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ABSTRACT

James Michael Carter Ph.D., Purdue University, May 2013. Commutants of Com-
position Operators on the Hardy Space of the Disk. Major Professor: Carl C.
Cowen.

The main part of this thesis, Chapter 4, contains results on the commutant of a

semigroup of operators defined on the Hardy Space of the disk where the operators

have hyperbolic non-automorphic symbols. In particular, we show in Chapter 5 that

the commutant of the semigroup of operators is in one-to-one correspondence with a

Banach albegra of bounded analytic functions on an open half-plane. This algebra of

functions is a subalgebra of the standard Newton space.

Chapter 4 extends previous work done on maps with interior fixed point to the

case of the symbol of the composition operator having a boundary fixed point.
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1. INTRODUCTION

In this section, we define key terms and provide some background for the mo-

tivation of the main result of this work, Theorem 3.0.7, beginning with the case of

a compact operator with distinct eigenvalues. Following this is the case of some

non-compact operators.

1.1 Background

The basic definition necessary is that of a composition operator

Definition 1.1.1 For ϕ a self map of the unit disk, D = {z ∈ C : |z| < 1}, the

composition operator Cϕ is defined for each point f in H, a Hilbert space of analytic

functions, by

(Cϕf)(z) = f(ϕ(z))

for each z ∈ D and f ∈ H.

The Hilbert space which the functions belong to will be one of the class of weighted

Hilbert spaces H2(β) = H2(D, β) where D is the unit disk and β = β(n) is a sequence

of weights in the following sense. Note that the inner product on the weighted Hilbert

spaces H2(β) is given by

〈f, g〉 =
∞∑
n=0

anbnβ(n)2

for functions f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
k=0 bkz

k in H2(β). The Hilbert space of

principal interest for this work is the Hardy-Hilbert space of the disk, denoted by H2

or H2(D) when necessary with β(n) ≡ 1. Every function in H2 satisfies the inequality

‖f‖2 = sup
0<r<1

∫
∂D
|f(reiθ)|2 dθ <∞
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where dθ is normalized arc-length measure on the boundary of the disk. It is not

difficult to show that an equivalent definition of H2(β) is given by

H2 = {f(z) =
∞∑
n=0

anz
n :

∞∑
n=0

|an|2β(n)2 <∞}

Therefore, an equivalent formulation of the norm is given by ‖f‖H2 =
∑
|an|2 for

f(z) =
∑
anz

n.

One class of functions in the Hardy Hilbert space that is of particular interest

is the set of reproducing kernel functions, denoted by Kα for any α ∈ D, which are

defined by

Kα(z) =
1

1− αz
for z ∈ D

It is easy to show that the kernel functions satisfy f(α) = 〈f,Kα〉 and

‖Kα‖2 =
1

1− |α|2

Another key definition is

Definition 1.1.2 For any set of operators A, the set of operators B which satisfy

BA = AB for every A ∈ A is called the commutant of A, and denoted by A′.

It is worth noting that the class of self-maps ϕ : D → D under investigation all

induce bounded composition operators [1] and we will only be interested in bounded

operators that satisfy any conditions, including membership in the commutant. Also,

we will use the convention that the normalized monomials will constitute the standard

basis for H2, that is {χk(z) = zk : k = 0, 1, 2, . . . } has dense span in H2.

Lemma 1.1.3 For any bounded operator A and any complex number ω, the commu-

tant of A+ ωI is equal to the commutant of A; that is {A+ ωI}′ = {A}′.

Proof Suppose that AB = BA, then B(A + ωI) = BA + ωB = AB + ωB =

(A+ ωI)B and B commutes with A+ ωI.

It will be useful to identify certain points of the disk determined by each map for

future reference. The first of these are the fixed points of the map.
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Definition 1.1.4 A point b of the closed disk is a fixed point for ϕ if lim
r→1−

ϕ(rb) = b,

provided this limit exists.

Since the functions in H2 are defined on the open disk, we extend the definition to

the boundary by using radial limits as in the above definition: for z ∈ ∂D, f(z) =

lim
r→1−

f(reiθ). Temporarily denote the limit function by f ∗(eiθ) = lim
r→1−

f(reiθ). It

should be observed that this limit exists almost everywhere on the unit circle, f ∗ ∈

L2(∂D) and the Fourier series for f ∗ is
∑
ane

inθ which gives that ‖f ∗‖L2(∂D) =

‖f‖H2(D). These facts can be found in [2, Theorem 2.2]

The first results give sufficient conditions for compactness.

Lemma 1.1.5 If ‖ϕ‖∞ < 1 then Cϕ is compact.

Proof This follows from [2, Proposition 3.11].

Theorem 1.1.6 If ϕ(D) is contained in a polygon inscribed in the unit circle, then

Cϕ is compact.

Proof See [3].

Theorem 1.1.7 If lim
r→1−

ϕ(rs) = η where |η| = |s| = 1 and lim sup
r→1−

|ϕ′(rs)| <∞, then

Cϕ is not compact.

Proof This is Corollary 3.14 in [2].
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2. GENERAL RESULTS

In this section we present some results that apply to both the compact and non-

compact operators.

Theorem 2.0.8 The commutant of any set of operators forms an algebra.

Proof Routine calculation and implementing the definition of commutant provide

the proof.

Suppose that S is a set of operators. This result provides a “minimal” structure for

the commutant of S in that the algebra generated by the operators in S is guaranteed

to be a subset of the commutant of S, though this may be a proper subset. For

example, the commutant of the identity operator is all operators in the space, but

the algebra generated by the identity operator is only the identity operator itself.

Lemma 2.0.9 If AB = BA, then A∗B∗ = B∗A∗ as well.

Proof This follows immediately from the fact that (AB)∗ = B∗A∗.

Lemma 2.0.10 [4] If S is a convex subset of B (H), then the weak operator topology

closure of S equals the strong operator topology closure of S.

In light of Lemma 2.0.10, the following can be stated unambiguously for either

the strong operator topology or the weak operator topology.

Lemma 2.0.11 If S is a set of operators, then the norm closure of S is contained

in the strong operator closure of S, which is contained in the weak operator closure

of S.

Together, these imply that {A}′ is closed in any of these three topologies. Therefore,

it follows from these considerations and Theorem 2.0.8 that the next result is true.
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Proposition 2.0.12 The commutant of any set of operators is a closed subalgebra

of B(H) in the weak operator topology, the strong operator topology, and the norm

topology.

Proposition 2.0.13 The closure, in the weak operator topology, of the algebra gen-

erated by Cϕ is contained in the commutant of Cϕ.

Proof Let B ∈ A(Cϕ)
w

and f, g be in H2. Then B = w-lim Bn where Bn ∈ A(Cϕ).

So

〈BCϕf, g〉 = lim
n→∞

〈Bn(Cϕf), g〉

= lim
n→∞

〈Cϕ(Bnf), g〉

= lim
n→∞

〈
Bnf, C

∗
ϕg
〉

=
〈
Bf,C∗ϕg

〉
= 〈CϕBf, g〉

Thus

BCϕ = w- lim BnCϕ = w- limCϕBn = CϕB

Proposition 2.0.14 If B ∈ {A}′, then for every v ∈ ker(A−λvI), Bv ∈ ker(A−λvI).

Proof Consider A(Bv) = (BA)v = B(Av) = B(λvv) = (Bλv)v = λv(Bv).

2.1 The pseudo-iteration semigroup

The pseudo-iteration semigroup is of interest for this work since the symbols of

the operators under consideration in Chapter 4 form a semigroup and this provides

a characterization of composition operators in the commutant. In order to define the

pseudo-iteration semigroup of an analytic function, first we state two theorems which

provide a way to express a specific relationship between certain types of functions.

Before stating the prerequisite theorems, it will be useful to distinguish a particular

fixed point for the symbols of the operators.
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Theorem 2.1.1 (Denjoy-Wolff) Let f : D→ D be an analytic non-automorphism.

Then there is a unique point a in the closure of D such that the iterates of f tend to

a uniformly on compact subsets of D. The point a in the previous sentence is a fixed

point of f and it is the unique fixed point of f for which |f ′(a)| ≤ 1

Definition 2.1.2 The unique point a such that the iterates of f converge to a uni-

formly on compact subsets of D is called the Denjoy-Wolff point of f .

In order to provide some categorization of maps based on the Denjoy-Wolff point,

it is necessary to define the concept of a fundamental set.

Definition 2.1.3 If f is a self map of D, then V is a fundamental set for f on D if

V is an open, connected, simply connected subset of D such that f(V ) ⊂ V and for

every compact set K ⊂ D, there is a positive integer n such that fn(K) ⊂ V where

fn is the nth iterate of f .

A fundamental set is large enough to capture the information about the iterates

of f on all of D.

An additional, though more theoretical than practical, tool is that of an interpo-

lating sequence.

Definition 2.1.4 An interpolating sequence is a sequence of points {zj} in the unit

disk such that for any bounded sequence of complex numbers {cj}, there is a bounded

analytic function f on D with f(zj) = cj.

Theorem 2.1.5 (The Model for Iteration) Let ϕ be an analytic mapping of D

into D with Denjoy-Wolff point a that is non-constant and not an automorphism. If

ϕ′(a) 6= 0, then there is a fundamental set V for ϕ on D, a domain Ω, an auto-

morphsim Φ mapping Ω onto Ω and a mapping σ of D into Ω such that ϕ and σ are

univalent on V, σ(V ) is a fundamental set for ϕ on Ω and

Φ ◦ σ = σ ◦ Φ

Moreover, Φ is unique up to conjugation by automorphism of Ω onto Ω, and Φ and

σ depend only on ϕ, not on the particular fundamental set V .



7

This theorem appears in [2, Theorem 2.53] and provides four categories of maps ϕ

based on the location of the Denjoy-Wolff point and the value of the derivative there:

1. |a| < 1 and ϕ′(a) 6= 0 (plane/dilation)

2. |a| = 1 and ϕ′(a) < 1 (half-plane/dilation)

3. |a| = 1, ϕ′(a) = 1, and Ω = C (plane/translation)

4. |a| = 1, ϕ′(a) = 1, and Ω = {z : Im (z) > 0} (half-plane/translation)

The third and fourth cases above are quite similar and not easily distinguished,

however, for an operator whose symbol has the property that its iteration sequences

are also interpolating, the two cases can be distinguished. In the case that the

iteration sequences are also interpolating, then the composition operator is in the

half-plane translation case, while if the iteration sequences are not interpolating, the

composition operator is in the plane translation case.

We now define the pseudo-iteration semigroup of an analytic function.

If f ′(a) 6= 0, let Ω, V, σ,Φ be as in Theorem 2.1.5. Then an analytic function g

that maps D into D is in the pseudo-iteration semigroup of f if there exists a linear

fractional transformation ψ that commutes with Φ such that σ(g(z)) = ψ(σ(z)).

In 2002, Tami Worner [5] characterized a portion of the commutant in the plane

dilation case of the model. Specifically, if ϕ is in the pseudo-iteration semigroup of

f(z) = λz where 0 < |λ| < 1, then the commutant of Cϕ is the strong operator closure

of the polynomials in Cϕ. The maps ϕ in this case are all compact by Lemma 1.1.5

with fixed point at 0. Another result [5, Theorem 9] by Worner provides examples

where the commutant of a composition operator does not coincide with the algebra

generated by the composition operator and the Toeplitz operators that commute with

the composition operator.
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3. COMPACT OPERATORS

Consider the function ϕs(z) = sz where 0 < |s| < 1. This map has fixed point

a = 0 and the derivative has modulus |s| at the fixed point. In light of the model

Theorem 2.1.5, the map ϕs is in the plane/dilation case, the associated composition

operator Cϕs has eigenvalues {sn}n≥0 [2, Theorem 7.30], and is compact. Also, all

eigenvalues have multiplicity 1, therefore all eigenspaces have dimension 1. Therefore,

Cϕs has χn(x) = zn as an eigenvector for n = 0, 1, . . . . The commutant of Cϕs is

therefore the set of operators A that have all χn, n = 1, 2, . . . as eigenvectors. Since

this is a spanning set of eigenvectors, this completely determines such operators.

If ψ is any automorphism of D and f ∈ H2, then f ◦ψ ∈ H2 as well. This property

is referred to as automorphism invariance. Using this, it is not difficult to see that

if ψ is an automorphism of D, then for ϕ1 = ψ−1 ◦ ϕ ◦ ψ, the operators Cϕ1 and

Cϕ are similar. Since similar operators have the same spectra and and their symbols

have fixed point sets that are in one-to-one correspondence, we can assume, without

loss of generality that if an analytic function from D to D has a single fixed point on

the boundary of D, then that point is z = 1 using ψ = ψθ(z) = eiθ where θ is the

argument of the boundary fixed point. In addition, we can assume that if the map

has an interior fixed point, that point is z = 0 using ψ = ψa(z) =
a− z
1− āz

where a is

the interior fixed point.

Lemma 3.0.6 If A and B are two operators such that AB = BA and ker(A−λI) =

span{v}, then Bv ∈ ker(A− λI) and v is an eigenvector for B.

Proof It follows from Proposition 2.0.14 that Bv ∈ ker(A−λI). Since dim ker(A−

λI) = 1, it follows that Bv = bv, hence v is an eigenvector of B.

Theorem 3.0.7 If ϕ(a) = a for some a ∈ D and 0 < |ϕ′(a)| < 1 then S ∈ {Cϕ}′ if

and only if for all v ∈ ker(C∗ϕ − λI), v ∈ ker(S∗ − µvI).
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Proof According to the remarks preceding Lemma 3.0.6, it can be assumed that

a = 0 by a suitable conjugation with an automorphism.

Observe that for all j = 0, 1, . . . the subspace Mj = span{1, z, . . . zj} is invariant

for C∗ϕ. It is not difficult to see that C∗ϕ restricted to Mj has a representation as an

upper triangular j × j matrix with respect to the basis {1, z, . . . zj} with diagonal

entries are [C∗ϕ]ii = ϕ′(0)
i
. Therefore ϕ′(0)

i
for i = 0, 1, . . . is an eigenvalue of C∗ϕ.

Now C∗ϕχj ∈ Mj for all j = 0, 1, . . . since Mj is invariant, hence C∗ϕ has a set of

eigenvectors with dense span. Moreover, C∗ϕχj is a polynomial of degree j.

Now let v ∈ ker(C∗ϕ − λI) and S ∈ {Cϕ}′ so that S∗C∗ϕ = C∗ϕS
∗, then S∗C∗ϕv =

S∗λv = λS∗v = C∗ϕ(S∗v) hence S∗v ∈ ker(C∗ϕ − λI). Since λ is an eigenvalue of

C∗ϕ, λ = ϕ′(0)
jv

for some minimal jv and v must be an eigenvector of C∗ϕ restricted to

Mjv . Thus S∗v is a polynomial of degree jv and since 0 < |ϕ′(0)| < 1, ϕ′(0)
i
6= ϕ′(0)

j

for i 6= j each eigenspace is one dimensional, so by Lemma 3.0.6, S∗v = µvv.

On the other hand, if C∗ϕv = λv implies that S∗v = λ̂v, then

S∗C∗ϕv = λS∗v = λλ̂v = λ̂C∗ϕv = C∗ϕS
∗v (3.1)

so S∗C∗ϕ = C∗ϕS
∗ on the set of eigenvectors of C∗ϕ. Since {v : v ∈ ker(C∗ϕ − ϕ′(0)

k
I)}

contains a polynomial of degree k for every non-negative integer value of k, then

S∗C∗ϕ = C∗ϕS
∗ on a set of vectors with dense linear span, hence S∗C∗ϕ = C∗ϕS

∗ on H2.
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4. SOME NON-COMPACT OPERATORS

Previous work done by Worner [5] and Cload [6] provided much insight into the

commutant of a composition operator whose symbol has the Denjoy-Wolff point in-

terior to the disk. In this section, a semigroup of operators is studied which all have

Denjoy-Wolff point at z = 1.

4.1 A semi-group of operators

Consider the family of functions ϕt(z) = e−tz + (1 − e−t). Each of these is a

non-automorphic map of the unit disk to a disk internally tangent to the unit disk at

1, the only fixed point in the closed unit disk is the point 1 and the derivative there

has modulus strictly less than 1. We claim that the associated composition operators

form a semigroup. For notational convenience, the associated composition operator,

Cϕt will be denoted by Ct.

Proposition 4.1.1 The set of composition operators with symbols

ϕt(z) = e−tz + (1− e−t) forms a strongly continuous semigroup of operators.

Proof Note that

ϕt(ϕs(z)) = e−t(e−sz + (1− e−s)) + (1− e−t)

= e−(s+t)z + e−t − e−(s+t) + 1− e−t

= e−(s+t)z + (1− e−(s+t))

= ϕs+t(z)

This computation shows that CtCs = Ct+s as well. For a proof of the fact that this

semigroup is strongly continuous, see [7].
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Recent work by Cowen and Gallardo-Guitérrez provides an interesting idea for

constructing invertible operators from non-invertible operators while preserving the

commutation relation. Since none of the operators {Ct : t > 0} are invertible, it is

possible, a priori, to consider a different set of operators that are in some sense easier

to work with.

Theorem 4.1.2 Let α̂t = ‖Ct‖, αt = α̂t + 1, Bt = αtI + Ct. Then {Ct : t > 0}′ =

{Bt : t > 0}′, Bt is invertible for all t > 0, yet {Bt} is not a semigroup of operators.

Moreover, there is no choice of non-zero values {αt} such that {Bt : t > 0} does form

a semigroup of operators.

Proof Note that 0 is not in the spectrum of Bt for any t by construction, hence

every operator in {Bt : t > 0} is invertible. Also the set of operators {Ct : t > 0} is

a semigroup. Suppose that BtBs = Bt+s. Then

αtαsI + αtCs + αsCt + CtCs = αt+sI + Ct+s

but since {Ct : t > 0} is a semigroup,

αtCs + αsCt = (αt+s − αtαs)I

There are two cases, first consider αt+s = αtαs. Then

αtCs + αsCt = 0 (4.1)

Let α = αt, β = αs, so that αCs + βCt = 0. Further assume that s 6= t, recall that

K0 = 1, and consider the adjoint equation

(ᾱC∗s )K0 + (β̄C∗t )K0 = 0

ᾱ(1− e−s) + β̄(1− e−t) = 0

and the equation (αCs)z + (βCt)z = 0. This gives that α(e−sz + 1− e−s) + β(e−tz +

1 − e−t) = 0. Combining this with equation (4.1), αe−s + βe−t = α + β = 0. This

implies that α(e−s + e−t) = 0 and therefore α = 0 or s = t. It follows that α = 0 and
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β = 0 as well. Now if s = t, 2αtCt = (α2t − α2
t )I, however the identity is not a scalar

multiple of Ct so this is again a contradiction. In the second case, αt+s 6= αtαs, then

let α1 = αt
αt+s−αtαs ;α2 = αsαt+s − αtαs and then

α1Cs + α2Ct = I

Again, applying the adjoint of both sides to the vector K0, it is clear that

ᾱ1(1− e−s) + ᾱ2(1− e−t) = 1

Now using the vector f(z) = z on both sides, α(e−sz+1−e−s)+α2(e−tz+1−e−t) = z

which gives the system of equations

α1e
−s + α2e

−t = 1 (4.2)

α1(1− e−s) + α2(1− e−t) = 0 (4.3)

by equating coefficients on both sides. The equations (4.2) and (4.3) clearly form a

contradiction, thus the case when αt+s 6= αtαs is also impossible. Therefore no choice

of coefficients will make {Bt : t > 0} into a semigroup.

This result shows that considering invertible operators for the generation of the

commutant is possible, however, the structure of the semigroup becomes lost in the

transition.

The logarithm will be defined on C \(−∞, 0] such that ln(1) = 0.

The inner products of the vectors from the set {vn(z) = (1− z)n : n = 0, 1, 2, . . . }

is related to the Gamma function by the following result.

Proposition 4.1.3 For w1, w2 ∈ {0, 1, 2, . . . },

〈vw1 , vw2〉 =
Γ(w1 + w2 + 1)

Γ(w1 + 1)Γ(w2 + 1)

Proof See [8, Theorem 2.6, Theorem 4.1]

Corollary 4.1.4 The functions (1− z)k are in H2 if and only if Re (k) > −1/2.
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Proof This is a consequence of Lemma 7.3 in [2]

Corollary 4.1.5 The set of vectors {(1 − z)k : Re (k) > −1/2} has dense span in

H2.

Proof Let vk(z) = (1− z)k and consider the case where k is a non-negative integer.

Then using the binomial theorem,

vk(z) = (1− z)k

=
k∑
j=0

(
k

j

)
(−1)jzj

And solving for zk gives

zk =
k∑
j=0

(
k

j

)
(−1)jvj(z)

Therefore {χn(z) : n = 0, 1, . . . } ⊂ {vk(z) : k = 0, 1, . . . } ⊂ {vm(z) : Re (m) > −1/2}

and since {χn(z) : n = 0, 1, 2, . . . } has dense linear span, the result follows.

According to [2, Lemma 7.24], the operators Ct have eigenvalues of infinite mul-

tiplicity and therefore the eigenvalue equation has a non-trivial solution. Now let

f(z) ∈ H2 be fixed and consider the eigenvalue equation

Ctf = λ(t)f (4.4)

By Proposition 4.1.1, C2
t f = C2tf and then the spectral mapping theorem implies

that C2
t f = λ(t)2f . Hence for any non-negative, rational value of the parameter q,

Cqf = λ(1)qf . The mapping t 7→ Ct is strongly continuous [7, Theorem 5.1, 5.2]

so that λ(t) is a continuous function of t. Therefore λ(t) = λ(1)t for t > 0. By

computing

d

dt

∣∣∣∣
t=0

[(Ctf)(z)] =
d

dt

∣∣∣∣
t=0

λ(t)f(z) (4.5)

the eigenfunctions f can be determined. Note that the left hand side of equation

(4.5) is d
dt

∣∣
t=0

[(Ctf)(z)] = f ′(ϕ0(z))(z − 1)(−1) = f ′(z)(1− z). Then since the right
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hand side is equal to λ′(0)f(z), the functions f are found to satisfy f ′

f
= λ′(0) 1

(1−z) or

f(z) = b(1− z)− ln(λ(1)) for any complex number b.

Lemma 4.1.6 For every k with real part greater than -1/2,

dim(
⋂
t>0 ker(Ct − e−tkI))) = 1.

Proof Let f(z) ∈
⋂
t>0 ker(Ct − e−tkI). Then f(z) must satisfy (4.5). Since the

equation 4.5 has a one dimensional solution space, the conclusion follows.

For an analytic function h(z) ∈ L∞, define the analytic Toeplitz operator Th on

H2 by Thg = Phg for all g ∈ H2 where P is the orthogonal projection of L2 onto H2.

Then it is easy to show that T ∗fKw = f(w)Kw.

Lemma 4.1.7 If Th is an analytic Toeplitz operator such that CtTh = ThCt for every

t > 0, then Th is a constant multiple of the identity.

Proof We prove that T ∗h is a constant multiple of the identity from which the result

follows. According to [2, Theorem 9.2], the operator C∗t can be factored as C∗t = C∗σtT
∗
g

for a linear fractional self-map of the disk σt(z) = e−tz
1−(1−e−t)z and bounded linear

fractional map g(z) = 1
1−(1−e−t)z . Let α ∈ D, then

T ∗hCϕKα = T ∗hC
∗
σtT

∗
gKα

= T ∗hC
∗
σtg(α)Kα

= g(α)T ∗hKσt(α)

= g(α)h(σt(α))Kσt(α)

CϕT
∗
hKα = C∗σtT

∗
g T
∗
hKα

= g(α)h(α)Kσt(α)

Since g(z) is non-zero in C and the kernel functions are never zero, this implies that

h(σt(α)) = h(α)

for all t > 0 and all α ∈ D. Since the image σt(D) is a disk internally tangent to the

unit disk at 1, this implies that h(z) is constant in all of D and the result follows.
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It is worth observing that the commutant of {Ct : t > 0} is not the same as the

commutant of a single operator.

Lemma 4.1.8 There is a bounded operator A such that AC1 = C1A but

AC√2 6= C√2A.

Proof The proof will follow that found in [5, Proposition 1]. Using Theorem 2.1.5,

there are functions σi such that σ1◦ϕ1 = e−1σ1 and σ2◦ϕ√2 = e−
√

2σ2. Define F1(w) =

exp(−2πi logw) and F2(w) = exp(−
√

2·2πi logw) and fi = Fi◦σi. This gives analytic

Toeplitz operators Tfi such that Tf1Cϕ1 = Cϕ1Tf1 and Tf2Cϕ√2
= Cϕ√2

Tf2 . Now claim

that Tf1Cϕ√2
6= Cϕ√2

Tf1 . Assume the contrary, then it follows that f1 ◦ ϕ√2 = ϕ√2

and evaluate both sides at z = 0. The left hand side yields e
√

2·2πi and the right

becomes 1− e−
√

2, thus providing a contradiction and the conclusion follows.

Theorem 4.1.9 A bounded operator, B, is in the commutant of {Ct : t > 0} if and

only if for every k with real part greater than -1/2, there exists a complex number µk

so that B(1− z)k = µk(1− z)k.

Proof Let B be a bounded operator on H2 and fk be the vector in H2 such that

fk(z) = (1−z)k. For the sufficient condition, assume that for every k with real part at

least -1/2 there exists a complex number µk such that Bfk = µkfk. Then for z ∈ D,

(CtBfk)(z) = Ct(Bfk)(z)

= Ctµkfk(z)

= µkCtfk(z)

= µke
−tkfk(z)

where the last equality follows since fk is an eigenvector for Ct for all t > 0 with eigen-

value e−tk. Similarly, (BCtfk)(z) = e−tkµkfk(z) hence BCt = CtB on span
Re (k)>−1/2

{fk}.

But by Proposition 4.1.5, this implies that B ∈ {Ct : t > 0}′.

For the necessary condition, assume that B ∈ {Ct : t > 0}′ and k is such that

Re (k) > −1/2. Then

CtBfk = BCtfk = Be−tkfk = e−tkBfk
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so that Bfk is an eigenvector for Ct with eigenvalue e−tk for all t > 0, hence by Lemma

4.1.6, (Bfk)(z) = µkfk(z) for some complex number µk.

Since the value of µk varies analytically with k as shown in the proof of Theorem

4.1.10, we will associate the commuting operator with the function m(k) = µk.

Theorem 4.1.10 Let A be a bounded operator on H2. If A commutes with the

semigroup of operators {Ct : t > 0}, then there exists a bounded analytic func-

tion, mA(k), on the half-plane {k : Re (k) > −1/2} such that ‖mA‖ ≤ ‖A‖ and

A(1 − z)k = mA(k)(1 − z)k for each z ∈ D and k in the half-plane. If there exists a

bounded analytic function, mA(k), on the half-plane {k : Re (k) > −1/2} such that

A(1− z)k = mA(k)(1− z)k for every k in the half-plane, then A ∈ {Ct : t > 0}′.

Proof This is the content of Theorem 4.1.9 with the additional claim that mA is

analytic and ‖mA‖ ≤ ‖A‖. To prove that mA(k) is analytic, we prove that it is weakly

analytic which will imply that it is norm analytic. Therefore, let u ∈ H2 and com-

pute lim
ε→0

1
ε
(
〈
mA(k + ε)(1− z)k+ε, u

〉
−
〈
mA(k)(1− z)k, u

〉
) = lim

ε→0

1
ε
(
〈
A(1− z)k+ε, u

〉
−〈

A(1− z)k, u
〉
) as follows.

lim
ε→0

1

ε
(
〈
A(1− z)k+ε, u

〉
−
〈
A(1− z)k, u

〉
)

=

〈
lim
ε→0

1

ε
((1− z)k+ε − (1− z)k), A∗u

〉
=

〈
d

dk
((1− z)k), A∗u

〉
=
〈
ln(1− z)(1− z)k, A∗u

〉
= ln(1− z)

〈
(1− z)k, A∗u

〉
By choosing an appropriate branch for ln(1− z), this will insure that the log function

is analytic on its domain. Therefore the limit is an analytic function of z, hence this

shows that mA(k) is weakly analytic, thus norm analytic [9].

Now note that for k with Re (k) > −1/2,

‖A‖ ≥ ‖A(1− z)k‖
‖(1− z)k‖

=
‖mA(k)(1− z)k‖
‖(1− z)k‖

=
|mA(k)|‖(1− z)k‖
‖(1− z)k‖

= |mA(k)|
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Theorem 4.1.11 If A ∈ {Ct : t > 0}′ and A is polynomially compact, then A is a

multiple of the identity operator.

Proof Suppose that A is polynomially compact and A ∈ {Ct : t > 0}′. Then there

is a non-zero polynomial p such that p(A) is compact and σp(p(A)) is a sequence

converging to zero or a finite set including 0. By the spectral mapping theorem then,

σp(A) consists of finitely many sequences with finitely many limit points. Since mA(k)

is analytic on an open half-plane, it maps connected sets to connected sets, and the

range of hA is a subset of the point spectrum of A, it follows that mA(k) is constant.

Thus by Theorem 4.1.9 A is a multiple of the identity.

Corollary 4.1.12 There are no bounded projections in {Ct : t > 0}′. Furthermore,

there is no common reducing subspace for the semigroup of operators {Ct : t > 0}.

Proof Projections are polynomially compact using the polynomial p(x) = x−x2.

Proposition 4.1.13 If CψCt = CtCψ, then ψ(z) = e−sz + (1− e−s) for some s > 0

and conversely.

Proof The map ϕt(z) is a univalent map in the half-plane dilation model for itera-

tion, therefore the intertwining σ is also univalent by Theorem 2.1.5. In addition, the

unit disk is a fundamental set for ϕt(z). According to [10], a function g(z) is in the

pseudo-iteration semi-group of ϕt(z) if it can be represented as g(z) = σ−1(Ψ(σ(z)))

where Ψ(z) is a linear fractional map commuting (in the sense Cfg = Cgf) with

multiplication by e−t. Therefore Ψ(z) = αz for some α ∈ C . Note that 0 < |α| < 1

or else g(z) is constant (α = 0) or undefined as a self map of the disk (|α| > 1). Since

the map σ(z) = 1 − z, it follows that g(z) = αz + (1 − α). Since g : D → D, α ∈ R

and the proof is complete.
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5. THE NEWTON SPACE

In [8], the authors show that certain composition operators on the Newton space

are unitarily equivalent to multiplication operators on the Hardy space. In order to

give a basic description of the Newton space, we first define the Newton polynomials.

The following notation, which is the notation of [8], will be needed. For n ∈ N and

α ∈ C , let (α)n = (α)(α + 1) · · · (α + n − 1), also called the rising factorial. Note

that this gives the standard factorial as n! = (1)n. Then we define the n-th Newton

polynomial as

Nn(w) =
(−w)n
(1)n

Let P denote the open right half-plane {w : Rew > −1/2}. Then the Newton space

can be represented as the set

N2(P) = {F (w) =
∞∑
n=0

anNn(w) :
∞∑
n=0

|an|2 <∞}

This appears as [8, Theorem 2.1] as well as the fact that the Newton polynomials

form an orthonormal basis for N2, which is a non-trivial result that follows from [11,

Theorem 1.2]. Thus N2 is a Hilbert space of analytic functions. In order to avoid

possible confusion, the variables z, α will be used to represent points of the unit disk

for functions in the Hardy space H2 while the variables w, λ will denote points in P

for functions in N2. It turns out that the Newton space is also a reproducing kernel

Hilbert space with kernel functions given by

kλ(w) =
Γ(w + λ̄+ 1)

Γ(w + 1)Γ(λ̄+ 1)

For notational purposes, we will denote the functions (1− z)k for z ∈ D and k ∈ P by

vk̄(z). The following result shows that a familiar operator has a simple representation

in this space.
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Proposition 5.0.14 The operator ∆ : N2 → N2 defined by (∆f)(w) = f(w)−f(w+

1) is the backwards shift on the orthonormal basis {Nn}n≥0 of N2.

Their main result is [8, Theorem 4.1]:

Theorem 5.0.15 Let Sζ be the operator defined by (Sζf)(w) = f(w+ζ) for Re ζ ≥ 0.

Then the map U : N2 → H2 defined by U(Nn) = χn where χn(z) = zn has the

following properties:

1. For α ∈ D, fα(w) = (1− α)w ∈ N2 and (Ufα)(z) = (1− αz)−1 for all z ∈ D

2. For w ∈ P, vw(z) = (1− z)w ∈ H2 and UKw = vw

3. If Mz is the operator of multiplication by z on H2, then MzU = U∆∗

4. For ζ ∈ C with Re (ζ) ≥ 0,M(1−z)ζ̄U = UC∗Sζ

Since every separable Hilbert space is isomorphic to every other separable Hilbert

space, the existence of the map U is not surprising, however this theorem provides

additional structure to the isomorphism. In particular, the first two claims show how

kernel functions are mapped between the spaces and the latter two claims show that

multiplication operators are unitarily equivalent to the adjoints of shift operators.

An alternative description of the Newton space is given by considering the closure

of the polynomials in L2(C , µ) where µ is a probability measure on C . In the case

where µ is a probability measure with finite moments,∫
C
|z|n dµ(z) <∞

This construction yields many spaces depending on the measure. In particular, both

H2 and N2 can be constructed in this manner. By choosing dµ(reiθ) = δ1(r)dθ to

be the normalized arc-length on the circle, the space constructed is H2(D). On the

other hand, if dµ(x+ iy) = 1
2π
|Γ(x+iy)|2
Γ(2x+2)

dydγ(x) where γ(x) is the discrete measure on

R with unit masses at {−1/2 + n/2 : n = 1, 2, . . . }, then the Newton space N2(P) is

constructed. This construction and the proof of Lemma 5.0.16 rely on the properties

of µ.



20

Although the previous result is significant, the result of principal interest for this

work is found in the proof of [8, Theorem 3.1] and is stated here as

Lemma 5.0.16 Every bounded analytic function on P induces a bounded multiplica-

tion operator on N2(P).

Proof A function ψ that is bounded and analytic on P, has non-tangential limits

almost everywhere with respect to Lebesgue measure on the boundary line of P. Since

the restriction of µ to this line is absolutely continuous with respect to Lebesgue

measure, we may extend ψ to the closure of P, yielding a function in L∞(µ), which

in turn induces a bounded multiplication operator Mψ on L2(µ). Since N2 can be

viewed as a subspace of L2(µ) which is invariant for Mψ,Mψ will be bounded there

as well.

Therefore the set of bounded analytic functions on P is in one-to-one correspon-

dence with operators in the commutant of {Ct : t > 0}.

Proposition 5.0.17 If A commutes with Ct for every t > 0, then ‖MmA‖B(N2) =

‖mA‖H∞(N2) = ‖A‖B(H2).

Proof Firstly, ‖MmA‖B(N2) = ‖A‖B(H2) since A is unitarily equivalent to MmA . Now

‖MmAf‖2
N2 = 〈MmAf,MmAf〉N2 =

∫∞
0
mA(t)f(t)mA(t)f(t)e−tdt ≤ ‖mA‖2

∞‖f‖2
2 [11]

so ‖MmA‖ ≤ ‖mA‖∞. On the other hand, ‖M∗
mA
‖ ≥ |M∗

mA

Kα

‖Kα‖
| = |mA(α)| implies

that ‖MmA‖ ≥ ‖mA‖∞. Therefore ‖MmA‖B(N2) = ‖mA‖H∞(N2).

In addition to the preservation of norms between the above spaces, the following

theorem answers a question implicit in the paper [12] of Cowen and Gallardo-Guitérrez

that proves the hyperbolic composition operators are unitarily equivalent to a class

of adjoints of analytic multiplication operators on the Hardy space H2.

Theorem 5.0.18 The composition operator Ct is unitarily equivalent to the adjoint

of multiplication by mt ∈ N2 given by mt(w) = e−tw for w ∈ P. Furthermore, the

function mt(w) is analytic in w.
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Proof The computation Ct(1−z)w = (1−ϕt(z))w = (−(e−tz−e−t))w = e−tw(1−z)w

shows that mt(w) = e−tw for Ct. Since Ctvw = e−twvw = 〈Umt, vw〉H2 vw, and the

inner product on H2 is conjugate analytic in the second component, it follows that

mt(w) is analytic in w.

Theorem 5.0.19 H∞(P) ∼= {Ct : t > 0}′ as Banach algebras.

Proof Let A ∈ {Ct : t > 0}′ and recall that A(1 − z)k = mA(k)(1 − z)k for all

k ∈ P and the algebraic structure the commutant inherits as a subalgebra of B(H2).

The correspondence Φ(A) = mA is one-to-one and onto, therefore through routine

calculation, this correspondence is linear. It is isometric by Proposition 5.0.17, and

an isomorphism.

Corollary 5.0.20 The algebra {Ct : t > 0}′ is a commutative Banach algebra.
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