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ABSTRACT  

 

YOGESH PRAKASH PANDIT   

 

CONTEXT SPECIFIC TEXT MINING FOR ANNOTATING PROTEIN 

INTERACTIONS WITH EXPERIMENTAL METHODS 

Proteins are the building blocks in a biological system. They interact with other proteins 

to make unique biological phenomenon. Protein-protein interactions play a valuable role 

in understanding the molecular mechanisms occurring in any biological system. Protein 

interaction databases are a rich source on protein interaction related information. They 

gather large amounts of information from published literature to enrich their data. Expert 

curators put in most of these efforts manually. The amount of accessible and publicly 

available literature is growing very rapidly. Manual annotation is a time consuming 

process. And with the rate at which available information is growing, it cannot be dealt 

with only manual curation. There need to be tools to process this huge amounts of data to 

bring out valuable gist than can help curators proceed faster. In case of extracting protein-

protein interaction evidences from literature, just a mere mention of a certain protein by 

look-up approaches cannot help validate the interaction. Supporting protein interaction 

information with experimental evidence can help this cause. In this study, we are 

applying machine learning based classification techniques to classify and given protein 

interaction related document into an interaction detection method. We use biological 

attributes and experimental factors, different combination of which define any particular 



	
   11	
  

interaction detection method. Then using predicted detection methods, proteins identified 

using named entity recognition techniques and decomposing the parts-of-speech 

composition we search for sentences with experimental evidence for a protein-protein 

interaction. We report an accuracy of 75.1% with a F-score of 47.6% on a dataset 

containing 2035 training documents and 300 test documents.   
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CHAPTER ONE: INTRODUCTION 

 

Literature is a very popular mode of publication of research findings, information, news, 

data etc. With the ease of publishing on the Internet, the numbers are ever increasing.  

There are journals covering all kinds of scientific/ research oriented fields. PubMed alone 

has grown to hold over 22 million citations. The free full-text branch out of PubMed, 

PubMed Central archives over 2.6 million articles. All this adds up to the wealth of 

publicly available information. Such vast amount of data makes it a challenge to develop 

norms or standards of individual data elements. Even today, biological databases greatly 

rely on expert curators for manual extraction of valuable information.  To automate 

process of manual curation to some extent, to identify data points and coagulate 

documents falling under similar context, it is very important to develop intelligent and 

efficient text mining systems. [1] 

Biomedical literature can be harvested to extracted information pertaining to diverse 

contexts. The most elementary form of biological attributes that can be extracted are 

biological entities like genes, proteins, chemicals, organisms, strains and more. The more 

complex techniques involve compressing full-text articles to a set of few representative 

sentences, inferring gene and protein type of ontology, inferring actions of drugs under 

certain biological conditions etc. Another such technique is extraction of protein 

interactions from literature. Proteins are the building block and they interact with other 

proteins to make a unique biological phenomenon. Protein-protein interactions are 

valuable to understand and interpret the molecular mechanisms governing a biological 
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system. An example would be the interaction of BRCA1 with BARD1. However, a 

mutation of BRCA1 can disrupt the interaction, which can lead to breast cancer [2]. 

 

Motivation 

There are many protein interaction databases available in the research community. Each 

database specializes in annotating and maintaining data on certain type of interactions. 

BioGRID [3] hold around 630,000 interactions from model organisms and humans. 

These interactions are curated from high-throughput datasets that are derived from 37,000 

publications. A team of 14 curators manually curates this vast amount of literature. 

Another such database is MINT (Molecular interaction database) [4]. MINT has 241,458 

interactions on 35509 proteins curated from 5516 scientific articles by a team of 7 

researchers. IntAct [5] is a protein interaction database maintained by the European 

Bioinformatics Institute. As of September 2011, it contains 275,000 interactions curated 

from 5000 publications. IntAct also accepts direct user submissions to add to their protein 

interactions database. The Human Protein Reference Database (HPRD) [6] is a widely 

used database pertaining to human protein. It contains information on protein entries, 

protein-protein interactions, post-translational modifications, protein expression, 

subcellular localizations and domains. The number of protein-protein interactions it 

holds, as of April 2013, is 41,327. HPRD states in their FAQs that they do not make use 

of any literature mining algorithms and rely on expert biologists for manual curation. 

There are many more such database that make use of the scientific literature for 

identification of protein interaction evidences. As evident from the statistics, there is a 

gap in the demand to supply ratio. The amount of available literature is rapidly 



	
   14	
  

increasing. A simple search on PubMed with the terms “protein protein interactions” 

returns about 275,000 entries. So far number of publications manually curated by all the 

databases put together is not more than 60,000. The not annotated publications contain 

valuable information that can be useful to the scientific community. This is our main 

motivation behind pursuing this research topic. We do not intend to replace the expert 

curators. However, we belief, with the efficient use of text mining technology we can 

help speed up the task of manual curation. Text mining techniques can identify evidences 

of protein-protein interactions along with the interaction detection method used to 

identify that particular interacting pair. This can significantly cut down the laborious task 

of manually going though each and every paper to identify the context and the interacting 

protein pairs. The curators and briefly refer the publication using the information 

extracted about the interacting protein pairs and the corresponding interaction detection 

method. A summary of number of interactions identified by manual curation of scientific 

literature is mentioned in Table 1. 

 

Database # Interactions # Articles # Curators/Team 

Members 

BioGRID 630,000 37,000 14 

MINT 241,458 5516 7 

IntAct 275,000 5000 - 

	
  

Table	
  1:	
  Summary	
  of	
  interactions,	
  articles	
  and	
  number	
  of	
  curators	
  per	
  protein	
  
interaction	
  database 
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Figure 1 shows statistics where the estimated number of publications reporting protein 

interactions each year was estimated by searching PubMed with the keywords “protein 

interaction”. The fraction of retrieved articles containing protein interaction information 

was approximated by manual scan of 100 abstracts [7]. Figure 1 can help us visualize the 

growing gap between the published literature and manual curation by protein-protein 

interaction databases. This gap is significant considering the computational technology 

available now days. This gap in curation prevents valuable data from hitting the 

searchable public databases. 

 

Figure	
  1:	
  Increased	
  gap	
  between	
  published	
  information	
  and	
  curation	
  by	
  
IMEX	
  databases 
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Text mining can be referred to as data mining for literature. Literature can be in any form 

like published scientific literature, web pages, new articles, OCR scanned documents, 

patents, blogs, textual information on websites pertaining to the topic of interest etc. 

Typically, text-mining tasks include named entity recognition, clustering, 

classification/categorization, and sentiment analysis and document summarization. 

Broadly, these tasks can be categorized as information retrieval, information extraction, 

pattern recognition and lexical analysis. Natural language processing is used to convert 

text to data that can be analyzed [8]. Text mining has been of immense importance in the 

fields of business intelligence, finance forecasts, national security, scientific discovery, 

sentiment analysis, advertising, question answering, social media monitoring and many 

more. As an example, IBM recently made public their “deep QA” based product called 

Watson. It beat human competitors at the game of Jeopardy. Watson makes use of very 

complicated natural language processing algorithms to understand and answer questions 

related to any topic on earth. Text mining has also been heavily used to analyze 

sentiments of voters during election campaigns. Along with such wide range of 

application, text mining can be applied on biomedical data as well. For example, 

researchers have utilized text-mining techniques to classify suicide notes into categories 

of emotions to understand the suicidal patient’s thoughts [9–11]. A really interesting 

application has been a literature search tool where the query can be a chemical structure. 

The chemical names in the literature databases are converted to a representation called 

SMILES or InChi and the chemical structure similarity is calculated against the query 

using the Tanimoto coefficient. Literature documents where some novel compounds that 

can have structural similarity with existing chemical compounds can be quite easily 
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pulled up with great precision [12]. Natural language processing is being widely used in 

clinical decision support. The goal of Clinical Decision Support (CDS) is to “help health 

professionals make clinical decisions, deal with medical data about patients or with the 

knowledge of medicine necessary to interpret such data” [13]. Clinical Decision Support 

Systems are defined as “any software designed to directly aid in clinical decision making 

in which characteristics of individual patients are matched to a computerized knowledge 

base for the purpose of generating patient-specific assessments or recommendations that 

are then presented to clinicians for consideration” [14]. NLP has played a significant role 

in utilizing free-text information to drive CDS, representing clinical knowledge and CDS 

interventions in standardized formats, and leveraging clinical narrative [15].  

 

A technique very popularly used in text mining is text categorization or text 

classification. Few classical examples of text classification are spam filtering, sentiment 

analysis, language identification etc. In the biomedical context, the sequence labeling can 

be projected as a classification problem, emotion identification in suicide notes, binary 

text classification like cancer related or not. The problems like spam/no-spam or 

cancer/not-cancer or positive/negative sentiment are binary classifications, which means 

data can be classified into either of the two classes. The features set is consistent 

throughout the dataset. A Naïve Bayes classifier has proven to perform well in such 

cases, where given certain features in the email it calculates the conditional probability of 

it being spam or not [16], [17]. Spam classifiers have evolved to be self-learning and 

adaptive in nature where the model is in an incremental training mode [18]. SVM 

(support vector machine) are supervised learning models that are very widely used 
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classifiers for data analysis and pattern recognition. Basic SVM learning model performs 

as a non-probabilistic binary linear classifier. In addition, SVM can be efficiently used 

for non-linear classification using a trick, called kernel trick where inputs are implicitly 

mapped to high-dimensional feature spaces. The key is to determine the optimal 

boundaries between different hyper plane representations of input data space. However, 

the kernels have issues with capacity control, as all learning is done in terms of dot 

products between items.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure	
  2:	
  Optimal	
  hyper	
  plane 

 

Figure 2 shows optimal class boundaries for a classifier. A line is bad if it passes too 

close to the points because it will be noise sensitive and it will not generalize correctly. 

Therefore, our goal should be to find the line passing as far as possible from all points. 
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Then, the operation of the SVM algorithm is based on finding the hyper plane that gives 

the largest minimum distance to the training examples. Twice, this distance receives the 

important name of margin within SVM’s theory. Therefore, the optimal separating hyper 

plane maximizes the margin of the training data [19]. 

 

Another classifier is Decision Trees. Decision trees are designed with the use of 

hierarchical division of input data vectors with the use of different text features. The 

hierarchical division is designed in order to create class partitions. For a given text 

instance we determine the partition that it is most likely to belong to, and use it for 

classification. Neural networks are popular class of classifiers, which are used in a wide 

variety of domains. A neural network consists of units (neurons), arranged in layers, 

which convert an input vector into some output.  Each unit takes an input, applies a (often 

nonlinear) function to it and then passes the output on to the next layer. Neural networks, 

SVM are discriminative classifiers unlike Bayesian classifiers, which are generative. The 

idea behind Bayesian classifiers is to classify text based on the posterior probability of 

the documents belonging to the different classes on the basis of the word presence in the 

documents [20]. All these algorithms are well tested and heavily used. However we 

decided to use Logistic Regression, which is a discriminative probabilistic classification 

model for our problem.  

In this study, we break down full-text documents into feature vectors, which are formed 

of experimental factors, key biological entities and some manually identified entities. 

These features are trained using logistic regression classifier with interaction detection 

method as class labels. These interaction detection methods are the one’s used to identify 
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protein-protein interactions mentioned in that particular paper. Once we have a trained 

model, it can take any document as input and predict the interaction detection method 

that the document might belong to. This is a important and challenging problem to tackle. 

Efficient implementations can help speed up the manual process of protein-protein 

interaction curation and annotation from scientific literature. 

 

Context-specific mining 

 

Text mining has its strengths and weaknesses, the most common weakness being the 

noisy and unspecific data generated as a result of natural language processing (NLP). 

Hence, context-specific information retrieval is required to circumvent the flaws in 

traditional text mining approaches. Text mining has proven to be of immense importance 

in domain specific studies. In drug discovery context, text mining has been applied to 

extract drug-drug interactions [21][22] and also to explore the network of chemical 

relations and also in the context of associated binding proteins [23]. Algorithms have 

been developed to convert chemical names to molecular formula and structures 

[24][25][26][27]. Such sophisticated use of NLP techniques has helped in building 

databases for chemical information [28]. Content of the documents has been used for 

classification into semantic topics [29][30]. NLP techniques have also been applied to 

interpret emotions behind suicide notes [10]. 

 

Protein-protein interactions are manually curated to enrich database like BioGRID [3], 

MINT [4], DIP [31] and many more. Text mining techniques can however be limiting, as 
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they cannot efficiently annotate the interaction with the experimental method. The 

validity and reliability of an interaction can be determined based on the experimental 

evidences that support it. Augmentation of protein interaction information with the 

experimental data can enrich the annotation for better analyses. This makes the process of 

information extraction specific to the context of experimental methods used for protein 

interactions. In the context of protein-protein interactions mentioned in a particular 

document, not always all the information will be valuable. Certain sections of a document 

can be a goldmine for studying, understanding and annotating protein-protein 

interactions. On the other hand, some sections may be completely irrelevant to the 

context of protein interactions. With the help of experts in biology we identified that the 

methods section of a document has most information that can help annotate the 

interacting protein pair with valuable experimental information. The methods section 

contains details on the cellines, techniques, media, antibodies, chemicals, temperatures 

and other such data that define the working of interaction detection method. We broke 

this problem into a text classification problem where the input vector is the various 

different biological attributes identified mainly from the methods section and the class 

labels are the interaction detection methods. We used the publicly available data on 

interaction method classification from BioCreative  

 Experimental evidence 

Protein-protein interactions occur when two or more protein bind together in a peptide 

bond to carry out a biological function. This forms the foundation for the proper 

functioning of any biological processes. For example, the process of signal transduction 

is heavily dependent on the interaction between proteins on the exterior of a cell with that 
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of proteins inside the cell. Modification of proteins can change the protein interaction 

itself. And it is known that proteins respond to the environment in many ways. protein–

protein interactions are of central importance for virtually every process in a living cell. 

Information about these interactions improves our understanding of diseases and can 

provide the basis for new therapeutic approaches. Protein–protein interactions are at the 

core of the entire interactomics system of any living cell [32]. Due to such high 

importance of protein interactions, there are a multitude of methods used to detect them. 

Each method has its pros and cons, mainly in regards to the sensitivity and specificity. 

Like in any evaluation system, high sensitivity means that most of the interactions from 

real world are detected using the screening techniques. And high specificity indicates that 

most of the interactions detected by the screening should occur in reality. According to 

the PSI MI ontology [33] for the interaction detection methods, there are around 115 

screening techniques to detect protein interactions. The popularity of a certain method 

depending on the number of articles published on it is shown in Figure 11. Each method 

has its own approach at detecting interactions. For example, yeast two-hybrid is a high-

throughput screening method that allows for interactions between proteins that are never 

expressed in the same time and place. This is at the cost of its specificity. Affinity capture 

mass spectrometry, on the other hand, does not perform in this manner. Yeast two-hybrid 

data better indicates non-specific tendencies towards sticky interactions rather while 

affinity capture mass spectrometry better indicates functional in vivo protein–protein 

interactions [34]. Each method has its own significance and the distinction is vivid from 

the protocols used and mentioned in literature. These protocols can help identify the 
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interaction detection methods used to detect the interactions and can be termed as 

experimental evidences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

And example of details provided by a detection method in the literature is shown in 

Figure 3 [35]. The mention of HIS3, URA3, LacZ along with Sc-His + 3AT media, Sc-

Ura media indicates that the document is talking about yeast two-hybrid for interaction 

detection. Another example of how information about detection methods can be mined 

from the literature can be shown from Figure 4 [36]. This pull down assay schematic 

shows some of the important details of the interaction detection method itself like agarose 

bead, affinity ligand, GST and SDS-PAGE. Like mentioned before, this is valuable 

Figure	
  3:	
  A	
  Yeast	
  Two-­‐Hybrid	
  system 
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information occurring in literature that can help distinguish pull down assays from other 

interaction screening techniques. 

 

 

 

 

There are many different tools and databases available for protein-protein interactions 

few are tabulated in Table 2. 

 

 

 

 

Figure	
  4:	
  Pull	
  down	
  assay	
  schematic 
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Database Description URL 

Online Databases storing protein-protein interactions 

BIND Bimolecular interaction network database contains 
over 200,000 human curated interactions. 

http://bind.ca 
 

DIP 
Database of Interacting Proteins enlists 

experimentally determined 75,400 interactions 
between proteins covering 571 organisms. 

http://dip.doe-
mbi.ucla.edu 

 

HPRD 
The Human Protein reference database contains 
interaction networks for each protein in human 

proteome.  
www.hprd.org 

HPID Human Protein Interaction Database combines 
BIND, DIP and HPRD  www.hpid.org 

IntAct 
Open source protein interaction database, contains 
approximately 3,12,217curated binary molecular 

interactions  

http://www.ebi.ac.
uk/intact/  

MINT Molecular INTeraction Database stores biological 
molecule interactions. 

http://mint.bio.uni
roma2.it/mint  

STRING 
Consists of known and predicted protein-protein 

interactions. The database currently covers 5,214,234 
proteins from 1133 organisms. 

http://string-
db.org/  

Online protein-protein interaction information extraction systems 

BioRAT BioRAT is an information extraction tool and search 
engine for biological research 

http://bioinf.cs.ucl
.ac.uk/software_d
ownloads/biorat/ 

GeneWays 
GeneWays is an integrated system that combines 

various sub tasks of extracting, analyzing, visualizing 
and integrating molecular pathway data 

http://anya.igsb.an
l.gov/Geneways/G

eneWays.html  
	
  

Table	
  2:	
  Tools,	
  databases	
  for	
  extraction	
  of	
  protein	
  interactions	
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Protein interaction curation 

Protein interaction databases have been formed with the goal of curating protein and 

genetic interactions with great details. Such data can help decode the mechanism behind 

cellular physiology. Availability of such information is ever growing. With the primary 

goal of reducing curation redundancy and sharing data these databases are federated by 

International Molecular Exchange (IMEx) consortium. The PSI-MI provides the logic 

model and the controlled vocabulary for representation of molecular interactions. Not 

surprisingly, the members of the IMEx consortium themselves are the main contributors 

to the development and maintenance of the PSI-MI ontology. Sharing data using 

ontology standardizes the growth of the data.  
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Figure 5 is an example that demonstrates how a protein interaction pair extracted from a 

sentence can be just a binary pair not linkable to the interaction detection method 

ontology. The protein-protein interaction databases are growing very rapidly. To 

minimize redundancy, they need to be tagged to the same PSI-MI ontology with a 

different source. If the experimental evidence is not considered in binary interactions, 

relating interactions with ontology will not be possible. However, if interacting proteins 

are annotated with the interaction detection method during automated extraction, it can be 

linked to the PSI-MI ontology. Figure 6 graphically shows how this can be possible. 

Figure 5: Example to show how protein interactions cannot be linked to 
ontology for data standardization 
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Two important issues with the automatic extraction of information are validation and 

usability. Any particular biological entity is often discussed in sufficient detail in the 

article. However, the extraction process usually discards these details and returns only the 

entities. Protein-protein interactions (PPI) are very commonly extracted information from 

the published biomedical literature. For example, from a sentence like “As expected from 

the yeast two-hybrid results, p18Hamlet was able to interact with p38α and also with 

p38β but not with p38γ and p38δ, or with the p38 activator MKK6” [37], the interaction 

that is returned is “p18Hamlet interacts with p38α”. 

Figure 6: Example showing how protein interactions can be linked to ontology if annotated 
with interaction detection method 
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Figure	
  7:	
  Biological	
  features	
  associated	
  with	
  interaction	
  detection	
  methods 
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Important information like the protein interaction detection method is discarded. Given a 

context-specific text mining method there is usually enough information in the articles 

that can help extract relevant details, based on the biological features. Interaction 

detection methods are the most popularly used experimental evidences to annotate 

interactions. PSI-MI [33] ontology is a controlled vocabulary for all the interaction 

detection methods used in experimentally identifying protein-protein interactions. All 

protein interaction databases have been annotating according to PSI-MI standards since it  

 

 

Figure	
  8:	
  Variation	
  in	
  occurrences	
  of	
  experimental	
  factors	
  per	
  interaction	
  method	
  
document 
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was developed. Figure 7 shows in detail the biological features occurring in the 

“Methods” section that can be used to associate the interaction detection method with a 

given protein interaction. Figure 8 highlights how the occurrence of a particular 

experimental factor varies with documents belonging to different interaction methods. 

These combinations of varying biological attributes can be used as distinguishing factors 

between documents falling under certain interaction detection methods. 

 

In this study, we report on the development of an approach to process articles to identify 

methods that were used to discover the protein-protein interactions. There are many 

different ways to classify a document. However, if the problem in hand is as specific as 

annotating protein interactions with experimental methods, a generic document 

classification approach should not suffice. Not all possible set of features can be specific 

to the context of the problem. That is why; we make use of features most relevant to the 

domain of the problem. These features are the experimental factors and biological entities 

that should be directly related to the standard operating procedures of the interaction 

detection methods. 
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CHAPTER TWO: LITERATURE REVIEW 

 

Text mining techniques have evolved and can now return more than just mere co-

occurrences of proteins as interactions. There have been many different approaches for 

rightly extracting binary interactions. Scientific literature can provide insights into novel 

discoveries and hypotheses from research.  

 

Discovery and extraction of information from free text, encompasses scientific data 

mining. There are four different categories, for text mining: information retrieval, 

information extraction, building a knowledgebase and knowledge discovery. In 

information retrieval, user submits a query to the search engine and receives relevant 

documents or text, which are fetched based on matching keywords contained in the 

query, or other scientific metadata (author, title, name of journal and so on) attributes.  

Information extraction identifies existence of genes or diseases, as well as complex 

relationship between these entities like protein-protein interactions and gene-disease 

associations.  Knowledge discovery deduces hidden or undiscovered knowledge by 

applying text-mining algorithms to the data extracted from literature [38]. 
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Figure	
  9:	
  An	
  overview	
  of	
  the	
  different	
  categories	
  in	
  which	
  text	
  mining	
  can	
  be	
  
applied.	
  Document	
  retrieval	
  is	
  the	
  initial	
  step	
  and	
  leads	
  to	
  the	
  collection	
  of	
  

documents	
  for	
  a	
  given	
  query	
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In one study, potential of text mining techniques have been explored to curate the HIV-1, 

human protein interaction database.  HIV-1 is a very common pathogenic strain of virus. 

The database maintaining all the protein interaction in humans related to HIV-1 contains 

2589 manually extracted interactions, linked to 14,312 mentions in 3090 articles. Due to 

advancements in text mining and to be able to rapidly extract such data from huge 

amounts of literature, researchers applied text-mining techniques for recreating the 

database. With a F-score of 88.6%, this system could recreate 50% of the interaction just 

from abstracts and titles, using a customized and tailored training data set and a post-

processing module utilizing a dictionary with HIV and top human genes. From 49 

available open-access full-text articles, this system could extract a total of 237 unique 

HIV-1–human interactions, whereas HHPID recorded only 187 interactions for the same 

articles. On an average they could retrieve 23 times more mentioned with a 6-fold 

increase in in unique interactions. The error analysis showed that commonly found false 

positive hits were due to acronyms such as cell line names or strain names. This study 

concludes that text-mining techniques can generate data at a faster speed, which can be 

used to support the manual curation process [39]. Existing approaches to mine protein-

protein interactions have been broadly classified into 2 categories:  Pattern matching 

approaches use a pre-defined set of patterns to extract protein-protein interactions [40], 

[41]. Parsing methods can be either shallow parsing which break sentences into non-

overlapping motifs [42], [43] or deep parsing which uses the entire sentence structure and 

are potentially more accurate [44].  Table 3 below shows the precision and recall values 

for each of these methods. These are indicative figures since no benchmark data set was 

available to compare [38].  
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Category 
Performance 

Reference 
Recall (%) Precision (%) 

Pattern Matching 86 94 [40] 

Shallow parsing 62 89 [45] 

Deep parsing 48 80 [46] 

	
  

Table	
  3:	
  Precision	
  and	
  Recall	
  for	
  approaches	
  to	
  mine	
  protein-­‐protein	
  interactions	
  

 

Protein interactions give a deep insight to biologists to study the mechanism of action of 

the living cell and ascertain potential drug targets for drug designing. Zhou et al used 

hidden vector state models to extract protein-protein interactions. This process of 

validating text mining results on protein interactions using gene expression profiles was 

conducted in stages: mining protein-protein interactions from literature, clustering co-

expressed genes and making inferences based on the above results. Sentences were 

semantically parsed and trained to achieve an overall precision, recall and F-score of 

58.3%, 76.8% and 66.3% respectively. Authors further validated these results with gene 

expression profiles where co-expressed gene where identified using ant base clustering 

technique [47].  

 

In another study, a graph-kernel based approach has been applied extract for automated 

protein interaction extraction from scientific literature. Sentences were broken down 

using dependency parsers, and the output trees were traversed to identify sentences with 

interacting proteins. This method was evaluated on 5 publicly available PPI corpora and a 

cross-corpus evaluation was done to test whether an extraction system will work beyond 
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the corpus it was trained on.  The method was shown to achieve performance with an F-

score of 56.4 and 84.8 area under the receiver operating characteristics curve (AUC) on 

the AImed corpus.	
   [48]. Authors have also attempted hybrid approaches by combining 

co-occurrence based approach and rule-based approach to find interactions in PubMed 

abstracts. They validated these extracted interactions against PPI databases and shared 

terms from gene ontology. According to their findings only 28% of the co-occurred pairs 

in PubMed abstracts appeared in any of the commonly used human PPI databases and 

69% showed co-occurrence in literature [49].  

 

These results stress on the point we made earlier that co-occurring terms cannot always 

make reliable protein interactions. A graph kernel based approach does not consider the 

biological evidence mentioned in the sentence that can strengthen the protein interaction 

information extraction. In a graph the distances or dependencies being considered are 

between protein nodes that leaves out the valuable information on interaction detection 

methods. To improve sensitivity of protein interaction extraction, it needs to be backed 

by the experimental evidences from respective articles. Articles published based on 

experimental studies have clearly defined section pertaining to the details of the study. 

Annotating biological entities with such empirical data can fasten the tasks of manual 

curation. As a part of BioCreAtIve III challenge, there have been studies to annotate the 

articles with protein interactions with the interaction detection method. In one study 

authors have developed a framework to identify experimental methods used to study 

interactions. They applied classification techniques using a combination of up to 21 

features comprising regular expressions, keywords, mutual information scores unigrams 
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& bigrams. These features were run through different classifier like J48, Naïve Bayes ad 

Random Forest to achieve the highest F-score if 52.38% [50]. Another promising 

approach was to use the MeSH term ontology. Most frequent interaction detection 

methods were mapped to equivalent MeSH terms. Classifiers were run over pairs of text 

chunks and names of interaction detection methods. Vectors were built using string 

similarity measures like JaroWinkler [51] or TF-IDF [52]. In a study entailing use of a 

linear classifier using named entities as features, authors approached the task of 

annotating the proteins interaction documents with experimental methods not as a just a 

document classification task. They reported very low performance. However, they 

validated the results with evaluations from independent annotators [53].  

 

All the different approaches mentioned here gave us a perspective of the task in hand. 

Reliability of results cannot be based upon binary classification of documents. Any 

sentence can form a feature that can be used to decide which category the document 

belongs to. However, any random textual feature cannot justify the experimental process 

performed to identify the interacting protein pairs mentioned in the articles.  The features 

that should be used have to be more specific than just being from the biomedical domain. 

Thus we hypothesize that the experimental factors are the distinguishing factors between 

documents describing an interaction detection method. Documents have to be classified 

based on the information about experimental processes. This set the tone for our 

approach. We used a diverse set of experimental information as our features for machine 

learning techniques.  
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CHAPTER THREE: METHODOLOGY 

 

A schematic overview of our methodology is shown in Figure 10. It involves information 

retrieval from PubMed Central. Then we extract the methods section to identify and 

annotate required biological entities. Using various information extraction techniques like 

name entity recognition, dictionary lookup and POS tagging we gather entities to build 

our input vector space. We classify using logistic regression with protein interaction 

detection methods (PIDM) as class labels. 

 

Figure	
  10:	
  Methodology	
  flowchart 
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Data 

For classifying documents we required documents labeled with their respective 

interaction methods. The PSI-MI ontology [33]  is the standard followed for the 

interaction method names used in protein interaction annotations. The PSI-MI vocabulary 

is rich and well controlled that explains the granularity of experimental methods used in 

protein interactions. BioCreAtIve used PSI-MI for data preparation for interaction  

 

	
  

Figure	
  11:	
  Documents	
  per	
  category 
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method classification task [1]. This training and the testing data were made publicly 

available for research. The training dataset contains 2035 full-text articles under 86 

different interaction detection methods. In all it contains 4348 annotations where some of 

the documents overlapped under interaction methods. The test data has 305 full-text 

articles. Figure 11 shows the distribution of documents per category. As we can see, more 

that 2/3rd of the data belongs to 8 of the categories out of 86. 

 

Approaches for feature extraction 

 

We approached feature extraction with specificity of context in mind. The objective of 

classification was to categorize documents with protein interactions into respective 

interaction detection methods. We used biological attributes most related to the 

experimental methods.  

 

a) Annotating key named entities 

A wide range of keywords such as breast cancer, yeast cell cycle, metabolism etc. 

were used to query the full-text open-access articles in PubMed Central. Several 

keywords were used in the analysis so as to retrieve an extensive set of 

experimental factors. The queries were made using NCBI E-utilities which 

provides a nice interface for information retrieval from NCBI data warehouses. E-

utilities stands for Entrez Programming Utilities. The E-utilities use a fixed URL 

syntax that translates a standard set of input parameters into the values necessary 
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for various NCBI software components to search for and retrieve the requested 

data. The Entrez system currently holds data from 38 databases covering a diverse 

variety of data, including nucleotide and protein sequences, gene records, three-

dimensional molecular structures, and the biomedical literature. E-utilities 

provides interface for different languages like Perl, Python, Java and C++. A total 

of 8 E-utilities are available for information retrieval. 

 

Name Description 

EInfo Provides the number of records indexed in each field of a given 
database, the date of the last update of the database, and the 
available links from the database to other Entrez databases. 

ESearch Responds to a text query with the list of matching UIDs in a given 
database (for later use in ESummary, EFetch or ELink), along with 
the term translations of the query. 

EFetch Responds to a list of UIDs in a given database with the 
corresponding data records in a specified format. 

EPost Accepts a list of UIDs from a given database, stores the set on the 
History Server, and responds with a query key and web 
environment for the uploaded dataset. 

ESummary Responds to a list of UIDs from a given database with the 
corresponding document summaries. 

ELink Responds to a list of UIDs in a given database with either a list of 
related UIDs (and relevancy scores) in the same database or a list of 
linked UIDs in another Entrez database; checks for the existence of 
a specified link from a list of one or more UIDs; creates a hyperlink 
to the primary LinkOut provider for a specific UID and database, or 
lists LinkOut URLs and attributes for multiple UIDs. 

EGQuery Responds	
  to	
  a	
  text	
  query	
  with	
  the	
  number	
  of	
  records	
  matching	
  
the	
  query	
  in	
  each	
  Entrez	
  database. 

ESpell Retrieves	
   spelling	
   suggestions	
   for	
   a	
   text	
   query	
   in	
   a	
   given	
  
database. 

	
  

Table	
  4:	
  Description	
  of	
  E-­‐utilities 

 

 



	
   42	
  

 

Typically the process of retrieving data from NCBI using E-utilities is by 

searching the database of interest with certain keywords. The URL for that looks 

like 

esearch.fcgi?db=database&term=query 
 

This query returns IdList in XML format 

<?xml version="1.0" ?> 
<!DOCTYPE eSearchResult PUBLIC "-//NLM//DTD eSearchResult, 
11 May 2002//EN" 
 
"http://www.ncbi.nlm.nih.gov/entrez/query/DTD/eSearch_02051
1.dtd"> 
<eSearchResult> 
<Count>255147</Count>   # total number of records matching 
query 
<RetMax>20</RetMax># number of UIDs returned in this XML; 
default=20 
<RetStart>0</RetStart># index of first record returned; 
default=0 
<QueryKey>1</QueryKey># QueryKey, only present if 
&usehistory=y 
<WebEnv>0l93yIkBjmM60UBXuvBvPfBIq8-9nIsldXuMP0hhuMH- 
8GjCz7F_Dz1XL6z@397033B29A81FB01_0038SID</WebEnv>  
                  # WebEnv; only present if &usehistory=y 
      <IdList> 
<Id>229486465</Id>    # list of UIDs returned 
<Id>229486321</Id> 
<Id>229485738</Id> 
<Id>229470359</Id> 
<Id>229463047</Id> 
<Id>229463037</Id> 
<Id>229463022</Id> 
<Id>229463019</Id> 
<Id>229463007</Id> 
<Id>229463002</Id> 
<Id>229463000</Id> 
<Id>229462974</Id> 
<Id>229462961</Id> 
<Id>229462956</Id> 
<Id>229462921</Id> 
<Id>229462905</Id> 
<Id>229462899</Id> 
<Id>229462873</Id> 
<Id>229462863</Id> 
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<Id>229462862</Id> 
</IdList> 
<TranslationSet>        # details of how Entrez translated 
the query 
    <Translation> 
     <From>mouse[orgn]</From> 
     <To>"Mus musculus"[Organism]</To> 
    </Translation> 
</TranslationSet> 
<TranslationStack> 
   <TermSet> 
    <Term>"Mus musculus"[Organism]</Term> 
    <Field>Organism</Field> 
    <Count>255147</Count> 
    <Explode>Y</Explode> 
   </TermSet> 
   <OP>GROUP</OP> 
</TranslationStack> 
<QueryTranslation>"Mus 
musculus"[Organism]</QueryTranslation> 
</eSearchResult> 
 
Typical pipeline for using the EUtilities that fits our bill is 

ESearch -> EFetch 
 
We then iterate over the results of ESearch to get the IDs from <IdList>. The 

these IDs are used in EFetch utility. The URL for EFetch looks like 

efetch.fcgi?db=<database>&id=<uid_list>&rettype=<retrieval_type> 
&retmode=<retrieval_mode> 

 
 

 The XPath for the for the results looks like 

<pmc-articleset> 
 <article xmlns:xlink="http://www.w3.org/1999/xlink" 
xmlns:mml="http://www.w3.org/1998/Math/MathML" article-
type="research-article" xml:lang="en"> 
 <front> 
 <body> 
  <sec> 
  <sec> 
  <sec sec-type="conclusions"> 
  <sec sec-type="methods"> 
  <sec> 
  <sec> 
  <sec sec-type="supplementary-material"> 
 </body> 
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 <back> 
</article> 
</pmc-articleset> 
 

Each section has the textual data that can be parsed using any standard XML 

parser. Each <sec> tag defines a particular section in the document. We were 

interested only in the documents that had a defined “methods” section (<sec 

sec-type="methods">). We parsed the xml documents by traversing each 

node to reach the methods section [54]. The HTML and XML from this section 

was cleaned up using boilerpipe’s [55] implementation of the Boilerplate 

detection. Boilerplate detection algorithms help detect and remove the 

navigational clutter around the main textual content of a web page. It can also 

handle different kinds of web document formats like xml, html, json etc. 

Boilerplate detection uses shallow text features to distinguish between textual 

content and the web page navigational content. Advertisements can also be 

removed using these algorithms. The shallow text features considered by the 

algorithm are number of words, link density, element frequency, average sentence 

length, average word length and few other such quantitative linguistic features 

[56]. 

 

The extracted text was broken down into tokens using POS tagging. POS tagging 

is a technique in natural language processing which can assign part of speech tags 

to tokens per sentence. We used the HHM based POS tagging model trained on 

Medpost [57] corpus in LingPipe [58]. The MedPost tag set contains a list of 60 

part-of-speech tags. The tags are 2-4 letter abbreviations for the part-of-speech. 
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For example NN is a “noun” and NNP is a “proper noun”. Similarly, tags starting 

with “V” are for different kinds of verbs. MedPost also covers different kinds of 

punctuations, numbers and symbols. On analyzing the nouns from the broken 

down tokens, we hypothesized that these word features can be used to classify 

protein interaction detection methods. The methods’ sections of 200 full text 

articles were manually annotated and all the nouns and noun phrases were labeled 

for statistical learners. Table 5 provides an example of occurrences of few 

experimental factors in 2 categories. The experimental factors in these articles 

were separated into 17 categories viz. “ANALYSIS”, “ANTIBODY”, 

“ANTIGEN”, “CELL”, “CELLCOMP”, “ENZYME”, “EXPERIMENT”, 

“GFACTOR”, “ORGN”, “PHASE”, “PLASMID”, “PROCESS”, “PROMOTER”, 

“STRAIN”, “TECHNIQUE”, “TISSUE” and “TITLE”.  

 

Experimental factor/Interaction 

detection method 

Category pull-down two-hybrid 

34 °C Temperature 0 1 

Dulbeccos modified Eagles medium, 

fetal bovine serum 

Medium 1 1 

HeLa cells Cell line 61 39 

HEK-293 Cell line 76 46 

Western blot analysis Technique 47 268 

30 min Time 105 84 

Table	
  5:	
  Example	
  of	
  experimental	
  factor	
  features	
  and	
  their	
  occurrences	
  in	
  	
  	
  
detection	
  methods	
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The manually annotated sentences were trained to identify named entities using 

the CharLmRescoringChunker implemented in LingPipe [58]. A rescoring 

chunker uses the results from the NBestChunker and statistics gathered from 

the tag transitions in the training data to re-score each of the n-best chunkings. 

How this works is, it uses the underlying HMM model to split sentences into 

syntactic structures using tokenized character sequences. For example, consider 

the following sentence 

 

Protein|B-PROTEIN A|I-PROTEIN (|I-PROTEIN PrA|I-PROTEIN 

)|I-PROTEIN tagging|O (|O W303|B-STRAIN background|O )|O 

was|O performed|O by|O the|O PCR-based|B-TECHNIQUE 

method|I-TECHNIQUE (|O Aitchison|O et|O al|O .|O ,|O 1995|O 

)|O using|O pBXAHIS5|B-PLASMID (|O Wach|O et|O al|O .|O ,|O 

1997|O )|O .|O 

 

We use the IOB tag format to mark the range of the entities we want to model 

using HMM. In this representation, each token is tagged with one of three special 

chunk tags, I (inside), O (outside) or B (begin). A token is tagged as B if it marks 

the beginning of a chunk. Subsequent tokens within the chunk are tagged I. All 

other tokens are tagged O. The B and I tags are suffixed with the chunk type, e.g. 

B-PLASMID, I-PLASMID. Of course, it is not necessary to specify a chunk type 

for tokens that appear outside a chunk, so these are just labeled O. IOB tags are 

pretty much the standard way to represent a chunk structure [59]. The B and I tags 
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define the start and end position of a token. The intention of having these chunk 

tags is that it produces the transition states. With these chunk tags, HMM can 

identify all the tags that can follow a given tag or that can precede it. It calculates 

these state transition probabilities from the training data provided. Now, not all 

state transitions are legal. For example, I tag cannot follow an O tag. In such cases 

zero probability is emitted.  When a chunker identifies a chunk tag for a token or 

a phrase, it is usually the one with the highest state transition probability. 

According to the documentation for the HmmChunker implementation in 

LingPipe [58], the number of possible transitions can be calculated using 

 

𝑛𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 5 ∗ 𝑛𝑢𝑚𝑇𝑦𝑝𝑒𝑠! + 13 ∗ 𝑛𝑢𝑚𝑇𝑦𝑝𝑒𝑠 +   1 

 

The probability of an observed output sequence 𝒐𝟏,… ,𝒐𝒕!𝟏, produced by a state 

sequence say, 𝒊𝟏,… , 𝒊𝒕!𝟏, where 𝑡 is the length of the sequence can be given by 

 

𝑷 𝒐 =    𝑷(𝒐|𝒊)𝑷(𝒊)
𝒊

 

 

This mostly likely sequence of hidden states that is used to calculate the sequence 

of observed events is called the ‘Viterbi Path’ [60]. The output sequence of 

observed events from the Viterbi algorithm are called the first-best chunks. The 

rescoring process yields in a better result than any first-best chunker because it 

incorporates information from longer range relationships in the text [61]. For 

automated annotation of chemical entities we utilized open source chemistry 
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analysis routines implemented in OSCAR4 [24]. We used it to identify chemical 

names, reaction names and enzymes, if any. It provides name-to-structure parsing 

and vice-versa. Figure 12 shows the frequency of occurrence of the top 25 

features. 

 

 

    Figure 12: Top 25 occurring experimental factors 
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b) Experimental factor ontology look-up 

Experimental attributes use many cross-domain concepts. Due to ever increasing 

experimental data reported as per standards like MIAME [62], an expressive 

ontology, experimental factor ontology (EFO), was developed. The terminology 

used in a particular context is restricted to a set of terms that define important 

aspects of a domain or application. This was the objective behind developing 

EFO. The scope of EFO is to support the annotation, analysis and visualization of 

data at EBI. EFO has a finite set of terms pulled from anatomy, diseases and 

chemical compounds. The EFO had 609 different types for 3889 unique terms 

related to experimental factors. We used these terms for a look-up in full-text 

protein interactions’ related articles. We used the ExactDictionaryChunker 

implemented in LingPipe [58] for exact term matching against the ontology. 

LingPipe API was used instead of simple string matching because unlike latter it 

provides a nice interface for string related functions. For example, offset of the 

matched string and length. Also the dictionary can be serialized, for faster I/O. As 

mentioned before, EFO is a finite list and that is why we decided to not use a 

learning model and instead do a lookup. These entities are the uncommon 

elements (as compared to common biological entities like gene, protein) that we 

hypothesized to be the distinguishing factors between interaction detection 

methods.  
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c) Identifying common biological entities 

Mostly commonly extracted biological entities from scientific literature are genes 

and proteins. Any biomedical document is bound have mentions of gene/protein 

entities. It’s a challenge to recognize these names in text due to the ambiguity and 

existence of multiple synonyms for the same names.   Many studies have shown 

efficient extraction of such mentions using different approaches like machine 

learning, dictionary based look-up or a hybrid approach combining the two [63–

67]. A widely used corpus that has been developed to tackle this problem is the 

semantically annotated GENETAG corpus. It has been built from breaking down 

Medline abstracts into 20,000 sentences [68]. We used the GENETAG corpus in 

this case because the GENIA corpus was built using text for terms restricted to 

human, blood cell & transcription factor. Other reason for use of GENETAG was 

that is allows specific gene/protein name extraction, unlike GENIA which is 

generic. The corpus encompasses entities that can be categorized under proteins, 

DNA, RNA, viruses, lipid, cell components, atoms, body parts, cell lines, 

nucleotide etc., in all 36 classes. These labels were not considered in manual 

annotation. The common biological entities will help identify the presence of the 

protein/s if any, which can lead to identification of whether they interact. A 

confidence based rescoring chunker is used for tagging each token with one of the 

36 labels. 
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A simple graphical representation of a document with all the feature vectors is shown in 

Figure 13. 

Figure	
  13:	
  Graphical	
  representation	
  of	
  document	
  as	
  set	
  of	
  feature	
  vectors 

 

 

Classification 

 

Classification is a technique of assigning a new input vector to one or more of pre-

defined categories. A few set of quantifiable properties and features are analyzed for each 

input. These features can be ordinal, integer, real values etc. Any algorithm that 

implements classification and uses such features is a classifier. There are many classifiers 

suited for different problems. To name a few, Naïve Bayes, SVM, Logistic Regression, 

Decision Trees, Multi layer perceptron, J48, Random Forest. In this study, we chose to 

utilize the Logistic Regression Classifier. Logistic regression is one of the best 

discriminative probabilistic classifiers, measured in both log loss and first-best 

classification accuracy across a number of tasks. Using this method, we classified protein 
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interaction documents into one or more interaction detection methods. It is not possible to 

sift through all the possible combinations of parameters obtained from the documents. 

The strength of using logistic regression for our data lies in its interpretability of the 

parameter estimates. Logistic regression does not impose any restriction against them 

being correlated [69]. 

 

Logistic regression is a technique to learn functions of the form 𝒇:  𝑿 → 𝒀 or 𝑷  (𝒀|𝑿). If 

there are 𝒌 categories, the model will consist of 𝒌− 𝟏 vectors 𝜷 𝟎 ,… ,𝜷[𝒌− 𝟐]. Then 

for a given input text vector 𝒙 of dimensionality 𝒌, the conditional probability of a 

category given the input is defined to be: 

 

𝑷 𝒄𝑗𝒙 =
𝒆𝒙𝒑 𝜷 𝒄 ∗ 𝒙

𝟏+ 𝒆𝒙𝒑 𝜷 𝒊 ∗ 𝒙𝒊! 𝒌!𝟏
 

For evaluation we used F-measure, which is calculated using Precision and Recall. In 

natural language processing and text mining, a new technique can be compared to a 

current technique, using a test data to estimate if it produces a better metrics. Assuming 

the null hypothesis, that is the new technique is similar to the old technique, what is the 

probability that the results produced on test data set would be skewed in favor of the new 

technique.  If this probability is less than at least 5%, one can reject the null hypothesis 

and conclude that differences in the results are statistically relevant at that threshold level 

of 5% or less.  Precision, recall and a balanced F-score are some methods that can help 

deduce this statistical significance [70]. In other words, a good relevant hit is useful to the 

user, but a bad irrelevant hit can be time consuming and cost ineffective. Therefore, 

measure of quality is based on relevance of documents returned by the system.  The 
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topmost documents are especially important since the user will mostly read them. A non-

relevant document at top of the list will thus have a higher cost associated with it [71]. 

 

Precision	
  is	
  the	
  probability	
  that	
  a	
  randomly	
  retrieved	
  document	
  is	
  relevant	
  i.e.	
  how	
  

well	
  the	
  system	
  performs	
  in	
  not	
  returning	
  non-­‐relevant	
  documents	
  [71],	
  [72].	
   	
  It	
  is	
  

also	
  known	
  as	
   the	
  positive	
  predictive	
  value,	
  which	
   is	
  defined	
  as	
   the	
  proportion	
  of	
  

positive	
   test	
   results	
   that	
   are	
   true	
   positives.	
   	
   Precision	
   takes	
   all	
   documents	
   into	
  

account,	
  but	
  a	
  threshold	
  can	
  be	
  set	
  that	
  considers	
  only	
  topmost	
  results	
  returned	
  by	
  

the	
  mining	
  system.	
  This	
  is	
  called	
  precision	
  at	
  n.	
  [72]	
  

	
  

Mathematically,	
  Precision	
  can	
  be	
  defined	
  as	
  [71],	
  

	
  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛    (𝑃)   =   
Number  of  Relevant  Documents  Retrieved  (X)
Total  Number  of  Retrieved  Documents  (Y)   

	
  

Recall	
  is	
  the	
  probability	
  that	
  a	
  randomly	
  selected,	
  relevant	
  document	
  is	
  retrieved	
  in	
  

the	
  search	
  results	
  i.e.	
  how	
  well	
  the	
  system	
  performs	
  in	
  finding	
  relevant	
  documents	
  

[71],	
   [72].	
   A	
   100%	
   recall	
   value	
   can	
   be	
   achieved	
   by	
   a	
   system	
   returning	
   all	
   the	
  

relevant	
   documents	
   from	
   the	
   entire	
   collection.	
   Therefore,	
   recall	
   by	
   itself	
   is	
   not	
   a	
  

good	
  measure	
  of	
  quality	
  of	
  the	
  system	
  [71].	
  	
  

Mathematically,	
  Recall	
  can	
  be	
  defined	
  as	
  [71],	
  

	
  

𝑅𝑒𝑐𝑎𝑙𝑙    (𝑅)   =   
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡  𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠  𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑  (𝑋)
Total  Relevant  Documents  in  Collection  (Z)   

 



	
   54	
  

Recall and precision are inversely related. As precision goes up, recall goes down and 

vice versa.  This relationship depends on the language used for retrieval. If the systems 

combines Boolean (to include synonyms, related terms, general terms, etc.) rather than 

proximity operators, precision will suffer because synonyms may not be exact synonyms, 

and irrelevant document retrieval increases. Unfortunately if the system does not use 

these Boolean operators, it will not achieve high recall [73]. 

F-measure or F1 score is the measure of a test’s accuracy, which takes the harmonic 

mean of precision and recall into consideration [72]. 

𝐹 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

 

Precision and recall are evenly weighted in the above formula. 

 

 

 

 

 

 

 

	
  

	
  

 

 

Figure	
  14:	
  Visual	
  representation	
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  evaluation	
  method	
  statistics	
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Accuracy of a system can be calculated by 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 

The accuracy of a system can be defined as the ratio of closeness in measurement of a 

certain quantity to the quantity’s true value [74]. The accuracy, in general, is a measure of 

how well a system can perform.  

 

Generalization of learning of a process of applying results from a sample and applying it 

to a population. This requires the sample to be randomly selected and to be a 

representative of the population. A fundamental point behind generalization is that 

statistical numbers depend on the process by which they were derived [75]. In simple 

words, for a system to perform well on an unknown test dataset, it has to perform with 

100% accuracy (in theory) on the known train dataset. Only then can a system be said to 

have generalized. When a randomly selected sample, with features representative of the 

whole dataset, is tested using such a system the outcome can be relied upon.  

 

Extraction of protein interaction sentences with experimental evidences 

The main aim for our study has been to categorize documents containing protein 

interactions into relevant interaction methods. This will greatly aid in the process of 

manual curation, where experts do not have to go through the full article to be able to get 

a perspective of what interaction detection method is discussed in the article. To make it 

even easier for extracting complete protein interaction information, we have attempted to 

retrieve the sentences with mentions of interacting proteins along with the interaction 

detection method. We are using Lucene [76] and its full-text indexing capabilities along 
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with a set of custom rules for acceptable results. A document is searched for sentence-

based evidence to validate the occurrence and extraction of protein interaction. The 

outcome of classification of document into interaction detection method is used along 

with certain rules to search. A Boolean search query, for example would be 

 

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑒𝑡ℎ𝑜𝑑  𝐴𝑁𝐷  𝑛𝑢𝑚_𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠   >   2  𝐴𝑁𝐷  𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑣𝑒𝑟𝑏   

 

The score of query for document correlates to the cosine-distance or dot product between 

document and query vectors. A document whose vector is closer to the query vector is 

scored higher. Precision is the percentage of relevant documents among all the retrieved 

documents. Recall is the percentage of relevant documents that are retrieved in response 

to a query. Precision and recall cannot be regarded as measure of effective retrieval. 

However, the effort required to sort out all the relevant documents from the retrieved set 

of documents could be pretty high. The use of 𝑎𝑛𝑑 operator, like in the above query, 

narrows the search, thus improving precision at the cost of recall [77].  

 

Evaluation against BioGRID 

 

BioGRID only annotates data that is supported with experimental evidence in scientific 

literature. It annotates two kinds of interactions: protein and genetic. BioGRID does not 

directly annotate using the PSI-MI standards. However, a large set of annotations can be 

directly mapped to the PSI-MI vocabulary [1]. We validated our algorithm against a test 
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dataset and also a small BioGRID dataset. Number of entries in BioGRID that map to 

PSI-MI ontology: 

 

259256  MI:0254 (genetic interference) 

208238  MI:0004 (affinity chromatography technology) 

78948  MI:0018 (two hybrid) 

29667  MI:0096 (pull down) 

19381  MI:0401 

12289  MI:0415 (enzymatic study) 

7473  MI:0090  

2227  MI:0686  

2116  MI:0428 (imaging technique) 

1711  MI:0114 (x-ray crystallography) 

 822  MI:0047 (far western blotting) 

 623  MI:0055 (fluorescent resonance energy transfer) 

 

Table 6: BioGRID entries mapping to PSI-MI ontology 

 

We selected 75 documents from MI:0004, MI:0018 and MI:0096 for further validating 

our approach. The reason we selected these interaction detection methods was that it had 

full-text articles available in our test data. 
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Figure	
  15:	
  Distribution	
  of	
  interaction	
  detection	
  methods	
  in	
  BioGRID	
  data 
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CHAPTER FOUR: RESULTS 

 

Other than the top 25 detection methods, the rest did not have enough full-text articles 

associated with it in the training data. The less popular methods had only 1-10 articles 

falling under its category. As we are approaching the problem with context specificity, 

less training data would mean less context specific features. Hence, we chose to proceed 

with the top 25 experimental methods, which contributed to almost 90% of the training 

data. 

Evaluation of generalization in learning 

Before testing the performance of the systems on the test data, we tried evaluating the 

performance against the train data itself. This is done to understand if the system 

generalizes. We trained a total of 4598 documents and tested on the same 4598 

documents. The system performed with an accuracy of 93.68% and a maximum F-

measure of 59.6%. It showed a very high specificity of 96.7%, which indicates low, type 

I error rate.   
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Figure 16: PR curve for evaluating generalization of system. Training and testing was 
performed using the same dataset 

 

Evaluation against test data 

For testing on gold standard data that had 300 documents, we performed multiple runs of 

logistic regression classifier by slightly tweaking the training data. The results in Table 7 

are average values from multiple runs for each type. We also performed 10-fold cross 

validation on each run. Also we randomly selected features from annotated entities, 

common biological attributes or experimental factors. For the runs 2, 3 the combinations 

of all feature performed the best for us. For balancing the data, we randomly selected 

similar numbers of articles in the training data for each experimental method. In the same 

run, we also increased the data in the order 20%, 40%, 60%, 80% and then the whole set. 

This run performed the best for us with a F-measure of 47.6%. The other run we 
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performed was using the Top 6 experimental methods MI:0006, MI:0007, MI:0096, 

MI:0018, MI:0114, MI:0071. We resampled the data with every run. The overall 

performance for this run showed a F-measure of 45.2%. Resampling can help with 

altering the original class distribution. This further results in distortion of output of the 

classifier. To recalibrate the output every time to match the original class distribution is a 

challenging task. In our case, the lack of such recalibration may have resulted in the over-

estimation of probability of the minority class. We also observed that the best 

performance was achieved when a minimum of 250 features was used. 

# Data Accuracy F-Measure 

1 All data 0.80633 0.386 

2 Balanced data 0.75108 0.476 

3 Top 6 0.7127 0.452 

Table 7: Classification performance for multiple runs on test data  

Detailed results of each individual run are tabulated below 
 
	
  

Accuracy F-Measure Comment on data 

0.75108 0.475675676 With half data of MI:0006, MI:0007, 

MI:0096, MI:0018, MI:0004, MI:0114 

0.90978 0.404278846 Without MI:0006, MI:0007, MI:0096, 

MI:0018, MI:0004, MI:0114 

0.80633 0.38585034 8 categories, minFeature=250, 

numFolds=1000 
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0.80633 0.38585034 8 categories, minFeature=750, 

numFolds=1000 

0.92734 0.323575949 Without MI:0006, MI:0007, MI:0096 

0.75696 0.318196721 With MI:0006, MI:0007, MI:0096, 

MI:0018, MI:0004, MI:0114 

0.93459 0.299576271 All data, minFeature=250, 

numFolds=1000 

0.926 0.290890585 Without MI:0018, MI:0004, MI:0096, 

MI:0114 (BioGRID) 

0.80562 0.269704433 8 categories with more than 150 

documents 

0.80562 0.269704433 8 categories with feature set 2 

0.92982 0.235658915 Half data in MI:0018, MI:0006, MI:0007, 

MI:0096 

0.933461538 0.197631579 All data, minImprovement=0.00001 

0.9306 0.176581197 With all 25 categories 

Table	
  8:	
  Detailed	
  results	
  of	
  classification	
  run	
  by	
  sampling	
  data	
  

 

We chose to use the Precision-Recall evaluation methodology, which can be combined in 

a single quality measure, the F-measure, as reported in Table 7. Precision quantifies the 

amount of noise in the output of a detector, while Recall quantifies the amount of ground-

truth detected. A summary statistic for the performance of a classifier is reported by 

maximal F-measure on the PR curve. Figure 17 shows a precision-recall curve with un-
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interpolated data. Although the curve is in the lower left portion of the graph, indicating 

low overall performance of the classifier with an area under curve of 31.44%, it has 

shown a maximal F-measure of 61.8%. Maximal F-measure is the highest on the surface 

of the curve. Maximum F-measure is, as mentioned before an overall summary statistic. 

And the F-measure in Table 8 is the micro-average value calculated from the summation 

of individual TP, FP and FN for each run for the particular set of data.  

For further evaluation of the system, we trained the system with the top five categories 

which had the most number of training documents and then tested it against the whole 

test set. The system will be said to be performing well, if it can identify most of the true 

Figure	
  17:	
  Precision-­‐Recall	
  curve	
  with	
  maximal	
  F-­‐measure 
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negatives, as the test data will have categories that were not used to train the classifier. 

For training we used MI:0006 (anti-bait coimmunoprecipitation), MI:0007 (anti-tag 

coimmunoprecipitation), MI:0018 (two hybrid), MI:0096 (pull down), MI:0114 (x-ray 

crystallography). We trained a total of 2572 documents under these categories. On testing 

it against the complete set of 300 documents in 25 categories. It could identify total of 60 

positive references and 469 negative ones. The total number of cases is 529 due to the 

overlap of documents under certain categories. When tested against the same five 

categories that it was trained against it identified 60 positive references and 207 negative 

references. It indicates that the classifier did not fail to identify the true positives. 

However, it could also identify the true negatives thus keeping a low type I error rate. 

Some of the top 5 features for the top 5 interaction detection methods are listed below 

# anti-bait 
coimmunoprec
ipitation 

anti-tag 
communopreci
pitation 

two hybrid pull down x-ray 
crystallograph
y 

      
1 immunoprecipit

ation  
immonuprecipit
ation 

PCR GST Crystal structure 

2 transfection  transfection Cytoplasm deletion Monomer 
residues 

3 NaCl  deletion GST EDTA Hydrogen bonds 
4 phosphorylation nucleus Mammalian 

cells 
light Electron density 

5 Immunoblotting  Western 
blotting 

Saccharomyces 
cerevisiae 

E. coli temperature 

Table 9: Top 5 features for top 5 categories 
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We validated the results of classification against BioGRID by extracting experimental 

evidence based sentences for protein interactions. Among all the PubMed references used 

in BioGRID, 75 were available as full-text in our test data. Out of the 75, 7 articles 

belonged to MI:0018, 23 belonged to MI:0096 and 45 belonged to MI:0004. We 

observed that just one article with PMID 20508643 under the category MI:0004 had 

reported 757 interactions. However, there was not even a single mention of the word 

“affinity chromatography technology” in the document. Neither were there any mentions 

of synonyms for MI:0004, which are ‘affinity purification’ and ‘affinity chrom’. The aim 

of our study is to annotate mentioned of protein interactions with experimental evidence. 

As there were no mentions of the method used in most of the articles associated with 

‘affinity chromatography technology’, we proceeded with the articles falling under other 

2 categories, MI:0018 and MI:0096. These 2 interaction methods had mentions of 64 

interactions across 30 full-text articles. 3 of these articles over-lapped between the 2 

methods. The classification using only these two methods for training and testing 

performed well with a F-measure of 69.91%. We indexed all the unique 27 documents 

using Lucene [76]. We processed 32,205 sentences in all to identify 39 sentences that 

match our Boolean search pattern. Amongst these 39, 20 had mentions of protein 

interactions along with an experimental method giving us a precision of 51.28% and a 

low recall of 31.25%. We manually verified these interactions correctness of 

experimental evidence. Some examples of relevant search results retrieved 

PMID: 18687693 
Sentence #: 286 
Sentence: DISCUSSION Herein, using the two-hybrid system, 
we 

identified DP-1 as a SOCS-3-interacting protein. 
IMT: two hybrid 
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Proteins: DP-1, SOCS-3 
 
 
PMID: 18337465 
Sentence #: 202 
Sentence: (B) By yeast two-hybrid assays, the UNC-89 PK2 
region 

interacts with SCPL-1, but not SCPL-2, -3, or -4. UNC-
89 PK2|SCPL-1 

IMT: two hybrid 
Proteins: UNC-89 PK2, SCPL-1 
 
 
PMID: 19941825 
Sentence #: 878 
Sentence: Rep Interacts with DnaB (A) Binding of Rep and 
UvrD to 

surface-immobilized E. coli and B. stearothermophilus 
DnaB (860 and 1705 resonance units, respectively), as 
measured by surface plasmon resonance. 

IMT: surface plasmon resonance 
Proteins: DnaB (A, Rep, UvrD, 
 
 
PMID: 19747491 
Sentence #: 369 
Sentence: Surface plasmon resonance analysis SPR analyses 
of 

RelB–RelE and RelB–Lon interactions were carried out 
on a Biacore 3000 instrument (Biacore AB) equipped 
with a CM5 sensor chip. 

IMT: surface plasmon resonance 
Proteins: RelB, RelE, RelB, CM5 sensor chip, 
 
 
PMID: 18945678 
Sentence #: 289 
Sentence: Confocal fluorescence microscopy of HEK293 cells 

transiently expressing either myosin RLC fused to YFP 
or NR2A-(1–1028) fused to CFP (hereafter known as 
NR2A) revealed a predominant intracellular 
distribution of both proteins that could be clearly 
distinguished from that of YFP or CFP alone (Fig. 6, 
compare YFP alone in A–C with D–F and G to H; CFP 
alone is not shown). 

IMT: fluorescence microscopy 
Proteins: myosin RLC, YFP or NR2A-(1, NR2A, YFP, Fig. 6, C, 
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PMID: 18713736 
Sentence #: 178 
Sentence: D, fluorescence microscopy of CHO pgsA-745 cells 

transfected with a mouse GPIHBP1 expression vector, 
revealing that the binding of DiI-labeled chylomicrons 
to GPIHBP1 can be blocked with immunopurified 
antibodies against the acidic domain of GPIHBP1. 

IMT: fluorescence microscopy 
Proteins: GPIHBP1, immunopurified antibodies, acidic 
domain, GPIHBP1, 
 
 
PMID: 18682389 
Sentence #: 296 
Sentence: CT-Mlp1 and Mlp1-NBD were expressed in yeast 
cells 

expressing ΔRGG-Nab2-GFP, which displays localization 
throughout the cell (36), and ΔRGG-Nab2-GFP was 
visualized by direct fluorescence microscopy. 

IMT: fluorescence microscopy 
Proteins: CT-Mlp1, Mlp1-NBD, RGG-Nab2-GFP, 
 

PMID: 19088068   
Sentence ID: 254  
Sentence: SDS-PAGE (14% gel) and Western blotting analysis 
of 

H2AZ pull-down by SWR1(1– 681) or SWR1(⌬N2) complexes 
at the 0.2 or 0.3 M KCl condition.  

IMT: pull down  
Proteins: SWR1, SWR1, N2) complexes,   
 
 
PMID: 19088068   
Sentence ID: 334  
Sentence: Recent studies have shown that an N-terminal 
subdomain 

(residues 340 – 411) of Swr1, the HSA domain, is 
sufficient to pull-down Arp4 and Act1 (42), and thus 
can be considered as a binding platform for Arp4 and 
actin.  

IMT: pull down  
Proteins: N-terminal subdomain (residues 340 – 411, Swr1, 
HSA domain, Act1, Arp4,  
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A graphical representation of the evidence extraction, using search is shown in Figure 18.  

Figure	
  18:	
  Graphical	
  representation	
  of	
  search	
  results	
  for	
  evidence	
  extraction.	
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PMID Interactor A Interactor B Interaction 

detection 

method 

18337465 UNC-89 SCPL-1 two hybrid 

18337465 UNC-89 PK2 SCPL-1 two hybrid 

18337465 UNC-89 PK2 SCPL-1 two hybrid 

18337465 SCPL-1 Fn3-Ig-PK1 two hybrid 

18337465 protein phosphatase UNC-89 two hybrid 

18687693 SOCS-3 DP-1 two hybrid 

19112176 TDP-43 UBQLN two hybrid 

19112176 Polyubiquitylated TDP-43 UBQLN two hybrid 

19164295 TRF1 RLIM two hybrid 

18840606 MLL1 GST pull down 

18840606 GST-MLL WDR5 pull down 

19088068 HSA domain Arp4 and actin pull down 

19088068 N-terminal Region of Swr1 H2AZ pull down 

19112176 TDP-43 UBQLN pull down 

19561358 anti-His6 antibody FANCD2 pull down 

20200159 Tup12 Lkh1 pull down 

20200159 Lkh1 
Tup11 and 

Tup12 
pull down 

20200159 
Lkh1 ED665H cells 

containing pESP 

Tup11 and 

Tup12 
pull down 

20339350 GST-USP9x HisEFA6A pull down 

20407420 TOC1 PRR5 pull down 

 

Table 10: Protein interaction mentions with experimental evidence that are present in 
BioGRID 
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CHAPTER FIVE: DISCUSSION 

 

 

With this study we approach the task of annotating protein interactions with experimental 

data using context specific information. For example, in the context of protein 

interactions and experimental factors the most important biological attributes that can 

serve as features for text mining techniques are the experimental factors, and biological 

named entities. Feature extraction is done from a section of document that mostly 

explains setup of the study. Unlike conventional techniques, any possible feature from the 

text is not utilized. Biological outcome can vary depending on a lot of factors. For 

example, a peptide bond can break in the presence of water. Such a text mining approach 

can control the reliability of the results, in case of biological data. Though the 

performance of our system is not very high, it can still bring up evidences of 

experimental methods for annotating protein interactions. One of the reasons for the low 

performance of our system is the availability of data. Not many of the PubMed references 

from BioGRID are publicly available through PubMed Central OAI (open access). This 

approach is heavily dependent on accessible full-text documents. The high imbalance of 

data for certain experimental methods can cause statistical learners to over-estimate 

probability for less occurring classes. On the other hand, with well-balanced data, our 

system showed pretty good performance. Another concern with information extraction, 

like in this case, is the format of data. PDF files are not the easiest to parse. On 

conversion to plain text, the layout is found to be broken, sentences are incomplete, and 



	
   71	
  

symbols cannot be represented in ASCII etc. This again stresses on the fact that there 

needs to be an easily readable open document format.  

 

Running our approach is realistic as compared to the curation effort that is put behind 

each document. With the utilization of such an approach, manual curators can get a 

perspective of what experimental method the document is about. They will also have the 

protein interaction sentences with experimental evidence. The approach justifies within 

an effort to speed-up the process of curation, with a long-term goal of annotating and 

linking all the possible literature there is. The task is more than classifying only the 

textual features. It is about classifying features pertaining to the given context. We 

observed that features from all the defined categories were covered, however the 

techniques, strains and medium were ranked higher. Also we observed that the 

documents related to ‘affinity chromatography technology’ that we obtained from the test 

data that have been annotated on BioGRID [3] hardly had the mention of the words: 

‘affinity’ and ‘chromatography’. So even if the document is correctly classified as being 

related to affinity chromatography, we could not pull up sentence based evidences for 

protein interactions. 

 

We used the PR curve evaluation method over the ROC curve evaluation. They key 

difference between ROC and a PR curve is that the ROC curve will be the same no 

matter what the base probability is. This makes the PR curve a little more useful. A ROC 

curve is made up of recall/sensitivity and specificity, which are both probabilities 

conditioned on true class label. Precision is a probability conditioned on your estimate of 
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the class label and will thus vary if you try your classifier on multiple classes. This 

difference may not matter in case of a binary classification like, for example, is the given 

token a gene or not. This is because, in such a case a question like “What is the 

probability that the token is a gene given my classifier say it is?” is directly answered. In 

this study the expected out for our classifier is not just predicting if the document is 

related to a interaction detection method, but to correctly assign a class label to the 

document. Thus, a PR curve evaluation fits our scope better. 

 

An argument that can be put forth for such an approach is why use classification and then 

search using the results of prediction. It is, in our opinion, a valid point. However, the 

problem at hand is not just extracting sentences with mentions of interacting proteins and 

experimental methods. The challenge is to condense the document pertaining to a study 

mainly involving protein-protein interactions identified using a certain interaction 

detection method. For example, consider the data mentioned in Table 5. A simple search 

using queries like “two hybrid” or “pull down” might return all the sentences with its 

mention. However, that does not justify if the protein interactions in the document were 

identified using either “two hybrid” or “pull down”. If we look at the contents of the 

document we can se that it may contain; 34 °C (1), Dulbeccos modified Eagles medium, 

fetal bovine serum (2), HeLa cells (3), HEK-293 (4), Western blot analysis (5), 30 min 

(6). With utilization of classification techniques, if we come across a feature vector 

(𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑑:  𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑎𝑙𝑢𝑒 ) like 1: 1, 2: 1, 3: 39, 4: 46, 5: 268, 6: 84 , we can, with 

certain confidence, say that the document is about “two hybrid” interaction detection 
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method. Similarly if the feature vector looks like 1: 0  2: 1, 3: 61, 4: 76, 5: 47, 6: 175, we 

can say the document is about the method “pull down”.   

 

Following is an enumeration of some of the critical issues of the system with the feasible 

solutions 

1. One of the major issues is due to unclean data. The data available is converted 

from PDF format to text. PDF to text conversion has a few drawbacks. One 

drawback is non-ASCII to ASCII conversion of characters. On conversion of PDF 

to text, the output is found to have broken layout, incomplete sentences and as 

mentioned before broken conversion of non-ASCII characters. This adds a lot of 

noise. 

 A feasible solution would be availability of text in a plain text clean readable 

format. If the document is converted to plain text from PDF the algorithms have 

to be better at handling character encoding.  

2. With PDFs or text documents, the different sections of a document cannot be 

identified. The introduction or the methods section is not distinguishable from the 

supplementary material. Even a mention of some of the feature tokens goes 

through the training and testing process. 

 An open and clearly defined document format can be a solution to this problem. 

The XML format provided by PubMed Central has clearly defined sections in the 

document, which can avoid unnecessary consumption of data from rest of the 

document. 



	
   74	
  

3. The training data is very unevenly distributed in each of the categories. Some 

categories have around 700 documents in training, while some other have around 

10-30. The high imbalance of data for certain experimental methods can cause 

statistical learners to over-estimate probability for less occurring classes. 

 One way to improve this issue is to add more data. However, due to less usage of 

some of the categories, there are not sufficient published articles available for 

those categories. Another approach to solve such a problem would be to use data 

resampling or extrapolation 

 

We used LingPipe [58] for most of the implementations that were required for the study. 

LingPipe is a very well implemented and documented software package. It is widely used 

in the academia, as the source if freely available. The tool also has over 50 citations in 

published articles. An important feature is it provides trained models on popularly 

distributed biomedical corpus to named entity recognition [78]. This makes it a tested and 

evaluated tool for research purposes. LingPipe provides well-implemented and intuitive 

interfaces to some of the common text manipulation tasks. With about 4000 documents 

distributed into 25 different categories for training the logistic regression classifier, the 

task was computationally exhaustive. The number of feature vectors is calculated by 

𝑛𝑢𝑚𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑠 =   𝑛𝑢𝑚𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 − 1. Our feature vectors were dense as they 

were composed of 200+ features. Moreover, due to overlap of certain documents between 

interaction detection methods the feature vectors were correlated. This is also one of the 

reasons we chose a logistic regression classifier. However, this resulted in a 

computationally exhaustive training process, which also made it very time consuming. 
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For running 10 documents under 3 categories, with feature extraction and probability 

estimation, the process took about 45 minutes. Thus we broke down the problem by 

caching the features from training and testing data. We used file-based cache for features 

of each full-text document. The PubMed ID was used as the cache identifier. For training 

and testing we just loaded the features for a particular document identified by it PMID 

from the respective cache files. This reduces the task of feature extraction at runtime, and 

thus reduces he consumption of system memory. Also, whenever a feature set for a 

document is required, it is available for look-up using the PMID. Thus, it is not required 

to save all the features in the memory all the time.  Another reason to use LingPipe has 

been its implementation in Java. Java is a beautifully designed, to have few 

implementation dependencies. It is concurrent and an object oriented language. It is well 

backed up by Oracle and the open source community. It can run on any Java Virtual 

Machine regardless of the computer architecture. It is a robust, secure, interpreted, 

threaded and a dynamic language. The idea behind developing Java was “Write once, run 

anywhere”. Java also has the maximum number of natural language processing toolkit 

implementations as compared to any other language. This is a good option to have for 

exploratory purposes. Some of the other popular natural language processing toolkits in 

Java are Mallet [79], OpenNLP and Stanford NLP.  

 

For graphics and plotting we used the ggplot2 graphics package [80] for R stats. R stats is 

a free programming language and software environment for statistical computing and 

graphics. It is a very popular language among data miners. It is a very easy to use 

scripting language and nicely implemented statistics libraries at the core.  
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The goal of the study has been to conceptualize and demonstrate how manual curation of 

protein-protein interactions can be efficiently speeded up. And thus, we chose a decently 

performing classifier for evaluation. The aim has not been to run the same data against 

multiple different classifiers to identify the best performing classifier. We wanted to 

demonstrate that a highly manual task of protein-protein interaction curation could be 

performed faster with use of text mining. Due to the noise in textual data, along with the 

complexity of use of natural language processing techniques the expert data curators have 

not been able of seriously consider the automated approach. Making it easy to apprehend 

and demonstrating the potential of such an automated approach has been our aim.   
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CHAPTER SIX: CONCLUSION 

 

In this study we have presented a context specific mining approach for annotating protein 

interactions with experimental evidence. Methods used so far for extracting protein 

interaction information have reported binary interactions between pairs of proteins. With 

this approach we support these binary interactions with experimental evidence. The 

performance of any machine learning system depends on the availability of data. The 

more the data, the better the system would perform. Though, our system does not have a 

very high performance, we have demonstrated that such an approach can help in the task 

of manual curation. In the future, we want to develop efficient scoring techniques to add 

confidence to the extracted information. Furthermore, we also want to annotate the 

interacting protein pair with more experimental information that just the detection 

methods. We want to build an incremental learning system that can adapt and learn 

continuously. Such an approach can continuously improve a system with high data bias 

by improving without having to train with the whole data every time.  
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APPENDICES 

Appendix A: Ontology for interaction detection method with ID Term mapping 

MI:0004 affinity chromatography technology 
MI:0006 anti bait coimmunoprecipitation 
MI:0007 anti tag coimmunoprecipitation 
MI:0008 array technology 
MI:0010 beta galactosidase complementation 
MI:0011 beta lactamase complementation 
MI:0012 bioluminescence resonance energy transfer 
MI:0014 adenylate cyclase complementation 
MI:0016 circular dichroism 
MI:0017 classical fluorescence spectroscopy 
MI:0018 two hybrid 
MI:0019 coimmunoprecipitation 
MI:0020 transmission electron microscopy 
MI:0027 cosedimentation 
MI:0028 cosedimentation in solution 
MI:0029 cosedimentation through density gradient 
MI:0030 cross-linking study 
MI:0031 protein cross-linking with a bifunctional reagent 
MI:0038 dynamic light scattering 
MI:0040 electron microscopy 
MI:0042 electron paramagnetic resonance 
MI:0045 experimental interaction detection 
MI:0046 experimental knowledge based 
MI:0047 far western blotting 
MI:0048 filamentous phage display 
MI:0049 filter binding 
MI:0051 fluorescence technology 
MI:0052 fluorescence correlation spectroscopy 
MI:0053 fluorescence polarization spectroscopy 
MI:0054 fluorescence-activated cell sorting 
MI:0055 fluorescent resonance energy transfer 
MI:0065 isothermal titration calorimetry 
MI:0066 lambda phage display 
MI:0067 light scattering 
MI:0069 mass spectrometry studies of complexes 
MI:0071 molecular sieving 
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MI:0077 nuclear magnetic resonance 
MI:0081 peptide array 
MI:0084 phage display 
MI:0089 protein array 
MI:0091 chromatography technology 
MI:0096 pull down 
MI:0097 reverse ras recruitment system 
MI:0099 scintillation proximity assay 
MI:0104 static light scattering 
MI:0107 surface plasmon resonance 
MI:0108 t7 phage display 
MI:0111 dihydrofolate reductase reconstruction 
MI:0112 ubiquitin reconstruction 
MI:0114 x-ray crystallography 
MI:0115 yeast display 
MI:0226 ion exchange chromatography 
MI:0227 reverse phase chromatography 
MI:0228 cytoplasmic complementation assay 
MI:0229 green fluorescence protein complementation assay 
MI:0230 membrane bound complementation assay 
MI:0231 mammalian protein protein interaction trap 
MI:0254 genetic interference 
MI:0276 blue native page 
MI:0369 lex-a dimerization assay 
MI:0370 tox-r dimerization assay 
MI:0397 two hybrid array 
MI:0398 two hybrid pooling approach 
MI:0399 two hybrid fragment pooling approach 
MI:0402 chromatin immunoprecipitation assay 
MI:0404 comigration in non denaturing gel electrophoresis 
MI:0405 competition binding 
MI:0406 deacetylase assay 
MI:0410 electron tomography 
MI:0411 enzyme linked immunosorbent assay 
MI:0412 electrophoretic mobility supershift assay 
MI:0413 electrophoretic mobility shift assay 
MI:0415 enzymatic study 
MI:0416 fluorescence microscopy 
MI:0417 footprinting 
MI:0419 gtpase assay 
MI:0420 kinase homogeneous time resolved fluorescence 
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MI:0423 in-gel kinase assay 
MI:0424 protein kinase assay 
MI:0426 light microscopy 
MI:0428 imaging technique 
MI:0432 one hybrid 
MI:0434 phosphatase assay 
MI:0435 protease assay 
MI:0437 protein tri hybrid 
MI:0440 saturation binding 
MI:0510 homogeneous time resolved fluorescence 
MI:0515 methyltransferase assay 
MI:0516 methyltransferase radiometric assay 
MI:0588 3 hybrid method 
MI:0605 enzymatic footprinting 
MI:0655 lambda repressor two hybrid 
MI:0657 systematic evolution of ligands by exponential 

enrichment 
MI:0663 confocal microscopy 
MI:0676 tandem affinity purification 
MI:0678 antibody array 
MI:0697 dna directed dna polymerase assay 
MI:0700 rna directed rna polymerase assay 
MI:0726 reverse two hybrid 
MI:0728 gal4 vp16 complementation 
MI:0729 luminescence based mammalian interactome mapping 
MI:0807 comigration in gel electrophoresis 
MI:0808 comigration in sds page 
MI:0809 bimolecular fluorescence complementation 
MI:0825 x-ray fiber diffraction 
MI:0826 x ray scattering 
MI:0841 phosphotransfer assay 
MI:0858 immunodepleted coimmunoprecipitation 
MI:0859 intermolecular force 
MI:0870 demethylase assay 
MI:0872 atomic force microscopy 
MI:0880 atpase assay 
MI:0889 acetylation assay 
MI:0892 solid phase assay 
MI:0920 ribonuclease assay 
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Appendix B: Running the script 

The data and the code is put in /home/bibliomix/ypandit/PpiAnnotator on 

regen.informatics.iupui.edu 

About the tool 

• There are 2 versions of the tool  

1. One that runs with full-text  

2. One that runs with extracted features (Recommended. See Notes at the 

end). 

1. With full-text data  

o The system extracts features on the fly, and all the features are held up in 

the memory. 

o Advantage: Once the model is saved after training, it can be used to 

classify any text document 

o Disadvantage:  

1. Memory usage is very high, due to in-memory loading of features. 

2. The feature chunks are extracted dynamically as the training runs. 

Hence, the classifier object is not Serializable. So it cannot be 

saved to a file.  

 

2. With features  
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o The features from each training and testing document are extracted and 

saved to individual files (identified by PMID). 

o Advantage: Works well with controlled set of training and testing data. 

Should run on low memory system. 

o Disadvantage: However, if a text document is to be classified, the features 

of that particular document are required to be in the cache that is used for 

training and testing. This is because; the data is identified by the PMID 

and not by the text itself. 

For this study, we have used the approach with features as the training and testing 

data are a controlled set 

Configuration 

Files provided on the server: 

1. PpiExtraction.jar  
2. . config.properties                        
3. data/  

o full/       
1. train/ 
2.  test/  

o features/           
1. train/                               
2. test/                                

o search/  
o model/ 

1. ne-en-bio-genia.TokenShapeChunker  
2. bio-exp_factors.CharLmHmmChunker   
3. ne-efo.Dictionary   
4. mi_imt_map.txt   

4.  categories.txt                             
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Instructions are taken from config.properties. This file has 9 input parameters 

1. data_type - This can be either full or features  

o full will expect train and test data as full-text articles 

o features will expect train and test data in the form of extracted features 

2. iterations - Integer value for number of epochs in train/test 

3. cross_folds - Integer value for number of folds for validation in train/test 

4. verbose - Boolean value to set the train/test process in verbose mode or not 

5. train_data - Path to train data folder 

6. test_data - Path to test data folder 

7. categories_file - Path to file with categories to train and test  

o Having this file helps in training/testing different classes without having to 

modify the train/test dataset 

o Only the data for classes/categories mentioned in the file with be picked 

up from train_data and test_data  

8. model - File name/path to save the trained model. Model cannot be written to file 

when using the data_type=full  

9. action - This can be either train or annotate  

1. train - This action will train and test the system against the given dataset  

 All the above parameters are required for this action to run, or else 

the system will break throwing some error. 

2. annotate - This action will use the trained model to predict top few classes 

for given text (by PMID). Using the predicted class, identified proteins 
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and part-of-speech composition of the sentence, it will search for sentence 

based evidences from the text  

 Only test_data and model are required parameters to run this action  

 

How to 

For a given 𝑐𝑜𝑛𝑓𝑖𝑔.𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 which looks like this 

#  𝑇𝑦𝑝𝑒  𝑜𝑓  𝑑𝑎𝑡𝑎    
𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠      

  
#  𝑡𝑟𝑎𝑖𝑛,𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒    
𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑎𝑖𝑛      

  
#  𝑇𝑟𝑎𝑖𝑛  /  𝑡𝑒𝑠𝑡  𝑑𝑎𝑡𝑎    
𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎/𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠/𝑡𝑟𝑎𝑖𝑛    
𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎/𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠/𝑡𝑒𝑠𝑡      

  
#  𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠  𝑓𝑖𝑙𝑒   
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠_𝑓𝑖𝑙𝑒 = 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠. 𝑡𝑥𝑡      

  
#  𝑇𝑟𝑎𝑖𝑛  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠    
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 100    
𝑐𝑟𝑜𝑠𝑠_𝑓𝑜𝑙𝑑𝑠 = 2    
𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 𝑓𝑎𝑙𝑠𝑒      

  
#  𝐹𝑖𝑙𝑒  𝑡𝑜  𝑠𝑎𝑣𝑒  𝑡ℎ𝑒  𝑚𝑜𝑑𝑒𝑙  𝑡𝑜    
𝑚𝑜𝑑𝑒𝑙 = 𝑏𝑖𝑜 − 𝑖𝑚𝑡. 𝐿𝑅𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟    

the command to run 

𝑗𝑎𝑣𝑎  − 𝑗𝑎𝑟  𝑃𝑝𝑖𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛. 𝑗𝑎𝑟  𝑐𝑜𝑛𝑓𝑖𝑔.𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 

With the above command and config, it will print something like the following on the 

terminal 
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#  𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠:  26    
#  𝑓𝑜𝑙𝑑𝑠:  2    
𝑇𝑟𝑎𝑖𝑛  𝑑𝑎𝑡𝑎  𝑠𝑖𝑧𝑒:  4315    
𝐹𝑒𝑎𝑡𝑢𝑟𝑒  𝑐𝑎𝑐ℎ𝑒  𝑠𝑖𝑧𝑒:  2114    
𝐶𝑎𝑐ℎ𝑒  𝑠𝑖𝑧𝑒:  2114    
𝐹𝑂𝐿𝐷 = 0            𝐴𝐶𝐶 = 0.9372704254484505    +/−0.01637024991072757    
𝐹𝑂𝐿𝐷 = 1            𝐴𝐶𝐶 = 0.9369430384258929    +/−0.01621875927745846    
𝐹𝑂𝐿𝐷 = 2            𝐴𝐶𝐶 = 0.9369430384258929    +/−0.01621875927745846   

 

And on a modified config, to run 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒 on a single full-text document of a 

set of full-text documents 

#  𝑇𝑦𝑝𝑒  𝑜𝑓  𝑑𝑎𝑡𝑎  
𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  

  
#  𝑡𝑟𝑎𝑖𝑛,𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒  
𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒  

  
#  𝑇𝑟𝑎𝑖𝑛  /  𝑡𝑒𝑠𝑡  𝑑𝑎𝑡𝑎  
#  𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎 =  
𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎/𝑠𝑒𝑎𝑟𝑐ℎ/  

  
#  𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠  𝑓𝑖𝑙𝑒  #  
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠_𝑓𝑖𝑙𝑒 =  

  
#  𝑇𝑟𝑎𝑖𝑛  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠  
#  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =  
#  𝑐𝑟𝑜𝑠𝑠_𝑓𝑜𝑙𝑑𝑠 =  
#  𝑣𝑒𝑟𝑏𝑜𝑠𝑒 =  

  
#  𝐹𝑖𝑙𝑒  𝑡𝑜  𝑠𝑎𝑣𝑒  𝑡ℎ𝑒  𝑚𝑜𝑑𝑒𝑙  𝑡𝑜  
𝑚𝑜𝑑𝑒𝑙 = 𝑏𝑖𝑜 − 𝑖𝑚𝑡. 𝐿𝑅𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 

the output on running 𝑗𝑎𝑣𝑎  − 𝑗𝑎𝑟  𝑃𝑝𝑖𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛. 𝑗𝑎𝑟  𝑐𝑜𝑛𝑓𝑖𝑔.𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 should look 

something like 

𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔  𝑓𝑜𝑟  𝑃𝑃𝐼  𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑠  𝑖𝑛  18337465. 𝑡𝑥𝑡  
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𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒  𝐼𝐷:  15  

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒:  𝑌𝑒𝑎𝑠𝑡  𝑡𝑤𝑜 − ℎ𝑦𝑏𝑟𝑖𝑑  𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔  𝑢𝑠𝑖𝑛𝑔  𝑎  𝑝𝑜𝑟𝑡𝑖𝑜𝑛  𝑜𝑓  𝑈𝑁𝐶

− 89  𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔  𝑃𝐾2,𝑦𝑖𝑒𝑙𝑑𝑒𝑑  𝑆𝐶𝑃𝐿 − 1  (𝑠𝑚𝑎𝑙𝑙  𝐶𝑇𝐷  𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒 − 𝑙𝑖𝑘𝑒

− 1),𝑤ℎ𝑖𝑐ℎ  𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠  𝑎  𝐶  𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙  𝑑𝑜𝑚𝑎𝑖𝑛  (𝐶𝑇𝐷)  𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒  𝑡𝑦𝑝𝑒  𝑑𝑜𝑚𝑎𝑖𝑛.  

𝑆𝑐𝑜𝑟𝑒:  1.5956881  

𝐼𝑀𝑇:  𝑡𝑤𝑜  ℎ𝑦𝑏𝑟𝑖𝑑  𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠:  𝑃𝐾2, 𝑆𝐶𝑃𝐿 − 1, 𝑠𝑚𝑎𝑙𝑙  𝐶𝑇𝐷  𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒 − 𝑙𝑖𝑘𝑒

− 1,𝐶  𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙  𝑑𝑜𝑚𝑎𝑖𝑛,𝐶𝑇𝐷)  𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒  𝑡𝑦𝑝𝑒  𝑑𝑜𝑚𝑎𝑖𝑛,  

  

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒  𝐼𝐷:  217  

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒:  𝑇𝑜  𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒  𝑤ℎ𝑖𝑐ℎ  𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠  𝑜𝑓  𝑡ℎ𝑒  𝑈𝑁𝐶

− 89  𝑏𝑎𝑖𝑡  𝑎𝑟𝑒  𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑙𝑦  𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  𝑡𝑜  𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡  𝑤𝑖𝑡ℎ  𝑆𝐶𝑃𝐿

− 1,𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛  𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠  𝑜𝑓  𝑡ℎ𝑒  𝑠𝑒𝑔𝑚𝑒𝑛𝑡  𝐼𝑔 − 𝐹𝑛3

− 𝑃𝐾2  𝑤𝑒𝑟𝑒  𝑡𝑒𝑠𝑡𝑒𝑑  𝑏𝑦  𝑡𝑤𝑜 − ℎ𝑦𝑏𝑟𝑖𝑑  𝑎𝑔𝑎𝑖𝑛𝑠𝑡  𝑆𝐶𝑃𝐿 − 1𝑎  𝑎𝑛𝑑  

− 1𝑏  𝑓𝑢𝑙𝑙 − 𝑙𝑒𝑛𝑔𝑡ℎ  𝑝𝑟𝑒𝑦.  

𝑆𝑐𝑜𝑟𝑒:  1.5956881  

𝐼𝑀𝑇:  𝑡𝑤𝑜  ℎ𝑦𝑏𝑟𝑖𝑑  

𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠:  𝑆𝐶𝑃𝐿 − 1, 𝑆𝐶𝑃𝐿 − 1𝑎  𝑎𝑛𝑑  − 1𝑏,𝑝𝑟𝑒𝑦,  

  

𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔  𝑓𝑜𝑟  𝑃𝑃𝐼  𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒𝑠  𝑖𝑛  19088068. 𝑡𝑥𝑡  

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒  𝐼𝐷:  254  

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒:  𝑆𝐷𝑆 − 𝑃𝐴𝐺𝐸  (14%  𝑔𝑒𝑙)  𝑎𝑛𝑑  𝑊𝑒𝑠𝑡𝑒𝑟𝑛  𝑏𝑙𝑜𝑡𝑡𝑖𝑛𝑔  𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠  𝑜𝑓  𝐻2𝐴𝑍  𝑝𝑢𝑙𝑙

− 𝑑𝑜𝑤𝑛  𝑏𝑦  𝑆𝑊𝑅1(1–   681)  𝑜𝑟  𝑆𝑊𝑅1(�𝑁2)  𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑒𝑠  𝑎𝑡  𝑡ℎ𝑒  0.2  𝑜𝑟  0.3  𝑀  𝐾𝐶𝑙  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛.  

𝑆𝑐𝑜𝑟𝑒:  2.1836114  
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𝐼𝑀𝑇:  𝑝𝑢𝑙𝑙  𝑑𝑜𝑤𝑛  

𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠:  𝑆𝑊𝑅1, 𝑆𝑊𝑅1,𝑁2)  𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑒𝑠,  

  

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒  𝐼𝐷:  334  

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒:  𝑅𝑒𝑐𝑒𝑛𝑡  𝑠𝑡𝑢𝑑𝑖𝑒𝑠  ℎ𝑎𝑣𝑒  𝑠ℎ𝑜𝑤𝑛  𝑡ℎ𝑎𝑡  𝑎𝑛  𝑁

− 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙  𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛   𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠  340  –   411 𝑜𝑓  𝑆𝑤𝑟1, 𝑡ℎ𝑒  𝐻𝑆𝐴  𝑑𝑜𝑚𝑎𝑖𝑛, 𝑖𝑠  𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑡𝑜  𝑝𝑢𝑙𝑙

− 𝑑𝑜𝑤𝑛  𝐴𝑟𝑝4  𝑎𝑛𝑑  𝐴𝑐𝑡1   42 ,𝑎𝑛𝑑  𝑡ℎ𝑢𝑠  𝑐𝑎𝑛  𝑏𝑒  𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑  𝑎𝑠  𝑎  𝑏𝑖𝑛𝑑𝑖𝑛𝑔  𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚  𝑓𝑜𝑟   

𝐴𝑟𝑝4  𝑎𝑛𝑑  𝑎𝑐𝑡𝑖𝑛.  

𝑆𝑐𝑜𝑟𝑒:  2.1836114  

𝐼𝑀𝑇:  𝑝𝑢𝑙𝑙  𝑑𝑜𝑤𝑛  

𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠:  𝑁

− 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙  𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛  (𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠  340  –   411, 𝑆𝑤𝑟1,𝐻𝑆𝐴  𝑑𝑜𝑚𝑎𝑖𝑛,𝐴𝑐𝑡1,𝐴𝑟𝑝4, 

 

Notes: 

1. Data is imbalanced, so  

o Different combinations of cross_folds and iterations will show variations 

in performance. 

o For better evaluation, many different combinations of cross_folds & 

iterations along with varied number of categories in the categories_file 

have been run. 
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o For some of the runs, the data in categories/classes with low data was 

extrapolated. And the data for categories with very high distribution was 

reduced. 

o Final performance reported is an micro-average of many such different 

runs. 

2. The training and testing using full-text is very computationally exhaustive as the 

features are extracted and held in memory for analysis.  

3. To assign more memory to java, add -Xmx5000m (max memory of 5GB) to the 

command line arguments. 

	
  


