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ABSTRACT

Cosper, David Ph.D., Purdue University, May 2018. Periodic Orbits of Piecewise
Monotone Maps. Major Professor: Micha l Misiurewicz.

Much is known about periodic orbits in dynamical systems of continuous interval

maps. Of note is the theorem of Sharkovsky. In 1964 he proved that, for a continuous

map f on R, the existence of periodic orbits of certain periods force the existence of

periodic orbits of certain other periods. Unfortunately there is currently no analogue

of this theorem for maps of R which are not continuous. Here we consider discontin-

uous interval maps of a particular variety, namely piecewise monotone interval maps.

We observe how the presence of a given periodic orbit forces other periodic orbits, as

well as the direct analogue of Sharkovsky’s theorem in special families of piecewise

monotone maps. We conclude by investigating the entropy of piecewise linear maps.

Among particular one parameter families of piecewise linear maps, entropy remains

constant even as the parameter varies. We provide a simple geometric explanation of

this phenomenon known as entropy locking.
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1. INTRODUCTION

The subject of continuous interval dynamics is very rich, with results dating back

many decades. As a result, most open problems pertaining to continuous interval

dynamics are either difficult or highly technical. Thus, this leads us to a natural next

step in the study of interval dynamics: piecewise continuous.

One of the most basic objects of study in dynamical systems is periodic points.

A point x will be called periodic under the map f if there exists natural number n

such that fn(x) = x, and the smallest integer n satisfying this property will be called

the period of x. In 1964, Oleksandr Sharkovsky showed that the presence of points of

a given period can force the existence of periodic points of certain other periods [1].

This rather well-known result is referred to as the Sharkovsky Theorem.

Theorem 1.0.1 (Sharkovsky) Let f be a continuous interval map. Consider the

ordering:

3 >S 5 >S 7 . . .

2 · 3 >S 2 · 5 >S 2 · 7 . . .

. . .

2n · 3 >S 2n · 5 >S 2n · 7 . . .

. . . >S 22 >S 21 >S 1

If f has a periodic point of period p, then f has a periodic point of period q for

every p >S q in the above ordering.

In Section 2.1, we give several preliminary results for kneading theory. We then use

these tools in Section 2.2 to outline a proof of the Sharkovsky Theorem and give a

geometric interpretation of the theorem.

The Sharkovsky Theorem leads us to a very simple question: for piecewise con-

tinuous interval maps, what are the possible sets of periods of periodic orbits? This
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Fig. 1.1. An example of a two-sided truncated tent map.

question is not completely unstudied. For instance in [2], this question is studied

in the case of Lorenz-like maps. However, in full generality this question is widely

untouched. Here we shall restrict our study to maps f with one increasing piece and

one decreasing piece of monotonicity. In Section 2.3, we show using kneading theory

that it suffices instead to study the family of two-sided truncated tent maps (see

Figure 1.1).

In Chapter 3, we use the parameter space T S associated to the family of truncated

tent maps to give a simple visual understanding of which periodic points appear under

a map Ta,b. For each possible periodic orbit Q, there exists a parameter, called a peak,

which splits the parameter space into two subsets. Parameters in one subset are

guaranteed to correspond to maps which have a periodic orbit Q, while parameters
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in the other are guaranteed to correspond to maps which do not have Q as a periodic

orbit. In Section 3.1, we use these ideas to investigate special families in T S and

compare these to the order from Sharkovsky’s Theorem.

In Section 3.2, we describe extremal points in T S, which are peaks correspond-

ing to truncated tent maps which have only one periodic point. These points give

insight into understanding how far we can generalize results similar to Sharkovsky’s

Theorem. Specifically, these Extremal points will tell us that given a function f with

a periodic point of period p, we cannot guarantee the existence of a periodic point of

any other period without some additional information. Section 3.3 will be devoted to

understanding the structure of the set of peaks in T S. These will have, for the most

part, a very intuitive geometric description.

In Chapter 4 we investigate a special collection of piecewise monotone maps. These

maps will have formula

Tλ,µ,b(x) =

1 + λx+ b if x ≤ 0,

1− µx if x ≥ 0,

(1.1)

For a function Tλ,µ,b which has a jump discontinuity at a point 0, there are two po-

tential values of the function at 0. Denote these values by Tλ,µ,b(0−) and Tλ,µ,b(0+).

We say that Tλ,µ,b has matching if there exists integers m and k such that fk(c−) =

fm(c+). In [3], Botella-Soler, Oteo, Ros and Glendinning observed numerically for

special values of λ and µ that the topological entropy and Lyapunov exponent remain

constant in an interval of b values close to 0. In [4], Bruin, Carminati, Marmi and

Profeti explained this phenomenon using matching. In Chapter 4 we present a sur-

prisingly simple proof of existence of these entropy plateaus of topological entropy.

Our proof primarily relies on Euclidean geometry and matching.
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2. PRELIMINARIES

In this chapter we discuss basic, well-understood topics that will be used throughout

this dissertation. In Section 2.1 we present some main results in the kneading theory

of unimodal maps. We then extend these results to include discontinuous maps which

are “unimodal”, i.e., increasing on one continuous piece and decreasing on another.

Section 2.2 is devoted to the theorem of Sharkvosky, a well known result pertaining

to periodic orbits of continuous interval maps. An outline of the proof shall be given,

as well as an explanation of the theorem’s relevance to our results.

Finally, Section 2.3 details results pertaining to Markov graphs. Given a map

f : J → J and a partition U = {U0, . . . , Un−1} of J , the Markov graph is a directed

graph which describes how elements of U cover each other under iteration by f . In

particular, we can may find the Markov graphs of partitions which are prescribed

by periodic orbits. We shall details this technique and describe how it may used to

determine other periodic orbits of f .

2.1 Kneading Theory

Kneading Theory is a tool for studying interval dynamics that was first introduced

in a 1977 preprint by Milnor and Thurston, [5]. The use of symbolics to study interval

maps, which was the starting point of their work, appeared earlier, for instance [6]

and [7]. The central idea of kneading theory is that, given an interval map f :

I → I, we can assign to every point x ∈ I a code, called the itinerary of x, which

describes the point’s behavior under f . Of particular interest are the codes assigned to

critical values, since the graph of f can fold only around these points (hence the term

“kneading”). These ideas are central mechanisms in the results of this dissertation,

and hence we will now state some standard results of the subject. We then extend
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these ideas to the case where the map is piecewise monotone. We shall use notation

similar to that of [8].

We shall say that a mapping of the interval J = [α, β] into itself is unimodal if

the following conditions are satisfied.

1. f is continuous,

2. There exists c ∈ J so that f is increasing on [α, c] and decreasing on [c, β],

3. f 2(c) ≤ f 3(c),

For x ∈ J we define its itinerary If (x) under the mapping f to be the sequence

I0(x)I1(x)I2(x) . . . , where

I0(x) =


R if x > c,

C if x = c,

L if x < c,

(2.1)

and Ij(x) = I0(f
j(x)). We adopt the convention that the itinerary terminates if

Ij(x) = C for some j. We will call a sequence A of Rs, Ls, and Cs admissible if it is

either an infinite sequence of Rs and Ls, or a finite (possibly empty) sequence of Rs

and Ls followed by a C. Note that all itineraries are admissible. For finite sequences

A, we will write |A| to denote their length. The kneading sequence of the map f will

refer to If (f(c)), i.e., the itinerary of the critical value. If A = A0A1A2 . . . , we define

the shift operation σ by σ(A) = A1A2A3 . . . . If A = C, then σ will be undefined.

Note that if x 6= c, then If (f(x)) = σ(If (x)).

Remark 2.1.1 Often in this dissertation there will be maps f such that for some in-

terval (a, b), c ∈ (a, b) and f((a, b)) = f(c). We call this a turning interval. However,

in such cases we shall treat the interval (a, b) as a point and proceed as usual.

We will now define the parity lexicographical ordering of admissible sequences. We

shall first say that L < C < R. Let A 6= B be two admissible sequences. Let i be

the first index for which Ai 6= Bi. If |A| = l < ∞ and l < |B|, then Al−1 = C and

Bl−1 6= C. Therefore, such an i will always exist. We will say that A < B if either
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1. There are an even number of Rs in A0A1 . . . Ai−1 = B0B1 . . . Bi−1 and Ai < Bi.

2. There are an odd number Rs in A0A1 . . . Ai−1 = B0B1 . . . Bi−1 and Ai > Bi.

We shall also define a finite sequence A to be positive if it has an even number of Rs

and negative if it has an odd number of Rs. A sequence A is maximal if σn(A) ≤ A,

for every n ≥ 0.

Proposition 2.1.2 Suppose that f is a unimodal map.

1. If If (x) < If (y), then x < y.

2. If x < y, then If (x) ≤ If (y).

In particular, if f is a piecewise expanding map, then the inequality in part 2 is strict.

Let K(f) denote the kneading sequence of a unimodal map f . We shall say that

an admissible sequence A is dominated by K(f) if one of the following conditions is

satisfied for all n ≥ 0:

• σn(A) < K(f) if K(f) is infinite,

• σn(A) < (DL)∞ if K(f) = DC and D is positive,

• σn(A) < (DR)∞ if K(f) = DC and D is negative.

Note that for a unimodal map f every itinerary is dominated by the kneading sequence

of f .

Proposition 2.1.3 If K(f) dominates the admissible sequence A, then the sets

LA = {x ∈ (α, β) | If (x) < A}

and

RA = {x ∈ (α, β) | If (x) > A}

are open.



7

Proposition 2.1.4 If K(f) dominates the admissible sequence A ≥ If (f
2(c)), then

there exists x ∈ J = [α, β] such that If (x) = A.

We would now like to extend some of these results to the case where f : J → J is

a piecewise monotone map, with J = [α, β]. More precisely, we want to consider all

maps f satisfying the following properties:

1. There exists c ∈ J so that f is increasing and continuous on [α, c) and decreasing

and continuous on (c, β].

2. If κ = sup{limx→c− f(x), limx→c+ f(x)}, then f(κ) ≤ f 2(κ).

We will denote the set of all such maps by F . It is important to note that we shall

define itineraries for elements of F in the same manner as the unimodal case. This

means we will use the parity lexicographical ordering in this case as well.

Proposition 2.1.5 Suppose that f ∈ F .

• If If (x) < If (y), then x < y.

• If x < y, then If (x) ≤ If (y).

In particular, if f is an expanding map, then the inequality in part 2 is strict.

The kneading sequence of a unimodal map is the itinerary of the critical value.

However, elements of F can be discontinuous at the critical point c. Moreover, if we

fix the value of the function at c, we will lose information about f . To accommodate

for this, we will consider itineraries of both possible “critical values”. More precisely,

let f(c−) = limx→c− f(x) and f(c+) = limx→c+ f(x). We will define the left kneading

sequence of f to be If (f(c−)) and the right kneading sequence of f to be If (f(c+)).

Note that in the continuous case the left and right kneading sequences coincide (at

the kneading sequence).

We now direct our attention to finding an analogue of domination for elements of

F . To simplify matters, we will consider only cases where the left and right kneading
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sequences are infinite. Let f ∈ F have left and right kneading sequences K− and

K+, respectively. Assume additionally that |K−| and |K+| are infinite. We will say

that the kneading sequences K− and K+ dominate admissible sequence A if both of

the following are satisfied:

• σn(A) < K− whenever An−1 = L,

• σn(A) < K+ whenever An−1 = R.

It is important to note that every itinerary is dominated by the left and right kneading

sequences.

Proposition 2.1.6 Let κ = sup{limx→c− f(x), limx→c+ f(x)}. If K−(f) and K+(f)

dominate the admissible sequence A ≥ If (f(κ)), then there exists x ∈ J so that

If (x) = A.

Proof Consider the two sets

UL = {x | If (x) < A}

and

UR = {x | If (x) > A}.

We begin by showing that UL and UR are both open sets. Let y ∈ UR and denote

it’s itinerary by If (y) = B0B1B2 . . . . Since If (y) > A, there exists n such that

An 6= Bn and Ai = Bi for i < n. There are now two cases: when Bn = C and when

Bn 6= C. Suppose that Bn 6= C. Then there exists ε > 0 sufficiently small so that if

x ∈ (y − ε, y + ε), then If (x) = B0B1 . . . Bn−1Bn . . . . Since If (y) > A and the n is

the first index on which the two sequences disagree, If (x) > A.

Now suppose that If (y) = BC, with |B| = n. Thus we have two cases: B is

either positive or negative. Since the proof is analogous in both cases, we will assume

that B is positive. This implies A = BLA∗. Consider the sequence A∗. Since the

preceding letter is L, A∗ < K−(f). If A∗ = C0C1C2 . . . and K−(f) = K0K1K2 . . . ,
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there must exists m so that Cm 6= Km and Ci = Ki for i < m. By continuity there

exists ε > 0 sufficiently small so that if x ∈ (y−ε, y+ε), then either If (x) = BR . . . or

If (x) = BLK0 . . . Km . . . . Either case implies If (x) > A. Therefore we have proven

that UR is open. The proof showing UL is open is similar.

Since UL and UR are open, then

U c
L = {x | If (x) ≥ A}

and

U c
R = {x | If (x) ≤ A}

are closed. Moreover, U c
L ∪U c

R = J , and J is a connected set. Therefore U c
L ∩U c

R 6= ∅

and hence there exists x ∈ J such that If (x) = A.

In this dissertation, we aren’t so much interested in the map f as we are the set of

periodic orbits of f . We choose to express these ideas in terms of kneading sequences

and itineraries. Therefore, if I(f) denotes the set of itineraries of f , we would like to

find a family of simple maps that are somewhat representative of the family F . Thus

we turn our attention to the family of two-sided truncated tent maps. Recall that

the tent map T : [0, 1]→ [0, 1] is defined by

T (x) =

2x if x ≤ 1/2,

2− 2x if 1/2 ≤ x ≤ 1.

(2.2)

Proposition 2.1.7 Every admissible sequence A ≥ L∞ is contained in I(T ).

Proof The tent map T has kneading sequence K(T ) = RL∞ and IT (0) = L∞. The

result then follows from Proposition 2.1.4.

A truncated tent map Ta,b is defined by
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Ta,b(x) =



2x if 0 ≤ x ≤ a,

2a if a ≤ x ≤ 1
2
,

2− 2b if 1
2
≤ x ≤ b,

2− 2x if b ≤ x ≤ 1.

(2.3)

We will denote by T S the set of all parameters ((a, b)), with a ∈ [0, 1
2
] and b ∈ [1

2
, 1].

Here we use notation ((a, b)) for the parameter to avoid confusion with interval (a, b).

Notice that we assign two values at x = 1
2
. Fortunately, this will not cause any

contradictions in our results (in fact, we lose some information by not considering

both possible images of 1
2
).

The family T S is much more convenient to work with for many reasons. The most

immediate reason is that a map Ta,b is simple to formulate both algebraically and

geometrically. This family will also help draw parallels between unimodal maps and

elements of F . However, the most important property of T S is that if gives a “good

representation” of F . More concisely, if f ∈ F , then there must exist ((a, b)) ∈ T S so

that f and Ta,b have the same collection of itineraries on their respective cores, which

we will define momentarily.

Proposition 2.1.8 If A is a maximal sequence, there exists a ∈ [0, 1/2] such that

K(Ta,1−a) = A, i.e., there exists continuous truncated tent map with kneading se-

quence A.

Proof Let T be the full tent map. By Proposition 2.1.7, there exists α ∈ [0, 1] with

I(α) = A. Since the left and right laps of T are full laps, there must exist a ∈ [0, 1/2]

and b ∈ [1/2, 1] such that T (a) = T (b) = α. The graph of T is symmetric about 1/2,

which implies b = 1− a. Therefore it can be seen that the map Ta,1−a is a continuous

truncated tent map. Since A is maximal, K(Ta,1−a) = A.

We will say a sequence A = A0A1A2 . . . is left maximal if A is admissible and

σn(A) ≤ A whenever An−1 = L and A is right maximal if A is admissible and
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σn(A) ≤ A whenever An−1 = R. If A is both left and right maximal, we say simply

that A is maximal. Note that left kneading sequences are left maximal and right

kneading sequences are right maximal. If A = A0A1A2 . . . and B = B0B1B2 . . . are

admissible sequences and left and right maximal, respectively, we will say that A

and B are comaximal if σn(B) ≤ A whenever Bn−1 = L and σn(A) ≤ B whenever

An−1 = R, n ≥ 1. Note that left and right kneading sequences are comaximal.

Proposition 2.1.9 Let left maximal sequence A and right maximal sequence B be

comaximal. There exists ((a, b)) ∈ T S such that K−(Ta,b) = A and K+(Ta,b) = B.

Proof If A = B, then A is maximal and by Proposition 2.1.8 there exists continuous

function Ta,1−a with kneading sequence A. Suppose then, without loss of generality,

that A < B. Since A and B are comaximal, then σn(B) ≤ A < B when Bn−1 = L.

Thus B is also left maximal, and hence maximal. Thus by Proposition 2.1.8 there

exists b ∈ [1/2, 1] such that K(T1−b,b) = B. Since B dominates A, there exists

x ∈ [0, 1] such that ITa−b,b
(x) = A. Let a ∈ T−1(1/2,1/2)(x) ∩ [0, 1/2]. Then the function

Ta,b has left kneading sequence A and right kneading sequence B.

Given f ∈ F , the core of f is the minimal bounded invariant interval under f .

Recall that κ = sup{f(c+), f(c−)}. Then the core of f , if it exists, will be the interval

[f(κ), κ]. Note that the core exists if and only if f 2(κ) ≥ f(κ).

Proposition 2.1.10 For every f ∈ F there exists ((a, b)) ∈ T S such that K−(Ta,b) =

K−(f) and K+(Ta,b) = K+(f). In particular, I(f |J1) = I(Ta,b|J2), where J1 and J2

are the cores of f and Ta,b, respectively.

Proof Since K−(f) and K+(f) are left and right maximal, resp., and comaximal,

there exists, by Proposition 2.1.9, ((a, b)) ∈ T S such that K−(Ta,b) = K−(f) and

K+(Ta,b) = K+(f). Since f and Ta,b have the same kneading sequences, it follows

from Proposition 2.1.6 that I(f |J1) = I(Ta,b|J2).
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2.2 Sharkovsky’s Theorem

Sharkovsky’s Theorem is a classic result of interval dynamics. The theorem let’s

us deduce the existence of periodic orbits of certain periods given the existence of

periodic orbits of another period. There are many proofs of Sharkovsky’s Theorem

using various techniques. Here we shall use kneading theory to outline a basic proof.

More details of this proof can be found in [8]. Additionally, we are interested only

in unimodal maps, and therefore we will state the theorem only for unimodal maps.

However, let it be known that this theorem holds true for all continuous maps on R.

Theorem 2.2.1 (Sharkovsky) Let f be a unimodal map. Consider the ordering:

3 >S 5 >S 7 . . .

2 · 3 >S 2 · 5 >S 2 · 7 . . .

. . .

2n · 3 >S 2n · 5 >S 2n · 7 . . .

. . . >S 22 >S 21 >S 1

If f has a periodic point of period p, then f has a periodic point of period q for

every p >S q in the above ordering.

Let A be a finite nonempty sequence of Ls and Rs and let B be admissible. We

define A ∗B as follows:

• If B is infinite and A is positive, then A ∗B = AB0AB1AB2 . . .

• If B = B0B1 . . . Bn−1C is finite and A is positive, then

A ∗B = AB0AB1A . . . ABn−1AC.

• If B is infinite and A is negative, then A ∗B = AB̌0AB̌1AB̌2 . . .

• If B = B0B1 . . . Bn−1C is finite and A is negative, then

A ∗B = AB̌0AB̌1A . . . AB̌n−1AC.

where Ľ = R, Ř = L, and Č = C. We call the operation ∗ the ∗-product of A and B.
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Let us now observe the order of periodic sequences of Rs and Ls with respect to

the parity lexicographical ordering. If period q ≥ 2 if fixed, there are only finitely

many sequences of period q. Let (B1)
∞, (B2)

∞, . . . , (Bk)
∞ be the maximal sequences

of period q. We define the min-max of period q, denoted by P q, to be the minimal

element of {B1, B2, . . . , Bk}. Note that this set will always be non-empty since for

any q ≥ 2, there is at least one sequence of period q, and thus we can shift this

sequence until it is maximal. The following lemma precisely describes the min-max

for a period q.

Lemma 2.2.2 The min-max P q are of the following form:

1. If q ≥ 3 is odd, P q = RLRi−2.

2. If q = 2n · k, where k ≥ 3 is odd, then P q = R∗n ∗ (RLRk−2).

3. If q = 2n, n > 0, then P q = R∗n ∗R, and P 1 = L.

where R∗n ∗ A = R ∗R ∗ · · · ∗R ∗ A.

The min-max P q represents, in essence, the smallest periodic orbit of period q in the

parity lexicographical ordering. All other sequences of period q are larger than P q or

have a shift which is larger. Recall that for a map f , the kneading sequence K(f)

must dominate every itinerary of f . Therefore if K(f) = (P q)
∞, then f has only one

periodic orbit of period q: the orbit (P q)
∞. So the kneading sequence (P q)

∞ is the

smallest kneading sequence which will allow a periodic orbit of period q. Once again

consider the ordering in Theorem 2.2.1.

Theorem 2.2.3 Let s, t be two integers. If s <S t, then P s < P t.

Using Proposition 2.1.6 and Theorem 2.2.3, we arrive at an immediate proof for

Sharkovsky’s Theorem. If f is a map with periodic orbit of period p, then there

exists a point x0 in this orbit such that If (x0) is a maximal periodic sequence of

period p. Since K(f) dominates If (x0), then K(f) will also dominate (P p)
∞. Thus
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f has a periodic point with itinerary (P p)
∞. Moreover, by Theorem 2.2.3 K(f) will

also dominate (P q)
∞ for all q <S p, and therefore f will have periodic orbits of all

periods q <S p. However, the reader may find this result unsatisfying, since the proof

relies entirely on kneading theory. Fortunately, there is a very intuitive geometric

interpretation which we shall now detail.

Let us again consider the full tent map T : [0, 1]→ [0, 1]. Since K(T ) = RL∞, it

follows from Proposition 2.1.6 that every admissible sequence occurs as an itinerary for

some point under T . This includes all periodic sequences, which occur as itineraries

of periodic points. Consider all periodic orbits of some fixed period q, listed as

{Q1, . . . , Qk}. Each Qi has a maximum element αk. Let us suppose that these

maximal elements are ordered α1 < α2 < · · · < αk. A continuous truncated tent map

Ta,1−a, a ∈ [0, 1
2
], can be thought of as a full tent map which has had particular orbits

removed, specifically those orbits which eventually land in the interval (a, 1− a). In

other words, if G =
⋃∞
i=0 T

−i((a, b)), then

T |I\G = Ta,1−a|I\G. (2.4)

It is immediate from this observation that I(Ta1,1−a1) ⊂ I(Ta2,1−a2), for every a1 < a2.

Thus we have the following Proposition.

Remark 2.2.4 If IT (x) is maximal, then IT (x) = ITa,1−a
(x) for all a ∈ [0, 1

2
] such

that x 6∈ (a, 1− a).

Proposition 2.2.5 Suppose that a ∈ [0, 1
2
] so that IT (T (a)) is maximal. Then αi is

a q-periodic point under Ta,1−a if and only if T (a) ≥ αi.

Proof Suppose that αi is a q-periodic point under Ta,1−a. Then there are two cases.

If ITa,1−a
(αi) is dominated by K(Ta,1−a), then ITa,1−a

(αi) < K(Ta,1−a) = ITa,1−a
(T (a)).

By Proposition 2.1.5, αi < T (a). If ITa,1−a
(αi) = K(Ta,1−a), then it must be that

T (a) = αi.

Now suppose that αi ≤ T (a). Because IT (T (a)) is maximal, then αi = T (a)

implies that αi is q-periodic under Ta,1−a. If αi < T (a), then it follows from Propo-

sition 2.1.5 that IT (T (a)) = K(Ta,1−a) dominates IT (αi). By Proposition 2.1.6
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0 1

6
7

Fig. 2.1. This truncated tent map cannot have the min-max periodic orbit
(RLR)∞, and hence does not have a period 3 periodic point.

there exists point x with itinerary IT (αi) under the function Ta,1−a. Additionally,

we can see that T i(x) 6∈ (a, 1 − a) for all i. Since T is piecewise expanding, then

ITa,1−a
(x) = IT (αi) implies x = αi.

Using the above notation, IT (α1) = P∞q , and therefore we can see that geo-

metrically P∞q represents the lowest truncation which admits a period q orbit (see

Figure 2.1 for period 3 orbits). Recall that for every admissible sequence A there

exists x ∈ [0, 1] such that IT (x) = A. Moreover, since T is piecewise expanding, then

IT (x) = IT (y) if and only if x = y. Therefore for every min-max P q, there exists xq

such that IT (xq) = (P q)
∞. Using Theorem 2.2.3, we see that xs < xt if and only if
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s <S t. Hence the Sharkovsky Theorem can be understood to be the order in which

the sets I(Ta,1−a) lose periods as a decreases from 1
2

to 0.

2.3 Periodic Orbits of Interval Maps

Suppose we have a function f : [α, β] → [α, β]. Let U = {U0, U1, . . . , Un−1} be a

partition of interval [α, β] with endpoints x0 = α, x1, . . . , xn = β. A partition U is

called a Markov partition if f(xi) = xj for every i, i.e., if the boundary points of the

partition elements form an invariant set. The Markov graph associated to a partition

U is the directed graph whose vertices are Ui and where the directed edges are the

pairs (Ui, Uj) such that Uj ⊂ f(Ui), with the arrow beginning at Ui and terminating

at Uj.

Markov graphs are generally used as a method to allow us to utilize combinatorial

or symbolic techniques to study interval maps. For the contents of this dissertation,

Markov graphs will give us a simple method of generating periodic orbits of a map via

the use of loops in the graph. Of interest to us will be the Markov graphs associated

to periodic points, particularly ones associated to min-max orbits. The proof of the

following Proposition is straightforward.

Proposition 2.3.1 Let f ∈ F and Q be a periodic orbit of f with points q0 < q1 <

· · · < qn. Then the partition {[q0, q1], [q1, q2], . . . , [qn−1, qn]} forms a Markov partition

of 〈Q〉, the convex hull of Q.

Lemma 2.3.2 Let f ∈ F with partition U = {U0, . . . , Un−1}. Suppose that the

discontinuity c is in the partition element Uc and that G is the Markov graph associated

to U . Then for every path in G which does not pass through Uc, there exists x with

trajectory passing through that path.

Proof Let V0 → V1 → V2 → . . . be a path in G. Recall that Vi → Vi+1 if and

only if Vi+1 ⊂ f(Vi). Since f is continuous on V0, there exists a closed interval

J1 ⊂ V0 such that f(J1) = V2. Suppose, by induction, that there exist closed intervals
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Jn ⊂ · · · ⊂ J1 ⊂ V0 such that f i(Ji) = Vi for every 1 ≤ i ≤ n. Now f(Vn) ⊃ Vn+1, so

there is a closed interval V ∗n ⊂ Vn such that f(V ∗n ) = Vn+1. But, as fn(Jn) = Vn ⊃ V ∗n

and fn is continuous on Jn, there exists closed interval Jn+1 ⊂ Jn with fn(Jn+1) = V ∗n ,

meaning also that fn+1(Jn+1) = Vn+1. Since f is invariant on a compact space, the

intersection of nested, closed intervals
⋂∞
n=1 Jn will be nonempty. A point x in this

intersection will have the desired properties.

By the preceding Lemma, we can use the Markov graph generated by a particular

periodic orbit Q to assess what other periodic orbits are forced to exists by Q. A

classic example is that “Period 3 implies everything”. We know, by the Sharkovsky

Theorem, that if a continuous interval map has a period 3 point, then it must have

periodic points of all other periods. Observing the Markov graph for the min-max

period 3 orbit results in the same conclusion (see figure).

Due to their periodic structure, periodic orbits appear as the result of loops in

the Markov graph. Two loops,L1 and L2, in the Markov graph are said to be linked

loops if for any v1 ∈ L1 and v2 ∈ L2, there exists a path between v1 and v2 which lies

entirely in L1 ∪ L2.

For the remainder of this section, all of the results shall be for a unimodal function

f . From now on, unless otherwise stated, we would like to consider only Markov

partitions generated by periodic orbits. We would also like to restrict our functions

to the convex hulls of these periodic orbits. We shall now simply refer to these graphs

as the Markov graph of a periodic orbit. We shall identify the Markov graphs of

particular min-max orbits of unimodal maps that will be used in this dissertation.

We begin with the case when Qn is periodic of odd period n.

Lemma 2.3.3 Let Qn be the periodic orbit of odd period n associated to the min-max

Pn. The Markov graph associated to Qn will contain the following paths:

• I1 → I1

• I1 → I2 → · · · → In−1



18

• In−1 → Ik, for every odd K < n.

The ∗-product plays a strong role in the formulation of min-maxes. By extension,

it will also play a role in understanding how the Markov graphs associated to various

min-maxes are related to each other. The following Lemma will be used in Section 3.2.

Lemma 2.3.4 Let Qn be the periodic orbit associated to P 3·2n. The Markov graph

associated to Qn has linked loops of lengths 2n and 2n+1 and isolated loops of lengths

2k for 0 ≤ k < n.

Proof First we discuss the linked loops. For n = 0, this is immediate. Suppose that

Q3·2n−1 has linked loops of lengths 2n−1 and 2n. Consider the Markov graph of Q3·2n .

Recall that P 3·2n = R ∗ P 3·2n−1 . This means that over half of the letters in P 3·2n are

Rs. If QL represents the smaller 3 · 2n−1 elements of Qn and QR represents the larger

3 · 2n−1 elements of Qn, set JL = 〈QL〉 and JR = 〈QR〉. Note that the turning point

c is in JL.

Consider now f 2|JL . Then QL is a periodic orbit of period 3 · 2n−1 under f 2.

Moreover, this orbit is exactly the orbit Q3·2n−1 with the orientation reversed, as can

be seen from the itineraries. Thus the Markov graph of QL under f 2 will have linked

loops of lengths 2n−1 and 2n, denoted Ln−1 and Ln, respectively.

Let V1 and V2 be vertices in Ln, with V1 → V2. This means that V2 ⊂ f 2(V1).

Since periodic orbits form Markov Partitions, there must exists interval U1 ⊂ JR

such that f(V1) = U1 and f(U2) ⊃ V2. If we now consider the Markov graph of Qn,

this means that the graph contains a loop λn+1 where every other vertex of λn+1 is

an element of Ln. A similar argument can be made using Ln−1 to create loop λn.

Moreover, since Ln and Ln−1 are linked, the loops λn+1 and λn must be linked.

Now we consider loops of lengths 2k for k < n. Since P 3·2n is a min-max, then

it cannot dominate any other period 3 · 2n orbit. In particular, this means that the

Markov graph of Qn can only generate one orbit of length 3 ·2n: the one generated by

passing through the two linked loops. However, if the graph had other linked loops of

lengths 2k for k < n, then we could generate other period 3 · 2n orbits, which would



19

Fig. 2.2. The period 6 orbit with itinerary [R ∗ (RLR)]∞. Notice that the
first return map on the blue interval is f 2 and that the three points form
a periodic orbit under f 2.

lead to a contradiction. However, it follows from Sharkovsky’s Theorem that Qn must

force period 2k orbits for all k. Thus the Markov graph of Qn must contain isolated

loops of lengths 2k for 0 ≤ k < n.

For ease, we will often relax our language when speaking about periodic orbits

associated to min-maxes. We will simply refer to the associated Markov graph as the

Markov graph of P q.
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3. PERIODIC ORBITS OF PIECEWISE MONOTONE

MAPS

In Section 2.2 we discussed the Sharkovsky order for continuous maps. However

a discontinuous analogue of this order does not yet exist. In other words, given a

discontinuous map g on R with a periodic point of period q, it is not known what

other periods of periodic points must occur for g. In full generality, this problem can

be difficult to study. Therefore, we shall restrict our discussion to piecewise monotone

maps; in particular, we shall study maps with two laps, one increasing on the left

and the other decreasing on the right. In Section 2.1, we denoted the family of these

“unimodal” maps by F . By Proposition 2.1.10, for every f ∈ F there is a parameter

((a, b)) ∈ T S such that Ta,b and f exactly the same set of itineraries on their cores.

We can additionally show that Ta,b and f have the exact same set periodic points

everywhere, with one potential exception being a fixed point. Therefore, to study

periodic points of maps from F , it suffices to study the two parameter family T S.

In Section 2.2 we stated that the Sharkovsky order may be interpreted as the order

in which periods disappear as the tent map is continuously truncated. This inspires a

natural two parameter analogue for two-sided truncated tent maps. if we allow the left

and right truncations to move independently, how does this affect the “thresholds” for

periodic orbits? Let us consider the period 3 orbits in Figure 2.1. We shall now allow

the left and right truncations to move independently. For a continuous truncated tent

map, there could be no other periodic orbits of period 3 once the orbit with itinerary

(RLR)∞ was removed. However, Figure 3.1 shows such a map Ta,b with periodic orbit

of itinerary (RLL)∞, but no orbit with itinerary (RLR)∞. Thus, we can see that the

geometric notion offered by the min-max in the continuous case does not generalize to

the discontinuous case. Furthermore, using similar ideas we can generate a function
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0 1

Fig. 3.1. This truncated tent map cannot have the orbit (RLR)∞. How-
ever, it does have the orbit (RLL)∞.

which has a period 2 point, but not period 3 point (see Figure 3.2). Hence we can

also see that the Sharkovsky order also fails to generalize to the discontinuous case.

Let Q be a periodic orbit under the full tent map T , xL = max{x ∈ Q |x < 1
2
},

and xR = min{x ∈ Q |x > 1
2
}. We now formulate the 2-parameter analogue of

Proposition 2.2.5. The proof follows easily by using equation 2.4.

Lemma 3.0.1 Suppose that ((a, b)) ∈ T S so that IT (T (a)) is left maximal and

IT (T (b)) is right maximal. Let Q be a periodic orbit such parameter ((xL, xR)) de-

fined as before. Then Q is a periodic orbit of Ta,b if and only if xL ≤ a and xR ≥ b.

The parameter ((xL, xR)) functions as a threshold on the parameters for which Q

exists as an orbit of Ta,b. The parameter ((xL, xR)) shall be called the peak of the
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Fig. 3.2. This truncated tent map cannot have the orbit (RL)∞. However,
it does have the orbit (RLR)∞.

periodic orbit Q. We shall denote the set of all peaks by P . Since IT (T (xL)) and

IT (T (xR)) are left and right maximal, respectively, Lemma 3.0.1 gives us an intuitive

geometric interpretation of the relationship between peaks.

Lemma 3.0.2 Let Q1 and Q2 be periodic orbits under T with peaks ((x1, y1)) and

((x2, y2)), respectively. Then Tx2,y2 has periodic orbit Q1 if and only if x1 ≤ x2 and

y1 ≥ y2.

Proof This is immediate from Lemma 3.0.1.

Figure 3.3 details this geometric interpretation. We are also able to generate

an image of the set P . With this geometric intuition, we would now like to begin
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((x2, y2))

((x1, y1))

Fig. 3.3. Proposition 3.0.2.

attacking this period ordering problem. In Section 3.1, we analyze special vertical

and horizontal families of T S. These families will demonstrate how the “forcing”

orders of periods can vastly differ from the continuous case.

In Section 3.2, we identify peaks which force no other periodic orbits, known as

extremal points. Section 3.3 will be devoted entirely to characterizing the structure

of the set P .

3.1 Horizontal/Vertical Families and Order Type

We will be investigating how a periodic orbit of period n forces a periodic orbit

of period m. We shall write n =⇒
per

m if the existence of a period n point forces the

existence of a period m point. In Section 3.2 we shall see that, in full generality, given

a periodic orbit of period n we cannot guarantee the existence of another periodic

point. Here we will study the relation =⇒
per

for particular vertical and horizontal

families in T S and observe the differences from the relation =⇒
per

in the continuous

case, i.e., the Sharkovsky order.
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Fig. 3.4. This is a picture featuring all peaks up to period 20. Note that
the reverse diagonal corresponds to continuous functions.
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Proposition 3.1.1 The relation =⇒
per

forms a linear ordering on vertical and hori-

zontal families in T S.

Proof Let H be a horizontal family in T S, i.e., H = {((a, b))|b = b0}. Fix a period

q. Then for every periodic orbit Q of period q, there is a peak ((αQ, βQ)) associated

to it. Let

PH,q = {((αQ, βQ))|βQ ≥ b0}.

Since there are only finitely many periodic orbits of period q, there must be a value

aq which is minimal among the αQ which occur in PH,q. Clearly, if q1 6= q2, then

aq1 6= aq2 . Therefore, the set of aq, q = 1, . . . ,∞, has some linear order in [0, 1
2
]× b0.

By Lemma 3.0.2, the order on the indices of aq must coincide with the order induced

by =⇒
per

on H. An analogous proof works for vertical families.

We will begin by studying the one-dimensional families Hn = {((a, b))|b = 2n−1
2n
}

in T S, n ≥ 2. It will be necessary for us to keep track of the number of Rs in an

itinerary. If A denotes some finite sequence of Rs and Ls, define γ(A) to be the

number of Rs in that sequence. Define the substitution

sk(A) =

L if A = L

LkR if A = R,

(3.1)

and define Sk(A) = sk(A0)sk(A1)sk(A2) . . . , k ≥ 1. Clearly Sk+1(A) = S1(Sk(A)).

Lemma 3.1.2 If A < B, then Sk(A) < Sk(B).

Proof Let A = Eamam+1 . . . and B = Ebmbm+1 . . . , where E is a finite sequence of

Ls and Rs and am 6= bm. Then we must consider two cases: am = R and am = L.

First note that the parity of Sk(E) is the same as that of E. The substitution yields:

Sk(A) = Sk(E)sk(am)sk(am+1) . . .

and

Sk(B) = Sk(E)sk(bm)sk(bm+1) . . . .

(3.2)
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If am = L, then the parity of E and Sk(E) is even and thus bm = R. So sk(am) = L

and sk(bm) = LkR. Thus (3.2) becomes

Sk(A) = Sk(E)L . . .

and

Sk(B) = Sk(E)LkRsk(bm+1) . . . .

(3.3)

There are two possibilities: either A = ELk+1 . . . or A = ELR . . . . In either case,

the equations in 3.3 become

Sk(A) = Sk(E)Lk+1 . . .

and

Sk(B) = Sk(E)LkRsn(bm+1) . . . .

Since the L does not affect the parity, Sk(A) < Sk(B). The case of this proof when

am = R is very similar and will be omitted.

Lemma 3.1.3 Itineraries of points via T 1
2
, 2

n−1
2n

(x), n ≥ 2, do not contain consecutive

Rs.

Proof An itinerary IT 1
2 , 2

n−1
2n

(x) contains two consecutive Rs if and only if there

exists some m ≥ 0 such that Tm1
2
, 2

n−1
2n

(x) > 1
2

and Tm+1
1
2
, 2

n−1
2n

(x) > 1
2
. However, this can

only happen if Tm1
2
, 2

n−1
2n

(x) ∈ (1
2
, 3
4
). By definition, T 1

2
, 2

n−1
2n

sends elements in (1
2
, 3
4
) to

1
2n−1 . Thus if Tm1

2
, 2

n−1
2n

(x) ∈ (1
2
, 3
4
), then the (m+ 1) term of IT 1

2 , 2
n−1
2n

(x) must be L (or

C if n = 2).

By finding the induced map of T 1
2
, 2

n−1
2n

on the interval [0, 1
2
], we arrive at a simple

inductive relationship for the itineraries of T 1
2
, 2

n−1
2n

.

Proposition 3.1.4 Let IL(T 1
2
, 2

n−1
2n

) be the set of itineraries under T 1
2
, 2

n−1
2n

which begin

with an L. Then IL(T 1
2
, 2

n−1
2n

) = Sn−1(I(T )), where T is the full tent map.
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Proof We argue by induction. Let n = 2 and begin by finding the first return map

of T 1
2
, 3
4

on the interval [0, 1
2
].

Denote this first return map by ρ2. Then ρ2 can be written as follows (see Fig-

ure 3.5):

ρ2(x) =


2x if 0 ≤ x ≤ 1

4
,

1
2

if 1
4
≤ x ≤ 3

8
,

2− 4x if 3
8
≤ x ≤ 1

2
.

(3.4)

Note that the set of itineraries for ρ2(x) will be I(T ). Moreover, if A is an itinerary

of a point under the map ρ2, then this corresponds to the itinerary S1(A) under T 1
2
, 3
4
.

This can be seen as a point x in [3
8
, 1
2
] is to the left of 1

2
and is mapped exactly once to

the right of 1
2

before returning to [0, 1
2
]. Thus an R under the action of ρ2 corresponds

to a block LR under the action of T 1
2
, 3
4
.

Now suppose that I(T 1
2
, 2

n−1
2n

) = Sn−1(I(T )) and consider I(T 1
2
, 2

n+1−1

2n+1
). Denote by

ρn the first return map of T 1
2
, 2

n−1
2n

on the interval [0, 1
2
]. Then ρn can be written as

follows:

ρn(x) =


2x if 0 ≤ x ≤ 1

4
,

1
2n

if 1
4
≤ x ≤ 2n+1−1

2n+2 ,

2− 4x if 2n+1−1
2n+2 ≤ x ≤ 1

2
.

(3.5)

Notice that the set of itineraries for ρn will be I(T 1
2
, 2

n−1
2n

) = Sn−1(I(T )). Therefore, if

A is an itinerary of a point under the map ρn, then this corresponds to the itinerary

S1(A) under T 1
2
, 2

n−1
2n

. Thus

I(T 1
2
, 2

n+1−1

2n+1
) = S1(I(T 1

2
, 2

n−1
2n

)) = S1(Sn−1(I(T )) = Sn(I(T )).

Using Lemma 3.1.2, we can see that if A dominates B, then Sk(A) dominates

Sk(B). However, it would be a mistake to conclude that min-maxes are preserved

under Sk. Unfortunately, Sk radically changes the period of a periodic itinerary based

on the number or Rs. As a result, the order induced by =⇒
per

is not the same as the



28

0 1
4

1
2

3
8

1

Fig. 3.5. Graph of T 1
2
, 3
4

with first return graph on interval [0, 1
2
].

Sharkovsky order. Using 3.0.2 and 3.1.1, we can understand the order induced by

=⇒
per

to be the order in which periods disappear as we truncate the maps Ta, 2n−1
2n

.

Since in 3.1.4 we consider the induced map on the interval [0, 1
2
], a truncated map

Ta, 2n−1
2n

will have a truncated first return map, which we will denote ρn,a. Here we

shall restrict our arguments to the case n = 2.

Remark 3.1.5 The following arguments will follow inductively for general n ≥ 2.

However, we use n = 2 for simplicity.

Lemma 3.1.6 The induced map of Ta, 3
4

on the interval [0, 1
2
] will be

ρ2,a =



2x if 0 ≤ x ≤ a,

1
2

if a ≤ x ≤ 3
8
,

2− 4x if 3
8
≤ x ≤ a,

2− 4a if a ≤ x ≤ 1
2
.

(3.6)

Moreover, as a→ 0, ρ2,a loses periods of periodic orbits in the Sharkovsky order.
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Proof Finding the equation of the first return map ρ2,a is a simple calculation. To see

that ρ2,a loses periods in the Sharkovsky order, simply recall that as we truncate the

full tent map (and ρ1 is essentially a full tent map) we lose periods in the Sharkovsky

order. Moreover, note that a truncated tent map Ta,1−a will have the same set of

itineraries as a map

T ∗ =


2x if 0 ≤ x ≤ 1

2
,

2− 2x if 1
2
≤ x ≤ 2a,

2− 4a if 2a ≤ x ≤ 1.

(3.7)

Therefore, the truncation of ρ2 from the right (which is what happens for ρ2,a) yields

the same result as if it is truncated from the top. Hence as a→ 0, ρ2,a loses periods

of periodic orbits in the Sharkovsky order.

Consider the Markov graphs of periodic points under T 1
2
, 3
4
. Since T 1

2
, 3
4

is not

unimodal, we cannot expect the results of Section 2.3 to hold here. However, note

that the first return map ρ2 is unimodal. Thus, we may question how the substitution

S1 relates the Markov graphs of T 1
2
, 3
4

and ρ2.

Lemma 3.1.7 Let Q be a periodic orbit under T 1
2
, 3
4

and Qρ be the corresponding

periodic orbit under the induced map ρ1. Let G be the Markov graph of Q under T 1
2
, 3
4

and Gρ the Markov graph of Qρ under ρ1. Then for every path λρ in Gρ which does

not pass through the turning point c, there exists path λ in G with the properties:

1. If V1 → V2 is in λρ and V1 has interior entirely left of c = 1
4
, then λ contains

the segment V1 → V2.

2. If V1 → V2 is in λρ and V2 has interior entirely right of c = 1
4
, then λ contains

the segment V1 → V ∗1 → V2, where V1 has interior in [0, 1
2
] and V ∗1 has interior

in [1
2
, 1].

Despite Sk changing periods, some min-maxes are, in a certain sense, preserved

under Sk. The min-max (P 2n)∞ dominates only sequences of the form (P 2m)∞, with

m < n. We observe how the period changes under S1.
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Lemma 3.1.8 Let rn = γ(P 2n). Then r0 = 1 and

rn =

2rn−1 + 1 if n is even,

2rn−1 − 1 if n is odd.

Proof We argue inductively. For n = 0, we have that P1 = R∞, and hence r0 = 1.

Now let n be even and suppose that rn−1 = 2rn−2 − 1. Since P 2n = R ∗ P 2n−1 , it

follows from the definition of ∗-product that

γ(P 2n) = 2n−1 + [2n−1 − rn−1] = 2n − rn−1. (3.8)

Using our inductive hypothesis for rn−1, equation 3.8 becomes

γ(P 2n) = 2n − [2rn−2 − 1] = 2[2n−1 − rn−2] + 1 = 2rn−1 + 1.

A symmetric proof will work when n is odd. Hence we get the result

γ(P2n) = rn =

2rn−1 + 1 if n is even,

2rn−1 − 1 if n is odd.

.

Proposition 3.1.9 The periods of T 1
2
, 3
4

which force finitely many periods are those

periods An, where A0 = 2 and

An =

2An−1 + 1 if n is even,

2An−1 − 1 if n is odd.

In particular, the linear order of the relation =⇒
per

associated with the family H2

contains the sequence

. . . =⇒
per

An =⇒
per

. . . =⇒
per

7 =⇒
per

3 =⇒
per

2. (3.9)

Proof Let ρ2 be as in Proposition 3.1.4. Then for every itinerary A, there is a point

x ∈ [0, 1
2
] with Iρ2(x) = A. In particular, there exists points xn with Iρ2(xn) = (P 2n)∞,

for every n. Additionally, itinerary (P 2n)∞ only dominates periodic orbits of the
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form (P 2k)∞, k ≤ n. Therefore, by Lemma 3.1.2, every sequence σ ◦ S1(P 2n)∞ only

dominates periodic orbits of the form (σ◦S1(P 2k))∞, k ≤ n. Hence the periods of T 1
2
, 3
4

which force only finitely many other periods will be An = |S1(P 2n)|. By Lemma 3.1.8

γ(P 2n) = rn =

2rn−1 + 1 if n is even,

2rn−1 − 1 if n is odd.

Hence we find that

An = |S1(P 2n)| = 2n + rn =

2n + 2rn−1 + 1 = 2An−1 + 1 if n is even,

2n + 2rn−1 − 1 = 2An−1 − 1 if n is odd.

Therefore the forcing ordering of T 1
2
, 3
4

contains the sequence (3.9).

Remark 3.1.10 Note that An + An+1 = 5 · 2n.

Two ordered sets X and Y with orders <x and <y are said to have the same

order type if there exists a bijection f between X and Y such that a1 <x b1 implies

f(a1) <y f(b1) and a2 <y b2 implies f−1(a2) <x f
−1(b2). As a simple example, the

natural numbers, with standard order, have the same order type as the positive even

integers. However, the natural numbers have a different order type then, say, the

Sharkovsky order.

The line b = 1− a in T S represents the parameters corresponding to continuous

truncated tent maps. The relation =⇒
per

on this family is exactly the order given by

>S. A priori, it is possible that the order type of relation =⇒
per

for all horizontal and

vertical families is the same as that of >S. However, this turns out not to be the case.

We show this by finding the order type of family H2.

Proposition 3.1.11 |S1(P 3·2n)| = 5 · 2n, where n ≥ 0.

Proof Since s1(R) = LR and s1(L) = L, then |S1(P 3·2n)| = |P 3·2n | + γ(P 3·2n). It

is known that P 3·2n = R∗n ∗ (RLR) = R ∗ R ∗ · · · ∗ R ∗ (RLR). Using this, we
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wish to show that γ(P 3·2n) = 2n+1. We proceed by induction. The k = 0 case is

trivial. Therefore, assume that γ(P 3·2k) = 2k+1. Then P 3·2k+1 = R ∗ P 3·2k . Hence

γ(P 3·2k+1) = 3 · 2k + (3 · 2k − 2k+1) = (3− 1) · 2k+1 = 2k+2. Finally, we may conclude

that |P 3·2n|+ γ(P 3·2n) = 3 · 2n + 2n+1 = 5 · 2n.

Since the relation =⇒
per

for H2 is linearly ordered , then for every q there exists aq

such that Ta, 3
4

has a periodic point of period q if and only if a ≥ aq. In other words,

aq is acting as a lower threshold on the parameters where a period q point exists for

Ta, 3
4
. Let (Dq)

∞ = IT (T (aq)). This Dq acts as a “min-max” of period q in H2.

Let us again consider T 1
2
, 3
4

with induced map ρ2 : [0, 1
2
] → [0, 1

2
]. Earlier, we

determined that S1(Iρ2(x)) = IT 1
2 , 34

(x). Now since =⇒
per

is linearly ordered in H2, we

can obtain this order by considering increasingly shorter truncations of Ta, 3
4
. In other

words, the order induced by =⇒
per

is exactly the order periods disappear under the

maps Ta, 3
4

as a approaches 0. Here we would like to point out that the truncated tent

map Ta, 3
4

has a corresponding truncated induced map ρ2,a on the interval [0, 1
2
]. The

map ρ2,a corresponds exactly to the continuous truncated tent map.

Proposition 3.1.12 D5·2n = σ(S1(P 3·2n)).

Proof We consider the Markov graph of σ(S1(P 3·2n)), call it Gσ. If G is the Markov

graph of P 3·2n , then by 2.3.4 G has linked loops of lengths 2n and 2n+1. Additionally,

these loops follow orbit patterns of P 2n and P 2n+1 and G has no other linked loops.

Therefore, by Lemma 3.1.7, Gσ must contain linked loops of lengths An and An+1. By

Remark 3.1.9, Gσ generates only one periodic orbit of length 5 · 2n. This orbit must

be σ(S1(P 3·2n)). Since σ(S1(P 3·2n)) forces only one periodic orbit of length 5 ·2n, then

it must be that σ(S1(P 3·2n)) = D5·2n .

Proposition 3.1.13 A periodic point of period 5 · 2n will force periodic orbits of all

but finitely many periods k under the map T 1
2
, 3
4
.
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Proof Let D5·2n be the min-max of period 5 · 2n. This min-max will have a Markov

graph with linked loops of length An and An+1. Since (An, An+1) = 1 for all n, then

the equation

p · An + q · An+1 = k,

with p, q ≥ 1, will have a solution for sufficiently large k. Therefore a periodic point

of period 5 · 2n will force all but finitely many periods.

Consider the periodic orbit S1((RLR)∞) = (RLLRL)∞ = D5. Then the Markov

graph of this periodic orbit under Ta5, 34
must contain the subgraph

I1 I2 I3

(3.10)

Using the subgraph in 3.10 and Lemma 2.3.2, the Markov graph associated to

(RLLRL)∞ generates periodic points of all periods. Therefore, 5 =⇒
per

q for every q.

By Proposition 3.1.13, the relation =⇒
per

in H2 has the sequence

5 =⇒
per

. . . =⇒
per

5 · 2 =⇒
per

. . . =⇒
per

5· =⇒
per

. . . . (3.11)

Compare this with Proposition 3.1.9 and we arrive at the following:

Theorem 3.1.14 The relation =⇒
per

in H2 has order

5 =⇒
per

. . . =⇒
per

5 · 2 =⇒
per

. . . =⇒
per

5 · 2n =⇒
per

. . .
∣∣ (3.12)

. . . =⇒
per

An =⇒
per

. . . =⇒
per

3 =⇒
per

2, (3.13)

where 5 · 2n and 5 · 2n+1 have finitely many integers between them.

Corollary 3.1.15 The ordering of periods induced by relation =⇒
per

in a one param-

eter subfamily of T S need not have the same order type as the Sharkovsky order.

The order type observed in the family ((a, 3
4
)) is not unique to this family. Consider

the vertical family ((3
8
, b)). We claim that the order type of the period forcing order

of this family is the same as that of the family ((a, 3
4
)). In fact, we can explicitly

calculate the period forcing order for the family ((3
8
, b)).
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Lemma 3.1.16 Let IT 3
8 ,b

(x) be the itinerary of a point under T 3
8
,b. Then IT 3

8 ,b
(x)

cannot contain the finite subsequence LRL.

Proof Under the tent map, an itinerary IT (x) contains the sequence LRL if and

only if there exists n such that T n(x) ∈ (3
8
, 1
2
). However, T 3

8
,b sends elements of the

interval [3
8
, 1
2
] to 3

4
.

Lemma 3.1.17 Štefan sequences (RLRk)∞ are contained in I(T 3
8
, 1
2
).

Proof Štefan sequences do not contain the subsequence LRL, which gives us the

conclusion.

Lemma 3.1.18 Markov Graphs of Štefan orbits of period n + 1 under T 3
8
, 1
2
,must

contain linked loops of lengths n and 1. In particular, the linear order on periods

induced by =⇒
per

in the family ((3
8
, b)) will contain the sequence

3 =⇒
per

5 =⇒
per

7 =⇒
per

9 =⇒
per

. . . (3.14)

Proof From Lemma 2.3.3, it is known that Markov graphs of Štefan orbits have

linked loops of length 1 and q − 1 in the continuous case. Thus we need only show

that the truncation associated to parameter ((3
8
, 1
2
)) does not annihilate this structure.

Consider then the intervals Ik from Lemma 2.3.3. Štefan orbits have periodic

itinerary LRn. If Q is the periodic orbit associated to LRn, then the elements of Q

divide 〈Q〉 into n intervals. Listed from left to right, these intervals are

In, In−2, In−4, . . . I2, I1, I3, . . . In−3, In−5

Note that if xL is the left most point of Q, then xL <
3
8
, and therefore the map T 3

8
, 1
2

has periodic point with itinerary (LRn)∞ for all n. Moreover, 3
8
∈ In and so we must

show that T (3
8
) = 3

4
is not contained in I1 so that T (In) covers I1. However, this can

be checked using itineraries. Note that IT (3
4
) = RC. If yR is the right endpoint of

I1, then IT (yR) = RR . . . , and thus yR <
3
4
. Hence the Markov graph of LRn under

T 3
8
, 1
2

contains the loop of length n and 1
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Lemma 3.1.19 The period forcing order for the family ((3
8
, b)) contains the sequence

. . . =⇒
per

12 =⇒
per

8 =⇒
per

6 =⇒
per

4. (3.15)

Proof For a period 2(k+ 1) the Markov graph associated to the periodic point with

itinerary (RLR2k)∞ will have non-connected loops of length 2·m for every 1 < m ≤ k.

This gives the conclusion. Therefore, period 2(k + 1) can only force periods 2 ·m.

Theorem 3.1.20 The order on periods induced by =⇒
per

for the family ((3
8
, b)) is the

sequence

3 =⇒
per

5 =⇒
per

7 =⇒
per

. . . | . . . =⇒
per

8 =⇒
per

6 =⇒
per

4 (3.16)

So far we have seen two ordinal types for one-parameter families. However, vertical

and horizontal families have demonstrated only one order type. Thus, we end this

section with a conjecture.

Conjecuture 3.1.21 The order type on periods induced by relation =⇒
per

is the same

for all vertical and horizontal families in T S.

3.2 Extremal Points

Let ((a, b)) be a peak. We say ((a, b)) is extremal if the only periodic orbits of Ta,b

are orb(a) and the fixed orbit 0. Now we would like to address the following question:

can the set E of extremal points of T S be fully characterized? These points loosely

reflect the boundary of the regions in T S which force non-fixed periodic orbits. We

shall begin by considering the following three sets of peaks:

• E(RLn), the set of peaks corresponding to periodic orbits of the form (RLn)∞,

• E(LRn+1), the set of peaks corresponding to periodic orbits of the form

(LRn+1)∞,

• E(R2Ln), the set of peaks corresponding to periodic orbits of the form (R2Ln)∞.
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For all families, we consider n ≥ 1.

Proposition 3.2.1 Let ((xn, yn)) ∈ E(RLn), n ≥ 1. Then xk+1 ≥ xk, yk+1 ≥ yk, and

((xn, yn)) is extremal.

Proof Let a0 < a1 < · · · < an be the points of the periodic orbit (RLn)∞. Using the

itinerary, we can see that the temporal ordering is identical to the spatial ordering,

that is, T (ak) = ak+1 for k < n and T (an) = a0. If Jk = [ak−1, ak], k = 1, . . . n, then

we can write the Markov graph associated to this periodic orbit as

J1 J2 Jn

Now if ((xn, yn)) is the point of T S corresponding to (RLn)∞, then the truncation of

map Txn,yn will be on the interval Jn. Thus the only periodic orbits Txn,yn can have

are (RLn)∞ and a fixed point. Hence ((xn, yn)) is an extremal point.

The periodic point of the tent map with itinerary (LnR)∞ is a solution of the

equation 2 − 2n+1x = x. So x = 2
2n+1+1

is the smallest point in the periodic orbit.

Therefore, the largest point of the orbit which is less than 1
2

will be xn = 2n

2n+1+1
and

the only point larger than 1
2

is yn = 2n+1

2n+1+1
. We can see that xn and yn are both

increasing with n.

We have established that elements of E(RLn) are extremal. However, it is possible

that some extremal points have been overlooked in the “nooks” between extremal

points. Using Lemma 3.0.1 gives us a very simple technique for determining if there

are any extremal points between elements of E(RLn).

Proposition 3.2.2 Let ((xn, yn)) and ((xn+1, yn+1)) correspond to RLn and RLn+1,

respectively. If ((x, y)) is a parameter such that x < xn and y > yn+1, then ((x, y)) is

not a peak.

Proof Denote by a0 < a1 < · · · < an the orbit for LnR and by b0 < b1 < · · · < bn <

bn+1 the orbit of Ln+1R. It can be seen that Lk+1R < LkR for all k. Therefore, we

get that b0 < a0 < b1 < a1 < . . . bn < an < bn+1. Let Jk = [bk, ak] for k = 0, . . . , n
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Fig. 3.6. In Proposition 3.2.2 we create the Markov graph associated to
two adjacent elements of E(RLn). The shaded interval represents the
truncated interval.

and Im = [am, bm + 1] for m = 0, . . . , n . The map Txn,yn is truncated on the interval

Jn, and thus Jn collapses under Txn,yn . The Markov graph of Txn,yn will be

I1 → I2 → · · · → In → J1 → J2 → · · · → Jn.

Therefore, the function Txn,yn will have only periodic orbits for (RLn)∞, (RLn+1)∞,

and a fixed point. By Lemma 3.0.1, any ((x, y)) such that x < xn and y < yn + 1 can

only have a fixed point. Since a condition for extremality is forcing a non-fixed orbit,

then no such ((x, y)) is extremal.

With the previous Proposition, we have now characterized all extremal points

above the line b = 1− a in T S.

Proposition 3.2.3 The set E(RLn) contains the only extremal points above the line

b = 1− a in T S.

Proof First note that if ((x, y)) is an extremal point and a ≥ x and b ≤ y, then

((a, b)) is not extremal. Therefore Propositions 3.2.1 and 3.2.2 characterize all ex-

tremal points in [2
5
, 1
2
] × [4

5
, 1]. Now the negative diagonal contains all parameters

corresponding to continuous truncated tent maps Ta,1−a, a ∈ [0, 1
2
]. As a decreases,
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I(Ta,1−a) loses periodic orbits in the order prescribed by Sharkovsky’s Theorem. Note

that ((a, 1 − a)) is not extremal so long as a ≥ 2
5
. However, Ta,1−a has no periodic

orbit (other than the fixed point 0) for a < 2
5
. Therefore, there can be no peak, and

hence not extremal point, in the set [0, 2
5
]× [3

5
, 1]. In particular, there is no extremal

point above b = 1− a outside of E(RLn).

Proposition 3.2.4 Let ((xn, yn)) ∈ E(LRn+1), n ≥ 1. Then ((xn, yn)) is extremal.

Proof Consider the orbit with itinerary (LRn+1)∞ There are two cases to consider:

when n is even and when n is odd. Suppose that n is even. Let a1, a2, . . . , an+2 be

the temporal ordering of the orbit (that is T (ai) = ai+1). If a1 is the smallest point

of the orbit, then this temporal ordering corresponds to the spatial ordering

a1 < an+1 < an−1 < · · · < a3 < a2 < a4 < · · · < an < an+2

where the fixed point 2
3

is in the interval [a3, a2]. Let J1 = [a1, an+1], J2 = [a2, a3],

and Jm = [am−1, am+1], m ≤ n + 1 odd, and Jm = [am+1, am−1], m ≤ n + 1 even.

Then the Markov graph of this map will be

J1 J2 Jn

If Txn,yn is the truncated tent map for the parameter ((xn, yn)) corresponding to

(RLRn)∞, n even, then the truncation is on the interval J1. Hence it follows from the

Markov graph that the only periodic orbits of Txn,yn are the fixed point and RLRn.

The proof for n odd is the same, save for the fact that the spatial ordering would

have a2 < a3 and the fixed point would be on the interval [a2, a3], so we relabel our

Jm accordingly.

Proposition 3.2.5 Let ((x, y, )) ∈ E(R2Ln). Then ((x, y)) is extremal.

Proof Same as with elements of E(RLn), here the spatial ordering of a periodic

orbit (R2Ln)∞ is the same as the temporal ordering. Thus the orbit will be a1 <

a2 < · · · < an+1 < an+2, and T (ai) = ai+1 for i < n + 2 and T (an+2) = a1. Let

Ji = [ai, ai+1], i = 0, . . . , n+ 1. Then the Markov graph will be
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J1 J2 Jn

Jn+1

If Txn,yn is the truncated tent map for the peak ((xn, yn)) corresponding to (R2Ln)∞,

then the truncation for Txn,yn occurs on the interval Jn. Thus we can see from the

Markov graph that the only periodic orbits of Txn,yn will be the fixed point and R2Ln.

Proposition 3.2.6 Elements of E(LRn+1) converge to the point ((1
3
, 7
12

)). Addition-

ally, if n is even (odd), then xn >
1
3

(xn <
1
3
) and yn >

7
12

(yn <
7
12

).

Proof A tedious calculation shows that the peak corresponding to (LRn+1)∞ is

given by ((xn, yn)) where

xn =
(−1)n + 2n+1

2n+1 · 3
,

and

yn =
2n+3 · 3− 2n+2 · 3 + (−1)n+2 + 2n+1

2n+3 · 3
.

Taking the limit as n→∞ clearly yields xn → 1
3

and yn → 7
12

.

If ((xn, yn)) ∈ E(LRn+1), then IT (xn) = (LRn+1)∞ and IT (yn) = (RRLRn−1)∞.

Then we have

IT (xn) = (LRn+1)∞ > LR∞ = IT (
1

3
)

and

IT (yn) = (RRLRn−1)∞ > RRLR∞ = IT (
7

12
)

if n is even. The inequalities are reversed if n is odd.

Corollary 3.2.7 Let ((x2k, y2k)) be elements of E(LRn+1) corresponding to orbits

(LR2k−1)∞ and ((x2k+1, y2k+1)) be elements corresponding to orbits (LR2k)∞. Then:

1. x2k > x2(k+1)
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2. y2k > y2(k+1)

3. x2k+1 < x2(k+1)+1

4. y2k+1 < y2(k+1)+1

Proof We observe the itineraries. In case 1, 2k + 1 is odd, so we get

IT (x2k) = LR2k+1LR · · · > LR2k+1RR · · · = IT (x2(k+1)),

which implies x2k > x2(k+1). In case 2, 2k − 1 is odd, so we get

IT (y2k) = RRLR2k−1LR · · · > RRLR2k−1RR · · · = IT (y2(k+1)),

which implies y2k > y2(k+1). In case 3, 2k + 2 is even, so

IT (x2k+1) = LR2k+2LR · · · < LR2k+2RR · · · = IT (x2k+3),

which implies x2k+1 < x2k+3. In case 4, 2k is even, so

IT (y2k+1) = RRLR2kRRL · · · < RRLR2kRRR · · · = IT (y2k+3),

which implies y2k+1 < y2k+3.

Proposition 3.2.8 Let ((x2k, y2k)) ∈ E(LRn+1) corresponding to (LR2k−1)∞. If

((x, y)) ∈ T S such that x < x2(k+1) and y < y2k, then ((x, y)) is not extremal.

Proof We will show that the parameter ((x2(k+1), y2k)) does not generate any periodic

orbits other than LR2k−1 and LR2k+1. Let n = 2k and denote by ui the spatial

ordering of the periodic orbit LRn−1 and wj the spatial ordering of the orbit LRn+1.

So w1 has itinerary (LRn+1)∞, and therefore T (w1) has itinerary (Rn+1L)∞. Observe

that σα(Rn+1L) < (Rn+1L) if α is odd and σα(Rn+1L) > (Rn+1L) if α is even, thus

wk+2 corresponds to itinerary (Rn+1L)∞ (and similarly uk+1 has itinerary (Rn−1L)∞).

Additionally observe that

wk+2 < uk+1 < wk+3. (3.17)
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Fig. 3.7. This pictures describes how two adjacent elements of E(LRn+1)
are arranged. The shaded region is where the truncation occurs.

Now let a1 = uk+1 and ai = T (ai−1) and b1 = wk+2 and bj = T (bj−1). Then (3.17)

can be written as

b1 < a1 < b3. (3.18)

Now define intervals Ji =< ai, bi > and Ki =< bi+2, ai >, where i = 1, . . . , n and

< ·, · > ignores orientation. Then the Markov graph can be written as

K1 → Kn → J1 → J2 → . . . Jn =< an, bn > .

However for parameter (x2(k+1), y2k), the truncated interval is exactly [an, bn]. Thus

the Markov graph does not generate any periodic orbits and the proposition follows.

Proposition 3.2.9 Let ((xn, yn)) and ((xn+1, yn+1)) be elements of E(R2Ln). Then

the set [0, xn)× (yn+1, 1] contains a peak, and hence an extremal point.

Proof The points ((xn, yn)) and ((xn+1, yn+1)) correspond to periodic orbits R2Ln

and R2Ln+1, respectively. Let k = n + 2 Let a1 < · · · < ak+1 be the points of
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the orbit R2Ln+1 and b1 < · · · < bk be the points of the orbit R2Ln. Note that

T (ai) = ai+1 mod k+1 and T (bj) = bj+1 mod k. Using the itineraries, we get the ordering

a1 < a2 < b1 < a3 < b2 < · · · < ak < bk−1 < bk < ak+1.

Let Ji = [ai, bi−1], i = 2, . . . , k, and Kj = [bj, aj+2], j = 1, . . . , k − 2. There are

also two special intervals A = [a1, a2] and B = [bk, ak+1]. Then the Markov graph is

shown in Figure 3.8.

Since there are linked loops in the Markov graph, the map Txn,yn+1 has more

periodic points, and hence the set [0, xn)× (yn+1, 1] contains a peak.

A J2 J3 Jk B

K1 K2 Kk−2

Fig. 3.8. The Markov graph of Txn,yn+1 , where ((xn, yn)) and ((xn+1, yn+1))
are in E(R2Ln).

Proposition 3.2.10 Let ((xn, yn)) and ((xn+1, yn+1)) be elements of E(LRn+1). Then

the set ((xn, yn+1)) contains a peak, and hence an extremal point.

Propositions 3.2.9 and 3.2.10 show that there are other extremal points living in

the “nooks” between certain elements of E(R2Ln) and E(LRn+1). As of this mo-

ment, we do not understand extremal points outside the sets E(RLn), E(LRn+1), and

E(R2Ln). However, we can get a grasp on how many peaks are in these nooks. To

look further, we require a a number theoretic result. The proofs of Theorem 3.2.11

and Corollaries 3.2.12 and 3.2.13 are due to Henryk Iwaniec.
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Theorem 3.2.11 Let k, p, q be positive integers with (p, q) = 1. Let N(x) be the

number of integers m,n with (m,n) = 1 and 0 < m ≤ x such that

pm+ qn = k. (3.19)

Then we have

|N(x)− φ(k)

k

x

q
| ≤ 2ω(k), (3.20)

where φ(k) is the Euler function and ω(k) denotes the number of distinct prime factors

of k.

Proof We relax the condition (m,n) = 1 by using he formula

∑
d|l

µ(d) =

1 if l = 1

0 otherwise

where µ(d) is the Möbius function. We apply this formula for l = (m,n), so d|(m,n)

implies d|m and d|n. Hence

N(x) =
∑

0<m≤x

∑
(m,n)=1
pm+qn=k

1 =
∑
d|k

µ(d)
∑

0<m≤x
2

∑
pm+qn= k

d

1

Note that ∑
d|(m,n)

µ(d) =

1 if (m,n) = 1

0 otherwise

Therefore N(x) becomes

N(x) =
∑

0<m≤x

∑
(m,n)=1
pm+qn=k

∑
d|(m,n)

µ(d) =
∑

0<m≤x

∑
pm+qn=k

∑
d|(m,n)

µ(d).

=
∑
d|k

µ(d)
∑

0<m1≤x
d

∑
pm1+qn1=

k
d

1 =
∑
d|k

µ(d)
∑

0<m≤x
d

∑
pm+qn= k

d

1

The last double sum is just a single sum over 0 < m ≤ x
d

in an arithmetic progression

m ≡ a mod q with some a, specifically a = pk/d where p denotes the multiplicative
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inverse of p modulo q. Observe that the number of integers in an interval of length x

is equal to x+ δ with |δ| ≤ 1. Hence the number of integers in an interval of lengths

y which are ≡ a mod q is y/q + δ with |δ| ≤ 1. By these observations

N(x) =
∑
d|k

µ(d)(
x

dq
+ δ(d))

with |δ(d)| ≤ 1. This completes the proof.

Corollary 3.2.12 For x > q2ω(k)k/φ(k) we have N(x) > 0.

Corollary 3.2.13 Fix (p, q) = 1. If k is sufficiently large, specifically if

φ(k)2−ω(k) > pq, (3.21)

then there exist m,n such that pm+ qn = k where (m,n) = 1.

Proof Apply Corollary 3.2.12 with x = ε+q2ω(k)k/φ(k) so we get integers m,n with

(m,n) = 1, 0 < m ≤ x which satisfy 3.19. We have m > 0 and

pm ≤ px = εp+ pq2ω(k)k/φ(k) < εp+ k

Hence pm < k so n > 0, or pm = k so n = 0. In the last case m = 1, k = p and the

condition 3.21 implies p > pq which doesn’t happen.

Consider again the point ((xn, yn+1)), where ((xn, yn)) and ((xn+1, yn+1)) are ele-

ments of E(R2Ln). By 3.2.9, [0, xn)× (yn+1, 1] contains a peak. To see all the peaks

in this set, we can use a technique similar to the one used in Section 3.1. Specifically,

we will find the map induced by Txn,yn+1 on a special subinterval of [0, 1].

Lemma 3.2.14 Take Jk−1 to be as it is defined in Proposition 3.2.9. Then the map

induced by Txn,yn+1 on the interval Jk−1 is Lorenz-like.
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Proof Following the Markov graph in Figure 3.8, we can see that Jk−1 maps onto

B in an order reversing fashion in two steps. The set B then maps onto A∪ J2 in an

order reversing fashion. Thus Jk−1 maps onto A ∪ J2 in an order preserving fashion

in three steps. Note that A and J2 are adjacent intervals.

Now the interval A can be split into AL and AR, where AL in an order preserving

fashion onto J2 and AR maps onto K1. Thus, following the Markov graph, we can see

that the induced map ρ on Jk−1 will be have two full, order preserving laps. The left

lap will have slope 2k+1, while the right lap will have slope 2k. Moreover, the middle

of Jk−1 will contain a preimage of K1, which eventually maps to the gap (xn, yn+1)

and is annihilated.

Since the induced map ρ is Lorenz-like and has two full laps, then the set of

periodic points for ρ must be the same as those for the angle doubling map z2, namely

twist periodic orbits. Let Q be a periodic orbit with points q1 < q2 < q3 · · · < qm.

This orbit is a twist periodic orbit under the map f if f(qi) = qi+j mod m, for some

fixed j where (j,m) = 1. For Lorenz like maps this also means that j elements of the

orbit have to be to the left and m− j orbits have to be to the right.

Since ρ is an induced map, the periodic points of ρ can be extended to a periodic

orbit of Txn,yn+1 . Thus if Q is a twist periodic orbit of ρ with rotation j
m

, then this

can be extended to a periodic orbit Q∗ which is of period j · k + (m − j) · (k + 1).

Therefore, we get the following.

Theorem 3.2.15 The set [0, xn)× (yn+1, 1] contains peaks corresponding to periodic

points of periods m1 · k + m2 · (k + 1), where (m1,m2) = 1. In particular, there are

peaks corresponding to all but finitely many periods.

Proof The statement about peaks is explained prior to the theorem. Using Corol-

lary 3.2.13, it follows that for sufficiently high period p there exists m1 and m2 such

that m1 ·k+m2 · (k+ 1) = p. In particular, we can find m1 and m2 for all but finitely

many periods.
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0 1
1
2

baTN(b) b+ ε

xTN(x)

Fig. 3.9. As x moves towards b, TN(x) moves toward TN(b) and hence
toward a.

3.3 Characterizing P

Let T denote the full tent map and M the set of parameters ((a, b)) such that

orb(a) ∩ (a, b) = ∅ = orb(b) ∩ (a, b). Let D denote the set of ((a, b)) ∈ M such that

either a ∈ orb(b) or b ∈ orb(a) under T . For ((a, b)) ∈M we will say that a has space

if a 6∈ orb(b) \ {a}. Similarly we will say that b has space if b 6∈ orb(a) \ {b}. This

section is devoted to characterizing the closure of P , the set of peaks. We will prove

that P =M\O where

O = {((a, b)) ∈M \ P | a or b negative periodic, or a = 0}.

We begin by proving that M\O ⊂ D.

Lemma 3.3.1 Suppose ((a, b)) ∈ M. If b 6= 1/2 is not periodic and a 6∈ orb(b),

then for every ε > 0 there exists b′ ∈ (b − ε, b) such that ((a, b′)) ∈ M and either

a ∈ orb(b′) or b′ is an positive periodic point and has space. If a 6= 1/2 is not periodic

and b 6∈ orb(a), then for every ε > 0 there exists a′ ∈ (a, a+ ε) such that ((a′, b)) ∈M

and either b ∈ orb(a′) or a′ is an positive periodic point and has space.

Proof We begin with the proof of the first statement. Without loss of generality,

let 0 < ε < b− 1
2
. We let

Ax = {n |T n(x) ∈ [a, x]},

and consider the set A =
⋃
x∈(b−ε,b)Ax. To see that A is not empty, we note that

every number k
2n

is eventually mapped to 1
2
. Since the diadic rationals are dense,
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there exists k and n with k
2n+1 ∈ (b − ε, b); this implies n ∈ A. Let N = minA and

now consider the set B = {x ∈ (b− ε, b) | fN(x) ∈ [a, x]}. We claim that ((a, b′)) ∈ D,

where b′ = supB.

Note that since ((a, b)) ∈M, then T n(b) < a whenever T n(b) < 1/2 and T n(b) > b

whenever T n(b) > 1/2 for any n. Additionally, since N is minimal, then 1/2 6∈

T n((b− ε, b)) for all 0 < n < N . Consequently TN is monotone on (b− ε, b).

Suppose then that TN(b) < a. Since TN is monotone on (b − ε, b) and TN(x) ∈

[a, x] for some x ∈ (b− ε, b), then TN must be monotonically decreasing on (b− ε, b)

(see Figure 1). Thus b′ = supB = T−N(a). By the same token, if TN(b) > b, then TN

is monotonically increasing on (b − ε, b) (see Figure 2). Because TN(x) → TN(b) as

x→ b and TN(b) > b, it follows that there exists b′ ∈ (b− ε, b) such that TN(b′) = b′.

Moreover, if b′ < x < b, then b′ < TN(x) < TN(b). Since TN is expanding, TN(x) > x

for all x ∈ (b′, b), and thus b′ = supB.

As a result, TN(b′) = a if TN(b) < a, and TN(b′) = b′ if TN(b) > b. In addition,

it was shown that TN was increasing (order preserving) on (b − ε, b) if TN(b) > b.

It then follows that b′ must be an positive periodic point in this case. In both cases

b′ < b, so orb(a)∩ (a, b′) = ∅. Moreover T i(b′) 6∈ [a, b′] for all i < N , by minimality of

N . It is then clear that in both cases that orb(b)∩ (a, b′) = ∅, and thus ((a, b′)) ∈M.

Additionally, b′ must have space since b′ < b and ω(a) ⊂ [0, 1] \ (a, b). In particular,

if b′ is periodic, then it also has space.

The proof of the second statement is analogous. We need only exchange the roles

of a and b, replace (b−ε, b) with (a, a+ε), and consider inf B instead of the supremum.

Lemma 3.3.2 Suppose ((a, b)) ∈M. If b is an positive periodic orbit, has space and

b 6∈ orb(a), then for every ε > 0 there exists b′ ∈ (b, b+ ε) such that ((a, b′)) ∈M and

a ∈ orb(b′). If a is an positive periodic orbit, has space and a 6∈ orb(b), then for every

ε > 0 there exists a′ ∈ (a− ε, a) such that ((a′, b)) ∈M and b ∈ orb(a′).

Proof We begin with the proof of the first statement. Let b be an positive periodic

point of period p. Then there must be at least two elements of orb(b) which are greater
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ba TN(b)b+ ε

xTN(x)

Fig. 3.10. As x moves towards b, TN(x) will “catchup” to x from the left.

than 1/2. Moreover, since (a, b) ∈ M, b is the smallest element of orb(b) which is

greater than 1/2. Let b∗ be the smallest element of orb(b) greater than b. Since b

and b∗ are different points, then I(b) and I(b∗) are distinct itineraries. Let M be the

smallest integer such that IM(b) 6= IM(b∗). Then TM(b) and TM(b∗) are on opposite

sides of 1/2. Moreover, TM is continuous on interval Ib = [b, b∗], so TM(Ib) is also

a closed interval. Since orb(b) ⊂ [0, 1] \ (a, b), then it is clear that (a, b) ⊂ TM(Ib).

Thus there exists a∗ ∈ Ib such that T i(a∗) 6∈ (a, b) for 0 ≤ i < M and TM(a∗) = a.

Since b has space, then there exists a δ ball around b which contains no element

of orb(a). Therefore we may assume that 0 < ε < δ. Now let

Ax = {n |T n(x) ∈ {a, a∗}},

and consider A =
⋃
x∈(b,b+ε)Ax. The existence of a∗ implies that A 6= ∅. Now let

N = minA and b′ = min{x ∈ (b, b+ ε) |TN(x) ∈ {a, a∗}}. We claim that ((a, b′)) ∈ D.

Suppose first that TN(b′) = a. We wish to show that ((a, b′)) ∈ M . Since

TN(b′) = a and ε was chosen so that (b, b+ ε) ∩ ω(a) = ∅, then T i(b′) 6∈ (a, b′) for all

i ≥ N . Since N is minimal, then T i is monotone on (b, b + ε) for i ≤ N . Moreover

if i = kp ≤ N , then T i(b′) > b′. Therefore if T i(b′) ∈ (a, b′) for i < N , then either

a∗ ∈ T i((b, b + ε)) or a ∈ T i((b, b + ε)). By the intermediate value theorem there is

an element c of (b, b + ε) with c < b′ and T i(c) ∈ {a, a∗}, a contradiction. Hence

T i(b′) 6∈ (a, b′) for all i < N and ((a, b′)) ∈ M. The argument for TN(b′) = a∗ is

identical. Additionally, it follows from the definition of b′ that a ∈ orb(b′).
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Now we consider the second statement. If a is an positive periodic orbit with at

least two elements less than 1/2, then the proof of the second statement is analogous

to the first. Simply exchange the roles of a and b, replace (b, b + ε) with (a − ε, a),

and consider a′ = max{x ∈ (b, b + ε) |TN(x) ∈ {b, b∗}}. We will now consider the

case when the orbit of a has one element less than 1/2.

If the orbit of a has only one element less than 1/2, then the itinerary of the orbit

must be (LRp−1)∞, where p− 1 is even. In other words, the orbit of a is Štefan. Now

fix ε > 0 so that orb(b) ∩ (a− ε, a) = ∅. Let

Ax = {n |T n(x) ∈ [x, b]}

and consider A =
⋃
x∈(a−ε,a)Ax. Since T is a piecewise expanding map, then A is

non-empty. Now let N = minA and a′ = sup{x ∈ (a − ε, a) |TN(x) ∈ [x, b]}. We

claim that ((a′, b)) ∈ D.

First note that since T i(x) 6∈ (a, b) for all i < N and x ∈ (a − ε, a), then TN

is monotone on (a − ε, a). Since a is an positive periodic point, TN(x) < x for all

x ∈ (a − ε, a) when p|N . Since A is non-empty, it must be that p - N . Therefore

TN(a) > 1/2 and hence a′ ∈ T−N(b). Since ((a, b)) ∈ M and ε was chosen so that

orb(b) ∩ (a− ε, a) = ∅, then T i(b) 6∈ (a′, b) for all i and T i(a′) 6∈ (a′, b) for all i ≥ N .

Suppose then that T i(a′) ∈ (a′, b), for some i < N . If m is the smallest integer such

that Tm(a′) ∈ (a′, b), then Tm is monotone on (a − ε, a). Therefore, by the same

argument as before, p - m and there must exist some x0 ∈ (a− ε, a) with Tm(x0) = b.

This is a contradiction, so it must be that ((a′, b)) ∈M.

Proposition 3.3.3 M\O ⊂ D.

Proof Let ((a, b)) ∈ M \ O and suppose that a, b 6= 1/2. If ((a, b)) ∈ D, then there

is nothing to prove. Suppose then that ((a, b)) 6∈ D. If neither a nor b is periodic,

then ((a, b)) satisfies the hypothesis of Lemma 3.3.1, and therefore ((a, b)) ∈ D by

Lemmas 3.3.1 and 3.3.2. If either a or b is periodic and has space, then ((a, b)) ∈ D by

Lemma 3.3.2. Suppose then that, say, a is periodic and does not have space. Since the
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orbit of a is finite, b must have space. Thus, if b is not periodic, then ((a, b)) ∈ D by

Lemmas 3.3.1 and 3.3.2. Moreover, if b is periodic, then ((a, b)) satisfies the hypothesis

of Lemma 3.3.2 and hence ((a, b)) ∈ D. The proof is the same if we initially assume b

is periodic.

Now consider the case where a = 1/2 and b 6= 1/2. Since the orbit of a is finite,

then b has space. Hence if b is periodic, then ((a, b)) ∈ D by Lemma 3.3.2 and if b

is not periodic then ((a, b)) ∈ D by Lemmas 3.3.1 and 3.3.2. The situation the same

when b = 1/2 and a 6= 1/2, so the proof will be similar.

Finally consider the case where both a and b are 1/2. Let b′ = 2n−1+1
2n

and note

that T (b′) > b′ and T i(b′) < 1/2 for 2 ≤ i ≤ n − 2. Since T n−1(b′) = 1/2, then

a ∈ orb(b′) and thus ((a, b′)) ∈ D. We may then conclude that ((1/2, 1/2)) ∈ D.

Proposition 3.3.3 tells us that for any ((a, b)) ∈M\O, either ((a, b)) is a dominating

pair or ((a, b)) may be approximated by a dominating pair. We will now show that

D ⊂ P .

Lemma 3.3.4 Suppose ((a, b)) ∈ M. If a, b 6= 1/2, with fm(a) = b, and b is not

periodic, then for every ε > 0 there exists a′ ∈ (a− ε, a+ ε) so that ((a′, Tm(a′))) ∈M

and either ((a′, Tm(a′))) ∈ P or Tm(a′) is periodic and has space. If b, a 6= 1/2, with

Tm(b) = a and a is not periodic, then for every ε > 0 there exists b′ ∈ (b − ε, b + ε)

so that ((Tm(b′), b′)) ∈ M and either ((Tm(b′), b′)) ∈ P or Tm(b′) is periodic and has

space.

Proof We prove the first statement. The proof of the second statement follows

in the same manner, with the orientation of intervals reversed. Fix ε > 0 so that

1/2 6∈ T i((a−ε, a+ε)) for 0 ≤ i ≤ m. We would like to consider only x ∈ (a−ε, a+ε)

such that Tm(x) < Tm(a). The map Tm is monotone on (a− ε, a+ ε), and therefore

we suppose, without loss of generality, that Tm is order reversing on (a − ε, a + ε).

This means for x ∈ (a − ε, a + ε), Tm(x) < Tm(a) if and only if x > a. We now

consider the set

A = {n > m | ∃x∈(a,a+ε)T n(x) ∈ {x, Tm(x)}}.
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To see that A is non-empty, recall that T n((a, a+ ε)) = [0, 1] for n sufficiently large.

Now let N = inf A and a′ = inf{x|x ∈ (a, a + ε), TN(x) ∈ {x, Tm(x)}}. Then either

TN(a′) = a′ or TN(a′) = Tm(a′). Suppose that TN(a′) = a′ and let b′ = Tm(a′). Then

((a′, b′)) ∈ M if and only if T i(a′) 6∈ (a′, b′) for all i. By construction T i(a′) 6∈ (a′, b′)

for i ≤ m. If T i(a′) ∈ (a′, b′) for some n < i < N , then there must exists x ∈ (a, a+ ε)

such that x < a′ with T i(x) ∈ {x, Tm(x)}, which contradicts minimality. Thus ((a′, b′))

is in M in this case.

If TN(a′) = b′, then b′ is periodic. Again ((a′, b′)) ∈ M by similar arguments.

Moreover, b′ has space since Tm was orientation preserving.

Lemma 3.3.5 Let ((a, b)) ∈ M. If a 6= 1/2, Tm(a) = b and b is an positive periodic

orbit, then for every ε > 0 there exists a′ ∈ (a − ε, a + ε) so that ((a′, Tm(a′))) ∈ P.

If b 6= 1/2, Tm(b) = a and a is an positive periodic orbit, then for every ε > 0 there

exists b′ ∈ (b− ε, b+ ε) so that ((Tm(b′), b′)) ∈ P.

Proof We begin with the proof of the first statement. Fix ε > 0 so that 1/2 6∈

T i((a − ε, a + ε)) and so that no element of orb(b) is contained in T i((a − ε, a + ε))

for all 0 ≤ i ≤ m. Let b∗ be smallest element of orb(b) which is larger than b and

let Jb = [b, b∗]. Now if b dominates a, then there is nothing to prove. So we assume

a 6∈ orb(b). This means that if T i(Jb) contains 1/2 for some i, then T i(Jb) must also

contain (a− ε, a+ ε) as well. Thus, there exists p so that (a− ε, a+ ε) ⊂ T p(Jb) and

(a− ε, a+ ε) 6⊂ T i(Jb) for all i < p. In particular, for every x ∈ (a− ε, a+ ε) there is

a unique xb ∈ Jb so that T p(xb) = x. We would like to consider only x ∈ (a− ε, a+ ε)

so that Tm(x) > Tm(a). Since 1/2 6∈ T i((a − ε, a + ε)) for all i ≤ m, then Tm is

monotone on (a − ε, a + ε). Suppose, without loss of generality, that Tm is order

preserving on (a − ε, a + ε). Then for x ∈ (a − ε, a + ε), Tm(x) > Tm(a) if and only

if x ∈ (a, a+ ε). We would like to consider only Tm((a− ε, a+ ε) ∩ Jb. We set

A = {n > m | ∃x∈(a,a+ε)T n(x) ∈ {x, xb}}.

To see that A is non-empty, observe that T n((a, a+ ε)) = [0, 1] for n sufficiently large.

Now let N = minA and a′ = min{x ∈ (a, a + ε)|TN(x) ∈ {x, xb}}. Note that if
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TN(x) = xb, then x is periodic of period N + p. We wish to show that ((a′, b′)) ∈M,

where b′ = Tm(x′). Since a′ and b′ are in the same periodic orbit for both cases,

we need only check that T i(a′) 6∈ (a′, b′) for all i. Now since N is minimal, TN is

monotone on (a, a + ε). Then suppose by way of contradiction that there is some i

with T i(a′) ∈ (a′, b′). Since a′ is periodic, then i < N . Moreover ε was chosen so

that T i((a, a + ε)) ∩ (a − ε, b + ε) = ∅, and so i > m. However this means that T i

is monotone on (a, a + ε). Since T i(a′) ∈ (a′, b′) and T i(a) 6∈ (a, b), then by the IVT

there exists some x with T i(x) ∈ {x, xb}. But this is a contradiction, as N is the

minimal such integer. Thus ((a′, b′)) ∈M.

The proof of the second statement is analogous to that of the first if the orbit of a

has at least two elements less than 1/2. Suppose then that the orbit of a has only one

element less than 1/2. Choose ε so that the orbit of a is not in T i((b − ε, b + ε)) for

0 < i < m and so that 1/2 6∈ T i((b− ε, b+ ε)) for 0 < i ≤ m. This means that Tm is

monotone on (b− ε, b+ ε). Without loss of generality, suppose that Tm is orientation

reversing. We consider (b, b+ ε) so that Tm((b, b+ ε)) ⊂ [0, a].

Now for every x ∈ (b, b + ε) there exists a unique xa ∈ [0, a) so that T (xa) = x.

Let

Ax = {n > m |T n(x) ∈ x, xa}

and consider the set A =
⋃
x∈(b,b+ε)Ax. Let N = minA and b′ = inf{x ∈ (b, b +

ε)|TN(x) ∈ {x, xa}}. We claim that ((a′, b′)) is a peak, where a′ = Tm(b′). By

construction, b′ inorb(a′) and a′ ∈ orb(b′), so we now show ((a′, b′)) ∈M.

By the assumption on ε, T i(b′) 6∈ (a′, b′) for i ≤ m. Now assume by way of

contradiction that ((a′, b′)) is not in M and i > m is the smallest integer such that

T i(b′) ∈ (a′, b′). Then T i must be monotone on (b, b + ε). Since T i((b, b + ε)) must

contain an element of the orbit of a, it follows from the IVT that there exists x ∈

(b, b+ ε) such that T i(x) ∈ x, xa, which contradicts the definition of N . Thus ((a′, b′))

must be in M, and thus a peak.

Before we draw any conclusions, we would now like to direct the attention of

the reader to the structure of M. Recall that ((a, b)) ∈ [0, 1/2] × [1/2, 1] and note
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that ((0, b)) ∈ M if and only if b = 1/2 or b = 1. However, if 0 < a < 1/4, then

a < T (a) < 1/2 and thus ((a, b)) is not in M. We conclude that ((0, 1)) and ((0, 1/2))

are isolated in M and therefore cannot be approximated by peaks. Now, excluding

these two exceptional cases, Proposition 3.3.3 and Lemmas 3.3.4 and 3.3.5 can be

used to show that any ((a, b)) ∈M\P where neither a nor b is an negative periodic,

can be approximated by peaks, so long as neither a nor b equals 1/2. The case when

either a = 1/2 or b = 1/2 is a special case which we will address first.

Lemma 3.3.6 If ((a, b)) ∈M with either a = 1/2 or b = 1/2, then ((a, b)) ∈ P.

Proof Assume ((a, b)) 6= ((1/2, 1/2)). First suppose that a = 1/2 and b ∈ orb(a).

Then it must be that b = 1. The pair ((1/2, 1)) can be approximated by peaks

(( 2n

2n+1+1
, 2n+1

2n+1+1
)).

Suppose then that a = 1/2 and b 6∈ orb(a). Then by Proposition 3.3.3, ((1/2, b)) ∈

D. If ((1/2, b)) ∈ D, this means 1/2 ∈ orb(b) with b 6= 1/2. It then follows from

Lemmas 3.3.4 3.3.5 that ((1/2, b)) ∈ P . Now consider the case when ((1/2, b)) 6∈ D.

Fix ε > 0 so that 1/2 6∈ (b − ε, b + ε). By Lemmas 3.3.1 and 3.3.2 that there exists

((1/2, b′)) so that ((1/2, b′)) ∈ D and b′ ∈ (b − ε, b). By the choice of ε, we know

that b′ 6= 1/2. Therefore by Lemmas 3.3.4 and 3.3.5, ((1/2, b′)) ∈ P and hence

((1/2, b)) ∈ P .

A similar proof will also work for when b = 1/2. If both a and b are 1/2, then we

may let b′ = 2n−1+1
2n

to get a ∈ orb(b′) and proceed as before.

Theorem 3.3.7 M\O ⊂ P.

Proof Let ((a, b)) ∈M\O. The case for when a or b is 1/2 is covered in Lemma 3.3.6.

Therefore we now assume that a, b 6= 1/2 and fix ε > 0 sufficiently small so that

|a − 1/2| > ε and |b − 1/2| > ε. By Proposition 3.3.3 there exists((α, β)) ∈ D such

that |b − β| < ε
2

and |a − α| < ε
2
. It then follows from Lemmas 3.3.4 and 3.3.5 that

there exists peak ((a′, b′)) with |α− a′| < ε
2

and |β − a′| < ε
2
. It then follows from the

triangle inequality that |a− a′| < ε and |b− b′| < ε.
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Theorem 3.3.8 P =M\O.

Proof First note that sinceMC is an open set, thenM is closed. Therefore P ⊂M

since all peaks are contained in M. Also note that we have already shown pairs

((0, 1)) and ((0, 1/2)) are isolated inM, and thus are not in the closure of peaks. Now

consider ((a, b)) ∈ O. Suppose that, for a very small ε, there exists ((a′, b′)) ∈ P such

that |a − a′| < ε and |b − b′| < ε. Without loss of generality suppose that a is an

negative periodic orbit with period p. Then either T p(a′) or T 2p(a′) ∈ (a′, b′), but

this means that ((a′, b′)) 6∈ M, a contradiction. Therefore it must be that O ∩ P = ∅

and thus P ⊂ M \ O. Now if ((a, b)) ∈ M \ O, then by Theorem 3.3.7 ((a, b)) ∈ P .

Therefore P =M\O.
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4. MATCHING

This chapter is devoted to studying a particular subfamily of F , specifically elements

of F which are piecewise affine. The contents of this chapter can be found in its

entirety in [9]. Using an affine conjugacy, we can bring such maps each to a form

where the discontinuity occurs at 0 and the right limit at 0 of the value is 1. The

formula will then be

Tλ,µ,b(x) =

1 + λx+ b if x ≤ 0,

1− µx if x ≥ 0,

(4.1)

where λ, µ > 0; see Figure 4.1. Note that if λ and µ are understood to be fixed, we

will simply write Tb for Tλ,µ,b.

Define yb = max{Tb(0−), Tb(0+)} and xb = Tb(yb). We want to consider our map

on a compact interval instead of the whole real line. The natural candidate for this

interval is [xb, yb]. If this interval is invariant for Tb, then it is the smallest invariant

interval. If this interval is not invariant, then the trajectory of xb escapes to −∞, and

there is no invariant interval. The necessary and sufficient condition for this interval

to be invariant is Tb(xb) ∈ [xb, yb]. Since always Tb(xb) < yb, our condition becomes

Tb(xb) ≥ xb. (4.2)

While we could translate (4.2) to inequalities in λ, µ and b, we would never use them

in that form.

We also want the map to be (eventually) piecewise expanding, so we assume that

λ ≥ 1 and µ > 1. (4.3)

However, if in both (4.2) and (4.3) we have equalities, then the map on the left lap

is the identity. This is a highly degenerate case, so we will assume that

if Tb(xb) = xb then λ > 1. (4.4)
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b<0 b>0

Fig. 4.1. The maps Tλ,µ,b.

Throughout most of the paper we will consider maps Tb = Tλ,µ,b satisfying (4.2),

(4.3) and (4.4). We will denote the family of those maps by T .

The map Tb has a fixed point

z =
1

1 + µ

on the right lap. Note that its position does not depend on b, so we do not need a

subscript b here.

For a piecewise continuous piecewise monotone map f (with the finite number of

laps), the usual definition of its topological entropy is

htop(f) = lim
n→∞

1

n
log cn, (4.5)

where cn is the number of laps of fn. In [10] it is shown that this agrees with the

standard Bowen’s definition of topological entropy.

In 2013, V. Botella-Soler, J. A. Oteo, J. Ros and P. Glendinning [3] observed

numerically that for certain values of λ and µ both Lyapunov exponent and topological
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entropy of Tλ,µ,b remain constant as b varies in some interval of values close to 0,

although the kneading sequence varies. They proved it for λ = 1 and µ equal to 2 or

the golden ratio. Their proofs rely on the algebraic properties of the slopes.

In 2014, H. Bruin, C. Carminati, S. Marmi and A. Profeti [4] connected the

phenomenon of plateaus of the exponent and topological entropy with matching with

index zero, which was defined as the existence of k > 0 such that T kb (0−) = T kb (0+),

and the derivatives from the left and right also match. In their talk they sketched

the proof for λ = 1 and µ = 2 and noted that the plateaus occur for λ = 1 and µ a

quadratic Pisot number.

In this paper we prove existence of plateaus of the topological entropy (we call

this phenomenon entropy locking) for all λ, µ satisfying (4.3) and (4.4). We do not

use algebraic properties of the slopes. Our proof is simple and its central part is based

on the ideas from the Euclidean geometry of the plane. Such connection is expected

if the system itself is defined in geometric terms, but here it comes as a surprise.

Proposition 4.0.1 For a map Tb ∈ T , I(x) < I(y) if and only if x < y.

This Proposition is almost identical to Proposition 2.1.2. The only detail that is

different, is that we can use the strict inequalities on both sides of the equivalence.

This follows from the fact that our maps have iterates that are piecewise expanding,

so different points have different itineraries. Let us state it as a lemma.

Lemma 4.0.2 For a map Tb ∈ T , there is n such that T nb is expanding on each lap.

Proof If λ > 1, then Tb itself is expanding on each lap. Assume that λ = 1. Then,

by (4.2) and (4.4), Tb(xb) − xb > 0, and for each x ∈ [xb, 0) we have Tb(x) − x =

Tb(xb)− xb. This means that at least one of the points T ib (x), 0 ≤ i ≤ n, belongs to

the right lap of Tb, provided n > |xb|/(Tb(xb) − xb). Therefore, for such n the map

T nb is expanding with the constant at least µ on each lap.



58

4.1 Matching

We are interested in the conditions under which T kb (0−) and T kb (0+) coincide for

some k. We start with a simple geometric lemma.

Lemma 4.1.1 Let f be a map conjugated to Tλ,µ,0 ∈ T via an orientation preserving

affine map. Let c be the turning point of f and let x < c < y. Then f(x) = f(y) if

and only if
x− c
c− y

=
µ

λ
. (4.6)

Proof Assume that (4.6) is satisfied. Then

f(x)− f(c) = λ(x− c) = µ(c− y) = f(y)− f(c),

and therefore f(x) = f(y).

Now assume that f(x) = f(y). Then

λ(x− c) = f(x)− f(c) = f(y)− f(c) = µ(c− y),

and (4.6) follows.

Now we can prove the main result of this section. In the proof we will be using

the notation 〈x, y〉 for [x, y] if x < y and [y, x] if y < x.

Theorem 4.1.2 Let Tb = Tλ,µ,b ∈ T , and let A be a finite (possibly empty) sequence

of symbols R and L. Set n = |RLAC|. Assume that K−(Tb) = RLAR . . . and

K+(Tb) = RLAL . . . . Then K(T0) = RLAC if and only if T n+1
b (0−) = T n+1

b (0+).

Proof We use the ideas from the Euclidean geometry. We consider the graph of Tb,

then draw some additional lines, identify similar figures and use proportions.

Thus, consider the graph of Tb. It consists of two branches. From the assumptions

on the kneading sequences it follows that b 6= 0. If b < 0, then the left branch ends

lower than the right branch; if b > 0 then the right branch ends lower than the right
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Fig. 4.2. The proof of Theorem 4.1.2. The proportion of the lengths of
the light gray and dark gray intervals stays λ/µ.

one. Extend the lower branch until it crosses the higher one (see Figure 4.2). This

happens at the point (c, Tb(c)), where 1 + λc+ b = 1− µc, so

c =
−b
µ+ λ

. (4.7)

Now we define a continuous map f of [xb, yb] to itself by

f(x) =

1 + λx+ b if x ≤ c,

1− µx if x ≥ c.

We claim that f i(c) /∈ 〈0, c〉 for i = 1, 2, . . . , n − 1. Indeed, suppose that f i(c) ∈

〈0, c〉 for some i ∈ [1, n−1] and fk(c) /∈ 〈0, c〉 for all k ∈ [1, i−1]. Then fk(c) = T kb (c)

for k ∈ [1, i]. Set U = 〈Tb(0−), Tb(0+)〉, and note that Tb(c) ∈ U .
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Since both K−(Tb) and K+(Tb) begin with RL, the interval U lies to the right of

the fixed point z, while 0 and c are to the left of z. Therefore i ≥ 2.

We have

Tb(0+)− Tb(c) = −µ
(

0− −b
µ+ λ

)
=
−µb
µ+ λ

(4.8)

and

Tb(c)− Tb(0−) = λ

(
−b
µ+ λ

− 0

)
=
−λb
µ+ λ

. (4.9)

Since K+(Tb) and K−(Tb) agree on the first n−1 places, then 0 /∈ T kb (U) for k ≤ i.

Therefore, T ib is affine on U . Thus, we get

|T ib (0+)− T ib (c)| ≥
µ2|b|
µ+ λ

> |c|

and

|T ib (c)− T ib (0−)| ≥ λµ|b|
µ+ λ

> |c|,

where we get the final inequality because µ > 1 and λ ≥ 1. Thus, K+(Tb) and K−(Tb)

disagree on the i− 1st index, which is a contradiction. This proves that f i(c) /∈ 〈0, c〉

for i = 1, 2, . . . , n− 1.

It follows from the assumption on kneading sequences that n ≥ 3, and therefore

f 2(c) /∈ 〈0, c〉, so f 2(c) < c. This implies that the interval [f 2(c), f(c)] is invariant

under f . Since f has the same slopes as T0, then f |[f2(c),f(c)] is conjugate to T0

via an orientation preserving affine map. Moreover, it follows from our claim that

f i(c) = T ib (c) for all i ∈ [0, n]. Because of the assumptions on kneading sequences,

none of the intervals T ib (U), 0 < i < n − 1, contains 0. Therefore the map T n−1b is

affine on U .

From this and from the formulas (4.8) and (4.9) it follows that

T nb (0+)− T nb (c)

T nb (c)− T nb (0−)
=
µ

λ
. (4.10)

Assume that K(T0) = RLAC. Then fn(c) = c, so T nb (c) = c. We have |T nb (0−)−

c| > |c| and |T nb (0+) − c| > |c|, and thus, T nb (0−) and T nb (0+) are not contained in

the interval 〈0, c〉. Hence, T n+1
b (0+) = f(T nb (0+)) and T n+1

b (0−) = f(T nb (0−)). The
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assumption x < c < y of Lemma 4.1.1 for x = T nb (0+) and y = T nb (0−) is satisfied by

the assumption on the kneading sequences of Tb. Thus, from (3.17) and Lemma 4.1.1

we get T n+1
b (0−) = T n+1

b (0+).

Assume now that T n+1
b (0−) = T n+1

b (0+). Then

T n+1
b (0−) ≤ min(Tb(0−), Tb(0+)) < Tb(c),

so again T nb (0−) and T nb (0+) are not contained in the interval 〈0, c〉. By (3.17) and

Lemma 4.1.1 we get fn(c) = c. Since for i < n the point f i(c) is between T ib (0−) and

T ib (0+) and both K−(Tb) and K+(Tb) begin with RLA, and moreover, f i(c) /∈ 〈0, c〉

for i = 1, 2, . . . , n− 1, we see that the kneading sequence of f also begins with RLA.

Since fn(c) = c, the next symbol is C. The maps T0 and f are conjugate, so their

have the same kneading sequences. Therefore, K(T0) = RLAC.

Remark 4.1.3 Suppose that the assumptions of Theorem 4.1.2 are satisfied. If b < 0

then Tb(0−) < Tb(0+), so K−(Tb) < K+(Tb). This implies that A is even. Similarly,

if b > 0 then A is odd.

We can prove a kind of converse to the above remark.

Proposition 4.1.4 Fix parameters λ ≥ 1, µ > 1, such that K(T0) = RLAC. Then if

if A is even (respectively, odd), there exists ε > 0 such that if b ∈ (−ε, 0) (respectively,

b ∈ (0, ε)) then the assumptions of Theorem 4.1.2 are satisfied, and thus, T n+1
b (0−) =

T n+1
b (0+).

Proof If |b| is sufficiently small, then both K−(Tb) and K+(Tb) begin with RLA.

Thus, we have to show that the next symbol is R for K−(Tb) and L for K+(Tb). By

making the construction from the proof of Theorem 4.1.2, we see that T n(0−) and

T n(0+) are on the opposite sides of c. Moreover, both |T n(0−)− c| and |T n(0+)− c|

are larger than |c|, so the nth terms of K−(Tb) and K+(Tb) are distinct. Taking into

account the order in the set of itineraries (as in Remark 4.1.3), we get the assertion

of the proposition.
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4.2 Topological entropy

Entropy locking refers to intervals of the parameter b where topological entropy

of Tb remains constant. It turns out that the intervals of parameter b satisfying

Theorem 4.1.2 are intervals with entropy locking.

We need some estimates of the topological entropy for piecewise continuous piece-

wise monotone interval maps (when using this term, we always assume that the

number of pieces is finite). They are known, but they are difficult to find in the

literature. Since the proofs are simple, we provide them here.

For a piecewise continuous piecewise monotone interval map f we will say that α is

an anti-Lipschitz constant if for every x, y from the same lap we have |f(x)− f(y)| ≥

α|x−y|. In particular, a map with an anti-Lipschitz constant larger than 1 is piecewise

expanding.

An s-horseshoe for f is an interval J and a partition D = {J1, . . . , Js} of J into s

subintervals such that J ⊂ f(Ji) and f is continuous and monotone on each Ji. The

following theorem was proved in [10].

Theorem 4.2.1 If f is a piecewise continuous piecewise monotone interval map,

then for every ε > 0 there exist n and s, such that fn has an s-horseshoe and

(1/n) log s > htop(f)− ε.

Now we can prove the promised estimates.

Theorem 4.2.2 If f is a piecewise continuous piecewise monotone interval map with

an anti-Lipschitz constant α and a Lipschitz constant β, then logα ≤ htop(f) ≤ log β.

Proof We use formula (4.5). If the interval on which f is acting has length γ, then

the length of each lap of fn is not larger than γ/αn. Therefore cn ≥ αn, and thus,

htop(f) ≥ logα.

Take ε > 0. By Theorem 4.2.1, there exist n and s, such that fn has an s-horseshoe

and (1/n) log s > htop(f)− ε. Let an interval J and a partition D = {J1, . . . , Js} be

this horseshoe. Then the length of each Ji is at least the length of J divided by βn.
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Therefore, s ≤ βn, and hence, log β > htop(f)− ε. Since ε > 0 was arbitrary, we get

htop(f) ≤ log β.

From this theorem and Lemma 4.0.2, we get immediately the following corollary.

Corollary 4.2.3 All maps from T have strictly positive topological entropy.

Any map Tλ,λ,b ∈ T has both anti-Lipschitz and Lipschitz constants equal to λ.

Therefore we get immediately another corollary to Theorem 4.2.2.

Corollary 4.2.4 If Tλ,λ,b ∈ T , then its topological entropy is log λ.

Now we are ready to prove the main result of this section. We will refer to

piecewise continuous piecewise affine interval maps with the absolute value of the

derivative constant, as maps of constant slope. In T , these are maps of the form

Tλ,λ,b.

We will be using often a certain long assumption, so it makes sense to give it a

short name.

Definition 4.2.5 We will say that Tb satisfies the kneading assumption if Tb =

Tλ,µ,b ∈ T and there exists a finite (possibly empty) sequence A of symbols R and

L, such that K(T0) = RLAC, K−(Tb) = RLAR . . . , and K+(Tb) = RLAL . . . .

Theorem 4.2.6 Assume that Tb satisfies the kneading assumption and is topologi-

cally conjugate to a map of constant slope. Then htop(Tb) = htop(T0).

Proof By the assumption, Tλ,µ,b is conjugate to Tα,α,d for some α and d. By Corol-

lary 4.2.4,

logα = htop(Tα,α,d) = htop(Tλ,µ,b). (4.11)

Set n = |RLAC|. From Theorem 4.1.2 it follows that T n+1
λ,µ,b(0+) = T n+1

λ,µ,b(0−). Hence,

T n+1
α,α,d(0+) = T n+1

α,α,d(0−). Since the kneading sequences are preserved by a conjugacy,

the left and right kneading sequences of Tα,α,d are
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K−(Tα,α,d) = RLAR . . . and K+(Tα,α,d) = RLAL . . . , respectively. Thus, we can

use Theorem 4.1.2 again, and we get K(Tα,α,0) = RLAC. For unimodal maps the

topological entropy is determined by the kneading sequence, and therefore

htop(Tλ,µ,0) = htop(Tα,α,0). (4.12)

By Corollary 4.2.4,

htop(Tα,α,0) = logα. (4.13)

From (4.11), (4.12) and (4.13) we get htop(Tλ,µ,0) = htop(Tλ,µ,b).

4.3 Transitivity

While Theorem 4.2.6 is quite strong, it contains an assumption that may be not

easy to verify in concrete situations. Namely, we assume that Tb is topologically

conjugate to a map of constant slope. In this section we will try to replace this

assumption by weaker ones, which are easier to verify.

The first idea is to assume that Tb is topologically transitive. The following theo-

rem can be found for instance in [11].

Theorem 4.3.1 If f is a piecewise continuous piecewise monotone topologically tran-

sitive interval map with topological entropy log β > 0, then it is topologically conjugate

to a map of constant slope β.

In view of this theorem and Corollary 4.2.3, we get the following corollary to

Theorem 4.2.6.

Corollary 4.3.2 Assume that Tb satisfies the kneading assumption and is topologi-

cally transitive. Then htop(Tb) = htop(T0).

We will further improve this corollary, by replacing the assumption that Tb is

topologically transitive by another assumption, which is maybe a little weaker, but

easier to check. This assumption will be

Tλ,µ,0(x0) < z. (4.14)
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It can be easily written as an inequality on parameters

λ+ µ < λµ2. (4.15)

It is known that it is equivalent to Tλ,µ,0 being totally transitive; however, we will not

use this fact. We will say that Tb = Tλ,µ,b satisfies (4.14) if T0 = Tλ,µ,0 satisfies it.

Definition 4.3.3 The set TKAT is the set of all maps Tb satisfying both the kneading

assumption and (4.14).

Lemma 4.3.4 Assume that Tb ∈ TKAT. Then

Tb(1− µ) ≤ 1. (4.16)

Proof If b ≤ 0, then yb = 1, so (4.16) holds. Assume that b > 0. If Tb(1 − µ) > 1,

then K+(Tb) = RLRL . . . . By the kneading assumption, K−(Tb) = RLR . . . . We

have Tb(xb) = 1 + λ(1 − µ − µb) + b and T0(x0) = 1 + λ(1 − µ). Since b < λµb, we

get Tb(xb) < T0(x0). By this and (4.14), Tb(xb) < z, so the next term in K−(Tb) is

R. Thus, by the kneading assumption, K(T0) = RLRC. Then 1− µ(1 + λ− λµ) =

T 4
0 (0) = 0, so λ = 1/µ < 1, a contradiction. Thus, (4.16) holds.

Lemma 4.3.5 Assume that Tb ∈ TKAT. Let U be an interval containing z. Then

∞⋃
i=0

T ib (U) = [xb, yb].

Proof Suppose first that b ≤ 0. Then [xb, yb] = [1 − µ, 1]. Since the interval

U contains z, then all sets T ib (U) must contain z as well. Moreover, µ > 1, so

the length of T ib (U) is expanding exponentially with i until we reach an m such

that Tmb (U) contains [z, 1]. Therefore Tb([z, 1]) = [1 − µ, z] ⊂ Tm+1
b (U). Hence,

Tmb (U) ∪ Tm+1
b (U) = [xb, yb].

Now assume that b > 0. By Lemma 4.3.4, (4.16) holds. As in the case b ≤ 0,

we get Tmb (U) ∪ Tm+1
b (U) ⊃ [1 − µ, 1] for some m. Since Tb(1 − µ) ≤ 1, the interval

Tb([1−µ, 0]) contains [1, yb]. Since Tb([1, yb]) = [xb, 1−µ], we get Tmb (U)∪Tm+1
b (U)∪

Tm+2
b (U) ∪ Tm+3

b (U) = [xb, yb].
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Theorem 4.3.6 Assume that Tb ∈ TKAT. Then Tb is topologically transitive.

Proof Let U be an open subinterval of [xb, yb]. We will show that V =
⋃∞
i=0 T

i
b (U)

is dense in [xb, yb]. Since µ > 1, the length of T nb (U) increases exponentially with

n. Thus, there exists k such that 0 ∈ T kb (U). Therefore, V contains an interval

containing 0. Let W be the largest such interval contained in V . We can write

W = WL ∪WR, where WL = {x ∈ W : x ≤ 0} and WR = {x ∈ W : x ≥ 0}. Since

V is invariant and µ > 1, then, by the same reason as for U , it must happen that 0

belongs to the interior of Tmb (WL) and T nb (WR) for some positive integers m and n.

If m and n are minimal such integers, then Tmb (WL) and T nb (WR) are intervals, and

therefore they are contained in W .

Suppose that V is not dense. We claim that then m ≥ 2 and n ≥ 2. In view of

Lemma 4.3.5, in order to prove the claim, it is enough to show that if m or n is 1,

then z ∈ W .

Assume first that b < 0. If m = 1, then Tb(WL) ⊂ W and in particular Tb(0−) ∈

W . Therefore the interval [0, Tb(0−)] is contained in W . We claim that Tb(0−) ≥ z.

Indeed, if Tb(0−) < z, then K−(Tb) starts with RR, which is impossible by the

kneading assumption, and this proves the claim. Therefore, z ∈ [0, Tb(0−)]. If n = 1,

then Tb(WR) ⊂ W , and in particular Tb(0+) = 1 ∈ W . Thus, z ∈ [0, 1] ⊂ W .

Now assume that b > 0. If m = 1, then Tb(WL) ⊂ W and in particular Tb(0−) =

1 + b ∈ W . Thus, z ∈ [0, 1 + b] ⊂ W . If n=1, then Tb(WR) ⊂ W and it follows that

z ∈ [0, 1] ⊂ W . This completes the proof of the claim.

By our choice of m and n, Tmb is affine on WL and T nb is affine on WR. Additionally,

since Tb(0−) > 0, Tb(0+) > 0 and m,n ≥ 2, we have I(x) = LR . . . for every x ∈ WL

and I(x) = RR . . . for every x ∈ WR. In such a way, we get lower bounds on the

lengths of Tmb (WL) and T nb (WR):

λµ|WL| ≤ |Tmb (WL)|,

µ2|WR| ≤ |T nb (WR)|.
(4.17)
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We also know that Tmb (WL) ⊂ W and T nb (WR) ⊂ W , so from (4.17) we get

λµ|WL| ≤ |W |,

µ2|WR| ≤ |W |.
(4.18)

We add the first inequality in (4.18) multiplied by by µ to the second one multiplied

by λ, and taking into account that |WL|+ |WR| = |W |, we get

λµ2|W | ≤ (λ+ µ)|W |,

which contradicts (4.15) (which, as we noticed, is equivalent to (4.14)). This completes

the proof.

Now from Corollary 4.3.2 and Theorem 4.3.5 we get an improved corollary.

Corollary 4.3.7 Assume that Tb ∈ TKAT. Then htop(T0) = htop(Tb).

4.4 Beyond transitivity

Theorem 4.3.6 gives sufficient conditions for transitivity of Tb = Tλ,µ,b. The as-

sumption of this theorem is that Tb ∈ TKAT, that is, that Tb satisfies the kneading

assumption (Definition 4.2.5) and satisfies (4.14). Two simple examples will show

that both assumptions are essential.

First, we establish a necessary condition for transitivity.

Lemma 4.4.1 Suppose Tb ∈ T . If z /∈ Tb([xb, 0]), then Tb is not transitive.

Proof Let ε be sufficiently small so that (z− ε, z+ ε)∩Tb([xb, 0]) = ∅. Since µ > 1,

z is repelling, and therefore T−1b ((z − ε, z + ε)) ⊂ (z − ε, z + ε). Hence, if V is an

open interval such that (z − ε, z + ε) ∩ V = ∅, then T nb (V ) ∩ (z − ε, z + ε) = ∅ for all

n. Thus, Tb is not transitive.

Example 4.4.2 Set λ = 1 and find µ such that the kneading sequence of T0 = Tλ,µ,0 is

RLRRRC. Elementary computations show that µ is the real solution of the equation
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µ3 − µ2 − 1 = 0 (µ ≈ 1.46557). We can deduce from the kneading sequence that

T0(x0) > z, so T0 does not satisfy (4.14). Moreover, Tb(xb) > z for sufficiently small

b. It follows from Proposition 4.1.4 that Tb satisfies the kneading assumption for

sufficiently small b > 0. Hence, for b > 0 sufficiently small, Tb satisfies the kneading

assumption, but not (4.14), and is not transitive.

Example 4.4.3 Set λ = 1 and µ = 2. Then K(T0) = RLC and T0(x0) < z.

Therefore, Tb satisfies (4.14) for any b. However, for b = −3
4

we have Tb(0−) < z,

so by Lemma 4.4.1, Tb is not transitive. In particular, it cannot satisfy the kneading

assumption.

We will show that also the topological entropies of T0 and Tb are different. Both

maps are Markov. For T0, the Markov partition consists of two intervals, and the

topological entropy is the logarithm of the positive solution of the equation x2−x−1 =

0, that is, the logarithm of the golden ratio φ = 1+
√
5

2
≈ 1.618.

For the map Tb, we have T 6
b (0+) = 0 and T 3

b (0−) = 0. A Markov partition P of

[xb, yb] = [−1, 1] is given by the orbits of 0+ and 0− and consists of 7 intervals. One

can find easily its entropy using the rome method (see [12] or [13]). It is equal to the

logarithm of the positive solution of the equation x6 − x3 − x2 − x − 1 = 0, that is,

approximately log 1.3803. Hence, htop(T0) 6= htop(Tb) for b = −3/4. A reader who

does not believe in approximate values can check that

x6 − x3 − x2 − x− 1 = (x4 + x3 + 2x2 + 2x+ 3)(x2 − x− 1) + (4x+ 2),

so φ6 − φ3 − φ2 − φ− 1 = 4φ+ 2 > 0.

Remember that the reason we started to consider transitivity of Tb was that we do

not know any other simple way of verifying that Tb is conjugate to a map of constant

slope. However, the maps T0 ∈ T are known to be conjugate to maps of constant

slope (this basically follows from [14] and [8], although it is not stated explicitly

there). Thus, we can state the following conjecture.

Conjecuture 4.4.4 Every Tb ∈ T is topologically conjugate to a map of constant

slope.
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Fig. 4.3. The map from Example 4.4.5.

If this conjecture is true, then by Theorem 4.2.6 every map Tλ,µ,b ∈ T satisfying

the kneading assumption would have the same topological entropy as Tλ,µ,0.

To illustrate the problems which one may encounter when trying to prove this

conjecture, we present another example. In it λ < 1, so the map does not belong to

T , and we believe that such example does not exist in T . However, we do not know

any compelling reasons for that.

Example 4.4.5 Set λ = 0.21, µ = 5. For b = 0 the orbit of the turning point is the

Štefan periodic orbit of period 5 (and thus, the entropy of T0 is the logarithm of the

positive zero of the polynomial x5 − 2x3 − 1, approximately log 1.5129). However, for

b = −0.7 the map Tb is not transitive (see Figure 4.3).
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The union J of the intervals marked by thick lines in Figure 4.3 on the graph

is invariant. It consists of the intervals J1 = [−4,−2.325], J2 = [−0.54, 0], J3 =

[0, 0.067], J4 = [0.1866, 0.3], J5 = [0.665, 1]. We have

Tb(J1) ⊂ J2, Tb(J2) = J4, Tb(J3) = J5, Tb(J4) ⊂ J2 ∪ J3, Tb(J5) = J1. (4.19)

The entropy restricted to J is not larger than the entropy given by the Markov graph

that we obtain by replacing in (4.19) inclusions by equalities. That is, it is not larger

than the logarithm of the positive zero of the polynomial x5 − x3 − 1, approximately

log 1.2365.

The complement of J (call it G) has three components,

G1 = (−2.325,−0.54), G2 = (0.067, 0.1866), G3 = (0.3, 0.665).

We have

Tb(G1) ⊃ G2, Tb(G2) ⊃ G2 ∪G3, Tb(G3) ⊃ G1 (4.20)

and the images of Gi do not intersect any other components of G than stated in (4.20).

Therefore G contains an invariant Cantor set C and the entropy of Tb restricted to C

is equal to the logarithm of the positive zero of the polynomial x3−x2−1, approximately

log 1.4656.

Thus, the semiconjugacy with the map of constant slope and the same entropy

maps any component of the complement of C (including the components of J) to a

point. In particular, the factor map has different kneading sequences than the original

one.

Observe that while Tb is not piecewise expanding, one can check using (4.19)

and (4.20) that T nb is piecewise expanding for n ≥ 195.
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into itself,” Ukrain. Mat. Ž., vol. 16, pp. 61–71, 1964.
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