′n(r)− nfn(r)) e−inϕ =
∑
n∈Z

gn(r)e−inϕ.

Therefore we must solve the differential equation −rf ′n(r)−nfn(r) = gn(r) where ad-

ditionally fn(1) = 0 for n ≤ 0. This, and the requirement that f is square integrable,

assures that there is a unique solution given by the following formula:

fn(r) = Q(n)gn(r) =


−
∫ r

0

(ρ
r

)n
gn(ρ)

dρ

ρ
n > 0∫ 1

r

(ρ
r

)n
gn(ρ)

dρ

ρ
n ≤ 0

.

This gives the formula for the parametrix: Q = ⊕n∈ZQ(n). Showing QD = DQ = I

is a simple computation and is omitted.

The goal is to prove that Q̃ = ⊕n 6=0Q
(n) is bounded. One has

‖Q̃‖ ≤ sup
n∈Z\{0}

∥∥Q(n)
∥∥ .

In what follows it is shown that the Q(n) are uniformly bounded, in fact of order

O( 1
|n|). The main tool is the following inequality, see [13].

Lemma 4.1.2 (Schur-Young Inequality) Let T : L2(Y ) −→ L2(X) be an integral

operator:
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Tf(x) =

∫
K(x, y)f(y)dy.

Then one has

‖T‖2 ≤
(

sup
x∈X

∫
Y

|K(x, y)|dy
)(

sup
y∈Y

∫
X

|K(x, y)|dx
)
.

For negative n one can rewrite Q(n) as

Q(n)gn(r) =

∫ 1

0

K(r, ρ)gn(ρ)
dρ

ρ

with integral kernel K(r, ρ) = χ(r/ρ) (r/ρ)|n|. Here the characteristic function χ(t) =

1 for t ≤ 1 and is zero otherwise. Next we estimate:

sup
r

∫ 1

r

r|n|

ρ|n|+1
dρ = sup

r

1

|n|
(1− r|n|) ≤ 1

|n|
.

Similarly one has:

sup
ρ

∫ ρ

0

r|n|−1

ρ|n|
dr = sup

ρ

1

|n|
· 1

ρ|n|
· ρ|n| = 1

|n|
.

Thus one has by the Schur-Young inequality that ‖Q(n)‖ ≤ 1
|n| . A similar computation

for positive n gives ‖Q(n)‖ ≤ 1
|n| for all n 6= 0. Hence one has that Q̃ is bounded.

Since in this chapter going beyond the analysis on the semi-infinite cylinder is not

attempted, the n = 0 term will simply be ignored. In [2] this was not an issue as Q(0)

is continuous when mapping into an appropriate local Sobolev space.

4.2 Dirac operators on the quantum punctured disk

In this section the non-commutative punctured disk and the quantum analog

of the Dirac operator of the previous section is constructed. In particular, a non-

commutative Fourier decomposition of that operator is discussed. It’s also worth

mentioning that a version of a quantum punctured disk was previously considered

in [16].
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One starts with defining several auxiliary objects needed for the current construc-

tion. Let `2(Z) be the Hilbert space of square summable bilateral sequences, and let

{ek}k∈Z be its canonical basis. The following two operators are needed: let U be the

shift operator given by:

Uek = ek+1

and let K be the label operator defined by the following formula:

Kek = kek.

By the functional calculus, if f : Z → C, then f(K) is a diagonal operator and

satisfies the relation f(K)ek = f(k)ek.

Next assume a sequence {w(k)}k∈Z of real numbers are given with the following

properties:

1. w(k) < w(k + 1)

2. lim
k→∞

w(k) =: w+ exists

3. lim
k→−∞

w(k) = 0

4. sup
k

w(k)

w(k − 1)
<∞.

(4.5)

In particular one has w(k) > 0.

The function w : Z→ C gives a diagonal operator w(K) as above. From this the

weighted shift operator Uw := Uw(K) is defined which plays the role of a noncom-

mutative complex coordinate on the punctured disk.

Clearly:

Uwek = w(k)ek+1

U∗wek = w(k − 1)ek−1.
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Consider the commutator S := [U∗w, Uw], for which one has Sek = (w2(k) − w2(k −

1))ek. If one lets S(k) := w2(k) − w2(k − 1), then one can write S = S(K). Notice

that S is a trace class operator and a simple computation gives tr(S) = w2
+.

The quantum punctured disk C∗(Uw) is defined to be the C∗ − algebra generated

by Uw. General theory, see [9], gives the following short exact sequence:

0 −→ K −→ C∗(Uw)
σ−→ C(S1) −→ 0

where K is the ideal of compact operators and σ is the noncommutative “restriction

to the boundary” map.

Let b ∈ C∗(Uw) and consider the densely defined weight on C∗(Uw) by

τ(b) = tr
(
S (U∗wUw)−1 b

)
(compare with 4.1). This weight will be used to define the Hilbert space H on which

the Dirac operator will live. This is done by the GNS construction for the algebra

C∗(Uw) with respect to τ . In other words H is obtained as a Hilbert space completion

H = (C∗(Uw), 〈·, ·〉τ = ‖ · ‖2
w)

where ‖b‖2
w = τ(bb∗).

Now it is time to define the operator that is studied in this chapter, the quantum

analog of the operator of the previous section. Define D by the following formula:

Db = −S−1U∗w [b, Uw] . (4.6)

Let, as before, P≥0 be the orthogonal L2 projection onto span{einϕ}n≥0. The APS

boundary conditions on D amount to the following choice of the domain:

dom(D) =
{
b ∈ H : ‖Db‖2

w <∞, P≥0σ(b) = 0
}
. (4.7)

There are certain subtleties in this definition which are clarified in the statement of

Proposition 4.2.2 at the end of this section.
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The next proposition describes a (partial) Fourier series decomposition of the

Hilbert space H. Define

a(k) :=
w(k)2

S(k)
,

and let

`2
a(Z) = {{g(k)}k∈Z : ‖g‖2

a =
∑
k∈Z

a(k)−1|g(k)|2 <∞}.

Now one is ready for the Fourier decomposition of H which is just like (4.4).

Proposition 4.2.1 Let H be the Hilbert space defined above. Then the formula

b =
∑
n∈Z

gn(K) (U∗)n

defines an isomorphism of Hilbert spaces

⊕
n∈Z

`2
a(Z) ∼= H. (4.8)

Proof The proof is identical to the one in [17]. In particular we have

‖b‖2
w =

∑
n∈Z

tr
(
S(K)w−2(K)|gn(K)|2

)
.

The main reason for considering the Fourier decomposition is that it (again par-

tially) diagonalizes the operator D. This is the subject of the next lemma. Before

stating some more notation is needed. Consider the ratios:

c(n)(k) :=
w(k + n)

w(k)

and notice that since {w(k)} is an increasing sequence we have:

c(n)(k) = 1 for n = 0

c(n)(k) > 1 for n > 0

c(n)(k) < 1 for n < 0.
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The coefficients c(n) are needed to define the following operators in `2
a(Z). The first

is:

A
(n)
g(k) = a(k)(g(k)− c(n)(k)g(k + 1))

with domain

dom(A
(n)

) =
{
g ∈ `2

a(Z) : ‖A(n)
g‖a <∞

}
.

Additionally consider the operator A0
(n)

which is the operator A
(n)

but with domain

dom(A0
(n)

) = {g ∈ dom(A
(n)

) : g∞ := lim
k→∞

g(k) = 0}.

The last definition makes sense since by the analysis of [17] the limit limk→∞ g(k)

exists for g ∈ dom(A). One has the following proposition, which is a quantum analog

of the first part of Theorem 4.1.1.

Proposition 4.2.2 With respect to the decomposition (4.8) one has:

D ∼=
⊕
n>0

A
(n) ⊕

⊕
n≤0

A0
(n)
.

Equivalently:

Db =
∑
n>0

A
(n)
gn(K)(U∗)n +

∑
n≤0

A0
(n)
gn(K)(U∗)n

where

b =
∑
n∈Z

gn(K) (U∗)n .

Proof The proof is a direct calculation identical to the one in [17].

4.3 Construction of the parametrix

In this section we construct and analyze in detail the inverse (= a parametrix) Q

for the operator D. The construction is fairly similar to the one done in section 4

in [17], however the norm estimates are quite different. Somewhat surprisingly the
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norm estimates below hold for any choice of sequence of weights {w(k)} satisfying

(4.5).

We start with a lemma containing estimates of sums through integrals. Recall

that the sequence {w(k)} is increasing with limits at ±∞ equal, correspondingly, to

w+ and 0.

Lemma 4.3.1 If f(t) is a decreasing continuous function on (0, (w+)2) then

∑
l<k

f(w(k)2)S(k) =
∑
l<k

f(w(k)2)(w(k)2 − w(k − 1)2) ≤
∫ w2

+

w(l)2
f(t)dt (4.9)

∑
k≤l

f(w(k)2)S(k) ≤
∫ w(l)2

0

f(t)dt (4.10)

∑
k∈Z

f(w(k − 1)2)S(k) ≥
∫ w2

+

0

f(t)dt. (4.11)

The proof of the statements of the lemma follows from a straightforward compar-

ison of the Riemann sums of the left hand side with the integrals on the right hand

side.

The presentation in this section is as follows. First we discuss the kernels of the

A
(n)

operators for the three cases n = 0, n > 0, n < 0. Secondly one constructs the

parametrices for all three cases. Thirdly the norm estimates of the parametrices are

discussed, and finally a summary the analysis in the main result of this chapter is

made.

Below it is shown that the operator D has no kernel by analyzing the terms in

the decomposition of Proposition 4.2.2.

Proposition 4.3.2 The operators A
(n)

for n ≥ 0 and A0
(n)

for n < 0 have no kernel.

Proof We start with n = 0. Here c(n)(k) = 1 and it is clear that the only solution

of that A
(0)
R(0) = 0 is, up to a constant, R(0) = 1. But one has
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‖R(0)‖2
a =

∑
k∈Z

1

a(k)
=
∑
k∈Z

S(k)

w(k)2
≥ const

∑
k∈Z

S(k)

w(k − 1)2
=∞

where we used condition 4 of (4.5) as well as (4.11) for f(t) = 1/t. Therefore

R(0)(K) 6∈ `2
a(Z) and hence A

(0)
has no kernel.

Next we discuss the kernel of A
(n)

when n > 0. It is not too hard to see that any

element of the kernel has to be proportional to

R(n)(k) :=
∞∏
l=k

c(n)(l) =
(w+)n

w(k)w(k + 1) · · ·w(k + n− 1)
.

The norm calculation gives

‖R(n)‖2
a =

∑
k∈Z

1

a(k)
|R(n)(k)|2 =

∑
k∈Z

1

a(k)

∞∏
l=k

|c(n)(l)|2.

Since |c(n)(l)| > 1 and
∑

k∈Z
1

a(k)
=∞, the sum above diverges and hence R(n)(K) 6∈

`2
a(Z).

Finally we discuss the kernel of the operator A0
(n)

when n < 0. Yet again the

kernel is formally one dimensional and spanned by

R(n)(k) =
∞∏
l=k

c(n)(l) =
w(k + n)w(k + n− 1) · · ·w(k − 1)

(w+)−n
.

While one can easily show thatR(n) ∈ `2
a(Z), one however has limk→∞R

(n)(k) = 1 6= 0,

so this means R(n) 6∈ dom
(
A0

(n)
)

. Thus the result follows.

The second portion of the discussion is the construction of the parametrices for all

three cases. Since there are no kernels (and cokernels) involved we simply compute

the inverses of operators A
(n)

. Thus, given g(k), one needs to solve the equation

A
(n)
f(k) = g(k) where additionally limk→∞ f(k) = 0 for n ≤ 0 is needed. This is

done in a similar manner to the methods in [6], [17]. In the case when n > 0 one

arrives at the following formula:

f(k) = −
∑
l<k

R(n)(k)

R(n)(l)a(l)
g(l) = −

∑
l<k

w(l) · · ·w(l + n− 1)

w(k) · · ·w(k + n− 1)
· S(l)

w(l)2
g(l).
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Similarly in the case n ≤ 0 one has:

f(k) =
∑
k≤l

R(n)(k)

R(n)(l)
· g(l)

a(l)
=
∑
k≤l

w(k + n) · · ·w(k − 1)

w(l + n) · · ·w(l − 1)
· S(l)

w(l)2
g(l).

The right hand sides of the above equation give the parametrices Q(n) for all three

cases. Thus one has the following:

Q(n)g(k) = −
∑
l<k

S(l)

w(l)2
g(l) for n = 0

Q(n)g(k) = −
∑
l<k

w(l) · · ·w(l + n− 1)

w(k) · · ·w(k + n− 1)
· S(l)

w(l)2
g(l) for n > 0

Q(n)g(k) =
∑
k≤l

w(k + n) · · ·w(k − 1)

w(l + n) · · ·w(l − 1)
· S(l)

w(l)2
g(l) for n < 0.

(4.12)

A summary of the above analysis is made in the following proposition.

Proposition 4.3.3 Let Q(n) be defined by the formulas above, then we have

A
(n)
Q(n) = I, Q(n)A

(n)
= I for n > 0 and A0

(n)
Q(n) = I, Q(n)A0

(n)
= I for n ≤ 0.

The next question in hand is the boundedness for the parametrices in the cases

n > 0 and n < 0. The difficulty comes for k → ∞: while the ratios of weights are

always less than 1, the series
∑

k∈Z
S(k)
w(k)2

is not summable and we cannot replicate the

estimates of [6] and [17]. In fact the integral operators Q(n) are not Hilbert-Schmidt.

The trick is to estimate most but not all weight ratios by one. The remaining sums,

containing potentially divergent terms, are estimated by integrals using Lemma 4.3.1.

We have the following result.

Proposition 4.3.4 The operators Q(n) defined above are bounded operators in `2
a(Z)

when n 6= 0.

Proof First consider the case that n > 0. Applying the Schur-Young inequality and

the inequalities (4.9), and (4.10) one has
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∥∥Q(n)
∥∥2

a
≤

≤ sup
k

(∑
l<k

w(l) · · ·w(l + n− 1)

w(k) · · ·w(k + n− 1)
· S(l)

w(l)2

)

× sup
l

(∑
l<k

w(l) · · ·w(l + n− 1)

w(k) · · ·w(k + n− 1)
· S(k)

w(k)2

)

≤ sup
k

(
1

w(k)

∑
l<k

S(l)

w(l)

)
sup
l

(
w(l)

∑
l<k

S(k)

w(k)3

)

≤ sup
k

(
1

w(k − 1)

∑
l≤k−1

S(l)

w(l)

)
sup
l

(
w(l)

∫ w2
+

w(l)2
t−

3
2dt

)

≤ sup
k

(
1

w(k − 1)

∫ w(k−1)2

0

t−
1
2dt

)
· 2 sup

l

(
1− w(l)

w+

)
≤ 2 · 2 = 4.

Thus Q(n) is bounded for n > 0. Next consider the case n < 0. Here one has quite

similar estimates:

∥∥Q(n)
∥∥2

a
≤

≤ sup
k

(∑
k≤l

w(k + n) · · ·w(k − 1)

w(l + n) · · ·w(l − 1)
· S(l)

w(l)2

)

× sup
l

(∑
k≤l

w(k + n) · · ·w(k − 1)

w(l + n) · · ·w(l − 1)
· S(k)

w(k)2

)

≤ sup
k

(
w(k − 1)

∑
k≤l

S(l)

w(l)2w(l − 1)

)
sup
l

(
1

w(l − 1)

∑
k≤l

S(k)

w(k)

)

≤
(

sup
l

w(l)

w(l − 1)

)
sup
k

(
w(k − 1)

∑
k−1<l

S(l)

w(l)3

)
sup
l

(
1

w(l − 1)

∑
k≤l

S(k)

w(k)

)

≤
(

sup
l

w(l)

w(l − 1)

)
sup
k

(
w(k − 1)

∫ w2
+

w(k−1)2
t−

3
2dt

)
sup
l

(
1

w(l − 1)

∫ w(l)2

0

t−
1
2dt

)

≤ 4

(
sup
l

w(l)

w(l − 1)

)2

<∞.

Thus Q(n) is bounded for n < 0 and this completes the proof.

Finally one puts together the previous information about the parametrix Q of the

Dirac operator D defined in section 3. The main result of this chapter is now stated.
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Theorem 4.3.5 Let D be the operator (4.6) with domain (4.7). Then there exists

an operator Q such that QD = DQ = I. Moreover, with respect to the decomposition

(4.8) one has

Q =
⊕
n∈Z

Q(n) = Q(0) + Q̃ (4.13)

where the operators Q(n) are given by (4.12) and Q̃ is bounded.

Proof By Proposition 4.2.2 one can decompose D as
⊕

n>0A
(n)⊕

⊕
n≤0A0

(n)
which

in turn gives the decomposition (4.13) of Q. One has that

‖Q̃‖w = sup
n 6=0

∥∥Q(n)
∥∥
a
.

Then from Proposition 4.3.4, one has the following inequalities

‖Q‖2
w ≤ 4

(
sup
l

w(l)

w(l − 1)

)2

<∞

where the last inequality follows from the assumptions in (4.5). To see that one has

DQ = QD = I we use the decompositions of Q and D and Proposition 4.3.3. This

completes the proof.

4.4 The balanced quantum Dirac operators

In this section a version of the constructions of the previous sections that is more

like the theory of [17] and chapter 3 is studied. The main objects: the Hilbert

space and the Dirac operator are called balanced since in their definitions the left

multiplication is not preferred over the right multiplication.

Since the results for the balanced Dirac operators are completely analogous to the

“unbalanced” case and the proofs require only trivial modification, the main steps

of the construction are only stated. The only significant difference between the two

cases are the estimates on the components of the parametrix.
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In order to avoid unnecessary complications old notation is recycled. As before

the starting point is the choice of a sequence of weights {w(k)}k∈Z satisfying (4.5).

The Hilbert space H is the space of power series:

b =
∑
n∈Z

gn(K) (U∗)n

but this time with a different, balanced norm:

‖b‖2
w = tr

(
S1/2w(K)−1bb∗w(K)−1S1/2

)
=

=
∑
n∈Z

tr
(√

S(K)S(K + n)w−1(K)w−1(K + n)|gn(K)|2
)
.

The balanced Dirac operator is

Db = −S−1/2U∗ [b, Uw]w(K)S−1/2

with the domain:

dom(D) =
{
b ∈ H : ‖Db‖2

w <∞, P≥0σcirc(b) = 0
}
.

As before the Dirac operator splits into Fourier components. To describe them

the coefficients of the previous sections must be modified. Actually, the coefficients

c(n)(k) :=
w(k + n)

w(k)

stay the same, but we need to change:

a(n)(k) :=
w(k)w(k + n)√
S(k)S(k + n)

.

Those are used for the following previously defined operators in `2
a(Z). The first

operator is:

A
(n)
g(k) = a(n)(k)(g(k)− c(n)(k)g(k + 1))

with domain

dom(A
(n)

) =
{
g ∈ `2

a(Z) : ‖A(n)
g‖`2a(Z) <∞

}
,
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and the second operator A0
(n)

is the operator A
(n)

but with domain

dom(A0
(n)

) = {g ∈ dom(A
(n)

) : g∞ := lim
k→∞

g(k) = 0}.

With that notation, the Proposition 4.2.2 remains true. In particular one has:

D ∼=
⊕
n>0

A
(n) ⊕

⊕
n≤0

A0
(n)
.

The problem of inverting the operator D is tackled as in the previous section. The

components of the inverse are given by formulas like (4.12) with the only modification

coming from the different a(n) coefficients. One ends up with the following expressions

for the parametrices:

Q(n)g(k) = −
∑
l<k

√
S(l)S(l + n)

w(l)w(l + n)
g(l) for n = 0

Q(n)g(k) = −
∑
l<k

w(l) · · ·w(l + n− 1)

w(k) · · ·w(k + n− 1)
·
√
S(l)S(l + n)

w(l)w(l + n)
g(l) for n > 0

Q(n)g(k) =
∑
k≤l

w(k + n) · · ·w(k − 1)

w(l + n) · · ·w(l − 1)
·
√
S(l)S(l + n)

w(l)w(l + n)
g(l) for n < 0.

One can verify directly that for the operator Q =
⊕

n∈ZQ
(n) then QD = DQ = I.

The following is the main result of this section.

Proposition 4.4.1 The operators Q(n) defined above are bounded operators in `2
a(Z)

when n 6= 0.

Proof The Schur-Young inequality is used and one follows the steps of the proof of

the Proposition 4.3.4, with some modifications. Details for n < 0 are only shown, the

other case is completely analogous.

There are two sums that we need to estimate. The first sum is:

Σn
1 (k) :=

∑
k≤l

w(k + n) · · ·w(k − 1)

w(l + n) · · ·w(l − 1)
·
√
S(l)S(l + n)

w(l)w(l + n)
.
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Using Cachy-Schwarz inequality we estimate:

Σn
1 (k) ≤

≤

(∑
k≤l

w(k + n) · · ·w(k − 1)

w(l + n) · · ·w(l − 1)
· S(l)

w(l)2

)1/2

×

(∑
k≤l

w(k + n) · · ·w(k − 1)

w(l + n) · · ·w(l − 1)
· S(l + n)

w(l + n)2

)1/2

≤

(
w(k − 1)

∑
k≤l

S(l)

w(l)2w(l − 1)

)1/2(
w(k + n)

∑
k≤l

S(l + n)

w(l + n)3

)1/2

.

Since the weights in the denominator are bigger than the corresponding weights in

the numerator, their ratios were estimated by one. The first term on the rights hand

side of the above was already estimated in the proof of Proposition 4.3.4. The second

term is essentially the same as the first:

sup
k

(
w(k + n)

∑
k≤l

S(l + n)

w(l + n)3

)
= sup

k

(
w(k)

∑
k≤l

S(l)

w(l)3

)
.

It follows that Σn
1 (k) is bounded uniformly in n.

The second sum in the Schur-Young inequality is

Σn
2 (l) :=

∑
k≤l

w(k + n) · · ·w(k − 1)

w(l + n) · · ·w(l − 1)
·
√
S(k)S(k + n)

w(k)w(k + n)

and it is bounded in the same fashion as the first sum:

Σn
2 (l) ≤

≤

(∑
k≤l

w(k + n) · · ·w(k − 1)

w(l + n) · · ·w(l − 1)
· S(k)

w(k)2

)1/2

×

(∑
k≤l

w(k + n) · · ·w(k − 1)

w(l + n) · · ·w(l − 1)
· S(k + n)

w(k + n)2

)1/2

≤

(
1

w(l − 1)

∑
k≤l

S(k)

w(k)

)1/2(
1

w(l + n)

∑
k≤l

S(k + n)

w(k + n)

)1/2

.

Again the first term above was already estimated in the proof of Proposition 4.3.4,

and the second term is essentially the same as the first. It follows that Σn
1 (k) is
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uniformly bounded. Repeating the same steps for n > 0 gives the boundedness of Q

for the balanced Dirac operator.
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5. CLASSICAL LIMIT OF THE D-BAR OPERATOR ON

QUANTUM DOMAINS

5.1 Continuous Fields of Hilbert Spaces

In this section a review of some aspects of the theory of continuous fields of Hilbert

spaces is made. The main reference here is Dixmier’s book [11].

Definition: A continuous field of Hilbert spaces is a triple, denoted (Ω,H,Γ), where

Ω is a locally compact topological space, H = {H(ω) : ω ∈ Ω} is a family of Hilbert

spaces, and Γ is a linear subspace of
∏

ω∈Ω H(ω), such that the following conditions

hold:

1. for every ω ∈ Ω, the set of x(ω), x ∈ Γ, is dense in H(ω),

2. for every x ∈ Γ, the function ω 7→ ‖x(ω)‖ is continuous,

3. let x ∈
∏

ω∈ΩH(ω); if for every ω0 ∈ Ω and every ε > 0, there exists x′ ∈ Γ

such that ‖x(ω)− x′(ω)‖ ≤ ε for every ω in some neighborhood (depending on

ε) of ω0, then x ∈ Γ.

The point of this definition is to describe a continuous arrangement of a family

of different Hilbert spaces. If they are all the same, then the space Γ of continuous

functions on Ω with values in that Hilbert space clearly satisfies all the conditions.

Below the following terminology will be used.

We say that a section x ∈
∏

ω∈Ω H(ω) is approximable by Γ at ω0 if for every ε > 0,

there exists an x′ ∈ Γ and a neighborhood of ω0 such that ‖x(ω) − x′(ω)‖ ≤ ε for

every ω in that neighborhood. In this terminology condition 3 of the above definition

says that if a section is approximable by Γ at every ω ∈ Ω, then x ∈ Γ.
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The above definition is a little cumbersome to work with, namely, trying to de-

scribe Γ in full detail is usually very difficult since the third condition isn’t easy to

verify. The following proposition, proved in [11], makes it easier to construct contin-

uous fields.

Proposition 5.1.1 Let Ω be a locally compact topological space, and let H = {H(ω) :

ω ∈ Ω} be a family of Hilbert spaces. If Λ is a linear subspace of
∏

ω∈Ω H(ω) such

that

1. for every ω ∈ Ω, the set of x(ω), x ∈ Λ, is dense in H(ω),

2. for every x ∈ Λ, the function ω 7→ ‖x(ω)‖ is continuous,

then Λ extends uniquely to Γ ⊂
∏

ω∈Ω H(w) such that (Ω,H,Γ) is a continuous field

of Hilbert spaces.

Here one says that if a linear subspace Λ of
∏

ω∈Ω H(ω) satisfies the two conditions

above then Λ generates the continuous field of Hilbert spaces (Ω,H,Γ). In fact, Γ

is simply constructed as a local completion of Λ, i.e. Γ consists of all those sections

x ∈
∏

ω∈Ω H(ω) which are approximable by Λ at every ω ∈ Ω.

Next one considers morphisms of continuous fields of Hilbert spaces. For this one

has the following definition.

Definition: Let (Ω,H,Γ) be a continuous field of Hilbert spaces and let T (ω) :

H(ω)→ H(ω) be a collection of operators acting on the Hilbert spaces H(ω). Define

T =
∏

ω∈Ω T (ω) :
∏

ω∈ΩH(ω) →
∏

ω∈Ω H(ω). We say that {T (ω)} is a continuous

family of bounded operators in (Ω,H,Γ) if

1. T (ω) is bounded for each ω,

2. sup
ω∈Ω
‖T (ω)‖ <∞,

3. T maps Γ into Γ.
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The proposition below contains an alternative description of the third condition

above, so it is more manageable.

Proposition 5.1.2 With the notation of the above definition, the following three

conditions are equivalent:

1. T maps Γ into Γ,

2. T maps Λ into Γ,

3. for every x ∈ Λ and for every ω ∈ Ω, T (ω)x(ω) is approximable by Λ at ω.

Proof The items above are arranged from stronger to weaker. The proof that

condition (2) is equivalent to condition (3) is a simple consequence of the way that Γ

is obtained from Λ described in the paragraph following Proposition 5.1.1. Condition

(2) implies condition (1) because sup
ω∈Ω
‖T (ω)‖ <∞ and so, if x(ω) and y(ω) are locally

close to each other, so are T (ω)x(ω) and T (ω)y(ω).

5.2 D-bar operators on non-commutative domains

In this section another review of a variety of constructions needed to formulate

and prove the results of this chapter is made. Those constructions include the defini-

tions of the quantum disk, the quantum annulus, Hilbert spaces of L2 “functions” on

those quantum spaces, and d-bar operators that were discussed in [17] and chapter 3.

Other items discussed in this section are APS boundary conditions, inverses of d-bar

operators subject to APS conditions, conditions on weights, and a construction of the

generating subspace Λ of the continuous field of Hilbert spaces. The main results are

stated at the end of this section.

In the following formulas one lets S be either N or Z. Let t ∈ (0, 1) be a parameter.

Let {ek}, k ∈ S be the canonical basis for `2(S). Given a t-dependent, bounded

sequence of numbers {wt(k)}, called weights, the weighted shift Uwt is an operator in

`2(S) defined by: Uwtek = wt(k)ek+1. The usual shift operator U satisfies Uek = ek+1.



78

If S = N then the shift Uwt is called a unilateral shift and it will be used to define

a quantum disk. If S = Z then the shift Uwt is called a bilateral shift and it will used

it to define a quantum annulus (also called a quantum cylinder). Chapter 3 contained

similar quantum analogs however there, they were t-independent. For the choice of

weights (2.1) the shifts Uwt are the quantum complex coordinates zt described in the

summary of this chapter.

The following condition on the one-parameter family of weights wt(k) is required.

Condition 1. The weights wt(k) form a positive, bounded, strictly increasing se-

quence in k such that the limits w± := lim
k→±∞

wt(k) exist, are positive, and independent

of t.

Consider the following commutator St = U∗wtUwt−UwtU
∗
wt . It is a diagonal operator

Stek = St(k) ek, where

St(k) := wt(k)2 − wt(k − 1)2.

Moreover St is a trace class operator with easily computable trace:

tr(St) =
∑
k∈S

St(k) = (w+)2 − (w−)2 (5.1)

in the bilateral case, and tr(St) = (w+)2 in the unilateral case. Additionally St is

invertible with unbounded inverse.

More conditions on the wt(k)’s and the St(k)’s are assumed. Those conditions

were simply extracted from the proofs in the next section to make the estimates work.

They are possibly not optimal, but they cover the motivating example described in

the summary of this chapter, see chapter 2.

Condition 2. The function t 7→ wt(k) is continuous for every k, and for every

ε > 0, wt(k) converges to w± as k → ±∞ uniformly on the interval t ≥ ε.

Condition 3. If h1(t) := sup
k∈S

St(k) then h1(t)→ 0 as t→ 0+.
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Condition 4. The supremum h2(t) := sup
k∈S

∣∣∣1− St(k+1)
St(k)

∣∣∣ exists, and is a bounded

function of t, and h2(t)→ 0 as t→ 0+.

Condition 5. The supremum h3(k) := sup
t∈[0,1)

∣∣∣1− wt(k−1)
wt(k)

∣∣∣ exists for every k, and

h3(k)→ 0 as k → ±∞.

Notice that the last condition implies that

wt(k) ≤ constwt(k − 1) (5.2)

where the const above does not depend on t and k. This observation will be used in

the proofs in the next section.

Before moving on, one verifies that the weight sequence (2.1) in the example in

the summary of this chapter satisfies all of the conditions. First we compute:

St(k) =
t

(1 + kt)(1 + (k + 1)t)
.

Conditions 1 and 2 are all easily seen to be true with w+ = 1. For conditions 3, 4,

and 5 simple computations give h1(t) = t/(1 + t), h2(t) = 2t/(1 + 2t) = O(t), and

h3(k) = (k + 1 +
√
k2 + k)−1 = O(1/k), and so, by inspection, these weights meet all

the required conditions. Examples of bilateral shifts satisfying the above conditions

are:

w2
t (k) = α + β

tk

1 + t|k|
.

For this example h1(t) = βt/(1 + t), h2(t) = O(t), h3(k) = O(1/k), w2
+ = α + β, and

w2
− = α− β. Another similar example is w2

t (k) = α + β tan−1(tk).

Next we proceed to the definition of the continuous field of Hilbert spaces over

the interval I = [0, 1). Let C∗(Uwt) be the C∗-algebra generated by Uwt . Then, in

the unilateral case, the algebra C∗(Uwt) is called the non-commutative disk. There is

a canonical map:

C∗(Uwt)
r−→ C(S1)
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called the restriction to the boundary map.

In the bilateral case the algebra C∗(Uwt) is called the non-commutative cylinder,

and one also has restriction to the boundary maps:

C∗(Uwt)
r=r+⊕r−−→ C(S1)⊕ C(S1).

Even though a similar definiton for the quantum disk and annulus was made in

chapter 3, the repetition of this definition is made to distinguish the dependence of

the parameter t in this chapter for the use of the theory of continuous fields of Hilbert

spaces.

One then defines the Hilbert space Ht, for t > 0, to be the completion of C∗(Uwt)

with respect to the inner product given by:

‖a‖2
t = tr

(
S

1/2
t aS

1/2
t a∗

)
.

For t = 0 one sets H0 = L2(Dw+) in the unilateral/disk case and H0 = L2(Aw−,w+)

in the bilateral/annulus case where Dw+ := {z ∈ C : |z| ≤ w+} is the disk of radius

w+, and Aw−,w+ := {z ∈ C : w− ≤ |z| ≤ w+} is the annulus with inner radius w−

and outer radius w+. In what follows the norm subscript will usually be skipped as it

will be clear from other terms subscript which Hilbert space norm or operator norm

is used. Also notice that setting w− = 0 reduces most annulus formulas below to the

disk case.

It was proved in chapter 3 Lemma 5.1, see also [6], that if a ∈ Ht then it can be

written as

a =
∑
n≥0

Unαn(K) +
∑
n≥1

βn(K)(U∗)n,

where αn(K) and βN(K) are diagonal operators in `2(S) given by

αn(K)ek = αn(k)ek,
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and similar for βn(K), for some sequences {αn(k)} and {βn(k)}. Additionally one

has the following formula for the norm:

‖a‖2 =
∞∑
n=0

∑
k∈S

St(k + n)1/2St(k)1/2 |αn(k)|2

+
∞∑
n=1

∑
k∈S

St(k + n)1/2St(k)1/2 |βn(k)|2 <∞.
(5.3)

Consequently we will identify elements of Ht with sequences {x(k)}k∈S, where

x(k) =
∑
n≥0

Unαn(k) +
∑
n≥1

βn(k)(U∗)n

such that equation (5.3) is true.

We now proceed to the construction of a continuous field of Hilbert spaces. By

the remark after Proposition 5.1.1 we need to specify a generating linear space Λ ⊂∏
t∈I Ht. We define it to consists of all those x = {xt : t ∈ I} such that there

exists N > 0, (depending on x), and such that for every n ≤ N there are functions

fn, gn ∈ C([(w−)2, (w+)2]), such that for t > 0:

xt(k) =
∑
n≤N

Unfn
(
wt(k)2

)
+
∑
n≤N

gn
(
wt(k)2

)
(U∗)n , (5.4)

and for t = 0:

x0(r, ϕ) =
∑
n≤N

fn(r2)einϕ +
∑
n≤N

gn(r2)e−inϕ. (5.5)

This definition is motivated by the fact that formally xt → x0 as t→ 0. Moreover

by polar decomposition, Uwt = wt(K)U and U∗wt = U∗wt(K); so they both belong to

Λ. It follows by Lemma 5.3.7 that polynomials in Uwt and U∗wt belong to Γ in other

words they are, according to our definition, continuous sections. Now we proceed to

the definitions of the quantum d-bar operators. The operator Dt in Ht is given by

the following expression:

Dta = S
−1/2
t [a, Uwt ]S

−1/2
t
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for t > 0, and for t = 0, D0 = ∂/∂z. Of course one needs to specify the domain

of Dt since it is an unbounded operator. For reasons indicated in the summary of

this chapter, one considers the operators subject to the APS boundary conditions in

this chapter. Let P± be the spectral projections in L2(S1) of the boundary operators

±1
i
∂
∂ϕ

onto the interval (−∞, 0]. The domain of Dt is then defined to be:

dom(Dt) = {a ∈ Ht : ‖Dta‖ <∞, r(a) ∈ Ran P+}

for the disk. For the annulus one sets:

dom(Dt) = {a ∈ Ht : ‖Dta‖ <∞, r+(a) ∈ Ran P+, r−(a) ∈ Ran P−}.

Here the maps r, r± are the restriction to the boundary maps, that by the results

of [17] and chapter 3, continue to make sense for those a ∈ Ht for which ‖Dta‖ <∞.

If t = 0 the domain of D0 consists of all those first Sobolev class functions f on the

disk or the annulus for which the APS condition holds i.e. either r(f) ∈ Ran P+ or

r+(f) ∈ Ran P+, r−(f) ∈ Ran P−, depending on the case. Here, by slight notational

abuse, the symbols r, r± are the classical restriction to the boundary maps.

It was verified in chapter 3 that the above defined operators Dt are invertible,

with bounded, and even compact inverses Qt. Using chapter 3 one can immediately

write down the formulas for Qt. If x ∈ Λ one has the following for t > 0:

Qtxt(k) =

−
N∑
n=0

Un

(∑
i≥k

wt(k + 1) · · ·wt(k + n)

wt(i+ 1) · · ·wt(i+ n)
· St(i)

1/2St(i+ n+ 1)1/2

wt(k + n)
fn+1(wt(i)

2)

)

+
N∑
n=1

(∑
i≤k

wt(i) · · ·wt(i+ n− 1)

wt(k) · · ·wt(k + n− 1)
· St(i)

1/2St(i+ n− 1)1/2

wt(i+ n− 1)
gn−1(wt(i)

2)

)
(U∗)n .

For the disk the second sum is from 0 to k, while for the annulus it is from −∞ to k.

For t = 0 one has
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D0x0 =
N∑
n=0

ei(n+1)ϕ

2

(
2rf ′n(r2)− n

r
fn(r2)

)
+

N∑
n=1

(
2rg′n(r2) +

n

r
gn(r2)

) e−i(n−1)ϕ

2
.

for both the disk and annulus. From this one can compute the inverse Q0 of D0. A

straightforward calculation gives the following result:

Q0x0 = −
N∑
n=0

einϕ
∫ (w+)2

r2
fn+1(ρ2)

rn−1

ρn
d(ρ2) +

N∑
n=1

e−inϕ
∫ r2

(w−)2
gn−1(ρ2)

ρn−1

rn
d(ρ2),

for the annulus, and the same formula with w− replaced by 0 for the disk.

The main results of this chapter are now ready to be stated. They are summarized

in the following two theorems:

Theorem 5.2.1 Given I = [0, 1), let H = {Ht : t ∈ I} be the family of Hilbert

spaces defined above and let Λ be the linear subspace of
∏

t∈I Ht defined by (5.4) and

(5.5). Also let the conditions on wt(k) and St(k) hold. Then Λ generates a continuous

field of Hilbert spaces denoted below by (I,H,Γ).

Theorem 5.2.2 Let Qt : Ht → Ht be the collection of operators for t ∈ [0, 1) defined

above. Then {Qt} is a continuous family of bounded operators in the continuous field

(I,H,Γ).

One finishes this section by shortly indicating that the above results are also valid

for families of d-bar operators studied in [6]. Let us quickly review the differences.

The Hilbert space Ht studied in [6] is the completion of C∗(Uwt) with respect to the

following inner product:

‖a‖2
t = tr(Staa

∗).

The quantum d-bar operator Dt of [6], acting in Ht, is given by the following formula:

Dta = S−1
t [a, Uwt ].
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It turns out that Theorems 5.2.1 and 5.2.2 are also true for the above spaces and

operators. In fact the proofs are even easier in this case and Condition 4, designed

to handle expressions like St(k + n)1/2St(k)1/2 is not even needed.

The next section will contain all the analysis needed to prove the two theorems.

5.3 Continuity and the classical limit

The two theorems from the above section will be proven by a series of steps that

verify the assumptions in the definitions of the continuous field of Hilbert spaces and

the continuous family of bounded operators. The annulus case will be the one that is

mainly concentrated on since the disk case is in some respects simpler. Most of the

formulas for the annulus are true also in the disk case with a modification: replacing

w− by zero. The summation index in the annulus case extends to −∞ and in couple

of places the corresponding sums need to be estimated. This is not the issue in the

disk case where the summation starts at zero. However the major difficulty in the

disk case are the wt terms in the denominator in the formula for the parametrix since

they go to zero as t goes to zero. In the end the proofs that are described below work

in both cases, but much shorter arguments are possible in the annulus case.

One first verifies that Λ generates a continuous field of Hilbert spaces. To this end

one needs to check two things: the density in Ht of x(t), x ∈ Λ, and the continuity of

the norm. The density is immediate, since, for example, the canonical basis elements

of Ht, see the proof of Lemma 3.4.1 in chapter 3, come from Λ.

The verification of the continuity of the norm is done in two steps: continuity at

t = 0, and at t > 0. If x ∈ Λ, i.e. x is given by formulas (5.4) and (5.5) then, for

t > 0, the norm of xt in Ht is

‖xt‖2 =
N∑
n=0

∑
k∈S

St(k + n)1/2St(k)1/2
∣∣fn (wt(k)2

)∣∣2
+

N∑
n=1

∑
k∈S

St(k + n)1/2St(k)1/2
∣∣gn (wt(k)2

)∣∣2 , (5.6)
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while for t = 0 the norm of x0 is

‖x0‖2 =
N∑
n=0

∫ (w+)2

(w−)2

∣∣fn (r2
)∣∣2 d (r2

)
+

N∑
n=1

∫ (w+)2

(w−)2

∣∣gn (r2
)∣∣2 d (r2

)
. (5.7)

The next lemma is needed to handle the product of S terms with different argu-

ments.

Lemma 5.3.1 For n ≥ 1 one has

sup
k∈S

∣∣∣∣St(k + n)

St(k)
− 1

∣∣∣∣ ≤ (2 + h2(t))n−1h2(t)

where h2(t) is the function defined in Condition 4.

Proof The proof is by induction. For n = 1 one gets Condition 4. The inductive

step is

∣∣∣∣St(k + n+ 1)

St(k)
− 1

∣∣∣∣ =

∣∣∣∣St(k + n+ 1)

St(k + n)

(
St(k + n)

St(k)
− 1

)
+
St(k + n+ 1)

St(k + n)
− 1

∣∣∣∣
≤ (1 + h2(t)) (2 + h2(t))n−1h2(t) + h2(t)

≤ (2 + h2(t))nh2(t)

and the lemma is proved.

Now we are ready to discuss the continuity of norms (5.6) and (5.7) as t→ 0+.

Proposition 5.3.2 If xt is in Λ then

lim
t→0+
‖xt‖ = ‖x0‖

Proof Without loss of generality one can assume that xt(k) = Unfn (wt(k)2) and

x0(r, ϕ) = fn(r2)einϕ , as the proof is identical for the g terms, and the elements of Λ

are finite sums of such x’s. One has
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∣∣‖xt‖2 − ‖x0‖2
∣∣ =

∣∣∣∣∣∑
k∈S

St(k + n)1/2St(k)1/2
∣∣fn(wt(k)2)

∣∣2 − ∫ (w+)2

(w−)2

∣∣fn(r2)
∣∣2 d(r2)

∣∣∣∣∣
≤

∣∣∣∣∣∑
k∈S

St(k)
∣∣fn(wt(k)2)

∣∣2 − ∫ (w+)2

(w−)2

∣∣fn(r2)
∣∣2 d(r2)

∣∣∣∣∣+
+

∣∣∣∣∣∑
k∈S

(
St(k + n)1/2St(k)1/2 − St(k)

) ∣∣fn(wt(k)2)
∣∣2∣∣∣∣∣ .

Since fn is continuous and hence bounded, One can estimate:

∣∣‖xt‖2 − ‖x0‖2
∣∣ ≤ ∣∣∣∣∣∑

k∈S

St(k)
∣∣fn(wt(k)2)

∣∣2 − ∫ (w+)2

(w−)2

∣∣fn(r2)
∣∣2 d(r2)

∣∣∣∣∣+
+ const

∣∣∣∣∣∑
k∈S

St(k)

[(
St(k + n)

St(k)

)1/2

− 1

]∣∣∣∣∣ .
Using St(k) = wt(k)2−wt(k−1)2 and Condition 3, one sees that the first term inside

of the absolute value is a difference of a Riemann sum and the integral to which it

converges as t → 0+. Hence this term is zero in the limit. As for the second term,

since by (5.1),
∑

k∈S St(k) = (w+)2 − (w−)2 = const, Lemma 5.3.1 shows that it also

goes to zero, because, by Condition 4, h2(t)→ 0 as t→ 0+.

The first theorem can now be proved.

Proof (of Theorem 5.2.1) One has already verified that Λ satisfies some of the

properties of Proposition 5.1.1. What remains is the proof of the continuity of the

norm for t > 0. Notice that by Condition 2 all the terms in formula (5.6) are

continuous in t, t > 0. Thus one needs to show that the series (5.6) converges

uniformly in t (away from t = 0). Assuming again that xt(k) = Unfn (wt(k)2), and

using the boundedness of fn one has:

∣∣∣∣∣‖xt‖2 −
M−1∑
k=L+1

St(k + n)1/2St(k)1/2
∣∣fn(wt(k)2)

∣∣2∣∣∣∣∣ ≤
≤ const

∑
k≥M

St(k + n)1/2St(k)1/2 + const
∑
k≤L

St(k + n)1/2St(k)1/2.
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The Cauchy-Schwarz inequality is used to estimate the first term:

∑
k≥M

St(k + n)1/2St(k)1/2 ≤

(∑
k≥M

St(k + n)

)1/2(∑
k≥M

St(k)

)1/2

≤
∞∑

k≥M

St(k) = w2
+ − w2

t (M).

(5.8)

The second term is only present in the annulus case and can be estimated in an

analogous way.

By Condition 2 again, the difference w2
+ −w2

t (M) is small for large M , uniformly

in t on the intervals t ≥ ε > 0, and so, for t > 0, ‖xt‖ is locally, the uniform limit of

continuous functions and hence continuous. Therefore Λ generates a continuous field

of Hilbert spaces (I,H,Γ).

The next concern is with the parametrices Qt(k). To verify that they form a

continuous family of bounded operators in (I,H,Γ) one must check that they are

uniformly bounded and that Q maps Γ into itself. One starts with the former asser-

tion.

Proposition 5.3.3 The norm of Qt is uniformly bounded in t.

Proof First one writes Qtxt(k) in a more compact form:

Qtxt(k) = −
N∑
n=0

UnT
(1,n)
t fn+1(wt(k)2) +

N∑
n=1

T
(2,n)
t gn−1(wt(k)2) (U∗)n

where

T
(1,n)
t f(k) =

∑
i≥k

wt(k + 1) · · ·wt(k + n)

wt(i+ 1) · · ·wt(i+ n)
· St(i)

1/2St(i+ n+ 1)1/2

wt(k + n)
f(i)

T
(2,n)
t g(k) =

∑
i≤k

wt(i) · · ·wt(i+ n− 1)

wt(k) · · ·wt(k + n− 1)
· St(i)

1/2St(i+ n− 1)1/2

wt(i+ n− 1)
g(i).

Here the operators T
(1,n)
t and T

(2,n)
t are integral operators between weighted l2 spaces,

namely: T
(1,n)
t : l2n+1 7→ l2n and T

(2,n)
t : l2n−1 7→ l2n where
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l2n := {f :
∑
k∈S

St(k + n)1/2St(k)1/2|f(k)|2 <∞}.

See the weighted `2-space defined in Lemma 3.4.1 in chapter 3 for similarties. There

the space was independent of the parameter t.

The main technique used to estimate the norms will be the Schur-Young in-

equality which was used in chapter 4, though it is stated again for convienence:

if T : L2(Y ) −→ L2(X) is an integral operator Tf(x) =
∫
K(x, y)f(y)dy, then one

has

‖T‖2 ≤
(

sup
x∈X

∫
Y

|K(x, y)|dy
)(

sup
y∈Y

∫
X

|K(x, y)|dx
)
.

The details can be found in [13].

The following two integral estimates will also be used, with t independent right

hand sides: ∑
i<k

St(k)

wt(k)
≤
∫ (w+)2

wt(i)2

dx√
x

= 2(w+ − wt(i)) ≤ 2(w+ − w−), (5.9)

∑
k≤i

St(k)

wt(k)
≤
∫ wt(i)2

(w−)2

dx√
x

= 2(wt(i)− w−) ≤ 2(w+ − w−). (5.10)

Such estimates were described and used in [18] and chapter 4 and are simply obtained

by estimating the area under the graph of x−1/2, like in the integral test for series.

First one estimates the norm of T
(1,n)
t . Repeatedly using the monotonicity of wt(i)

and the Cauchy-Schwarz inequality, one has, like in chapter 4:

‖T (1,n)
t ‖2 ≤

(
sup
k∈S

∑
i≥k

St(i)
1/2St(i+ n+ 1)1/2

wt(i+ n)

)(
sup
i∈S

∑
k≤i

St(k)1/2St(k + n)1/2

wt(i+ n)

)

≤

[
sup
k∈S

(∑
i≥k

St(i)

wt(i)

)(∑
i≥k

St(i+ n+ 1)

wt(i+ n)

)]1/2

×

[
sup
i∈S

(∑
k≤i

St(k)

wt(k)

)(∑
k≤i

St(k + n)

wt(k + n)

)]1/2

.

(5.11)



89

Using inequalities (5.2), (5.9) and (5.10) one sees that the norm of T
(1,n)
t is bounded

uniformly in n and t. The estimate on T
(2,n)
t is essentially the same. Therefore one

has

‖Qt‖ ≤ sup
n∈N
‖T (1,n)

t ‖+ sup
n∈N
‖T (2,n)

t ‖ ≤ const

and this completes the proof.

Next one needs to prove that Q maps Γ into itself. This requires checking con-

dition (3) of Proposition 5.1.2. Thus one needs to show that, given x ∈ Λ, Qx is

approximable by Λ at every t ∈ I. The hardest part is to show that this is true

around t = 0, which will be done now.

Let x ∈ Λ be given by formulas (5.4), (5.5), and define

g̃n(r2) :=

∫ r2

(w−)2
gn−1(ρ2)

ρn−1

rn
d(ρ2),

and similarly

f̃n(r2) :=

∫ (w+)2

r2
fn+1(ρ2)

rn−1

ρn
d(ρ2),

and set

yt(k) :=
∑
n≤N

Unf̃n
(
wt(k)2

)
+
∑
n≤N

g̃n
(
wt(k)2

)
(U∗)n ,

and for t = 0:

y0(r, ϕ) :=
∑
n≤N

f̃n(r2)einϕ +
∑
n≤N

g̃n(r2)e−inϕ.

Notice that one has y ∈ Λ since clearly f̃n(r2), g̃n(r2) are in C([(w−)2, (w+)2]), and

also one has obviously, Q0x0 = y0 which was the motivating property of the above

construction of y. It will be shown that x ∈ Λ is approximable by y ∈ Λ at t = 0.

This is stronger than proving that x is approximable by Λ at t = 0.

Proposition 5.3.4 With the above notation the following is true:

lim
t→0+
‖Qtxt − yt‖ = 0.
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Proof The details for a single gn term in the finite sum will be shown. The first

thing to do is to obtain a pointwise estimate. Adding and subtracting one gets:

∣∣∣∣∣∑
i≤k

wt(i) · · ·wt(i+ n− 1)

wt(k) · · ·wt(k + n− 1)

St(i)
1/2St(i+ n− 1)1/2

wt(i+ n− 1)
gn−1

(
wt(i)

2
)
− g̃n

(
wt(k)2

)∣∣∣∣∣
≤
∑
i≤k

∣∣∣∣ wt(i) · · ·wt(i+ n− 2)

wt(k) · · ·wt(k + n− 1)
− wt(i)

n−1

wt(k)n

∣∣∣∣St(i) ∣∣gn−1

(
wt(i)

2
)∣∣+

+
∑
i≤k

wt(i) · · ·wt(i+ n− 2)

wt(k) · · ·wt(k + n− 1)

∣∣St(i)1/2St(i+ n− 1)1/2 − St(i)
∣∣ ∣∣gn−1

(
wt(i)

2
)∣∣+

+

∣∣∣∣∣∑
i≤k

wt(i)
n−1

wt(k)n
gn−1

(
wt(i)

2
)
St(i)−

∫ wt(k)2

(w−)2

ρn−1

wt(k)n
gn−1(ρ2) d(ρ2)

∣∣∣∣∣ := I + II + III.

Let us discuss the structure of the above terms. The expression inside the absolute

value in term I unfortunately in general does not go to zero as t goes to zero. To go

around it one shows that the expression is small for large k which then lets us use the

smallness of St(i) to get the desired limit. This term is the trickiest to handle. Term

II is the most straightforward to estimate along the lines of the proof of Proposition

5.3.2. Finally expression III is a difference between an integral and its Riemann sum,

but because of the small denominator it has to be estimated carefully.

To handle term I one needs the following observation.

Lemma 5.3.5 With the above notation one has:∣∣∣∣1− wt(k)n−1

wt(k + 1) · · ·wt(k + n− 1)

∣∣∣∣ ≤ n−1∑
j=0

jh3(k + n− j)

where h3(k) is the sequence of Condition 5.

Proof To prove the statement one writes

wt(k)n−1

wt(k + 1) · · ·wt(k + n− 1)

=
wt(k)

wt(k + 1)

wt(k)wt(k + 1)

wt(k + 1)wt(k + 2)

wt(k) · · ·wt(k + n− 2)

wt(k + 1) · · ·wt(k + n− 1)

and uses an elementary inequality:

|1− x1 · · ·xn| ≤ |1− x1|+ . . .+ |1− xn|
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if |xk| ≤ 1.

One concentrates on the expression inside the absolute value in term I:

J :=

∣∣∣∣ wt(i) · · ·wt(i+ n− 2)

wt(k) · · ·wt(k + n− 1)
− wt(i)

n−1

wt(k)n

∣∣∣∣
≤
∣∣∣∣ wt(i) · · ·wt(i+ n− 2)

wt(k) · · ·wt(k + n− 1)
− wt(i)

n−1

wt(k) · · ·wt(k + n− 1)

∣∣∣∣+
+

∣∣∣∣ wt(i)
n−1

wt(k) · · ·wt(k + n− 1)
− wt(i)

n−1

wt(k)n

∣∣∣∣
Factoring one gets:

J ≤ 1

wt(k + n− 1)

∣∣∣∣1− wt(i)
n−2

wt(i+ 1) · · ·wt(i+ n− 2)

∣∣∣∣+
+

1

wt(k)

∣∣∣∣1− wt(k)n−1

wt(k + 1) · · ·wt(k + n− 1)

∣∣∣∣ .
Using lemma 5.3.5 yields:

J ≤ 1

wt(k + n− 1)

n−2∑
j=0

jh3(i+ n− 1− j) +
1

wt(i)

n−1∑
j=0

jh3(k + n− j)

=:
1

wt(k + n− 1)
h4(i) +

1

wt(i)
h5(k).

The functions h4(k) and h5(k) above are t independent and go to zero as k → ±∞.

Consequently:

I(k) ≤ const
1

wt(k + n− 1)

∑
i≤k

St(i)h4(i) + consth5(k)
∑
i≤k

St(i)

wt(i)

≤ const
1

wt(k + n− 1)

∑
i≤k

St(i)h4(i) + consth5(k) =: I1 + I2.

To handle both the I1 and I2 term, one uses the following lemma. This is the tricky

part of the argument.

Lemma 5.3.6 If h(k)→ 0 as k → ±∞ then

lim
t→0+

∑
k∈S

St(k)h(k) = 0
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Proof One splits the sum:∑
k∈S

St(k)h(k) =
∑
|k|≤N

St(k)h(k) +
∑
|k|>N

St(k)h(k)

≤ const
∑
|k|≤N

St(k) + const sup
|k|>N

h(k)

and first chooses N such that sup
|k|>N

h(k) ≤ ε/2 and then chooses δ > 0 such that∑
|k|≤N

St(k) ≤ ε/2 for all t ≤ δ. The last inequality is possible because of Condition 3.

As a corollary one also has:

lim
t→0+

∑
k∈S

St(k + n)1/2St(k)1/2h(k) = 0, (5.12)

obtained by estimating like in (5.8):

∑
k∈S

St(k + n)1/2St(k)1/2h(k) ≤

≤

(∑
k∈S

St(k + n)

)1/2(∑
k∈S

St(k)h(k)2

)1/2

≤ const

(∑
k∈S

St(k)h(k)2

)1/2

.

One now proceeds to show that I1 and I2 are small for small t. This is more

straightforward with the I2 term. Namely one has ‖I2‖2 ≤ const
∑

k∈S St(k +

n)1/2St(k)1/2h2
5(k) which by (5.12) goes to zero as t goes to zero.

To estimate I1 notice first that

I1(k) ≤ const
∑
i≤k

St(i)

wt(i)
h4(i) ≤ const

∑
i≤k

St(i)

wt(i)
≤ const

by (5.10). Consequently one has:

‖I1‖2 =
∑
k∈S

St(k + n)1/2St(k)1/2I2
1 (k) ≤ const

∑
k∈S

St(k + n)1/2St(k)1/2I1(k)

≤ const
∑
i,k∈S

St(k + n)1/2St(k)1/2

wt(k + n)
St(i)h4(i) ≤ const

∑
i∈S

St(i)h4(i).
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The sum over k above is estimated as in (5.11), and one can use Lemma 5.3.6 again

to conclude that ‖I1‖2 goes to zero as t goes to zero.

Estimating the term II comes next. This is done analogously to the way the

second term in Proposition 5.3.2 was treated. Using the boundedness of gn−1, the

definition of h2(t), and (5.10), one has:

II(k) ≤
∑
i≤k

∣∣St(i+ n− 1)1/2St(i)
1/2 − St(i)

∣∣
wt(i+ n− 1)

∣∣gn−1(wt(i)
2)
∣∣

≤ const
∑
i≤k

St(i)

wt(i)

∣∣∣∣∣
(
St(i+ n− 1)

St(i)

)1/2

− 1

∣∣∣∣∣
≤ consth2(t).

Consequently ‖II‖2 ≤ consth2
2(t) which goes to zero by Condition 4.

Finally III(k) is estimated. It is clear that this expression is small for small t and

a fixed k, as a difference between an integral and its Riemann sum. However this is

not enough in the disk case when wt(k)n in the denominator is small for small t. To

overcome this difficulty one first replaces gn−1 by its step function approximation and

then deal directly with the remaining integral of ρn−1.

With this strategy in mind one estimates:

III(k) =

∣∣∣∣∣∑
i≤k

wt(i)
n−1

wt(k)n
gn−1

(
wt(i)

2
)
St(i)−

∫ wt(k)2

(w−)2

ρn−1

wt(k)n
gn−1(ρ2) d(ρ2)

∣∣∣∣∣
≤

∣∣∣∣∣∑
i≤k

(
wt(i)

n−1

wt(k)n
gn−1

(
wt(i)

2
)
St(i)−

∫ wt(i)2

wt(i−1)2

ρn−1

wt(k)n
gn−1

(
wt(i)

2
)
d(ρ2)

)∣∣∣∣∣+
+

∣∣∣∣∣∑
i≤k

∫ wt(i)2

wt(i−1)2

ρn−1

wt(k)n
(
gn−1

(
wt(i)

2
)
− gn−1(ρ2)

)
d(ρ2)

∣∣∣∣∣ =: III1(k) + III2(k).

Since continuous functions on a closed interval are uniformly continuous, the function

h5(t) := sup
i∈S

sup
ρ2∈[(wt(i−1)2,(wt(i))2]

∣∣gn−1

(
wt(i)

2
)
− gn−1

(
ρ2
)∣∣

goes to zero as t→ 0+. Consequently, using the definition of h5(t), term III2 can be

estimated as follows:
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III2(k) ≤ h5(t)

∫ wt(k)2

(w−)2

ρn−1

wt(k)n
d(ρ2) ≤ h5(t)wt(k)

∫ 1

0

un−1 d(u2) ≤ consth5(t).

This means that ‖III2‖ goes to zero as t→ 0+.

When estimating III1 one first eliminates gn−1 using its boundedness:

III1(k) =

∣∣∣∣∣∑
i≤k

∫ wt(i)2

wt(i−1)2

(
wt(i)

n−1

wt(k)n
gn−1

(
wt(i)

2
)
− ρn−1

wt(k)n
gn−1

(
wt(i)

2
))

d(ρ2)

∣∣∣∣∣
≤ const

∑
i≤k

∫ wt(i)2

wt(i−1)2

(
wt(i)

n−1

wt(k)n
− ρn−1

wt(k)n

)
d(ρ2).

What is left is the difference between the integral of ρn−1 and its upper sum which is

handled like in the error estimate of the integral test for series. This is summarized

in the following sequence of inequalities.

III1(k) ≤ const
∑
i≤k

(
wt(i)

n−1

wt(k)n
− wt(i− 1)n−1

wt(k)n

)
St(i)

≤ const

(∑
i≤k

wt(i)
n−1

wt(k)n
St(i)−

∑
i≤k−1

wt(i)
n−1

wt(k)n
St(i+ 1)

)

≤ const
∑
i≤k−1

wt(i)
n−1

wt(k)n
St(i)

(
1− St(i+ 1)

St(i)

)
+ const

St(k)

wt(k)
.

Notice that

St(k)2

wt(k)2
= St(k)

wt(k)2 − wt(k − 1)2

wt(k)2
≤ St(k) ≤ h1(t).

Hence, using the monotonicity of wt(i) one has

III1(k) ≤ consth2(t)
∑
i≤k−1

wt(i)
n

wt(k)n
St(i)

wt(i)
+ const

√
h1(t) ≤ const

(
h2(t) +

√
h1(t)

)
,

and again ‖III1‖ goes to zero as t→ 0+. The proof of the proposition is complete.

To proceed further one needs a better understanding of Γ, the space of continuous

sections of our continuous field. One has the following useful result.
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Lemma 5.3.7 For t > 0 consider the following function

xt(k) =
∑
n≤N

UnFn(t, k) +
∑
n≤N

Gn(t, k)(U∗)n

such that the functions t 7→ Fn(t, k) and t 7→ Gn(t, k) are continuous for every k,

and such that |Fn(t, k)| and |Gn(t, k)| are bounded (in both variables), then xt is

approximable by Λ at every t > 0.

Proof Without a loss of generality one can assume that xt(k) = UnFn(t, k) as the

proof is identical for the G terms, and it will extend to finite sums of such x’s. Given

t0 ∈ I and ε > 0, let y ∈ Λ be such that for t > 0

yt(k) := Unfn(wt(k)2),

where one chooses fn ∈ C([(w−)2, (w+)2]) such that ‖Fn(t0, ·)− fn (wt0(·)2)‖ ≤ ε/2.

This is always possible since the space of sequences of the form k → fn(wt0(k)2),

where fn ∈ C([(w−)2, (w+)2]), is a dense subspace in the Hilbert space l2n.

The goal is to show that

‖xt − yt‖ ≤ ε

for all t sufficiently close to t0. By the construction of fn this is true at t = t0. It

will proven that t → ‖xt − yt‖ is continuous for t > 0 which will imply the above

inequality. But the inequality means that x is approximable by Λ at t = t0, which is

exactly what we want to achieve.

The proof that t → ‖xt − yt‖ is continuous is analogous to the last part of the

proof of Theorem 5.2.1, that the norm is continuous for elements of Λ and t > 0.

Indeed, by the continuity assumptions, ‖xt − yt‖2 is an infinite sum of continuous

functions:

‖xt − yt‖2 =
∑
k∈S

St(k + n)1/2St(k)1/2
∣∣Fn(t, k)− fn(wt(k)2)

∣∣2 .
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The series converges uniformly around t0 because, by the boundedness assump-

tions, one can estimate the remainder as follows:

∑
k≥M

St(k + n)1/2St(k)1/2
∣∣Fn(t, k)− fn(wt(k)2)

∣∣2 ≤ const
∑
k≥M

St(k + n)1/2St(k)1/2.

For large M this is small by (5.8). In the annulus case there is also a remainder at −∞

which also goes to zero by an analogous estimate. As a consequence t→ ‖xt − yt‖ is

indeed continuous for t > 0 and the lemma is proved.

All the tools to finish the proof the second theorem are now available.

Proof (of Theorem 5.2.2) What remains is to show that Qtxt is approximable by Λ

for t > 0 since Propositions 5.3.3 and 5.3.4 establish the other properties of {Qt}

needed to conclude that they form a continuous family of bounded operators in

(I,H,Γ).

To prove that Qtxt is approximable by Λ for t > 0 one uses Lemma 5.3.7 with

Fn(t, k) =
∑
i≥k

Fn(t, i)

:=
∑
i≥k

wt(k + 1) · · ·wt(k + n)

wt(i+ 1) · · ·wt(i+ n)
· St(i)

1/2St(i+ n+ 1)1/2

wt(k + n)
fn+1(i)

Gn(t, k) =
∑
i≤k

Gn(t, i)

:=
∑
i≤k

wt(i) · · ·wt(i+ n− 1)

wt(k) · · ·wt(k + n− 1)
· St(i)

1/2St(i+ n− 1)1/2

wt(i+ n− 1)
gn−1(i).

Thus one needs to show that Fn(t, k) and Gn(t, k) are continuous and bounded func-

tions of t, for t > 0. This will be done for the Fn(t, k) term only as the argument is

analogous for the Gn(t, k) term. In fact, in the disk case the Gn(t, k) is only a finite

sum, so the continuity for t > 0 follows immediately from Condition 2.

Each Fn(t, i) is continuous on the intervals t ≥ ε > 0 by Condition 2, so one must

show that for each k, the series defining Fn(t, k) converges uniformly in t. To estimate

the tail end of the series one uses 5.2, 5.8, and the boundedness of fn+1(i) to get
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∣∣∣∣∣
∞∑
i=M

wt(k + 1) · · ·wt(k + n)

wt(i+ 1) · · ·wt(i+ n)
· St(i)

1/2St(i+ n+ 1)1/2

wt(k + n)
fn+1(i)

∣∣∣∣∣ ≤
≤ const

wt(k + n)

∞∑
i=M

St(i)
1/2St(i+ n+ 1)1/2 ≤ const

wt(k + n)

(
w2

+ − w2
t (M)

)
,

which goes to zero uniformly on the intervals t ≥ ε > 0 as M goes to infinity by Con-

dition 2. Hence Fn(t, k) is a uniform limit of continuous functions and consequently

it is continuous for t > 0 and for each k.

Next the goal is to show that Fn(t, k) and Gn(t, k) are bounded. Indeed one has:

|Fn(t, k)| ≤ const
∑
i≥k

St(i)
1/2St(i+ n+ 1)1/2

wt(i+ n)
≤

≤ const

(∑
i≥k

St(i)

wt(i)

)1/2(∑
i≥k

St(i+ n+ 1)

wt(i+ n)

)1/2

≤ const,

where the inequalities (5.2), (5.9) and (5.10) are used. Similar argument works also

for estimating |Gn(t, k)|. Thus the assumptions of Lemma 5.3.7 are satisfied and Qtxt

is approximable by Λ at every t. Hence the collection {Qt} is a continuous family of

bounded operators. This finishes the proof.
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6. DIRAC TYPE OPERATORS ON THE SOLID TORUS

WITH GLOBAL BOUNDARY CONDITIONS

6.1 The Dirac Operator

As always this chapter begins with the necessary notation. Let

D = {z ∈ C : |z| ≤ 1}

be the unit disk and let S1 =
{
eiθ ∈ C : 0 ≤ θ ≤ 2π

}
be the unit circle. Also let T2

be the two dimensional torus and let ST 2 be the solid torus: ST 2 = D×S1 ⊂ C×S1.

The boundary of ST 2 is T2. The operators that we are studying will be acting in the

Hilbert space H = L2(ST 2,C2) ∼= L2(ST 2) ⊗ C2, i.e. the space of square-integrable

complex vector-valued functions on the solid torus. The inner product of F,G ∈ H

will be denoted as 〈F,G〉.

One proceeds to the definitions of the main object that is studied in this chapter.

One considers the following formally self-adjoint Dirac operator D defined on H by

D =

 1
i
∂
∂θ

2 ∂
∂z

−2 ∂
∂z
−1

i
∂
∂θ

 . (6.1)

Notice that D can act on either L2(D× S1)⊗ C2 or L2(C× S1)⊗ C2.

The domain of D is defined to be:

dom(D) =
{
F ∈ H1(ST 2)⊗ C2 : ∃F ext ∈ H1

loc

(
(C× S1) \ ST 2

)
⊗ C2

}
(6.2)

such that (1), (2), and (3) hold:

1. F ext|T2 = F |T2 ,
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2. DF ext = 0,

3. F ext ∈ L2 ((C× S1) \ ST 2)⊗ C2.

Here H1 is the first Sobolev space.

The first task is to study the kernel of D. For a function F ∈ L2(ST 2) ⊗ C2, by

using the polar decomposition z = reiϕ, one has the Fourier decomposition as follows:

F =
∑
m,n∈Z

 fm,n(r)

gm,n(r)

 einϕ+imθ. (6.3)

The norm of F can then be expressed as:

‖F‖2 = 〈F, F 〉 =
∑
m,n∈Z

∫ 1

0

(
|fm,n|2 + |gm,n|2

)
r dr.

The next idea is to solve the equation DF = 0 without any kind of conditions

imposed. This is done in the following proposition.

Proposition 6.1.1 Let D be the operator defined by (6.1) and acting in the Hilbert

space L2 (ST 2 \ ({0} × S1))⊗C2. Then the kernel of D consists of those F ∈ L2(ST 2\

({0}×S1))⊗C2 for which the coefficients of (6.3) satisfy the following relations: for

m 6= 0 and any n

fm,n+1(r) =
m

|m|
(−Am,nIn+1(|m|r) +Bm,nKn+1(|m|r)) (6.4)

and

gm,n(r) = Am,nIn(|m|r) +Bm,nKn(|m|r), (6.5)

while if m = 0 and any n then f0,n(r) = A0,nr
−n and g0,n(r) = B0,nr

n. Here

Am,n, Bm,n are constants and In, Kn are the modified Bessel functions of the first

and second kind respectively.

Proof To solve the equation DF = 0, it is enough to solve the equation

∑
m,n∈Z

 m eiϕ
(
∂
∂r
− n

r

)
e−iϕ

(
− ∂
∂r
− n

r

)
−m

 fm,n(r)

gm,n(r)

 einϕ+imθ = 0
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by the Fourier decomposition (6.3). There are two cases to consider. First for m 6= 0

and any n, letting t = |m|r, f̃m,n(t) = fm,n(t/|m|), and g̃m,n(t) = gm,n(t/|m|) one

arrives at the following system of differential equations:


f̃ ′m,n+1(t) +

n+ 1

t
f̃m,n+1(t) +

m

|m|
g̃m,n(t) = 0

g̃′m,n(t)− n

t
g̃m,n(t) +

m

|m|
f̃m,n+1(t) = 0.

Substituting the second equation into the first yields:

g̃′′m,n(t) +
g̃′m,n(t)

t
−
(

1 +
n2

t2

)
g̃m,n(t) = 0,

which is equation (6.21). This implies that g̃m,n(t) is a linear combination of the two

modified Bessel functions, i.e. g̃m,n(t) = Am,nIn(t) + Bm,nKn(t). Then, using the

second equation from the above system and using the relations (6.22), one obtains

the desired result.

If m = 0 then the above system of differential equations reduces to:


f ′0,n(r) +

n

r
f0,n(r) = 0

g′0,n(r)− n

r
g0,n(r) = 0.

This system is uncoupled and the solutions are easily seen to be f0,n(r) = A0,nr
−n

and g0,n(r) = B0,nr
n. Thus this completes the proof.

In the following proposition the domain condition of D is rephrased in terms of

the Fourier coefficients to explicitly write down the boundary condition.

Proposition 6.1.2 Suppose that F is in the domain of D and has Fourier decompo-

sition given by (6.3). Then

|m|Kn+1(|m|)gm,n(1)−mKn(|m|)fm,n+1(1) = 0 (6.6)

if m 6= 0 and f0,n(1) = 0 for n ≤ 0, and g0,n(1) = 0 for n ≥ 0.
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Proof The goal is to find a function F ext for r ≥ 1 such that DF ext = 0 and

F ext|r=1 = F |r=1. First solving the system DF ext = 0 for F ext yields

F ext =
∑
m,n∈Z

f extm,n(r)

gextm,n(r)

 einϕ+imθ

with f extm,n+1(r) and gextm,n(r) given by (6.4) and (6.5) for m 6= 0. Additionally f ext0,n (r) =

A0,nr
−n and gext0,n(r) = B0,nr

n. First consider m 6= 0. In order for the solutions to

agree on the boundary of the disk, the coefficients Am,n and Bm,n must solve the

following system of equations

 In(|m|) Kn(|m|)

− m
|m|In+1(|m|) m

|m|Kn+1(|m|)

 Am,n

Bm,n

 =

 gm,n(1)

fm,n+1(1)

 .

The solution is:

Am,n = |m|Kn+1(|m|)gm,n(1)−mKn(|m|)fm,n+1(1)

and

Bm,n = |m|In+1(|m|)gm,n(1) +mIn(|m|)fm,n+1(1)

If m = 0 one gets f0,n(1) = A0,n and g0,n(1) = B0,n.

Our boundary condition requires that F ext is square integrable on the complement

of ST 2 in C × S1. Because of the asymptotic properties of the modified Bessel

functions, see (6.26), this forces Am,n = 0 for m 6= 0. If m = 0 the integrability of

powers of r force A0,n = 0 for n ≤ 0, and B0,n = 0 for n ≥ 0. The statement follows

from the above formulas for Am,n, A0,n, and B0,n.

Combining the above two propositions we obtain the following corollary.

Corollary 6.1.3 Let D be the operator defined by (6.1) subject to the boundary con-

ditions (6.2). Then its kernel is trivial.

Proof Let F ∈ L2(ST 2\({0}×S1))⊗C2 be a solution of DF = 0, as in Proposition

6.1.1. Its extension to a solution on C× S1 \ ({0} × S1) is clearly given by the same
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formula. Since the powers of r are either not square integrable at zero or at infinity,

it is clear that A0,n = 0 and B0,n = 0.

If m 6= 0 then in order for F to be regular at zero we must have Bm,n = 0 by the

asymptotic expansion of Kn(t) near zero, see (6.25). Then Proposition 6.1.2 implies

that Am,n = 0, hence the kernel of D is trivial.

It turns out that the boundary condition is self-adjoint as demonstrated in the

next proposition.

Proposition 6.1.4 The operator D defined by (6.1) subject to the boundary condi-

tions (6.2) is self-adjoint.

Proof It is clear that D is formally self-adjoint. From the standard elliptic the-

ory [5] the domain of D and its adjoint consists of (vector-valued) functions of the

first Sobolev class. Thus the only thing that one needs to check are the boundary

conditions of the adjoint. To this end one inspects the boundary integral in Green’s

formula. Let F,G be H1 functions on the solid torus. Using Proposition 2.2 from [17]

and the Fourier decompositions:

F =

 f

g

 =
∑
m,n∈Z

 fm,n(r)

gm,n(r)

 einϕ+imθ

G =

 p

q

 =
∑
m,n∈Z

 pm,n(r)

qm,n(r)

 einϕ+imθ,

one obtains:

〈DG,F 〉 − 〈G,DF 〉 = 2 (〈p, ∂g/∂z〉 − 〈q, ∂f/∂z〉 − 〈∂q/∂z, f〉+ 〈∂p/∂z, g〉)

= 2
∑
m,n∈Z

(
pm,n+1(1)gm,n(1)− qm,n(1)fm,n+1(1)

)
.
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Now suppose that F is in the domain of D, so it satisfies the conditions of Proposition

6.1.2. For G to be in the domain of the adjoint of D one needs the above expression

to be equal to zero. This gives:∑
m∈Z\{0},n∈Z

(
m

|m|
Kn(|m|)
Kn+1(|m|)

pm,n+1(1)− qm,n(1)

)
fm,n+1(1)+

+
∑
n<0

p0,n+1(1)g0,n(1)−
∑
n≥0

q0,n(1)f0,n+1(1) = 0.

For m 6= 0 the above equation will equal zero for arbitrary F only if

|m|Kn+1(|m|)qm,n(1)−mKn(|m|)pm,n+1(1) = 0.

Additionally one must have p0,n(1) = 0 for n ≤ 0, and q0,n(1) = 0 for n ≥ 0. All

together those requirements are exactly the same as the original boundary condition.

Hence D and D∗ have the same domain and the proof is complete.

The next goal is to construct the inverse of D. This is done by explicit solving of

a non-homogeneous system of differential equations for the Fourier components and

adjusting the integration constants to get the regularity at r = 0 and so that the

boundary condition is satisfied.

Proposition 6.1.5 Let D be the operator defined by (6.1) subject to the boundary

conditions (6.2). Then the operator Q given by the formula (6.9) below is the inverse

to D, in other words QD = DQ = I.

Proof To compute the inverse of D one solves the equation DF = G, which will

reduce to solving a non-homogeneous second order ordinary differential equation. The

idea is to use the Fourier decomposition (6.3). One first considers the case m 6= 0.

Letting t = |m|r, f̃m,n(t) = fm,n(t/|m|), and similarly for other functions, DF = G

becomes the system of differential equations:


g̃′m,n(t)− n

t
g̃m,n(t) +

m

|m|
f̃m,n+1(t) =

p̃m,n+1(t)

|m|

− f̃ ′m,n+1(t)− n+ 1

t
f̃m,n+1(t)− m

|m|
g̃m,n(t) =

q̃m,n(t)

|m|
.

(6.7)
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Next by substituting the first equation into the second one arrives at the following

second order differential equation:

g̃′′m,n(t) +
1

t
g̃′m,n(t)−

(
1 +

n2

t2

)
g̃m,n(t) =

=
1

m
q̃m,n(t) +

p̃′m,n+1(t)

|m|
+
n+ 1

t
· p̃m,n+1(t)

|m|
=: hm,n(t),

(6.8)

where the right hand side of the above equation was denoted by hm,n(t). Notice

that equation (6.8) is the non-homogeneous version of the Bessel differential equation

(6.21). General theory of ordinary differential equations tells us that the general

solution to equation (6.8) is

g̃m,n(t) = c
(m,n)
1 (t)In(t) + c

(m,n)
2 (t)Kn(t)

where c
(m,n)
1 (t), c

(m,n)
2 (t) solve the following system

In(t) Kn(t)

I ′n(t) K ′n(t)

c(m,n)
1 (t)

c
(m,n)
2 (t)

′ =
 0

hm,n(t)

 .

The solution of this system is

c
(m,n)
1 (t) = Am,n +

∫ t

|m|
sKn(s)hm,n(s)ds

c
(m,n)
2 (t) = Bm,n −

∫ t

0

sIn(s)hm,n(s)ds,

where Am,n and Bm,n are constants. The boundary condition (6.6) and the regularity

at t = 0 imply that we must have c
(m,n)
1 (t) equal to zero on the boundary, in other

words where t = |m|. The boundary condition and regularity also imply that c
(m,n)
2 (t)

goes to zero as t → 0. After performing the integration by parts we obtain that

Am,n = Kn(|m|)pm,n+1(|m|) and Bm,n = 0, and

c
(m,n)
1 (t) =

1

m

∫ t

|m|
sKn(s)q̃m,n(s)ds+

1

|m|

∫ t

|m|
sKn+1(s)p̃m,n+1(s)ds

c
(m,n)
2 (t) = − 1

m

∫ t

0

sIn(s)q̃m,n(s)ds+
1

|m|

∫ t

0

sIn+1(s)p̃m,n+1(s)ds.



106

Next one uses the first equation of (6.7) to solve for the general f̃m,n+1(t) term to

get:

m

|m|
f̃m,n+1(t) =

p̃m,n+1(t)

|m|
+
n

t
g̃m,n(t)− g̃′m,n(t).

A straightforward calculation using the relations between the derivatives and indices

of the modified Bessel functions (6.22) and the formula for the Wronskian of the

modified Bessel functions (6.24) yields:

f̃m,n+1(t) =
m

|m|

(
−c(m,n)

1 (t)In+1(t) + c
(m,n)
2 (t)Kn+1(t)

)
.

Next consider the case when m = 0. The system of differential equations reduces

to the following 
g′0,n(r)− n

r
g0,n(r) = p0,n+1(r)

f ′0,n+1(r) +
n+ 1

r
f0,n+1(r) = −q0,n(r)

This system is an uncoupled system and can be solved using an integration factor in

each equation. Therefore the formula for the parametrix to D is

QG :=
∑

m∈Z\{0},n∈Z

 fm,n(r)

gm,n(r)

 einϕ+imθ +
∑
n∈Z

 f0,n(r)

g0,n(r)

 einϕ (6.9)

where for m 6= 0:

fm,n+1(r) = |m|In+1(|m|r)
∫ 1

r

Kn(|m|ρ)qm,n(ρ)ρdρ

+mIn+1(|m|r)
∫ 1

r

Kn+1(|m|ρ)pm,n+1(ρ)ρdρ− |m|Kn+1(|m|r)
∫ r

0

In(|m|ρ)qm,n(ρ)ρdρ

+mKn+1(|m|r)
∫ r

0

In+1(|m|ρ)pm,n+1(ρ)ρdρ

gm,n(r) = −mIn(|m|r)
∫ 1

r

Kn(|m|ρ)qm,n(ρ)ρdρ

− |m|In(|m|r)
∫ 1

r

Kn+1(|m|ρ)pm,n+1(ρ)ρdρ−mKn(|m|r)
∫ r

0

In(|m|ρ)qm,n(ρ)ρdρ

+ |m|Kn(|m|r)
∫ r

0

In+1(|m|ρ)pm,n+1(ρ)ρdρ
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and

f0,n+1(r) =


−
∫ r

0

ρn

rn+1
q0,n(ρ)ρdρ n ≥ 0∫ 1

r

ρn

rn+1
q0,n(ρ)ρdρ n < 0,

and

g0,n(r) =


−
∫ 1

r

rn

ρn+1
p0,n+1(ρ)ρdρ n ≥ 0∫ r

0

rn

ρn+1
p0,n+1(ρ)ρdρ n < 0.

It is is now a routine exercise to verify that DQ = QD = I. Thus this completes

the proof.

6.2 The Parametrix

Now that the parametrix has been constructed the next goal is to show that it is

a compact operator. This is the main result of the chapter.

Theorem 6.2.1 The Dirac operator D, defined by (6.1) and subject to the boundary

conditions (6.2) has a bounded inverse. Moreover that inverse is a compact operator.

Proof Consider the following integral operators in L2([0, 1], rdr) for i, j = 0, 1 and

m 6= 0:

R
(m,n)
ij f(r) := |m|

∫ 1

r

In+i(|m|r)Kn+j(|m|ρ)f(ρ)ρdρ,

S
(m,n)
ij f(r) := |m|

∫ r

0

Kn+i(|m|r)In+j(|m|ρ)f(ρ)ρdρ,

and for n ≥ 0:

T
(0,n)
1 f(r) :=

∫ 1

r

rn

ρn+1
f(ρ) ρdρ,

T
(0,n)
2 f(r) :=

∫ r

0

ρn

rn+1
f(ρ) ρdρ.

Then one can rewrite formula (6.9) for Q in the following way:
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fm,n+1 = R
(m,n)
10 qm,n +

|m|
m
R

(m,n)
11 pm,n+1 − S(m,n)

10 qm,n +
|m|
m
S

(m,n)
11 pm,n+1

gm,n = −|m|
m
R

(m,n)
00 qm,n −R(m,n)

01 pm,n+1 −
|m|
m
S

(m,n)
00 qm,n + S

(m,n)
11 pm,n+1

(6.10)

and

f0,n+1 =

 −T (0,n)
2 q0,n n ≥ 0

T
(0,−n−1)
1 q0,n n < 0,

and

g0,n =

 −T (0,n)
1 p0,n+1 n ≥ 0

T
(0,−n−1)
2 p0,n+1 n < 0.

It will be shown that all ten integral operators above are Hilbert-Schmidt by

estimating the Hilbert-Schmidt norms. It turns out that the HS norm of each integral

operator goes to zero as |m| + |n| goes to infinity. This implies that Q is a compact

operator as the norm limit of compact operators, since it is (up to a shift in the n

index) a direct sum of compact operators with decreasing norms.

To show that T
(0,n)
2 and T

(0,n)
1 are Hilbert-Schmidt one simply computes:

‖T (0,n)
1 ‖2

2 = ‖T (0,n)
2 ‖2

2 =

∫ 1

0

∫ r

0

(ρ
r

)2n+1

dρdr =
1

4(n+ 1)
. (6.11)

For the other operators one has:

‖R(m,n)
ij ‖2

2 = |m|2
∫ 1

0

∫ 1

r

I2
n+i(|m|r)K2

n+j(|m|ρ) rρdρdr,

and

‖S(m,n)
ij ‖2

2 = |m|2
∫ 1

0

∫ r

0

K2
n+i(|m|r)I2

n+j(|m|ρ) rρdρdr.

Clearly one has R
(m,n)
11 = R

(m,n+1)
00 and S

(m,n)
11 = S

(m,n+1)
00 and additionally, using the

inequality (6.27), one can conclude that:

‖R(m,n)
10 ‖2

2 ≤ ‖R
(m,n)
00 ‖2

2 ≤ ‖R
(m,n)
01 ‖2

2

‖S(m,n)
01 ‖2

2 ≤ ‖S
(m,n)
00 ‖2

2 ≤ ‖S
(m,n)
10 ‖2

2.
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Consequently, one only has to estimate the Hilbert-Schmidt norm for R
(m,n)
01 and

S
(m,n)
10 . Indeed one has:

‖R(m,n)
01 ‖2

2 =
1

|m|2

∫ |m|
0

∫ |m|
t

K2
n+1(s)I2

n(t)stdsdt =
1

|m|2

∫ |m|
0

∫ s

0

K2
n+1(s)I2

n(t)stdtds,

where we’ve changed to new variables t = |m|r, s = |m|ρ, and used Fubini’s Theorem.

The next idea is to estimate the above expression in two ways to show that it goes to

zero when |m|+ |n| increases.

From (6.31) one has I2
n(t) ≤ t

n
In(t)I ′n(t) which by integration yields:∫ s

0

I2
n(t)dt ≤ s

2n
I2
n(s). (6.12)

Next, using t ≤ s, (6.12), and (6.30), one gets for n 6= 0:

‖R(m,n)
01 ‖2

2 ≤
1

2|n||m|2

∫ |m|
0

s3K2
n+1(s)I2

n(s)ds ≤ 1

2|n||m|2

∫ |m|
0

sds =
1

4|n|
.

On the other hand from (6.32) one has I2
n(t) ≤ 2In(t)I ′n(t), yielding:∫ s

0

I2
n(t)dt ≤ I2

n(s). (6.13)

So using inequalities (6.13) and (6.30) again, one gets for n 6= 0:

‖R(m,n)
01 ‖2

2 ≤
1

|m|2

∫ |m|
0

s2K2
n+1(s)I2

n(s)ds ≤ 1

|m|2

∫ |m|
0

ds =
1

|m|
.

Finally, if n = 0, one notices that the recurrence relations (6.22) imply:

tI2
0 (t) = (tI1(t)I0(t))′ − tI2

1 (t) ≤ (tI1(t)I0(t))′ .

Hence one obtains an integral estimate:∫ s

0

I2
0 (t)tdt ≤ sI1(s)I0(s) ≤ sI2

0 (s),

which will be used to estimate the norm above as follows:

‖R(m,0)
01 ‖2

2 ≤
1

|m|2

∫ |m|
0

s2K2
1(s)I2

0 (s)ds ≤ 1

|m|
.



110

For the norm of S
(m,n)
10 observe that, after a change of variables, one has:

‖S(m,n)
10 ‖2

2 =
1

|m|2

∫ |m|
0

∫ t

0

I2
n(s)K2

n+1(t)stdsdt = ‖R(m,n)
01 ‖2

2.

This shows that all of the operators are indeed Hilbert-Schmidt operators. Moreover

one has the estimates:

‖R(m,n)
ij ‖2

2 ≤
const√

1 +m2 + n2
, (6.14)

and

‖S(m,n)
ij ‖2

2 ≤
const√

1 +m2 + n2
. (6.15)

It follows by the remarks at the beginning of the proof that Q is compact. Thus the

proof of the theorem is complete.

Theorem 6.2.2 The operator Q, defined by (6.9), is a p-th Schatten-class operator

for all p > 3.

Proof Notice that the p-th Schatten norm of Q can be estimated as follows:

‖Q‖pp ≤ const
∑
m,n,i,j

(
‖R(m,n)

ij ‖pp + ‖S(m,n)
ij ‖pp

)
+
∑
n,i

‖T (0,n)
i ‖pp. (6.16)

This is because Q is (essentially) a direct sum of two by two matrices with entries

made up of the ten integral operators we studied above, see (6.10).

To bound ‖R(m,n)
ij ‖pp and the other norms we use the following interpolation es-

timate for the p-th Schatten norm: if a is a Hilbert-Schmidt operator and p ≥ 2

then

‖a‖pp ≤ ‖a‖2
2 ‖a‖p−2. (6.17)

The estimate easily follows from the definition of the p-th Schatten norm. We have

already obtained estimates on the Hilbert-Schmidt norms of R
(m,n)
ij and the other

operators in (6.14), (6.15), and (6.11), so by the above interpolation we need estimates

on the operator norms. The main tool used to establish such estimates for the operator

norms of integral operators is the Schur-Young inequality, see [13]. This Lemma has
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been stated in previous chapters, however it is stated again for convenience. It is

stated in the lemma below.

Lemma 6.2.3 (Schur-Young Inequality) Let K : L2(Y ) −→ L2(X) be an integral

operator:

Kf(x) =

∫
K(x, y)f(y)dy

Then one has:

‖K‖2 ≤
(

sup
x∈X

∫
Y

|K(x, y)|dy
)(

sup
y∈Y

∫
X

|K(x, y)|dx
)
.

The kernels of the integral operators are products of modified Bessel functions, and

the difficulty here is to estimate the integrals of such products. The main technical

step in those estimates is summarized in the following lemma.

Lemma 6.2.4 Consider the following expressions for m 6= 0:

I(m,n)
1 =

1

|m|
sup

0≤s≤|m|

∫ s

0

Kn+1(s)In(t)tdt,

I(m,n)
2 =

1

|m|
sup

0≤t≤|m|

∫ |m|
t

Kn+1(s)In(t)sds.

There is a constant such that for i = 1, 2:

I(m,n)
i ≤ const√

1 +m2 + n2
.

The proof of this lemma will be postponed until the main line of the argument is

finished. Now one turns to estimating ‖R(m,n)
ij ‖ for m 6= 0. Using Lemma 6.2.3 one

has:

‖R(m,n)
ij ‖2

≤ m2

(
sup
0≤r≤1

∫ 1

r

Kn+i(|m|ρ)In+j(|m|r)ρdρ
)(

sup
0≤ρ≤1

∫ ρ

0

Kn+i(|m|ρ)In+j(|m|r)rdr
)
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Changing variables in both integrals one gets:

‖R(m,n)
ij ‖2

≤

(
1

|m|
sup

0≤t≤|m|

∫ |m|
t

Kn+i(s)In+j(t)sds

)(
1

|m|
sup

0≤s≤|m|

∫ s

0

Kn+i(s)In+j(t)tdt

)
.

By the monotonicity (6.27) the right hand side is biggest when i = 1 and j = 0, and

so

‖R(m,n)
ij ‖2 ≤ I(m,n)

1 · I(m,n)
2 .

It follows from Lemma 6.2.4 that:

‖R(m,n)
ij ‖ ≤ const√

1 +m2 + n2
. (6.18)

Attention is now turned to estimating ‖S(m,n)
ij ‖. By Lemma 6.2.3 one has:

‖S(m,n)
ij ‖2

≤ m2

(
sup
0≤r≤1

∫ r

0

In+i(|m|ρ)Kn+j(|m|r)ρdρ
)(

sup
0≤ρ≤1

∫ 1

ρ

In+i(|m|ρ)Kn+j(|m|r)rdr
)

Clearly the expression on the right hand side of the above inequality is the same as

the expression in the estimate of ‖R(m,n)
ij ‖2. It follows that

‖S(m,n)
ij ‖ ≤ const√

1 +m2 + n2
.

Consider now the case m = 0. Lemma 6.2.3 is used once again to compute:

‖T (0,n)
2 ‖2 ≤

(
sup
0≤r≤1

∫ r

0

(ρ
r

)n+1

dρ

)(
sup
0≤ρ≤1

∫ 1

ρ

(ρ
r

)n
dr

)
≤ const

1 + n2

and similarly

‖T (0,n)
1 ‖2 ≤

(
sup
0≤r≤1

∫ 1

r

(
r

ρ

)n
dρ

)(
sup
0≤ρ≤1

∫ ρ

0

(
r

ρ

)n+1

dr

)
≤ const

1 + n2
.

Either way one has for i = 1, 2:

‖T (0,n)
i ‖ ≤ const√

1 + n2
.
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Combining (6.14), (6.18), and using (6.17) one gets:

‖R(m,n)
ij ‖pp ≤

const

(1 +m2 + n2)
p−1
2

,

and exactly the same estimates for ‖S(m,n)
ij ‖pp and ‖T (0,n)

i ‖pp. Consequently, by (6.16)

one gets:

‖Q‖pp ≤
∑
m,n

const

(1 +m2 + n2)
p−1
2

,

where the series is summable when p > 3. This concludes the proof of the theorem.

The proof of Lemma 6.2.4 is now stated.

Proof (of Lemma 6.2.4) Since both Kn(z) and In(z) are symmetric for positive and

negative n, see (6.20), one will only need to consider the case when n ≥ 0.

Using (6.32) and integrating by parts one has:∫ s

0

In(t)tdt ≤ 2

∫ s

0

I ′n+1(t)tdt = 2sIn+1(s)− 2

∫ s

0

In+1(t)dt ≤ 2sIn+1(s).

Consequently we get:

I(m,n)
1 =

1

|m|
sup

0≤s≤|m|

∫ s

0

Kn+1(s)In(t)tdt ≤ 1

|m|
sup

0≤s≤|m|
2sKn+1(s)In+1(s).

Now one bounds I(m,n)
1 in two different ways. First observe:

I(m,n)
1 ≤ 2 sup

0≤s≤|m|
Kn+1(s)In+1(s) ≤ 2

n+ 1
,

by (6.29). On the other hand one has:

I(m,n)
1 ≤ 2

|m|
sup

0≤s≤∞
sKn+1(s)In+1(s) ≤ 2

|m|
,

by inequality (6.30). It follows that I(m,n)
1 ≤ const/

√
1 +m2 + n2.

One estimates I(m,n)
2 in the same fashion, however the process is somewhat more

complicated. Using (6.34) and integrating by parts one gets:∫ |m|
t

sKn+1(s)ds ≤ −2

∫ |m|
t

sK ′n(s)ds ≤ 2tKn(t) +

∫ |m|
t

Kn(s)ds.
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Using (6.34) again yields:∫ |m|
t

sKn+1(s)ds ≤ 2tKn(t) + 4Kn(t).

It follows that:

I(m,n)
2 =

1

|m|
sup

0≤t≤|m|

∫ |m|
t

Kn+1(s)In(t)sds ≤ 1

|m|
sup

0≤t≤|m|
(2tKn(t)In(t) + 4Kn(t)In(t)) .

If n > 0 one estimates the above expression in two ways using (6.30) and (6.29). First

one has:

I(m,n)
2 ≤ 1

|m|
(2|m|+ 4)

1

2n
.

Secondly:

I(m,n)
2 ≤ 1

|m|

(
2 +

4

2n

)
.

If n = 0 one has:

I(m,n)
2 ≤ 1

|m|
sup

0≤t<∞
I0(t)

∫ ∞
t

K1(s)sds,

and one needs to show that the function I0(t)
∫∞
t
K1(s)sds is bounded. It follows

from the asymptotic behavior (6.25) and (6.26) that the limit of I0(t)
∫∞
t
K1(s)sds at

t = 0 is
∫∞

0
K1(s)sds <∞. On the other hand using L’Hospital’s rule one gets:

lim
t→∞

I0(t)

∫ ∞
t

K1(s)sds = lim
t→∞

I2
0 (t)K1(t)t

I ′0(t)
= lim

t→∞

I2
0 (t)K1(t)t

I1(t)
=

1

2
,

by (6.26) again. Thus, in a similar fashion to I(m,n)
1 , one has

I(m,n)
2 ≤ const/

√
1 +m2 + n2.

Therefore the proof of the lemma is complete.

In conclusion a somewhat more complicated proof of Lemma 6.2.4 is possible without

the use of the non-elementary inequality (6.28). Estimating along the lines of the

Hilbert-Schmidt norm bound in the proof of Theorem 6.2.1 it is enough to employ

the inequalities (6.31), (6.32), (6.34), and (6.33) instead of monotonicity of Kn(t)In(t).
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6.3 The modified Bessel functions

This section contains all of the relevant information on the modified Bessel func-

tions. The references that are used are [1], [3], [24], and [33]. A short argument will

be given for those results that are not from any of these references.

6.3.1 Basic properties

The main reference of this subsection is [1].

The modified Bessel functions of integer order n can be defined by the following

expressions:

In(t) =
1

π

∫ π

0

et cosα cos(nα) dα

and

Kn(t) =

∫ ∞
0

e−t coshα cosh(nα) dα (6.19)

where in both formulas t is a positive real number.

Both functions are symmetric in n:

In(t) = I−n(t) and Kn(t) = K−n(t). (6.20)

Consequently, without the loss of generality, it will be assumed that n is a non-

negative integer.

One has the following power series representation for In(t):

In(t) =
∞∑
k=0

(t/2)n+2k

k!(n+ k)!

It follows that both modified Bessel functions are positive.

They are two independent solutions of the second-order differential equation:

d2x

dt2
+

1

t

dx

dt
−
(

1 +
n2

t2

)
x(t) = 0 (6.21)
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which is called the modified Bessel equation.

They satisfy the recurrence relations with derivatives:

I ′n(t) = In+1(t) +
n

t
In(t) and K ′n(t) = −Kn+1(t) +

n

t
Kn(t), (6.22)

as well as:

I ′n(t) = In−1(t)− n

t
In(t) and K ′n(t) = −Kn−1(t)− n

t
Kn(t), (6.23)

The Wronskian of the two functions is:

W (Kn(t), In(t)) = det

 Kn(t) In(t)

K ′n(t) I ′n(t)

 = In(t)Kn+1(t) + In+1(t)Kn(t) = 1/t.

(6.24)

They have the following expansions near zero for n ≥ 0:

In(t) ∼ 1

Γ(n+ 1)

(
t

2

)n
and Kn(t) ∼

 − ln
(
t
2

)
− γ if n = 0

Γ(n)
2

(
2
t

)n
if n > 0

(6.25)

where γ is the Euler-Mascheroni constant. The expansions at infinity are:

In(t) ∼ et√
2πt

and Kn(t) ∼ e−t
√
π

2t
. (6.26)

In the following subsections lesser known results about the modified Bessel func-

tions are stated.

6.3.2 Monotonicity

The modified Bessel functions have simple monotonicity properties in the argu-

ment t: I ′n(t) > 0 and K ′n(t) ≤ 0 on (0,∞), which says that In(t) is increasing and

Kn(t) is decreasing. The first inequality follows from (6.22). The second inequality

follows immediately from the integral representation (6.19).

Additionally there are the following monotonicity properties in the order n:
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In+1(t) ≤ In(t) and Kn(t) ≤ Kn+1(t). (6.27)

The first inequality was proven in [33]. It also follows from Turan - type inequality [3]:

In−1(t)In+1(t)− I2
n(t) ≤ 0.

For the second inequality one estimates

Kn+1(t) =

∫ ∞
0

e−t coshα (cosh(nα) coshα + sinh(nα) sinhα) dα ≥

≥
∫ ∞

0

e−t coshα cosh(nα) coshαdα ≥
∫ ∞

0

e−t coshα cosh(nα)dα = Kn(t).

One also has monotonicity of the product:

(Kn(t)In(t))′ ≤ 0 (6.28)

i.e. Kn(t)In(t) is a decreasing function of t, see [24].

6.3.3 Product estimates

For n ≥ 1 one has:

lim
t→0+

Kn(t)In(t) =
1

2n
.

This is a simple consequence of the asymptotics of In(t) and Kn(t) as t → 0, see

(6.25). Since In(t)Kn(t) is decreasing on (0,∞), we have:

Kn(t)In(t) ≤ 1

2n
. (6.29)

Additionally one has:

tKn(t)In(t) ≤ tKn+1(t)In(t) ≤ 1. (6.30)

The inequality follows from (6.27) and from the Wronskian formula (6.24) since both

terms on the left-hand side of that equation are positive.
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6.3.4 Derivative estimates

The proofs in this paper use the following two inequalities with derivatives of the

modified Bessel functions of the first kind. They are, for n > 0:

In(t) ≤ t

n
I ′n(t), (6.31)

and

In−1 ≤ In(t) ≤ 2 I ′n(t). (6.32)

To prove them notice that from (6.22) one gets I ′n(t)− n
t
In(t) > 0, which gives (6.31).

Secondly, (6.22) and (6.23) give:

2 I ′n(t) = In+1(t) + In−1(t) ≥ In−1(t) ≥ In(t),

which is (6.32).

Both inequalities above are also a direct consequence of the following stronger

result of [24]:
tI ′n(t)

In(t)
>

√
t2

n

n+ 1
+ n2

For the modified Bessel functions of the second kind one has the following useful

result from [24]:

sK ′n(s)

Kn(s)
≤ −
√
s2 + n2.

An analog of (6.31) and obtainable in the same way from (6.23) is:

Kn(s) ≤ − s
n
K ′n(s). (6.33)

However for the applications of this chapter one only needs the following estimate:

combining (6.22) and (6.23) gives:

−2K ′n(t) = Kn+1(t) +Kn−1(t) ≥ Kn+1(t) ≥ Kn(t). (6.34)
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7. DIRAC TYPE OPERATORS ON THE QUANTUM

SOLID TORUS WITH GLOBAL BOUNDARY

CONDITIONS

7.1 Non-commutative Torus and the quantum Dirac operator

In this section we define the main objects of this chapter: the quantum solid torus,

the Hilbert spaces of L2 “functions”, and of course the Dirac type operators that we

will be studying. Let {ek,l} be the canonical basis in `2(Z≥0×Z). Define the following

two operators: Uek,l = ek+1,l and V ek,l = e2kπiθek,l+1 with k ∈ Z≥0 and l ∈ Z. The

two label operators K and L where Kek,l = kek,l and Lek,l = lek,l will also be needed

for later computations. Returning to the two operators U and V , notice that V is a

unitary and that U∗U = 1. Also notice that one has the commutation relation

V U = e2πiθUV . (7.1)

Let C∗(U, V ) be the C∗−algebra generated by U and V . This and relation (7.1)

gives the noncommutative (quantum) solid torus. Recall that T 2
θ is the standard

2 dimensional quantum torus. In other words, if u and v are unitaries such that

vu = e2πiθuv, then T 2
θ := C∗(u, v). It will be seen later on, that the analysis through

out this paper is not dependent on θ. Let K be the ideal of compact operators. One

would like to have a short exact sequence like in [17] for example.

Proposition 7.1.1 One has the following short exact sequence:

0 −→ K⊗ C(S1) −→ C∗(U, V ) −→ T 2
θ −→ 0.

Proof Let T be the Toeplitz algebra and let U ′ek,l = e−2πilθek+1,l and U1ek,l =

e−2πiklθek,l. Then general theory tells us that T ∼= C∗(U ′). One would like to show
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that C∗(U ′, V ′) ∼= T ⊗θ Z where V ′ek,l = ek,l+1. In order to do this, one needs to

write down the automorphism and the action on the generators for U ′ and Z. For

n ∈ Z one chooses the automorphism ϕn(U) = e2πinθU . Recall that the Hilbert space

is `2(Z × N) and so for f(l, k) ∈ `2(Z × N), one has the following actions on the

generators 1 ∈ Z and U ′ ∈ T :

V ′f(l, k) = ψ(1)f(l, k) = f(l − 1, k) and ψ(U ′)f(l, k) = e−2πilθf(l, k + 1).

Knowing this it follows from general theory that C∗(U ′, V ′) ∼= T ⊗θZ. Also note since

U1 is a unitary operator and U = U−1
1 U ′U1 and V = U−1

1 V U1, one has C∗(U, V ) ∼=

C∗(U ′, V ′). In order to get the exact sequence, one needs to show two things, first

for the ideal I, which will be defined in a moment, one has I ∼= K ⊗ C(S1) and

second (T ⊗θ Z)/I ∼= T 2
θ . Let I be the subring of T ⊗θ Z such that I − U ′(U ′)∗ is

a projection. It is clear that this a subring, but it needs to be verified that I really

is an ideal. However it will follow immediately once one sees how the automorphism

acts on involutions and products. Indeed one has

(ϕn(U ′))∗ = e−2πinθ(U ′)∗ = ϕ−n((U ′)∗)

(ϕn(fg) = ϕnf (f)ϕng(g) = e2πi(nf+ng)θfg .

Since in the quotient ring, I − (U ′)(U ′)∗ gets mapped to zero, ones sees that U ′ 7→ Ũ ′

where Ũ ′ is a unitary. Since U ′ and V ′ generate T ⊗θZ there respective quotient classes

Ũ ′ and Ṽ ′ will generate the quotient ring. Moreover since V ′ is already a unitary and

U ′ and V ′ satisfy the commuatation relation (7.1), Ũ ′ and Ṽ ′ will satisfy the same

relation. Since T 2
θ has a universal representation equivalent to this it follows that

(T ⊗θ Z)/I ∼= T 2
θ . To show the other isomorphism, let a ∈ T be a compact operator.

Then aV n ∈ I and consider the following map aV n 7→
(
ae2πinKθ

)
⊗ (V ′)n. First one

has
(
ae2πinKθ

)
⊗(V ′)n ∈ K⊗C(S1). This map clearly preserves multiplication making

it a homomorphism, moreover it isn’t too difficult to see that this map is indeed an

isomorphism. Therefore one has I ∼= K ⊗ C(S1). Thus the result follows.
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The next goal is to define the quantum Dirac operator that will be studied, however

before that one needs a few more items. The next item is that must be defined is

the Hilbert space in which the Dirac operator will be acting on, however in order to

do this, a few more things must be defined. For n ≥ 0, let a(n)(k) be a sequence of

numbers such that

∞∑
k=0

1

a(n)(k)
<∞

and the above sum goes to zero as n → ∞. For f ∈ C∗(U, V ), define the formal

series:

fseries =
∑

n≥0,m∈Z

V mUnf+
m,n(k) +

∑
n≥1,m∈Z

f−m,n(k)V m(U∗)n

where

f+
m,n(k) = 〈ek,0, (U∗)nV −mfek,0〉 and f−m,n(k) = 〈ek,0, fUnV −mek,0〉.

With the above series define a norm by

‖fseries‖2 =
∞∑
k=0

∑
n≥0,m∈Z

1

a(n)(k)
|f+
m,n(k)|2 +

∞∑
k=0

∑
n≥1,m∈Z

1

a(n)(k)
|f−m,n(k)|2

Let H0 be the Hilbert space where its elements are the above formal series, fseries such

that ‖fseries‖ is finite. The following proposition can be deduced from the above.

Proposition 7.1.2 If f ∈ C∗(U, V ), then the series fseries converges to f , in the L2

sense, in H0 and moreover C∗(U, V ) is dense in H0.

Proof Since the norm on fseries is finite, the L2−convergence will follow from showing

a norm equivanlence calculation. We only show the computation for the “positive”

vector as it is the same computation for the “negative” vector. One has
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‖fseries‖2 =
∑

n≥0,m∈Z

∞∑
k=0

1

a(n)(k)
f+
m,n(k)f+

m,n(k)

=
∑

n≥0,m∈Z

∞∑
k=0

1

a(n)(k)

(
V mUnf+

m,n(k)
)∗
V mUnf+

m,n(k)

=
∑

n≥0,m∈Z

∞∑
k=0

1

a(n)(k)
(〈ek,0, fek,0〉)∗ 〈ek,0, fek,0〉 = ‖f ∗f‖ = ‖f‖2 .

Hence the norms are equivalent. The density argument is along the same lines as the

proof done in Lemma 5.1 in [17]. In fact choose the function

δi(k) =

 1 i = k

0 i 6= k
.

Then it is clear one has V mUnδi(k), δi(k)V m(U∗)n ∈ C∗(U, V ). However since a(n)(k)

is inversely summable this implies that V mUnδi(k) and δi(k)V m(U∗)n have finite

norm in H0, hence they are elements in H0. But this implies that C∗(U, V ) is dense

in H0 since all elements of C∗(U, V ) can be written as finite sums of V mUnδi(k) and

δi(k)V m(U∗)n. This completes the proof.

The main reason for the reciprocals of the a(n)(k) being in the norm is to ap-

proximate a Riemann sum. Recall that for a partition on [0, 1] with points xk, one

has

∫ 1

0

f(x)dx =
∞∑
k=0

f(xk)(xk − xk−1) =
∞∑
k=0

f(xk)∆x .

The idea is to think of the reciprocals of a(n)(k) to be the ∆x. Now one can define

the Hilbert space, H, that the Dirac type operator will be acting on. One defines

H = H0 ⊗ C2. Now that the Hilbert space has been defined we can finally begin to

define the Dirac type operator. Let c
(n)
1 (k) and c

(n)
2 (k) be sequences of numbers such

that c
(n)
1 (k), c

(n)
2 (k) ≤ 1 and

∏
k(c

(n)
1 (k))−1,

∏
k(c

(n)
2 (k))−1 exist and are finite and there

exists a constant, κ, which does not depend on k or n such that 1/κ ≤ 1/c
(n)
1 (k) ≤ κ.
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Let `2
a(n)

(N) = {h :
∑

k
1

a(n)(k)
|h(k)|2 < ∞}. Define the following Jacobi type

difference operators

B(n)h(k) = a(n)(k)(h(k)− c(n)
2 (k − 1)h(k − 1)) : `2

a(n+1)(N)→ `2
a(n)(N)

B
(n)
h(k) = a(n+1)(k)(h(k)− c(n)

1 (k)h(k + 1)) : `2
a(n)(N)→ `2

a(n+1)(N)
(7.2)

where dom(B) = {h ∈ `2
a(n+1)(N) : ‖Bh‖`2

a(n)
(N) <∞} and the domain of B is similar.

Now the definition of the quantum Dirac operator that will be studied can be stated.

Let

δ0(f) = −
∑

m∈Z,n≥0

V mUn+1B
(n)
f+
m,n(K) +

∑
m∈Z,n≥1

B(n−1)f−m,n(K)V m (U∗)n−1

δ2(f) = −
∑

m∈Z,n≥1

V mUn−1B(n−1)f+
m,n(K) +

∑
m∈Z,n≥0

B
(n)
f−m,n(K)V m (U∗)n+1

and δ1 = [L, · ]. It is easy to see that

δ1(f) =
∑

m∈Z,n≥0

mV mUnf+
m,n(K) +

∑
m∈Z,n≥1

mf−m,n(K)V m (U∗)n

Define the quantum Dirac type operator, D to be

D =

 δ1 δ0

δ2 −δ1

 . (7.3)

As with any unbounded operator one must define what the domain of D is, for now

we take the maximal domain of D that is

dom(D) = {F ∈ H : ‖DF‖ <∞} . (7.4)

In the commutative case there was a nice Fourier decomposition for the Dirac opera-

tor. In this case there is a Fourier decomposition for the Dirac type operator however

it is not very pratical. Instead two propositions will be stated that relate D to a finite

difference operator with matrix coefficients.
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What is to come is a lot of notation but this is for convenience and it will make

the chapter easier to read. Let a1(k + 1) = a(n)(k + 1) and a2(k) = a(n+1)(k). The

products

J1(n) =
∞∏
k=0

c
(n)
1 (k) and J2(n) =

∞∏
k=0

c
(n)
2 (k)

are well defined since c
(n)
1 (k) ≤ 1 and c

(n)
2 (k) ≤ 1 for all k and n. Also by the definition

of c
(n)
1 (k) and c

(n)
2 (k), the products 1/J1(n) and 1/J2(n) exist and are finite. Also

define the following two sums

s1(n) =
∞∑
k=0

1

a1(k)
and s2(n) =

∞∑
k=0

1

a2(k)

Notice that both s1(n) and s2(n) go to zero as n→∞ by definition of a1(k) and a2(k).

Define the following Jacobi type difference operator with matrix valued coefficients

A(m,n)

 x(k + 1)

y(k + 1)

 = A(m,n)(k+ 1)

 x(k + 1)

y(k + 1)

− C(m,n)(k)

 x(k)

y(k)

 (7.5)

where

A(m,n)(k + 1) =

 a2(k)c
(n)
1 (k) 0

m a1(k + 1)

 (7.6)

and

C(m,n)(k) =

 1

c
(n)
1 (k)

−m
a2(k)c

(n)
1 (k)

−m
a1(k+1)c

(n)
1 (k)

c
(n)
2 (k) + m2

a1(k+1)a2(k)c
(n)
1 (k)

 . (7.7)

Notice that detA(m,n)(k + 1) = a2(k)a1(k + 1)c
(n)
1 (k) 6= 0 for any k and n which

means that the inverse of A(m,n)(k+ 1) exists for any k and n. This will be needed to

compute the parametrix later. The domain must also be stated for A(m,n). One has

the following
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dom A(m,n) =
{
h ∈ `2

a(n)(N× N) : ‖A(m,n)h‖a(n) <∞
}
. (7.8)

The next two propositions will show that studying D and finding it’s parametrix will

boil down to studying A(m,n) and its respective parametrix. In fact one will only need

to study the “positive” vector as the “negative” one will produce the same result.

Because of this, the “+” sign will be dropped for simplicity.

Proposition 7.1.3 For F ∈ H where F = (f, g)t and f, g ∈ H0, solving DF = 0 is

equivalent to solving the following equation:

A(m,n)

 gm,n(k + 1)

fm,n+1(k + 1)

 = 0

Proof Using the definition of D and shifting the first sum one gets

DF =
∑

n≥0,m∈Z

V m

 Un+1(mfm,n+1(k)−B(n)
gm,n(k))

Un(−B(n)fm,n+1(k)−mgm,n(k))

 =

 0

0

 .

This is equivalent to solving the following system of equations

 mfm,n+1(k)− a2(k)(gm,n(k)− c(n)
1 (k)gm,n(k + 1)) = 0

a1(k + 1)(fm,n+1(k + 1)− c(n)
2 (k)fm,n+1(k)) +mgm,n(k) = 0

where the defintions of a1(k+1) and a2(k) have been used and a shift in k in the second

equation has been made. Then rewriting the above using linear algebra produces

 a2(k)c
(n)
1 (k) 0

m a1(k + 1)

 gm,n(k + 1)

fm,n+1(k + 1)


−

 a2(k) −m

0 a1(k + 1)c
(n)
2 (k)

 gm,n(k)

fm,n+1(k)

 =

 0

0

 .

The first matrix is A(m,n)(k + 1), therefore factoring it out of the left side of the

equation will produce the desired result. This completes the proof.
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The next lemma will show the relation between solving the equation DF = G and

solving a finite difference equation.

Proposition 7.1.4 For F,G ∈ H where F = (f, g)t, G = (p, q)t, and f, g, p, q ∈ H0,

solving DF = G is equivalent to solving the following equation:

A(m,n)

 gm,n(k + 1)

fm,n+1(k + 1)

 =

 pm,n+1(k)

−qm,n(k + 1)


Proof The proof follows the exact same lines as Proposition 7.1.3, therefore it will

be omitted.

It follows from Propositions 7.1.3 and 7.1.4 that one only needs to study the

properties of A(m,n) to compute the kernel of D, compute the parametrix, Q, to D

and show the compactness of Q. Stating the main result will close out this section

and it will be proven throughout the remainder of this paper. One has the following

theorem.

Theorem 7.1.5 The quantum Dirac operator D, defined by (7.3) subject to the

boundary condition to be defined in equation (7.11), is an invertible operator whose

inverse Q, is a compact operator.

It should be noted that what is to follow is a very general analysis of finite dif-

ference operators with matrix coeffients, with a structure of A(m,n) and the coeffients

have a structure like A(m,n)(k+1) and C(m,n)(k). The analysis carried out will work for

generic a1(k), a2(k), c
(n)
1 (k), and c

(n)
2 (k) that satisfy the conditions that were defined

above.

One example that can be used is when a(n)(k) = S−1/2(k)S−1/2(k + n) where

S(k) = w2(k) − w2(k − 1). Also c(n)(k) = w(k)/w(k + n + 1), c
(n)
1 (k) = c(n−1)(k)

and c
(n)
2 (k) = c(n)(k). Then δ0 = S−1/2(k)[ · , UW ]S−1/2(k) and δ2 = δ∗0 where

UW = UW (k).
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7.2 Kernel of the Quantum Dirac operator

Before one solves for the kernel it will be important to know some of the properties

of the C(m,n)(k) matrix. First notice that detC(m,n)(k) = c
(n)
2 (k)/c

(n)
1 (k). For later

calculations one needs the infinite product of C(m,n)(k) to exist. We now take a

moment to prove that the product really does exist.

Proposition 7.2.1 The product

C(m,n) :=
∞∏
k=0

C(m,n)(k)

exists.

Proof The goal is to write C(m,n)(k) as id + B(k), since by [35], if the series∑
k ‖B(k)‖ converges and det C(m,n)(k) 6= 0, then the infinite product of C(m,n)(k)

converges. First one already has det C(m,n)(k) 6= 0 for all k,m, n. Seocnd notice

that there exists positive numbers b(k) and b′(k) such that 1/c
(n)
1 (k) = 1 + b(k),

c
(n)
2 (k) = 1 − b′(k),

∑
k b(k) < ∞, and

∑
k b
′(k) < ∞ since

∏
k(c

(n)
1 (k))−1 and∏

k c
(n)
2 (k) exist. Therefore one has

C(m,n)(k) = id+

 b(k) −m
a2(k)c

(n)
1 (k)

−m
a1(k+1)c

(n)
1 (k)

−b′(k) + m2

a1(k+1)a2(k)c
(n)
1 (k)

 := id+B(k) .

Next one computes the matrix norm of B(k) to get

‖B(k)‖

= max

{
b(k) +

|m|
a1(k + 1)c

(n)
1 (k)

, b′(k) +
|m|

a2(k)c
(n)
1 (k)

+
m2

a1(k + 1)a2(k)c
(n)
1 (k)

}
.

By the definition of a1(k) and a2(k) either term in the above maximum has a finite

sum for all m 6= 0, therefore
∑

k ‖B(k)‖ < ∞. Therefore one can deduce that∏
k C

(m,n)(k) exists. Thus the proof is complete.
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Next one can compute the determinant for C(m,n). Indeed one has

detC(m,n) = lim
k→∞

k∏
i=0

detC(m,n)(i) = lim
k→∞

k∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

=

∏∞
i=0 c

(n)
2 (i)∏∞

i=0 c
(n)
1 (i)

=
J2(n)

J1(n)

The next proposition will show the structure that arises from the infinite product of

the C(m,n)(k) matrices.

Proposition 7.2.2 The infinite product C(m,n) has the following structure:

C(m,n) =

 ∏∞
i=0

1

c
(n)
1 (i)

+ F0(m2) −mF1(m2)

−mF2(m2)
∏∞

i=0 c
(n)
2 (i) + F3(m2)


where the Fj(m

2) are power series in m2 with positive coefficients that grow faster

than any polynomial, for j = 0, 1, 2, 3 and

F3(m2) =

(
∞∏
i=0

1

c
(n)
1 (i)

+ F0(m2)

)−1(
m2F1(m2)F2(m2)− F0(m2)

∞∏
i=0

c
(n)
2 (i)

)
.

Proof First we show by induction that for each k the product
∏k

i=0C
(m,n)(i) is of

the form

k∏
i=0

C(m,n)(i)

=

 ∏k
i=0

1

c
(n)
1 (i)

+
∑k

i=0 u0(n, k)(m2)i −m
∑k

i=0 u1(n, k)(m2)i

−m
∑k

i=0 u2(n, k)(m2)i
∏k

i=0 c
(n)
2 (i) +

∑k
i=0 u3(n, k)(m2)i


where the above sums are polynomials in m2 with positive coefficients. The case

k = 0 is trivial. Assume the claim is true for k. We only show the computation for

the first entry in the matrix as the rest is similar. Indeed the upper corner is equal to

k+1∏
i=0

1

c
(n)
1 (i)

+
1

c
(n)
1 (k + 1)

k∑
i=0

u0(n, k)(m2)i +
m2

a2(k)c
(n)
1 (k)

k∑
i=0

u2(n, k)(m2)i

=
k+1∏
i=0

1

c
(n)
1 (i)

+
k+1∑
i=0

u0(n, k + 1)(m2)i .
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It is clear now that there is a recurrence relation for the coefficients which are still

positive and that one has a polynomial in m2 for the k + 1 term. Therefore by

induction the claim follows. Next one needs to show as k → ∞ the polynomials

converge to power series. In order to show this, one will use the Weierstrass Analytic

Convergence Theorem (WACT). Again we will only show one of the entries as the

rest are similar. Let F k
0 (m2) =

∑k
i=0 u0(n, k)(m2)i. It is clear that F k

0 (m2) is analytic

for each open disk of radius R since it is just a polynomial. The goal is to show

that F k
0 (m2) converges to a function F0(m2) uniformly, then the WACT will imply

that F0(m2) is analytic and hence the power series representation. However by the

Weierstrass M-test one has

∞∑
i=0

sup
0≤m≤R

u0(n)(m2)i ≤ R2

∞∑
i=0

u0(n) ≤ R2 · const
∞∑
i=0

1

a1(i)

where the last inequality is true because the coefficients, u0(n) are comprised of the

products of c
(n)
1 (i)−1, a1(i)−1, and a2(i)−1. Moreover the constant const comes from

just taking the supremum of all the numbers after factoring out a1(i)−1. From the

conditions on a1(i) it is clear that the last sum is finite and hence F k
0 (m2) converges

uniformly. Thus the result follows.

The next goal is to solve the equation DF = 0, however again using the decom-

position given in Proposition 7.1.3 one only needs to solve the equation A(m,n)(x(k+

1), y(k + 1))t = 0 where the dependence on m and n have been suppressed. Solving

the equation will give information about the kernel of D and tell us if in fact D is

invertible or not.

Proposition 7.2.3 Let A(m,n) be the operator given by equation (7.5), then

Ker A(m,n) =

{(
k∏
i=0

C(m,n)(i)

)
α

}
for some vector α.

Proof As stated above the only equation that needs to be solved is



130

A(m,n)

 x(k + 1)

y(k + 1)

 =

 0

0

 ,

which by equation (7.5) becomes the following equation

A(m,n)(k + 1)

 x(k + 1)

y(k + 1)

− C(m,n)(k)

 x(k)

y(k)

 =

 0

0

 .

The above equation is just like a finite difference operator in [17] except the above

has matrix-valued coeffiecents. Thus using the results from [17] and the fact that

A(m,n)(k+ 1) is invertible, one sees the above difference equation has solutions of the

form

 x(k + 1)

y(k + 1)

 =

(
k∏
i=0

C(m,n)(i)

)
α

for some arbitrary vector α. Hence the result follows finishing the proof.

In chapter 6, one had special solutions that solved the system of differential equa-

tions that arose from the Dirac operator. They were called the modified Bessel

functions, with In(|m|r) denoting the solution that grew with large |m| and was zero

at |m| = 0, and Kn(|m|r) which decayed with large |m|, more importantly, it was

square integrable for large |m| and it was infinite for |m| = 0. We would like to

have in spirit a similar setup for the special solutions in the kernel of A(m,n) in the

non-commutative case. We therefore define the Im,n(k) and Km,n(k) special solutions

to be

Im,n(k) =

(
k−1∏
i=0

C(m,n)(i)

)
Im,n(0) =

(
k−1∏
i=0

C(m,n)(i)

) I
(1)
m,n(0)

I
(2)
m,n(0)

 (7.9)

and

Km,n(k) =

(
k−1∏
i=0

C(m,n)(i)

)
Km,n(0) =

(
k−1∏
i=0

C(m,n)(i)

) K
(1)
m,n(0)

K
(2)
m,n(0)

 (7.10)
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where one requires A(m,n)Im,n(0) = 0 for regularity at k = 0. When k = 0 and m 6= 0,

the regularity condition implies that B(n)I
(2)
m,n(0) +mI

(1)
m,n(0) = 0 which implies that

I(1)
m,n(0) = −a1(0)

m
I(2)
m,n(0) .

However if m = 0 one gets B(n)f0,n+1(0) = 0 which implies that f0,n+1(0) = 0. We

summarize in the following proposition:

Proposition 7.2.4 If m 6= 0 the following initial condition is true:

I(1)
m,n(0) = −1, and I(2)

m,n(0) =
m

a1(0)
.

If m = 0 one has the following initial condition f0,n+1(0) = 0.

It also follows from the existence of C(m,n) that Km,n(∞) and Im,n(∞) exist. Next one

can finally define the boundary condition. First one writes a function F in a Fourier

decomposition on the boundary of the solid torus. Indeed for F ∈ L2(T 2
θ ) ⊗ C2 one

has

F =
∑
m,n∈Z

V mUn

 F
(1)
m,n(∞)

F
(2)
m,n(∞)

 .

Let V ⊂ L2(T 2
θ )⊗ C2 be a subspace such that for F ∈ V the following is true:

1.) if m > 0, then
F

(1)
m,n(∞)

F
(2)
m,n(∞)

> 0

2.) if m < 0, then
F

(1)
m,n(∞)

F
(2)
m,n(∞)

< 0

3.) if m = 0, then F
(1)
0,n(∞) = 0, for n ≥ 0, and F

(2)
0,n(∞) = 0, for n < 0

4.)
F

(1)
m,n(∞)

|m|F (2)
m,n(∞)

→ 0 as |m| → ∞ .

The boundary condition on D will be stated in a dense domain of D; it is

dom(D) = {F ∈ H : ‖DF‖ <∞, F |L2(T 2
θ )⊗C2 ∈ V}. (7.11)
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The next proposition reformats the boundary condition in to a more applicable form.

Proposition 7.2.5 The boundary conditions defined in equation (7.11) are equiva-

lent to the following, if m 6= 0, then

K
(1)
m,n(∞)

|m|K(2)
m,n(∞)

→ 0 as |m| → ∞ .

Moreover if m > 0 then one has K
(1)
m,n(∞) > 0 and K

(2)
m,n(∞) > 0 and if m < 0

one has K
(1)
m,n(∞) < 0 and K

(2)
m,n(∞) > 0. If m = 0 then the boundary condition is

equivalent to g0,n(∞) = 0.

Notice in the above since the “negative” terms are not present the other condition

for m = 0 is not present. One thing that needs to be discussed is the linear indepen-

dence of the solutions Im,n(k) and Km,n(k). It will turn out that these solutions are

independent.

Proposition 7.2.6 For m 6= 0, the solutions Im,n(k) and Km,n(k) are linear inde-

pendent.

Proof First the case m > 0. Recall that one has

Im,n(k) =

(
k−1∏
i=0

C(m,n)(i)

) −1

m
a1(0)


and Km,n(k) =

(
k−1∏
i=0

C(m,n)(i)

) K
(1)
m,n(0)

K
(2)
m,n(0)

 .

Using the formula for Im,n(k) and the proof of Proposition 7.2.2 one write out the

components to get

I(1)
m,n(k) = −

(
k−1∏
i=0

1

c
(n)
1 (i)

+ F k−1
0 (m2) +

m2F k−1
1 (m2)

a1(0)

)
,

I(2)
m,n(k) = mF k−1

2 (m2) +
m

a1(0)

(
k−1∏
i=0

c
(n)
2 (i) + F k−1

3 (m2)

)
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where F k−1
j (m2), is the (k − 1)th partial sum of the infinite series Fj(m

2) for j =

0, 1, 2, 3. Since each series is positive for m > 0, in fact the series are positive for all

m 6= 0, we see that I
(1)
m,n(k) is negative and I

(2)
m,n(k) is positive. Next for the Km,n(k)

an alternate, yet equivalent, way to write the solution is

Km,n(k) =

(
∞∏
i=k

C(m,n)(i)

)−1

Km,n(∞).

Recall that the components of Km,n(∞) are both positive, this is the required bound-

ary condition for m > 0, and the matrix C(m,n)(i)−1 has all positive entries since

m > 0. Therefore mutliplying by a matrix with positive enties over and over again

to a vector with positive components results in a vector with positive components.

Hence K
(1)
m,n(k) and K

(2)
m,n(k) are positive. Therefore since one of the components of

Im,n(k) is negative and both components of Km,n(k) are positive, it is impossible for

them to be linear dependent. For the case m < 0 one does the same process above

with slight adjustments to take into account that m < 0. In particular the matrix

C(m,n)(i)−1 does not have all positive entries anymore and so the Km,n(k) solutions

must be written out in a fashion similar to the Im,n(k) solutions. This will result in

both components of Im,n(k) being negative and one of the components of Km,n(k)

being positive again showing they can not be linear dependent. Thus the proof is

complete.

Proposition 7.2.7 The operator A(m,n) subject to the equivalent boundary conditions

in Proposition 7.2.5 has trivial kernel.

Proof If m 6= 0 notice that one can write any element xm,n(k) ∈ Ker A(m,n) as

xm,n(k) = c
(m,n)
1 Im,n(k) + c

(m,n)
2 Km,n(k)

since by Proposition 7.2.6 they are linear independent. However if k = 0 then one

gets for some constant, c
(m,n)
3 in k,

c
(m,n)
3 Im,n(0) = xm,n(0) = c

(m,n)
1 Im,n(0) + c

(m,n)
2 Km,n(0)
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which implies that Km,n(0) is a scalar multiple of Im,n(0), but this is impossible by

the linear independence of the solutions, hence c
(m,n)
2 = 0. Next if k = ∞ then one

gets for some constant c
(m,n)
4 in k,

c
(m,n)
4 Km,n(∞) = xm,n(∞) = c

(m,n)
1 Im,n(∞) + c

(m,n)
2 Km,n(∞)

which implies that Km,n(∞) is a scalar multiple of Im,n(∞), but again this is impos-

sible by the linear independence of the solutions, hence c
(m,n)
1 = 0. Therefore if m 6= 0

the kernel is trivial. Next is the case if m = 0 one can write the solution in the form

x0,n(k) =

 0(∏∞
i=k

1

c
(n)
2 (i)

)
g0,n(∞)

 .

However by Proposition 7.2.5 one has g0,n(∞) = 0, thus the kernel is trivial for m = 0.

Therefore the proof is finished.

The kernel of D with the prescibed boundary conditions has now been eliminated.

Since the kernel is trivial we now stand a chance in building an inverse to D and

showing that it is compact. Constructing the parametrix will be the main discussion

of the next section.

7.3 Parametrix to the quantum Dirac type operator

Now it time to discuss the non-homogeneuous equation DF = G which leads to

the parametrix of the quantum D. Once again by Proposition 7.1.4, this equation

reduces to solving A(m,n)(x, y)t = (p, q)t where again the dependence on m and n have

been suppressed. Upon solving this system the special solutions, (7.9) and (7.10), will

appear and more analysis will be discussed for them. This analysis is necessary for

showing that the parametrix is compact. Before one can compute the parametrix

we need to make a choice of a perpendicular vector. In other words, for a vector

x = (x1, x2)t we take x⊥ = (x2,−x1)t.
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Proposition 7.3.1 Let A(m,n) be the finite differnce operator defined by equation

(7.5), then A(m,n) subject to the boundary conditions given by Propositions 7.2.4 and

7.2.5, is an invertible operator with inverse Q(m,n) given by (7.14) below.

Proof One wishes to solve the equation A(m,n)(x, y)t = (p, q)t. Since the kernel

of the quantum D with the boundary conditions applied to it is trivial and hence

the kernel of A(m,n) with these conditions will be trivial, there is a chance for the

parametrix to exist and in fact it does. The goal is to solve the equation

A(m,n)

 x

y

 =

 p

−q

 ,

which becomes the following difference equation with matrix coefficients

A(m,n)(k + 1)

 x(k + 1)

y(k + 1)

− C(m,n)(k)

 x(k)

y(k)

 =

 p(k)

−q(k + 1)


with A(m,n)(k + 1) and C(m,n)(k) are the same as in formulas (7.6) and (7.7) respec-

tively. Relabling h(k) = (x(k), y(k))t and rm,n(k + 1) = (pm,n+1(k),−qm,n(k + 1))t,

the system becomes A(m,n)(k + 1)(h(k + 1)− C(m,n)(k)h(k)) = rm,n(k + 1). Here the

dependence on m and n have been reintroduced for tracking purposes. We will solve

this for the case m = 0 and m 6= 0. These cases will be done separate since they

will be solved in two different ways which will be needed for later analysis. In both

formulas, for convenience, one sets the product
∏k−1

j=k C
(m,n)(j) = 1 for any m and n.

For the case m = 0, one solves recursively to get

Q(0,n)r0,n(k) =
k∑
i=0

(
k−1∏
j=i

C(0,n)(j)

)(
A(0,n)(i)

)−1
r0,n(i)

This form will be needed for estimating purposes on the parametrix Q(0,n) when

m = 0. For the case m 6= 0 we solve the equation by using variation of constants to

get
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Q(m,n)rm,n(k) =
k−1∏
i=0

C(m,n)(i)
k∑
i=0

(
i−1∏
j=0

C(m,n)(j)

)−1 (
A(m,n)(i)

)−1
rm,n(i) + αIm,n(k)

for some parameter α. This form will be needed to figure out the parameter α so that

one can write the parametrix in terms of our special solutions Im,n(k) and Km,n(k)

and estimating the parametrix when m 6= 0. To see the full details on these to

solution methods see [17]. To apply the boundary conditions in equation (7.11), one

needs to know that Q(m,n)rm,n(∞) is well defined. Looking at the above formula for

Q(m,n)rm,n(k), using Proposition 7.2.1 and the summability of A(m,n)(k)−1 shows that

the limit as k → ∞ exists. Therefore applying the boundary condition, equation

(7.11), one has

Q(m,n)rm,n(∞) = C(m,n)

∞∑
i=0

(
i−1∏
j=0

C(m,n)(j)

)−1 (
A(m,n)(i)

)−1
rm,n(i) + αIm,n(∞)

= βKm,n(∞)

for the same α and some other constant β. Since one has formulas for Km,n(k) and

Im,n(k), one has Km,n(∞) = C(m,n)Km,n(0) and Im,n(∞) = C(m,n)Im,n(0).

The goal is to solve for α, so one considers Km,n(0)⊥ and taking the inner product

to both sides of the above equation with Km,n(0)⊥ then multiplying by (C(m,n))−1 one

gets

〈
∞∑
i=0

(
i−1∏
j=0

C(m,n)(j)

)−1 (
A(m,n)(i)

)−1
rm,n(i), Km,n(0)⊥

〉
+α

〈
Im,n(0), Km,n(0)⊥

〉
= 0

which can now be solved for α to get

α =
−1

〈Im,n(0), Km,n(0)⊥〉

〈
∞∑
i=0

(
i−1∏
j=0

C(m,n)(j)

)−1 (
A(m,n)(i)

)−1
rm,n(i), Km,n(0)⊥

〉
.

This part of the goal is to write Q(m,n) as a linear combination of the special

solutions. Assuming Im,n(0) and Km,n(0)⊥ are linear independent, which can be done
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since assume otherwise, then there exists a non-zero constant c such that Im,n(0) =

cKm,n(0)⊥ but this would say 〈Im,n(0), Km,n(0)〉 = 0, but a simple calculation shows

this is not possible; then by the projection theorem one has x = x1Im,n(0)+x2Km,n(0)

where

x1 =

〈
x,Km,n(0)⊥

〉
〈Im,n(0), Km,n(0)⊥〉

and x2 =

〈
x, Im,n(0)⊥

〉
〈Km,n(0), Im,n(0)⊥〉

,

and

x =
k∑
i=0

(
i−1∏
j=0

C(m,n)(j)

)−1 (
A(m,n)(i)

)−1
rm,n(i).

Therefore using the formula for α, the above formula, and the formulas for Im,n(k)

and Km,n(k), equations (7.9) and (7.10) respectively, one gets

Q(m,n)rm,n(k) =
k−1∏
i=0

C(m,n)(i)

×

−
〈∑∞

i=k+1

(∏i−1
j=0 C

(m,n)(j)
)−1(

A(m,n)(i)
)−1

rm,n(i), Km,n(0)⊥
〉

〈Im,n(0), Km,n(0)⊥〉
Im,n(0)

+

〈∑k
i=0

(∏i−1
j=0C

(m,n)(j)
)−1 (

A(m,n)(i)
)−1

rm,n(i), Im,n(0)⊥
〉

〈Km,n(0), Im,n(0)⊥〉
Km,n(0)


= c

(m,n)
1 (k)Im,n(k) + c

(m,n)
2 (k)Km,n(k)

where

c
(m,n)
1 (k) =

−
〈∑∞

i=k+1

(∏i−1
j=0C

(m,n)(j)
)−1 (

A(m,n)(i)
)−1

rm,n(i), Km,n(0)⊥
〉

〈Im,n(0), Km,n(0)⊥〉
(7.12)

and

c
(m,n)
2 (k) =

〈∑k
i=0

(∏i−1
j=0C

(m,n)(j)
)−1 (

A(m,n)(i)
)−1

rm,n(i), Im,n(0)⊥
〉

〈Km,n(0), Im,n(0)⊥〉
. (7.13)
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Thus one has the nice formula for Q(m,n), namely

Q(m,n)rm,n(k) = c
(m,n)
1 (k)Im,n(k) + c

(m,n)
2 (k)Km,n(k) m 6= 0

Q(m,n)r0,n(k) =
k∑
i=0

 0 0

0 1
a1(i)

∏k−1
j=i c

(n)
2 (j)

 r0,n(i) m = 0
(7.14)

where the coefficients c
(m,n)
1 (k) and c

(m,n)
2 (k) are given by (7.12) and (7.13) respec-

tively. All that remains to show is A(m,n)Q(m,n) = Q(m,n)A(m,n) = idm,n. The case

m 6= 0 amounts to showing that the formula for Q(m,n) is a solution to the original

difference equation, thus this will be omitted. The case m = 0 amounts to showing

that the formula for Q(0,n) is a solution to the original equation for m = 0, but this

is easy since both (7.6) and (7.7) are diagonal in this case. Therefore the proof is

complete.

The value 〈Km,n(0), Im,n(0)⊥〉 will appear quite frequently throughout the rest of

this paper, therefore it will be labeled. Denote this initial value as follows

τ := 〈Km,n(0), Im,n(0)⊥〉 . (7.15)

Since the special soutions solve a finite difference equation they will satisfy some type

of recurrence relation. Analyzing the recurrence relations the special solutions satisfy

is the next goal as these will be vital in proving the compactness of the parametrix

Q(m,n). We first start with some more notation since the relations will be similar

for each special solution. Let Hm,n(k) be either Im,n(k) or Km,n(k) and Hm,n(k) =

(H
(1)
m,n(k), H

(2)
m,n(k))t like at the end of the previous section, then by the formulas of

these solutions it is easy to see that one has

Hm,n(k + 1) = C(m,n)(k)Hm,n(k). (7.16)

This tells us some recurrence relations between the components of either Im,n(k) or

Km,n(k). Indeed one has the following
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H(1)
m,n(k + 1)− 1

c
(n)
1 (k)

H(1)
m,n(k) = − m

a2(k)c
(n)
2 (k)

H(2)
m,n(k)

H(2)
m,n(k + 1)− c(n)

2 (k)H(2)
m,n(k) = − m

a1(k + 1)c
(n)
1 (k)

H(1)
m,n(k)

+
m2

a2(k)a1(k + 1)c
(n)
1 (k)

H(2)
m,n(k).

(7.17)

Then using the relation

Hm,n(k) = (C(m,n)(k))−1Hm,n(k + 1),

one can produce two more equations to get

H(2)
m,n(k)− 1

c
(n)
2 (k)

H(2)
m,n(k + 1) =

m

a1(k + 1)c
(n)
2 (k)

H(1)
m,n(k + 1)

H(1)
m,n(k)− c(n)

1 (k)H(1)
m,n(k + 1) =

m

a2(k)c
(n)
2 (k)

H(2)
m,n(k + 1)

+
m2

a2(k)a1(k + 1)c
(n)
2 (k)

H(1)
m,n(k + 1).

(7.18)

The next lemma is an algebraic lemma that mainly uses tools from linear algebra

to write the parametrix into a form more suitable to estimate the Hilbert-Schmidt

norm. Computing the Hilbert-Schmidt norm is necessary to show that parametrix, Q,

is compact since it will turn out that Q is essentially a direct sum of Hilbert-Schmidt

operators with norms going to zero as |m|, n→∞. Before the lemma is stated a few

integral operators will be defined and the lemma will show that Q(m,n) will be a sum

of these integral operators.

For α, β = 1, 2, m 6= 0, and a sequence of numbers {r(k)}, define the following

integral operators:

Xαβ
m,nr(k) = I(α)

m,n(k)
∞∑

i=k+1

(
i−β∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

)
K

(β)
m,n(i− β + 1)

aβ(i− β + 1)
r(i)

Y αβ
m,nr(k) = K(α)

m,n(k)
k∑
i=0

(
i−β∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

)
I

(β)
m,n(i− β + 1)

aβ(i− β + 1)
r(i)

(7.19)
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where Xαβ
m,n, Y

αβ
m,n : `2

aβ
(N) → `2

aα(N). Also for α, β = 1, 2 and m = 0 define another

integral operator by

Z0,nr(k) =
k∑
i=0

(
k−1∏
j=i

c
(n)
2 (j)

)
r(i)

a1(i)
(7.20)

where Z0,n : `2
a1

(N)→ `2
a2

(N).

Lemma 7.3.2 The parametrix, Q(m,n) for the operator A(m,n) from above for m 6= 0

has the following equivalent formula:

Q(m,n)

 r
(1)
m,n(k)

r
(2)
m,n(k)

 =
1

τ

 p
(1)
m,n(k)

p
(2)
m,n(k)


where

p(1)
m,n(k) = X12

m,nr
(1)
m,n(k) + Y 12

m,nr
(1)
m,n(k) +X11

m,nr
(2)
m,n(k) + Y 11

m,nr
(2)
m,n(k)

p(2)
m,n(k) = X22

m,nr
(1)
m,n(k) + Y 22

m,nr
(1)
m,n(k) +X21

m,nr
(2)
m,n(k) + Y 21

m,nr
(2)
m,n(k) .

Moreover when m = 0 the parametrix has the following formula:

Q(0,n)

 r
(1)
0,n(k)

r
(2)
0,n(k)

 =

 0

Z0,nr
(2)
0,n(i)

 .

Proof One starts with the case m 6= 0. One first needs to establish several little

facts in linear algebra that we will use for the main argument. The first fact is for

vectors. If one has vectors x = (x1, x2)t and y = (y1, y2)t, then 〈x⊥, y〉 = −〈x, y⊥〉,

where 〈·, ·〉 is the standard Euclidean inner product on R2. This fact is easily seen to

be true by just writing out the formula.

The next fact is for a 2×1 vector and a 2×2 matrix. Again the fact follows by just

doing the computation so it will be omitted. If R is a 2× 2 matrix and x = (x1, x2)t,

then one has (Rx)⊥ = (det R) (Rt)
−1
x⊥. The next item is to write out a formula for

the perpendiculars to the special solutions. Recall our special solutions were given by

equations (7.9) and (7.10), then indeed one has using the second fact and the formula

for the determinant of the C(m,n)(k) matrix
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Im,n(k)⊥ =
k−1∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

(k−1∏
i=0

C(m,n)(i)

)−1
t Im,n(0)⊥

Km,n(k)⊥ =
k−1∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

(k−1∏
i=0

C(m,n)(i)

)−1
tKm,n(0)⊥.

(7.21)

Now one can begin showing the result of this lemma. Recall one has

Q(m,n)rn(k) = c
(m,n)
1 (k)Im,n(k) + c

(m,n)
2 (k)Km,n(k)

= (Im,n(k), Km,n(k))

 c
(m,n)
1 (k)

c
(m,n)
2 (k)


=

 I
(1)
m,n(k) K

(1)
m,n(k)

I
(2)
m,n(k) K

(2)
m,n(k)

 c
(m,n)
1 (k)

c
(m,n)
2 (k)

 .

Next one works with the vector of the cees. Only the argument for the c
(m,n)
1 (k) will

be shown as the other is completely anagolous. The goal is to transform the vector

of cees, the coefficient vector, into a matrix times the vector rm,n(i) and this is done

by manipulating the inner product. Recall that one has
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c
(m,n)
1 (k) =

−
〈∑∞

i=k+1

(∏i−1
j=0C

(m,n)(j)
)−1 (

A(m,n)(i)
)−1

rm,n(i), Km,n(0)⊥
〉

〈Im,n(0), Km,n(0)⊥〉

=
1

τ

∞∑
i=k+1

〈
rm,n(i),

[(
A(m,n)(i)

)−1
]t (i−1∏

j=0

C(m,n)(j)

)−1
tKm,n(0)⊥

〉

=
1

τ

∞∑
i=k+1

〈
rm,n(i),

i−1∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

[(
A(m,n)(i)

)−1
]t
Km,n(i)⊥

〉

=
1

τ

∞∑
i=k+1

i−1∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

〈[(
A(m,n)(i)

)−1
]t K

(2)
m,n(i)

−K(1)
m,n(i)

 , rm,n(i)

〉

=
1

τ

∞∑
i=k+1

i−1∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

[(A(m,n)(i)
)−1
]t K

(2)
m,n(i)

−K(1)
m,n(i)

t

rm,n(i)

=
1

τ

∞∑
i=k+1

i−1∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

(K(2)
m,n(i),−K(1)

m,n(i))
(
A(m,n)(i)

)−1
rm,n(i).

Similarly one also has

c
(m,n)
2 (k) =

1

τ

k∑
i=0

i−1∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

(I(2)
m,n(i),−I(1)

m,n(i))
(
A(m,n)(i)

)−1
rm,n(i).

These are to be understood as a row of a matrix times a column vector. Realizing

this one gets

Q(m,n)rn(k) =
1

τ

 I
(1)
m,n(k) K

(1)
m,n(k)

I
(2)
m,n(k) K

(2)
m,n(k)

×
 ∑∞

i=k+1

∏i−1
j=0

c
(n)
1 (j)

c
(n)
2 (j)

K
(2)
m,n(i) −

∑∞
i=k+1

∏i−1
j=0

c
(n)
1 (j)

c
(n)
2 (j)

K
(1)
m,n(i)∑k

i=0

∏i−1
j=0

c
(n)
1 (j)

c
(n)
2 (j)

I
(2)
m,n(i) −

∑k
i=0

∏i−1
j=0

c
(n)
1 (j)

c
(n)
2 (j)

I
(1)
m,n(i)

(A(m,n)(i)
)−1

rm,n(i).

Next we focus on multiplying the second matrix with
(
A(m,n)(i)

)−1
. The second

column is a straight forward calculation, however the first column is a bit more

complex. Both entries require the use of the recurrence relations, (7.17) and (7.18).
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Only the first entry will be shown, i.e. the top left corner entry of the matrix, since

both are similar. Indeed the top left entry is equal to

∞∑
i=k+1

i−1∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

(
K

(2)
m,n(i)

a2(i− 1)c
(n)
1 (i− 1)

+
mK

(1)
m,n(i)

a2(i− 1)a1(i)c
(n)
1 (i− 1)

)

=
1

m

∞∑
i=k+1

i−2∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

(
mK

(2)
m,n(i)

a2(i− 1)c
(n)
2 (i− 1)

+
m2K

(1)
m,n(i)

a2(i− 1)a1(i)c
(n)
2 (i− 1)

K(1)
m,n(i)

)

= − 1

m

∞∑
i=k+1

i−2∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

(
c

(n)
1 (i− 1)K(1)

m,n(i)−K(1)
m,n(i− 1)

)
where the last equality comes from recurrence relation (7.18). Then by using recur-

rence relation (7.17), the above is equal to

1

m

∞∑
i=k+1

i−2∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

m

a2(i− 1)
K(2)
m,n(i− 1) =

∞∑
i=k+1

i−2∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

1

a2(i− 1)
K(2)
m,n(i− 1).

Then after computing the other entries one gets

Q(m,n)rn(k) =
1

τ

 I
(1)
m,n(k) K

(1)
m,n(k)

I
(2)
m,n(k) K

(2)
m,n(k)

×
 ∑∞

i=k+1

∏i−2
j=0

c
(n)
1 (j)

c
(n)
2 (j)

1
a2(i−1)

K
(2)
m,n(i− 1)

∑∞
i=k+1

∏i−1
j=0

c
(n)
1 (j)

c
(n)
2 (j)

1
a1(i)

K
(1)
m,n(i)∑k

i=0

∏i−2
j=0

c
(n)
1 (j)

c
(n)
2 (j)

1
a2(i−1)

I
(2)
m,n(i− 1)

∑k
i=0

∏i−1
j=0

c
(n)
1 (j)

c
(n)
2 (j)

1
a1(i)

I
(1)
m,n(i)

 rm,n(i).

Multipling out the two matrices and applying it to the vector rm,n(i), and using the

definitions of the integral operators, equation (7.19) will show the desired result. The

case m = 0 immediately follows from equations (7.14) and (7.20). Thus the proof is

complete.

The next section will contain all the estimates of Q(m,n) and show that it is indeed

a Hilbert-Schmidt operator with decresing norms. At the very end, as stated in the

introduction, the section will contain the proof of the main theorem of this chapter.
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7.4 Analysis of the Parametrix

This section will contain a series of lemmas and propositions to get the final

estimates on Q(m,n) and thus the ability to prove the main result of this chapter.

Other than the boundary condition, there is a distinction between positive m and

negative m. From this point on the two cases will be considered as different things

happen. In fact only the case m > 0 will really be addressed with minor details

about the case m < 0, since the computations are virtually identical with some minor

adjustments. First and for most we set

I(1)
m,n(k) =

−I
(1)
m,n(k) m > 0

−I(1)
m,n(k) m < 0

and I(2)
m,n(k) =

 I(2)
m,n(k) m > 0

−I(2)
m,n(k) m < 0

.

We also set

K(1)
m,n(k) =

 K(1)
m,n(k) m > 0

−K(1)
m,n(k) m < 0

and K(2)
m,n(k) =

K(2)
m,n(k) m > 0

K(2)
m,n(k) m < 0

.

Each solution will have their own recurrence relations that stem from the generic ones,

see equations (7.17) and (7.18). For m > 0 the Im,n(k) solutions have the following

relations:

I(1)
m,n(k + 1)− 1

c
(n)
1 (k)

I(1)
m,n(k) =

m

a2(k)c
(n)
1 (k)

I(2)
m,n(k)

I(2)
m,n(k + 1)− c(n)

2 (k)I(2)
m,n(k) =

m

a1(k + 1)c
(n)
1 (k)

I(1)
m,n(k)

+
m2

a1(k + 1)a2(k)c
(n)
1 (k)

I(2)
m,n(k)

1

c
(n)
2 (k)

I(2)
m,n(k + 1)− I(2)

m,n(k) =
m

a1(k + 1)c
(n)
2 (k)

I(1)
m,n(k + 1)

c1(k)I(1)
m,n(k + 1)− I(1)

m,n(k) =
−m

a2(k)c
(n)
2 (k)

I(2)
m,n(k + 1)

+
m2

a1(k + 1)a2(k)c
(n)
2 (k)

I(1)
m,n(k + 1).

(7.22)
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Also for m > 0 the Km,n(k) solutions have the following relations:

1

c
(n)
1 (k)

K(1)
m,n(k)−K(1)

m,n(k + 1) =
m

a2(k)c
(n)
1 (k)

K(2)
m,n(k)

c
(n)
2 (k)K(2)

m,n(k)−K(2)
m,n(k + 1) =

m

a1(k + 1)c
(n)
1 (k)

K(1)
m,n(k)

− m2

a1(k + 1)a2(k)c
(n)
1 (k)

K(2)
m,n(k)

K(2)
m,n(k)− 1

c
(n)
2 (k)

K(2)
m,n(k + 1) =

m

a1(k + 1)c
(n)
2 (k)

K(1)
m,n(k + 1)

K(1)
m,n(k)− c(n)

1 (k)K(1)
m,n(k + 1) =

m

a2(k)c
(n)
2 (k)

K(2)
m,n(k + 1)

+
m2

a1(k + 1)a2(k)c
(n)
2 (k)

K(1)
m,n(k + 1).

(7.23)

As stated before one would like to compute the Hilbert-Schmidt norm; also it

would be useful to compute it a similar way done in [20]. However there, the au-

thors established some positivity, increasing, and decreasing facts about the special

solutions. Here one would like to establish the same kind of facts, except now we’re

interested in the components of the special solutions since the special soluions are

vector valued. These facts will be based on if m is positive or negative. We first

assume m is positive, then we will see that it is completely analogous if m is negative

and to keep brevity, we will omit most of those proofs. The upcoming lemma will

discuss the positivity of the components to the special solutions.

Lemma 7.4.1 If m 6= 0, then I
(1)
m,n(k), I

(2)
m,n(k), K

(1)
m,n(k), and K

(2)
m,n(k) are all positive.

Proof Using the proof of Proposition 7.2.6 and the above definitions will show the

desired result. Thus the proof is complete.

Now it is time to establish whether or not the components to the special solutions

are either increasing or decreasing. We are interested in this since in the classical case

the authors used this knowledge about the special solutions to calculate esitimates for

those solutions that played a role in estimating the parametrix to the classical Dirac

operator. It is expected that these types of estimates will be used here as well to
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estimate the parametrix to the quantum Dirac operator. Using the previous lemma

and the help of the recurrence relations for the components, this can be tackled.

Lemma 7.4.2 If m 6= 0, then one has the following inequalities for all k:

I(1)
m,n(k) < I(1)

m,n(k + 1) , I(2)
m,n(k) <

1

c
(n)
2 (k)

I(2)
m,n(k + 1) ,

K(1)
m,n(k + 1) <

1

c
(n)
1 (k)

K(1)
m,n(k) , K(2)

m,n(k + 1) < K(2)
m,n(k) .

Proof We first start with the Km,n(k) solution. Using recurrence relation (7.23),

the fact that m > 0 and the previous lemma one has

0 <
m

a1(k + 1)
K(1)
m,n(k + 1) = c

(n)
2 (k)K(2)

m,n(k)−K(2)
m,n(k + 1).

Using the above and the fact that c
(n)
2 (k) ≤ 1 one has

K(2)
m,n(k + 1) < c

(n)
2 (k)K(2)

m,n(k) ≤ K(2)
m,n(k)

which implies desired inequality. Also using recurrence relation (7.23), the fact that

m > 0 and the previous lemma one has

0 <
m

a2(k)c
(n)
1 (k)

K(2)
m,n(k) =

1

c
(n)
1 (k)

K(1)
m,n(k)−K(1)

m,n(k + 1)

implying the other inequality. The proofs for the Im,n(k) are similar, except one uses

the recurrence relation (7.22). If m < 0, then one uses again the same recurrence

relations that are tailored to the specific Im,n(k) and Km,n(k) solutions respectively.

Therefore the desired result has been shown.

Then next lemma establishes estimates on the components of the special solutions

in a similar fashion to the estimates of the modified Bessel functions in terms of their

indices shown in [20]. Let

ε(m,n) =
∞∑
k=0

a2(k)

m2 + a1(k)a2(k)
.
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Lemma 7.4.3 For m 6= 0 the following inequalities hold:

I(2)
m,n(k) ≤ |m|ε(m,n)I(1)

m,n(k + 1)

K(1)
m,n(k + 1) ≤ |m|

(
ε(m,n) +

K
(1)
m,n(∞)

|m|K(2)
m,n(∞)

)
K(2)
m,n(k) .

Moreover ε(m,n)→ 0 as |m|, n→∞.

Proof First one considers the case m > 0. Using the recurrence relations (7.22) one

has

I
(2)
m,n(k)

I
(1)
m,n(k + 1)

=
c

(n)
1 (k)

m
a2(k)

+ 1

m
a1(k)

+c
(n)
2 (k−1)

I
(2)
m,n(k−1)

I
(1)
m,n(k)

=
c

(n)
1 (k)

(
m

a1(k)
+ c

(n)
2 (k − 1)

I
(2)
m,n(k−1)

I
(1)
m,n(k)

)
1 + m2

a1(k)a2(k)
+ c

(n)
2 (k − 1) m

a2(k)

I
(2)
m,n(k−1)

I
(1)
m,n(k)

≤ c
(n)
1 (k)

(
m

a1(k)

1 + m2

a1(k)a2(k)

+ c
(n)
2 (k − 1)

I
(2)
m,n(k − 1)

I
(2)
m,n(k)

)

≤
m

a1(k)

1 + m2

a1(k)a2(k)

+
I

(2)
m,n(k − 1)

I
(2)
m,n(k)

since one has c
(n)
1 (k) ≤ 1 and c

(n)
2 (k) ≤ 1 for all k and n. Rearranging the terms it

follows that

1

m

(
I

(2)
m,n(k)

I
(1)
m,n(k + 1)

− I
(2)
m,n(k − 1)

I
(1)
m,n(k)

)
≤

1
a1(k)

1 + m2

a1(k)a2(k)

.

Suming both sides and telescoping the left side one gets

1

m

(
I

(2)
m,n(k)

I
(1)
m,n(k + 1)

)
≤

∞∑
k=0

1
a1(k)

1 + m2

a1(k)a2(k)

= ε(m,n).

From this the first inequality follows. To obtain the second one, a similar argument

will work except one will use the recurrence relation (7.23) which is tailored to the

Km,n(k) solution and the telescoping sum will produce the ratio at k =∞. The next
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step is to show ε(m,n) goes to zero as m and n go to infinity. First notice that one

has immediately that

ε(m,n) ≤
∞∑
k=0

1

a1(k)

where the sum on the right goes to zero as n → ∞ from the condition on a1(k) and

hence ε(m,n)→ 0 as n→∞. Now for any η > 0 pick N > 0 such that one has

∑
k>N

1

a1(k)
≤ η

2
,

and pick M > 0 such that

∑
k≤N

1
a1(k)

1 + m2

a1(k)a2(k)

≤ η

2

for m > M . It now follows that ε(m,n)→ 0 as m→∞. To do the case m < 0 case,

one follows the same type of analysis done above. Thus the desired result follows.

The following result will produce integral estimates on the components to spe-

cial solution Km,n(k) through their respective opposite component, i.e. an integral

estimate of K
(1)
m,n(k) through K

(2)
m,n(k).

Lemma 7.4.4 The following summation estimates are true for m 6= 0:

∞∑
i=k+1

(
i−2∏
j=0

c
(n)
1 (j)

)
K

(2)
m,n(i− 1)

a2(i− 1)
≤ 1

|m|

k−1∏
j=0

c
(n)
1 (j)K(1)

m,n(k)

∞∑
i=k+1

K
(1)
m,n(i)

a1(i)
≤ 1

|m|
K(2)
m,n(k) .

Proof First is the case m > 0. The second inequality falls directly from the recur-

rence relation for the Km,n(k) special solution, i.e. equation (7.23) and realizing one

has a telescoping sum. The first will come from equation (7.23) but the difference side

is not quite telescoping and needs a little work. Using equation (7.23) and multiplying

both sides of the equation by a product of c
(n)
1 (j)’s one has
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∞∑
i=k+1

(
i−2∏
j=0

c
(n)
1 (j)

)
K

(2)
m,n(i− 1)

a2(i− 1)

=
1

m

∞∑
i=k+1

(
i−2∏
j=0

c
(n)
1 (j)K(1)

m,n(i− 1)−
i−1∏
j=0

c
(n)
1 (j)K(1)

m,n(i)

)

≤ 1

m

k−1∏
j=0

c
(n)
1 (j)K(1)

m,n(k)

where the last inequality is true because the difference above it is now a telescoping

sum. As always, the case m < 0 is similar. This completes the proof.

Throughout the proof of the compactness of the parametrix in chapter 6, one

needed to know how the product of the two special solutions behaved, in other words

they needed to know if the product was increasing or decreasing. It will turn out that

we need to know similar information for the product of the components of the special

solutions in the present case. This brings us to the next lemma.

Lemma 7.4.5 Let n ≥ 0. If m 6= 0 then

K(1)
m,n(k)I(2)

m,n(k) ≤ τ
k−1∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

and K(2)
m,n(k)I(1)

m,n(k) ≤ τ
k−1∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

I(1)
m,n(k + 1)K(2)

m,n(k) ≤ τ

c1(k)

k−1∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

and I(2)
m,n(k)K(1)

m,n(k + 1) ≤ τ

c
(n)
1 (k)

k−1∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

.

Proof There are two cases to consider: m > 0 and m < 0. We start with the case

m > 0. Using the matrix valued recurrance relation (7.16) and properties of the inner

product one gets

〈Km,n(k + 1), Im,n(k + 1)⊥〉

=
k∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

〈
k∏
i=0

C(m,n)(i)Km,n(0),
k∏
i=0

(
C(m,n)(i)−1

)t
Im,n(0)⊥

〉

=
k∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

〈Km,n(0), Im,n(0)⊥〉 =
k∏
i=0

c2(i)

c1(i)
τ.
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Writing out the above inner product gives

〈Km,n(k + 1), Im,n(k + 1)⊥〉 = K(1)
m,n(k + 1)I(2)

m,n(k + 1) +K(2)
m,n(k + 1)[−I(1)

m,n(k + 1)]

= K(1)
m,n(k + 1)I(2)

m,n(k + 1) +K(2)
m,n(k + 1)I(1)

m,n(k + 1)

when m > 0. Then using this and the above equality implies that

K(1)
m,n(k)I(2)

m,n(k) ≤ τ

k−1∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

and K(2)
m,n(k)I(1)

m,n(k) ≤ τ
k−1∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

.

The case when m < 0 is similar. Writing out the same inner product formula as

above gives

〈Km,n(k + 1), Im,n(k + 1)⊥〉 = K(1)
m,n(k + 1)I(2)

m,n(k + 1) +K(2)
m,n(k + 1)[−I(1)

m,n(k + 1)]

= K(1)
m,n(k + 1)I(2)

m,n(k + 1) +K(2)
m,n(k + 1)I(1)

m,n(k + 1)

when m < 0. Then using this and the equality at the beginning of the proof gives

K(1)
m,n(k)I(2)

m,n(k) ≤ τ
k−1∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

and K(2)
m,n(k)I(1)

m,n(k) ≤ τ
k−1∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

.

To get the second set of inequalities one uses the above equation and using recurrence

relations (7.22) and (7.23) for m > 0 to get

τ

k−1∏
i=0

c2(i)

c
(n)
1 (i)

= I(1)
m,n(k)K(2)

m,n(k) + I(2)
m,n(k)K(1)

m,n(k)

=

(
c

(n)
1 (k)I(1)

m,n(k + 1)− m

a2(k)
I(2)
m,n(k)

)
K(2)
m,n(k)

+ I(2)
m,n(k)

(
c

(n)
1 (k)K(1)

m,n(k + 1) +
m

a2(k)
K(2)
m,n(k)

)
= c

(n)
1 (k)

(
I(1)
m,n(k + 1)K(2)

m,n(k) + I(2)
m,n(k)K(1)

m,n(k + 1)
)
.

From this last equality it follows that

I(1)
m,n(k+ 1)K(2)

m,n(k) ≤ τ

c
(n)
1 (k)

k−1∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

and I(2)
m,n(k)K(1)

m,n(k+ 1) ≤ τ

c
(n)
1 (k)

k−1∏
i=0

c
(n)
2 (i)

c
(n)
1 (i)

.
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If m < 0 one does the same trick using the recurrence relations keeping track that

m < 0 now. Thus the result follows.

The next item to discuss is the computations of the Hilbert-Schmidt norms of

the integral operators Xαβ
m,n, Y αβ

m,n, Z12
0,n and Z21

0,n. Computing these are necessary to

estimate the Hilbert-Schmidt norm of Q(m,n).

Proposition 7.4.6 If m 6= 0, then the integral operators Xαβ
m,n and Y αβ

m,n defined in

equation (7.19) are Hilbert-Schmidt operators for α, β = 1, 2. Moreover if m = 0

the integral operators Z12
0,n and Z21

0,n defined in equation (7.20) are Hilbert-Schmidt

operators.

Proof We start with the case m 6= 0. Using the definition of Xαβ
m,n and Y αβ

m,n, it’s

easy to see that for α, β = 1, 2 one has

‖Xαβ
m,n‖2

HS =
∞∑
k=0

(
I

(α)
m,n(k)

)2

aα(k)

∞∑
i=k+1

(
i−β∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

)2

·

(
K

(β)
m,n(i− β + 1)

)2

aβ(i− β + 1)

‖Y αβ
m,n‖2

HS =
∞∑
k=0

(
K

(α)
m,n(k)

)2

aα(k)

k∑
i=0

(
i−β∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

)2

·

(
I

(β)
m,n(i− β + 1)

)2

aβ(i− β + 1)
.

(7.24)

There are eight sums to estimate however it can be reduced to four since by Fubini’s

Theorem one has

‖X11
m,n‖2

HS = ‖Y 11
m,n‖2

HS, ‖X22
m,n‖2

HS = ‖Y 22
m,n‖2

HS

‖X12
m,n‖2

HS = ‖Y 21
m,n‖2

HS, ‖X21
m,n‖2

HS = ‖Y 12
m,n‖2

HS.

As always there are two cases, m > 0 and m < 0, though the details for the case

m > 0 will be shown only as the m < 0 is completely analogous like always. First

one considers ‖X11
m,n‖2

HS. Using Lemmas 7.4.2, 7.4.4, 7.4.5 and the fact that one has
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‖X11
m,n‖2

HS =
∞∑
k=0

(
I

(1)
m,n(k)

)2

a1(k)

∞∑
i=k+1

(
i−1∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

)2

·

(
K

(1)
m,n(i)

)2

a1(i)

≤ J2
1 (n)

J2
2 (n)

κ

∞∑
k=0

(
I

(1)
m,n(k)

)2

K
(1)
m,n(k + 1)

a1(k)

∞∑
i=k+1

K
(1)
m,n(i)

a1(i)

≤ τκ

m
· J1(n)

J2(n)

∞∑
k=0

I
(1)
m,n(k)K

(1)
m,n(k + 1)

a1(k)
.

The above is then equal to

τκJ1(n)

mJ2(n)

∞∑
k=0

I
(1)
m,n(k)K

(1)
m,n(k + 1)

a1(k)
· K

(2)
m,n(k)

K
(2)
m,n(k)

≤ J2(n)

J1(n)

τ 2κJ1(n)

J2(n)

∞∑
k=0

(
ε(m,n) +

K
(1)
m,n(∞)

|m|K(2)
m,n(∞)

)
1

a1(k)

= τ 2κ

(
ε(m,n) +

K
(1)
m,n(∞)

|m|K(2)
m,n(∞)

)
s1(n)

by using Lemmas 7.4.3, 7.4.5, and the fact that 1/c
(n)
1 (k) is less than κ. Therefore

one has

‖X11
m,n‖2

HS ≤ τ 2κ

(
ε(m,n) +

K
(1)
m,n(∞)

|m|K(2)
m,n(∞)

)
s1(n) .

Next one estimates ‖X22
m,n‖2

HS. Using Lemmas 7.4.2, 7.4.4, and 7.4.5 respectively, one

gets

‖X22
m,n‖2

HS =
∞∑
k=0

(
I

(2)
m,n(k)

)2

a2(k)

∞∑
i=k+1

(
i−2∏
j=0

c
(n)
1 (j)

c
(n)
2 (j)

)2
(
K

(2)
m,n(i− 1)

)2

a2(i− 1)

≤ J1(n)

J2
2 (n)

∞∑
k=0

(
I

(2)
m,n(k)

)2

K
(2)
m,n(k)

a2(k)

∞∑
i=k+1

(
i−2∏
j=0

c
(n)
1 (j)

)
K

(2)
m,n(i− 1)

a2(i− 1)

≤ J2
1 (n)

J2
2 (n)

τ

m
· J2(n)

J1(n)

∞∑
k=0

I
(2)
m,n(k)K

(2)
m,n(k)

a2(k)
.

The above is then equal to
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τ

m
· J1(n)

J2(n)

∞∑
k=0

I
(2)
m,n(k)K

(2)
m,n(k)

a2(k)
· I

(1)
m,n(k + 1)

I
(1)
m,n(k + 1)

≤ τ 2κ
∞∑
k=0

ε(m,n)

a2(k)
= τ 2κε(m,n)s2(n)

by using Lemmas 7.4.3 and 7.4.5 and the fact that 1/c
(n)
1 (k) is less than κ. Thus one

has

‖X22
m,n‖2

HS ≤ τ 2κε(m,n)s2(n) .

Very similar arguments, using the same lemmas as above, will show that

‖X12
m,n‖2

HS ≤ τ 2κ

(
ε(m,n) +

K
(1)
m,n(∞)

|m|K(2)
m,n(∞)

)
s1(n)

‖X21
m,n‖2

HS ≤ τ 2κε(m,n)s2(n) .

(7.25)

Therefore this shows that for m 6= 0 the Hilbert-Schmidt norm is finite for all of the

operators. Next one considers the case m = 0. Then one has

‖Z0,n‖2
HS =

∞∑
k=0

1

a2(k)

k∑
i=0

(
k−1∏
j=i

c
(n)
2 (j)

)2

1

a1(i)
≤ s1(n)s2(n)

since again c2(k) ≤ 1. This shows that for m = 0 the Hilbert-Schmidt norms is finite

for both operators, thus the proof is finished.

It is now time to show that Q(m,n) is a Hilbert-Schmidt operator for all m ∈ Z

and n ≥ 0.

Theorem 7.4.7 The parametrix Q(m,n) for m 6= 0 and n ≥ 0 is a Hilbert-Schmidt

operator and the Hilbert-Schmidt norm of Q(m,n) goes to zero as |m|, n→∞. More-

over for m = 0 the parametrix is a Hilbert-Schmidt operator and the Hilbert-Schmidt

norm of Q(0,n) goes to zero as n→∞.

Proof One starts with the case m = 0. It follows from Lemma 7.3.2 and Proposition

7.4.6 that one has
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‖Q(0,n)‖HS ≤ ‖Z0,n‖HS ≤
√
s1(n)s2(n)

which is finite, showing that Q(0,n) is a Hilbert-Schmidt operator. Since the sums on

the right side in the above inequality go to zero as n → ∞, by the conditions on

a1(k) and a2(k) it follows that ‖Q(0,n)‖HS goes to zero as n→∞. Next one considers

the case m 6= 0. It also follows from Lemma 7.3.2, Proposition 7.4.6, the triangle

inequality and combining like terms that one has

‖Q(m,n)‖HS ≤
1

τ

∑
α,β=1,2

(
‖Xαβ

m,n‖HS + ‖Y αβ
m,n‖HS

)

≤ 4
√
κ

√ε(m,n)
(√

s1(n) +
√
s2(n)

)
+
√
s1(n)

√√√√ K
(1)
m,n(∞)

|m|K(2)
m,n(∞)


which is finite. This means that Q(m,n) is a Hilbert-Schmidt operator. To see that the

right hand side of the above inequality goes to zero as |m|, n → ∞ notice that from

Lemma 7.4.3 implies that ε(m,n) → 0 as |m|, n → ∞ so that the first term in the

sum goes to zero as |m|, n → ∞. Now the boundary condition given in Proposition

7.2.5 implies that

K
(1)
m,n(∞)

|m|K(2)
m,n(∞)

→ 0 as |m| → ∞.

Using this and the fact that s1(n) goes to zero as n→∞ it follows that

√
s1(n)

√√√√ K
(1)
m,n(∞)

|m|K(2)
m,n(∞)

→ 0 as |m|, n→∞.

Therefore ‖Q(m,n)‖HS goes to zero as |m|, n→∞. The proof is now complete.

We can now close out this chapter by proving the main theorem of this chapter,

that is, the Dirac operator defined by equation (7.3) subject to the boundary condition

() has a compact inverse.
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Proof (Proof of Theorem 7.1.5) It follows from Proposition 7.1.4 that parametrix

Q, to the Dirac operator D is essentially a direct sum of Q(m,n). Theorem 7.4.7 shows

that Q(m,n) is a Hilbert-Schmidt operator for all m ∈ Z and n ≥ 0. Morever the same

theorem showed that the Hilbert-Schmidt norms of Q(m,n) go to zero as |m|, n→∞.

This means since Q is essentially a direct sum of those operators, one must have Q

to be a compact operator. Since A(m,n)Q(m,n) = Q(m,n)A(m,n) = idm,n by Proposition

7.3.1, it again follows from Proposition 7.1.4 that DQ = QD = id. Thus the proof is

complete.
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