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STUDYING POST-TRANSCRIPTIONAL NETWORKS CONTROLLED BY RNA-BINDING 
PROTEINS IN MAMMALIAN TRANSCRIPTOMES AND DISCOVERING AND 
CHARACTERIZING CIRCULAR RNA USING LONG POLY (A) SEQUENCING 

Chapter 1: Introduction: Abstract and Background 

RNA-binding proteins (RBPs) are vital post-transcriptional regulatory molecules in transcriptome 

of mammalian species. It necessitates studying their expression dynamics to extract how post-

transcriptional networks work in various mammalian tissues. RNA binding proteins (RBPs) play 

important roles in controlling the post-transcriptional fate of RNA molecules, yet their evolutionary 

dynamics remains largely unknown. As expression profiles of genes encoding for RBPs can yield 

insights about their evolutionary trajectories on the post-transcriptional regulatory networks 

across species, we performed a comparative analyses of RBP expression profiles across 8 

tissues (brain, cerebellum, heart, lung, liver, lung, skeletal muscle, testis) in 11 mammals (human, 

chimpanzee, gorilla, orangutan, macaque, rat, mouse, platypus, opossum, cow) and chicken & 

frog (evolutionary outgroups). Noticeably, orthologous gene expression profiles suggest a 

significantly higher expression level for RBPs than their non-RBP gene counterparts - which 

include other protein-coding and non-coding genes, across all the mammalian tissues studied 

here. This trend is significant irrespective of the tissue and species being compared, though RBP 

gene expression distribution patterns were found to be generally diverse in nature. Our analysis 

also shows that RBPs are expressed at a significantly lower level in human and mouse tissues 

compared to their expression levels in equivalent tissues in other mammals chimpanzee, 

orangutan, rat, etc. which are all likely exposed to diverse natural habitats and ecological settings 

compared to more stable ecological environment humans and mice might have been exposed, 

thus reducing the need for complex and extensive post-transcriptional control. Further analysis of 

the similarity of orthologous RBP expression profiles between all pairs of tissue-mammal 

combinations clearly showed the grouping of RBP expression profiles across tissues in a given 

mammal, in contrast to the clustering of expression profiles for non-RBPs, which frequently 

grouped equivalent tissues across diverse mammalian species together, suggesting a significant 
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evolution of RBPs expression after speciation events. Calculation of species specificity indices 

(SSIs) for RBPs across various tissues, to identify those that exhibited restricted expression to 

few mammals, revealed that about 30%of the RBPs are species-specific in at least one tissue 

studied here, with lung, liver, kidney & testis exhibiting a significantly higher proportion of specie-

specifically expressed RBPs. We conducted a differential expression analysis of RBPs in human, 

mouse and chicken tissues to study the evolution of expression levels in recently evolved species 

i.e. humans and mice than evolutionarily distant specie i.e. chicken. We identified more than 50% 

of the orthologous RBPs to be differentially expressed in at-least one tissue compared between 

human and mouse but not so between human and an outgroup chicken in which RBP expression 

levels are relatively conserved. Among the studied tissues brain, liver and kidney showed a higher 

fraction of differentially expressed RBPs, which may suggest hyper regulatory activities by RBPs 

in these tissues with species evolution. Overall, this study forms a foundation for understanding 

the evolution of expression levels of RBPs in mammals, facilitating a snapshot of the wiring 

patterns of post-transcriptional regulatory networks in mammalian genomes. 

In our second study we focused on elucidating novel features of post-transcriptional regulatory 

molecules called as circRNA from LongPolyA RNA-seq data. The debate over presence of non-

linear exon splicing such as exon-shuffling or formation of circularized forms has finally come to 

an end as numerous repertoires have shown of their occurrence and presence through 

transcriptomic analyses. It is evident from previous studies that along with consensus-site 

splicing non-consensus site splicing is robustly occurring in the cell. Also, in spite of applying 

different high-throughput approaches (both computational and experimental) to determine their 

abundance, the signal is consistent and strongly conforming the plausible circularization 

mechanisms.  Earlier studies hypothesized and hence focused on the ribo-minus non-polyA 

RNA-seq data to identify circular RNA structures in cell and compared their abundance levels 

with their linear counterparts. Thus far, the studies show their conserved nature across tissues 

and species also that they are not translated and preferentially are without poly (A) tail with one 
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to five exons long. Much of this initial work has been performed using non-polyA sequencing 

thus probably underestimates the abundance of circular RNAs originating from long poly (A) RNA 

isoforms. Our hypothesis is if the circular RNA events are not the artifact of random events but 

has a structured and defined mechanism for their formation then there would not be biases on 

preferential selection / leaving of polyA tails while forming the circularized isoforms. We have 

applied an existing computational pipeline from earlier studies by Memczack et.al on ENCODE 

cell-lines long poly (A) RNA-seq data. With same pipeline we achieve a significant number of 

circular RNA isoforms in the data some of which are overlapping with known circular RNA 

isoforms from the literature. We identified an approach and worked upon to identify the precise 

structure of circular RNA which is not plausible from the existing computational approaches. We 

aim to study their expression profiles in normal and cancer cell-lines and see if there exists any 

pattern and functional significance based on their abundance levels in the cell. 
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Chapter 2 Studying and Elucidating Post-Transcriptional Networks Controlled by Rna-Binding 
Proteins in Mammalian Transcriptomes 
2.1 Introduction 
With the advent of high-throughput techniques in RNA-sequencing, studying mammalian 

genomes for uncovering evolution by examining gene expression profiles has become feasible. 

Earlier studies focused on identifying selectively driven expression switches which explicate 

variations in organs, lineages and chromosomes among mammalian species. They compared six 

organs that represent all major mammalian species to unravel evolutionary intricacies of 

mammalian transcriptomes. Though overall mammalian genes are conserved and homologous; 

their differential rates of expression changes owing to differential selective pressures contribute 

to phenotypic changes in organs of mammals.1 In another study, a large-scale comparative 

analysis with perspective of studying long non-coding RNA (lncRNA) repertoire of mammalian 

genomes can be characterized. This study showed several classes of lncRNA based on their 

analysis of expressions patterns within lncRNA such as primate-specific lncRNA, ancient lncRNA 

and conserved lncRNA. Also through co-expression network analyses of lncRNA, varied potential 

novel functions for studied lncRNA were established.2 

Other studies also concentrated on studying mammalian tissue-specific conservation of splicing 

patterns. These studies provided novel insights into how mammalian genomes splicing patterns 

vary across primate and non-primate lineages. These studies also showed unlike tissue-specific 

gene expression programs which are conserved across mammalian transcriptomes, alternative 

splicing is a lineage-specific event and is conserved only in specific set of tissues.3 From these 

studies several novel, conserved and lineage-specific alternatively spliced exon signatures were 

identified. They exhibited how species-specific cis-directed splicing patterns are prevalent in 

vertebrate species and also how various other splicing events lead to diversification of splicing 

and underlie a phenotypic differences within mammalian species.3, 4  

In eukaryotes, post-transcriptional regulation of gene expression is intricate and it is essential to 

gain full understanding of vital steps of complex and yet well-coordinated gene regulation. RNA 
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binding proteins (RBPs) and Ribonucleoprotein complexes (RNPs) control extensive post-

transcriptional processing of pre-mRNA that produces a diverse collection of mRNAs in a genome 

and thus facilitate an addendum of gene regulation. RBPs have specific RNA binding affinities 

and specificities and in turn RBPs preferentially bind to only specific RNA molecules. Cells are 

able to generate numerous RNPs whose composition and arrangement of components is unique 

to each mRNA and the RNPs are further remodeled during the course of the maturation of the 

mRNA into its functional form5. Hence it is preeminent to note that during course of evolution, 

RBP structural domains and motifs undergo diverse changes in different species which enables 

them for their mRNA sequence binding specificity in a species. Various studies focusing on 

decoding one or the other steps of post-transcriptional regulation and gene dysfunctions in various 

disorders especially in cancers have been conducted and it has been shown in multiple studies 

how the interplay between different mechanisms and extensive involvement of RNA binding 

molecules occur which in turn control gene expressions. However there is no extensive study 

involving how RBPs expressions evolve in mammalian transcriptomes. We present a 

comprehensive comparative analyses of RBP expression profiles across 8 tissues (brain, 

cerebellum, heart, lung, liver, lung, skeletal muscle, testis) in 11 mammals (human, chimpanzee, 

gorilla, orangutan, macaque, rat, mouse, platypus, opossum, cow) and chicken & frog 

(evolutionary outgroups). We specifically addressed three major points while conducting these 

analyses. By studying global expression patterns of orthologous RBPs across mammals with 

respect to humans in various tissues, if the variations can across species be explained based on 

evolutionary distances. When tissue-wide expression profiles across species are compared, if we 

can uncover whether RBPs are species-specific or they are conserved in their expression levels 

across species. We also wished to study functions, domains and expression levels of RBPs which 

are species-specific versus widely expressed across the mammalian tissues. Also by conducting 

differential expression analysis of RBPs between recent mammalian lineages such as primates 

and rodents to ancient non-mammalian species such as birds, we uncovered signature RBP 
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clusters which are categorically only expressed in ancient species, while some are expressed 

only in recent species while most of the RBPs have conserved expression profile across the 

mammalian species. In all this study furnishes a snapshot of how the expression patterns of post-

transcriptional regulatory molecules are evolving in mammalian genomes.  

2.2 Materials and Methods 
 
Data for expression profiling of RNA-binding proteins in mammalian tissues 

We have illustrated an overall workflow design in Figure 1. In our study, we collected 311 RNA-

seq data samples published from previous works by Fietz et al, Brawand et al, Merkin et al and 

Necsulea et al for 11 mammalian species (human, chimpanzee, gorilla, orangutan, macaque, 

mouse, rat, platypus, opossum, and cow) and 2 evolutionary out-groups (chicken and frog) 

available from NCBI SRA resource6 1 3 2.  This data represents 8 tissues brain, cerebellum, heart, 

kidney, liver, lung, skeletal muscle, and testis. Raw RNA-seq reads were subjected to 

quantification using Sailfish- a tool for alignment free quantification. Sailfish generates k-mer 

based indexes of the reference genomes and then employs expectation maximization (EM) 

algorithm for quantification of relative transcript abundance for both paired-end or single-end 

reads.7 We ran Sailfish with latest ENSEMBL releases of reference annotations for the species 

we selected for the study.8 The details of which are mentioned in supplementary materials.  

We used transcripts per million (TPM) metric for comparison of relative abundances across and 

within tissues of mammalian species. As it was reported in previous studies, reads per kilobase 

per million reads (RPKM) cannot be the true measure of relative molar RNA concentration (RMC), 

we used TPM metric which respects invariance property and also eliminates statistical biases 

inherent while comparing data across tissues of various species9, 10. As the orthology can be 

extracted at only gene level and not transcript level, we calculated mean TPM values of each 

transcript of orthologous genes and considered this value for comparison of expressions in all 8 

tissues across 13 species [Selection of orthologous genes is explained in detail in Methods 

Section#2]. While constructing expression profiles of RBPs and non-RBPs we measured the 
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evolutionary distance of each species from humans. We utilized data and phylogenetic trees 

inferred from annotated ribosomal RNA sequence alignments from Ribosomal Database Project 

(RDP II).11 According to the phylogenetic tree, species evolved earlier than humans e.g. chicken 

originated around ~300 million years ago; are placed distant to humans. While species evolved 

later and are closer to humans e.g. chimpanzee which are originated ~8o million years ago; are 

closer to humans in an evolutionary tree. [Figure 2].   

Non-parametric Kolmogorov-Smirnov (KS) tests were performed to compare RBP vs non-RBP 

gene expression distributions in all 8 tissues across all species. We further calculated spearman 

correlation coefficients (𝜌𝜌) for all vs all tissue-species combinations RBP genes expression 

profiles. The final matrix consisted spearman coefficients of all combinations of tissues of each 

species RBP genes expression data compared against all tissues of other species in our study. 

To construct a correlation matrix we considered only primates and rodents tissues data. We 

further performed hierarchical clustering using hclust package in R and plotted results as a 

heatmap. Similar plot was constructed for non-RBP genes comparisons across primates and 

rodents to observe differential clustering results in case of RBPs and non-RBPs.  

Tree constructed from correlation coefficients comparisons of non-RBPs with tissue-species 

combinations yield similar tissues of closer species are clustered together moderately with only 

few exceptions of mouse and human tissues. The hierarchical clustering results for RBPs across 

tissues-species combinations yield a significantly different phylogenetic tree where tissues of 

same species are clustered together which means expression profile of RBPs is conserved within 

different tissues of same species. To elucidate this behavior of RBPs we tested the correlation 

coefficients of RBPs and non-RBPs by classifying the combinations of tissues and species into 

three different categories. The categories are as follows: i) correlation coefficients between 

different tissues and different species. ii) Correlation coefficients between same tissues of 

different species. iii) Correlation coefficients between different tissues of same species. [Figure 

3]. 
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Prediction of orthologous RBP and non-RBP genes using ENSEMBL Compara 

Further we classified the genes based on their human annotations as RBPs and non-RBPs.  RBPs 

set comprised of 1344 genes constituting 12788 transcripts characterized experimentally from 

various repertoires.12 13 14 15 All other genes including non-protein-coding genes were classified 

as non-RBPs in this study. This human dataset was used as a reference for deciphering a set of 

orthologous genes across other mammalian species and out groups. We used ENSEMBL 

Compara datasets to map and predict human orthologous RBPs and non-RBPs for each 

mammal. Compara is a rich data source from ENSEMBL which utilizes gene tree-based 

phylogenetic mapping of protein-coding genes across multiple vertebrate species.16 The 

parameters used for the selection of orthologous genes were %identity, biotype (strictly protein-

coding in case of RBPs) and orthology confidence score. We were able to map on an average 

80% high confidence and low confidence orthologous genes across all the species considered in 

this study. In certain cases genes could not be mapped and were discarded from study subject to 

lacking strong evidence [Supp. Fig. 1]. We considered only mapped orthologous genes (RBPs 

and non-RBPs) for expression analyses and species-specificity analyses.  

Species Specificity Index (SSI) calculations of RBPs and non-RBPs in mammalian species 

Earlier studies by Yanai et al defined a tissues specificity index (𝜏𝜏) which is calculated to get 

insights of gene expression patterns across tissues: one-tissue specific, housekeeping genes or 

midrange expressions of genes meaning expressed in subset of tissues.17 This index values vary 

between 0 signifying housekeeping genes to 1 meaning strictly tissue specific, thereby giving 

unique impression of gene expression profiles to infer evolutionary diversion of genes based on 

their expression values. From our expression profile analyses, it was seen that RBPs exhibit 

diverse expression patterns across mammals in all 8 tissues being compared. We extended the 

usage of this index analogously to calculate species specificity index which we contemplate will 

provide insights into how RBPs and other protein coding genes are evolving in mammalian 
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species considering each tissue at a time. The species specificity index for any tissue is calculated 

as:   

∑ (1 −𝑁𝑁
i=1 𝑥𝑥𝑖𝑖)
𝑁𝑁 − 1

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎  𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 

Similar to tissue-specificity index, SSI also interpolates values between 0 being expressed 

generically in multiple species while 1 suggesting species-restricted expressions. To be able to 

classify RBPs robustly we categorized RBPs based on their species specificity indices in multiple 

tissues. We term RBPs to be single-tissue species specific if they exhibit species specificity 

patterns of expressions in only one or two tissues being compared. While RBPs which are 

expressed in >3 tissues simultaneously, we term them multi-tissue species specific RBPS.  

We further employed kernel density function on SSI values of RBPs to construct kernel-density 

plots across different tissues using SM package in R. We wish to infer the global patterns of RBPs’ 

SSI in multiple tissues under study. We compared kernel density values of SSI in RBPs with other 

protein coding genes. This analysis assisted in understanding how expression patterns of RBPs 

are preferentially selected or conserved in particular tissue or set of tissues under study across 

mammals. 

Identifying differentially expressed RBPs between Human, Mouse and Chicken to uncover 

evolutionary trends   

The RBPs expression data for six tissues (brain, heart, kidney, liver, lung and testis) across three 

species (human, mouse and chicken) was subjected to differential expression analysis using 

DESeq2 package in R. DESeq2 implements a statistical inference model which takes into account 

raw read-counts for calculating log-fold changes of expression within condition specific data and 

assigns a FDR corrected p-value to each calculation. We calculated mean read-counts of gene 

from transcript levels and provided as input. We infer a gene to be differentially expressed (either 

up-regulated or down-regulated) between two species for each tissue being studied; if the log-

fold change is >1.5 and an adjusted p-value <0.05. We compare expression profiles for mouse 
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which is intermediately placed with respect to humans in mammalian species evolutionary tree 

and an evolutionary outgroup chicken. Based on p-value and fold-change filters we assign a 

binary value 1 or 0 if the gene is dysregulated or non-dysregulated respectively on comparison 

across tissues. We construct a heatmap to visualize the patterns across tissues and species; it 

clearly elucidates four distinct classes of RBPs based on their dysregulation in at-least 4 tissues 

under comparison.  The classes can be termed as I. Continuously evolving RBPs which are 

dysregulated across human, mouse and chicken II. Recently evolved RBPs which are changing 

in majority of tissues in mouse and human but not in chicken III. Ancient RBPs which are only 

dysregulated in chicken on comparisons with mouse and human IV. Non-changing RBPs which 

do not show specific trends of dysregulation in any species being compared. 

2.3 Results and Discussion 
 
RBPs are expressed significantly higher than non-RBPs across species and tissues 

Advances in expression profiling using high-throughput techniques such as RNA-seq have 

enabled us to get insights into transcriptomic expression dynamics. In various studies conducted 

earlier it was shown that RBPs play very important role in post-transcriptional and translational 

regulation of human transcriptome18, 19, 20, 21. Also it was shown that they are expressed at 

significantly higher levels than non-RBPs in context of human TCGA cancer versus healthy 

genomes. 22 23 24 25 However it is still uncertain how the post-transcriptional networks involving 

RBPs must be evolving in mammalian species. We present here a first comprehensive analysis 

showing RBP expression dynamics in mammalian species across various tissues. We selected 

six tissues (brain, cerebellum, heart, liver, kidney and testis) RNA-seq data of four mammalian 

orders namely primates such as human, chimpanzee, orangutan, gorilla, macaque; rodents such 

as mouse and rat; marsupial such as opossum; primitive egg laying mammal such as platypus and 

two outgroups chicken and frog for our expression analyses. We classified genes encoding 

proteins which have reports of RNA-binding from various literature studies into RBPs and other 

genes as non-RBPs. Then we compared expression values (TPM) of RBPs and non-RBPs in six 
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tissues across 11 mammalian species and 2 outgroups (chicken and frog) studied here. As 

explained earlier transcripts per million mapped reads (TPM) metric provides an invariant and 

unbiased measure of relative abundances of transcripts in samples. We observe that RBPs 

expression values when plotted against their non-RBP complements show a significantly higher 

expression patterns in all the mammalian and non-mammalian species studied. This trend is 

generically significant for all the tissues being compared, though the expression levels of RBPs 

are diverse in nature. We compared the distributions of RBPs expression versus non-RBPs 

across species (Kolmogorov and Smirnov p-value at 2.2e1.16). As compared to other species, 

human and mouse expression profiles are at lower levels for both RBPs and non-RBPs across 

all tissues being compared. We speculate that human and mouse show unique expression 

patterns compared to other species as they have evolved across more diverse natural habitats, 

environments and ecological settings. On the other hand, other mammalian species have a 

restricted and stable environments and ecologies, thus reducing the need of extensive post-

transcriptional regulation by RBPs in these species. Also it has been confirmed from studies 

performed earlier that human and mouse transcriptomes have high correlation with respect to 

their gene expression levels in multiple tissues for numerous genes.26  

It is shown in previous studies how the correlation between expressions levels of protein coding 

genes be accurately used to construct an evolutionary tree of mammalian lineages. It is also 

established how tissue-type and species-type are primary components of variability in gene 

expression profiles in vertebrates.27 28 This analysis helps in gaining insights into how proteins 

evolve after speciation events in various tissues of mammals. It has been shown that primates 

and rodents have a complex transcriptome and hence to decipher RBPs’ species-specific post-

transcriptional regulation has advanced in those species, we limited our analysis to include only 

higher mammals i.e. primates (human, chimpanzee, orangutan, gorilla, macaque) and rodents 

(mouse and rat) which are spread across ~90 million years in evolution. From the expression 

patterns of RBPs and non-RBPs we wanted to infer correlations between expression levels within 
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various tissues and species combinations hence we subject expression profiles of RBPs and non-

RBPs to hierarchical clustering.[Fig 2a, 2b] We calculated spearman correlation coefficients (σ) 

between every tissue of each mammalian species versus every other mammalian tissue-species 

combinations. So from all vs all comparisons of correlation coefficients of expression values, we 

infer that RBPs and non-RBPs cluster differentially. As expected, non-RBPs cluster the relative 

tissues of evolutionarily close species together confirming the observations found in earlier 

studies [Figure 2b]. On contrary, RBPs cluster within same species different tissues together [Fig. 

2a]. The variability in RBP gene expression profiles owe primarily to after-speciation events and 

factors like habitat, ecological and environments play a huge role contributing to evolution in their 

expression patterns, while non-RBPs gene expression variability owes primarily to species-type 

first and then tissue-type variation based on spacing of species on evolutionary tree.  We can 

infer that in case-of non-RBPs species evolution and tissue development is complementary. In 

case of RBPs relative or similar tissues of one species will be always clustered together.  We note 

here that above patterns are distinctively evident in many tissues of mammalian species with few 

exceptions. Clustering pattern of human and mouse tissues for non-RBPs suggests that clusters 

relative tissues are formed and also among those species there is a higher correlation than 

between any other species placing them close to each other. In summary from clustering analysis 

we infer that RBPs express in species-specific manner rather than tissue-specific manner unlike 

non-RBPs.  

Further to elucidate how correlation patterns are distributed we classify correlation coefficients 

between all vs all tissue-species combinations into three mutually exclusive sets for both RBPs 

and non-RBPs. We consider correlation coefficients between different tissues of each species 

and it forms a set I. Set II constitutes correlation values between relative tissues of different 

species e.g. correlation coefficients between kidneys of each species or livers of each species. 

Lastly rest of all correlations of tissue-species combinations constitute a set III. [Fig. 3]. Set I 

constituting correlation values between relative tissues of same species of RBPs shows highest 
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correlation among them which suggests that evolution in expression values of RBPs are species 

driven rather than tissue driven. Set II and set III show relatively lower correlation as compared to 

set I which suggests that RBPs are evolutionarily classified per species. Inversely, as it is 

established that non-RBPs cluster relative tissues of mammalian species together, trends were 

confirmed from their correlation distributions. Set III comprising different tissues of different 

species shows relatively lower correlation among them. Also Non-RBPs show highest correlation 

between relative tissues of different species i.e. for Set II.  Also for non-RBPs, set I and set III 

correlation is relatively lower.  This observation clearly demarcates between expression trends of 

RBPs and non-RBPs and thereby their evolutionary selection (Wilcoxon test p-value significance 

at 0.05). This analysis also fortifies the hypothesis that RBPs expression evolution is species-

specific while non-RBPs expression evolution is majorly tissue-specific.  

 

Evolution of genes encoding for RBPs expressions in mammals is species-specific 

From the expression analyses it is clear that RBPs evolution is driven by species-specific events. 

It compelled us to calculate species-specificity index (SSI) of RBPs across tissues studied.  We 

customized a tissue-specificity index (TSI) and developed a specialized method to calculate 

species-specificity index. We calculated SSI values for 8 tissues (brain, cerebellum, heart, kidney, 

liver, lung, skeletal muscle and testis) for higher mammals (primates and rodents) being studied. 

We found that about 30% of the RBP repertoire is species specific in at-least one tissues studied 

here, with several tissues exhibiting a significantly higher proportion of specie-specifically 

expressed RBPs. We further established similar calculations for non-RBPs in order to compare 

species specificity trends in RBPs vs non-RBPs. We plotted SSI density distributions for 8 tissues 

across selected mammalian species for RBPs and non-RBPs and observed that out of 8 tissues 

lungs, kidney, testis and brain show significantly higher species specificity levels than non-RBPs. 

While in other tissues (cerebellum, liver, heart) the trends are still significant for RBPs compared 

to non-RBPs except for skeletal muscle (p-value 0.98). It is believed that RBPs bind with multiple 
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RNA targets in a coordinated post-transcriptional regulatory manner in complex metabolic 

pathways especially during development.  Hence there is no ambivalence in believing that the 

mechanisms with which they control their targets can be divergent in different organisms thereby 

leading to varied trends of expression patterns across organisms.   

The SSI is defined on the scale 0 to 1 which is calculated considering expression value of each 

RBP in each species in a tissue for which SSI is calculated. The higher the value of SSI, higher 

is the preferential expression of RBPs in specific species while lower values devise a class of 

RBPS which are significantly expressed across species in a tissue being considered but no 

preferential expression in any species. Though SSI gives a broad impression of how RBPs must 

be evolving in particular tissue, it does not specifically distinguish the species in which it is 

expressed preferentially. Based on the earlier studies where TSI values were used to study the 

tissue specific expression of genes, we used the same threshold (>0.85) to classify RBPs based 

on their SSI values in two distinct classes: single-tissue species-specific RBPs which are only 

expressed in single tissue out of all tissues being studied and multiple-tissue species specific 

RBPs which are with higher SSI in multiple tissues. We speculate that RBPs which show distinct 

species specificity patterns undergo differential evolution in those species and would enrich more 

diverse functions in case of multi-tissue species specific RBPs vs more specific and restricted 

functions in case of single tissue species specific RBPs. In overall analyses we find around 3 fold 

more single-tissue species-specific RBPs (16%) than multi-tissue species-specific RBPs (6%) of 

total RBPs considered in the study. Also lungs, liver, kidney and testis exhibit highest proportion 

of species-specific RBPs. On closer look at the function enrichment of two classes show that 

single-tissue species specific RBPs enrich for varied specialized functions related to regulation of 

RNA/DNA conformation change, RNA stability, regulating histone H3-H4 methylation and ATP 

catabolic process. Other class of RBPs which is multi-tissue species specific RBPs show more 

generic roles such as mRNA nuclear transport, RNA processing and regulation of RNA 

processing, regulation of RNA splicing etc. Apart from these functions both categories enrich core 
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post-transcriptional regulatory functions such as Ribonucleoprotein complex formation, PolyA 

binding and mRNA 5’ UTR binding. [Supplementary Figures 1a, 1b, 2a, 2b].  

 

Profiling of differential RBP expressions in Human, Mouse and evolutionary outgroup 

Chicken and its evolutionary dynamics 

In previous analyses of gene expressions evolution in mammals, various authors show that the 

rate of gene expression evolution varies among organs and lineages. Authors also show that 

purifying selection is primary factor for evolution in gene expressions and also identify numerous 

potentially selectively driven expression switches, which occurred at different rates across 

lineages and tissues which contribute to evolution of organs in mammalian species1, 29. We 

conduct a differential expression analysis of RBPs between mouse (~90 million years) and 

chicken (evolutionary outgroup ~300 million years) with respect to human (~15 million years). We 

strive to find different patterns of RBPs evolution based on their expression analyses. We 

employed DESeq230 package of R to conduct this analysis taking into account the read-count 

metric of RBPs across 6 tissues(kidney, brain, liver, heart, cerebellum and testis) between 3 

species named above. We assign the binary value to the orthologous genes based on their 

differential expression (1) (either upregulated or down regulated) or not changing (0) in any of the 

compared species at filter of (FDR corrected p-value < 0.05 and logfoldchange > 1.5). We 

identified more than 50% of the orthologous RBPs to be differentially expressed in at-least one 

tissue compared between human and mouse but not so between human and chicken in which 

RBP expression levels are relatively conserved. Among the studied tissues brain, liver and kidney 

showed a higher fraction of differentially expressed RBPs, which may suggest hyper regulatory 

activities by RBPs in these tissues with species evolution. Figure 6a shows the differentially 

expressed genes between human and mouse while figure 6b shows the differentially expressed 

genes between human and chicken. From the visual interpretation of heatmaps, it is evident that 

RBPs based on their DE status can be classified into 4 major evolutionary classes as: 
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1.Continuously changing RBPs (8%) 2. Recently evolving RBPs (12%) 3. Ancient RBPs (5%) and 

4. Non-changing or conserved RBPs (75%).  Continuously evolving RBPs are those which are 

differentially expressed in outgroup chickens as well as mouse, recently evolving RBPs are the 

ones which are only changing between closer species i.e. human and mouse but not in chicken, 

and inversely RBPs which are only expressed differentially in chicken w.r.t humans are termed 

ancient RBPs. The non-changing RBPs as the name suggest do not differentially express in any 

of the species. Figure 7a and 7b show the top 5 tissues in which the RBPs are differentially 

expressed. The analysis shows that major cohort of RBPs change between human and mouse 

exclusively in brain (20%) suggesting brain is undergoing major changes evolutionary in both of 

those species. Incidentally majority of RBPs changing expression levels in brain fall into class of 

recently evolving RBPs. Kidney and testis in chicken and human make up for majority of RBPs to 

be differentially expressed belonging to 2 classes majorly i.e. of ancient RBPs and continuously 

evolving RBPs. Also numerous RBPs (5%) which are dysregulated between human and mouse 

are changing in all tissues suggesting the collective roles of post-transcriptional regulatory control 

functions for those RBPs. When studying dysregulated RBPs exclusively in brain between human 

and mouse functional annotation we found abnormality of nervous system morphology, mental 

function, erythroid lineage cell’s abnormality to be enriched. In summary, differential expression 

analysis of orthologous RBPs in human, mouse and chicken classify RBPs evolutionarily owing 

to differential rates of their expressions leading to specialized roles in tissues and lineages of 

mammals. 

2.4 Conclusion 
In our analysis we focused on gene expression profiles of orthologous RNA binding proteins in 

mammals and outgroups to get implications of their evolutionary dynamics in them based on their 

RNA expression levels. We explored RBPs expressions in 8 tissues across 11 mammalian 

lineages (Primates, Rodents, Marsupials, and Monotremes) and two evolutionary outgroups 

Chicken and Frog. From the literature studies, we established a set of orthologous RBPs across 
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the mammals selected for this study using orthology confidence threshold, strictly selecting a 

genes of protein-coding biotype and percent identity with query proteins. Human RBPs against 

which the orthology searches were conducted, were selected based on the known evidence of 

their binding to RNA. Expression analyses of orthologous RBPs noticeably suggest a significantly 

higher expression levels for RBPs than their non-RBP gene counterparts - which include other 

protein-coding and non-coding genes, across all the mammalian tissues studied here. This trend 

is significant irrespective of the tissue and species and also the RBP gene expression distribution 

patterns were found to be generally diverse in nature. Also human and mouse tissues were 

significantly less expressed compared to other higher mammalian species which suggest that in 

evolutionary progression, regulatory roles of RBPs seem to have limited in those species meaning 

extensive regulatory control by RBPs might be plummeting in human and mouse. Also this 

observation is in agreement with previous studies conducted which show that human and mouse 

gene expressions has highest correlation among them.6, 26, 31, 32 We also speculate that RBPs are 

expressed lowly in human and mouse as they are limited in exposure to diverse ecological and 

environmental settings and are living in more controlled environment than other mammals. 

Correlation studies of RBPs and non-RBPs unleash interesting trends for RBPs. Non-RBPs 

evolution is driven by their tissue-specific nature and cluster relative tissues of close species 

together suggesting non-RBP genes have differential evolutionary trends than RBPs which show 

that their expression profiles are more central to species rather than tissues. From the correlation 

studies of RBPs it’s clear that majority of RBPs are expressed species-specific with their 

spearman correlations when clustered into different classes show that the correlation is highest 

between relative tissues of same species while lowest when different tissues of different species 

are compared.  

When species specificity indices are compared for different tissues in higher mammals it is seen 

that after speciation events contribute to the behavior of RBPs rather than organ development 

contributing to RBPs’ evolution. About 30% RBPs are showing species-specificity indices above 
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threshold of 0.85 in at least one tissue being compared with highest proportion of RBPs in liver, 

lung, kidney and testis as species-specific. SSIs are higher in multiple tissues or single tissue 

depending on which they can be classified as multi-tissue species specific or single-tissue 

species-specific RBPs. When the two classes of RBPs are compared for their functional 

enrichment tests, both the classes enrich certain core functions which are shared in both 

categories but numerous specialized functions are enriched in case of single-tissue species-

specific RBPs. Also multi-tissue species-specific RBPs exhibit more generalized regulatory roles. 

Single-tissue species-specific RBPs are 3 fold more than multi-tissue species-specific RBPs. (See 

Results).  

Differential expression (DE) analyses between human, mouse and chicken gives insights into 

how RBPs must be evolving in mammalian species. DE analysis gives exactly which RBPs are 

contributing to forming different classes of RBPs based on their expressions. We found around 

50% RBPs to be differentially expressed in at-least one tissue between the three species. The 

important classes as continuously evolving, ancient, recently evolving and non-changing RBPs 

formed based on DE analysis gives differential functional categories to be enriched in those 

RBPs. Majorly between human and mouse RBPs in brain are changing faster giving implications 

of major post-transcriptional control of RBPs in brain tissues. This set of RBPs are exclusive to 

only human and mouse species and are not expressed differentially in chicken suggesting the 

recent evolution of such RBPs in human and mouse brain tissues. Human and chicken majorly 

show the differentially expressed genes exclusively in kidney, liver and lung tissues which form a 

class of ancient RBPs. Thus, in all RBPs undergo significant divergence in their expression as 

they evolve in evolutionary timeline from ancient species like chicken to recent ones like humans 

and mouse. Differential expression analysis thereby gives numerous insights into how the post-

transcriptional regulation might be occurring in mammalian species and also help us understand 

their evolutionary dynamics in mammals. 

Overall, this study forms a foundation for understanding the evolution of expression levels of 
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RBPs in mammals, facilitating a snapshot of the wiring patterns of post-transcriptional regulatory 

networks in mammalian genomes. 
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311 RNA-seq samples from 4 
studies for 13 species 

including 11 mammalian 
species and chicken and 

xenopus as outgroups and 8 
tissues

Quantification of expression levels 
of samples using Sailfish

Construction of species/tissue 
wide expression profiles for RBPs 

and Non-RBPs using mapping 
from Compara

1344 human RBP genes from 
literature as reference set

Gene level mapping to extract 
orthologous RBPs using 

ENSEMBL Compara 

Identification of species-specific RBPs and 
their relevance to tissue context

Identification of differentially expressed RBPs 
between human, mouse and chicken tissues to 
uncover rapidly or continuously evolving RBPs

Tissue wise evolutionary comparative 
analysis of RBP expression levels

Figure 1: A chart representing analysis pipeline for studying evolutionary dynamics RBPs expression levels in mammalian tissues
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Expression Profiles| Figure  2: Multi-panel boxplots showing the expression level (TPM) comparisons between orthologous RBPs vs Non-RBPs across 6 tissues studied here (KS test p-values 2.2e^-16)
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Clustering of expression correlations for RBPs and non-RBPs| Figure 3a: Heatmap shows clustering based on spearman correlation coefficients 
calculated from expression profiles of each tissue across species for RBPs (A) and non-RBPs (B)
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Comparison of Expression Profiles |  Figure 3b shows comparisons of expression correlation 
coefficients for specie-tissue combinations classified into 3 mutually exclusive sets A) of 
different species and different tissues B) of different species and same tissues and C) of 
same species and different tissues for RBPs and non-RBPs.
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Species Specificity | Figure 4a shows pairwise density distributions of species specificity indices (SSIs) for 
RBPs vs non-RBPs across various tissues under study
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(A) (B)

Species Specificity | Figure 4b shows species specific RBPs distinguished into two classes A) Multi-tissue species specific RBPs & B) Single-tissue species specific 
RBPs
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Differential Expression | Figure 5a: Heatmap shows 
differentially expressed RBPs for six tissues between 
mouse-human (A) and chicken-human (B). RBPs form 
four classes: RBPs 1. Continuously evolving RBPs 
2.recently evolved RBPs 3. Ancient RBPs 4. Non-
changing RBPs.



Differential Expression | Figure 5b & 5c: Venn diagrams showing differentially expressed genes in human and chicken (b) and human and mouse(c) in top 
5 tissues

(B) (C)



Supplementary Figures 1a, 1b, 2a, 2b: Showing functional enrichment of multi species specific RBPs and single species specific RBPs in mammalian tissues (Human orthologous RBPs were used for conducting functional enrichment) 

1(A) 1(B)

2(A) 2(B)



Chapter 3 Identification and Characterization of Circular RNA in Human Transcriptomes Using 
longPoly (A) Sequencing 

3.1 Introduction 
The debate over presence of non-linear exon splicing such as exon-shuffling or formation of 

circularized forms has finally come to an end as numerous repertoires have shown of their 

occurrence and presence through transcriptomic analyses.33, 34, 35 It is evident from these studies 

that along with consensus-site splicing non-consensus site splicing is robustly occurring in the 

cell. Also, in spite of applying different high-throughput approaches (both computational and 

experimental) to determine their abundance, the signal is consistent and strongly conforming the 

plausible circularization mechanisms.  Earlier studies hypothesized and hence focused on the 

ribo-minus / non poly (A) RNA-seq data to identify circular RNA structures in cell and compared 

their abundance levels with their linear counterparts. Thus far, the studies show their conserved 

nature across tissues and species also that they are not translated and preferentially are without 

poly (A) tail with one to five exons long.  

Much of this initial work has been performed using non-polyA sequencing thus probably 

underestimates the abundance of circular RNAs originating from long poly (A) RNA isoforms. Our 

hypothesis is if the circular RNA events are not the artifact of random events but has a structured 

and defined mechanism for their formation then there would not be biases on preferential 

selection / leaving of polyA tails while forming the circularized isoforms. We have applied an 

existing computational pipeline from earlier studies by Memczack et.al35 on ENCODE cell-lines 

long poly (A) RNA-seq data. With same pipeline we achieve a significant number of circular RNA 

isoforms in the data some of which are overlapping with known circular RNA isoforms from the 

literature. We identified an approach and worked upon to identify the precise structure of circular 

RNA which is not plausible from the existing computational approaches. We aim to study their 

expression profiles in normal and cancer cell-lines and see if there exists any pattern and 

functional significance based on their abundance levels in the cell.  

3.2 Material and Methods 
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We accessed ENCODE5 (The Encyclopedia of DNA Elements) project cell-line longPolyA and 

non-PolyA RNA sequencing data for 6 cancer and 4 normal cell-lines (Table 1). ENCODE is a 

collaborative consortium among research groups across the globe which maintains integrated 

repository of cell lines and primary cell types. The data is grouped and prioritized as Tier1 and 

Tier 2, Tier 1 having high priority and more common cell type. We collected both longPolyA and 

corresponding non-polyA RNA-sequencing raw sequencing fastq files from ENCODE.  We 

accessed the level one raw reads from The Cancer Genome Atlas (TCGA) for three major cancers 

(i.e. Liver, Lung, and Breast Cancers). We downloaded RNA and Total RNA samples of solid 

tissue normal and tumor for each patient. We wished to study whether between cancer and normal 

samples there is a differential expression of circular RNA transcripts. UCSC hg19 human 

reference indices were used for detecting the circular RNA origination locations.  For the purpose 

of this thesis the findings from differential expressions of circular RNA in cancers and normal 

samples are not reported.  
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Table 1: The input ENCODE cell-lines data distribution for which long-polyA and non-polyA 
RNA-seq data analyzed 

3.3 Computational Pipeline 
The computational pipeline that we used to analyzed and identify the circular RNA isoforms in 

longPolyA and non-polyA data is shown as Figure 7. The computational pipeline employs use of 

existing algorithms Bowtie and Samtools for accomplishing the alignment and mapping steps to 

the hg19 human reference genome. Then the unmapped reads were extracted to be able to 

Cell Tier Description Lineage Karyotype 

HeLa-S3 2 cervical carcinoma Cervix cancer 

HepG2 2 liver carcinoma Liver cancer 

A549 3 Epithelial cell line derived from a lung 

carcinoma tissue. 

Epithelium cancer 

MCF-7 3 mammary gland adenocarcinoma Breast cancer 

K562 1 Leukemia continuous cell line K-562 Blood cancer 

SK-N-

SH_RA 

3 neuroblastoma cell line, Brain cancer 

H1-hESC 1 embryonic stem cells Embryonic Stem 

Cell 

normal 

AG04450 3 fetal lung fibroblast Lung normal 

HUVEC 2 umbilical vein endothelial cells Endothelium normal 

NHLF 3 Normal Human Lung Fibroblasts Lung normal 

HMEC 3 Human Mammary Epithelial Cells Breast normal 

HSMM 3 Normal Human Skeletal Muscle 

Myoblasts 

Muscle normal 

37 



extract the potential candidates of circular splicing sites. The custom script from Memczack et al35 

was applied to align and extend the anchor positions in the unmapped reads in the head-to-tail 

orientation to detect the circRNA reads. The reads obtained from this step are again mapped and 

aligned to identify how many reads are falling into the region undergoing circularization. The final 

output is a standard bed file with chromosomal locations, strand information and reads count 

statistics and length of each circular RNA transcript. But the script is not designed to predict exact 

internal structure of circRNA transcript giving exons and introns organization. This is a major 

challenge to come to a concluding step of predicting their expression patterns. As the structure is 

not known of circular RNA transcript we are unable to estimate their abundance levels in cell. The 

computational pipeline was tested on two replicates of one sample from Hela-S3 cell line to be 

able to validate the candidates are fractionally overlapping and merely not detected randomly. 

We found that most of the circRNA are overlapping in two replicates of HeLa-S3 cell-line. Hence 

we decided to select a single replicate for the detection of circRNA.   

In the study we focused on detection of circular RNA formed from head-to-tail orientation using 

Memczack et al35 pipeline and not any other form of circRNA such as one forming due to inverted 

repeat homology of ALU repeats in the transcripts having longer intronic sequences comprising 

ALU repeats. There is a need of other robust approaches to be developed to detect such circRNA 

isoforms.  

Further to identify the internal exonic structure of circRNA, we used bedtools intersect option and 

identified known exons from reference human index. We considered the exons completely lying 

within the circRNA transcript region. To identify exons identifying circRNA transcript circRNA 

candidate co-ordinates were unchanged to maintain uniformity. We imported the output bed files 

at Galaxy Workbench.  We utilized UCSC human reference genome (hg38, GRCh38) bed file 

which was imported into the workbench. We used the “organize on genomic intervals” option 

available at Galaxy Workbench. We intersected the intervals of two datasets option with minimum 

overlap of ~500nt as mean lengths of circRNA is ~1kb.  
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Then the bed2bam utility was applied to calculate the expression levels of exons contributing to 

circRNA transcripts using cufflinks framework. We compared the transcript abundances between 

circRNA in longPolyA against those predicted in non-polyA cell-lines yet we couldn’t find a 

profound signal for their differential expression patterns. We speculate that lack of enough 

replicates to calculate variances among samples may be responsible for lack of identifying 

significant log fold changes.  

3.4 Results and Discussion 

Our study identifies circular RNA even in longPolyA RNA sequencing data which by earlier 

hypotheses was clearly underestimated. The ribominus non-polyA data achieves about 10 fold 

number of circRNA candidates’ (on average) detection using the same pipeline than longPolyA 

data (Figure 8).Though the percentage occurrence of circular reads out of total reads in both data 

is limited below 0.1%. (Figure 9).  Also there is no clear pattern as to circular reads ratio being 

higher in non-polyA data than in longPolyA, which suggest that we can’t override the hypothesis 

that circRNA detection is plausible in longPolyA data. Remarkably it is seen that indeed the 

circular reads ratio is higher in case of certain cell-lines such as Nhlf, Hmec, K562 and Huvec. 

The initial statistics of spliced reads ratio with circular reads ratio in longPolyA data suggests that 

occurrence of higher splicing reads ratio leads to detection of higher ratio of circRNA which 

demarcates circRNA identified in longPolyA from ones in non-polyA data, which shows opposite 

trend of lesser spliced reads in data to lead to detection of higher ratio of circular reads (t-test p-

value 4.671e-06). Earlier studies35, 36, 37 pointed out that circRNA involves lower splicing events to 

be able to form circRNA, while the trend in our data shows the contrary observations. Average 

lengths of circRNA spans about 3-5 exonic distances in our data which we extracted by intersect 

option of bedtools with reference human genome. Also the frequency of identified circular RNA 

per million base length of human chromosome is varying in range 0.1 to 0.7 across the 10 cell-

lines in longPolyA data. Though there is no bias is seen towards any particular genomic region, 

average frequency of circRNA is typically high in case of chromosome 19 seen for all cell-lines 
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for longPolyA data. Also after intersection with human reference file, in consensus we observe 

that average biotype of circular reads is owing to majorly protein-coding regions (50%). Though 

significant percentage of circular reads originate from various non-coding regions (i.e. lincRNA, 

pseudogenes, processed transcripts, etc). (Figure 11) 

We also performed quantification of the identified circRNA candidates using Cufflinks (Methods). 

We were unable to establish a particular expression pattern among various cell lines selected for 

stud and also among non-polyA and long polyA data. 

Figure 7: Computational pipeline for detection of circular RNA candidates 
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Figure 8: detected circRNA in longPolyA vs non-polyA data (longPolyA (right axis), 
non-PolyA (left axis)) across cell-lines 

This study opens new avenues for working on yet another vital molecule in the cell machinery 

which may altogether alter our perspective of working transcription and post-transcription 

regulation machinery. 

Figure 9: Shows distribution of circRNA candidates detected per million length per chromosome 
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Figure 10: SpliceReads / TotalReads Ratio (Right Vertical Axis) and CircularReads / 
TotalReads Ratio (Left vertical Axis) for longPolyA and non-Poly A data for the 10 ENCODE 
cell-lines 

 Figure 11: Average Biotype Constitution in predicted transcripts of from circular reads. 
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