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ABSTRACT 

Gokhul Krishna Kilaru 

USE OF APRIORI KNOWLEDGE ON DYNAMIC BAYESIAN MODELS 

IN TIME-COURSE EXPRESSION DATA PREDICTION!

Bayesian networks, one of the most widely used techniques to understand or 

predict the future by making use of current or previous data, have gained credence over 

the last decade for their ability to simulate large gene expression datasets to track and 

predict the reasons for changes in biological systems. In this work, we present a dynamic 

Bayesian model with gene annotation scores such as the gene characterization index 

(GCI) and the GenCards inferred functionality score (GIFtS) to understand and assess the 

prediction performance of the model by incorporating prior knowledge. Time-course 

breast cancer data including expression data about the genes in the breast cell-lines when 

treated with doxorubicin is considered for this study. Bayes server software was used for 

the simulations in a dynamic Bayesian environment with 8 and 19 genes on 12 different 

data combinations for each category of gene set to predict and understand the future time-

course expression profiles when annotation scores are incorporated into the model. The 

8-gene set predicted the next time course with r>0.95, and the 19-gene set yielded a value 

of r>0.8 in 92% cases of the simulation experiments. These results showed that 

incorporating prior knowledge into the dynamic Bayesian model for simulating the time-

course expression data can improve the prediction performance when sufficient apriori 

parameters are provided.  
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1. INTRODUCTION 

A great deal of research in the field of medicine has been resulting in identifying 

numerous diseases, disorders and their remedial treatments. The activity of the genes and 

their products in the biological pathways results in the biological phenomena (Efroni & 

Schaefer, 2007). Any minor changes or alterations in the equilibrium state of networks 

formed by these pathways results in complex disorders or more specifically diseases. 

Understanding the complex disease networks is not an intuitive task. Many 

methodologies such as pathway construction, visualization and analysis have been 

helping researchers to understand and crack the minute changes that lead to a disease in 

any biological system.  

Networks through which researchers understand the complex process vary with 

the genes of interest, expected results, hypothesis and more significantly the complexity 

of the process. 

How does a researcher come to a conclusion or decides on which methodology to 

use? Well, the answer arises from the data that is being taken into consideration. High 

throughput experiments like microarray and mass spectrometry delivers large amounts of 

datasets that are hard to analyze manually. Development in the field of microarray 

technology leaves a vast resource of knowledge about the gene expression data, which is 

commonly used, in the field of bioinformatics to understand the complex biological 

systems’ behavior (Kim & Miyano, 2004). 

Bayesian networks, one of the most widely opted techniques to understand or 

predict the future by making use of the current or previous data, are gaining much 

importance since the last decade to simulate the huge gene expression datasets so as to 
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crack and predict the reasons for changes in the biological systems, which might yield 

remedial methodologies. The primary reason for relying on Bayesian networks is their 

capability to handle uncertainties in any given dataset. Understanding biological systems 

is completely uncertain, which calls for the support of Bayesian networks in real time 

through simulating biological data. 

There are a wide variety of sub-techniques under Bayesian networks that can be 

used for different subjects like weather forecast, biology, politics, geography etc. One 

such part of Bayesian concept, which can be applied to the field of biology, is the 

Dynamic Bayesian Network (DBN). 

DBNs make use of the time-course gene expression data when biological systems 

are being simulated. Time-course gene expression data serves as the backbone for any 

DBN simulation. 

Gene expression varies at different time points in a biological system. Time-

course gene expression data provides valuable information about those expression levels 

of a gene at that particular point of time. DBNs make use of the continuous feed of this 

time-course data and results in the knowledge of understanding the uncertainties in 

complex systems.  

The activity of genes and their products in biological pathways results in 

biological phenomena (Efroni & Schaefer, 2007). Any minor changes in the equilibrium 

state of the networks formed by these pathways may result in complex disorders or 

diseases. 
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Understanding complex disease networks is not an intuitive task. Many 

methodologies such as pathway construction, visualization and analysis have been 

helping researchers to understand and crack the minute changes that lead to abnormalities 

in biological systems. Networks through which researchers understand the complex 

process vary with genes of interest, expected results, hypotheses, and more significantly, 

the complexity of the process. Development in the field of microarray technology 

provides a vast resource of knowledge about gene expression data, which is commonly 

used in the field of bioinformatics to understand complex biological systems’ behavior 

(Kim & Miyano, 2004). 

Annotation is a process through which the raw DNA sequences in a genome are 

assigned relevant information so as to classify the regions on the genome with respect to 

their functions (Silander, et al., 2006). Recent advancements in the field of database 

development and computational methods have allowed researchers to identify sources of 

annotation and develop a score to account for a gene’s function and characteristics. Some 

of these sources include, but are not limited to, Genome Annotation Scores (GAS) 

algorithm, GO Annotation Quality (GAQ), the Gene Characterization Index (GCI), and 

GeneCards Inferred Functionality Score (Harel, et al., 2009). 

Bayesian networks, one of the most widely used techniques to understand or 

predict the future state of a system by making use of current or previous data are gaining 

popularity. These network models can be used to simulate large gene expression datasets 

to track and predict the reasons for changes in biological systems, which might yield 

remedial methodologies. The primary reason for relying on Bayesian networks is their 

ability to handle uncertainties in a given dataset (Friedman, et al., 2000). 



%"
"

A wide variety of sub-techniques under Bayesian networks can be used for 

different areas such as meteorology, biology, politics, and geography (Abhik, Toyoaki, 

Peter, 2010), as demonstrated on Jeopardy! with the IBM computer Watson that makes 

use of Bayesian concepts. One such application area of Bayesian concept is in the field of 

biology where Dynamic Bayesian Network (Kim & Miyano, 2004) is used for simulating 

the current data to predict the future expression profiles of the genes. DBNs use time-

course gene expression data when biological systems are being simulated. Time-course 

gene expression data serves as the backbone for any DBN simulation. 

Genes’ expression is different at different time points in a biological system. 

Time-course gene expression data provides valuable information about those expression 

levels of a gene at that particular point in time. DBNs use a continuous feed of this time-

course data and results in an understanding of uncertainties in complex systems. One 

advantage of DBNs over traditional Bayesian networks is the ability to perform 

simulations in real time (Huang, et al., 2007). Gene knockout experiments permit 

researchers to understand biological system scenarios, when a particular gene is switched 

off. DBNs serve this purpose of analyzing a gene’s activity when its neighbor gene is 

switched off along with the importance of the gene that is being switched off. 

The end result of any gene expression in a given pathway is the activity level of 

another gene that comes down that particular pathway. As a whole, time-series simulation 

experiments using DBNs help in understanding the downstream target gene activity when 

a specific gene has been switched off or on. However, the challenges include 

understanding the organization and formation of these complex biological networks, 
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choosing the right gene in the model, declaring the node parameters in the DBNs, and 

deriving useful information from the end results.  

This thesis presents a methodology for understanding how certain node 

parameters that account for a gene’s annotation affect the DBN simulation model in 

predicting the next time-course gene expression data. This work also considers the design 

and architecture of a DBN model built on time-course gene expression data with 

additional properties of genes that are involved in a given disease. 

 

1.1 Overview 

Probabilistic models can be classified into four different categories (Singhal & 

Brown, 1997). They are Bayesian reasoning, evidence theory, robust statistics and 

recursive operators. When a system comprised of probabilities and uncertainties is 

considered, researchers usually shift their gears to Bayesian networks (BN), fuzzy logic 

and Hidden markov models. However, BNs represent the appropriate relative influences 

of real time facts. This is the primary reason for choosing BNs over issues involved with 

uncertainties such as gene expression data and their simulations. 

Knowledge about different genes can be obtained simultaneously with the 

advancement of technology in recent years. And a heavy rise in the amounts of data is 

expected which stresses the need for understanding underlying patterns of the data, 

subjects of primary importance and eventual downstream targets.  

Bayesian networks are special graphical models in which nodes represent the 

variables and their connections indicating the flow of information and node probability 
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distributions (Murphy, 2003 & Murphy, 1999). Bayesian networks are depicted in 

probabilistic directed acyclic graphs (DAG) (Spirtes, et al., 2001). The edge in a DAG 

points from one node called the parent node, to another node called the child node. If X1, 

X2 and X3 are the nodes in a network in such a way that X1 is the parent of X2 and X2 is 

the parent of X3, then X1 is the ancestor of X3, and X3 is called the descendant of X1. 

Each node in the network is conditionally independent from its non-descendants. 

DBNs are the temporal extension of Bayesian networks, which are graphical 

models for relationships with probabilities among sets of variables. A DBN can be used 

to describe causal relations between variables in a probabilistic context. This means that 

a DBN can provide useful insight in the modeled reality by giving meaning to the 

interactions between variables for meaningful results. The random variables in a DBN do 

not have to be real numbers; they could just as easily be nominal values (e.g. male/female 

or true/false), ordinal values (e.g. grade or rank), or intervals (e.g. temperature ! 50"C, 

temperature > 50"C).  

A DBN model can be developed from expert knowledge or from a database using 

a combination of machine-learning techniques, or both (Moloshak, et al., 2002). These 

properties make the DBN formalism essential for the medical domain, as this domain has 

an abundance of both expert knowledge and databases of patient records. On the other 

hand, many interactions between variables in physiological processes are still unclear. 

More insight into these interactions can be gained by modeling them with a DBN. 

Creating models for temporal reasoning with DBNs sounds promising at first sight 

(Hulst, 2006), but many questions remain. For instance: How do we obtain the structure 

and parameters? What is the performance of inference? How much data do we need for 
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learning the parameters? If possible, how much does a DBN outperform a BN when 

applied to the same problem? (Hulst, 2006). 

One major drawback of Bayesian network concept is the lack of regular cyclic 

mechanism, which is essential for gene regulation or expression activity in a biological 

system. DBNs rely completely on time-course data, which leads to data discretization 

into several classes (Heckerman, 2008). This discretization leads to information loss in 

the network, giving rise to uncertainties in the network. Simulating biological 

information using DBNs essentially involves training the Bayesian model to reach the 

desired uncertainties that a biological system usually exhibits. After identifying the 

desired uncertainties, the model is carefully observed for the changes on the other 

variables, which are essential and useful in identifying novel treatment methods. 

In this study, we have incorporated the annotation scores such as the gene 

characterization index (GCI) and genecards inferred functionality score (GIFtS) which 

account for the gene’s annotation status in the literature and also its functionality and 

characteristic. This study helps us to understand the effect of incorporating additional 

knowledge parameters as node attributes into the DBN model to understand the changes 

involved in the next time-point. 

1.2 Goal of Research 

The goal of this research is to understand and assess the prediction performance 

of the DBN model by incorporating prior knowledge. The results showed that 

incorporating prior knowledge into the dynamic Bayesian model for simulating the time-
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course expression data could improve the prediction performance when sufficient apriori 

parameters are provided. The following steps are employed: 

 

1. Extract time-course breast cancer gene expression data from Gene Expression 

Omnibus database. 

2. In the data pre-processing steps, use Cyclic Loess normalization, MA plots, Box 

plots and Volcano plots to normalize, analyze and improve the data to fit in the 

DBN model. 

3. Calculate the Pearson correlation among experiments and genes in the dataset. 

4. Identify those experiments and the genes that satisfy the threshold criteria 

5. Computationally validate and predict the associations of these genes using our in-

house protein interaction algorithm. 

6. Extract the Gene Characterization Index score (GCI) for the genes in the dataset.  

7. Extract the Gencards Inferred Functionality score (GIfTs) score for the genes in 

the dataset. 

8. Using Bayes server 3.0, construct static Bayesian networks on the basis of 

interactions and the topological information from KEGG database and Metacore, 

at 12 and 24-hours respectively. 

9. Train the model for a tentative number of iterations until the desired prediction 

levels have been met. 

10. Simulate the 12-hour static network to 24 and 36-hours dynamic Bayesian 

network and 24-hour into 36-hour respectively. This is called forward dynamic 

simulation of Bayesian network. 
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11. Observe the topological changes at different time points in the DBNs. 

12. Note down the node probability distributions and plot them using line plots. 

 

1.3 Contribution of the Thesis 

The proposed methodology is to assess the prediction performances of DBNs 

constructed and simulated using time-course breast cancer gene expression data, when 

sufficient knowledge parameters are supplied. A Bayesian model has been developed to 

incorporate parameters that are time-point independent, whose inclusion in the node 

probability distributions explains the importance of scores derived from literature 

annotations, thereby adding a weight to the identified targets. This model considers the 

time-course gene expression data along with the ability to work with non-time-course 

gene expression data. A comparison study between the conditional probability 

distributions (CPDs) at the nodes in the static bayesian network stage to the nodes at 

dynamic stage would give an insight into the model’s prediction performance. Statistical 

analysis are carried out to explain the node CPD changes and to validate the comparison 

studies. 

1.4 Organization of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 describes previous work 

done in the area of DBNs, Bayesian information criterion, gene expression data 

simulations, node and edge properties in a DBN and validation techniques employed in 

the DBN simulation studies. Chapter 3 explains the design of methodology and 

implementation details, where it describes the type of simulations to be performed to 

prove the hypothesis. Chapter 4 outlines the Bayesian model training, topological 
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changes in the model, different time-point and data combinations with test datasets and 

experimental dataset. It also reviews about identifying the node CPDs after simulations 

and the validation techniques that have been employed. Finally, Chapter 5 discusses the 

results and outcomes of this analysis. Chapter 6 concludes on limitations in this study and 

future work to be performed to implement the model more efficiently. 
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2. LITERATURE REVIEW 
 

For centuries, modeling biological systems has been a researcher’s principal tool 

for understanding the complex mechanisms. Models exist in all disciplines ranging from 

Astrophysics to Zoology. Numerical models dominate the modeling practice, for dynamic 

models the usage of differential equations was dominant. A Bayesian model is a 

simplified picture of a part of the real world that explains and lets understand the reality. 

Newton’s three laws of motion acts as a very good model due to its’ simplicity, reliability 

and predictive power. The reason is that Newton’s laws prescribe exactly what 

parameters we need, such as the gravitational constant, air resistance, weight of the tile, 

and height of the building. Furthermore, it prescribes the exact relations between the 

variables. In this case, it is relatively easy to make a good model, because we know the 

underlying relations and we can measure all parameters directly.  Microarray experiments 

even though are on the verge of extinct in the light of next-generation sequencing 

experiments, have contributed a lot to the life sciences industry with information on gene 

expression and sequences. Considering the complex system of physiological processes in 

a living human being that are responsible for a gene’s activity, it is an exhaustive task of 

simulating the same process in real time. The introduction of computers in the biological 

domain, and the use of ordinary differential equations have made it easier to understand 

the passage of information among the genes. Many experiments have been carried out on 

simulating gene expression data using Bayesian methodologies. This research throws 

light to assess the prediction performance of such simulations in a dynamic environment 

when prior knowledge parameters are incorporated into the Bayesian model. 
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2.1 Bayesian Networks 

A Bayesian network (BN), also known as a belief network is a graphical model 

for probabilistic relationships among a set of variables (Heckerman, 1998). Over the 

years, expert systems use BNs in domains where uncertainty plays an important role. 

Nowadays, BNs are used in a wide range of diagnostic medical systems, fraud detection 

systems, missile detection systems, etc. 

BNs have a couple of properties that make them so popular and suitable to use. 

The five most important properties are, in no particular order, the following: (1) Ability 

to handle incomplete data sets; (2) Enabling learning about relationships between 

variables; (3) Combining expert knowledge and data into a BN; (4) Use of Bayesian 

methods bypasses the over fitting of data during learning and can be avoided relatively 

easy; and (5) Ability to model causal relationships between variables. 

There are two components in a BN -  qualitative and quantitative. The qualitative 

component is represented by the topology of the network and the quantitative component 

is expressed by the assignment of the conditional probability distributions to the nodes. 

Before getting into the detailed descriptions of the above mentioned components, Bayes’ 

Theorem is presented below. 

 

where  
 
!"p (X|Y) is the posterior probability of the hypothesis X, given the data Y, 

• p (Y|X) is the probability of the data Y, given the hypothesis X, or the likelihood of the 

data, 
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• p (X) is the prior probability of the hypothesis X, and 

• p (Y) is the prior probability of the data Y, or the evidence. 

 

2.1.1 Bayesian Network Structure 

The qualitative part of a BN is represented by its structure. A BN is a directed, 

acyclic graph (DAG) where the nodes represent the set of random variables and the 

directed arcs also called as edges connect the nodes. The nodes in the BN represent 

discrete random variables. If an arc points from X1 to X2 then X1 is a parent of X2 and 

X2 is a child of X1. A parent directly influences its children. Furthermore, every node in 

the BN has its own local probability distribution. All these components together form the 

joint probability distribution (JPD) of the BN. 

The process of breaking up the joint probability distribution into local probability 

distributions is called factorization, which results in an efficient representation that 

supports fast inference. This is a property of BNs that forms a major contribution to its 

success.  

 

 

2.1.2 Conditional Probabilities 

 The quantitative part of the BN is represented by the assignment of the 

conditional probability distributions to the nodes. Each node in a BN has a conditional 

probability table (CPT) that defines the conditional probability distribution (CPD) of the 

represented discrete random variable. CPTs tell us what the probabilities are of a hidden 

node given its parents. The size of the CPTs grows exponentially with the number of 
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parents. Knowing this, it is important to keep the number of nodes that node Xi is 

dependent on as low as possible. 

2.1.3 Inference 

 Inference is defined as the process of calculating the probability of one or more 

variables X, given some evidence e. The evidence is expressed as an instantiation of 

variables in the BN. In short: p(X|e) needs to be calculated. The two rules that are needed 

for inference are Bayes’ theorem and the expansion rule. Exact inference of large, 

multiply connected BNs becomes very complex. In fact, it is NP-hard (Cooper, 1990). 

Because of this intractability, approximate inference methods are essential. In general, 

randomized sampling algorithms, also called Monte Carlo algorithms, are used. For exact 

inference, variable elimination algorithms or junction tree algorithms can be used. 

Variable elimination uses a smart way to rewrite the inference calculations by choosing a 

specific elimination order of the variables, making computation more efficient. Junction 

tree algorithms convert the multiply connected BNs to junction trees, after which 

inference can be performed using variable elimination (Shafer & Shenoy, 1988) or belief 

propagation (Lauritzen & Spiegelhalter, 1988). Of course, this conversion can be very 

complex as well, so it is not suitable for every BN. A third technique that can be used to 

reduce complexity of the inference computations is called relevance reasoning. This is a 

preprocessing step that explores structural and numerical properties of the model to 

determine what parts of the BN are needed to perform the computation. Relevance 

reasoning reduces the size and the connectivity of a BN by pruning nodes that are 

computationally irrelevant to the nodes of interest in the BN (Druzdzel & Suermont, 

1994). 



!&"
"

2.1.4 Conditional Independence 

Conditional independence can cut the cost of inference calculations drastically, 

turning the complexity from 2n to n ・2k were n is the total number of variables and k the 

maximum number of variables that a single variable can be dependent on. Variables with 

no connections at all are conditionally independent, but variables with an indirect 

connection can still be conditionally dependent. The variables in a BN are conditionally 

independent if and only if they are d-separated. 

 

2.1.5 D-separation 

Two nodes X1 and X3 in a BN are d-separated if for all paths between X1 and 

X3, there is an intermediate node X2 for which either: 

• When the state of X2 is known, the connection is serial or diverging; or  

• Neither X2 nor any of its descendants have received any evidence at all and the 

connection is converging.  

For large BNs, d-separation of two variables can be solved using the Bayes ball 

algorithm, a reachability algorithm that makes use of the notion of a ball and a set of 

bouncing rules to determine whether a set of variables can be reached from another set of 

variables through a third set of variables (Shachter, 1998). 

 

2.1.6 Learning 

One very useful property of BNs is their ability to learn from observations. 

Learning of BNs can be divided into two types: parameter learning and structure 

learning. With parameter learning, the structure of the BN is given and only the CPT 
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parameters are learned. With structure learning, the BN structure itself is learned. Before 

parameter learning and structure learning are discussed, a short introduction on the 

concept of Bayesian learning is mentioned in the next section. 

 

2.1.6.1 Bayesian learning 

Bayesian learning calculates the probability of each of the hypotheses given the 

data. Predictions are made by averaging over all probabilities of the hypotheses. Real-life 

problems have an enormous hypothesis space and it becomes a complex process of 

learning. A common approximation is Maximum A Posteriori (MAP) estimation. Instead 

of all hypotheses, only the best hypothesis, which is the hi that maximizes p(hi|d), is 

taken: p(X|d) # p(X|hMAP). Another simplification is assuming an equal prior for all 

hypotheses, as is the case in the biased coin example. In this case, MAP estimation 

reduces to choosing the hi that maximizes p(d|hi). This is called maximum likelihood 

(ML) estimation and provides a good approximation as long as the data set is large 

enough. 

Structure/Observability Method 

Known and full Sample Statistics 

Known and partial EM or gradient ascent 

Unknown and full Search through model space 

Unknown and partial Structural EM 

 
Table 1.1: Methods adapted for different combination of Bayesian network topological 

knowledge 
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Full and partial observability indicates that the values of all variables are known 

and do not know the values of some of the variables, respectively. This might be because 

they cannot be measured in principle, or because they just happen to be unmeasured in 

the training data. Note that a variable can be observed intermittently. Unknown structure 

means we do not know the complete topology of the graph except some parts or 

properties it is likely to have, e.g., it is common to assume a bound, on the maximum 

number of parents that a node can take on, and we may know that nodes of a certain 

“type” only connect to other nodes of the same type. Such prior knowledge can either be 

a “hard” constraint or a “soft” prior. Best use of such knowledge is possible only by using 

Bayesian methods, which have the additional advantage that they return a distribution 

over possible models instead of a single best model. Handling priors on model structures 

is quite complicated and shall not be discussed (Heckerman, 1998). However, the 

assumption is that the goal is to find a single model, which maximizes scoring function. 

When DBNs are considered, in which all the variables are continuous, numerical priors 

are used as a proxy for structural priors. An interesting approximation to Bayesian 

approach is to learn a mixture of models, each of which has different structure, depending 

on the value of hidden or discrete or mixture nodes. This has been done for Gaussian 

networks and discrete, undirected trees; unfortunately, there are severe computational 

difficulties in generalizing this technique to arbitrary, discrete networks. 

 
2.1.6.2 Parameter learning 

 A BN consisting of discrete random variables has a CPT for every variable. Every 

entry $ in a CPT is unknown at first and must be learned. Let’s take the coin toss 
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example. Suppose nothing is known about how the coin is biased. This means that it can 

be biased toward heads with a probability 0 < $< 1 and toward tails with a probability 0 

< (1 % $) < 1.  

This means that it can be biased toward heads with a probability 0 < $ < 1 and 

toward tails with a probability 0 < (1 % $) < 1. Using ML estimation, only an expression 

for p(d|$). and its maximum needs to be found to obtain the optimal value for the 

parameter $. In the coin example, this will result in a hypothesis equal to the proportion 

of tosses that gave heads divided by the total number of tosses. The obvious problem 

with this approach is the large data set needed to get a satisfactory result. Such a large 

data set is not available most of the time. The solution to this problem is introducing a 

hypothesis prior to the possible values of the needed parameter. This prior is updated 

after each new observation. In the coin example, the parameter $ is unknown. Instead of 

giving it one prior value, a continuous prior distribution p(&) is assigned to it. A beta 

distribution is used to achieve this. In parameter learning, usually parameter 

independence is assumed, meaning that every parameter can have its own beta or 

Dirichlet distribution that is updated separately as data are observed. 

The assumption of parameter independence results in the possibility to 

incorporate the parameters into a larger BN structure. The process of learning BN 

parameters can be formulated as an inference problem of an extended BN, making it 

possible to use the same techniques as discussed in inference to solve the learning 

problem p($|d). In the case that the data is incomplete or partially observed, 

approximation algorithms like EM algorithm needs to be used.  
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2.1.6.3 Structure learning 

Next to the parameters of the BN, also its structure can be learned from a data set. 

This is called structure learning. There are two types of structure learning: constraint-

based learning and score-based learning. Constraint-based learning tries to find the 

optimal network structure based on a set of independence constraints. These 

independence constraints can be learned from data, but that is a statistically difficult task. 

In score-based learning, a scoring function is defined that consists of one or more search 

criteria that assign a value to each network structure. A searching algorithm, such as hill-

climbing or simulated annealing (Cheng J et al, 2002), is used to find the maximum value 

of this scoring function. A network structure does not have to be learned from ground up, 

but can be derived from expert knowledge. After that, a structure learning technique can 

be used to optimize the derived network structure. Structure learning is not in the scope 

of this thesis and interested readers are directed to (Heckerman, 1998, & Koller, 

Friedman, 2005). 

 

2.2 Dynamic Bayesian Networks 

A BN is useful for such domains where the state of parameters is static. In such 

condition, every variable has a single and fixed value. Unfortunately, this assumption of 

static condition is not always sufficient, as we have seen with the Navy BN in the 

introduction of this chapter. A dynamic Bayesian network (DBN), which is a BN 

extended with a time dimension, can be used to model dynamic systems (Dean, 

Kanazawa, 1988). In this section we only describe the DBN formalism that is in common 

use today. Our extension of the formalism and its application is described in parts II and 
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III of this thesis. A more extensive introduction on DBNs can be found in: (Jordan, 2003, 

& Murphy, 2002).  

 

2.2.1 Dynamic Bayesian network structure 

First of all, the dynamic extension does not indicate that there will be a dynamic 

change in the network structure or parameters, but that a dynamic system is modeled. A 

DBN is a directed acyclic graphical model of a stochastic process. It consists of time-

slices with each slice containing its own variables. A DBN is defined as the pair (B1, B ) 

where B1 is a Bayesian network that defines the prior or initial state distribution of the 

state variables p (Z1) (Murphy, 2002) and B  is a two-slice temporal Bayesian network 

(2TBN) that defines the transition model. 

2.2.2 Inference 

There exist several ways of performing inference on DBNs. The most common 

types of inference are given in figure 3.12. 

 

!

Figure 2.1: Different types of inference. Arrow indicates the time of reference. t 

represents current time and T, the sequence length. (Hulst J, 2006) 
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• With filtering (or monitoring), the current belief state is computed given all 

evidence from the past. To achieve this, p(Xt|y1:t) needs to be calculated. Filtering 

is used to keep track of the current state for making rational decisions. It is called 

filtering, because noise is filtered out from the observations. 

 

• With prediction, a future belief state is computed given all evidence from the past. 

This means p(Xt+h|y1:t) needs to be calculated for some h > 0. Prediction can be 

used to evaluate the effect of possible actions on the future state.  

 

• With smoothing (or hindsight), a belief state in the past is calculated when all the 

evidences up to the present are given. So, p(Xt%l|y1:t) is calculated for some fixed 

time-lag l > 0. Smoothing is useful to get a better estimate of the past state, 

because more evidence is available at time t than at time t % l. In figure 3.12, two 

types of smoothing are given: fixed-lag smoothing, which is the type of smoothing 

given above, and fixed-interval smoothing, which is the offline case in which p 

(Xt|y1:T) is calculated for all 1 < t < T. 

 

• The final inference method to be described here is Viterbi decoding (or most likely 

explanation). This is a different kind of inference, but it is used very often 

nonetheless. With Viterbi decoding, given a sequence of observations, one might 

compute the most likely sequence of hidden states. That is: arg maxx1:t p                     

( x1:t|y1:t) needs to be calculated.  
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In general, there are two types of inferences. They are exact inference and 

approximate inference. 

2.2.2.1 Exact inference 

The first approach for exact inference in DBNs is based on the notion that an 

unrolled DBN is in fact the same as a static BN. Variable elimination can be used with 

filtering. This algorithm results in having only two slices of the unrolled DBN in memory 

at a time. For smoothing, using the junction tree algorithm is more efficient. A second 

approach is to convert the DBN to a HMM and then apply the forward-backward 

algorithm. Converting a DBN to a HMM is only possible with discrete state DBNs. With 

Nh number of hidden variables per slice, each variable having up to M values, the 

resulting HMM will have maximally S = MNh values. As long as S is not too large, this is 

a nice method, because it is very easy to implement. Unfortunately, most of the times S 

will be too large and more efficient methods need to be used. 

The frontier algorithm (Zweig, 1996) is based on the notion that in the forward-

backward algorithm, Xt of the HMM d-separates the past from the future which can be 

generalized to a DBN by noticing that the hidden nodes in a slice d-separate past from 

future. This set of nodes is called the frontier. This algorithm also uses a forward and a 

backward pass. The interface algorithm (Murphy, 2002) is an optimization of the frontier 

algorithm because it does not use all hidden nodes in a slice, but only the subset of nodes 

with outgoing arcs to d-separate the past from the future. This subset is called the forward 

interface. The modified 2TBN is called a 1.5DBN Ht in this algorithm, because it 

contains all nodes from slice 2, and nodes with an outgoing arc from slice 1. After this 

modification, a junction tree is created of each Ht and they are glued together. Finally, 
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inference is performed on each separate tree and messages are passed between them via 

the interface nodes, first forward and then backward. Finally, analogous to the conversion 

from discrete state-space DBN to HMMs, a linear- Gaussian state-space DBN can be 

converted to a Kalman filter model (KFM). Kalman filtering or Kalman smoothing can be 

used for exact inference after this conversion. 

2.2.2.2 Approximate inference 

Exact inference in discrete-state models is often unacceptably slow. When faster 

results are needed, approximate inference can be used. Furthermore, it turns out that for 

most DBNs with continuous or mixed discrete-continuous hidden nodes, exact exhibition 

of the belief state do not exist. Generally, two types of approximations are distinguished: 

deterministic and stochastic algorithms. Deterministic algorithms for the discrete-state 

DBNs include: the Boyen-Koller algorithm (BK) (Boyer, Koller, 1998) where the 

interface distribution is approximated as a product of marginals and the marginals are 

exactly updated using the junction tree algorithm; the factored frontier algorithm (FF) 

(Murphy, Weiss, 2001), where the frontier distribution is approximated as a product of 

marginals and the marginals are computed directly; and loopy belief propagation, which 

is a generalization of BK and FF. Deterministic algorithms for linear-Gaussian DBNs 

include: the Generalized Pseudo Bayesian approximation (GPB(n)), where the belief 

state is always represented using Kn%1 Gaussians; and the interacting multiple models 

(IMM) approximation, which also collapses the priors.  Deterministic algorithms for 

mixed discrete-continuous DBNs include: Viterbi approximation, in which the discrete 

values are enumerated in a priori order of probability; expectation propagation, which is 

the generalization of BK for discrete-state DBNs and GPB for linear Gaussian DBNs; 
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and variational methods, that decompose the problem into separate discrete and 

continuous chains which are treated differently.  

Deterministic algorithms for non-linear or non-Gaussian models include: the 

extended Kalman filter (EKF) or the unscented Kalman filter (UKF) for non-linear 

models, which calculate a local linearization and then apply a Kalman filter (KF). 

Stochastic algorithms can be divided into offline and online methods. Offline methods 

are often based on Monte Carlo Markov Chain (MCMC) or importance sampling. Online 

methods often rely on methods such as particle filtering, sequential Monte Carlo, the 

bootstrap filter, the condensation algorithm, survival of the fittest, and others. Stochastic 

algorithms have the advantage over deterministic algorithms that they are easier to 

implement and are able to handle arbitrary models. Unfortunately, this comes with a 

price, because stochastic algorithms are generally slower than the deterministic methods. 

Both methods can be combined to get the better of two worlds. (Murphy, 2002) presents 

the Rao- Blackwellised Particle Filtering algorithm, in which some of the variables are 

integrated out using exact inference and sampling is applied to the other variables.  

 

2.2.3 Learning 

The techniques for learning DBNs are generally the same as the techniques for 

learning static BNs. The specific methodology used in this research for learning the 

parameters of a DBN with complete data is presented below. Current DBN parameter 

learning algorithms for Murphy’s formalism unroll a DBN for t = T time-slices, where T 

is the sequence length of the process, after which the learning data is inserted in the 

unrolled network and the parameters are learned. Remember that for Murphy’s 
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formalism, two sets of parameters need to be specified, the initial parameters in B1, a BN 

that defines the initial state distribution of the state of variables and the transition 

parameters in the second slice of B "! #! $%&'()*+,! $,-.&/#)! 01! $2#$! 3,4*5,(! $2,!

$/#5(*$*&5! -&3,). An example for learning a DBN model of a HMM is shown 

schematically in figure 2.2.   

 

 

 

 

Figure 2.2: Unfolding DBN during its’ parameter learning stage with no 

connection between the initial and simulated parameter. (Hulst J, 2006) 

In this example, the parameters for B1 are given by {&X1,&Yt}  and the 

parameters for B  are given by {&Xt ,&Yt}  When learning the parameters, the DBN is 

unrolled for T time-slices, the parameters are tied and learned by insertion of the learning 

data. However, in case the initial parameters represent the stationary distribution of the 

system, they become coupled with the transition parameters. This is shown schematically 

in figure 2.3. 
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Figure 2.3: Unfolding DBN during its’ parameter learning stage with connection 

between the initial and simulated parameter. (Hulst J, 2006) 

On a modeling level, decoupled initial and transition parameters mean that the 

modeled process has a specific beginning, i.e. the first time-slice of the DBN always 

models the same time instant of the process. The initial and transition parameters become 

coupled when the modeled process does not have a specific beginning, i.e. the first time-

slice of the DBN starts somewhere in the modeled process, but where is unclear. When 

modeling physiological processes, we are dealing with the latter, because a patient does 

not have a distinctive initial state. As we mentioned already in the previous section, 

learning DBN parameters in case the initial parameters represent the stationary 

distribution of the system can be problematic. For first-order DBNs, Nikovski presents an 

algorithm, but this algorithm cannot be used with the DBN formalism.  

The main differences between learning of static and DBNs are parameter learning and 

structural learning. 

Parameter learning can be done both online and offline. For online learning, the 

parameters are added to the state space after which online inference is applied. For offline 
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learning, the same techniques as for learning BNs can be used. Some points that are 

specifically applicable to DBNs: 

• Parameters must be joined to time-slices, so models of unbounded length can be 

modeled. 

• In the case that the initial parameters ' represents the stationary distribution of the 

system, they become coupled with the transition model. As such, they cannot be 

estimated independently of the transition matrix (Nikovski, 1998). 

• Linear-Gaussian DBNs sometimes have closed-form solutions to the maximum 

likelihood estimates. 

Structural learning of DBNs consists of learning both inter-slice and intra-slice 

connections. If only the inter-slice connections are learned, the problem reduces to 

feature selection (what variables are important for temporal reasoning and what variables 

are not). Again, learning for static BNs can be adapted. 

 

2.3 Other temporal reasoning techniques 

The DBN formalism is not the first development in temporal reasoning under 

uncertainty. The two most popular techniques still in use nowadays are the hidden 

Markov model (HMM) and the Kalman filter model (KFM). Their popularity is mostly 

due to their compact representation, fast learning and fast inference techniques. However, 

a DBN can have some significant advantages over these two formalisms. For one, Hidden 

Markov models  and Kalman Filter models are really limited in their expressive power. In 

fact, it is not even correct to call HMMs and KFMs other techniques, because the DBN 

formalism can be seen as a generalization of both HMMs and KFMs. The DBN 
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formalism brings out connections between these two models that were assumed to be 

different, previously, because they were developed in very different research areas. DBNs 

generalize Hidden Markov Models by allowing the state space to be represented in 

factored form, instead as a single discrete random variable. DBNs generalize Kalman 

Filter Models by allowing arbitrary probability distributions, not just conditional linear 

Gaussian distributions. The basic versions HMMs and KFMs are briefly discussed here 

because of historical relevance. Extensions exist for both HMMs and KFMs to counter 

some of their issues, but an extensive description of those is beyond the scope of this 

thesis. 

2.3.1 Hidden Markov Models 

A HMM models a first-order Markov process where the observation state is a 

probabilistic function of an underlying stochastic process that produces the sequence of 

observations. The underlying stochastic process cannot be observed directly, it is hidden. 

Both the hidden and observation states are modeled by discrete random variables 

[Rab89]. The HMM formalism first appeared in several statistical papers in the mid-

1960s, but it took more than 10 years before its usefulness was recognized. Initially, the 

use of HMMs was a great success, especially in the fields of automatic speech 

recognition (ASR) and bio-sequence analysis. Because of its success, the use of HMMs 

in ASR is still dominant nowadays, despite its undeniable issues (Russel, Blimes, 2003).  

A HMM definition consists of three parts: an initial state distribution '0, an 

observation model p (Yt|Xt) and a transition model p(Xt|Xt%1). HMMs are generally used 

to solve one of the following problems: (1) state estimation p (Xt = x|y1:t) using the 

forward-backward algorithm, (2) most likely explanation arg maxx1:t p(x1:t|y1:t) using 
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the Viterbi algorithm, and/or (3) maximum likelihood HMM arg max( p(y1:t|() (for 

learning the HMM) using the EM algorithm, called the Baum-Welch algorithm in this 

context.  

One main problem among many of HMMs is the fact that the hidden state is 

indicated by only a single discrete random variable. DBNs are able to decompose the 

state of a complex system into its constituent variables, taking advantage of the 

sparseness in the temporal probability model. This can result in exponentially fewer 

parameters. The effect is that using a DBN can lead to fewer space requirements for the 

model, less expensive inference and easier learning. 

 

2.3.2 Kalman filter models 

Basically, a KFM is a HMM with conditional linear Gaussian distributions 

(Welcha, Bishop, 2004). It is generally used to solve uncertainty in linear dynamic 

systems. The KFM formalism first appeared in papers in the 1960s (Kalman, 1960), and 

was successfully used for the first time in NASA’s Apollo program. Nowadays, it is still 

used in a wide range of applications. The KFM formalism assumes that the dynamic 

system is jointly Gaussian in nature which means the belief state to be unimodal that is 

inappropriate for many problems. The main advantage of using a DBN over a KFM is 

that the DBN can use arbitrary probability distributions instead of a single multivariate 

Gaussian distribution. 
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2.3.3 Dynamic Conditional Random Fields 

Conditional random fields (CRFs) is a undirected graphical probabilistic 

framework to label and segment structured data on the idea of defining a conditional 

probability distribution given a particular observation, rather than a joint distribution over 

both labeled and observed information. CRFs have an advantage over HMMs in terms of 

their conditional nature, resulting in the relaxation of the independence assumptions 

required by HMMs in order to ensure tractable inference. CRFs avoid the label bias 

problem, outperforms both maximum entropy Markov models (MEMM) and HMMs on a 

number of real-world tasks in the fields of bioinformatics, computational linguistics and 

speech recognition (Charles S, et al, 2007). 

  Dynamic conditional random fields (DCRFs) are a generalization of linear-

chain conditional random fields (CRFs) in which each time slice contains a set of state 

variables and edges. They represent distributed states as in dynamic Bayesian networks 

(DBNs), and parameters are tied across slices. DCRFs allows to represent distributed 

hidden state and complex interaction among labels, as in DBNs, and to use rich, 

overlapping feature sets, as in conditional models. DCRF performs better than CRFs, 

achieving maximum performance using only half the training data. In addition to 

maximum conditional likelihood, there are two alternative approaches for training 

DCRFs: marginal likelihood training and cascaded training. Among the two, marginal 

training can improve accuracy when uncertainty exists over the latent variables. Any 

DCRF with multiple state variables can be collapsed into a linear-chain CRF. However, 

such a linear chain CRF needs exponentially many parameters in the number of variables. 
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Like DBNs, DCRFs represent the joint distribution with fewer parameters by exploiting 

conditional independence relations. 

2.4 Softwares for performing Bayesian simulations 

The software with DBN functionality that is currently on the market can be 

divided into two classes: software that does have a GUI and software that does not have a 

GUI. The software that does have a GUI is mostly commercial and is relatively easy to 

use for a user with only an average knowledge of BNs. The software without a GUI is 

mostly academic-oriented, which means that it is a result of research in the area of DBNs. 

Academic-oriented software is very flexible, but this can also make its application to 

specific problems very time-consuming. 

The Inference, Structural Modeling and Learning Engine are fully platform 

independent libraries written in C++ classes that implements graphical probabilistic and 

decision-theoretic models that are suitable for direct inclusion in intelligent systems 

(Druzdzel, 1999). The individual classes defined in the Application Program Interface 

(API) of SMILE enable the user to create, edit, save and load graphical models, and use 

them for probabilistic reasoning and decision making under uncertainty. To be able to 

access the SMILE library from a number of other programming languages, wrappers 

exist for ActiveX, Java, and .NET. SMILE was first released in 1997. 

The Graphical Network Interface is the graphical user interface to the SMILE 

library. It is implemented in C++ and makes heavy use of the Microsoft Foundation 

Classes. Its emphasis is on accessibility and friendliness of the user interface, making 

creation of decision theoretic models intuitive using a graphical click-and-drop interface 
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approach which is user-friendly and versatile environment for building graphical decision 

models and performing diagnosis. 

Three libraries that have DBN functionality and are freely downloadable include 

the Bayes net toolbox for MATLAB, graphical models toolkit (GMTK), probabilistic 

network library (PNL). 

 

2.4.1 Bayes net toolbox for MATLAB 

Until the introduction of the Bayes net toolbox for Matlab (BNT) (Murphy, 2001), 

the field lacked a free general-purpose software library that was able to handle many 

different variants of graphical models, inference and learning techniques. The BNT is an 

attempt to build such a free, open-source, and easy-to-extend library that can be used for 

research purposes. The author chose to implement the library in Matlab because of its 

ease of handling Gaussian random variables. Matlab has various advantages and 

disadvantages, the main disadvantage being that it is terribly slow. 

In the BNT, BNs are represented as a structure containing the graph, the CPDs 

and a few other pieces of information. The BNT offers a variety of inference algorithms, 

each of which makes different tradeoffs between generality, accuracy, speed, simplicity, 

etc. All inference methods have the same API, so they can be easily interchanged. The 

conditional probabilities of the defined variables can be continuous or discrete. Parameter 

and structure learning are supported as well. 

The toolbox was the first of its kind and set a standard for DBN libraries. It is still 

widely in use today, because the code is relatively easy to extend and well documented 

and the library has by far the most functionality of all software currently available. 
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However, much functionality still needs to be added to make it a real general-purpose 

tool, such as tree-structured CPDs, Bayesian modeling, online inference and learning, 

prediction, more approximate inference algorithms, and support for non-DAG graphical 

models. Also, the scripting part that is needed to implement a model in the BNT can be 

really cumbersome. Added to that, BNT does not have support for standard BN file 

formats, which cancels the possibility to export and/or import BN models from/to other 

packages. The BNT is released as open-source software and can be downloaded from 

http://bnt.sourceforge.net. A GUI is currently in development. 

 

2.4.2 Graphical Model Toolkit 

The graphical models toolkit (GMTK) (Bilmes, Zweig, 2002) is a freely available 

and open-source toolkit written in C++ that is specialized in developing DBN-based 

automatic speech recognition (ASR) systems. The GMTK has a number of features that 

can be used for a large set of statistical models. These features include several inference 

techniques, continuous observation variables and discrete dependency specifications 

between discrete variables. The DBN model needs to be specified in a special purpose 

language. In this language, a DBN is specified as a template that contains several time-

slices. The collection of time-slices is unrolled over time to create an unrolled DBN. The 

time-slices in the template are divided into a set of prologue, repeating and epilogue time-

slices and only the repeating frames are copied over time. This approach to modeling 

DBNs has much expressive power, but it is also a lot of work to specify a DBN model. 

The GMTK is a promising library. To become really useful, a couple of disadvantages 

need to be tackled. Its main disadvantages are that it is not a general-purpose toolkit, 
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because it specializes in ASR and it therefore lacks much functionality that is useful for 

other applications. Furthermore, the documentation is far from complete, making it 

difficult for a user that is not closely involved in the development of the software to 

understand the toolkit. Finally, although the author of the toolkit states that it is open-

source, the website (http://ssli.ee.washington.edu/~bilmes/gmtk) still only offers a binary 

version. 

2.4.3 Probabilistic network library 

Intel’s research lab in Saint Petersburg, Russia is responsible for the probabilistic 

network library (PNL) (Intel Corporation, 2004), which is an open-source library written 

in C++ that can be used for inference and learning using graphical models. PNL has 

support for a large variety of graphical models, including DBNs. In fact, PNL can be seen 

as the C++ implementation of BNT, since its design is closely based on that library. PNL 

does not support all functionality provided by BNT yet, but the long-term goal is that it 

will surpass that functionality. The influence of BNT is very clear when diving into the 

API of PNL. Because the approach is similar, PNL can also only model first-order 

processes. The API is very well documented; making it a good option if one wants to 

model DBNs. However, the implementation is far from complete and still lacks much 

functionality that BNT offers. The library recently reached its v1.0 status, which can be 

downloaded from http://www.intel.com/technology/computing/pnl. Work is being done 

to make PNL compatible with the GeNIe GUI. 
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2.4.4 DBN modeling tools 

Currently, there are three softwares that support temporal reasoning and have a 

GUI; they are BayesServer, BayesiaLab and Netica. A detailed introduction to these 

softwares is presented below. 

 

2.4.4.1 BayesServer 

BayesServer is a tool for modeling Bayesian networks and Dynamic Bayesian 

networks developed by the BayesServer Corporation from United Kingdom. Bayes 

Server 3.0 supports both Bayesian networks and Dynamic Bayesian networks, especially 

in time series analysis, and has a rich user interface and API for building and visualizing 

models, learning models from data, sampling data, charting, and building complex 

probability queries, including time series predictions. The tool supports end-users with a 

forum to discuss the current trends, any glitches in the process of simulations and updates 

in new releases. 

The flowchart of simulating time series Bayesian networks using BayesServer 

usually follows a series of steps. The user creates the temporal nodes using the network 

tab and assigning the links between the nodes (Figure 2.4). Parameter learning in 

BayesServer can be done by loading the distribution parameters manually using the 

distribution editor or by making the model learn automatically from the data (Figure 2.5).  

BayesServer also supports data plots to view the distribution of data (Figure 2.7). After 

the learning phase is finished, data connections using the data explorer (Figure 2.6) are 

made. Data connections are nothing but mapping the data columns in the data set to the 
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respective nodes in the Bayesian network followed by entering the evidence. Following 

the data-mapping phase, the candidate network alias the static Bayesian network is 

visualized in the BayesServer GUIs. Some of the screenshots related to the above 

mentioned phases have been presented. 

 

Figure 2.4: Creating a node in BayesServer 
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Figure 2.5: Learning Parameters in BayesServer 

 

 

Figure 2.6: Data explorer section of BayesServer 
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Figure 2.7 (a): Time series data plot in BayesServer 

 

 

Figure 2.7 (b): Time series data plot in BayesServer 
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2.4.4.2 BayesiaLab 

BayesiaLab is the BN software toolkit developed by the French company Bayesia 

(http://www.bayesia.com). BayesiaLAB has two modes: a modeling mode for designing 

the BN and a validation mode for inference. In the modeling mode, it is possible to add 

temporal arcs to a BN to indicate that the parent node of the two nodes is in the previous 

time-slice. Only first-order Markov models can be designed this way. Temporal arcs have 

a different color. The user needs to specify the initial state and the temporal probabilities 

of the nodes. After specification, the validation mode can be selected to follow the 

changes of the system over time by browsing between time steps (only forward steps are 

supported) or by setting the number of steps and then plotting a graph of the variables. 

The DBN does not unroll graphically, only the values change. It is possible to set 

evidence by hand or by importing a data file. Of the inference methods discussed, only 

filtering and prediction are possible. 

2.4.4.3 Netica 

Netica is a product of Norsys (http://www.norsys.com), which is located in 

Canada. In Netica, the user designs the BN and then compiles it, after which inference is 

possible. Compiling the BN basically means that it is converted to a junction tree 

representation. When designing a DBN, temporal arcs can be added between nodes. The 

temporal arcs have a red color. The difference with BayesiaLab is that we explicitly 

define the temporal relationship (called a time-delay in Netica) of two nodes in one of the 

nodes instead of the implicit approach of BayesiaLab. In this way, k-order Markov 

processes can be modeled. When the DBN has nodes with temporal relations to itself 

(which is usually the case), the DBN definition contains loops. Of course, this is only 
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valid in the definition of the DBN; the unrolled version should not contain loops. After 

defining the DBN, it can be unrolled for t slices and compiled. The resulting BN is 

opened in a new window. Inference can be performed on this unrolled and compiled BN. 

All inference methods are supported. We can enter evidence by hand or by importing a 

data file. 

2.5 Related work 

 Most of the work that is being discussed in this section focuses at DBNs usage to 

model the gene expression data.  Incorporating prior knowledge parameters has not been 

touched in either of the discussed works. 

 In their research article Modeling gene expression data using DBNs, Kevin 

Murphy and Saira Mian have showed that most of the proposed discrete time models — 

like the Boolean network model, the linear model of D’haeseleer et al., and the nonlinear 

model of Weaver et al. - are all special cases of a general class of models called Dynamic 

Bayesian Networks (DBNs). Ability to model stochasticity, incorporating prior 

knowledge, handling hidden variables and missing data in a principled way are some of 

the advantages of DBNs (Murphy K & Mian S, 1999). 

Yu Zhang et al presented a new dynamic Bayesian network (DBN) framework to 

model gene relationships by embedding with structural expectation maximization (SEM). 

Time-series data analysis and ability to deal with cyclical structures that cannot be 

achieved using their model. Regulatory network and the metabolic pathway were learned 

from Saccharomyces Cerevisiae cell cycle gene expression data, using this approach. 

Missing value processing in expression datasets and improvement in inference accuracy 

was derived as the output. 
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Many of the glitches while analyzing data during obtaining genetic regulatory 

networks from microarray data have been ignored. The rate of success depends on 

generalizing the current algorithms and gathering data in a simplified fashion with low 

measurement error and variance from single or multiple cells, makes the job easier for 

data analysts. No fundamental obstacles are seen to gather data of that kind which might 

enhance the performance of current Bayesian network discovery algorithms (Peter Spirtes 

et al., 2001). 

Paul Helman et al proposed new technique to solve the problem of classifying 

gene expression data. Addressing classification enabled them to develop techniques that 

solved complexities of learning Bayesian nets. This model reduced the Bayesian network 

learning problem into a problem of learning multiple sub networks, each consisting of a 

class label node and its set of parent genes. Paul Helman et al’s model is more 

appropriate for the gene expression domain than other structurally similar Bayesian 

network classification models like Naive Bayes and Tree Augmented Naive Bayes 

because of its consistency with prior domain experience assuming that small numbers of 

genes in different combinations are required to predict most clinical classes of interest. 

Two different approaches are considered to identify parent sets – one, that employs a 

greedy algorithm to search all genes; the second employs a gene selection algorithm 

whose results are incorporated as a prior to enable an exhaustive search for parent sets 

over a restricted universe of genes. Two other significant contributions are the 

construction of classifiers from multiple Bayesian hypotheses and algorithmic methods 

for binning gene expression data. Classifiers were validated using out-of-sample test sets 
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with a classification rate in excess of 90% on out-of-sample test sets for two publicly 

available datasets (Paul Helman et al., 2004). 

Transcriptional networks from highly replicated gene expression profiling data 

have been reverse engineered using State-space models (SSMs). These are a class of 

DBNs in which the observed measurements are dependent on hidden state variables from 

Markovian dynamics, which can capture effects that are unable to be measured in a gene 

expression profiling experiment. (Matthew J Beal et al). Problem of inferring the model 

structure of these state-space models using both classical and Bayesian methods is 

addressed using this approach. Analogous model selection task in Bayesian theory is 

achieved by the usage of variational approximations. Certain interactions are present in 

both the classical and the Bayesian analyses of these regulatory networks, which are key 

for clonal expansion and for controlling the long-term behavior. 

For interpreting large data sets produced during biological experiments, prior 

biological knowledge for the analysis would be very useful. Bayesian Decomposition is a 

tool that is capable of doing this task (TD Moloshok et al) with two advantages namely 

the ability to assign genes to multiple groups and encoding biological knowledge in to the 

system. 

Microarray experiments that yield data about direction of interactions are usually 

two kinds: time series and perturbation experiments. To handle them correctly, the basic 

formalism should be modified (Norbert Dojer et al). The framework of DBNs to 

incorporate perturbations was applied while working with time series expression data. In 

addition, an algorithm for inferring network and a discretization method exclusive for 

time series data was introduced. This procedure has been applied to realistic simulations 
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data and the outcomes were compared to those obtained by standard DBN learning. Also, 

the advantages with using exact learning algorithm instead of heuristic methods were 

analyzed. 

 

2.6 Hypothesis 

The most challenging task in Bayesian simulations is the accumulation of proper 

data and their efficient declaration and incorporation into the model thereby assessing the 

prediction performance. This data is downloaded from the publicly available databases. 

The prior knowledge parameters are also downloaded in similar fashion from publicly 

available databases. After performing the data pre-processing, the experiments and the 

genes that satisfy the set-threshold were considered. Scores calculated using research 

literature was identified. These scores along with the expression data are combined and 

are simulated using BayesServer at different time-point combinations. The parameter 

learning and data distribution phases are adjusted in the GUI of the BayesServer 

software. At different number of parameter learning iterations, the model’s prediction 

performances were observed and are plotted to calculate the correlation values of the 

simulation model. 
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3. METHODOLOGY 

Understanding the effect of certain gene parameters when included in the time-

course DBN model takes different paths as shown in Figure 3.1. The process starts with 

extracting the expression data, pre-processing, computing the correlation coefficients, 

choosing the right genes and experiments that have a correlation within the desired 

threshold, extracting the gene parameters (here the Gene Characterization Index (GCI) 

and the Gencards Inferred Functionality Score (GIFtS)) for the selected genes, loading 

the expression data with these parameters and finally, simulating the model that is built 

using the Bayes Server software. Each step is explained in detail in the following 

sections. 

3.1. Data collection and preprocessing 

From the gene expression omnibus (GEO) database, oligoarray data on the 

“Prediction of toxicant-specific gene expression signatures following chemotherapeutic 

treatment of breast cell lines (GSE1647)” were considered for this study (Troester, et al., 

2004). Gene expression profiling has made it clear that the predominant cellular response 

to a variety of toxicants is stress response. This response commonly includes repression 

of protein synthesis, cell cycle regulated genes and induction of DNA damage. Troester 

et al lab has characterized the general stress response of breast cell lines derived from 

basal-like and luminal epithelium after treating them with doxorubicin (DOX) or 5-

fluorouracil (5FU) and proved that each cell type has a distinct response. However, the 

researcher’s assumption was that the expression changes induced by DOX and 5FU were 

unique to each compound and might explain the effect of these agents. So, significance 

analysis of microarrays to identify differentially expressed genes between DOX- and 
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5FU-treated cell lines was used. Followed by cross-validation analyses, the authors have 

found the genes that afforded high predictive accuracy. To test their accuracy, the cell 

lines were treated again with etoposide, a chemical similar to DOX. The outcome was 

that, using expression patterns of 100 genes, they were able to obtain 100% predictive 

accuracy in classifying the etoposide samples. This has proved that toxicant specific gene 

expression patterns vary according to cell type. 

It is a known fact that DNA micro-arrays allow parallel expression profiling of 

thousands of genes. Manufacturing micro-arrays involves the synthesis of DNA onto a 

solid support or the deposition of pre-synthesized DNA onto a suitable surface. During 

the process of making the micro arrays, DNA is in the form of either PCR products or in 

the form of an oligonucleotide (Rouillard, Zuker, Gulari, 2003). DNA micro arrays that 

are made with DNA in the form of oligonucleotides are referred to as an oligoarray (Paul 

Helman et al., 2004). 

The data we used for this simulation study consisted of breast cancer cell line 

information treated with toxic chemicals from 83 experiments across three time-course 

data points at 12-hour, 24-hour, and 36-hour intervals respectively. A total of 20,164 

genes were present in the data array. Since the expression values of the majority of genes 

in the data between any two given experiments should be constant, data normalization 

techniques were adapted for pre-processing the data. When an experiment is performed 

on an oligonucleotide array, any sources of variation that are of non-biological origin 

should be eliminated without fail (Bolstad, et al., 2003). For this reason, normalization 

was applied on the high-noise oligoarray expression datasets. Reference sets are essential 

for any normalization process. Usually, the whole data set is considered as the reference 
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set, under the assumption that there is little variation in the genes being considered across 

the experiments, and the up and down regulated expression values are approximately 

symmetric (Calza, Valentini, Pawitan, 2008). 

Normalization techniques are usually employed to minimize systematic variations 

and identifying biological differences (Karla & Grill, 2004). There are several 

normalizing methods available for the affymetrix data. Affymetrix data assume that the 

intensity in the array should be scaled to reach an average value. For our data, we have 

employed the Cyclic Loess Normalization technique that is available through the R 

packages from bioconductor (Bolstad, et al., 2003).   

Loess is a method of non-linear logistic regression on the concept of M versus A 

plot, where M is the different values of log expression and A is the average of log 

expression values. Instead of considering the probe intensities of the same array, as in the 

traditional affymetrix data normalization steps, Loess oligo array normalization considers 

the gene expression values of two arrays at the same time by applying a correction factor 

from the curve obtained through the MA plot. Other normalization methods assume that 
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Figure 3.1: Flowchart of incorporating a priori knowledge into a DBN model for 

predicting time-course expression data. 
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expression levels of the genes do not change under experimental conditions (Karla & 

Grill, 2004), which is not true for our dataset. Cyclic Loess method preserves row means 

of the data matrix and adds a constant if there is an increase or decrease in the column 

values. On these reasons, we have adapted the Loess normalization technique to reduce 

noise in our data. For two arrays i and j with gene expression values Xi and Xj, the 

logistic regression is calculated as Mk = log2 (Xi / Xj) and Ak = ) log2 (Xi Xj) [8]. A Loess 

normalization curve is fitted using the M versus A plot. The process is repeated for all the 

pairs in the experimental dataset until a good curve fitting is achieved. Usually, one or 

two iterations per pair will yield the best results. 

The following MA plot gives an overview of the data before and after 

normalization. The plot explains the distribution of the data and its’ skewness. 

 

Figure 3.2 (a): Data distribution before normalization. Sample 1- At 12h, Sample 2 – At 

24h, Sample 3 – At 36h 
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Figure 3.2 (b): Data distribution after normalization. Sample 1- At 12h, Sample 2 – At 

24h, Sample 3 – At 36h 

3.2. Correlation computation 

In any Bayesian model, it is essential to know how closely the variables in the 

model are related. It is the mutual communication and the inter-dependency of the 

variables that bring out the best predictions through the simulations that are carried out in 

a dynamic Bayesian model. 

To identify the closely related genes from the list of 20,164 genes in the dataset, 

we calculated the Pearson’s correlation coefficient, r (Rogers & Girolami, 2005), where 

X is the first gene or experiment data and Y is the other gene or experiment data, between 

the experiments and also for all the genes. Experimental correlation provided us the 

information about which experiments had a linear relationship. Correlations among the 
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genes provide the information about the genes that are closely related and follow a linear 

relationship. The correlation was calculated using the following formula in Figure 3.3, 

and the correlation values fell into the range from 0.958 to -0.907.   

 

Figure 3.3: Formula to calculate Pearson’s correlation coefficient. 

 

A correlation cut-off value of 0.93 was chosen to identify the genes that are 

highly inter-dependent. Eight genes were found to be highly related after eliminating the 

duplicates. For the initial test run with 500 iterations, these eight genes were considered. 

At a threshold of 0.9, 19 genes were found to be highly correlated that were used for the 

1000 iteration simulation model. Experiments that exhibited a correlation of greater than 

0.98 were considered from the 83 experiments in the dataset. Experiments that are 

common across all the three time-course data points and that possessed a correlation 

value of greater than or equal to 0.98 were chosen for the simulation. 

3.3 Gene Characterization Index (GCI) 

Gene annotation is vital in computational genomics that deal with expression 

analysis, prediction of gene function and in-depth observation into the sequence (Kim & 

Miyano, 2004). The gene characterization index (GCI) accounts to the characterization 

status of individual genes, which in turn, explains how far the protein-encoding gene is 
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functionally described (Kemmer, 2008). Using GCI as a parameter in the Bayesian model 

adds weight in the form of gene annotation to the genes that are present in the model. 

 

Figure 3.4: Static Bayesian Network constructed using BayesServer at 12-hour time 

point. X1, X2 and X3 represent the expression data, GCI and GIFTS score respectively. 

The scoring procedure of assigning a GCI score to each gene in the human 

genome is based on the responses to a global survey by 50 researchers worldwide on a 

scale of 1 to 10 with 1 being poor and 10 being extensive (GCI). Genes for the survey 

were chosen from major online resources like Entrez Gene and GeneLynx databases 

(Lenhard, Hayes and Wasserman, 2001). Figure 3.5 indicates the GCI scores of the genes 

in the human genome across three different time points. This made it possible for us to 
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incorporate GCI scores into the DBN model.  The GCI score will help us to identify 

groups of genes with potentially interesting applications, which are usually overlooked by 

the scientific community. By incorporating the GCI score in our Bayesian model, in 

addition to the annotation value of the gene, the confidence score of the gene for being 

involved in breast cancer is assigned. Another major reason for incorporating the GCI 

score in our Bayesian model is to serve the purpose of being a resource for scientists to 

demonstrate the novelty of research findings and utility of new methods. 

 

 

Figure 3.5: Histogram displaying the frequency of GCI scores observed in the analysis of 

genes at 3 different time points after the release of the first draft of the human genome 

sequence. (Kemmer et al, 2008) 
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3.4. GenCards Inferred Functionality Score (GIFts) 

GenCards is a resource of information on annotations of over 50,000 human gene 

entries that is built upon 68 data sources including Gene Ontology, pathways, interactions 

and phenotypes. GIFtS is usually obtained by submitting the gene symbols to the 

GenCards database. Genbank accession numbers in the dataset are converted into their 

respective gene symbols using bioDBnet (Mudunuri, 2009). 

To identify the DNA sequence’s function, scientists have used different 

approaches involving the assessment of annotation spectrum of a given gene. Some 

efforts in this regard include the Genome Annotation Scores (GAS) algorithm, GO 

Annotation Quality (GAQ) and also the Gene Characterization Index (GCI) which scores 

the extent to which a gene is functionally described (Rouillard, Zuker, Gulari, 2003).  

GIFtS utilizes the wealth of gene annotations within GenCards which is a rich 

source of over 50,000 human gene entries that gets information from about 70 different 

sources. As quoted, “GIFtS value for a gene is defined as the number of GenCards 

sources, out of 68.” (Harel et al., 2009). Genes falling in the high GIFtS region account 

for higher probability and those in the lower regions indicate less chances of being 

associated with relevant biological changes. A binary vector of 67 elements for each 

gene, indicating presence or absence of data in each relevant source was identified from 

literature. 
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Figure 3.6: GIFtS score distribution with the percentage of genes on Y-axis and the score 

on x-axis. (Harel et al, 2009) 

Gene  Numbers Swissprot ID GCI GIFtS 

G7340 TBB5_HUMAN 10 67 

G7352 TBB1_HUMAN 8.9 61 

G7883 CDN1A_HUMAN 9.8 69 

G8951 PLAK_HUMAN 9.8 66 

G10549 ID3_HUMAN 8.8 61 

G19187 CDN2A_HUMAN 9.9 69 

G19503 PTTG1_HUMAN 9 61 

G19548 KIF3A_HUMAN 8.9 60 

 

Table 3.1:  Genes after applying a correlation threshold of 0.93. 
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3.5 Simulations 

After applying the correlation filter with a threshold of 0.93, a set of 8 genes as 

listed in Table 3.1 was obtained. As an initial test run, the pathway of interactions among 

these 8 genes was identified using KEGG pathway database (Kanehisa, 2002) and 

Metacore (Yang, et al., 1998) and a static Bayesian network was constructed using the 

12-hour expression data. 

In the Bayes server software, the GCI and the GIFtS scores were set as the node 

parameters and the 24-hour expression data was set as the node evidence for the 

simulation to occur. This static Bayesian network was trained for 500 iterations and the 

simulation was initiated. Once the simulation was completed, the conditional probability 

distributions of each node in the 24-hour dynamic Bayesian network were recorded and 

compared to the 12-hour static Bayesian network. This process is repeated for the 12-

hour to 36-hour simulations and for 24-hour to 36-hour simulations. For each simulation, 

the time course into which the current static network is being simulated is set as the node 

evidence. A total of 12 different data combinations are considered for each simulation. 

Prediction capability of all the simulations is evaluated using regression method and 

obtaining the r-value. The model showed a high r-value for the 12-hour to 24-hour 

simulation with only gene expression being considered for the prediction, followed by the 

combination of gene expression, GIFtS and gene expression with the GCI score.  

Two experiments were carried out in this study. One with the 8-gene set at 500 by 

using a correlation threshold filter of 0.93 and the second one with the 19-gene set at 300, 

500, 700 and 1000 iterations obtained using a threshold value of 0.90. When the 
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correlation threshold is changed to 0.90 from 0.93, 19 nodes were obtained that satisfied 

the condition, which also included the earlier 8 nodes. As a whole, a total of 11 nodes 

were added to the initial 8-gene set. 

Table 3.2 summarizes the data combinations, parameters, gene sets and time 

points that are involved with the simulation. 

Parameter No. of Parameters Information 
Type of gene sets 2 8-gene set and 

19-geneset 
Node parameters 3 Gene expression,  

GCI and  
GIFts 

No. of Simulations 3 12-hour to 24-hour,  
12-hour to 36-hour and  
24-hour to 36-hours 

Time points 3 12-hour,  
24-hour and  
36-hours 

Iterations for learning 4 300,  
500,  
700 and  
1000 

Data Combinations 4 Only Gene Expression (GE),  
GE-GCI,  
GE-GIFts and  
GE-GCI-GIFts 

 

Table 3.2: Summary of simulation information 
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4. RESULTS 

 The results of the simulation of breast cancer expression data using dynamic 

Bayesian models to assess their prediction performance are being discussed in this 

section. The outcomes obtained in different experiments are explained here. Experiment 

1 is carried out with 8-genes that were obtained using a correlation of 0.93 at 500 

parameter learning iterations. Experiment 2 is carried out with 19-genes that were 

obtained using a correlation threshold of 0.90 at 300, 500, 700 and 1000 parameter 

learning iterations. Each of these iterations include four different data combinations 

called Simulation with only gene expression data, expression data with GCI score, 

expression data with GIFTS score and all the three score combined together. 

 The below figure indicates the static Bayesian network constructed from the 

information retrieved from KEGG and Metacore software. The static network remains the 

same devoid of the time points. 

4.1 Experiment 1 

 This experiment was performed on a smaller sub set of gene set obtained from a 

gene correlation threshold of 0.93. The initial parameter learning was set at 500 iterations 

and the 12-hour static bayesian model was simulated into 24-hour and 36-hours along 

with the 24-hour static being simulated into 36-hour. 
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Figure 4.1: An overview of simulation process starting at one time-point and predicting 

the other. The table on the left indicate the scores of all the three parameters, Gene 

Expression, Gene Characterization Index (GCI) and Genecards Inferred Functionality 

Score (GIFtS), combined. The Bayesian network to the right is same at all time-points 

and is constructed using the Bayes server software. Normal arrows indicate the input data 

to the network. Circle-ended arrows indicate the time-point into which the simulation is 

predicting. Arrow 1 indicates the use of 12-hour data for 12-24 hour simulation. Circle-

ended Arrow 2 indicates the prediction of 24-hour from 12-hour data. Arrow 3 indicates 

the use of 24-hour data for 24-36hour simulation. Circle-ended arrow 4 indicates the 

prediction of 36-hour from 24-hour data. 
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4.1.1 Gene expression data 

4.1.1.1 12-hour to 24-hour simulation 

 As mentioned earlier before, the static 12-hour network was constructed using the 

information obtained from KEGG and Metacore [66]. The figure 4.2 below represents the 

12-hour data being loaded into the nodes in BayesServer. 

 

Figure 4.2: 12-hour static Bayesian network in BayesServer 

 This particular network is simulated into the 24-hour and there had been a couple 

of topological changes that were observed. In figure 4.3, the red color edge indicates the 

reversal of connection between G7340 and G19187 and a new connection was 

established between G7352 and G19187, G19548 and G10549, and G10549 and G8951. 

These changes are understood in a sense that the expression data when combined with 

other priori parameters leads to certain changes in the path of the information passage 
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leading to changes in the edges. The green edges in the below figure 4.3 indicates the 

changes in the edges appearance.  

 

Figure 4.3: 12-hour static BN simulated to 24-hour time point 

 The node conditional probability distributions at each node at each time point and 

the model’s prediction are presented in the table 4.1. A line plot of this particular 

simulation is also presented in figure 4.4.  
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Gene ID Swissprot ID CPD at Static 12h CPD at DBN 24h CPD at Static 24h 

7340 TBB5_HUMAN 0.07795 0.0853 0.076 

7352 TBB1_HUMAN 0.19096 0.1896 0.19158 

10549 ID3_HUMAN 0.211 0.367 0.21471 

7883 CDN1A_HUMAN 0.19632 0.2874 0.19444 

19503 PTTG1_HUMAN 0.19356 0.3852 0.19267 

19548 KIF3A_HUMAN 0.211 0.1952 0.21378 

19187 CDN2A_HUMAN 0.1827 0.1639 0.18295 

8951 PLAK_HUMAN 0.20902 0.2861 0.20397 

 

Table 4.1: Node CPDs of the static 12-hour, 24-hour and the 24-hour network after 
simulations. 

 

Figure 4.4: Line plot of expression data’s 12-hour to 24-hour simulation. The plot 
indicates the model’s accuracy to be 99%.
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Figure 4.5: Dot plot of the node CPDs of 24-hour initial static network and the simulated 
24-hour network 

4.1.1.2 12-hour to 36-hour simulation  

 There are two edge reversals in the 12-hour to 36-hour simulation, both from 

G19187 and G19503 to G7340 and there are two edge deletions from G19503 and G7883 

to G8951. An additional edge has come into the picture between G10549 and G8951. 

 

Figure 4.6: Line plot of the expression data’s 12-hour to 36-hour simulation. The plot 

indicates the model’s accuracy to be 97%. 
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Gene ID Swissprot ID CPD at Static 12h CPD at DBN 36h CPD at Static 36h 

7340 TBB5_HUMAN 0.07795 0.08921 0.078009 

7352 TBB1_HUMAN 0.19096 0.1743 0.190638 

10549 ID3_HUMAN 0.211 0.2058 0.214417 

7883 CDN1A_HUMAN 0.19632 0.21345 0.193888 

19503 PTTG1_HUMAN 0.19356 0.18736 0.194145 

19548 KIF3A_HUMAN 0.211 0.2314 0.210715 

19187 CDN2A_HUMAN 0.1827 0.10583 0.182903 

8951 PLAK_HUMAN 0.20902 0.11329 0.208185 

 

Table 4.2: Node CPDs of the static 12-hour, 36-hour and the 36-hour network after 
simulations. 

 

Figure 4.7: 12-hour static BN simulated to 36-hour time point 
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Figure 4.8: Dot plot of 12-hour static Bayesian network to 36-hour 

4.1.1.3 24-hour to 36-hour simulation  

 The 24-hour to 36-hour simulation has showed an accuracy of 89%. The line plot 
is given in the figure 4.9. 

 

Figure 4.9: Line plot of the expression data’s 12-hour to 36-hour simulation. The plot 
indicates the model’s accuracy to be 91%. 
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Gene ID Swissprot ID CPD at Static 24h CPD at DBN 36h CPD at Static 36h 

7340 TBB5_HUMAN 0.076 0.07916 0.078009 

7352 TBB1_HUMAN 0.19158 0.18535 0.190638 

10549 ID3_HUMAN 0.21471 0.1995 0.214417 

7883 CDN1A_HUMAN 0.19444 0.22675 0.193888 

19503 PTTG1_HUMAN 0.19267 0.17421 0.194145 

19548 KIF3A_HUMAN 0.21378 0.20727 0.210715 

19187 CDN2A_HUMAN 0.18295 0.13583 0.182903 

8951 PLAK_HUMAN 0.20397 0.20929 0.208185 

 

Table 4.3: Node CPDs of the static 24-hour, 36-hour and the 36-hour network after 
simulations. 

 

 

Figure 4.10: Dot plot of Dot plot of 24-hour static Bayesian network to 36-hour  
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4.1.2 Gene expression data with Gene Characterization Index (GCI) 

 Gene Characterization Index (GCI) is used in combination with the Gene 

expression data for all the three time point simulations. The initial 12-hour to 24-hour 

simulation has been found to have the best prediction accuracy of around 99%. More 

details about the simulation are presented in the further sections. 

4.1.2.1 12-hour to 24-hour simulation 

 The 8-geneset’s 500 iteration simulation of the gene expression and GCI score 

data combination recorded a 99% prediction performance. The dot plot of the prediction 

CPDs is presented in the figure 4.11. 

 

Figure 4.11: Dot plot of 12-hour static Bayesian network to 24-hour with Gene 

expression and GCI combined data set. 
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Figure 4.12: Edge changes during simulation of 12-hour to 24-hour using Gene 

expression and GCI score together 

 The Bayesian network obtained after the simulation is depicted in the figure 4.12. 

No edge deletions were observed except the addition of newer ones between G19548 and 

G10549 and G7352 and G7883 (indicated in green arrows). 

4.1.2.2 12-hour to 36-hour simulation 

 This set of data and time point combination recorded a prediction performance of 

95%. The reason for the downfall of prediction performance is the direct passage of 
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information between the genes at those time points. As 24-hour time point immediately 

follows the 12-hour, it surpassed the remaining simulations in most of the cases and 12-

hour to 36-hour is recorded at low levels due to a shift in the time points from 12-hour to 

36-hour instead of 24-hour. The dot plot in figure 4.13 indicates the distribution of CPDs. 

 

Figure 4.13: Dot plot of 12-hour static Bayesian network to 36-hour using gene 

expression and GCI score. 

 The final Bayesian network obtained after the simulation is represented in figure 

4.14 indicating the edge addition between G7352 and G7883 and a deletion of edge 

between G19503 and G8951. 
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Figure 4.14: Edge changes during simulation. Red line indicates the deletion of initially 

present edge. Blue arrow indicates reversal of edge direction. 

4.1.2.3 24-hour to 36-hour simulation 

 This simulation showed a prediction performance of 97% standing between the 

previous two simulations. To summarize the Gene expression and GCI data combination 

the initial simulation from 12-hour to 24-hour stood at the top place compared to the 

other two simulations. 
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Figure 4.15: Dot plot of 24-hour to 36-hour simulations using expression data and GCI 
score.  

4.1.3 Gene expression and Gencards Inferred Functionality Score (GIfTS) 

 This particular data combination is simulated for the same time point 

combinations with an average prediction performance of 97%, when all the three 

simulations are considered. 

4.1.3.1 12-hour to 24-hour simulation 

 This simulation combination yielded an overall prediction performance of 99% 

followed by the 12-hour to 36-hour simulation and the last one. The line plots indicate the 

same thing in the below figure 4.16. 
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Figure 4.16: Dot plot of 12-hour to 24-hour simulation of expression data and GIFtS 

score combination. 

 

 

Figure 4.17: Edge changes in 12-hour to 24-hour GE and GIFtS combination simulation. 
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The Bayesian network obtained after the simulations has been presented above in 

figure 4.17, indicating the edge changes. There has been an additional edge between 

G19548 and G10549, G10549 and G8951. 

4.1.3.2 12-hour to 36-hour simulation 

 This simulation recorded a prediction performance of 98%. The line plot indicates 

the distribution of node CPDs obtained through the simulation.  

 

Figure 4.18: Dot plot of 12-hour to 36-hour Bayesian simulation of expression data and 

GIFtS score combined together. 
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Figure 4.19: Edge changes in GE and GIFtS score combined simulation from 12-hour to 

36-hour. 

 A new edge has been created between G19548 and G10549 and between G10549 

and G8951 with an edge deletion between G7883 and G10549. 

4.1.3.3 24-hour to 36-hour simulation 

 This simulation showed a performance accuracy of 96%. The distributions of this 

particular data and time point combination appear to be close to the regression line 

indicating the model’s performance. 
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Figure 4.20: Dot plot of 24-hour to 36-hour simulation of GE and GIFtS score 

combination. 

4.1.4 Gene expression data along with both GCI and GIfTS 

 Interesting things regarding this particular simulation is that the 24-hour to 36-

hour simulation, which recorded poor performance in the prior cases, overpassed the 

other two simulations in this combination with 98%.  

4.1.4.1 12-hour to 24-hour simulation 

 This simulation acted as an initiative to our second experiment as the 12-hour to 

24-hour simulation recorded only 57% when all the three data parameters are considered. 
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Certain edge changes were noted during the simulations and the distribution of data has 

been presented in the line plots. 

 

Figure 4.21: 12-hour to 24-hour simulation of all three score combined simulation. Green 

arrows indicate the edge directionality reversal. 

 

Figure 4.22: Dot plot of 12-hour to 24-hour simulation of all three scores combined 
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4.1.4.2 12-hour to 36-hour simulation 

 This simulation yielded 97% accuracy with edge changes in the network produced 

after the simulation. The figures 4.23 represent the changes below. One important thing 

to notice here is the total loss of edges between certain nodes and they are left isolated 

indicating that their interaction is not involved at a certain time point. The violet color 

arrow indicates the presence of the same edge in the previous simulation 

 

Figure 4.23: 12-hour to 36-hour simulation of all three scores combined together. Isolated 

nodes were resulted after the simulation. 
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Figure 4.24: Dot plot of 12-hour to 36-hour all three scores combined simulation. 

4.1.4.3 24-hour to 36-hour simulation 

 This simulation stood top in this time and data parameter combination with 98% 

prediction performance. The two violet colored arrows indicate the presence of same 

edges in the previous simulation. 

 

Figure 4.25: Dot plot of 24-hour to 36-hour simulation of all three scores combined. 
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Figure 4.26: 24-hour to 36-hour simulation when all the three scores are combined 

together. Violet color arrows indicate the presence of such edges in the previous 

simulations and the green arrows indicate the edge directionality reversal. 

4.1.5 Summary of the 8-geneset simulations at 500 parameter-learning iterations 

 From all the simulations, it is evident that gene expression data’s 12-hour to 24-

hour data simulation has crossed the other simulation performances of the dynamic 

Bayesian models (Table 4.4). To understand more in detail about the DBN performance, 

we employ the second experiment with more number of genes and varying iteration 

count.  
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Data Combination Time points R2 for 8 genes at 500 iterations 

GE 

12-24 0.994 

12-36 0.971 

24-36 0.914 

GE+GCI 

12-24 0.991 

12-36 0.951 

24-36 0.972 

GE+GIFTS 

12-24 0.992 

12-36 0.986 

24-36 0.965 

GE+GCI+GIFTS 

12-24 0.574 

12-36 0.976 

24-36 0.983 

 

Table 4.4: Summary of prediction performance accuracies of the DBN model for the 8-

geneset at 500 parameter-learning iterations. 

4.2 Experiment 2 

The simulation was repeated by constructing the 12-hour static Bayesian network 

for the 19 genes identified by reducing the correlation coefficient from 0.93 to 0.90, 

followed by consideration of the 12 different combinations and declaring the node 

evidences for each gene in the network. The earlier 8 nodes have also resulted in addition 

to another 11 nodes. 

4.2.1 19-gene set simulation at 300 iterations 

 As usual, the 12-hour static Bayesian network is constructed with the expression 

data loaded and the simulation was started. The lowest accuracy of the DBN model was 

for the 12-hour to 36-hour simulation for the expression data-GCI score combination and 

expression data with GIFtS score, which was only 44%. This shows that when the node 
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count and parameters increases, it is necessary to let the model learn the parameters for 

sufficient number of times. The highest was 65% for the traditional only gene expression 

data simulation at 12-hour to 24-hour. The accuracies of all the different data and time 

point combinations are mentioned in Table 4.5.  

4.2.2 19-gene set simulation at 500 iterations 

4.2.2.1 Only with gene expression data 

 This section explains the simulations carried out using expression. 

4.2.2.1.1 12-hour to 24-hour simulation 

 This simulation resulted in a prediction accuracy of 73%. Since only one 

parameter was involved, it showed an average prediction performance. The dot plot of 

this simulation is presented in the figure 4.27. 

 

Figure 4.27: Dot plot of 19-geneset’s 12-hour to 24-hour simulation at 500 iterations. 
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4.2.2.1.2 12-hour to 36-hour simulation 

 This simulation showed accuracy of around 66%. The data distribution is 

represented in the dot plot in figure 4.28. 

 

Figure 4.28: Dot plot of 19-geneset’s 12-hour to 36-hour simulation at 500 iterations. 

4.2.2.1.3 24-hour to 36-hour simulation 

 This simulation showed an accuracy of 84%. The prediction’s distributions are 

displayed in figure 4.29. 
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Figure 4.29: Dot plot of 24-hour to 36-hour 19-geneset simulations at 500 iterations. 

4.2.2.2 Gene expression data with Gene Characterization index score 

 This section explains the simulations carried out using expression data and the 

GCI score.  

4.2.2.2.1 12-hour to 24-hour simulation 

 This simulation yielded a prediction performance of 68%. The dot plot indicates 

the model’s node CPD’s distributions in figure 4.30. 
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Figure 4.30: Dot plot of node CPDs of 12-hour to 24-hour simulation of 19-geneset at 

500 iterations with gene expression data and GCI score combined. 

4.2.2.2.2 12-hour to 36-hour simulation 

 This simulation yielded an accuracy of 53%, which is the second, least 

performance among the set of simulations performed in this category. Figure 4.31 

indicates the node CPD distributions. 
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Figure 4.31: Dot plot of node CPDs of 12-hour to 36-hour simulation of gene expression 

data and GCI score at 500 iterations for the 19-geneset. 

4.2.2.2.3 24-hour to 36-hour simulation 

 This simulation’s accuracy was recorded to be 57%, slightly above the average 

accuracy of the total performance of the model at 500 iterations. This simulation follows 

the 12-hour to 24-hour simulation, which recorded an accuracy of 68%. The CPDs 

distribution is presented in figure 4.32. 
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Figure 4.32: Dot plot of CPDs of 24-hour to 36-hour simulation of 19-geneset at 500 

iterations. 

4.2.2.3 Gene expression data with GIFtS score 

 This section explains the simulations carried out using expression data and the 

GIFtS score. 

4.2.2.3.1 12-hour to 24-hour simulation 

 This simulation’s performance was observed to be 60%, which was top among the 

different time point simulation in this section. Figure 4.33 explains the node CPD 

distributions. 

 



)'"
"

 

Figure 4.33: Node CPD distributions of 12-hour to 24-hour simulation of gene expression 

and GIFtS score. 

4.2.2.3.2 12-hour to 36-hour simulation 

This simulation resulted in a 50% prediction, which was the least for this data 

combination at 500 iterations. The prediction percentage of this simulation was the least 

in all the 500 iterations for 19-geneset. The reason might be the passage of information at 

different time-point levels, i.e. instead of either from 12-hour to 24-hour or 24-hour to 

36-hour, the information is passing from 12-hour to 36-hour. The node CPDs are 

represented in figure 4.34. 
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Figure 4.34: Node CPDs plotted using dot plot for the gene expression and GIFtS score 

combinations for the 19-genest at 500 iterations. 

4.2.2.3.3 24-hour to 36-hour simulation 

 This simulation showed a prediction performance of 56%, the third lowest in the 

entire simulation section. Compared to the previous 300 iterations, the prediction 

performance was recorded to be 49% before and has increased by 7% in this iteration. 

Figure 4.35 explains the node CPDs coverage on the dot plot. 
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Figure 4.35: Node CPD distribution of 24-hour to 36-hour simulation of the 19-geneset 

when gene expression and GIFtS are combined together and simulated at 500 iterations. 

 

4.2.2.4 Gene expression data with both GCI and GIFtS scores 

 This section tries to understand the prediction performances of the DBN model 

when all the three parameters are combined at 500 iterations for a gene set of 19 genes. 

4.2.2.4.1 12-hour to 24-hour simulation 

 The simulation accuracy was identified to be 56% and that was the second highest 

among the different time point combinations with 19-genes at 500 iterations. Figure 4.36 

indicates the node CPD distributions. 
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Figure 4.36: DBN model’s performance while simulation 12-hour data into 24-hour for 

all the three data parameter combinations. 

4.2.2.4.2 12-hour to 36-hour simulation 

 The simulation accuracy was identified to be 54%, which was the least of all the 

three time point simulations carried out at this data combination with 19-genes at 500 

iterations. Figure 4.37 represents the model’s prediction performance. 
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Figure 4.37: DBN model’s performance while simulation 12-hour data into 36-hour for 

all the three data parameter combinations. 

 

4.2.2.4.3 24-hour to 36-hour simulation 

 The simulation accuracy was identified to be 79%, the highest among all the 500 

iterations’ data and time point combinations. The reason is that the presence of all the 

three parameters and ample amounts of learning time with a less noisy data. Figure 4.38 

explains the model’s performance. 
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Figure 4.38: DBN model’s performance while simulation 24-hour data into 36-hour for 

all the three data parameter combinations. 

4.2.3 19-gene set simulation at 700 iterations 

 The highest accuracy obtained in this particular section of simulations was 85% 

for the simulations carried out with only gene expression data at 24-hour to 36-hour 

simulation. Gene expression in association with GCI, showed a better prediction accuracy 

of 78%, followed by the gene expression’s combination with GIFtS, both for 12-hour to 

24-hour simulation (Table 4.5). The lowest accuracy of the DBN model was for the 12-

hour to 24-hour simulation for the expression-GCI-GIFtS score combination, which was 

64%. This again stresses the fact that when the node count and parameters increases, it is 
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necessary to let the model learn the parameters for sufficient number of times. Basically, 

this practice of gradually increasing the parameter learning count enables an individual to 

assess the model’s performance in a stage-by-stage method. The accuracies in this section 

compared against the ones at 300 and 500 iterations were less because of the learning 

time the model has been awarded and we expected that the next and last stage of iteration 

count, 1000, will definitely results a satisfactory accuracy rate. 

4.2.4 19-gene set simulation at 1000 iterations 

4.2.4.1 Only gene expression data 

 This simulation is carried out using the expression data only. At an average, the 

model’s performance accuracy was around 88%. The 24-hour to 36-hour simulation 

ranked highest in terms of accuracy. 

4.2.4.1.1 12-hour to 24-hour simulation 

 With an accuracy of 85%, the gene expression data simulation ranked the least 

among the three different time point simulation.  Figure 4.39 represents the distribution 

of data. 

 

Figure 4.39: 12-hour to 24-hour simulation of 19-genes at 1000 iterations 
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4.2.4.1.2 12-hour to 36-hour simulation 

 This simulation is the second highest in terms of DBN’s prediction accuracy of 

88%. Figure 4.40 represents the node CPDs distribution. 

 

Figure 4.40: 12-hour to 36-hour simulation of 19-genes at 1000 iterations 

4.2.4.1.3 24-hour to 36-hour simulation 

 The 24-hour to 36-hour simulation ranked highest in connection to the accuracy 

of the prediction of one time point from another, with 93%, which is the highest of all the 

simulations at 1000 iterations. Figure 4.41 represents the dot plot of node CPD 

distributions. 

 

Figure 4.41: 24-hour to 36-hour simulation of 19-genes at 1000 iterations 
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4.2.4.2 Gene expression with GCI score 

 These simulations are carried out using the combination of gene expression and 

GCI score. Similar to the earlier data simulation, the gene expression data simulation, this 

simulation also showed a high prediction accuracy of the 24-hour to 36-hour simulation. 

4.2.4.2.1 12-hour to 24-hour simulation 

 83% accuracy was observed when the model simulated 24-hour time point data 

from 12-hour time point data. Figure 4.42 shows the dot plots of prediction. 

 

Figure 4.42: 12-hour to 24-hour simulation with GE and GCI score together 

4.2.4.2.2 12-hour to 36-hour simulation 

 The simulation’s accuracy of 83% is the second highest in this time and data point 

combination. Figure 4.43 represents the accuracy and CPD distributions in a dot plot. 
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Figure 4.43: 12-hour to 36-hour simulation with GE and GCI score together 

4.2.4.2.3 24-hour to 36-hour simulation 

 It was observed that the accuracy of this simulation was 92%, placing this data 

and time point combination on the top. Figure 4.44 represents the dot plot. 

 

Figure 4.44: 24-hour to 36-hour simulation with GE and GCI score together 
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4.2.4.3 Gene expression with GIFtS score 

The gene expression data was combined with the GIFtS score for the 19-geneset 

and the simulations were carried out at 1000 parameter learning iterations. The average 

accuracy of this particular simulation section was 90%. 

4.2.4.3.1 12-hour to 24-hour simulation 

 The accuracy of this simulation was 91%; second highest in the data and time 

point combination. Figure 4.45 represents the dot plot of CPD distribution. 

 

Figure 4.45: 12-hour to 24-hour simulation with GE and GIFtS score together 

4.2.4.3.2 12-hour to 36-hour simulation 

 The accuracy was 92%, the highest in this section and also the second highest of 

all the simulations carried out at 1000 iterations. Figure 4.46 explains the node CPD 

distributions. 
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Figure 4.46: 12-hour to 36-hour simulation with GE and GIFtS score together 

4.2.4.3.3 24-hour to 36-hour simulation 

 With 90% of accuracy, this simulation is the least of all the three time point 

simulation in this category. Figure 4.47 gives an overview of the distribution using a dot 

plot. 

 

Figure 4.47: 24-hour to 36-hour simulation with GE and GIFtS score together 
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4.2.4.4 Gene expression with GCI and GIFtS score 

 All the three score, gene expression, GCI and GIFtS are combined together for 

this section of simulations. Table 4.5 in this section explains the summary of correlation 

values of the 8-genes and 19-genes’ at their respective number or iterations. 

4.2.4.4.1 12-hour to 24-hour simulation 

 The least accuracy in this section was for this simulation, which was 80%. Figure 

4.48 explains the node CPD distributions. 

 

Figure 4.48: 12-hour to 24-hour simulation with all three scores together 

4.2.4.4.2 12-hour to 36-hour simulation 

 This simulation was predicted with an accuracy of 87%, the second highest in this 

data and time point combination. Figure 4.49 explains the node CPD distributions. 
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Figure 4.49: 12-hour to 36-hour simulation with all three scores together 

4.2.4.4.3 24-hour to 36-hour simulation 

 The last but not the least simulation to 36-hour from 24-hour time point data 

resulted in an accuracy of 88%, the highest among this section’s simulations. Figure 4.50 

indicates the dot plot of the 24-hour to 36-hour simulation at 1000 iterations with the 19-

geneset. 

 

Figure 4.50: 24-hour to 36-hour simulation of 19 genes with all three scores together 
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Data Combination Time points R2 for 8 genes R2 for 19 genes 

500 iterations 300 iterations 500 iterations 700 iterations 1000 iterations 

GE 12-24 0.994 0.656 0.737 0.751 0.854 

12-36 0.971 0.569 0.661 0.710 0.884 

24-36 0.914 0.749 0.846 0.853 0.934 

GE+GCI 12-24 0.991 0.604 0.683 0.787 0.830 

12-36 0.951 0.440 0.532 0.711 0.838 

24-36 0.972 0.451 0.574 0.774 0.923 

GE+GIFTS 12-24 0.992 0.560 0.606 0.755 0.915 

12-36 0.986 0.440 0.508 0.750 0.922 

24-36 0.965 0.499 0.560 0.739 0.907 

GE+GCI+GIFTS 12-24 0.574 0.508 0.565 0.644 0.805 

12-36 0.976 0.494 0.540 0.701 0.875 

24-36 0.983 0.608 0.793 0.801 0.883 

 

Table 4.5: Summary of all the 8-genes at 500 iterations and 19-genes at 300, 500, 700 

and 1000 iterations. The correlation values for each data and time point combinations are 

mentioned in the table. 
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5. DISCUSSION 

Initially, when the iteration count was set at 300 and simulations were carried out, 

it resulted in a very low r-value for a majority of the data combinations in each 

simulation. In order to identify the best iteration count and the point at which the model’s 

predictions reaches a certain level of expected efficacy, simulations were carried out at 

500, 700 and 1000 iterations. For the three score combination at 12-24h simulation, the 

model’s prediction was relatively less than that of 300 and 500 iterations for the 19-gene 

set compared to the 8-gene set simulation at 500 iterations. Even though the 700 iteration 

yielded a good r-value of 0.64, keeping the other simulations in mind, the iteration count 

was increased to 1000 for the best possible prediction. 

When the iteration count was increased to 1000, satisfactory changes were 

observed in the r-value and also with the conditional probability distributions at each 

node. One major point worth mentioning is the change that was observed with the 24-

hour to 36-hour simulation only with gene expression data as opposed to the 12-hour to 

24-hour simulation with all the three parameters.  

The model’s efficiency at 1000 iterations was higher in both cases when 

compared to the 8 and 19 gene simulations with 500 iterations. It is of prime importance 

that incorporating an additional parameter that accounts for a node in the Bayesian model 

might yield positive and pertinent information with adequate training. In a situation at 

more number of nodes in a Bayesian model, this particular practice of incorporating 

additional knowledge to the nodes will yield the best solution. 
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In the dynamic Bayesian model, the incorporation of the GCI score, which is an 

annotation score of the genes involved in the human genome, has helped the model after 

a sufficient number of iterations in predicting the 24 hour and 36 hour probabilistic 

distributions, using the 12 hour gene expression data along with the GCI score mix. Even 

with the GIFtS score and the combination of all the three scores at 1000 iterations 

showed a satisfactory prediction. 

A comparison study between GCI and GIFtS among 489 genes have shown that 

the GCI score is 10, while the GIFtS score varied from 51 to 84. GCI claims 33,000 

genes to be protein coding, whereas, GIFtS suggests that approximately ~22,000 genes 

are defined to be protein coding on the basis of knowledge from uniprot, RefSeq and 

ensemble. Also, GIFtS allows the user to search for genes under different categories like 

expression, pathways and disorders. Thus, GIFtS produces a fine line of division between 

the genes where GCI fails to do so. 
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6. CONCLUSION 

Adding parameters that are based on the annotation information to the DBN 

model has proved that they are helpful in predicting the future time course or downstream 

targets within a large network. 

Adding prior knowledge parameters into the Bayesian model will result in an 

enhanced accuracy [63]. In our study, we considered two different scores that account for 

the gene’s annotation strength that were included in the Bayesian model. A total of 60 

different simulation experiments have been carried out for the 8 and 19-gene sets that 

included gene expression data with a combination of other parameters. The gene 

expression simulation stood top for the 12-hour to 24-hour simulation with an r-value of 

0.994 for the 8-gene set at 500 iterations. The remaining 92% of the simulation 

experiments recorded a high r-value when gene expression was combined with other 

parameters.  

In the 8-gene set at 500 iteration simulation, gene expression with GIFtS ranked 

high for the 12-hour to 24- hour simulation and all the three parameters combination was 

satisfactory for the 24-hour to 36-hour simulation with an r-value of 0.983. In all the 12 

simulations at 1000 iterations, the 19-gene set contained an r-value greater than 0.8. 

When all the three scores were combined, performed to crosscheck the model’s 

prediction capabilities with a larger set of nodes over the 8- gene set simulation 

experiment. Sufficient number of training played a major role in the model’s prediction 

ability. Keeping this fact in mind, when the training iteration count was increased from 

500 to 1000 for the larger dataset, it yielded positive and satisfactory prediction accuracy. 

From the complete results shown in Table 2, it can be observed that by using gene 
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expression data along with other parameters, it is possible to improve the efficiency of 

Bayesian models and understand the future time-course events. Additionally, by 

providing a good set of node evidences to the genes in the model, the model can reach 

accuracy above 85% for more than 90% of the experiments in the model. The conclusion 

is that, incorporating expression data with additional parameters that account for the prior 

knowledge about the genes in the expression dataset will yield a better prediction model 

for larger datasets. However, the selection of best parameter that could be incorporated 

with time-course gene expression data needs further investigation. 
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