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Hui Huang 

SYSTEM BIOLOGY MODELING: THE INSIGHTS FOR COMPUTATIONAL DRUG 

DISCOVERY 

Traditional treatment strategy development for diseases involves the identification of 

target proteins related to disease states, and the interference of these proteins with drug 

molecules. Computational drug discovery and virtual screening from thousands of 

chemical compounds have accelerated this process. The thesis presents a 

comprehensive framework of computational drug discovery using system biology 

approaches. The thesis mainly consists of two parts: disease biomarker identification and 

disease treatment discoveries. 

 

The first part of the thesis focuses on the research in biomarker identification for human 

diseases in the post-genomic era with an emphasis in system biology approaches such as 

using the protein interaction networks. There are two major types of biomarkers: 

Diagnostic Biomarker is expected to detect a given type of disease in an individual with 

both high sensitivity and specificity; Predictive Biomarker serves to predict drug 

response before treatment is started. Both are essential before we even start seeking any 

treatment for the patients. In this part, we first studied how the coverage of the disease 

genes, the protein interaction quality, and gene ranking strategies can affect the 

identification of disease genes. Second, we addressed the challenge of constructing a 

central database to collect the system level data such as protein interaction, pathway, etc. 

Finally, we built case studies for biomarker identification for using Diabetes as a case 

study. 
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The second part of the thesis mainly addresses how to find treatments after disease 

identification.  It specifically focuses on computational drug repositioning due to its low 

lost, few translational issues and other benefits. First, we described how to implement 

literature mining approaches to build the disease-protein-drug connectivity map and 

demonstrated its superior performances compared to other existing applications. Second, 

we presented a valuable drug-protein directionality database which filled the research gap 

of lacking alternatives for the experimental CMAP in computational drug discovery field. 

We also extended the correlation based ranking algorithms by including the underlying 

topology among proteins. Finally, we demonstrated how to study drug repositioning 

beyond genomic level and from one dimension to two dimensions with clinical side 

effect as prediction features.    

Huanmei Wu, PhD, Chair 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

Table of Contents 

List of Tables ................................................................................................................... xii 

List of Figures .................................................................................................................... 1 

Chapter 1. Introduction to Drug Discovery with System Approaches ..................... 3 

1.1 Disease Biomarker Identification ..................................................................... 3 

1.2 Drug Discovery ................................................................................................... 4 

1.3 Drug Repositioning ............................................................................................ 7 

1.4 Organization of the Thesis ................................................................................. 9 

Chapter 2. Analysis of Protein Interaction Network ............................................... 13 

2.1 Introduction ...................................................................................................... 13 

2.2 Methods ............................................................................................................. 15 

i. Seed Gene Selection ........................................................................................... 15 

ii. Protein Interaction Sub-network Construction ................................................... 16 

iii. Disease Gene Ranking Strategy ......................................................................... 16 

iv. Disease Gene Assessment .................................................................................. 17 

2.3 Results ............................................................................................................... 17 

i. Effect of Various Seed Gene Selection Methods ............................................... 18 

ii. Effect of Various PPI Data Quality and Coverage ............................................. 19 

iii. Effect of Various Disease Gene Ranking Methods ............................................ 19 

iv. Sensitivity and Specificity Comparisons of Top Disease Gene Ranking 

Methods. .................................................................................................................... 20 

2.4 Conclusions ....................................................................................................... 21 

Chapter 3. Pathway and Gene-set Enrichment Database ........................................ 23 

3.1 Introduction ...................................................................................................... 23 

3.2 Methods ............................................................................................................. 26 

i. Data sources ....................................................................................................... 26 

ii. Gene-set data integration .................................................................................... 26 

iii. Online software designing .................................................................................. 27 

iv. Gene-set similarity measurement ....................................................................... 27 

v. Microarray data .................................................................................................. 28 

vi. Differential gene-set expressions and gene-set association network ................. 29 

3.3 Results ............................................................................................................... 29 

i. Database content statistics .................................................................................. 29 

ii. Gene-set scale distributions ................................................................................ 30 

iii. Online functionalities ......................................................................................... 31 

iv. Case studies ........................................................................................................ 33 

3.4 Conclusions ....................................................................................................... 39 

Chapter 4. Biomarker discovery with Network Expansion and Pathway 

Enrichment Analysis ....................................................................................................... 41 

4.1 Introduction ...................................................................................................... 41 

4.2 Methods ............................................................................................................. 43 

i. Microarray data preprocessing ........................................................................... 43 

ii. Network expansion analysis ............................................................................... 44 

iii. Pathway enrichment analysis ............................................................................. 46 

4.3 Results ............................................................................................................... 47 

i. Findings on insulin before-bed (IBB) group ...................................................... 47 



x 

 

ii. Findings on insulin after-bed (IAB) group ......................................................... 50 

4.4 Conclusions ....................................................................................................... 53 

Chapter 5. Drug Repositioning using Literature Mining: Computational 

Connectivity Map ............................................................................................................ 56 

5.1 Introduction ...................................................................................................... 56 

5.2 Methods ............................................................................................................. 60 

i. Data sources and systems design ....................................................................... 60 

ii. Drug effect annotation ........................................................................................ 63 

iii. Perturbation Effects of Drugs on Proteins/Genes .............................................. 64 

iv. Data access and website usage ........................................................................... 66 

v. Browsing Disease-specific drug-protein relationship information .................... 69 

vi. Interactive interface for directionality annotation .............................................. 70 

5.3 Results ............................................................................................................... 72 

i. Statistical analysis for reliability ........................................................................ 72 

ii. A case study on breast cancer specific searching for relevant drug-protein 

pairs with directionality information ......................................................................... 73 

iii. A case study on drug efficacy evaluation with C
2
Maps..................................... 73 

iv. Tamoxifen efficacy and toxicity assessment for the luminal A subtype............ 74 

v. Tamoxifen efficacy and toxicity assessment for the basal-like subtype ............ 75 

vi. Plicamycinefficacy and toxicity assessment for the luminal A subtype ............ 75 

5.4 Conclusions ....................................................................................................... 77 

Chapter 6. Drug Repositioning using Drug directionality Map (DMAP) .............. 79 

6.1 Introduction ...................................................................................................... 79 

6.2 Methods ............................................................................................................. 80 

i. Construct the DMAP data set ............................................................................. 80 

ii. Integrate drug therapeutic indication data .......................................................... 82 

iii. Prepare disease expression signatures and drug expression signatures ............. 82 

iv. Design drug similarity measurement.................................................................. 82 

v. Implement Kolmogorov–Smirnov strategy ........................................................ 83 

vi. Perform literature validation .............................................................................. 83 

6.3 Results ............................................................................................................... 83 

i. Drug directionality Map (DMAP) Construction ................................................ 83 

ii. DMAP’s utility for drug repositioning ............................................................... 85 

6.4 Conclusions ....................................................................................................... 96 

Chapter 7. Drug Repositioning using Side Effect Features: from 1D to 2D ........... 98 

7.1 Introduction ...................................................................................................... 98 

7.2 Methods ............................................................................................................. 99 

i. Preparation of datasets ....................................................................................... 99 

ii. Analysis methods ............................................................................................. 100 

7.3 Results ............................................................................................................. 103 

i. Construction of the data set .............................................................................. 103 

ii. Evaluation of the power of predicting DDCs based on the side effects 

features..................................................................................................................... 106 

iii. Development of the rule-based model for DDC prediction ............................. 111 

iv. Case studies ...................................................................................................... 118 

7.4 Conclusions ..................................................................................................... 120 



xi 

 

Chapter 8. Conclusions .............................................................................................. 123 

8.1 Research summary and contributions.......................................................... 123 

8.2 Future research directions ............................................................................ 124 

i. Research in identifying reliable disease biomarker .......................................... 124 

ii. Research in disease model discovery ............................................................... 125 

iii. Research in disease ranking algorithms ........................................................... 125 

iv. Beyond genomics ............................................................................................. 125 

References ...................................................................................................................... 127 

Curriculum Vitae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

List of Tables 

Table 3-1. Number of overlapping genes between different data sources ........................ 30 

Table 3-2. Top 10 search results by querying colorectal cancer at the home page .......... 33 

Table 3-3. Top search results of colorectal cancer advanced search ................................ 34 

Table 3-4. Top search results of gene-based search from colorectal microarray 

datasets .............................................................................................................................. 37 

Table 3-5. Top 20 gene sets ranked by differential gene-set expressions in the CRC-

specific gene-set association network (GSAN) ................................................................ 38 

Table 4-1. Top-20 differential genes in IBB from GSE24215, ordered by FC ................ 47 

Table 4-2. Top-20 significant genes in IBB from GSE24215, ordered by Sig_Score, 

which is measured in the T2D-specific PPI network ........................................................ 48 

Table 4-3. Top-20 significant pathways in IBB from GSE24215 .................................... 49 

Table 4-4. Top-20 differential genes in IAB from GSE24215 ......................................... 50 

Table 4-5. Top-20 significant genes in IAB from GSE24215. ......................................... 51 

Table 4-6. Top-20 significant pathways in IAB from GSE24215. ................................... 53 

Table 5-1. Current statistics for the included database records ........................................ 63 

Table 5-2. Curation of drug-protein relations from Pub-Med abstracts ........................... 64 

Table 5-3. PubMed evidence for Tamoxifen’s effect on ESR1 ........................................ 65 

Table 5-4.  Performance assessment of C2Maps in varying cancers. ............................... 72 

Table 5-5.Tamoxifen relevant proteins and their directionality ....................................... 74 

Table 6-1.Statistics summary of DMAP ........................................................................... 85 

Table 6-2.Top 20 novel drug repositionings and the number of clinical type 

publication support............................................................................................................ 89 

Table 6-3.Retrieval of known disease drug relationships from DMAP and CMAP, 

respectively ....................................................................................................................... 93 

Table 6-4. Drug repositioning predicted by both similarity approach and KS 

algorithms ......................................................................................................................... 95 

Table 7-1. Top 10 side effects features from the decision tree model ............................ 113 

Table 7-2. Confusion matrix of the relationships between having the three SEs in 

the black list and being the unsafe co-prescription ......................................................... 113 

Table 7-3. Top drug pairs proposed by ‘Two Step Rule’. .............................................. 116 

Table 7-4. Confusion matrix of co-prescription between the five predicted pairs. ........ 117 

Table 7-5. Top 10 novel drug pairs without any clinical trials reported. ........................ 117 



1 

 

List of Figures 

Figure 1-1. Existing approaches for drug repositioning. .................................................... 8 

Figure 1-2. A research road map for the thesis. .................................................................. 9 

Figure 2-1. Computational Framework for Disease Gene Identification and 

Assessment ........................................................................................................................ 15 

Figure 2-2. Gold standard construction for disease gene assessment. .............................. 17 

Figure 2-3. PPV performance using different seed choices. ............................................. 18 

Figure 2-4. PPV performance using different PPI-n networks. ........................................ 19 

Figure 2-5. PPV performance using different disease gene ranking methods. ................. 20 

Figure 2-6.  A comparison of specificity performance between the EPHS and Local 

Degree ranking methods. .................................................................................................. 21 

Figure 2-7.  A comparison of sensitivity performance between the EPHS and Local 

Degree ranking methods. .................................................................................................. 21 

Figure 3-1. The workflow of gene-set data integration and the basic statistics of 

gene-set data sources......................................................................................................... 27 

Figure 3-2. Gene-set scale distributions for PAGED molecule data ................................ 30 

Figure 3-3. An overview for the core functionality of the online PAGED website ......... 32 

Figure 3-4. CRC-specific gene-set association network (GSAN) on the top gene 

sets from colorectal cancer study. ..................................................................................... 36 

Figure 3-5. CRC-specific gene-set association network (GSAN) with differential 

gene-set expressions.......................................................................................................... 39 

Figure 4-1. Top-20 significant genes in IBB from GSE24215, interacted with T2D-

associated genes. ............................................................................................................... 49 

Figure 4-2. Top-20 significant genes in IAB from GSE24215, interacted with T2D-

associated genes. ............................................................................................................... 52 

Figure 5-1. C2Map workflow for a given disease-specific study. .................................... 61 

Figure 5-2  Illustration of drug pharmacological effects based on directionality 

information for drug-protein pairs .................................................................................... 63 

Figure 5-3. The navigational site map of the C2Map platform. ....................................... 66 

Figure 5-4. Web Interface for C2Maps basic query function. .......................................... 67 

Figure 5-5. Web Interface for C2Map Annotation data browse. ...................................... 69 

Figure 5-6. Web Interface for C2Map Annotation data curation. ..................................... 71 

Figure 5-7.Breast cancer case study for drug pharmacological effectevaluation with 

C2Maps. ............................................................................................................................ 76 

Figure 6-1. Computational framework. ............................................................................ 80 

Figure 6-2.The Venn diagram of drugs from DMAP drug signatures, CMAP drug 

signatures and drugs with Indication ................................................................................ 85 

Figure 6-3. A schematic representation of the GBA method. ........................................... 86 

Figure 6-4. ROC curves for the prediction performance based on DMAP (blue line), 

STITCH (yellow line) and CMAP (red line). ................................................................... 87 

Figure 6-5. The ROC curves for DMAP and CMAP using the overlapped drugs. .......... 89 

Figure 6-6. (A) Drug similarity network based on DMAP. (B) Power-law degree 

distribution of the network. ............................................................................................... 91 

Figure 7-1. Illustration of the Two-Step Rule to predict the drug combinations. ........... 101 

Figure 7-2. Workflow of applying logistic regression and decision tree models to 

measure the DDC prediction performance with side effects as features ........................ 103 

file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871118
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871118
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871119
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871120
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871121
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871122
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871123
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871123
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871124
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871124
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871125
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871125
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871126
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871127
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871128
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871128
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871129
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871129
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871132
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871133
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871133
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871134
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871135
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871136
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871137
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871138
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871138
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871140
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871140
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871141
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871142
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871142
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871144
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871144
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871145
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871146
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871146


2 

 

Figure 7-3. The Venn diagram of drug combinations, where the numbers indicate 

how many drug combinations can be covered by each data source ............................... 104 

Figure 7-4. Evaluation of logistic regression and decision tree models based on the 

full dataset (i.e., 239 marketed DDCs and 2291 unsafe drug pairs). .............................. 105 

Figure 7-5. Evaluation of logistic regression based on 239 marketed DDCs with 

balanced positive set and negative set. ........................................................................... 107 

Figure 7-6. The outline of this study ............................................................................... 108 

Figure 7-7. Drug combination networks. ........................................................................ 110 

Figure 7-8. Constructions of positive sets and negative sets from the 239 DDCs in 

the development of the FDA black list consisting of three side effects.......................... 112 

Figure 7-9. The decision tree model to decide the drug pair safety. ............................... 115 

Figure 8-1.The general workflow of computational drug discovery. ............................. 124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871147
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871147
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871148
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871148
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871150
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871151
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871152
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871152
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871153
file:///C:/Documents%20and%20Settings/Iselin/desktop/Thesis/Huang%20H%20review%20%232%20with%20markup.docx%23_Toc387871154


3 

 

Chapter 1. Introduction to Drug Discovery with System Approaches 

The complexity of human biology makes it challenging for drug discovery. 

Traditionally drug discovery involves disease identification for the patients and 

treatment identification for the patients with that specific disease. The former 

corresponds to reliable disease biomarker development for the diagnostic purpose. The 

latter refers to develop effective medicines for the treatment. With the development of 

omics-based techniques, systems biology leverages the high-throughput data to 

connect molecular network and pathway information to build better disease models 

and help predict drug effects in patients. 

1.1 Disease Biomarker Identification 

Biomarkers are molecular signatures that enable early diagnosis, guide molecularly 

targeted therapy and monitor the activity and therapeutic responses across a variety of 

disease. They are increasingly important in both therapeutic and diagnostic processes. 

The hope of finding new biomarkers for assessing cancer risk, detecting cancer at an 

early stage, subtyping tumours, selecting optimal therapies, and monitoring therapeutic 

response is the motivation behind substantial current investments in biomarker research. 

Biomarker can be classified according to its purpose. Diagnostic Biomarker is expected 

to detect and identify a given type of disease in an individual with both high sensitivity 

and specificity. Prognostic Biomarker is used to predict the probable course of the disease 

including it recurrence and progression once the disease status has been set. Predictive 

Biomarker serves to predict drug response before treatment is started. Generally, this 

marker classifies individuals as likely responders or non-responders to a particular 

treatment.  

 

The identification of biomarker involved in human diseases has been a primary focus of 

post-genomic biomedicine for pursuing the clinical goals of diagnosis and therapeutic 

treatment. Recent advances in genomics, transcriptomics, proteomics, and metabolomics 

have begun to help unravel the disease molecular mechanisms. Gene expression profiling 

has revealed common gene fusions and expression ‘signatures’ in cancer patients. For 

example, two studies show that the common recurrent gene fusion between TMPRSS2 
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and ERG promotes prostate cancer in both mouse and humans, when the function of 

PTEN is concurrently lost(1).  

 

From a systems perspective, one of the emerging themes today is to re-characterize a 

protein’s biological function in their molecular interaction network and pathway context. 

Network Biomarker (2-4) is a new concept for biomarker discovery in systems biology. 

By integrating cancer susceptibility genes, gene expressions, and their protein interaction 

network, Marc Vidal’s group at Harvard constructed a protein interaction network for 

breast cancer susceptibility and identified HMMR as a new susceptibility locus for the 

breast cancer (5). Later, Trey Ideker’s group at UCSD integrated protein network and 

gene expression data to improve the prediction of metastasis formation in breast cancer 

patients (4, 6). The two studies suggest that protein interaction networks and pathway, 

although drafty and incomplete, can serve as a molecular-level conceptual roadmap to 

guide cancer biomarkers studies (7). 

 

Pathway Biomarker (8) is a concept for biomarker discovery by integrating functional 

genomics and known signaling pathway data. Recent finding suggests that cancer is 

dysregulated at the pathway level. Coupling Omics results with molecular signaling 

pathways involved in cancer and studying how cancer cellular function is regulated at the 

pathway level have been a key topic in cancer systems biology.  

1.2 Drug Discovery  

Traditional treatment strategy development for diseases involves the identification of 

target proteins related to disease states, and the interference of these proteins with drug 

molecules. An explosion of high-throughput data has help measure the drugs’ effect 

experimentally. For example, the experimental Connectivity Map (15) contains more 

than 7,000 expression profiles representing 1,309 compounds. It enables researches on 

pharmacology at gene expression levels. By correlating the disease gene expression with 

the pharmacology profiling from CMAP, Lamb (15) identified novel drug indications in 

diet-induced obesity or Alzheimer's disease. Other pharmacology databases like 

NCI60(20) and CCLE(21) haven also been developed to provide pharmacological 

profiles about drug sensitivity. 
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Computational drug discovery and virtual screening from thousands of chemical 

compounds have accelerated this process. The conventional “One disease, One gene, 

and One drug” paradigm (9) works effectively for simple genetic disorders. However, 

recent research studies show, in the case of both older psychiatric drugs and modern 

anticancer therapies, that drugs with multiple targets can contribute to the drug’s 

therapeutic efficacy(11). Thus the concept of network pharmacology (12)or network 

medicine (13) has been developed to understand the actions of drugs by considering 

targets in the context of the biological networks. Such a bioinformatics network 

analysis of high-throughput data sets offers an opportunity for integration of biological 

complexity and multilevel connectivity(14). 

 

Machine learning or text mining based methods have been developed to overcome some 

of those limitations. Gottlieb (22) developed a logistic regression method called 

PREDICT to predict drug actions. The regression is mainly based on drug-drug similarity 

(i.e. chemical similarity, side effects, drug targets sequence similarity, PPI and GO 

distance) and disease-disease similarity (i.e. similarity from text mining and human 

phenotype ontology). The PREDICT achieves an AUC of 0.9 while the AUC of above 

mentioned CMAP method is only around 0.4. Another approach called The 

Connectivity Maps (C-Maps) web server (23) is an online bioinformatics resource that 

provides biologists with potential relationships between drugs and genes/proteins in 

specific disease contexts based on network mining and literature mining. Disease-

specific protein-drug association profiles are computationally generated by mining bio-

molecular interaction networks and PubMed literature (24). Despite of those 

advancements, statistical association based studies are hard to differentiate drug efficacy 

from toxicity and even harder to provide a mechanistic view about why drugs have 

certain actions in specific disease conditions.  

 

Non-mechanistic approach contributes to a serious reliability and reproducibility issue in 

preclinical cancer drug research (25). A former cancer researcher at Amgen identified 53 

"landmark" publications -- papers in top journals, from reputable labs and 47 of the 53 
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could not be replicated(25). Mechanistic model-based analysis(26)  has been explored to 

aid in drug discovery to understand and predict the interaction of small molecule 

inhibitors with pathways. Take breast cancer for example. In a simple one-drug-one-

target scenario, tamoxifen can treat ER positive patients by inhibiting its target--over-

expressed estrogen receptor. However how to address the off-target effects (OTE) of a 

drug on the proteins downstream in the signaling pathways and then manipulate them for 

therapeutic purposes remains a big challenge.    

 

Khatri (27) reviewed the ten year pathway analysis and pointed out that the challenges of 

pathway based studies lie in the incompleteness of the pathway data which causes trouble 

for the current Pathway Topology (PT)-Based Approaches. Though HPD(28) collects 

human pathways from various sources, a disease specific pathway is not available. 

KEGG(29) covers only a limited list of disease pathway. For example KEGG doesn’t 

contain breast cancer pathway. Even with such a disease pathway, another challenge is to 

identify drug’s effect on the pathway proteins. There are over 40 drug-target (protein-

compound interaction) databases, according to Pathguide (30), (e.g. DrugBank(31), 

STITCH(32), and PharmGKB (33) et.al). DrugBank, for example, informs the researcher 

about interactions between drugs, physical drug target and proteins that metabolize the 

drug (31). However, these databases seldom directly inform the researcher about the 

directionality of a drug-target relation although this information may be scattered within a 

description or referenced text. Another difficulty is the inability to integrate the states of 

single proteins jointly into the higher level states of protein modules or pathway levels. 

The biological system is far from a homogenous one and thus makes a single general 

function, such as the sum of gene expression levels in a module, far from reality.  

 

Despite of those challenges, the computational prediction of drug efficacy could be 

particularly rewarding, especially in drug repositioning for personalized medicine(34) 

applications. The traditional drug development pharmaceutical product development 

requires at least 10 to 15 years and costs between $500 million and $2 billion(35). 

According to the U.S. FDA, up to 90% of all experimental drug compounds going 

through clinical trials failed to gain FDA approvals and drug efficacy accounts for 25-
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30%(36). Repositioning (37)refers to the identification and development of new uses for 

existing or abandoned drugs. It could greatly accelerate drug discovery because existing 

drugs have established clinical data(38). With recent advances in Omics and next 

generation sequencing techniques, elucidating the molecular basis of disease on a 

personalized level and thus tailing treatments accordingly has become an attainable goal. 

Drug failed at whole population may work at certain sub-population as personalized 

medicine(39). Drug repositioning for personalized medicine (34) aims to improve the 

productivity of current drug discovery pipelines and will benefit from the improved 

computational drug efficacy prediction.  

1.3 Drug Repositioning 

Discovering new indication for existing drugs, known as drug repositioning, is a hot topic 

in the translational bioinformatics field (17, 22, 40). Traditional drug discovery takes 

billions of dollars and an average of fifteen years to bring a new drug to the market (41). 

It’s estimated 90% of the drugs fail in the early stage of drug development(42). 

Repositioning of drugs already approved for human use could alleviate the cost 

associated with early stages and offer a shorter path for new approval(43). Both academia 

and pharmaceutical companies have achieved a number of successes by using drug 

repurposing. For example, the drug sildenafil, initially developed for pulmonary 

hypertension and angina pectoris, has been repositioned for erectile dysfunction 

indication. Thalidomide, originally applied for treatment of morning sickness and 

withdrawn from the market after causing thousands of severe birth defects, has been 

approved for indication in severe erythema nodosum leprosum(44). 

 

Current computational methods for drug repositioning include: (i) studying the structural 

similarity of each drug to their targets’ ligand set using chemoinformatics tools (45) or 

drug–drug and disease–disease similarity with machine learning methods(22), (ii) 

exploiting side-effect similarities (46), (iii) applying text-mining literature(23), or  (iv) 

matching drug and disease gene expression profiles (15, 17, 40, 47, 48). Most of the 

approaches can only be applied to well characterized drugs whose targets or structures 

are known. Expression profile based approaches are, on the other hand, more general and 

do not require prior knowledge of the drugs. 
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Lamb et al.(15) developed a public available database called The Connectivity Map 

(CMAP) containing a collection of transcriptional expression data from cell lines treated 

with small molecules. The reference database can be queried with gene signatures of 

interest, with a compound being identified if the genes in the signature are significantly 

modulated by that compound. Iorio et al.(40) constructed drug-drug similarity networks 

based on the gene expression profiles in the CMAP and proposed drug repositioning 

based on drug pairwise similarity. Hu and Agarwal(47) and Sirota et al.(17) extended the 

idea by paring drugs and diseases whose gene expression patterns are negatively 

correlated. They further showed that the anti-correlation relationships between the drugs 

and diseases can suggest novel therapeutics for existing drugs. 

 

 

Figure 1-1. Existing approaches for drug repositioning. 

All approaches are judged by two dimensions: 1) whether the approach is dependent on 

the dynamic expression profiles or the approach is based on existing knowledge; 2) 

whether the approach is based on drug chemical similarities or the approach is based on 

disease models.  In general effective medicine is based on specific disease model and 

gene expressions from the patients. 
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1.4 Organization of the Thesis 

The thesis is organized as follows: 

In Chapter 1, I provide an introduction of biomarker discovery and drug discovery, 

emphasizing the need for system level approaches. Coupling biomarker discovery and 

drug discovery is essential for identifying an effective treatment for patients.   

 Figure 1-2. A research road map for the thesis. 

 

Chapter 2 is based on my work at (49). We describe a simple yet generic computational 

framework based on protein interaction networks to perform and evaluate disease gene-

hunting, using colorectal cancer as a case study. We apply statistical measurements 

including specificity, sensitivity and Positive Predictive Value (PPV) to evaluate the 

performance of disease gene ranking methods, which we break down into seed gene 

Drug discovery involves disease biomarker identification and treatment 

recommendation (Chapter 1) 

 

Study how to effectively identify 

disease genes (Chapter 2) 

Part I: biomarker identification 

Build a central database for 

pathway biomarker discovery 

(Chapter 3) 

Develop a case study for 

biomarker identification for 

Diabetes (Chapter 4) 

Implement literature mining to 

build the disease-protein-drug 

connectivity map (Chapter 5) 

Part II: treatment recommendation 

Present the drug directionality 

database (DMAP) for drug 

repositioning (Chapter 6) 

Study drug repositioning beyond 

genomic level (Chapter 7) 

Discuss the future research direction of computational drug discovery both in 

genomics level and beyond genomics level.  (Chapter 8) 
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selection, protein interaction data quality and coverage, and network-based gene-ranking 

strategies. We discover that best results may be obtained by using curated gene sets as 

seeds, applying protein interaction data set with high data coverage and decent quality, 

and adopting variants of local degree methods.  

 

Chapter 3 is based on my work at (50). We develop an integrated online database, the 

Pathway And Gene Enrichment Database (PAGED), to enable comprehensive searches 

for disease-specific pathways, gene signatures, microRNA targets, and network modules 

by integrating gene-set-based prior knowledge as molecular patterns from multiple levels: 

the genome, transcriptome, post-transcriptome, and proteome. The online database we 

developed, PAGED (http://bio.informatics.iupui.edu/PAGED) is by far the most 

comprehensive public compilation of gene sets. In its current release, PAGED contains a 

total of 25,242 gene sets, 61,413 genes, 20 organisms, and 1,275,560 records from five 

major categories. Beyond its size, the advantage of PAGED lies in the explorations of 

relationships between gene sets as gene-set association networks (GSANs). Using 

colorectal cancer expression data analysis as a case study, we demonstrate how to query 

this database resource to discover crucial pathways, gene signatures, and gene network 

modules specific to colorectal cancer functional genomics.  

 

Chapter 4 is based on my work at (51). We present an innovative approach - network 

expansion and pathway enrichment analysis (NEPEA) for integrative microarray analysis. 

We assume that organized knowledge will help microarray data analysis in significant 

ways, and the organized knowledge could be represented as molecular interaction 

networks or biological pathways. Based on this hypothesis, we develop the NEPEA 

framework based on network expansion from the human annotated and predicted protein 

interaction (HAPPI) database, and pathway enrichment from PAGED. We use a recently-

published microarray dataset (GSE24215) related to insulin resistance and type 2 diabetes 

(T2D) as case study, since this study provided a thorough experimental validation for 

both genes and pathways identified computationally from classical microarray analysis 

and pathway analysis. We perform the NEPEA analysis for this dataset based on the 

results from the classical microarray analysis to identify biologically significant genes 
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and pathways. Our findings are not only consistent with the original findings mostly, but 

also obtained more supports from other literatures. Chapter 1-4 conclude the first part in 

this thesis about disease biomarker discovery.  

 

Chapter 5 is based on my work at (52). We assess drug pharmacological effect by 

assuming that “ideal” drugs for a patient can treat or prevent the disease by modulating 

gene expression profiles of this patient to the similar level with those in healthy people. 

Starting from this hypothesis, we build comprehensive disease-gene-drug connectivity 

relationships with drug-protein directionality (inhibit/activate) information based on a 

computational connectivity maps (C2Maps) platform. An interactive interface for 

directionality annotation of drug-protein pairs with literature evidences from PubMed has 

been added to the new version of C2Maps. We also upload the curated directionality 

information of drug-protein pairs specific for three complex diseases - breast cancer, 

colorectal cancer and Alzheimer disease. For relevant drug-protein pairs with 

directionality information, we use breast cancer as a case study to demonstrate the 

functionality of disease-specific searching. Based on the results obtained from searching, 

we perform pharmacological effect evaluation for two important breast cancer drugs on 

treating patients diagnosed with different breast cancer subtypes. The evaluation is 

performed on a well-studied breast cancer gene expression microarray dataset to portray 

how useful the updated C2Maps is in assessing drug efficacy and toxicity information.  

 

Chapter 6 is based on my work at (53). Critical to drug repositioning involves the reliable 

measurements of how drug affect disease proteins. We present a computational 

framework to address those challenges. First, we introduce the Drug directionality Map 

(DMAP) which consists of directed drug protein relationships for 328,676 drugs. We 

scale up the coverage of the database by 200 fold compared to experimental based 

Connectivity Map (CMAP) which suffers from limited drug coverage due to the 

experimental cost. DMAP enables systematic repositioning for 982 drugs and 622 

diseases. With two well-established drug-repositioning methods: drug similarity networks 

method and K-S scoring method, we demonstrate the feasibility of applying this valuable 

dataset for systematic drug repositioning. The results demonstrate that the DMAP 
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database is essential for computational drug repositioning research. Chapter 5 and 6 

conclude the drug repositioning work in the genomic level. 

 

In Chapter 7, I explore the possibility of drug repositioning beyond one dimension and 

beyond genomics level. We hypothesize that clinical side effects (SEs) provide a human 

phenotypic profile and can be translated into the development of in silico models for 

predicting novel drug combinations likely to be safe and efficacious. We build a 

prediction model based on the SE features and test it on a large independent drug 

combination set. The prediction achieves an accuracy of 0.94 and an AUC of 0.87. We 

demonstrate that such prediction power is not due to the confounding factors such as 

biased disease indications or drug targets. To explore the possibility of applying the 

prediction in practice, we train a rule-based model, namely the decision tree model, and 

successfully reduce the features to only three ‘black box’ SEs: pneumonia, hemorrhage 

rectum, and retinal bleeding, whilst maintaining an AUC of 0.80. Based on these results, 

we propose that avoiding combining drugs with any of these three serious SEs would 

have better chance of reducing the risks. Finally, we propose a “Two Steps Rule” so that 

it can help to identify potential safe co-prescriptions or novel fix-dose combinations 

while maintaining the efficacy.(54) 

 

In Chapter 8, I summarize all the research and contributions. I also discuss about the 

future research direction of computational drug discovery both in genomics level and 

beyond genomics level.  I highlight the significance of incorporating phenotypic features 

when building the prediction models. 
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Chapter 2. Analysis of Protein Interaction Network 

This section is based on the published work at (49). JYC guided the research team by 

providing ideas and feedback along the way, and revised the manuscript. HH integrated 

disease genes, generated the protein interaction network, ranked the disease proteins, and 

wrote the manuscript. JL helped with the specificity, sensitivity and PPV calculation and 

revised the manuscript.   

2.1 Introduction 

Disease gene finding is a central topic in biomedical research. If the causal genes are 

found for a disease, health care solutions may be developed to prevent disease 

occurrence, diagnose disease early, and make tailored treatment plans, e.g., in (55, 56). 

For nearly a century, there have been two approaches to discover genes related to a 

specific disease experimentally: biochemical analysis approach and genetic analysis 

approach (57). The first approach attempts to first separate and purify proteins 

characteristic of disease conditions in model organisms or tissues, and then study the 

disease-related proteins’ biochemical or biophysical altered properties that can be 

mapped to gene mutations. The second approach normally relies on first studying genetic 

markers identified in families of diseased populations, and then applying positional 

cloning techniques and linkage analysis to identify microsatellite markers, chromosomal 

aberrations, or DNA polymorphisms. However, experimental characterization of proteins 

or genes involved in diseases is a slow meticulous process. Today, even with advances of 

genomics technology, one third of all the genes and most of the disease related genes 

remain functionally uncharacterized (58). A promising new experimental technique is 

genome-wide association studies (GWAS), which may help identify candidate single-

nucleotide polymorphism (SNP) genetic markers associated with disease risks.  

 

While most computational approaches to disease gene finding rest on statistical 

association studies or computational sequence analysis, there are surging interests in 

taking advantage of molecular interaction networks. The concept is to put candidate 

genes and proteins in specific disease biology contexts defined by molecular interaction 

networks or biomolecular pathways, with which a researcher can infer functions of 

uncharacterized genes or proteins. Such disease biomolecular network context may be 
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particularly useful for the study of polygenic diseases such as cancer, in which 

conventional reductionist approaches are ineffective (55). In this new approach, disease 

networks are developed to rank disease relevance of genes/proteins based on properties 

such as node degrees (count of direct PPI connections to a node), closeness (path distance 

of a given node to all other nodes), or betweenness (count of geodesic paths that pass 

through a node). For example, Morrison et al. used gene expression network and gene 

ontology information to rank genes similar to Google’s PageRank method (59). Chen et 

al. were the first to propose a method that applied disease-specific protein-protein 

interaction (PPI) networks and modified local node degree measures to prioritize 

Alzheimer’s disease genes  (60).  

 

While many network-based disease-gene ranking methods have been developed recently, 

there has not been a consensus how to evaluate their performances. In this work, we 

describe a simple yet generic computational framework to perform and evaluate network-

based disease gene-hunting methods. Using colorectal cancer gene finding as a case 

study, we report how various seed gene selection, PPI data quality, and ranking strategy 

could affect final gene-finding results. We also defined how specificity, sensitivity, and 

positive predictive values (PPV) could be used for performance evaluation criteria. We 

choose colorectal cancer because it is the third leading cause of cancer death in the US 

and our current knowledge of colorectal cancer genes is limited, making our results to 

carry special significance. Next, we will describe our methods and report our findings.  
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2.2 Methods 

In Figure 2-1, we show an overview of the computational framework used in this study. It 

consists of two components: (1) Disease Gene Identification, in which we expand seed 

genes to disease-specific protein sub-network and subsequently generate a ranked list of 

disease-relevant genes; (2) Disease Gene Assessment, in which we quantitatively assess 

disease genes using statistical measurements including sensitivity, specificity and PPV. 

The relationships between the two components is the following: First, disease gene 

identification will be performed using a fixed set of gene-seeding, PPI sub-network 

construction, and disease gene ranking strategies; then, we evaluate how sensitivity, 

specificity, and PPV are affected by varying choices of seed genes, PPI networks, and 

ranking strategy.  

i. Seed Gene Selection 

We consider three sets of colorectal cancer-related genes collected from different 

resources as seeds, which are: (1) the CORE1 set (i.e. the curated genes), derived from 

human curated databases by querying the OMIM (61) and KEGG (62) database for 

“colorectal cancer” and manually curating the set of genes/proteins; (2) the CORE2 

set(i.e. the expressed genes), derived from high-throughput microarray data in the 

ONCOMINE (63) database by keeping only differentially expressed genes with p-

value<0.05 performed for colorectal cancer samples against controls; (3) the CORE3 

set(i.e. text mining genes), derived from the Comparative Toxicogenmics Database (CTD 

PPI Sub-network:

Construct human protein-

protein interaction sub-

network with different 

coverage and confidence.

Disease Genes: 

Select the top genes in 

sub-network using 

ranking strategy R. 

Seed Genes: 

Collect from curated 

databases, experiment 

results, and literature.

Disease Gene Identification Disease Gene Assessment

Positive Predictive Value: 

The probability of correct 

positive prediction.

Specificity: 

The percent of correctly 

identified non-disease genes.

Sensitivity: 

The percent of correctly 

identified disease genes.

 

Figure 2-1. Computational Framework for Disease Gene Identification and 

Assessment  
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(64)) by searching for colorectal cancer genes associated with >2 chemicals in the 

database.  

ii. Protein Interaction Sub-network Construction  

We expand seeds, using PPIs recorded in the Human Annotated and Predicted Protein 

Interactions (HAPPI) database (65) to construct colorectal cancer-specific PPI sub-

network. A unique feature of the HAPPI database is that the quality of PPIs comes with 

estimated confidence scores (a real value between 0 and 1) and star grades (an integer 

between 1 and 5). The higher the confidence score or the star grade number, the more 

likely the PPI is attributable to physical PPI events. In this study, we use PPI star grade to 

control disease-specific sub-network quality and coverage. We refer to the disease-

specific PPI sub-network constructed from HAPPI quality star grade n and above as PPI-

n. For example, PP1-3 includes all PPIs from HAPPI with quality grade of 3, 4, and 5.  

iii. Disease Gene Ranking Strategy 

We treat the disease gene ranking problem as a problem to calculate a weight for each 

protein in the disease-specific PPI sub-network. There are three ranking strategies being 

considered in this study: (1) Global degree strategy, in which we use the protein’s node 

degree in the global PPI-n network as the weight; (2) Local degree strategy, in which we 

use the protein’s node degree in the local (colorectal-specific) PPI-n network as the 

weight; and (3) Edge-weighted Promiscuous Hub subtraction (EPHS) strategy developed 

in Dr. Chen’s lab (60), which is a variant of local degree strategy adapted by penalize the 

impact of low-quality promiscuous protein hubs on ranks defined by the following 

formula:  

    (1) 

Here, p and q are indices for proteins in the constructed network NET. k is an empirical 

constant. conf(p, q) refers to confidence score in HAPPI Database. N(p, q) holds the value 

of 1 if the protein p interacts with q. The rp score is the weight calculated to rank each 

protein in the network. 

  

In addition, we use TOP_M to refer to the M highest ranked disease-relevant 

proteins/genes given by a specific disease gene ranking strategy.  

   NETq NETq qpNqpconfkpr )),(ln()),(ln(*
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iv. Disease Gene Assessment 

To evaluate the disease-related gene list, the sets of Gold Standard Positive (GSP) and 

Gold Standard Negative (GSN) are constructed as illustrated in Figure 2-2.  

 

The following measurements are calculated to evaluate the performance of each disease 

gene identification method: (1) Sensitivity, calculated as the percent of correctly 

identified disease genes |TOP_MGSP|/|GSP|; (2) Specificity, calculated as the percent 

of correctly identified non disease genes |GSN-(TOP_M-GSP)|/|GSN|; (3) Positive 

Predictive Value (PPV), calculated as the probability of correct positive predictions 

|TOP_MGSP|/| TOP_M |.  

2.3 Results 

We developed three colorectal cancer seeds: CORE1, consisting of 148 proteins; CORE2, 

consisting of 42 proteins; and CORE3, consisting of 721 proteins. With three choices of 

seeds gene selections (CORE1, CORE2, and CORE3), four PPI qualities (PPI-3, PPI-4, 

PPI-5, PPI-1), three ranking strategies (EPHS, Local Degree, Global Degree), we tested 

different combinations to conduct the disease gene findings and assessment for colorectal 

cancer.  

 

 

 

 

 

ALL

CORE3

CORE1 CORE2

 

Figure 2-2. Gold standard construction for disease gene assessment.  
As shown in the striped area, GSP= 

(CORE1CORE2)(CORE1CORE3)(CORE2CORE3).  As shown in the gray area, 

GSN=ALL-(CORE1 CORE2 CORE3). Note that ALL refers to all HAPPI human 

proteins. 
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i.  Effect of Various Seed Gene Selection Methods 

In Figure 2-3, we show how seed selections affect the ranking results. In this experiment, 

we used PPI-3 as PPI network data source and the EPHS disease protein ranking method. 

The ranking index on the x-axis refers to a number, TOP_M, used to indicate the number 

of all rank-ordered proteins in a given expanded protein set consisting of both seed 

proteins and PPI-expanded disease sub-network. PPV for the initial top-10 or top-20 

proteins for both core-1 and core-2 seeded strategies were at 0.7-0.8 range, suggesting 

high predictive power of top-ranked proteins for disease-relevance. As ranking index 

increases, PPV decrease for all core seeded strategies. However, the performance for 

core-1 is superior to both core-2 and core-3. This is perhaps due to the highly curated 

nature of core-1 seeds as compared with possible noises introduced by Omics data for 

core-2 and text mining data for core-3. Core-3 shows an overall poorer PPV performance, 

particular within top-20 compared with core-1 and core-2. Beyond ranking index of 250, 

all core seeded strategies converged to low PPV within 0.15. Therefore, the relatively 

high predictive powers of all disease gene rankings seem to be restricted to the top 50.  

 

 

 

 

 

 

 

 

Figure 2-3. PPV performance using different seed choices. 
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ii. Effect of Various PPI Data Quality and Coverage 

In Figure 2-4, we show how PPI data used for network expansion affect the ranking 

results. In this experiment, we compared results using PPI-1, PPI-3, PPI-4, and PPI-5, 

using core1 as seeds and the EPHS ranking method. All PPI-n except for PPI-5 showed a 

similar trend of decreasing PPV. Again, the relatively high predictive powers (PPV>0.5) 

seem to be achieved at the top 50, except for PPI-5, then continue to decrease to very low 

levels (PPV<0.15) beyond a ranking index>400. It’s counter-intuitive that PPI-5’s 

performance, being the poorest, has a rising phase from ranking index between 10 and 50 

before decreasingly significantly. This may be primarily due to the poor coverage of true 

colorectal cancer proteins in current physical PPI data sets representative of PPI-5 until 

enough proteins are covered in the top 40 or 50 set. Therefore, data coverage seems quite 

important in gene ranking performance overall. Also, at least in the top 10 case, the fact 

that PPI-3 has the best PPV of 0.8 over PPI-1 that has much higher data coverage suggest 

that PPI data quality is also important to discover disease genes in the most highly ranked 

protein set. Therefore, balanced data coverage and quality are essential for disease gene 

finding from such networks.  

 

iii. Effect of Various Disease Gene Ranking Methods 

In Figure 2-5, we show how the choices of different ranking methods affect the ranking 

results. The results are performed by fixing seed protein to core1 and using PPI-5 for the 

expansion network. EPHS and Local Degree methods performed equally, while global 

degree performed extremely poor—although by sharing similar performance trend of the 

top-performing methods. The trend for all methods shows two phases: a PPV rising phase 

 

Figure 2-4. PPV performance using different PPI-n networks. 
 



20 

 

from top 10 to top 60-80; and a PPV decreasing phase from top 80 onwards. The 

separations of two phases are likely due to balanced PPI data coverage and quality as 

explained earlier.  

 

iv. Sensitivity and Specificity Comparisons of Top Disease Gene Ranking Methods. 

We further compared the sensitivity and specificity performances for the best two disease 

gene ranking methods, EPHS and Local Degree.  

 

Figure 2-6 shows a comparison of their specificity (on the y-axis) performance 

distributed over different ranking index ranges (on the x-axis). The specificity 

performances of both methods are quite good overall, even at top 100 range 

(specificity>0.9). The EPHS ranking method is slightly better (more specific) than Local 

Degree ranking method. This is primarily because local degree method cannot distinguish 

nodes with the same number of node degrees, particularly when the node degree drops to 

small numbers such as 2 or 3 in the high ranking index region.  

 

Figure 2-5. PPV performance using different disease gene ranking methods.  
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Figure 2-7 shows a comparison of their sensitivity (on the y-axis) performance distributed 

over different ranking index ranges (on the x-axis). The sensitivity performances of both 

methods are decent overall after ranking index range of top 80 (sensitivity>0.75). The 

local degree ranking method is slightly better (more sensitive) than EPHS ranking 

method. The reason that local degree method performed better than EPHS ranking 

method is that there are many tied genes in local degree method due to their sharing the 

same node degrees. However, since most rankings should be performed in the low 

ranking index region, this slight loss of sensitivity for EPHS method can be ignored.  

 

2.4 Conclusions 

In this work, we performed disease gene finding from protein-protein interaction 

networks specific to colorectal cancer. We examined the effects of different seeds, 

different PPI data quality, and different disease gene ranking methods on the final 

 

Figure 2-6.  A comparison of specificity performance between the EPHS and Local 

Degree ranking methods. 

 

Figure 2-7.  A comparison of sensitivity performance between the EPHS and Local 

Degree ranking methods. 
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performance of the task. While all of these parameters may impact the final performance,  

our results show that (1) the initial quality of seeds should be based on prior curated 

knowledge as much possible, with Omics results being the next choice and text mining 

results being the last resort; (2) disease gene ranking should be performed using PPI data 

with reasonable quality but as high data coverage as possible; (3) the ranking algorithm 

that takes advantage of local network parameters should be chosen over those using 

global network parameters. There are several limitations to our current research 

approach. For example, the gold standard positive set of genes used for evaluation had to 

be built by considering seed gene sets used for research studies due to convenience of 

computation. The observations made for this framework should be carefully validated in 

other disease contexts before they be generalized. 
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Chapter 3. Pathway and Gene-set Enrichment Database 

This section is based on the published work at (50). JYC conceived of this work, guided 

the research team, and revised the manuscript. HH integrated disease-gene association 

data, developed the website, designed the case studies and wrote the manuscript. XW 

participated in the idea initiation, framework development, data quality control, case 

studies, and manuscript writing. MS integrated various pathways, microRNA, and gene 

signature data. SNM reviewed the evolvement on pathway analysis and gene-set 

enrichment analysis. RP helped with the database management and maintenance. KFM 

tested the website, provided valuable suggestions for substantial improvements, and 

revised the manuscript. PW assisted with website maintenance.   

3.1 Introduction 

Pathway analysis and gene-set enrichment analysis are both widely-used methods to 

identify significant molecular expression patterns from high-throughput data (27). Over 

the last decade, biological pathways have provided natural sources of molecular 

mechanisms to develop diagnosis, treatment, and prevention strategies for complex 

diseases (66-68). The various and massive functional genomics data are effectively 

analyzed by gene-set enrichment methods instead of individual gene analysis (69-72). 

Pathway analysis and molecular signature discovery continue to reveal the association 

between genotypes and phenotypes, which are simply called molecular profiling or 

molecular phenotypes. At present, researchers intend to combine pathway and gene-set 

enrichment approaches and network module-based approaches to identify crucial 

relationships among different molecular mechanisms (27). 

 

As sources of prior knowledge for molecular mechanisms, biological pathway databases 

are heterogeneous, cross multiple levels, and lack annotations (67). Different pathway 

databases may yield divergent results from the same input data. When different databases 

yield similar results, applying multiple pathway data sources in a single analysis can 

generate a measure of validation. Unlike candidate pathway analysis, genome-wide 

pathway analysis does not require prior biological knowledge. In addition, genome-wide 

pathway analysis can reveal gene interactions across different diseases (67, 73) and 

multiple pathways (67, 74, 75). Other studies based on an online integrated human 
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pathway database (HPD) also provided associations between different pathways with 

diverse types, sizes, and sources (28, 76) on specific phenotypes. Although these efforts 

have greatly improved the efficiency of pathway analysis, our knowledge of biological 

pathways is still far from complete. 

 

Gene signature data from the transcriptome level offers a complementary source of 

information to complete pathway knowledge. In a recent review, Khatri et al. (27)  

categorized pathway analysis into three generations of approaches: the first-generation 

“over-representation analysis” (ORA) approaches, the second-generation “functional 

class scoring” (FCS) approaches, and the third-generation “pathway topology” (PT) 

approaches. To overcome the limitations of ORA approaches (gene-level statistics), FCS 

approaches, such as gene-set enrichment analysis (GSEA) (70), were devised to include 

overall changes of gene expressions in each pathway/gene set (pathway-level statistics). 

Third generation approaches also include overall changes of gene expressions based on 

pathway topology—that is, their upstream/downstream positions within each pathway. 

Although these third generation approaches were meant to change our understanding of 

the underlying mechanisms of pathways, they lack information necessary to achieve this: 

the interdependence between pathways. Annotated knowledge from genome, 

transcriptome, post-transcriptome, and proteome levels can assist pathway and gene-set 

enrichment analysis. 

 

Multi-level, multi-scale, knowledge-guided enrichment analysis can enable molecular 

phenotype discovery for specific human diseases. Currently, the acquisition of prior 

knowledge and systems modeling poses a challenge for developing tools that go beyond 

third-generation pathway analysis for disease-specific molecular profiling. Prior 

knowledge acquisition requires attention to updates and improves the available 

annotations with descriptive knowledge from multiple levels, especially for information 

on pathway microenvironment (“condition-, tissue-, and cell-specific functions of each 

gene”) (27, 67). Systems biology modeling must incorporate data from the view of 

systems biology to build systems with multiple scales, which can be used to generate 

hypotheses that will give detailed and accurate predictions of changes in systems. Both 
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aspects of this challenge will be addressed by building a database not only containing 

disease-associated genes, transcript factors, proteins, and microRNAs, but also by 

organizing their relationships within and between pathways, gene signatures, and any 

gene sets from existing experiments or papers. 

 

To meet the new challenges of molecular phenotype discovery, we developed in this 

work an integrated online database, the Pathway And Gene Enrichment Database 

(PAGED), to enable comprehensive searches for disease-specific pathways, gene 

signatures, microRNA targets, and network modules, by integrating gene-set-based prior 

knowledge as molecular patterns from multiple levels—the genome, transcriptome, post-

transcriptome, and proteome. The new database can provide the following benefits to 

biological researchers. First, the new database consists of disease–gene association data, 

curated and integrated from Online Mendelian Inheritance in Man (OMIM)(77) database 

and the Genetic Association Database (GAD)(78); therefore, it has the potential to assist 

human disease studies. Second, as of March 2012 it also contains all current compiled 

gene signatures in Molecular Signatures Database (MSigDB)(72) and Gene Signatures 

Database (GeneSigDB)(71). Third, it further integrates with microRNA-targets from 

miRecords(79) database, signaling pathways, protein interaction networks, and 

transcription factor/gene regulatory networks, partially based on data integrated from the 

Human Pathway Database (HPD) (28)and the Human Annotated and Predicted Protein 

Interaction (HAPPI)(80) database. All gene sets or pathways are annotated with 

molecular interaction details whenever available. We integrated the following version of 

the database OMIM(77) (Feb. 2012), GAD(78) (Aug. 2011), GeneSigDB(71) (v. 4.0, 

Sept. 2011), MSigDB(72) (v. 3.0. Sept.  2010), HPD(28) (2009), HAPPI (80)(v. 1.4) and 

miRecords(79) (Nov. 2010), which are the latest versions available. An advantage of our 

work lies in its representation of relationships between pathways, gene signatures, 

microRNA targets, and/or network modules. These gene-set-based relationships can be 

visualized as a gene-set association network (GSAN), which provides a “roadmap” for 

molecular phenotype discovery for specific human diseases. Using colorectal cancer 

expression data analysis as a case study, we demonstrate how to query PAGED to 



26 

 

discover crucial pathways, gene signatures, and gene network modules specific to 

colorectal cancer functional genomics. 

3.2 Methods 

i. Data sources 

We show an overview of the data integration process in Figure 1. Gene-set data were 

collected, extracted, and integrated from five major categories. The pathway data sources 

were from HPD (28), which has integrated 999 human biological pathway data from five 

curated sources: KEGG, PID, BioCarta, Reactome, and Protein Lounge. The genome-

level disease gene relationships were from OMIM (77) and GAD (78); the transcriptome-

level gene signatures were from MSigDB (72) and GeneSigDB (71); the post-

transcriptome-level microRNA data were from miRecords (79); and the proteome level 

data was from an integrated protein interaction database HAPPI (80), which has 

integrated HPRD, BIND, MINT, STRING, and OPHID databases. 

ii. Gene-set data integration 

We treat as gene sets all groups of genes, including disease-associated genes, pathway 

genes, gene signatures, microRNA-targeted genes, and PPI sub-network modules. The 

raw files from those data sources have various formats including plaintext, XML, and 

table. We have written Perl/Java parsers to convert them into a common tab-delimited 

textual format to ensure syntactic-level data compatibility. To integrate across different 

databases, we mapped the gene/protein IDs in all databases to official gene symbols. The 

gene-set gene data is stored in the backend ORACLE11g relational database. As of the 

current release, PAGED contained a total of 25,242 gene sets, 61,413 genes, 20 

organisms, and 1,275,560 records. All gene set members are represented by the official 

gene symbols. All PAGED gene sets were assigned unique PAGED-specific identifiers.  
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iii. Online software designing 

The PAGED platform follows a multi-tiered design architecture. The backend was 

implemented as PL/SQL packages on an Oracle 11g database server and the PAGED 

application middleware was implemented on the Oracle Application Express (APEX) 

server, which bridged between the Apache webserver and the Oracle database server.  

iv. Gene-set similarity measurement 

Referring to the pathway similarity definition introduced in (28), the similarity score Si, j 

of two different gene sets is defined by the following formula: 
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Figure 3-1. The workflow of gene-set data integration and the basic statistics of 

gene-set data sources. 
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Here, Pi and Pj denote two different gene sets, while |Pi| and |Pj| are the number of genes 

in each of these two gene sets. Their intersection Pi∩Pj denotes a common set of genes, 

while their union Pi∪Pj is calculated as |Pi|  |Pj|  |Pi∩Pj|. Here, α is a weight coefficient 

among [0, 1], which is used to count varying degree of contributions from calculations 

based both on the overlap (left item SL) and the cover (right item SR). SL is well-known as 

the Jaccard coefficient (81), which is often used to evaluate the similarity between two 

sets (82). When a larger gene set covers a smaller one, we expect their similarity score to 

be high enough to identify them. In this situation, although the left item SL is a small 

number, the right item SR will be counted as 1.0 to make the final similarity score higher 

according to our definition in Equation (1), when taking an appropriate α value. We 

found that when α fell in the interval of [0.7, 0.9], the score distribution would be close to 

a Poisson distribution. As we know, a Poisson distribution expresses the probability of a 

number of events occurring during a fixed period of time if these events occur with a 

known average rate and are time-independent since the last event. Therefore, we chose 

the middle value, α = 0.8, for the rest of the analysis. Our previous HPD paper (28) also 

validates the choice of 0.8 as the pathway similarity measurement.  

v. Microarray data 

Here we use colorectal cancer (CRC) expression data analysis as a case study to show 

how to discover crucial pathways, gene signatures, and gene network modules specific to 

colorectal cancer functional genomics. We downloaded a colorectal cancer microarray 

dataset GSE8671 from Gene Expression Omnibus, GEO 

(http://www.ncbi.nlm.nih.gov/geo/) (83). This microarray dataset compared the 

transcriptome data of 32 prospectively collected adenomas with those of the normal 

mucosa from the same individuals. Hence, we have 32 CRC samples and 32 normal 

samples. We used maximal expression values for the same proteins mapped from 

different Probe IDs, the Affy package in BioConductor for quantile normalization, the 

built-in MicroArray Suite (MAS5) for background correction, and Limma in 

BioConductor for differential analysis, the result of which is represented as fold changes 

(FC) of CRC samples vs. normal samples.  
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vi. Differential gene-set expressions and gene-set association network 

We use ABS_FC to denote the absolute value of fold change for each gene. We then 

define differential gene-set expressions here as 

NORM_ABS_FC: The p*-norm of ABS_FC of all the available differential gene 

expressions in a gene set. 

Usually, p-norm =       
   

   

 

  

For unification, we modify it as 

p*-norm =   
 

 
     

   
    

 

    (2) 

In the implementation, p = 6 performs the best at accentuating highly differential 

expressions in a gene set. 

To visualize the relationships between gene sets, we define a gene-set association 

network (GSAN) as a network of associations between different gene sets, in which the 

network element representation is as follows: 

• Node: Gene set 

• Edge: Association between two gene sets 

• Node size: Gene-set scale (Counting genes in each gene set) 

• Node color: Differential gene-set expression (NORM_ABS_FC) 

• Node line color: Gene-set data source 

• Edge width: Similarity score 

3.3 Results 

i. Database content statistics 

Table 3-1 lists the detailed statistics for each data source and the overlap between each 

pair. For example, MSigDB contains 30,525 genes and GeneSigDB contains 36,791 

genes. The number of overlapping genes between these two databases is 17,209. We 

found a synergistic effect from integrating these two signature databases, resulting in 

greatly increased gene-set coverage. The same effect was observed for all the remaining 

pair comparisons. These data sources proved to be complementary. 
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Table 3-1. Number of overlapping genes between different data sources 

 OMIM GAD MSigDB GeneSigDB miRecords HPD HAPPI* 

OMIM 9012 1862 3489 2792 231 2559 3849 

GAD  7293 6821 6450 432 3202 4922 

MSigDB   30525 17209 759 6229 10677 

GeneSigDB    36791 900 5904 10395 

miRecords     1395 443 725 

HPD      12228 10512 

HAPPI       21955 

* Only PPIs of over 3-star quality are considered here; to calculate the overlap, protein IDs from 

HAPPI have been first converted to gene symbols. 

 

ii. Gene-set scale distributions 

The gene-set scale can reflect the integrality of information content of a biological topic. 

In this study, we define gene-set scale as the number of molecules (i.e., gene symbols) in 

a gene set. We performed a statistical analysis of the gene-set scale distributions of both 

PAGED and of its individual data sources. Figure 3-2 shows that each data source taken 

by itself is not very scale-free, especially for OMIM, GAD, and miRecords for higher 

 

Figure 3-2. Gene-set scale distributions for PAGED molecule data 

A gene-set scale refers to the number of molecules (i.e., genes) involved in a given 

gene set. The frequency on the y-axis refers to the count of all gene sets falling into 

the category of a particular gene-set scale size on the x-axis. The distributions are 

plotted under log scale for both the x-axis and y-axis. The linear trend line in red 

represents linear regression of PAGED distribution and the linear equation and its R-

Square are listed. 
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scales and HPD, GeneSigDB, and MSigDB for lower scales. The scale distribution of 

PAGED is relatively scale-free on both the low end and the high end with a linear 

regression R-squared of 0.88. Additionally, the distribution of PAGED always lies above 

those of its data sources, indicating that the integration has enriched the number of gene 

sets in all scales instead of exhibiting a bias towards one particular scale. These 

observations indicate that the integration process of PAGED has resulted in a database 

that can take account of different gene set scales. 

iii. Online functionalities 

In Figure 3-3, we show the user interfaces of the PAGED website. It supports both 

disease-based search and user-defined gene-list search. If users search the disease term in 

the home page (Figure 3-3A), PAGED will retrieve a list of related gene sets by directly 

matching the disease term with all the gene-set names; if users instead search a disease 

term in the advanced search page (Figure 3-3D), PAGED will first retrieve disease-

relevant genes from OMIM and GAD and then use those genes to query the whole 

database, which will retrieve a gene-set list based on disease gene profiles that is more 

comprehensive than that of either OMIM or GAD individually. Users can also search 

PAGED using multiple genes in the home page (by delimiting them with a comma) to 

retrieve a list of related gene sets with the hits number and similarity scores (Figure 3A). 

In addition, users can upload a file of their genes with one gene per line on the advanced 

search page (Figure 3-3D) to perform the gene-based search. In the advanced gene-based 

search (Figure 3-3D), user can also perform an organism specific search though the 

majority of the gene-sets are human related.  All the gene sets are hyperlinked to the 

original database, where user can further examine the detailed annotations of that specific 

gene set.  

 

Upon executing the queries, PAGED can retrieve a list of related gene sets in an HTML 

table (Figure 3-3B, C) with their specific organism information included, which are 

downloadable as a comma-separated value (CSV) file. On the same page, there are links 

for downloading all the genes in those gene sets and the association between each gene 

set. In the gene set association downloading page, a simple heat map is provided for the 

visualization of gene set similarities. 
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Figure 3-3. An overview for the core functionality of the online PAGED website 

(A) The PAGED home page providing search by either disease name or gene list; (B) 

a webpage containing the list of gene sets retrieved as a result of a disease query; (C) 

a webpage containing the list of gene sets retrieved as a result of a gene list query; 

(D) an advanced search page in which the user can either search disease name or 

upload a gene-list to search; (E) a browse page listing the gene sets, their data source 

and number of genes. 
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iv. Case studies 

The following case studies use colorectal cancer expression data analysis as a case study 

to demonstrate how to discover crucial pathways, gene signatures, and gene network 

modules specific to colorectal cancer functional genomics. 

 

Case study I: Searching disease-associated gene sets based on gene-set names 

Using the standard query box provided at the PAGED home page, one can search for 

colorectal cancer in all biological gene sets. PAGED returns a list of gene sets, which 

can be ordered by decreasing number of genes contained by each gene set. In total, 45 

gene sets from three data sources (i.e., OMIM, GAD and KEGG) have been retrieved. 

Not surprisingly, most of them are disease-related gene sets from either OMIM or GAD. 

Only 1 (i.e., “Colorectal cancer pathway”) out 45 is from KEGG. The top 10 search 

results are listed in Table 3-2. 

 

Table 3-2. Top 10 search results by querying colorectal cancer at the home page 

Gene-set Name # of Genes Data Source 

Colorectal cancer 433 GAD 

Colorectal cancer 134 KEGG 

Colorectal cancer 14 OMIM 

Colorectal cancer, somatic 12 OMIM 

Colorectal cancer, hereditary non-polyposis, type 8 7 OMIM 

Colorectal cancer, susceptibility to 7 OMIM 

Colorectal cancer, hereditary non-polyposis, type 6 6 OMIM 

Breast and colorectal cancer, susceptibility to  5 OMIM 

Colorectal Cancer 5 GAD 

 

Case study II: Searching disease-associated gene sets based on gene-set components 

Next, a user can search with the same term colorectal cancer on the advanced search 

page, which uses the disease’s gene profile to search for gene sets. PAGED first obtained 

203 colorectal cancer related genes from OMIM and GAD. Then, it used those genes to 

retrieve a total of 4,932 gene sets with at least 2 hits. Since we were more interested in 

gene sets other than disease terms, we excluded those gene sets from OMIM and GAD 

for further analysis. To rule out the possibility that those gene sets were hit randomly, we 

did a Fisher’s exact test to calculate the p-value between those 203 genes and every 

retrieved gene set. Finally, we obtained 3,879 gene sets with a p-value <0.05 and hits ≥2. 
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These gene sets are from all data sources, including MSigDB, GeneSigDB, miRecords, 

and all pathway data sources from HPD. Both the number of gene sets and their variety 

support the conclusion that advanced disease search based on gene profiles are more 

comprehensive than a simple disease search. For other disease query, a similar procedure 

will be followed to calculate the p-value and the number of hits on the fly. 

 

Table 3-3 shows the top results ranked by decreasing number of hits from each data 

source. Protein Lounge suggests “Molecular Mechanisms of Cancer,” “Akt Signaling,” 

and other important pathways in colorectal cancer; BioCarta suggests “wnt signaling 

pathway”; and NCI Nature curated suggests “Canonical Wnt signaling pathway.” These 

are all very important pathways in colorectal cancer development (84). Similarly, 

“Colorectal cancer” and “p53 signaling pathway” from KEGG, 

“SIGNAL_TRANSDUCTION” and “KEGG_PATHWAYS_IN_CANCER” from 

MSigDB, and cancer-related signatures/microRNA from GeneSigDB/miRecords reveal a 

comprehensive picture of the important gene sets involved in colorectal cancer. Thus, the 

results of the advanced search yield more insights about colorectal cancer mechanisms 

than those of the simple search. 

 

Table 3-3. Top search results of colorectal cancer advanced search  

Gene-set Name Hits P value FDR Data Source 

Molecular Mechanisms of Cancer  38 2.48E-17 7.04E-10 Protein Lounge 

PI3K Signaling  33 2.01E-13 7.04E-10 Protein Lounge 

Akt Signaling 27 9.6E-13 7.04E-10 Protein Lounge 

ERK Signaling 24 1.53E-10 7.04E-10 Protein Lounge 

GSK3 Signaling 23 1.32E-13 7.04E-10 Protein Lounge 

inactivation of gsk3 by akt causes accumulation of 

b-catenin in alveolar macrophages 9 3.7E-11 7.04E-10 BioCarta 

atm signaling pathway 8 6.28E-11 7.04E-10 BioCarta 

wnt signaling pathway 7 7.7E-09 7.04E-10 BioCarta 

cell cycle: g2/m checkpoint 7 2.14E-08 7.04E-10 BioCarta 

cell cycle: g1/s check point 7 2.14E-08 7.04E-10 BioCarta 

Canonical Wnt signaling pathway 8 9.24E-10 7.04E-10 NCI-Nature  

Presenilin action in Notch and Wnt signaling 8 3.16E-08 7.04E-10 NCI-Nature 

Plasma membrane estrogen receptor signaling 7 1.41E-08 7.04E-10 NCI-Nature  

FOXM1 transcription factor network 7 2.48E-07 7.04E-10 NCI-Nature  

LPA receptor mediated events 7 1.45E-06 7.04E-10 NCI-Nature  

Metabolism of xenobiotics by cytochrome P450 20 3.3E-25 7.04E-10 KEGG 



35 

 

Drug metabolism - cytochrome P450 17 4.96E-21 7.04E-10 KEGG 

Bladder cancer 15 3.29E-18 7.04E-10 KEGG 

Cytokine-cytokine receptor interaction 15 1.39E-06 7.04E-10 KEGG 

Colorectal cancer 14 4.43E-14 7.04E-10 KEGG 

p53 signaling pathway 14 4.92E-14 7.04E-10 KEGG 

Prostate cancer 14 1.66E-12 7.04E-10 KEGG 

Xenobiotics 5 3.32E-08 7.04E-10 Reactome 

Formation of incision complex in GG-NER 5 5.75E-06 7.04E-10 Reactome 

Global Genomic NER (GG-NER) 5 5.75E-06 7.04E-10 Reactome 

Dual incision reaction in GG-NER 5 5.75E-06 7.04E-10 Reactome 

Exocytosis of Alpha granule 5 0.000217 1.95E-08 Reactome 

SIGNAL_TRANSDUCTION 55 8.36E-28 7.04E-10 MsigDB 

BIOPOLYMER_METABOLIC_PROCESS 49 4.16E-22 7.04E-10 MsigDB 

KEGG_PATHWAYS_IN_CANCER 43 9.9E-46 7.04E-10 MsigDB 

NUCLEOBASENUCLEOSIDENUCLEOTIDE_A

ND_NUCLEIC_ACID_METABOLIC_PROCESS 41 2.16E-20 7.04E-10 MsigDB 

NUCLEUS 41 1.8E-18 7.04E-10 MsigDB 

Immune_Kong10_5640genes_ImmPort_Comprehe

nsiveListofImmune-RelatedGenes 114 3.61E-49 7.04E-10 GeneSigDB 

Lymphoma_Melendez05_4229genes 81 1.57E-39 7.04E-10 GeneSigDB 

Breast_Farmer05_3198genes_basal_apocrine_lumi

nal 66 1.08E-21 7.04E-10 GeneSigDB 

Ovarian_Crijns09_2394Genes_17PathwayPredicto

r 57 7.94E-30 7.04E-10 GeneSigDB 

StemCell_Nilsson07_3742genes 45 4.86E-07 7.04E-10 GeneSigDB 

hsa-miR-19a 3 1.49E-05 8.43E-09 miRecords 

[hsa-miR-21] 3 0.000116 8.43E-09 miRecords 

hsa-miR-204 3 0.000164 1.95E-08 miRecords 

hsa-miR-21 3 0.000953 2.72E-07 miRecords 

hsa-miR-125b 3 0.003089 2.72E-07 miRecords 

 

Case study III: Searching gene sets similar to user-defined query gene sets 

To use the gene-based search from PAGED, we first analyzed a colorectal cancer 

microarray dataset GSE8671 with BioConductor to identify the differential genes. We 

selected the top 100 genes ranked by the absolute fold change with p-values less than 

0.05. After querying PAGED with those 100 genes, we obtained 1,707 gene sets, out of 

which 1,152 also satisfied Fisher’s exact test of a p-value less than 0.05. Those gene sets 

span from all the data sources except BioCarta and miRecords. Table 4 lists the top 

results ranked by the number of hits. Most of them are cancer-related gene sets. 

Specifically, “SABATES_COLORECTAL_ADENOMA_DN” and 

“SABATES_COLORECTAL_ADENOMA_UP” from MSigDB and 
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“Intestine_Vecchi07_1024genes” and “Colon_Kim04_235genes” from GeneSigDB 

supports the importance of those 100 query genes to colorectal cancer. This case study 

also shows the complementary nature of MSigDB and GeneSigDB and thus the benefit of 

integrating them, which has also been proved by (85) 

 

Case study IV: Building disease-specific gene-set association networks (GSANs) based 

on gene-set similarities 

With the unique top 50 gene sets related to colorectal cancer from disease search and 

gene search (Table 3-3 and Table 3-4), we next investigated the gene-set associations 

between them; 863 associations were found by overlapping the gene symbols between 

each pair of gene sets, out of which 642 also satisfied Fisher’s exact test of a p-value and 

 

 

Figure 3-4. CRC-specific gene-set association network (GSAN) on the top gene 

sets from colorectal cancer study.  

Node size: Gene-set scale (Counting genes in each gene set); Node color: Gene-set 

data source; Edge width: Similarity score (≥ 0.1). All gene sets are highly connected to 

each other, suggesting their collaborative functions in colorectal cancer. 
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FDR less than 0.05. A network visualization using Cytoscape (86) is shown in Figure 3-4. 

Most of those gene sets are connected to one another, and a few share a large number of 

genes, suggesting that they form a collaborative unit in colorectal cancer. 

 

Table 3-4. Top search results of gene-based search from colorectal microarray 

datasets 

Gene-set Name Hits P value FDR Data Source 

SABATES_COLORECTAL_ADENOMA_DN 58 4.57E-96 2.76E-10 MsigDB 

Breast_Farmer05_3198genes_basal_apocrine_lumi

nal 35 2.91E-13 2.76E-10 GeneSigDB 

SABATES_COLORECTAL_ADENOMA_UP 34 1.62E-57 2.76E-10 MsigDB 

Immune_Kong10_5640genes_ImmPort_Comprehe

nsiveListofImmune-RelatedGenes 34 3.56E-08 2.76E-10 GeneSigDB 

Leukemia_Pellegrini08_2692genes 32 1.28E-15 2.76E-10 GeneSigDB 

Intestine_Vecchi07_1024genes 28 3.91E-23 2.76E-10 GeneSigDB 

Viral_Buonomo11_5307genes 25 6.45E-05 0.000109 GeneSigDB 

SMID_BREAST_CANCER_LUMINAL_B_DN 23 4.16E-19 2.76E-10 MsigDB 

Lymphoma_Melendez05_4229genes 22 2.03E-06 2.76E-10 GeneSigDB 

Colon_Kim04_235genes 21 5.18E-30 2.76E-10 GeneSigDB 

Breast_Parker09_1918genes_IntrinsicGenes_Com

pilation 21 1.18E-08 2.76E-10 GeneSigDB 

  

Case study V: Prioritizing disease-associated gene sets by using differential gene-set 

expressions 

First, the differential gene expression value (ABS_FC) for each gene in a gene set is 

calculated from the differential analysis based on the microarray data GSE8671. Second, 

the differential gene-set expression value (NORM_ABS_FC) for each gene set in the 

CRC-specific GSAN is calculated by using Equation (2). Third, a CRC-specific GSAN 

with differential gene-set expressions is shown in Figure 3-5, in which node size 

represents gene-set scale (Counting genes in each gene set); node color represents 

differential gene-set expression (NORM_ABS_FC); node line color represents the gene-

set data source; and edge width represents the similarity score. By considering 

differential gene-set expressions for each gene set, we prioritize top-selected gene sets as 

shown in Table 3-5. Most of top-ranked gene sets are closely related to colon tissue, 

colorectal cancer, or other cancers, which implies that the database can not only support 

comprehensive disease-associated gene-set searching and browsing, but also accurate, 
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disease-specific gene-set prioritizing by using the concept of differential expressions at 

the gene-set level. 

 

Table 3-5. Top 20 gene sets ranked by differential gene-set expressions in the CRC-

specific gene-set association network (GSAN) 
Gene-set name Scale Data 

Source 

NORM_ABS_FC 

Colon_Kim04_235genes 151 GeneSigDB 48.58225017 

SABATES_COLORECTAL_ADENOMA_DN 292 MsigDB 43.9233159 

SIGNAL_TRANSDUCTION 1598 MsigDB 32.5957784 

Leukemia_Pellegrini08_2692genes 2122 GeneSigDB 31.65148925 

SABATES_COLORECTAL_ADENOMA_UP 142 MsigDB 31.65000681 

Breast_Parker09_1918genes_IntrinsicGenes 

_Compilation 

1734 GeneSigDB 20.85621131 

Lymphoma_Melendez05_4229genes 2570 GeneSigDB 19.38449282 

Breast_Farmer05_3198genes_basal _apocrine 

_luminal 

3125 GeneSigDB 18.93820407 

SMID_BREAST_CANCER_LUMINAL_B_DN 648 MsigDB 18.13762096 

Intestine_Vecchi07_1024genes 796 GeneSigDB 16.68882931 

Ovarian_Crijns09_2394Genes 

_17PathwayPredictor 

1586 GeneSigDB 15.29529767 

hsa-miR-204 19 miRecords 14.37015815 

StemCell_Nilsson07_3742genes 3624 GeneSigDB 12.47045771 

Immune_Kong10_5640genes_ImmPort 

_ComprehensiveListofImmune-RelatedGenes 

4549 GeneSigDB 11.91186233 

cell cycle: g1/s check point 53 BioCarta 9.84279867 

Bladder cancer 89 KEGG 7.885181064 

Drug metabolism - cytochrome P450 94 KEGG 7.837851592 

Metabolism of xenobiotics by cytochrome P450 103 KEGG 7.837805455 

hsa-miR-21 34 miRecords 7.001844224 

KEGG_PATHWAYS_IN_CANCER 328 MsigDB 6.792625895 
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3.4 Conclusions  

We developed PAGED, an online database that provides the most comprehensive public 

compilation of gene sets. In the current release, PAGED contains a total of 25,242 gene 

sets, 61,413 genes, 20 organisms, and 1,275,560 records from five major categories: the 

pathway data from HPD, genome-level disease data from OMIM and GAD, 

transcriptome-level gene signatures from MSigDB and GeneSigDB, the post-

transcriptome microRNA data from miRecords, and proteome-level data from HAPPI. 

The number of overlapping genes between each data source, gene-set scale distribution, 

and case study in colorectal cancer shows the synergistic effect of integrating data 

 

Figure 3-5. CRC-specific gene-set association network (GSAN) with differential 

gene-set expressions.  

The differential gene expressions are from the differential analysis based on the 

microarray data, GSE8671. Node size: Gene-set scale (Counting genes in each gene 

set); Node color: Differential gene-set expression (NORM_ABS_FC); Node line 

color: Gene-set data source; and Edge width: Similarity score (≥ 0.1). 
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sources, which greatly facilitate access to gene-set-based prior knowledge. The current 

PAGED software can help users address a wide range of gene-set-related questions in 

human disease biology studies. 

 

In the future, one could improve gene-set similarity algorithms by using a global PPI 

network to calculate their distance. This would provide a more robust measurement for 

web interface development. A disease browsing function based on disease ontology and a 

network visualization function to show the gene-set association dynamically could also 

be added. The final goal is to perform multi-scale network modeling for molecular 

phenotype discoveries by integrating differential expressions with pathway and network 

topologies. The current release of PAGED provides a solid foundation for us to develop 

third-generation pathway analysis tools (27). 
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Chapter 4. Biomarker discovery with Network Expansion and Pathway 

Enrichment Analysis  

This section is based on the published work at (51). JYC guided the research team by 

providing ideas and feedback along the way, and revised the manuscript. HH analyzed 

the microarray dataset, generated the protein interaction network, ranked the disease 

proteins, and wrote the manuscript. XW conducted the pathway analysis and wrote the 

manuscript. TW and SDL helped analyze the result. RP helped maintain the database. CR 

helped curate the disease genes. 

4.1 Introduction 

Microarrays make possible the discovery of new functions and pathways of known genes, 

as they measure all the transcriptional activity in a biological sample (87). This high-

throughput procedure can be used in medical diagnostics, in biomarker discovery, and in 

investigating the ways a drug, disease, polymorphism or environmental condition affects 

gene expression and function (88, 89). However, one challenge has arisen because 

microarray technology generates a large amount of transcriptional data, which is hard to 

interpret for the results to gain insights into biological mechanisms (90). As a result, 

researchers have sought to analyze microarray data through the use of modern 

computational tools and statistical methods. 

 

In many cases, crucial genes show relatively slight changes, and many genes selected 

from differential analysis between groups of samples (e.g. normal vs. disease) by 

measuring the expression level statistically are also poorly annotated (88). From a 

biological perspective, functionally related genes often display a coordinated expression 

to accomplish their roles in the cell (91). Hence, to translate such lists of differentially 

expressed genes into a functional profile able to understand the underlying biological 

phenomena, one approach to aid interpretation is to look for changes in a group of genes  

with a common function (88). 

 

Gene set enrichment analysis (GSEA) is one of the most widely used methods for 

identifying both statistically and biologically significant genes from high-throughput data 

such as gene-expression assays (90). GSEA relies on pre-defined gene sets, while neglect 
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gene/protein interaction, pathway upstream or downstream information. Furthermore, 

GSEA still assumes that more differentially expressed genes are more crucial to the 

biology, which is not always true (65). Currently, gene expression signature analysis and 

pathway analysis remain two separate processes. 

 

From a view of network biology (92), cancer genes and proteins do not function in 

isolation; instead, they work in interconnected pathways and molecular networks at 

multiple levels (93), one study re-characterized them in a molecular interaction network 

for BRCA, and identified HMMR as a new susceptibility locus (94). Another study 

integrated protein interaction network and gene expression data to improve the prediction 

of BRCA metastasis (95). These works suggest that protein interaction networks and 

pathways, although noisy, incomplete and static, can serve as a molecular-level 

conceptual roadmap to guide future microarray analysis (7). 

 

In this work, we present an innovative approach - network expansion and pathway 

enrichment analysis (NEPEA) for integrative microarray analysis. We assume that 

organized knowledge will help microarray data analysis in significant ways, and the 

organized knowledge could be represented as molecular interaction networks or 

biological pathways. Based on this hypothesis, we develop the NEPEA framework based 

on network expansion (96) from the human annotated and predicted protein interaction 

(HAPPI) database (80), and pathway enrichment from the human pathway database 

(HPD) (28). 

 

We use a recently-published microarray dataset (GSE24215) related to insulin resistance 

and type 2 diabetes (T2D) as case study, since this study provided a thorough 

experimental validation for both genes and pathways identified computationally from 

classical microarray analysis and pathway analysis (97). In this study, skeletal muscle 

samples were collected in all participants (n = 20) in both the basal and insulin-stimulated 

state before and after bed rest. We perform the NEPEA analysis for this dataset based on 

the results from the classical microarray analysis to identify biologically significant genes 
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and pathways. Our findings are not only consistent with the original findings mostly, but 

also obtained more supports from other literatures. 

4.2 Methods 

The NEPEA method has three main components: 1) classical microarray analysis for data 

preprocessing consisting of quality control, normalization and differential analysis, 2) 

network expansion analysis for significant gene identification consisting of disease gene 

curation, network construction and significance score calculation, and 3) pathway 

enrichment analysis consisting of pathway search, pathway differential analysis and 

ranking. Using the microarray dataset - GSE24215 as an example, we introduce the 

detailed steps below: 

i. Microarray data preprocessing 

Quality Control 

We use AffyQCReport (applicable for Affymetrix platform) and ArrayQualityMetrics 

(applicable for Agilent platform) packages in Bioconductor to generate three plots to 

detect bad chips for each microarray dataset as: 1) examine a heat map that shows array-

array Spearman rank correlation coefficients. The map enabled us to plot outliers, failed 

hybridizations, and mis-tracked samples; 2) make a box plot of all perfect match 

intensities. The plot enabled us to detect outliers in terms of average intensity; and 3) 

make a distribution plot of kernel density estimates for perfect match intensities, which 

enables us to detect outliers in terms of shaped density. After applying 

ArrayQualityMetrics packages into quality control for microarray dataset - GSE24215, 

total 3 suspects out of 48 samples are flagged, which are kicked off as bad chips. 

 

Normalization 

We use Quantile normalization to normalize all the four qualified microarray datasets; 

MAS5 for Affymetric platform and normexp for Agilent platform on background 

correction. We also perform the steps background correction, normalization, probe 

specific correction, and summary value computation as following: 1) bgcorrect.method: 

mas; 2) normalize.method:quantiles; 3) pmcorrect.method:pmonly; and 4) 

summary.method:mas. 
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Differential analysis 

We use Limma (Linear Models for Microarray Data) package (98) in Bioconductor to 

identify differentially-expressed genes for each clinical group comparison from the 

qualified and normalized microarray datasets as 1) The package Limma uses an approach 

called linear models to analyze designed microarray experiments; 2) For statistical 

analysis and assessing deferential expression, Limma uses an empirical Bayes method for 

more stable inference and improved power, especially for experiments with small 

numbers of arrays; and 3) Differential genes are obtained by using the filters with p-

Value <= 0.05, Fold Change (FC) >= 1.3, and Average Expression Level (AEL) >= 40% 

after applying Limma package in Bioconductor. Average expression levels (AEL>=40%) 

have been checked to ensure the presences of the differential genes in the tissue - muscle. 

Duplicated genes with lower fold changes are eliminated, which implies that only the 

highest fold change for one gene will be kept. For microarray dataset - GSE24215, we get 

495 differential genes from insulin before-bed (IBB) group, and 930 differential genes 

from insulin after-bed (IAB) group 

ii. Network expansion analysis 

Disease gene curation 

The network expansion analysis is knowledge-guided approach, which relies on the 

disease-associated genes. Here we use T2D as an example to demonstrate how to curate 

disease-associated genes, but our method can be applied to any other disease phenotypes.  

We curate T2D-associated genes from OMIM (http://www.ncbi.nlm.nih.gov/omim) 

manually, evaluates them semi-automatically through searching in PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed/) as following: 1) Query: ("Type II Diabetes"[All 

Fields] OR "Type 2 Diabetes"[All Fields]) AND (prefix star[prop] OR prefix plus[prop]); 

2) Results: Records (Entries) -> Genes (Gene Symbol) -> Proteins (Uniprot ID); 3) 

GENE: Gene name, linked to GeneCards.org; 4) UNIPROT: Uniprot ID, linked to 

UniProt.org; 5) PUBMED: Count number of references where both term ("Type II 

Diabetes" OR "Type 2 Diabetes")  AND "GENE" appeared in PubMed, linked to 

PubMed; and 6) Obtain interactions from HAPPI 1.31 for these T2D-associated genes 

(seed genes) curated from OMIM. 

 

http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/pubmed/
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Network reconstruction 

We construct a T2D-specific protein-protein interaction (PPI) network by using Oracle 

SQL Developer with high-quality interaction data in HAPPI version 1.31 and map 

differentially-expressed genes onto the T2D-specific PPI network by using Cytoscape as 

following: 1) Expand 39 seed genes (PUBMED >=50) in HAPPI 1.31 (4-Star, h-

Score >=0.75), and obtain 702 genes (including 32 seed genes); 2) The left 7 seed genes 

are also added into the network in order to show their expressions; and 3) Construct a 

T2D-specific PPI network with 709 nodes and 944 edges, by using Nearest Neighbor 

Expansion (NNE) approach (96). 

 

Significant gene identification 

We measure and rank all the differential genes in a T2D-specific protein-protein 

interaction (PPI) network by considering both differential expressions and network 

properties.  Differential genes are obtained by applying filters with p-Value <= 0.05, 

Average Expression Level (AEL) >= 40%, and Absolute Fold Change (ABS_FC) >= 1.3. 

Duplicated genes with lower fold changes have been eliminated, which implies that only 

the highest fold change for one gene will be kept. The T2D-specific PPI network is 

reconstructed by expanding all the seed genes curated from OMIM (PUBMED >=0), in 

HAPPI_1.31 (3-Star) (Confidence: h-Score >=0.45) 

We define Gene Significance Score (integrating both gene expression fold change - FC 

and network connectivity - NC) here as: 

Sig_Score =         
    

             , |FC| = ABS_FC, absolute fold 

change. 

Constant parameters α1 and α2 here are for the balance between differential expressions 

and network properties. α1=3 and α2=1 are chosen since this pair can rank known disease 

genes on the top. Network connectivity (for un-weighted networks) NC: Weight_1 = 

Number of direct neighbors for each node. Network connectivity (for weighted networks) 

NC: Weight_2 = Sum of connection strength values on all neighbored edges. In the 

implementation, we use Weight_2 here. Connection strength here is the confidence for an 

interaction: h-Score. 
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iii. Pathway enrichment analysis 

Pathway search 

We search curated T2D-associated genes by using Oracle SQL Developer with 

comprehensive integrated pathway data in HPD version 2.1 (including pathway data from 

NCI-Nature curated, KEGG, BioCarta, and Protein Lounge), and map differentially-

expressed genes onto the pathways obtained. We obtain 92 pathways with 

(HITS/Pathway Scale) >= 3.5% AND HITS >=2 by querying 39 seed genes 

(PUBMED >=50) in HPD 2.1. 

 

Pathway differential analysis 

We provide average differential gene expressions in a pathway as: 

AVG_ABS_FC: The average of ABS_FC of all the available differential gene 

expressions in a pathway. 

We define pathway differential expressions here as: 

NORM_ABS_FC: The p*-norm of ABS_FC of all the available differential gene 

expressions in a pathway 

Usually, p-norm =       
   

   

 

           
      

For unification, we modify it as p*-norm =  
 

 
     

   
   

 

           
      

In the implementation, p = 6 have best performance to emphasize highly 

differential expressions in a pathway. 

We also provide maximal differential gene expressions in a pathway as: 

MAX_ABS_FC: The maximum value of ABS_FC of all the available differential 

gene expressions in a pathway; 

and count number of differentially expressed genes as: 

CNT_DIFF: Count number of differentially expressed genes (FC >= 1.3 AND p-

Value <= 0.05) in a pathway. 

We rank all the pathways by their pathway differential expressions - NORM_ABS_FC 

defined above. 
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4.3 Results 

i. Findings on insulin before-bed (IBB) group 

Top-20 differential genes 

Totally 495 differential genes are obtained, which are differentially-expressed in Insulin 

Before Bed (IBB) Group from the microarray dataset – GSE24215. Differential genes are 

obtained by using filters with p-Value <= 0.05, Fold Change (FC) >= 1.3, and Average 

Expression Level (AEL) >= 40% after applying Limma package in Bioconductor. 

Average expression levels (AEL>=40%) have been checked to ensure the presences of 

the differential genes in the tissue - muscle. Duplicated genes with lower fold changes are 

eliminated, which implies that only the highest fold change for one gene will be kept. 

Top-20 differential genes in IBB from GSE24215, ordered by absolute fold change 

(ABS_FC), are listed in Table 4-1. 

 

Table 4-1. Top-20 differential genes in IBB from GSE24215, ordered by FC 

(FC>=1.3, p-value <=0.05 and AEL >=40% after applying Limma package in 

Bioconductor). Note: Gene names are linked to GeneCards.org, UniProt IDs are linked to 

UniProt.org, and Evidences are linked to PubMed. 
Gene Symbol p-Value FDR Log2_FC ABS_FC Evidences 

SOCS3 
0.00193 0.08858 2.54455 5.83426 28 

PDK4 
0.00000 0.00074 -2.34193 5.06980 16 

THBD 
0.00001 0.00243 2.25714 4.78043 0  

CISH 
0.00013 0.01380 2.19425 4.57651 0  

G0S2 
0.00000 0.00003 2.05403 4.15264 0  

MYC 
0.00064 0.04234 1.97513 3.93164 23 

PDE4B 
0.00000 0.00042 1.82895 3.55280 0  

ADAMTS4 
0.00061 0.04111 1.76371 3.39569 1  

GADD45A 
0.00002 0.00373 1.76132 3.39008 0  

RGS16 
0.00217 0.09630 1.72508 3.30598 1  

EGR1  
0.01342 0.29638 1.71863 3.29125 3  

HES1  
0.00000 0.00012 1.71837 3.29065 1  

CCL2  
0.00019 0.01796 1.71466 3.28219 111 

KLF15 
0.00000 0.00000 -1.66849 3.17882 3  

PYCR1  
0.00000 0.00000 1.66356 3.16797 0  

CITED2 
0.00000 0.00000 -1.65106 3.14064 0  

OTUD1  
0.00006 0.00778 -1.56650 2.96186 0  

ARRDC4  
0.00000 0.00000 1.51143 2.85092 0  

NR1D1  
0.00000 0.00003 -1.50730 2.84277 1  

PIK3R1 
0.00000 0.00000 1.50274 2.83379 9  

http://www.genecards.org/cgi-bin/carddisp.pl?gene=SOCS3
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22SOCS3%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PDK4
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22PDK4%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=THBD
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22THBD%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=CISH
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22CISH%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=G0S2
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22G0S2%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=MYC
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22MYC%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PDE4B
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22PDE4B%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ADAMTS4
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22ADAMTS4%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=GADD45A
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22GADD45A%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=RGS16
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22RGS16%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=EGR1
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22EGR1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=HES1
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22HES1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=CCL2
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22CCL2%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=KLF15
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22KLF15%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PYCR1
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22PYCR1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=CITED2
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22CITED2%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=OTUD1
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22OTUD1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ARRDC4
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22ARRDC4%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=NR1D1
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22NR1D1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PIK3R1
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22PIK3R1%22
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Top-20 significant genes 

Totally 130 significant genes in IBB from GSE24215 are obtained from all the 

differential genes in a T2D-specific protein-protein interaction (PPI) network, measured 

by using significant score (considering both differential expressions and network 

properties). The T2D-specific PPI network is reconstructed by expanding all the seed 

genes curated from OMIM (PubMed >=0), in HAPPI_1.31 (3-Star) (Confidence: h-

Score >=0.45). Top-20 significant genes in IBB from GSE24215, ordered by significant 

score (Sig_Score), are listed in Table 4-2. 

 

Table 4-2. Top-20 significant genes in IBB from GSE24215, ordered by Sig_Score, 

which is measured in the T2D-specific PPI network  

(PubMed >=0, h-Score >=0.45) for all the differential genes (FC>=1.3, p-value <=0.05 

and AEL >=40% after applying Limma package in Bioconductor) in IBB from 

GSE24215. 
Gene  p-Value FDR FC ABS_FC Weight_1 Weight_2 Score Evidence 

CCL2  
0.00019 0.01796 1.71466 3.28219 98 75.2645 29.48048 111 

IL6 
0.00164 0.08069 0.96338 1.94987 140 112.808 27.07169 52 

AKT2 
0.00133 0.06955 -0.83609 1.7852 104 66.6378 23.32247 21 

IRS2  
0.00011 0.01276 -0.78851 1.72729 60 49.3156 21.4162 124 

VEGFA  
0.01432 0.30888 0.52022 1.43417 57 44.6818 19.40888 28 

PIK3R1 
0 0 1.50274 2.83379 13 11.8228 16.57294 9  

MYC 
0.00064 0.04234 1.97513 3.93164 10 8.8236 16.39929 23 

UCP3 0.00001 0.00147 -1.04039 2.05679 22 15.2626 16.25647 45 

SOCS3 0.00193 0.08858 2.54455 5.83426 7 6.3574 15.96385 28 

UCP2 0 0.00093 -0.80665 1.74915 22 15.7096 15.46493 78 

SCARB1 0.00115 0.06287 -0.38842 1.30896 30 19.9446 14.87011 11 

HSD11B1 0.01673 0.33975 -0.46192 1.37737 24 17.478 14.56683 20 

SORBS1 0 0 -1.13404 2.19472 13 10.08 14.34464 2 

KLF11 0 0.00001 -0.5958 1.51131 20 14.1964 14.11588 8 

AQP7 0.00023 0.02066 -0.71786 1.64474 9 7.305 11.35427 8 

RRAD 0.00018 0.01748 1.45449 2.7406 7 4.8134 11.31166 8 

LPIN1 0.00898 0.23354 -0.49106 1.40548 13 7.849 10.98119 9 

SMAD3 0.01644 0.33728 0.4402 1.35679 9 8.1113 10.96617 7 

ICAM1 0.00219 0.09689 0.74517 1.67617 8 6.539 10.91482 4 

TNFRSF1A 0.00039 0.02999 0.5936 1.509 8 6.6686 10.56144 0 

 

A T2D-significant protein-protein interaction (PPI) network (See Figure 4-1) is 

reconstructed by connecting Top-20 significant genes in IBB from GSE24215, with and 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=CCL2
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22CCL2%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=IL6
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22IL6%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=AKT2
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22AKT2%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=IRS2
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22IRS2%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=VEGFA
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22VEGFA%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PIK3R1
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22PIK3R1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=MYC
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22MYC%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=UCP3
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22UCP3%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SOCS3
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22SOCS3%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=UCP2
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22UCP2%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SCARB1
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22SCARB1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=HSD11B1
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22HSD11B1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SORBS1
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22SORBS1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=KLF11
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22KLF11%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=AQP7
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22AQP7%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=RRAD&search=RRAD
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%202%20Diabetes%22%20OR%20%22Type%20II%20Diabetes%22)%20AND%20%22RRAD%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=LPIN1&search=LPIN1
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%202%20Diabetes%22%20OR%20%22Type%20II%20Diabetes%22)%20AND%20%22LPIN1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SMAD3
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22SMAD3%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ICAM1
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22ICAM1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=TNFRSF1A
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22TNFRSF1A%22
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within the T2D-associated genes (seed genes) curated from OMIM (PubMed >= 50), in 

HAPPI_1.31 (3-Star) (Confidence: h-Score >=0.75) 

 
Figure 4-1. Top-20 significant genes in IBB from GSE24215, interacted with T2D-

associated genes.  

Node size represents Evidence for each gene, node color represents Log2_FC, red color 

implies over-expressed and blue color implies under-expressed. Green circled nodes are 

seed genes (T2D-associated genes curated from OMIM). Edge color represents 

Confidence (h-Score) for each interaction. Note: this figure was generated by Dr. Wu and 

used here with his permission. For details, please refer to (51).  

 

Top-20 significant pathways 

Totally 51 significant pathways (p*-norm >= 1.2) in IBB from GSE24215 are obtained 

from all the differential pathways, measured by using pathway differential expressions 

(p*-norm). Top-20 significant pathways in IBB from GSE24215, ordered by pathway 

differential expressions (p*-norm), are listed in Table 4-3. 

 

Table 4-3. Top-20 significant pathways in IBB from GSE24215 
They are ordered by pathway differential expressions (p*-norm), which is measured 

with all the available differential gene expressions in IBB from GSE24215. 
PATHWAY_NAME DB_SOURCE_ID NORM_ABS_FC MAX_ABS_FC 

IL-9 Pathway KEGG 2.56782 3.97011 

IL-10 Pathway KEGG 2.35238 3.97011 

IL23-mediated signaling events NCI-Nature Curated 2.29305 3.97011 

EPO signaling pathway NCI-Nature Curated 2.24041 3.97011 

Murine MSP-STK Signaling  KEGG 2.20505 3.28219 

IL6-mediated signaling events NCI-Nature Curated 2.19750 3.97011 

Type II diabetes mellitus KEGG 2.16107 3.97011 

Signaling events mediated by PTP1B NCI-Nature Curated 2.13761 3.97011 

growth hormone signaling pathway BioCarta 2.09285 3.31174 

IL-4 Pathway  KEGG 2.08410 3.97011 

Growth Hormone Signaling KEGG 2.06889 3.97011 

LDL Oxidation in Atherogenesis  KEGG 2.05923 3.28219 

IL4-mediated signaling events NCI-Nature Curated 2.02714 3.97011 
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Adipocytokine signaling pathway KEGG 1.97685 3.97011 

FoxO family signaling NCI-Nature Curated 1.97503 3.39008 

C. pneumoniae Infection in 

Atherosclerosis 

KEGG 1.89211 3.28219 

Calcineurin-regulated NFAT-dependent 

transcription in lymphocytes 

NCI-Nature Curated 1.87618 3.29125 

Jak-STAT signaling pathway KEGG 1.85834 3.97011 

MSP-RON Signaling  KEGG 1.84756 3.28219 

Insulin signaling pathway KEGG 1.80963 3.97011 

 

ii. Findings on insulin after-bed (IAB) group 

Top-20 differential genes 

Totally 930 differential genes are obtained, which are differentially-expressed After Bed 

(IAB) Group from the microarray dataset – GSE24215. Differential genes are obtained 

by using filters with p-Value <= 0.05, Fold Change (FC) >= 1.3, and Average Expression 

Level (AEL) >= 40% after applying Limma package in Bioconductor. Average 

expression levels (AEL>=40%) have been checked to ensure the presences of the 

differential genes in the tissue - muscle. Duplicated genes with lower fold changes are 

eliminated, which implies that only the highest fold change for one gene will be kept. 

Top-20 differential genes in IAB from GSE24215, ordered by absolute fold change 

(ABS_FC), are listed in Table 4-4. 

 

Table 4-4. Top-20 differential genes in IAB from GSE24215 

They are ordered by FC, (FC>=1.3, p-value <=0.05 and AEL >=40% after applying 

Limma package in Bioconductor). Note: Gene names are linked to GeneCards.org, 

UniProt IDs are linked to UniProt.org, and Evidences are linked to PubMed. 
Gene Symbol p-Value FDR Log2_FC ABS_FC Evidences 

NR4A3  
0.00000 0.00000 4.18431 18.18032 2  

SOCS3 
0.00005 0.00780 4.12982 17.50651 28 

GADD45B 
0.00054 0.03440 3.56927 11.87016 1  

THBD 
0.00000 0.00100 3.48248 11.17714 0  

ADAMTS4 
0.00019 0.01838 3.40269 10.57580 1  

PDE4B 
0.00000 0.00005 3.33522 10.09258 0  

FOS 
0.00031 0.02436 3.31416 9.94630 18 

EGR1  
0.00002 0.00362 3.11271 8.65008 3  

JUNB 
0.00004 0.00743 3.08829 8.50488 2  

RGS16 
0.00044 0.03038 2.96393 7.80246 1  

ZFP36  
0.00012 0.01425 2.92543 7.59700 2  

MYC 
0.00026 0.02179 2.86543 7.28754 23 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=NR4A3
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20%20AND%20%20%22NR4A3%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SOCS3
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22SOCS3%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=GADD45B
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22GADD45B%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=THBD
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22THBD%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ADAMTS4
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22ADAMTS4%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PDE4B
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22PDE4B%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=FOS
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22FOS%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=EGR1
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22EGR1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=JUNB
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22JUNB%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=RGS16
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22RGS16%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ZFP36
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22ZFP36%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=MYC
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22MYC%22
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CISH 
0.00000 0.00049 2.78449 6.88992 0  

CCL2  
0.00013 0.01462 2.59339 6.03513 111 

CXCL2  
0.00006 0.00858 2.35828 5.12758 2  

ATF3  
0.00202 0.07254 2.31257 4.96766 9  

SERPINA3  
0.00732 0.14867 2.16589 4.48742 0  

NFIL3  
0.00002 0.00434 2.15060 4.44013 0  

GADD45A 
0.00382 0.10196 2.14953 4.43682 0  

IL6 
2.0786 0.00044 0.03051 4.22398 52 

 

Top-20 significant genes 

Totally 237 significant genes in IAB from GSE24215 are obtained from all the 

differential genes in a T2D-specific protein-protein interaction (PPI) network, measured 

by using significant score (considering both differential expressions and network 

properties). The T2D-specific PPI network is reconstructed by expanding all the seed 

genes curated from OMIM (PubMed >=0), in HAPPI_1.31 (3-Star) (Confidence: h-

Score >=0.45). Top-20 significant genes in IAB from GSE24215, ordered by significant 

score (Sig_Score), are listed in Table 4-5. 

 

Table 4-5. Top-20 significant genes in IAB from GSE24215. 

They are ordered by Sig_Score, which is measured in the T2D-specific PPI network 

(PubMed >=0, h-Score >=0.45) for all the differential genes (FC>=1.3, p-value <=0.05 

and AEL >=40% after applying Limma package in Bioconductor) in IAB from 

GSE24215. Note: Gene names are linked to GeneCards.org, UniProt IDs are linked to 

UniProt.org, and Evidences are linked to PubMed. 
Gene  p-Value FDR Log2_FC ABS_FC Weight1 Weight2 Score Evidence 

CCL2  
0.00013 0.0146

2 

2.59339 6.03513 98 75.2645 34.9751 111 

IL6 
0.00044 0.0305

1 

2.0786 4.22398 140 112.808 34.68919 52 

IRS1  
0.00902 0.1649

4 

-0.68912 1.6123 103 83.1045 23.58864 280 

IL6R 
0.00002 0.0040

4 

0.79678 1.73722 70 55.9728 22.14359 7  

VEGFA  
0.00017 0.0172

4 

0.92831 1.90304 57 44.6818 21.6589 28 

APP 
0.03329 0.3145

8 

-0.43503 1.35194 80 68.3971 21.01141 15 

SOCS3 
0.00005 0.0078 4.12982 17.50651 7 6.3574 20.52815 28 

ADRB2 0.00016 0.0164 1.0105 2.01461 37 31.2254 20.09311 10 

FOXO1 0.00008 0.0105

6 

0.52622 1.44015 65 44.529 19.42493 59 

MYC 0.00026 0.0217

9 

2.86543 7.28754 10 8.8236 19.33394 23 

SOD2 0.00164 0.0647

8 

0.82246 1.76841 50 29.5486 18.85629 4 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=CISH
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22CISH%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=CCL2
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22CCL2%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=CXCL2
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22CXCL2%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ATF3
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22ATF3%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SERPINA3
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22SERPINA3%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=NFIL3
file:///E:/Wxg/MedeoLinx/2011-03/(3)%20Differential%20Analysis/(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22NFIL3%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=GADD45A
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22GADD45A%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=IL6
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22IL6%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=CCL2
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22CCL2%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=IL6
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22IL6%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=IRS1
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22IRS1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=IL6R
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22IL6R%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=VEGFA
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22VEGFA%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=APP
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22APP%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SOCS3
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22SOCS3%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=ADRB2
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22ADRB2%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=FOXO1
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22FOXO1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=MYC
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22MYC%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=SOD2
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%202%20Diabetes%22%20OR%20%22Type%20II%20Diabetes%22)%20AND%20%22SOD2%22
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DGKD 0.02661 0.2823

8 

0.5992 1.51487 42 34.932 18.59775 2 

FOS 0.00031 0.0243

6 

3.31416 9.9463 7 6.3552 18.17698 18 

PIK3R1 0 0.0000

8 

1.67218 3.18695 13 11.8228 17.1966 9 

XBP1 0.00338 0.0960

6 

0.40352 1.32273 42 26.9454 16.35234 9 

AGT 0.00295 0.0885

2 

0.59516 1.51064 24 18.032 15.28071 42 

UCP3 0.00163 0.0644

9 

-0.75312 1.68543 22 15.2626 15.10061 45 

UCP2 0.00186 0.0689

7 

-0.60181 1.51762 22 15.7096 14.63273 78 

PPARGC1

A 

0.00479 0.117 0.53018 1.44411 17 13.6 13.65437 111 

GFPT2 0.04473 0.3627

4 

0.54879 1.46286 14 12.2852 13.2432 2 

 

A T2D-significant protein-protein interaction (PPI) network (See Figure 4-2) is 

reconstructed a by connecting Top-20 significant genes in IAB from GSE24215, with and 

within the T2D-associated genes (seed genes) curated from OMIM (PubMed >= 50), in 

HAPPI_1.31 (3-Star) (Confidence: h-Score >=0.75) 

 
Figure 4-2. Top-20 significant genes in IAB from GSE24215, interacted with T2D-

associated genes.  

Node size represents Evidence for each gene, node color represents Log2_FC, red color 

implies over-expressed and blue color implies under-expressed. Green circled nodes are 

seed genes (T2D-associated genes curated from OMIM). Edge color represents 

Confidence (h-Score) for each interaction. 

 

Top-20 significant pathways 

Totally 64 significant pathways (p*-norm >= 1.2) in IAB from GSE24215 are obtained 

from all the differential pathways, measured by using pathway differential expressions 

(p*-norm). Top-20 significant pathways in IAB from GSE24215, ordered by pathway 

differential expressions (p*-norm), are listed in Table 4-6. 

 

http://www.genecards.org/cgi-bin/carddisp.pl?gene=DGKD
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%202%20Diabetes%22%20OR%20%22Type%20II%20Diabetes%22)%20AND%20%22DGKD%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=FOS
http://www.ncbi.nlm.nih.gov/pubmed?term=%28%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22%29%20AND%20%22FOS%22%29
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PIK3R1
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22PIK3R1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=XBP1
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%202%20Diabetes%22%20OR%20%22Type%20II%20Diabetes%22)%20AND%20%22XBP1%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=AGT
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%202%20Diabetes%22%20OR%20%22Type%20II%20Diabetes%22)%20AND%20%22AGT%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=UCP3
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22UCP3%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=UCP2
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%20II%20Diabetes%22%20OR%20%22Type%202%20Diabetes%22)%20AND%20%22UCP2%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PPARGC1A
http://www.genecards.org/cgi-bin/carddisp.pl?gene=PPARGC1A
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%202%20Diabetes%22%20OR%20%22Type%20II%20Diabetes%22)%20AND%20%22PPARGC1A%22
http://www.genecards.org/cgi-bin/carddisp.pl?gene=GFPT2
http://www.ncbi.nlm.nih.gov/pubmed?term=(%22Type%202%20Diabetes%22%20OR%20%22Type%20II%20Diabetes%22)%20AND%20%22GFPT2%22
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Table 4-6. Top-20 significant pathways in IAB from GSE24215. 

They are ordered by pathway differential expressions (p*-norm), which is measured with 

all the available differential gene expressions in IAB from GSE24215. 
PATHWAY_NAME DB_SOURCE_ID NORM_ABS_FC MAX_ABS_FC 

IL-9 Pathway KEGG 6.70137 10.92515 

IL-10 Pathway KEGG 6.43693 10.92515 

IL6-mediated signaling events NCI-Nature Curated 6.34297 10.92515 

EPO signaling pathway NCI-Nature Curated 6.13163 10.92515 

IL23-mediated signaling events NCI-Nature Curated 6.01717 10.92515 

igf-1 signaling pathway BioCarta 5.98831 9.94630 

Type II diabetes mellitus KEGG 5.90782 10.92515 

Signaling events mediated by PTP1B NCI-Nature Curated 5.83706 10.92515 

IL-4 Pathway  KEGG 5.71129 10.92515 

signal transduction through il1r BioCarta 5.68010 9.94630 

Growth Hormone Signaling KEGG 5.67342 10.92515 

Calcineurin-regulated NFAT-dependent 

transcription in lymphocytes 

NCI-Nature Curated 5.66004 9.94630 

IL4-mediated signaling events NCI-Nature Curated 5.53802 10.92515 

FOXM1 transcription factor network NCI-Nature Curated 5.44978 9.94630 

Adipocytokine signaling pathway KEGG 5.40776 10.92515 

GDNF-Family Ligands and Receptor 

Interactions 

KEGG 5.18210 9.94630 

HIF-1-alpha transcription factor network NCI-Nature Curated 4.99991 9.94630 

Regulation of nuclear SMAD2/3 signaling NCI-Nature Curated 4.91493 9.94630 

Insulin signaling pathway KEGG 4.89924 10.92515 

Jak-STAT signaling pathway KEGG 4.80603 10.92515 

 

4.4 Conclusions 

In this work, we apply both classical microarray analysis (such as differential analysis in 

Bioconductor) and the knowledge-guided analysis (network expansion analysis and 

pathway enrichment analysis). From the evidence from literature (PubMed), Top 20 

significant genes from our analysis have more supports than Top 20 differential genes 

from simple differential analysis, in the case study on the microarray dataset - GSE24215. 

This implies the vitality of our hypothesis on which organized knowledge will help 

microarray data analysis in significant ways. 

 

For GSE24215 dataset, both of the two networks (shown in Figure 1 and Figure 2) 

consist of two subnetworks. The bigger one includes genes that are highly related to 
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diabetic type 2.  Some of genes are shared between before bed network and after bed 

network, like insulin receptor, peroxisome proliferator-activated receptor gamma and so 

on. For those shared genes, their expressions are different between these two conditions. 

We can see from the figure that IRS1, PPARG are under-expressed in after bed condition 

while IRS2 are under-expressed in before bed condition. Beside those shared molecules, 

some only show in after bed condition, like PPARGC1A, IDE, IL6R, APP, and PTPN1 

while others only show in before bed condition, like CD36, SCARB1, SELP, ICAM1, 

TNFRSF1A, HSD11B1, and AKT2. The smaller one is relatively small sub-network. 

Commonly shared gene between before bed and after bed are HNF1A, HNF4A and MYC 

with similar expression level.  Some genes like TCF7L2 only show up in before bed 

network while GCK, GFPT2, FOXO1, and SIRT1 only show in after bed network. 

 

Another interesting finding is that the molecules which connect the red sub-network and 

blue-subnetwork are different. In before bed network, SMAD3 play this important role 

while in after bed network it is FOS that connect these two subnetworks. In fact, FOS and 

SMAD3 are physically interacting with each other and together Smad3 cooperates with c-

Jun/c-Fos to mediate TGF-beta-induced transcription. Finally though IGF1 doesn’t show 

up in the network, yet the IGF1 pathway is highly ranked (refer to pathway analysis part) 

in the after bed condition. 

 

The key finding on GSE24215 was that bed rest was associated with a paradoxically 

increased response to insulin of genes involved in acute-phase response and inflammation, 

including IL-6 signaling, IL-10 signaling, and the ER stress pathway, contrasting the 

development of severe peripheral insulin resistance of glucose metabolism in young 

healthy men. The present study demonstrated that 9 days of bed rest induces severe 

transcriptional changes of genes potentially involved in the pathogenesis of insulin 

resistance and T2D in skeletal muscle, which might to some extent explain the harmful 

effect of a sedentary lifestyle on human metabolism. Impaired expression of HK2, 

VEGFA, NDUFB6, PPARGC1A, and OXPHOS genes in general, as well as a markedly 

increased expression of RRAD, are among the prime candidates contributing to the 

development of insulin resistance during bed rest. 
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Our analysis on this microarray dataset also shows that Insulin-stimulation After Bed-rest 

(IAB) is associated with the same significant genes: VEGFA (Rank: 5), PPARGC1A 

(Rank: 19), HK2 (Rank: 23), and RRAD (Rank: 29). We also found IAB is associated the 

same/similar pathways: IL-10 Pathway (Rank: 2) from KEGG database, IL6-mediated 

signaling events (Rank: 3) from NCI-Nature Curated pathway database, igf-1 signaling 

pathway (Rank: 6)from BioCarta database, Type II diabetes mellitus (Rank: 7) from 

KEGG database, Growth Hormone Signaling (Rank: 11) from KEGG database, Insulin 

signaling pathway (Rank: 19) from KEGG database, Jak-STAT signaling pathway (Rank: 

20) from KEGG database, il 6 signaling pathway (Rank: 27) from BioCarta database, and 

role of erbb2 in signal transduction and oncology (Rank 31) from BioCarta database. 
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Chapter 5. Drug Repositioning using Literature Mining: Computational 

Connectivity Map 

This section is based on the published work at (52). JYC conceived this work, guided the 

research team by providing ideas and feedback along the way, and revised the manuscript. 

HH involved the drug efficacy evaluation hypothesis development, carried out annotation 

web page development, designed the case studies and wrote the manuscript. XW 

participated in the drug efficacy hypothesis initiation, directionality concept development, 

case studies and manuscript writing. RP updated the PubMed database and tables in the 

Apex application. JL developed the previous version of C2Maps and performed case 

studies about the web server in her paper. GZ helped with annotation web page 

development.SI performed the directionality curations for breast cancer and colorectal 

cancer.  

5.1 Introduction 

Screening millions of chemical compounds to identify “hit” compounds for specific 

disease gene/protein targets has been a mainstream paradigm for modern drug 

discovery(99). While the conventional “One disease, One gene, and One drug” paradigm 

(9)works effectively for simple genetic disorders, it fails to produce effective drugs for 

complex diseases such as cancer (10). In complex diseases, many genes may be 

contributing to the disease’s phenotype; therefore, identifying a “magic bullet” drug 

compound can be quite elusive. 

 

Polypharmacology, which focuses on multi-target drugs, has become a new paradigm in 

drug discovery. Polypharmacology drugs have conventionally been viewed to have 

undesirable ‘promiscuity’. However, recent research studies show, in the case of both 

older psychiatric drugs and modern anticancer therapies, that this promiscuity is intrinsic 

to the drug’s therapeutic efficacy(11). Although there are over 40 drug-target (protein-

compound interaction) databases according to Pathguide(100), (e.g. DrugBank(101), 

STITCH(102), CTT (103), CTD (104)and BindingDB(105), etal), a disease-specific 

searching platform is still needed to fully understand drug effects on the human body. 
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A new cancer systems biology approach to drug discovery has emerged in recent years. 

The primary focus of this paradigm is to understand the actions of drugs by considering 

targets in the context of the biological networks. By focusing on a systems level, it 

provides a better way to examine complicated diseases that can be caused by several gene 

mutations, such as cancer (106). However, most methods published so far focus on 

modeling the structure of the drug target network qualitatively (107). To examine a 

drug’s effect on a molecular network representative of the disease, more quantitative and 

accurate modeling techniques need to be developed by utilizing the concept of network 

pharmacology (106) or network medicine (13). 

 

In post-genome biology, molecular connectivity maps have been proposed to establish 

comprehensive knowledge links between molecules of interest in a given biological 

context (108).Molecular connectivity maps between drugs and genes/proteins in a 

disease-specific context can be particularly valuable because they allow researchers to 

evaluate drugs against each other using their unique gene/protein-drug association 

profiles. The functional approach to drug comparisons helps researchers gain global 

perspectives on both the toxicological profiles and therapeutic profiles of candidate drugs. 

Furthermore, the time it takes to develop high quality drugs in new therapeutic areas can 

also be reduced by using this method. 

 

One approach for developing molecular connectivity map data is to generate disease-

specific protein-drug association profiles computationally by mining bio molecular 

interaction networks and PubMed literature (24) . The Computational Connectivity Maps 

(C
2
Maps) web server (109) is an online bioinformatics resource that provides biologists 

with potential relationships between drugs and genes/proteins in specific disease contexts 

based on network mining and literature mining. It’s based on the concept of network 

pharmacology by examining many drugs at the same time and studying the drug disease 

relationship based on the underlying protein interaction network instead of drugs’ direct 

target. C
2
Maps provides quantitative measurements of protein’s and drug’s relevance to a 

specific disease by applying networking mining and the statistical testing methods in text 

mining and thus offers new insight to assess overall drug efficacy and toxicity. 
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Occurrences between proteins and drugs from literature mining of C
2
Maps don’t 

necessarily tell research what type of relationships they have, therapeutic or toxic. To 

overcome these limitations, we further standardize the classifications between proteins 

and drugs and then perform literature curations to determine drugs’ effect on proteins on 

higher resolutions. Such valuable information is not readily available from the existing 

drug-target (protein-compound interaction) databases (e.g. DrugBank, STITCH, CTT, et 

al.) they may be scattered within a description or referenced text. 

 

To assess drug pharmacological effect, such as drug efficacy and toxicity, we assume that 

“ideal” drugs for a patient diagnosed with a certain disease should modulate the gene 

expression profiles of this patient to the similar level with those in normal healthy people. 

Therefore, for those statistically over-expressed genes, drugs should be able to inhibit 

their expression level to the normal range. Similarly, for those statistically under-

expressed genes, drugs should be able to activate their expression level to the normal 

range. In this way, drugs can treat or prevent the disease through reversing the gene 

expression level from disease status to the normal range, thus modulating cellular 

function as in normal cells. 

 

By assuming that if the gene expression profiles of disease and drug are opposing, then 

the drug might be a potential treatment option of the disease, (108) identified novel drug 

indications in diet-induced obesity or Alzheimer's disease. Another work by Atul(17) 

utilized the same gene expression data and algorithms with large scale gene expression 

data from GEO to study associations between 100 diseases and 164 drug molecules. They 

found candidate therapeutics for 53 of the diseases. These studies are proof of principle 

that how using public genomics database and similar hypothesis can benefit drug 

discovery. Though gene expression data are publicly available for more than 1000 

compounds in the second release of (108), yet there are numerous compounds that are not 

part of the database. Another limitation of this overly simplified hypothesis lies in it 

doesn’t differentiate important genes from unimportant ones. Ideally a biological 

meaningful scoring methods needs developed.  
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Drugs effect data from literatures could be complementary here. In this work, we focus 

on building comprehensive disease-gene-drug connectivity relationships with drug-

protein directionality (inhibit/activate) information based on the C
2
Maps platform (109).  

To show the feasibility of applying the data for computational drug discovery, we took 

previous hypothesis a step forward by but assigning different weights to different genes. 

However this work aims to provide the data for the future network pharmacology 

research instead of developing a drug efficacy prediction method .This work has the 

following contributions: 

 

1) The C
2
Maps website itself has been not published before though (109) only provides 

the underlying computational methodology and relative low disease coverage such as 

Alzheimer’s Disease.   

2) We create an interactive interface for directionality annotation of drug-protein pairs 

with literature evidences from PubMed. 

3) We curate the directionality information of drug protein pairs for three disease 

phenotypes: breast cancer, colorectal cancer and Alzheimer disease from 5133, 4869 and 

3928 PubMed abstracts, respectively. We also upload these curated directionality 

information into the C
2
Maps, and perform a statistical analysis on them. Curation of 

additional diseases, like pancreatic cancer and autism, is still on-going.  

4) We enhance the functionality of disease-specific searching for relevant proteins and 

drugs with directionality information. 

5) We update the comprehensive disease-gene-drug connectivity data in the C
2
Maps 

databases, including 19,569,563 PubMed abstracts in the current version and 142,523 

unique 3 star protein interactions in the current version. 

6) We also use breast cancer as a case study to demonstrate the functionality of disease-

specific searching for relevant drug-protein pairs with directionality information. 

7) Based on the searching result, we show the feasibility of performing drug 

pharmacological effect evaluation for two important breast cancer drugs to show the 

power of updated C
2
Maps in drug efficacy and toxicity assessment. 
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5.2 Methods 

i. Data sources and systems design 

As shown in Figure 5-1, the C
2
Maps platform incorporates three major components in its 

systems design: 

 Network mining component takes a query disease term as the input, and generates 

a ranked list of disease-relevant proteins as the output, through 1) MeSH term 

matching, 2) disease-associated gene searching from OMIM (110),3) network 

expanding in HAPPI (80), and 4) network-based protein ranking; 

 Text mining component takes an input list of genes or proteins, and creates a list 

of enriched disease candidate drugs that are significantly associated with the 

disease-relevant proteins from the previous component as the output, through 1) 

gene/protein name mapping using UniProtKB, 2) article abstract retrieving from 

PubMed, 3) drug/chemical compound identification using MeSH term, and 4) 

disease-specific drug-protein pair ranking; 

 Drug effect annotating component can allow users to 1) retrieve disease-specific 

drug-protein association list, 2) curate drug-protein directionality information 

from PubMed abstract, 3) annotate these drug-protein directionality information 

interactively, and 4) browse disease-specific drug-protein directionality 

information online. 

 

In specific, we apply the network mining method originally developed by Chen et al.(60) 

to fish cancer relevant proteins from the protein interaction network. We expand cancer 

related genes/proteins using PPIs recorded in the Human Annotated and Predicted Protein 

Interactions (HAPPI) database to construct cancer-specific PPI sub-network. A protein’s 

cancer relevance score rp is calculated as the function (1).  

)),(ln()),(ln(    qpNgpconfkr NETqNETqp       (1) 

Here, p and q are indices for proteins in the cancer-related interaction network PPI, k is 

an empirical constant (k=2 in this study), conf(p, q) is the confidence score assigned to 

each interaction between protein p and q, and N(p, q) holds the value of 1 if the protein p 

interacts with q. 
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Figure 5-1. C2Map workflow for a given disease-specific study. 
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To retrieve the important drugs for cancers and to parse out drug terms in the articles, we 

acquire PubMed abstracts with the list of cancer-related genes/proteins derived earlier 

from PPI as queries. Drug term frequency is calculated and compared to term statistical 

distributions from the PubMed abstracts to get the p-value of drugs using function (2). 

Random
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NETj
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(2) 

 

Here, ={ , , …}is generated by sampling the entire collection of retrieved 

abstracts . =| | is the size of each sample. ={ , …}refers to a random 

sample generated by randomly sampling the entire number of PubMed abstracts; the size 

of the random sample is . and refer to average document 

frequencies of in  and . and  refer to document frequency 

variances of  in  and in . A two-sided tails t-test was then performed to calculate 

the p-value. A thorough description of the computational components and algorithms 

used, along with data sets and data processing parameters, is described in detail by Li et 

al. (109). 

 

The C
2
Maps platform follows a multi-tier architecture design. The back end was 

implemented as PL/SQL packages in the Oracle 11g database server, with the Oracle 

Text engine enabled, to ensure scalable querying of PubMed text documents. The 

C
2
Maps application middleware was implemented in the Oracle Application Express 

(APEX) server, which bridged between the Apache web server and the Oracle database 

server. 

 

The current release of C
2
Maps uses the following data sets: 19,569,563 records in the 

PubMed/MEDLINE baseline database (111), 142,523 human protein-protein interactions 

above 3-star confidence ratings in the HAPPI database(80), 26,142 descriptors in the  

MeSH database (Category C for diseases and Category D for chemicals and drugs) (112), 

20,331 entries for the curated human proteins in the UniProtKB database (113), 18,344 

entities in the OMIM database (61), and 4,772 entities in the DrugBank. Current statistics 

for the included database records is also shown in Table 5-1. The top 500 drug-protein 

NETT  1NETT  2NETT 

NETT  NETN NETT  RandomT 
1RandomT  2RandomT 

RandomN )|( NETj Tddf  )|( Randomj Tddf 

jd
NETT  RandomT  )|( NETj TdVar  )|( Randomj TdVar 

jd NETT 
RandomT 
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pairs for ‘Alzheimer disease’, ‘Breast cancer’ and ‘Colorectal cancer’ from C
2
Maps were 

manually curated by assigning the effects of drugs on proteins as defined in the next 

section. As a result, C
2
Maps platform contains 3928, 5133 and 4869 curated records for 

Alzheimer disease, Breast cancer and colorectal cancer respectively. All data is 

warehoused in a local Oracle 11g database.  

 

Table 5-1. Current statistics for the included database records 

Dataset Data Resource Record count 

Biomedical Literature PubMed 19,569,563 

Human Protein-Protein 

Interaction 
Unique HAPPI 3-star interactions 142,523 

Disease and Drug Terminology MeSH descriptors 26,142 

Human Protein UniProtKB 20,331 

Disease-Gene relationships OMIM 18,344 

Drug Information DrugBank 4,772 

 

ii. Drug effect annotation 

Since our hypothesis is that ideal drugs for a patient diagnosed with a certain disease 

should modulate the gene expression profile of this patient to the similar level with those 

in healthy people, we annotate a drug’s pharmacological effect on a protein using one of 

the following three categories (also illustrated in Figure 5-2):  

 

Figure 5-2  Illustration of drug pharmacological effects based on directionality 

information for drug-protein pairs 
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 Therapeutic: if the drug activates the under-expressed protein or inhibits the over-

expressed protein, we define that the drug has a therapeutic effect on that protein 

 Toxic: if the drug activates the over-expressed protein or inhibits the under-

expressed protein, we define that the drug has a toxic effect on that protein 

 Ambiguous: if there is missing directionality information for either the nodes (i.e. 

proteins/drugs) or edges. 

iii. Perturbation Effects of Drugs on Proteins/Genes 

We use breast cancer as an example to illustrate how we curate the directionality of a 

drug-protein pair retrieved from the C
2
Maps platform. The followings are four categories 

of an annotated drug-protein relationship pair (also, refer to Table 5-2): 

 Activation - “Subsequent injection of tamoxifen triggers the transient activation of 

Akt/PKB in mice.” (Tamoxifen and AKT1_HUMAN, PMID: 12640620). 

 Inhibition - “Treatment of cells with Cycloheximide (CHX) prevented the 

activation of p53 in all phases of the cell cycle and its accumulation in G1/S and 

S.” (P53_HUMAN and Cycloheximide, PMID:9484835). 

 Indirect Yes - “Hydroxyurea-mediated DNA synthesis arrest of S phase MCF7 

cells led to a loss of BRCA1 from these structures.” (BRCA1_HUMAN and 

Hydroxyurea, PMID:9267023). 

 Ambiguous - “GRalpha and GRbeta transcripts are coordinately upregulated in 

CEM-C7 cells and coordinately downregulated in IM-9 cells by dexamethasone.” 

(GCR_HUMAN and Dexamtheasone, PMID:12974663). 

 

Table 5-2. Curation of drug-protein relations from Pub-Med abstracts 

Relation Protein Drug PMID Relation Proof 

Up-Regulated BRCA1 Estradiol 7553629 

“BRCA1 mRNA and protein levels were 

significantly decreased in estrogen-depleted 

MCF-7 and BT20T cells and increased again 

after stimulation with beta-estradiol”. 

 

Down-

Regulated 
P53 Cycloheximide 9484835 

“Treatment of cells with cycloheximide 

(CHX) prevented the activation of p53 in all 

phases of the cell cycle and its accumulation 

in G1/S and S”. 

 

Indirect BRCA1 Hydroxyurea 9267023 

“Hydroxyurea-mediated DNA synthesis 

arrest of S phase MCF7 cells led to a loss of 

BRCA1 from these structures”. 

 

Ambiguous GCR Dexamethasone 12974633 “GRalpha and GRbeta transcripts are 

http://www.ncbi.nlm.nih.gov/pubmed?term=7553629
http://www.ncbi.nlm.nih.gov/pubmed?term=9484835
http://www.ncbi.nlm.nih.gov/pubmed?term=9267023
http://www.ncbi.nlm.nih.gov/pubmed?term=12974633
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coordinately upregulatedin CEM-C7 cells 

and coordinately downregulated in IM-9 cells 

by dexamethasone”. 

 

Unknown AKT1 Phosphothreonine 11087733 
The drug-protein relation is not mentioned in 

the text. 

 

We can see that the literature does contain such information and thus provides basis for 

the directionality information retrieval. We focus on curating drug actions in the disease 

context rather than only in cell lines like in (108). Different research works under specific 

contexts may produce conflicting conclusions regarding drug protein relationship. Take 

Tamoxifen and estrogen receptor as examples. As shown in Table 5-3, we successfully 

extracted 7 article abstracts which support the inhibitory effects of Tamoxifen on 

estrogen receptor and 2 PubMed abstracts which support the stimulatory effects of 

Tamoxifen on estrogen receptor. The pre-dominant evidence showing Tamoxifen’s 

inhibition on estrogen receptor (114) matches well with the fact that Tamoxifen acts as an 

antagonist for estrogen receptor. Beside checking the majority vote of all the related 

papers, the original references was also checked. For Tamoxifen, it inhibits estrogen 

receptor in the mammary tissue while activating estrogen receptor in bone density.  In the 

breast cancer case study, we decided Tamoxifen’s inhibiting effect on estrogen receptor 

since the gene expression experiment was based on breast tissue. In the future, one could 

add additional contexts such as experimental conditions, disease subtypes and so on. In 

the current version, they are not added due to limited availability of those data in 

abstracts. 

 

Table 5-3. PubMed evidence for Tamoxifen’s effect on ESR1 
Drug Protein PMID Direction 

Tamoxifen ESR1_HUMAN 14507640 -1 

Tamoxifen ESR1_HUMAN 2359140 -1 

Tamoxifen ESR1_HUMAN 14759988 -1 

Tamoxifen ESR1_HUMAN 11774281 -1 

Tamoxifen ESR1_HUMAN 2137212 -1 

Tamoxifen ESR1_HUMAN 9328205 -1 

Tamoxifen ESR1_HUMAN 11261829 -1 

Tamoxifen ESR1_HUMAN 12767276 1 

Tamoxifen ESR1_HUMAN 11812086 1 

1 represents that the drug up regulates the protein while -1 represents down regulation 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=11087733
http://www.ncbi.nlm.nih.gov/pubmed?term=14507640
http://www.ncbi.nlm.nih.gov/pubmed?term=2359140
http://www.ncbi.nlm.nih.gov/pubmed?term=14759988
http://www.ncbi.nlm.nih.gov/pubmed?term=11774281
http://www.ncbi.nlm.nih.gov/pubmed?term=2137212
http://www.ncbi.nlm.nih.gov/pubmed?term=9328205
http://www.ncbi.nlm.nih.gov/pubmed?term=11261829
http://www.ncbi.nlm.nih.gov/pubmed?term=12767276
http://www.ncbi.nlm.nih.gov/pubmed?term=11812086
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iv. Data access and website usage 

The C
2
Maps online platform (http://bio.informatics.iupui.edu/cmaps) provides 

researchers a web-based bioinformatics user interface, following principles described in 

(115). As shown in Figure 5-3, users can begin with a single disease term as a query and 

navigate to extract significant subsets of the disease-specific C
2
Maps.  
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Figure 5-3. The navigational site map of the C2Map platform. 

The numbers refer to: 0. Configure search preference; 1. Input interest disease; 2. 

Generate Protein-Drug connectivity; 3. Refine initially constructed connectivity map; 

4. Link to protein page; 5. Link to drug page; 6. Link between protein and drug 

pages; 7. Link to evidence article pages; 8. Link to external data resources (MeSH, 

UniProt and PubMed); 9. Import enriched disease specific protein-drug associations 

for further annotation; 10; Authorized users (curators) set up profiles and login in; 11. 

Annotate effects of drugs on protein/genes; 12. Release annotation results; 13. 

Browse annotated disease-protein-drug connectivity relationships; 14. Filter or search 

for interested subset of connectivity relationships.  

 

http://bio.informatics.iupui.edu/cmaps
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We also show snapshots of C
2
Maps output web pages in Figure 5-4, using “Breast 

Cancer” as a query example. The statistically significant relationships between proteins 

and drugs are extracted from the literature are displayed in tabular format (Figure 5-4).  

 

Figure 5-4. Web Interface for C2Maps basic query function. 

(a) C2Maps default home page with a query box; (b) Preference configuration page 

with editable parameters in network mining component and text mining component; 

(c) Disease-specific protein-drug connectivity map page shows disease-relevant 

proteins, their ranking score, and drugs, their p-value, their relative frequency, as well 

as evidences supporting the protein-drug associations; (d) Filter result page shows the 

subset of the connectivity map; (e) Protein detail page shows the disease-related 

protein, its partner proteins in interaction network, and related drugs in retrieved 

abstracts; (f) Drug detail page shows the disease-related drugs, its neighbor drugs in 

Medical Subject Heading Tree, and related proteins in disease-specific protein 

interaction network; (g) Article detail page shows the literature references in PubMed 

with protein entity and drug entity highlighted. The url is 

http://bio.informatics.iupui.edu/cmaps 

http://bio.informatics.iupui.edu/cmaps
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The proteins, drugs, and evidence numbers are further linked to protein, drug, and the 

article detail page, respectively. The search results can also be sorted by the protein 

ranking score (R-Score) and Chemical/Drug significance (P-Value). In addition, the page 

also lists Disease Context (disease name of user interest) and Disease Terminology 

(disease name containing query term in the controlled vocabulary of Medical Subject 

Headings). Users can also specify advanced search criteria for further 

biological/pharmacological analysis. Annotations for the extracted relations could be 

performed from the ‘Annotate Data’ tab. 
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v. Browsing Disease-specific drug-protein relationship information  

Any public C
2
Maps database user can access the well curated drug-protein directionality 

data. The database will display disease, protein, drug directionality, and PudMed 

evidence for each record. Each column can be sorted or filtered. One can also display 

only drug-protein directionality belonging to certain disease by selecting it from the drop 

down list (Figure 5-5b). Furthermore, the user can also search the keywords, such as 

 

Figure 5-5. Web Interface for C2Map Annotation data browse.  

(a) Annotation Data: main search page allowing either public browse or authorized 

curation; (b) Annotation Data Browse: displaying curated directionality between drug 

and proteins for certain disease; (c) Filtering: Each column support filtering (e.g., 

only show ‘Down regulated’ directionality); (d). Search function:  search by either 

drug or protein. For example, search all records for ESR1 protein. The url is 

http://bio.informatics.iupui.edu/cmaps 

 

http://bio.informatics.iupui.edu/cmaps
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protein name or drug name, to retrieve only specific records. Currently, the C
2
Maps 

platform contains 3928 curated records for Alzheimer disease, 5133 curated records for 

breast cancer, and 4869 curated records for colorectal cancer. More curation information 

will be updated regularly. 

vi. Interactive interface for directionality annotation 

An authorized C
2
Maps database user can also annotate selected C

2
Maps contents by 

performing manual curation from the ‘Annotate Data’ tab. The user may apply for an 

annotator’s account to edit protein-drug interactions suggested by the C
2
Maps automated 

recommendation system. This editing is provided through a separate user interface that 

enables the annotator to categorize protein-drug relationships as direct (including 

activation, inhibitory, ambiguous), indirect, or unknown (Figure 5-6f). The user will first 

select the assigned disease and the C
2
Maps webserver will populate disease relevant 

protein and drug pairs. All the PudMed abstracts mentioning both the relevant protein and 

drug will be pulled out and the curator can read the abstract to annotate the directionality 

between the drug and the protein. The user can also edit (Figure 5-6d) each record or 

delete it. 
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Figure 5-6. Web Interface for C2Map Annotation data curation. 

(a) Annotation Data: main search page allowing either public browse or authorized 

curation; (b) Curator login: require login to curate directionality for certain disease; 

(c) User sign up: application form to create an account as a curator; (d) Data Browse:  

the browse page after login; (e) Data Edit: update or delete previously curated 

records; (f) Data Entry:  1. select disease; 2. relevant protein based on 1; 3. relevant 

drug based on 2; 4. relevant PubMed ID based on both 2 and 3; 5. relevant abstract 

based on PubMed ID from 4; 6. Curate directionality based on 5. 
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5.3 Results 

i. Statistical analysis for reliability 

The major computational components of the C
2
Maps platform were developed using 

validated computational techniques. In the network mining component, protein 

interaction network expansion was able to reduce the initial biases and low data coverage, 

which may have existed in the seed list of protein. We used the new HAPPI database 

instead of other protein interaction databases because of its overall better data quality 

(comparable or better than data in the HPRD database for quality star grades of 3 and 

above) and coverage (more than 280,000 human protein interactions with star grades of 3 

and above), which was thoroughly described in Chen et al.(80). In the text mining 

component, the PubMed abstract retrieval for each protein was shown to improve 

Information Retrieval (IR) recall performance without sacrificing precision The quality of 

disease drug identifications was shown to outperform comparable systems with balanced 

sensitivity, specificity, and positive predictive values (for details, refer to Li et al. (109)).  

 

In Table 5-4, we show a summary of C
2
Maps platform performance, by comparing its 

overall sensitivity, specificity, PPV (positive predictive value), F-score, and ACC 

(accuracy) measures among a number of cancers. The result confirmed that C
2
Maps 

performed well consistently across different disease studies. 

 

Table 5-4.  Performance assessment of C2Maps in varying cancers. 

 
Bladder Breast Leukemia Lung Lymphoma Melanoma Ovary Pancreas Prostate 

Sensitivity 80.84% 79.80% 83.16% 78.44% 81.20% 77.39% 80.88% 84.99% 82.84% 

Specificity 87.11% 84.91% 86.11% 89.37% 87.60% 91.53% 84.34% 86.45% 88.38% 

ACC 86.70% 84.27% 85.63% 87.86% 86.78% 90.17% 84.09% 86.34% 87.93% 

PPV 30.51% 43.01% 53.39% 54.06% 48.92% 49.24% 28.84% 33.82% 38.88% 

F-Score 44.30% 55.89% 65.03% 64.01% 61.05% 60.19% 42.52% 48.38% 52.92% 

The experiment were performed using a protein interaction confidence minimum threshold of 3 

star and above (i.e., reliability score of >0.75) and retrieved drug p-value at a minimum threshold 

of 0.05. The detailed evaluation procedures and measurement definitions, they can be found in 

the “Method FAQ” page of the C
2
Maps website and as supplemental materials. The table was 

developed by Jiao Li and was used here by her permission (52).  
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ii. A case study on breast cancer specific searching for relevant drug-protein pairs 

with directionality information 

We evaluated breast cancer drugs from C
2
Maps based on our hypothesis. First, we 

obtained top 500 drug protein pairs for breast cancer from the C
2
Maps web server, 23 

drugs and 103 proteins, respectively. The rp scores for those proteins range from 1.69 to 

169.82 and the P-Values for those drugs are all below 0.05. Well known breast cancer 

related proteins, like BRCA1, or related drugs, like tamoxifen, were included in these 500 

pairs. All supporting evidence for each drug protein relations, a total of 5,225 PubMed 

abstracts, was manually curated to extract the relevant drug effect information. Out of 

those 500 pairs, 155 pairs contained information of how the drug affects the protein in the 

literature, totaling 19 drugs and 52 proteins. After performing manual curation, 79 drug 

protein pairs contained only up-regulation information, 57 only down-regulation 

information, 11 primarily up-regulation information, and 8 primarily down-regulation 

information. The distribution of directionality categories for breast cancer is shown in 

Figure 5-7a. A subnetwork based on the directionality information specific for Tamoxifen 

can be constructed from C
2
Maps directionality data (shown in Figure 5-7b). Another 

subnetwork based on the directionality information specific for Plicamycin is also shown 

in Figure 5-7e. 

iii. A case study on drug efficacy evaluation with C
2
Maps 

Drug efficacy can be measured by the ability of a drug to produce the desired phenotypic 

effect or molecular effect. To evaluate the drug efficacy in the molecular level based on 

our hypothesis illustrated in Figure 5-2, we need know how drugs can affect the 

expression of it interacting genes and how those genes expressed in disease conditions. 

We have got the former from the above case study of C
2
Maps. To get the latter, we did 

the differential analysis of a well-studied microarray dataset-GSE3191(116). This 

experiment contains breast cancer subtype luminal A, basal-like and also normal breast 

tissues. We obtained the differential genes for both breast cancer subtypes - luminal A 

and basal-like when compared to normal. We identified 579 differential genes between 

luminal A and normal, 773 differential genes between basal like and normal. We used 

these two sets for the following case study. 
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iv. Tamoxifen efficacy and toxicity assessment for the luminal A subtype 

Tamoxifen is a standard drug clinically used for breast cancer and has 15 interacting 

proteins with directionality annotations from C
2
Maps (shown in Table 5-5). We 

intersected differential genes from luminal A microarray experiment with Tamoxifen’s 

interacting partners from C
2
Maps. Four proteins out of 15 are differentially expressed 

between luminal A and normal, including ESR1. In Figure 5-7c, drugs are represented as 

hexagons and proteins as circles. The size of a protein node is proportional to the rp score, 

an indication of importance of this protein to breast cancer. Red nodes stand for over-

expressed proteins in breast cancer while green ones represent under-expressed proteins. 

For edges between drugs and proteins, red symbolizes that the drug activates the protein 

while green symbolizes inhibition. From the Figure, Tamoxifen has 3 therapeutic effects: 

it inhibits over-expressed ESR1, activates under-expressed JUN and activates MYC. 

Tamoxifen also has one toxic effect, activating over-expressed ERBB2, which might help 

explain certain side effects when using Tamoxifen. Considering that ESR1 is more 

significant for breast cancer compared with the other three proteins, overall, Tamoxifen 

has more of a therapeutic value in Luminal A patients by reversing the gene expression of 

important disease proteins in the network level (Figure 7c). 

Table 5-5.Tamoxifen relevant proteins and their directionality 

Drug Protein RpScore Association Direction 

Tamoxifen AKT1_HUMAN 82.99 1.77 1 

Tamoxifen BRCA2_HUMAN 21.14 3.29 1 

Tamoxifen CADH1_HUMAN 17.57 0.95 1 

Tamoxifen CDK2_HUMAN 2.94 2.12 1 

Tamoxifen E2F1_HUMAN 2.95 1.59 1 

Tamoxifen ERBB2_HUMAN 2.07 3.19 1 

Tamoxifen ESR1_HUMAN 72.39 5.11 -1 

Tamoxifen IRS1_HUMAN 2.51 1.29 -1 

Tamoxifen JUN_HUMAN 2.91 1.51 1 

Tamoxifen MYC_HUMAN 3.49 2.5 1 

Tamoxifen NCOA3_HUMAN 2.61 3.01 -1 

Tamoxifen NCOR1_HUMAN 2.81 4.05 1 

Tamoxifen P53_HUMAN 169.82 0.8 -1 

Tamoxifen P85A_HUMAN 2.92 1.57 1 

Tamoxifen PTEN_HUMAN 3.98 0.98 1 

Plicamycin MYC_HUMAN 3.49 4.16 -1 

Plicamycin SP1_HUMAN 3.32 6.24 -1 
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1 represents that the drug up regulates the protein while -1 represents down regulation. The 

association score was calculated based on the co-occurrence between the drug and protein. For 

details, please refer to (109). 

 

v. Tamoxifen efficacy and toxicity assessment for the basal-like subtype 

In Figure 5-7d, we portray the drug protein interaction for Tamoxifen in basal patients. 

Three proteins out of its 15 interacting proteins are differentially expressed between basal 

patients and normal. Tamoxifen has only 1 therapeutic effect by activating under-

expressed JUN, while 2 toxic effects by activating over-expressed E2F1 and inhibiting 

under-expressed IRS1. However, all these three proteins are relatively not important for 

breast cancer. This implies a neutral role overall when using Tamoxifen in basal patients 

since it is not able to reverse its interacting proteins in basal condition (Figure 5-7d). This 

agrees well with the clinical fact that basal or triple negative breast cancer patients fail to 

benefit from Tamoxifen treatment. 

vi. Plicamycinefficacy and toxicity assessment for the luminal A subtype  

Plicamycin was an approved antineoplastic antibiotic for a variety of advanced forms of 

cancer. It has been withdrawn from market in 2000. In Figure 5-7f, we showed the drug 

protein interaction for Plicamycin in Luminal A patients. It has 2 interacting proteins with 

directionality annotations (shown in Table 5-5) and both are not significant in breast 

cancer with a low rp score. Only 1 protein out of these 2 is differentially expressed 

between luminal A and normal. Plicamycin has a toxic effect overall by inhibiting under-

expressed MYC. This implied a neutral or toxic effect when using Plicamycin in Luminal 

A subtype breast cancer patients since it is not able to reverse its interacting proteins in 

the disease condition (Figure 5-7f). This may help explain why it was withdrawn in 2000. 
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Figure 5-7.Breast cancer case study for drug pharmacological effectevaluation 

with C2Maps.  
(a) Distribution of directionality categories for breast cancer; (b) A drug-target 

subnetwork with directionality information specific for Tamoxifen; (c) Drug effect 

evaluation for Tamoxifenon breast cancer subtype – luminal A; (d) Drug effect 

evaluation for Tamoxifenon breast cancer subtype – basal-like; (e) A drug-target 

subnetworkwith the directionality information specific for Plicamycin; (f) Drug effect 

evaluation for Plicamycinon breast cancer subtype – luminal A. 
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5.4 Conclusions 

In this study, we present an upgraded C
2
Maps platform to evaluate drug pharmacological 

effects based on the hypothesis that an ideal drug can reverse the gene expression level in 

a disease back to those in normal conditions. This online platform will enable users to 

query high-coverage protein-drug connectivity maps in real time. It enables users to 

research up-to-date knowledge of connectivity maps for a specific disease, explore 

therapeutic protein targets, design repurposed drug compounds, and assess toxicological 

impacts of drug compounds on disease-relevant genes/proteins. Three efficacy case 

studies prove the feasibility to apply the literature mined drug directionality data from 

C
2
Maps for drug efficacy study. It will be a major resource to biomedical researchers 

interested in developing disease-specific therapeutic and diagnostic applications based on 

progresses in network biology and network pharmacology. 

 

From the case study on breast cancer drug effect evaluation, we can see that there is still 

room for improvement, although the two breast cancer drugs get well-evaluated. The 

information for judging whether a drug have global therapeutic effects on other diseases 

is limited due to the manual curation procedure, while these information are very 

valuable for drug repurposing. In the current version of C
2
Maps, drug-protein pairs are 

mainly come from literature mining based on disease-gene searching and network mining, 

which can be supplemented by plenty of publicly-available drug target databases. One 

could continue to update C
2
Maps and improve its usability through achieving the 

following functionalities. 

1) One could increase the functionality of drug-orientated searching for relevant 

disease phenotypes and proteins in the C
2
Maps. It will allow users to input drug 

names, not just disease names. It should be able to retrieve all the disease names 

and genes/proteins related to this drug. This function will be very useful for drug 

repurposing. 

2) One could increase the functionality of disease-orientated browsing for relevant 

proteins and drugs in the C
2
Maps by using disease phenotype trees. It will allow 

users to browse the database by clicking the disease name. The current version 
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only supports the disease-specific searching function without any browsing 

function. 

3) One could also enhance the functionality of interactive directionality information 

annotation for drug-protein pairs in the C
2
Maps by using natural language 

processing (NLP) techniques. The literature curations for breast cancer, colorectal 

cancer and Alzheimer disease took three experts nearly one year’s effort to 

complete. While it ensure the data quality, it’s time consuming. With those golden 

standard dataset from curation, one could use NLP techniques to allow users to 

curate and annotate directionality information from PubMed abstracts more easily 

and semi-automatically. 

 

  



79 

 

Chapter 6. Drug Repositioning using Drug directionality Map (DMAP) 

 

This section is based on my work at (53). JYC guided the research team by providing 

ideas and feedback along the way, and revised the manuscript. HH constructed the 

DMAP, performed drug repositioning with K-S algorithms and drug similarity network 

approach, and wrote the manuscript.  

6.1 Introduction 

Repositioning of drugs (17, 22, 40) already approved for human use could alleviate the 

cost (41) associated with early stages and offer a shorter path for new approval(43). 

Current computational methods for drug repositioning include: (i) studying the structural 

similarity of each drug to their targets’ ligand set using chemoinformatic tools (45) or 

drug–drug and disease–disease similarity with machine learning methods(22), (ii) 

exploiting side-effect similarities (46), (iii) applying text-mining literature(23), or  (iv) 

matching drug and disease gene expression profiles (15, 17, 40, 47, 48).  Most of the 

approaches can only be applied to well characterized drugs whose targets or structures 

are known. Expression profile based approaches are, on the other hand, more general and 

do not require prior knowledge of the drugs.  

 

Although the Connectivity Map (CMAP) approaches are gaining popularity for 

expression profile based drug repositioning, the limitation of these approaches is due to 

the coverage of the dataset. Lamb et al.(15) developed a public available database called 

CMAP containing a collection of transcriptional expression data from cell lines treated 

with small molecules. Iorio et al.(40) proposed drug repositioning by constructing drug-

drug similarity networks from CMAP. Hu and Agarwal(47) and Sirota et al.(17) paired 

drugs and diseases whose gene expression patterns are negatively correlated. They further 

showed that the anti-correlation relationships between the drugs and diseases can suggest 

novel therapeutics for existing drugs. Despite of the success, the main limitation of 

studies based on CMAP (15) lie in the fact that it is simply impossible to screen all the 

drugs in the database due to experimental cost.  
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Critical to the success of the expression profile based drug repositioning is the resource 

for how drug affects the disease proteins. In this work we developed a computational 

Drug directionality Map (DMAP) database which contains ranked drugs’ effects (i.e. 

activation or inhibition) on their interacting proteins (Figure 6-1). The database offers a 

better coverage consisting of directed drug-protein relationships for 328,676 drugs. To 

check its quality for drug repositioning, we applied the following two representative 

CMAP based drug-repositioning methods in literatures: (i) we calculated pairwise drug 

similarity (40) based on the DMAP for drug repositioning, (ii) we implemented the 

Kolmogorov–Smirnov algorithms (15, 17) based on the dataset from DMAP. We not 

only successfully recalled known drugs for breast cancer, colorectal cancer, lung cancer, 

diabetes, etc. but we were also able to propose novel indications for drugs in 

NCATS(117).  

 

Figure 6-1. Computational framework.  

 

6.2 Methods 

i. Construct the DMAP data set   

DMAP contains drug protein/gene directionality information in a compatible format with 

CMAP. The main data sources for DMAP are STITCH(32) and HAPPI (80). STITCH is 

an aggregated Cheminformatics database of interactions connecting over 300,000 

chemicals and 2.6 million proteins. We first parsed out chemical protein interactions for 

Homo sapiens with those edge actions being activation or inhibition. Next we did a 
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probabilistic weighted average summary of all the evidence to come up with the overall 

action for each specific chemical-protein relationship.  

 

To rank each relationship, we used HAPPI (80), an integrated protein interaction database 

including HPRD, BIND, MINT, STRING, and OPHID to assign a weight for each drug’s 

interacting proteins (60). Finally, we developed an intuitive pharmacology score, or P-

Score, to combine the probability for each interaction and the weight of the interacting 

protein: 

P-Score(d,p)=conf(d,p)×weight(p)                                                                                   (1)    

Here, d and p are specific drugs and proteins, respectively. conf(d,p) measures probability 

of each drug-protein relationship with a positive sign to indicate activation and a negative 

sign to indicate inhibition. It is thus within a range of [-1,1]. weight(p) is the 

measurement of the importance of the protein in the pathway as shown in the function (2)                                                                                              

                                                                 (2)  

Here, p and q are proteins on the pathway, k is an empirical constant (k=2 in this study), 

conf(p, q) is the confidence score assigned by HAPPI to each interaction between protein 

p and q, and N(p, q) holds the value of 1 if the protein p interacts with q. 

 

P-Score contains both the information of each drug’s action on their interacting proteins 

and the importance of their proteins in the biological network. This is different than the 

expression level based ranking in CMAP, which may be more suitable for biomarker 

discovery instead of drug discovery. With P-Score for each drug-protein relationship, 

DMAP is thus in a compatible format with CMAP (15). 

 

Compared to STITCH alone, DMAP differed in that i) it left out ‘spurious’ drug protein 

relationships by requiring the interacting protein to have biological significance as 

measured by the protein interactions in HAPPI; ii) it assigned P-Score to the drug protein 

relationship with Equation (1), different from the pure probabilistic score in STITCH 

database.  

)),(ln()),(ln()(    qpNgpconfkpWeight NETqNETq



82 

 

ii. Integrate drug therapeutic indication data 

For repositioning existing drugs for other uses, we need have the approved indications for 

each drug. Thus we integrated the Therapeutic Target Database (TTD) (118) and the 

dataset from the PREDICT (22) paper to come up with a list of known drug indications. 

TTD is a database that provides information about drugs’ known therapeutic protein 

targets and their targeted diseases. The PREDICT (22) paper provides a compiled list of 

drug indications. We integrated these two sources to get 2,912 drug indication 

associations corresponding to 1,180 drugs and 726 indications. 

iii. Prepare disease expression signatures and drug expression signatures   

The expression based drug repositioning need the disease gene expression as inputs. We 

retrieved the disease gene expression profiles from Pacini C et al. (119)’s paper. In total, 

87 disease associated microarray experiments were compiled to represent 45 distinct 

diseases. According to Pacini C’s paper, these datasets were obtained from the GEO 

microarray repository (120). The raw CEL files were normalized with RMA(121). For 

those gene expression profiles representing the same disease, they were combined with 

the median rank normalization by Warnat et al.(122). 

 

The drug gene expression datasets were obtained from Iorio et al.(40)’s paper instead of 

directly from CMAP (15) to reduce the batch effect. Iorio et al.(40) computed a single 

synthetic ranked list of genes, called Prototype Ranked List (PRL), by merging all the 

ranked list of the same compound in CMAP. Only consistently 

overexpressed/underexpressed genes are placed at the top/bottom of the RPL. This helped 

capture a consensus transcriptional response for each drug. We thus chose to use the PRL 

to represent the drug signatures from CMAP in this study. 

iv. Design drug similarity measurement  

To measure the similarity among each drug pair, we computed SIM(dx,dy) based on the 

Tanimoto Coefficient between their interacting proteins (3) 

SIM(dx,dy)=
                   

   ∪   
                                                                                        (3)  

Here, dx  and dy  represent the two specific drugs.     represents the set of interacting 

proteins for dx.    represents the set of interacting proteins for dy.    ∪     is the number 
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of total distinct proteins in   and   .           is the number of overlapped proteins 

on which both drugs have consistent effects (i.e. both activate or inhibit the shared 

proteins).           is the number of overlapped proteins on which the drug pair have 

in-consistent effects (i.e. one activates while the other inhibits the shared proteins). 

SIM(dx,dy) lies in the range of [-1,1] with 1 representing that the two drugs share the same 

interacting proteins and drugs’ action on each protein is the same while -1 representing 

that the two drugs share the same proteins but drugs’ action on each protein is opposite.  

v. Implement Kolmogorov–Smirnov strategy  

We implemented the nonparametric, rank-based strategy based on the algorithm 

originally introduced by Lamb et al.(15) to generate a ranked list of candidate drugs for 

each disease. For each disease signature, we computed an enrichment score separately for 

the up- or down- regulated genes: esup and esdown. In specific, we constructed a vector V 

of the position of each of the up- or down- regulated genes on the basis of the values from 

the reference drug dataset. The vector was then sorted in ascending order such that V(j) is 

the position of disease gene j. The computation of the enrichment score is based on 

Kolmogorov–Smirnov statistic and the details can be referred to in the supplementary 

material in Lamb et al. (15). The drug score is set to zero, where esup and esdown have the 

same algebraic sign. Otherwise, we set the drug score to esup-esdown. We hypothesized 

that those drugs with a statistically significant negative score might be a possible 

treatment for the disease of interest. 

vi. Perform literature validation  

To check whether the predicted drug-disease pairs have clinical literature evidence, we 

used the esearch API provided by NCBI. The query term we used is ‘drug name AND 

disease name AND (Clinical Trial[ptyp] OR Clinical Trial, Phase I[ptyp] OR Clinical 

Trial, Phase II[ptyp] OR Clinical Trial, Phase III[ptyp] OR Clinical Trial, Phase 

IV[ptyp])’. The total number of clinical type PubMed articles for each association was 

recorded. 

6.3 Results 

i. Drug directionality Map (DMAP) Construction 

We constructed a probabilistic-based Drug directionality Map (DMAP). It records the 

directionality (i.e. activation/inhibition) between chemicals and their interacting proteins 
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and the strength of such directed relationships. To generate a ranking for each 

relationship, we developed an intuitive pharmacology score by combining the probability 

of a drug’s action (i.e. activation/inhibition) and the significance of each interacting 

protein. This ranking system renders DMAP in a format essentially compatible with gene 

expression profiles in CMAP. Therefore, DMAP serves as a valuable alternative for 

researchers interested in CMAP based studies. 

 

DMAP contains 9,486,081 ranked chemical protein interactions for 328,676 chemicals. It 

significantly increases the chemical coverage by over 200-fold (Table 6-1) compared to 

the 1,309 chemicals covered in the second release of CMAP (15). A Venn diagram shows 

the number of shared chemicals between DMAP, CMAP and drugs with known 

indications which we compiled from the TTD database(118) and literature (22) (Figure 6-

2). CMAP contains 394 drugs with known indications. Among these, 380 drugs can also 

be captured by DMAP and thus only 14 drugs are uniquely covered by CMAP. On the 

other hand, 982 drugs in DMAP have known indications. Among these, 602 drugs are 

uniquely covered by DMAP. Thus, we argue that DMAP provides a valuable resource for 

repositioning existing drug for new uses. To demonstrate this, in the following section we 

applied two representative drug-repositioning methods with DMAP dataset and proved its 

utility for computational drug repositioning.    
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Table 6-1.Statistics summary of DMAP 
Performance indicator CMAP (build 02) DMAP Version 1.0 (Oct 

2013) 

Count of drugs  1,309 328,676 

Count of drugs with known 

indications 

394 982 

Count of drug protein 

relationship 

15,472,380 9,486,081 

Count of up regulations 7,710,741 4,458,335 

Count of down regulations 7,763,186 5,027,746 

 

ii. DMAP’s utility for drug repositioning  

To check DMAP’s utility for drug repositioning, we applied the following two known 

drug-repositioning methods in literatures: (i) drug similarity approach, (ii) Kolmogorov–

Smirnov algorithms. The former approach was nearest neighbor based approach: if two 

drugs were similar, the disease indication for one drug could be potentially assigned to 

the other drug. The latter approach was a hypothesis driven approach. It assumed that the 

ideal drug could reverse the gene expression in the disease condition back to that in the 

healthy condition. This approach had more structural assumption imbedded and thus was 

 

 

Figure 6-2.The Venn diagram of drugs from DMAP drug signatures, CMAP 

drug signatures and drugs with Indication 
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different from the similarity based approach. These two approaches were the two 

mainstream drug repositioning approaches. 

a) Drug similarity network approach based on DMAP  

 

We first checked the quality of DMAP by applying them for drug repositioning with the 

drug similarity network approaches developed by Iorio et al.(40). We computed 481,671 

pairwise drug similarities for the 982 drugs with known indications by calculating the 

Tanimoto Coefficient between their interacting proteins profiles. 

 

 

 

Figure 6-3. A schematic representation of the GBA method.  
Given two drugs x and y and their corresponding indication profiles Ix and Iy, 

respectively, the potential novel uses for drug x is Iy,x. Similarly, potential novel 

drug uses for drug y is Ix,y. 
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To assess the prediction performance, we implemented the ‘Guilt by Association’ (GBA) 

concepts (Figure 6-3.) presented by Chiang et al.(126) and conducted “Leave-One-Out” 

cross-validation. For each drug, we removed its known indications and attempted to 

recover them by considering the indications for its top N similar drugs found. We 

calculated overall sensitivity and specificity by varying N—the number of similar 

drugs—from 1 to 981. The area under the ROC curve (AUC) score was used to measure 

the performance. 

The Overall AUC for the prediction based on DMAP achieved 0.82. Most importantly, 

early retrieval performed well, with a partial AUC of 0.72 for specificity of 90% or 

above(127). Since one could only test the limited number of drugs in experimental setting, 

the good performace in high specificity region, approximately corresdponing to the top 

 

Figure 6-4. ROC curves for the prediction performance based on DMAP (blue 

line), STITCH (yellow line) and CMAP (red line).  

Blue shade area provides a partial ROC area corresponding to specificity 90% above.  
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ten candidates of all the predictions, would make the proposed drug repositioning more 

mearningful in practice. 

 

In comparison, 1) we performed similar analysis based on CMAP transcriptome data and 

the overall AUC was 0.64. The early retrival performance was only 0.55; 2) we 

performed the analysis directly using the STITCH data and we got an overall AUC of 

0.70. The early retrival performance was only 0.65. Figure 6-4 showed that the ROC 

curve based on DMAP was above the curve from STITCH which was in turn above the 

curve of CMAP.  

 

To rule out the possibility that the performance difference was purely due to the drug 

coverage difference between DMAP and CMAP, we conducted the ROC analysis with 

only the shared drugs  between DMAP and CMAP. The DMAP achieved an AUC of 0.81 

while CMAP only achieved an AUC of 0.64 (Figure 6-5). 

 

Out of all the possible drug pairs, we identified 3,014 significant pairs by requiring the 

number of overlapped proteins no less than two and the drug similarity score at the top 

5% of the distribution. The resulting drug network (Figure 6-6A) showed a scale free 

property (Figure 6-6B), commonly observed in a biological network. Most of the drugs 

are well connected and formed communities. In fact, 451 drug pairs out of these 3,014 

significant pairs have shared at least one known disease indication. For the remaining 

2,563 pairs without overlapping indications, the novel drug disease associations from 

1,206 drug pairs were supported by at least one clinical type PubMed article. Table 6-2 

list the top 20 drug-disease pairs and could be a good starting point for further 

experimental validations.  
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Figure 6-5. The ROC curves for DMAP and CMAP using the overlapped drugs.  

 

Table 6-2.Top 20 novel drug repositionings and the number of clinical type 

publication support 

Drug Disease PubMed(Clinical) 

Rocuronium Pain 126 

Clemastine Allergies 80 

Mometasone Asthma 78 

Nicotinamide Alzheimer Disease 45 

Sotalol Hypertension 42 

Sertraline Alzheimer Disease 40 

Ifosfamide Leukemia, Acute Myeloid 40 

Gabapentin Anxiety disorder 33 

Vinorelbine Prostate Cancer 32 

Lumiracoxib Pain 28 

Hydrocodone Anesthetic 25 

Zileuton Inflammatory diseases 20 

Irbesartan Cardiovascular disease 17 
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Moclobemide Parkinson Disease 13 

Fluvoxamine Alzheimer Disease 10 

Ranolazine Dysrhythmias 6 

Trihexyphenidyl Depression 5 

Nicotinamide Breast Cancer 5 

Methylphenidate Obesity 5 

Pemetrexed Colon cancers 1 
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Figure 6-6. (A) Drug similarity network based on DMAP. (B) Power-law degree 

distribution of the network.  
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b) Kolmogorov–Smirnov approach based on DMAP 

We next applied DMAP with the nonparametric Kolmogorov–Smirnov strategy based on 

the methodology originally developed by Lamb et al.(15).  We followed (15) and (17) to  

use the recall of known drug indication relationship as the performance measurement for 

better benchmarking with previous works. We compiled the gene expression profiles for 

45 distinct diseases and then queried them against DMAP and CMAP, respectively, to 

generate a ranked list of potential treatments for each of the diseases of interest. We 

calculated a similarity score for every drug-disease pair. If the similarity score is negative, 

the drug overall causes a reverse set of changes in the gene expression compared to that 

in disease condition. We hypothesized that this drug could potentially have therapeutic 

effects for that particular disease. To evaluate the statistical significance of the similarity 

score, we applied a permutation approach by randomly selecting any drug signatures and 

re-calculated the similarity score accordingly. We did the permutation 200 times for each 

drug-disease pair and computed the p-value by checking the actual similarity score with 

the score distribution after randomization. 

 

We examined results for diseases that are the leading causes of death in the US (128). For 

breast cancer, we successfully retrieved Anastrozole, Capecitabine, Doxorubicin, 

Estradiol, Megestrol, Paclitaxel, Testosterone and Testolactone as possible therapeutic 

drugs for breast cancer. When the CMAP dataset was utilized, only Paclitaxel was 

retrieved as a potential therapeutic drug. For lung cancer, we retrieved Cisplatin and 

Etoposide by using the DMAP. However, when CMAP was used, we were not able to 

retrieve any drugs for lung cancer. Table 6-3 also contains the results for other diseases. 

To have statistical significance, we required the p-value less than 0.05 in Table 6-4. 

CMAP did relatively better in the case for Alzheimer's disease and Leukemia. For these 

known relationships covered in CMAP but not DMAP, or vice-versa, some were due to 

having borderline p-value while others were due to violating our hypothesis of negative 

correlation. Overall, DMAP and CMAP database were complimentary to each other. 

 

 

 



93 

 

Table 6-3.Retrieval of known disease drug relationships from DMAP and CMAP, 

respectively 
The star rating is labeled according to the following criteria: 

K-S Score<-0.3:                            

-0.3 K-S Score<-0.2:                 

-0.2 K-S Score<-0.1:                 

-0.1 K-S Score<0:                      

K-S Score 0 or p-value 0.05: 
 

Disease Drug DMAP CMAP 

Breast Cancer Anastrozole   

Breast Cancer Capecitabine   

Breast Cancer Doxorubicin   

Breast Cancer Estradiol   

Breast Cancer Megestrol   

Breast Cancer Paclitaxel   

Breast Cancer Testolactone   

Breast Cancer Testosterone   

Colorectal Cancer Capecitabine   

Colorectal Cancer Leucovorin   

Colorectal Cancer Raltitrexed   

Lung Cancer Cisplatin   

Lung Cancer Etoposide   

Prostate Cancer Docetaxel   

Prostate Cancer Leuprorelin acetate   

Parkinson's disease Galantamine   

Parkinson's disease Trihexyphenidyl   

Alzheimer's disease Galantamine   

Alzheimer's disease Memantine   

Alzheimer's disease Tacrine   

Diabetes Liraglutide   

Diabetes Vildagliptin   

Leukemia Carmustine   

Leukemia Celecoxib   

Leukemia Idarubicin   

Leukemia Irinotecan   

Leukemia Isotretinoin   

Leukemia Methotrexate   

Leukemia Pentostatin   

Asthma Bambuterol   

Asthma Dexamethasone   

Asthma Methylprednisolone   
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Asthma Orciprenaline   

Asthma Prednisone   

Asthma Salbutamol   

Asthma Salbutamol sulphate   

Asthma Theophylline   

 

Besides recalling the known drug-disease relationships, this method could also propose 

novel drug-disease associations. National Center for Advancing Translational Sciences 

(NCATS) (117) provides a list of drugs for translational medicine researches. We cross 

checked the novel predictions with their drug list. Here, we highlight a few drug-disease 

relations.  

 

A novel relation that DMAP results suggest is between Vincristine, a drug typically used 

for Leukemia, and Wilm’s tumor. A recent study performed by Indolfi et al.(129) 

revealed that there is a potentially higher rate of survival in patients with bilateral Wilm’s 

tumor when patients are given a dosage of vincristine/actinomycin D.   

 

Nifedipine is usually used to treat high blood pressure and angina. The DMAP results 

suggest that Nifedipine can also be used to treat asthma. Since Nifidipine is a PKC 

inhibitor and PKC is a potential therapeutic target for asthma (130), it is a potential 

treatment for asthma. Cheng et al.(131) demonstrated in their study that Nifedipine can 

help control the constriction involved in sensitized tissue in asthma.  Furthermore, 

another study by Barnes et al.(132) suggested that Nifidipine modifies exercise-induced 

asthma. 

 

Progesterone is a prescription drug used for women taking estrogens after menopause and 

is also used for treating amenorrhea. The DMAP results suggest that progesterone can be 

used to treat breast cancer. In the study by Groshong et al. (133), it was determined that 

treatment with Progesterone can be used to regulate Breast Cancer cell growth.  
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Table 6-4 summarized the all the novel drug repositioning predicted by both similarity 

approach and KS algorithms, which could be starting point for further experimental 

validation. 

 

Table 6-4. Drug repositioning predicted by both similarity approach and KS 

algorithms 

Drug Disease Indication 

Mebendazole Alzheimer's disease 

Amiodarone Asthma 

Anastrozole Asthma 

Anastrozole Asthma 

Anastrozole Asthma 

Benztropine Asthma 

Chlorzoxazone Asthma 

Drospirenone Asthma 

Econazole Asthma 

Fluvoxamine Asthma 

Itraconazole Asthma 

Methylergonovine Asthma 

Methylergonovine Asthma 

Methylergonovine Asthma 

Oxybutynin Asthma 

Oxybutynin Asthma 

Rivastigmine Asthma 

Sertraline Asthma 

Sitaxsentan Asthma 

Tioconazole Asthma 

Tioconazole Asthma 

Vinorelbine Asthma 

Amodiaquine Breast Cancer 

Atovaquone Breast Cancer 

Flucytosine Breast Cancer 

Fluticasone Propionate Breast Cancer 

Fluvoxamine Breast Cancer 

Methylergonovine Breast Cancer 

Raltitrexed Breast Cancer 

Repaglinide Breast Cancer 

Rivastigmine Breast Cancer 

Spirapril Breast Cancer 

Tioconazole Breast Cancer 

Trifluridine Breast Cancer 
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Trimethoprim Breast Cancer 

Voriconazole Breast Cancer 

Zafirlukast Breast Cancer 

Atovaquone Colorectal Cancer 

Cyclizine Colorectal Cancer 

Flucytosine Colorectal Cancer 

Suprofen Colorectal Cancer 

Tolcapone Colorectal Cancer 

Trifluridine Colorectal Cancer 

Valdecoxib Colorectal Cancer 

Acenocoumarol Parkinson's disease 

Anastrozole Parkinson's disease 

Bivalirudin Parkinson's disease 

Capecitabine Parkinson's disease 

Cyclizine Parkinson's disease 

Pyrimethamine Parkinson's disease 

Suprofen Parkinson's disease 

Valdecoxib Parkinson's disease 

Flucytosine Prostate Cancer 

Rivastigmine Prostate Cancer 

Trimethoprim Prostate Cancer 

Trimethoprim Prostate Cancer 

Voriconazole Prostate Cancer 

 

6.4 Conclusions 

Critical to drug repositioning involves the reliable measurements of how drug affect 

disease proteins. In this work we presented a computational drug directionality resource 

called DMAP to address the challenges. We demonstrated that the resource can greatly 

facilitate the drug discovery process for the following reasons: access to disease gene 

drug relationship data with high coverage and quality; incorporating prior knowledge 

about biological significance with protein interaction network.  

 

This study differs from previous research in that it provides a comprehensive database of 

computationally derived drug-protein relationships. Previous efforts (17, 40, 47, 48) on 

paring the expression of drugs and diseases mainly rely on experimental connectivity 

map. For example, Sirota et al.(17) performed a large-scale integration of expression 

signatures of human diseases from the public data with CMAP drug signatures. This 
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work provides another alternative resource of directed drug-protein relationships. The 

drug similarity study proves the validity of the probabilistic based directionality for each 

drug-protein relationship. The implementation of K-S algorithm proves the compatibility 

of the pharmacology score based ranking with the expression based ranking in CMAP for 

the drug repositioning research. With these two major drug repositioning approaches, the 

knowledge base from DMAP performed better than directly using the microarray data 

from CMAP. It can thus serve as a valuable resource for drug repositioning studies. 

 

One limitation of DMAP lies in that the number of interacting proteins for each drug is 

not a constant number. For the gene expression based profiles in the CMAP database, 

each drug was measured against the same number of proteins in experiments while in 

DMAP the number of interacting proteins varies from drug to drug In DMAP, 64,034 

drugs have at least 10 activated and inhibited proteins. 13,098 drugs have at least 50 

activated and inhibited proteins and 3,515 drugs have at least 100 activated and inhibited 

proteins. Despite of this limitation, the database served its purpose for systematic drug 

repositioning as demonstrated in this work. 
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Chapter 7. Drug Repositioning using Side Effect Features: from 1D to 2D 

This section is based on my work at (54). HH and LY conceived the idea. HH constructed 

the drug combination database, built the decision tree model, evaluated the prediction 

performance, validated the out of sample predictions and wrote the manuscript. XAQ 

helped analyze the case studies.   

7.1 Introduction 

The use of multiple drugs with different mechanisms or modes of action may treat the 

disease more effectively (142-144). The traditional “one drug – one target – one disease” 

approach has been used to develop successful drugs. However such "magic bullet" 

sometimes shows limited efficacy, especially for complex diseases (145). It is often due 

to factors such as network robustness (146), redundancy (147), compensatory and 

neutralizing actions (148).  Polypharmacology, which focuses on multi-target drugs, has 

the potential (11) to address those limitations. High-throughput screening was used to 

identify possible drug combinations (149); however, it is impractical to screen all 

possible drug combinations for every indication. Therefore, computational methods (150-

153) have been developed to predict new drug combinations. For example, network 

biology was introduced to investigate drug combinations by studying the molecular 

networks or pathways affected by the drugs (154)  yet the incompleteness of molecular 

networks limits the practical use of such approaches for prediction of novel drug 

combinations. 

 

Besides the molecular information-based approaches, clinical phenotypic information has 

not been adequately investigated for its power in predicting drug combinations. The 

advantages of leveraging on clinical phenotypic information include better translational 

power when comparing with animal models (155) since it mimics a phenotypic screening 

of the drug effects, both therapeutic effect (46, 156) and toxic effect (157, 158), on 

human. In this work we propose an innovative approach by using observed side effects 

reported in clinical findings to identify novel safe and efficacious drug co-prescriptions or 

fix-dose combinations.  
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In this study, we summarized the prediction of novel drug combination as a two-step 

effort: 1) to minimize the potential side effect of the new combination; 2) to avoid 

reduction of the efficacy via pairing the indication for each drug in the new combination. 

We hypothesized that drugs that can be put together usually do not have serious adverse 

drug reactions (ADRs) in common. We tested this hypothesis by identifying a set of three 

FDA blacklisted side effects from marketed drug combinations and evaluated its 

prediction performance in both the training and the validation set. Our results support that 

using these features, clinicians could rule out unsafe drug pairs with high confidence. We 

further demonstrated such classification power is not due to the synthetic confounding 

factors such as biased disease indications or drug targets. We further proposed both 

components in the pair to treat the same disease so that therapeutic effects from each 

component could be added in the combination. This two-step rule provides a novel 

approach to identify novel drug co-prescriptions or combination from using of clinical 

side effects, which should be less of a translational issue compared to animal model. We 

applied this approach to identify 977 candidate drug combinations. 144 pairs (15%) are 

supported by clinical trials from clinicaltrial.gov for the same indication, leaving 85% 

potential novel combinations to be evaluated in future clinical studies. 

7.2 Methods 

i. Preparation of datasets 

Side effect datasets. SIDER is a side effect database containing information on marketed 

medicines and their recorded adverse drug reactions. The information is extracted from 

public documents and package inserts (159). In this study, we downloaded the entire 

database from http://sideeffects.embl.de/. Besides relying on drug label as sources for 

drug side effects, we also checked FAERS, a database that contains information on 

adverse event submitted to FDA and is designed to support the FDA's post-marketing 

safety surveillance program for drug and therapeutic biologic products. OFFSIDES is 

such a side effect database by mining FAERS system while controlling those 

confounding factors such as concomitant medications, patient demographics, and patient 

medical histories and so on. OFFSIDES contains 1332 drugs and 10097 side effects. 438 

drugs and 2322 side effects are shared between SIDER and OFFSIDE. In the final 

http://sideeffects.embl.de/
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integrated side effect database, drugs are represented with STITCH ID while side effects 

represented with MedDRA terms so that they could be integrated across databases. 

 

The TWOSIDES database identifies 59,220 pairs of drugs with 1,301 adverse events by 

carefully matching groups of patients in the post-marketing surveillance system FAERS. 

It provides a reliable and comprehensive database of side effects for drug pairs.  It is thus 

used to identify the features enriched in approved DDCs compared to random drug pairs. 

In contrast, when doing the DDC prediction, we only used the side effect for single drugs 

from drug label and OFFSIDES since it is logical to only have single drugs’ side effect 

data before such pair has come into being.  

 

Drug combination datasets. The Drug Combination Database (DCDB) is a database 

collecting and organizing known examples of drug combinations. The current version 

contains 145 drug combinations. Peer Bork’s paper also lists 178 drug combinations, 

mainly collected from FDA orange book. We also curate 236 FDA approved or registered 

drugs from literature. After mapping them to STITCH ID, we get a comprehensive list of 

349 drug combinations.  

 

Drug target and ATC code. DrugBank (http://www.drugbank.ca) is a unique 

bioinformatics and cheminformatics resource that combines detailed drug data with 

comprehensive drug target information. Current version contains 6711 drugs and 4081 

targets. We downloaded the full database in xml format and parsed out the drug target 

pairs and drug ATC pairs.  

ii. Analysis methods 

Two Step Rule for making safe drug combination or co-prescriptions. First step is to 

make sure what drugs can be safely put together. We hypothesize that the drugs that can 

be put together usually do not have overlap in some serious adverse drug reactions 

(ADR), but might share some side effects that contribute to the therapeutic effect (46, 

156). Here we came up with a practical black list consisting of three side effects for 

clinicians to decide the safe drug pairs with high accuracy; at the second step, we 
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required that those safe pairs should further have the same disease indications to achieve 

the similar efficacy (Figure 7-1). 

Feature selections For each side effect, we built a two by two table and performed a 

Fisher's exact test to determine whether that side effect is differentially shown up 

between positive DDCs and negative DDCs. Then we used p-value less than 0.05 as the 

threshold to pick the significant features. When we developed the black list consisting of 

three side effects, we first used information gain as the statistical significance 

measurement to identify the top ten features. To get the biological significance, we then 

chose three out of the top ten according to the origin of their organs/human systems. 

 

Machine learning models we used decision tree as main machine learning models, J48 

decision tree algorithms in WEKA(160). We also tested the performance with Naïve 

Bayes, Logistic regression and random forest. All of them gave even better AUC and 

accuracy than decision tree.  Since we are more interested to develop a simple rule to be 

 

 

 

Figure 7-1. Illustration of the Two-Step Rule to predict the drug combinations. 
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easily applied in clinical than achieving a better AUC, we presented the results based on 

decision trees model in this work. 

 

PubMed and Clinical Trial Validation To validate whether the predicted drug pairs 

have clinical literature supports, we used the esearch API provided by NCBI to count the 

co-occurrence of the drug components for each proposed DDCs. The query term we used 

are ‘drug name1 AND drug name2 AND (Clinical Trial[ptyp] OR Clinical Trial, Phase 

I[ptyp] OR Clinical Trial, Phase II[ptyp] OR Clinical Trial, Phase III[ptyp] OR Clinical 

Trial, Phase IV[ptyp])’. We also checked clinicaltrial.gov to see whether predicted drug 

pairs are co-mentioned in the same registered clinical trials.  
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7.3 Results  

i. Construction of the data set  

We constructed a comprehensive drug combination database (Figure 7-2A) which 

contains 349 approved pair-wise drug-drug co-prescriptions/combinations (DDC) from 

three different sources: drug combination database DCDB (161), a recent drug 

combination paper (153) and manual  literature curation of the FDA approved or 

registered DDCs. To resolve different naming issues in different data sources, DDCs 

were represented by their two components whose names were mapped to STITCH ID 

(32) for comparison. (Venn diagram comparison of these three sources was shown in 

Figure 7-3) 

 

To annotate drugs with their side effect features, we extracted side effect information 

from drug labels using SIDER (159) and OFFSIDES (157) (Figure 7-2B) . SIDER 

 

Figure 7-2. Workflow of applying logistic regression and decision tree models to 

measure the DDC prediction performance with side effects as features 
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derives side effects from drug labels and OFFSIDES mines side effects from post-

marketing surveillance system FAERS (i.e. FDA Adverse Event Reporting System). Of 

the 349 approved DDCs, 239 DDCs can be annotated with side effects for both 

components, which correspond to 245 individual drugs and 7,888 side effects. As a 

comparison, previous work (153) used 181 pair-wise DDCs, out of which only 75 

contains both side effects and indication annotation due to the limited data sources for 

DDCs, side effects and indications. Therefore the coverage of this database is much more 

comprehensive. 

 

  

 

Figure 7-3. The Venn diagram of drug combinations, where the numbers 

indicate how many drug combinations can be covered by each data source 
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We also constructed a negative training set consisting of unsafe drug pairs for training the 

DDC prediction model. We defined the unsafe co-prescriptions as those causing 

unexpected side effects as tracked in TWOSIDES (157), a database of reported side 

effects only caused by the combination of marketed drugs rather than by any single drugs 

from FAERS. For those 245 drugs in the positive set, we generated all the possible pairs 

of combinations while excluding those 239 positive DDCs. Then the left drug pairs were 

overlapped with those drug pairs in TWOSIDES.  A resultant set of 2291 unsafe drug 

pairs (8% of all the possible drug combinations for the 245 drugs) were identified and 

used as the negative training set for training the DDC prediction model.  

 

 

Figure 7-4. Evaluation of logistic regression and decision tree models based on 

the full dataset (i.e., 239 marketed DDCs and 2291 unsafe drug pairs).  

(A) ROC curve. (B) Precision-Recall curve. 
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ii. Evaluation of the power of predicting DDCs based on the side effects features 

We used 239 marketed DDCs as positive set along with 2291 unsafe drug pairs as 

negative set. Each side effect of a drug is called a feature and a drug pair can be 

represented as a vector of side effect features with value of 0, 1 and 2 depending whether 

zero, one or both drugs have such side effect. We applied logistic regression model with 

10-fold cross validation to evaluate the performance. We measured the model 

performance with both AUC (area under the ROC curve) and AUPRC (area under the 

precision-recall curve). We repeated the cross-validation experiment 100 times with 

random seeds, and computed the mean and the standard deviation of AUC and AUPRC 

over the 100 repetitions. In the experiment, logistic regression model achieved an AUC 

of 0.92±0.01 and AUPRC of 0.86±0.01 (Figure 7-4). The overall AUC is 0.94 and the 

early retrieval performs as well with a corrected pAUC of 0.92, which enables us to keep 

false positives low (162) while sacrificing some true positives.  

 

To explore how unbalanced positive set and negative set affects AUC, we randomly 

sampled from the negative set 100 times. Each time we made the negative set with the 

same number of drug pairs with positive set. The average AUC was 0.95 (Figure 7-5) 

with standard deviation of 0.02. 
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Figure 7-5. Evaluation of logistic regression based on 239 marketed DDCs with 

balanced positive set and negative set.  

 

To exclude the fact that the good AUC score is just due to homologous relationships 

between structurally similar drugs, we mimicked the method in Gottlieb’s work (163) by 

removing the drug pairs with Tanimoto similarity coefficient larger than 0.50. We re-run 

the logistic regression 10-fold cross-validation experiment 100 times and still achieved 

AUC of 0.92±0.01 and AUPRC of 0.86±0.01,which is the same with previous results to 

two decimal places. 

 

Since the datasets are made of drug pairs, it is possible that some drugs occur in both the 

training set and testing set although no drug pairs are shared between these two sets. To 

further characterize the predictive model, hold-drug-out validation had been used to 

evaluate the performance of the method. The original 2530 drug pairs are made of 245 

distinct drugs. From the 245 drugs, we randomly chose 60 drugs as testing drugs (i.e., 

about 25%) and 185 drugs as training drugs (i.e., about 75%). We held out all drugs pairs 
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involved with the testing drugs, rather than holding out drug pairs directly. From the 2530 

drug pairs, we selected the pairs only involving with training drugs as training data. Then 

we constructed predictive models with the training data. From the 2530 drug pairs, we 

selected the pairs only involving with testing drugs as validation data for testing the 

models. Again, we repeated the hold-drug-out validation experiment 100 times with 

randomly partitions, and computed the mean and the standard deviation of AUC and 

AUPRC over the 100 repetitions. In the experiment, logistic regression model achieved 

an AUC of 0.87±0.03 and AUPRC of 0.76±0.07. The additional results show that the 

predictive model performed still well even in the situation where none of the pair 

members in the test set are within the training set.  

 

The results of logistic regression showed the strong performance of the DDCs prediction 

with side effect features. Next we focused on how to develop a simple rule for the 

 

Figure 7-6. The outline of this study 

 (A) build logistic regression models to measure the DDC prediction performance with 

side effects as features; (B) build rule based model that can be easily applied in 

clinical settings 
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clinicians or the drug developers to use in their daily work in making co-prescriptions or 

fix-dose drug combination (Figure 7-6). A different model, decision tree model (164), 

was thus tested. The model showed an AUROC of 0.83±0.01 and AUPRC of 0.71±0.01, 

not as good as the performance in the logistic regression model. However considering 

that decision tree model is easier for interpretations in practice and such a white-box 

model is much more accessible to clinicians, we used the decision tree model for the 

further analysis. 
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For the prediction test set, we used all the possible pair-wise drug combinations of 245 

marketed DDCs, excluding both positive and negative set. In total 27,360 drug pairs were 

used as prediction test set. With the trained decision tree model, we made the prediction 

on the testing set and only pairs with predicted probability above 0.99 and co-occurred in 

at least 10 publications of clinical trial publications in PubMed were considered as 

candidate DDCs. As a result, 1508 drug pairs were identified and they formed a well-

connected network (Figure 7-7A) and the degree distribution is approximately a Power-

law Distribution (Figure 7-7B). This well-connected network indicates that those drugs in 

 

Figure 7-7. Drug combination networks. 

(A) A network view of the 1508 drug pairs with prediction probability above 0.99 and 

support from at least 10 clinical type publications.(B) Degree distribution of the 

network. (C) The sub-network cluster. (D) A network view of the 11 drug pairs with 

prediction probability less than 0.01 and support from at least 10 clinical type 

publications. The edge width is proportional to number of clinical literature supports. 
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the network are inherently promiscuous to each other and would have a higher potential 

to be combined with their close neighbors we further identified a condensed sub-network, 

highly interconnected regions in the network (Figure 7-7C) with Cytoscape (86) plugin 

MCODE (165). The connections between the hub drugs include some known drug 

combinations like hydrocortisone and dexamethasone (immunosuppressants) (166), 

morphine and tramadol (pain relievers) (167). Other drugs paired with morphine or 

dexamethasone within this sub-network could be good starting points for further 

experimental validation for novel drug combinations. 

 

Among these 1508 predicted safe DDCs, 31 pairs contain at least one clinical trial 

evidence according to clinicaltrial.gov as pairs, including 6 pairs in phase I, 7 in phase II, 

12 in phase III, and 4 in phase IV. In contrast, for the 615 drug pairs with probability less 

than 0.01, only 11 are supported by at least 10 publications of clinical trial types in 

PubMed and with a much spare network (Figure 7-7D) compared to Figure 7-7A (p-value 

of 4.19×10
-7

 of chi-square Test).
 
When searching them against clinicaltrial.gov, only 2 of 

them have clinical trial records. 

 

Besides the results presented above with side effects integrated from both sources, we 

also checked the prediction performance by using side effects only from drug label (i.e. 

SIDER) or OFFSIDES with various machine learning models. If using drug label alone, 

the classification performance is as follows: AUC of 0.69 for Logistic Regression model; 

AUC of 0.68 for Naive Bayes model and AUC of 0.54 for decision tree model; If using 

OFFSIDES alone, the classification performance is as follows: AUC of 0.77 for Logistic 

Regression model; AUC of 0.71 for Naive Bayes model and AUC of 0.57 for decision 

tree model. The most predictive model was the one that included information from both 

OFFSIDES and SIDER, followed by OFFSIDES alone, then SIDER alone, which is 

consistent with previous findings (157).  

iii. Development of the rule-based model for DDC prediction  

Upon proving that the SEs could be used to predict DDCs, we next aimed at constructing 

a rule-based method to help the decision-making in a much easier and explainable way. 

We summarized this method as a two-step workflow (Figure 7-1): 
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Step 1: Prevent unsafe co-prescriptions based on only three SEs 

Here we aimed to find those side effects as markers to identify unsafe drug pairs. Of the 

239 approved DDCs in the database, 41 DDCs can be annotated with the side effect 

features. To get the random drug pairs, we generated all the possible pair-wise drug pairs 

from the 41 DDCs while excluding these 41 approved DDCs. We got 949 random drug 

pairs and 749 (Figure 7-8) can be annotated with side effects from TWOSIDES. We 

performed a Fisher’s Exact test for every side effect between these approved group and 

the random group, with 65 side effects identified as significant ( p-value <0.05).  

Next we tested the performance of using these 65 side effects to differentiate the 

approved DDCs from the random set. The positive set consists of 198 approved DDCs by 

ruling out those 41 DDCs in the training set from the 239 approved DDCs. To build the 

negative set, we randomized drug pairs in the positive set and 1255 unsafe drug pairs 

were identified by overlapping with TWOSIDES (Figure 7-8). The number of DDCs in 

 

Figure 7-8. Constructions of positive sets and negative sets from the 239 DDCs in the 

development of the FDA black list consisting of three side effects.  
Features were selected based on the positive and negative set on the left side of the figure 

while independent validation was done based on the positive and negative set on the right 

side. 
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positive set is approximately increased 5 times in the testing set compared to the training 

set. We built the features for each drug pair by checking whether zero, one or both of the 

drugs have any of the 65 side effect features. Similarly we applied decision tree analysis 

using WEKA (168). The AUC is 0.87 and the accuracy is 0.94. We checked the top 10 

features (Table 7-1) ranked by the information gain as statistical significance, and to have 

biological significance we chose three side effects out of these top 10 based on a wide-

spread of human organs or body systems of these side effects: pneumonia for lung or 

respiratory system, hemorrhage rectum for rectum or digestive system, and retinal 

bleeding for eye or visual system. With only these three side effects, the decision tree 

(Figure 7-9) achieved the AUC of 0.80 and accuracy of 0.91, supporting the superior 

performance of using this signature of three side effects to identify safe drug 

combinations. Other combinations of any three side effects from the list of 10 achieved 

lower performance. Based on this decision tree model (Figure 7-9), the candidate safe 

drug pairs should not have any of these side effects. We did a Fisher’s exact test between 

the approved DDCs and random drug pairs to tell whether overlapping of any of the three 

side effects between these two groups is significantly different and the p-value is 

2.66×10
-33

 with an odds ratio of 6.6 (Table 7-2). 

Table 7-1. Top 10 side effects features from the decision tree model 

Side effects 

Pneumonia 

Haemorrhage Rectum 

Neurodermatitis 

Retinal Bleeding 

Allergic Alveolitis 

Muscle Disorder 

Vitamin B 12 Deficiency 

Candida Infection 

Proctitis 

Infectious Mononucleosis 

 

 

Table 7-2. Confusion matrix of the relationships between having the three SEs in the 

black list and being the unsafe co-prescription 

 Share any of three SEs Share none of three  SEs 

Unsafe 1254 1037 
Approved combination 37 202 
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To rule out the possibility that the performance based on side effects as features is purely 

due to confounding factors like drug category, drug target, or disease indications of the 

drugs, we measured the drug combination classification performance with only the ATC 

(anatomical therapeutic chemical classification) drug category, drug targets, or disease 

indications. First we built a decision tree model on the same positive and negative sets 

with third level ATC code (153) as the features of pharmacology actions. It achieved an 

AUC of 0.62 with the top three features: G03C (i.e. Estrogens), N02A (i.e.Opioids), and 

C09A (i.e. Ace Inhibitors, Plain). Even with all the 100 ATC as features, the maximum 

AUC that can be achieved is 0.72, still less than the performance of the model based on 

the signature of only three side effects (i.e. AUC of 0.80). Similarly we built a decision 

tree model with drug targets as features and it achieved an AUC of 0.57 with the top three 

features: NR3C1, NR1I2, and rplD. Even with all the 296 target proteins as features, the 

AUC is 0.61, still less than the classification performance based on the signature of only 

three side effects. Finally we built a decision tree model with disease indication as 

features and it achieved an AUC of 0.54 with the top three features: Addison's disease, 

Eczema, and Prostate cancer. Even with all the 262 diseases as features, the AUC is 0.78, 

still less than the classification performance based on the signature of only three side 

effects. In sum, the decision tree model based on the signature of three side effects as 

features can achieve the highest performance to classify drug safety issues and it is not 

purely due to the co-founding factors like drug category, drug target, or disease 

indications. 
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Step 2: Making the DDC  

In Step one, drug pairs with good safety profile can be predicted. The further step is to 

identify which pairs should be put together to reach a certain efficacy level for a 

particular disease while sustaining a low SEs profile. For those drug pairs from Step1 that 

can be co-prescribed or made into a combination, we only considered those pairs with 

shared disease indications (Figure 7-1).  

 

We got 977 drug pairs along with at least one shared disease indication for each pair. We 

used literature co-occurrence as a statistical surrogate for the existence of relationships 

between the two drugs. 570 pairs (58%) have been supported by at least one publication 

of clinical trial types when searching both drug name in PubMed while 769 (79%) pairs 

 

Figure 7-9. The decision tree model to decide the drug pair safety. 

0, 1, and 2 indicates the number of drugs in the drug pair with such side effect. Pie charts 

indicate the percentage of correctly classified (green) and in-correctly classified (red) 

instances at each leaf. Safe represents the approved drug combinations while unsafe 

represents drug pairs from negative set.  
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have been supported by at least one PubMed publication of any type. 144 pairs (15%) 

have been supported by at least one clinical trial from clinicaltrial.gov. For the top 20 

predictions, we manually checked the clinicaltrial.gov and found 14 predictions with on-

going clinical trials are indeed the combinations. The studied conditions in all of the trials 

agree with our suggested disease indications. Table 7-3 shows the top drug pairs 

proposed by ‘Two Step Rule’. 

 

Table 7-3. Top drug pairs proposed by ‘Two Step Rule’.  

The Status column includes Approved, indicating that predicted pair has already been 

approved by FDA, and Predicted, meaning not approved yet; Indication column lists all 

the disease(s) shared by both components. CT column and the PM column list the 

number of items in clinicaltrials.gov or PubMed clinical literatures that mention the drug 

combination. 
Component_A Component_B Status Indication CT PM 

Dexamethasone Prednisolone Predicted Asthma 

Arthritis, rheumatoid 

28 255 

Dexamethasone Hydrocortisone Predicted Adrenal insufficiency, primary, 

congenital 

24 473 

Formoterol Fluticasone Predicted Asthma 16 55 

Abacavir Zidovudine Predicted Infection, HIV/AIDS 9 137 

Lamivudine Emtricitabine Predicted Infection, hepatitis-B virus 

Infection, HIV/AIDS 

8 77 

Bimatoprost Latanoprost Predicted Glaucoma 8 70 

Morphine Buprenorphine Predicted Pain, general 

Pain, post-operative 

Pain, musculoskeletal, unspecified 

4 215 

Pravastatin Atorvastatin Predicted Hypercholesterolaemia 4 176 

Dorzolamide Latanoprost Predicted Glaucoma 4 80 

Naltrexone Buprenorphine Predicted Addiction, narcotic/opiate 4 29 

Lisinopril Enalapril Predicted Hypertension, unspecified 

Heart failure 

3 153 

Formoterol Budesonide Approved Asthma 

Chronic obstructive pulmonary disease 

Bronchitis, chronic 

40 190 

Carbidopa Levodopa Approved Parkinson's disease 35 407 

Lamivudine Zidovudine Approved Infection, HIV/AIDS 28 587 

Timolol Dorzolamide Approved Glaucoma 21 161 

Levonorgestrel Estradiol Approved Hormone replacement therapy 19 487 

Lamivudine Abacavir Approved Infection, HIV/AIDS 16 195 

Ethinyl 

Estradiol 

Levonorgestrel Approved Hormone replacement therapy 

Contraceptive, female 

12 371 

Tamsulosin Dutasteride Approved Benign prostatic hyperplasia 6 17 

Benazepril Amlodipine Approved Hypertension, unspecified 5 51 
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For those predicted but not approved DDCs shown at the top of Table 7-3, all of them 

have been co-cited by at least ten clinical type literatures and three clinical trials. We also 

validated these co-prescriptions in FAERS, which contains millions of reports which 

record the drugs taken by individual patient and their adverse events. We performed a 

Fisher’s Exact test to identify whether two drugs are significantly recorded together at the 

same reports. I found that the majority of the novel predicted pairs are more likely to be 

co-reported or co-prescribed than by chance in FAERS (Table 7-4). All the above 

validations indicate great promise for further investigations of those novel drug 

combinations.  Table 7-5 also listed the top 10 drug pairs proposed by ‘Two Step Rule’ 

but are not in any clinical trials yet, which could be the candidates for developing novel 

fix-dose combinations. 

 

Table 7-4. Confusion matrix of co-prescription between the five predicted pairs.  

TP stands for the number of reports co-mentioned the two drugs; FP/FN stands for the 

number of reports only mentioned one of them; TN stands for the number of reports 

mentioned neither of them. 

Drug A Drug B TP FP FN TN p-value 

Abacavir Zidovudine 374 1143 4208 2220659 0 

Bimatoprost Latanoprost 2 117 804 2225461 2.21E-12 

Dexamethasone Hydrocortisone 113 15529 3244 2207498 1.67E-75 

Dexamethasone Prednisolone 343 15299 26338 2184404 2.86E-30 

Dorzolamide Latanoprost 22 80 784 2225498 0 

Formoterol Fluticasone 1 99 298 2225986 2.68E-05 

Lamivudine Emtricitabine 119 6621 692 2218952 0 

Lisinopril Enalapril 6 25933 1889 2198556 8.49E-04 

Morphine Buprenorphine 15 7754 475 2218140 1.13E-22 

Naltrexone Buprenorphine 0 81 490 2225813 1 

Pravastatin Atorvastatin 24 4434 2650 2219276 4.01E-15 

 

Table 7-5. Top 10 novel drug pairs without any clinical trials reported. 
Pair 

# 

Component_A Component_B Indication CT 

1 Ethinyl Estradiol Estrogen Hormone Replacement Therapy 0 

2 Morphine Marcaine Pain, Post-Operative 

Pain, General 

0 

3 Lovastatin Atorvastatin Hyperlipidaemia 

Alzheimer's Disease 

Hypercholesterolaemia 

0 

4 Captopril Enalapril Maleate Hypertension, Unspecified 

Heart Failure 

0 
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5 Lovastatin Pravastatin Hypercholesterolaemia 0 

6 Budesonide Beclometasone Asthma 0 

7 Abacavir Sulfate Zidovudine Infection, HIV/Aids 0 

8 Erythromycin Clindamycin Acne 0 

9 Fluticasone 

Propionate 

Beclometasone Asthma 

Rhinitis, Allergic, Seasonal 

0 

10 Norethisterone Medroxyprogesterone Contraceptive, Female 0 

 

iv. Case studies 

Here we looked into the proposed DDCs in Table 7-3. 

Dexamethasone/Prednisolone or Dexamethasone/Hydrocortisone (DDC#1 and #2) 

Prolonged use of glucocorticoid may impose variety of side effects and impact healthy 

anabolic processes. Elaboration of glucocorticoid drug combination, particularly with 

selectively acting glucocorticoid drugs or at reduced dose, could potentially help boost 

the therapeutic efficacy and prevent unwanted side effects or withdraw effects. This 

strategy has been explored and shown promises in multiple studies For examples, 

combination of prednisolone and low dosed dexamethasone is shown to exhibit greater 

anti-leukemic activity and lower drug resistance than equi-active dose of prednisolone 

alone (169) and the combination therapy using dexamethasone and prednisone has been 

shown to be more efficacious in patients with idiopathic sudden sensorineural hearing 

loss than individual glucocorticoid (170). As the above drugs are widely prescribed, there 

is also a great chance of being co-prescribed and, such as the two predicted combinations 

(i.e. glucocorticoids with different efficacy and potency) from our analysis could warrant 

further clinical testing in their overlapping indications such as asthma and rheumatoid 

arthritis.  

 

Abacavir/Zidovudine or Lamivudine/Emtricitabine (DDC #4 and #5) 

Combination therapy has been a key therapeutic option in the management of HIV/AIDS. 

For example, Abacavir and Lamivudine, a top ranked DDC predicted in this study, is one 

of the FDA approved drug combination. Additionally, our analysis identified several 

novel combinations that are not yet approved by FDA, for example, Abacavir in 

combination with Zidovudine, or Lamivudine in combination with Emtricitabine. Like 

other single antiviral agents, these drugs (Lamivudine, Emtricitabine, Abacavir), when 
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used on its own, cannot completely suppress viral replication thus allows for drug 

resistant strains to emerge. The combination of these drugs, however, can potentially 

impose stronger and more sustained effect than using any single drug alone.  

 

Formoterol/Fluticasone (DDC#3) 

Formoterol, a long-acting beta-adrenoceptor agonist, exerts bronchodilatation effect and 

is used in the management of asthma and chronic obstructive pulmonary disease (COPD). 

It’s already been tested and used in combination with corticosteroids, such as budesonide, 

to treat or prevent asthma attack and/or respiratory tract inflammation. Fluticasone, 

another potent glucocorticoid, has been shown to have superior or similar efficacy in 

improving pulmonary functions in asthma patients (171, 172). The predicted 

Formoterol/Fluticasone combination could be adopted as a new and alternative option in 

the management of asthma or COPD along the same combination strategy of 

Formoterol/Budesonide which warrants further validation for its clinical efficacy or 

safety profile.  

 

Dorzolamide/Lantanoprost (DDC# 9) 

Both Dorzolamide and Lantanoprost are anti-glaucoma agents yet with very different 

MOAs - the former is a carbonic anhydrase inhibitor that exerts pharmacological function 

by decreasing the production of aqueous humour, yet the latter agent is a prostaglandin 

analogue that increases outflow of aqueous fluid. With such distinctive and 

hypothetically complement mechanisms, the drug combination of these two agents could 

potentially exert stronger efficacy in reducing intraocular pressure particularly in severe 

glaucoma patients.  

 

The above two case studies (i.e. Pair # 3, #9) are the combination of agents from different 

categories with distinct MOAs. They could have additional and/or greater 

pharmacological and clinical benefits with their efficacy synergy potential, pill burden 

reduction, and improved compliance in patient care.  
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7.4 Conclusions 

Evaluation of drug pair safety is a critical issue for co-prescription or making fix-dose 

combinations (173, 174). Methods have been developed to predict drug-drug interactions 

(DDIs) from text mining (175, 176), network modeling (177), high-throughput screening 

(149), or computational data integration (153). Our approach exploring the possibility of 

predicting new drug pairs by representing drug combinations with their clinical side 

effects. It is based on the hypothesis that the drugs that can be put together usually do not 

have overlapping serious adverse drug reactions. The key advantage of using clinical side 

effect information lies in that it is direct observations from human subjects with fewer 

translational issues compared with data from in vitro or animal studies. The “signature” 

set of three side effects identified from our analysis provides a practical guideline to help 

rule out unsafe co-prescriptions. 

 

Using the integrated side effect data sources, we examined the effects of different 

machine learning methods on the prediction performance. For the prediction performance 

evaluation of 198 independent drug combinations with the features of the three side 

effects, decision tree model gives an AUC of 0.80, Naive Bayes with an AUC of 0.84 and 

Logistic Regression with an AUC of 0.84.  The robust performance across different 

machine learning methods confirms that our conclusion is not biased towards a particular 

method. We chose the decision tree model with the aim for easy clinical implementation 

despite that it doesn’t give the highest AUC. 

 

One limitation of side effect based on approaches to study DDCs or DDIs is that no good 

resource except for TWOSIDES is currently available to capture side effects of drug 

pairs. In our work of deriving the three side effects as a FDA blacklist based on 65 

signature side effects from TWOSIDES, we relied on the assumption that if we don’t 

want the drug combination to have any of the three side effects, we require that neither of 

the drug components  have such side effect. It is possible that even drug component itself 

doesn’t have such side effect, the combination may have it due to the potential drug 

interaction. This may undermine our classification performance. Nevertheless, our results 
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demonstrate that safe drug pairs usually do not have overlap in these three serious 

adverse drug reactions. 

 

The prediction performance of the three side effects is unlikely to be due to the bias in 

drug combinations’ disease profiles. The 41 drug combinations, where the signature of 

the three side effects was derived from, covered 24 diseases. We used an independent 

dataset of 198 drug combinations to measure their prediction performance. For this 

independent dataset, additional 68 diseases were covered. In other words, the disease 

profiles for these two datasets are different and this minimizes the bias during the 

prediction. On the other hand we need to be cautious to extrapolate the prediction model 

to apply to those drugs or diseases never shown up in our dataset since the scope of the 

prediction performance may be limited to these 245 drugs and 92 diseases.   

 

As discovered in the previous study (152), some side effects are associated with the 

indications of the drugs. For example, Actoplus Met is a fix-dose combination of 

metformin hydrochloride and pioglitazone hydrochloride. The two drug components 

share SEs of Anaemia; similarly, for another diabetes drug Duetact, a combination of 

Glimepiride and Pioglitazone Hydrochloride, these two drug components also share the 

SE of Anaemia. We hypothesize that for those side effects shared by approved drug 

combinations, they may be essential for the therapeutic effect of the drugs and they are 

usually not severe SEs. For example, the pharmacological effect anaemia is associated 

with reduced insulin consumption, which may alleviate the reliance on insulin of certain 

insulin resistant diabetes patients.   

 

Dosing is another factor that has to be considered when co-prescribing drugs in the 

clinical practice. Here we propose a simplified model for discussion. When the 

concentration becomes lower, e.g., halving the dose for each component when making 

the DDC, the dose-related toxicity of this combination may thus be halved. However, 

since we require that drug components should have the same indication in our model, the 

efficacy may theoretically remain the same or even better due to the synergistic effect of 

the combination. We understand the real situation in the dosing issue is much more 
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complex, however. This is only an ideal model that inspires further discussion and deeper 

understand of the making of DDCs. Further clinical trials are needed to validate its 

efficacy on a particular dosing. Besides by choosing the right drug pairs, e.g., one 

expensive drug along with a cheaper one, with reduced doses, it may also bring 

economics of combining the drugs.   

 

We suggest that our predictions may be beneficial in three areas: (i) improving the safety 

profiles of drug co-prescriptions in clinic; (ii) assessing potentially hazardous drug 

combinations in early stage of the fix-dose combination discovery in pharmaceutical 

industry; and (iii) potentially reducing pill burden or bringing economics of combining 

the drugs. While our predictions were validated in-silico, they should be further tested 

experimentally to establish their clinical implications.  
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Chapter 8. Conclusions 

8.1  Research summary and contributions 

In summary, the thesis presents a comprehensive framework of computational drug 

discovery, using system approaches. The thesis mainly consists of two parts: disease 

biomarker identification and disease treatment discoveries. 

 

I start by introducing the research in biomarker identification for human diseases in the 

post-genomic era with an emphasis in system biology approaches such as using the 

protein interaction networks. Diagnostic biomarker is expected to detect a given type of 

disease in an individual with both high sensitivity and specificity; predictive biomarker 

serves to predict drug response before treatment is started. Both are essential before we 

even start seeking any treatment for the patients. In Chapter 2, I studied how the coverage 

of the disease genes, the protein interaction quality, and gene ranking strategies can affect 

the identification of disease genes; In Chapter 3, I addressed the challenge of constructing 

a central database to collect the system level data such as protein interaction, pathway, etc. 

for the biomarker discovery at the system biology level. In Chapter 4, I built case studies 

for biomarker identification for Diabetes by using the conclusions from Chapter 2 and 3.  

The second part of the thesis mainly addresses how to find treatments after disease 

identification.  I specifically focus on computational drug repositioning due to its low 

cost, few translational issues and other benefits. In Chapter 5, I described how to 

implement literature mining approaches to build the disease-protein-drug connectivity 

map and demonstrated its superior performances compared to other existing applications. 

In Chapter 6, I presented a valuable drug-protein directionality database which filled the 

research gap of lacking alternatives for the experimental CMAP in computational drug 

discovery field. The correlation based ranking algorithm was also extended to include the 

underlying topology among proteins. Chapter 5 and 6 conclude the thesis work of drug 

repositioning in the genomic level. In Chapter 7, I demonstrated how to study drug 

repositioning beyond genomic level and from one dimension to two dimensions. In 

specific I explored how to propose drug combination with clinical side effects as 

prediction features.    
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8.2 Future research directions 

The computational workflow for drug discovery in genomics level can be generally 

represented as in Figure 8-1. The future research directions can be extended from each 

step, especially step 1, 3 and 4. 

 

i. Research in identifying reliable disease biomarker 

How to get a consistent panel of biomarker for each disease regardless of platforms and 

other confounding factors is a central topic in biomarker discovery (Step 1 in Figure 8-1). 

The emerging of NGS techniques, specially the RNA-Seq, may be good alternatives for 

genomic profiling compared to microarray techniques.  It has been shown to be more 

reliable and accurate measurement of gene expression level with the NGS techniques. 

The methodology of biomarker discovery in this thesis can be readily applied to the 

expression level from RNA-Seq experiments.  

 

 

Figure 8-1.The general workflow of computational drug discovery. 

 
1) Reliable diseases 

genes with 

directionality 

2) Reliable drug 

genes relationship 

with directionality 

3) Disease models that links drug to effected proteins 

4) Ranking algorithms that take directionality and disease 

models as inputs  

5) Proposed drugs for each disease 
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Future investigators should ideally build a probabilistic-based catalog of biomarkers 

(Step 1 in Figure 8-1) for each disease condition just as how DMAP are built for 

recording the relationships between drugs and proteins. This central database will not rely 

on single detection technology and should serves as a knowledge base for any disease 

biomarker study. Once we have a central database for disease and protein relationship, 

we could combine it with DMAP with the framework presented in the thesis to propose 

more reliable treatments. 

ii. Research in disease model discovery 

While the conventional “One disease, One gene, and One drug” paradigm works 

effectively for simple genetic disorders, it fails to produce effective drugs for complex 

diseases such as cancer. In complex diseases, many genes may be contributing to the 

disease’s phenotype. Thus building a disease model (Step 3 in Figure 8-1) to explain the 

underlying disease mechanism is essential for developing effective disease treatments. In 

the thesis, I focused on breast cancer disease model for proof of concept. More disease 

models should be built and tested to check the robustness of the computational 

framework. The cost of utilizing the pathway information is that one has to put more 

effort in data collection and pathway construction. Ultimately a database containing 

disease models for major diseases is desirable. Such a disease-oriented database will 

provide much better resolution than traditional protein interaction databases for 

computational drug discovery. 

iii. Research in disease ranking algorithms 

In the thesis, PETS algorithm was proposed to utilize the underlying topology of the 

disease model to rank the potential treatments. It has shown a superior performance in 

breast cancer study. Future investigators need test this algorithm in more disease models.  

Ideally one could provide an integrative tool for wet-lab scientists to use for drug 

discovery by integrating the disease biomarker catalog, DMAP, and disease model 

database. 

iv. Beyond genomics 

Matching the disease expression profile with the drug perturbation expression profile is a 

mainstream approach in the computational drug discovery nowadays. Despite its 

popularity, few researchers or companies have yet proposed any drugs for FDA approval 



126 

 

based on this approach. The major challenge here is how to translate the discovery in 

molecular level to phenotypic level. We have at least two ways to address the 

translational issues. 

 

One way is to build the prediction model with clinical features such as drug side effects. 

Since side effects are directly observed from human, the translation issues will be less of 

a concern. In Chapter 7, I have shown how to predict drug combination using side effects 

as features. Future investigators need continue to pay more attention to side effects and 

other measurements in clinical trials studies and utilize them to build computational 

models. 

 

Another way is to utilize the Electronic medical record (EMR), a system that contains all 

of a patient’s medical history from one practice. It contains detailed information about 

patients’ phenotypic responses for various drugs. As the first step moving towards this 

direction, I built a statistical model to use FAERS to identify what drug combination is 

more inclined to be prescribed by doctors in Chapter 7.  Utilizing the EMR can not only 

serve as the validation purpose of any proposed treatments, but also help uncover any off-

label use by the clinicians. Models based on those data can leverage the knowledge 

accumulated by clinician’s daily practice and will be appreciated. 

 

With the continued research and development in computational drug discovery, and with 

incoming of the big data in bioinformatics, the drug discovery, especially drug 

repositioning, tailored to the individual patient will be realized. 
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 2007-2008   Computational Biology lab, University of Science and Technology of China  

 Built an ordinary differential equation model of insulin signaling pathway, simulated 

the model with Matlab and validated with literatures 

 Designed an database to store all known kinetic parameters and predict unknowns   

OTHER RESEARCH PROJECTS 

 2011-2012   Evaluated the mappability of Bowtie, BWA and BLAT algorithms for the 

NGS data of five mouse samples using 454 pyrosequencing in the NGS course project           

 2009-2011   Performed bioinformatics analysis for NMR and GC-MS metabolic dataset 

and LC-MS proteomic dataset and data mining the diet data with Oracle Data Miner for 

the colorectal cancer patients in Colorectal Cancer Engineering (CCE) projects  

 2009-2010   Data mining cancer protein interaction network and drug protein network to 

repurpose FDA approved breast cancer drugs for colorectal cancer use  

 2008-2009   Built a geography and cancer database at Introduction to Bioinformatics 

class and cancer biomarker database at Biological Database Management with PHP and 

MySQL. 

SELECTED AWARDS 

 2008-present  School of Informatics Scholarships 

 2012        Travel stipends from MCBIOS IX conference 

 2011        Travel fellowship for GENSIPS’11 from Indiana University Graduate School    

 2007        National Financial Aid, University of Science and Technology of China, China 



 
 

 2005        Outstanding Student, University of Science and Technology of China, China  

METORSHIP AND TEACHING EXPERIENCE  

 2012      Teaching assistant in Computational System Biology courses, School of 

Informatics, Indiana University. 

 2010-2013       Graduate Mentor of over 10 undergraduate students in the 

Multidisciplinary Undergraduate Research Institute (MURI) Program at Indiana 

University-Purdue University Indianapolis (IUPUI), Indianapolis 

VOLUNTEER  
2007-2008    Team leader for contacting alumni graduated from English department to 

attend 50th anniversary of USTC 

 2006        Toured high school students to labs in School of Life Science during the 

National Science and Technology week 

COMPUTER SKILLS 

 Programming languages: SQL, R, Perl/Python, Matlab, SPSS, SAS, PHP, C++  

 Data mining: Oracle Data Mining (ODM), Weka  

 Other software: Oracle/APEX, Drupal, Aqua Data Studio, Oracle SQL Developer 

SELECTED PUBLICATIONS 

1. Hui Huang, Sara Ibrahim, Thanh Nguyen,  Jake Y. Chen Systematic drug 

repositioning with the drug directionality database (in preparation) 

2. Hui Huang, Xiaoyan A.Angela Qu, Lun Yang Drug Combination Prediction Only 

Based on Three Clinical Side-Effects. (summer internship report) 

3. Syed Aun Muhammad, Hui Huang, Xiaogang Wu, Safia Ahmed, X. Frank Yang, 

Jake Y. Chen Prioritizing Drug Targets in Clostridium botulinum Type A using 

Systems Biology Approach. BMC Bioinformatics (submiited) 

4. Hui Huang, Xiaogang Wu, Ragini Pandey, Jiao Li, Guoling Zhao, Sara Ibrahim, 

Jake Y. Chen (2012) C2Maps: A network pharmacology database with 

comprehensive disease-gene-drug connectivity relationships. BMC Genomics. Vol. 13, 

Supplement 6, S17. 

5. Hui Huang, Xiaogang Wu, Madhankumar Sonachalam, Sammed N. Mandape, 

Ragini Pandey, Karl F. MacDorman, Ping Wan, Jake Y. Chen (2012) PAGED: A 

pathway and gene-set enrichment database to enable molecular phenotype discoveries. 

BMC Bioinformatics, Vol. 13, Supplement 15, S2. 

6. Xiaogang Wu, Hui Huang*, Tao Wei, Ragini Pandey, Christoph Reinhard, Shuyu D. 

Li and Jake Y. Chen (2012) Network Expansion and Pathway Enrichment Analysis 

towards Biologically Significant Findings from Microarrays. Journal of Integrative 

Bioinformatics. Vol. 9, No. 2, pp. 213. (*Equally-contributed author) 

7. Xiaogang Wu, Hui Huang*, Madhankumar Sonachalam, Sina Reinhard, Jeffrey 

Shen, Ragini Pandey, Jake Y. Chen (2012) Reordering based integrative expression 

profiling for microarray classification. BMC Bioinformatics, Vol. 13, Supplement 2, S1. 

(*Equally-contributed author) 

8. Madhankumar Sonachalam, Jeffrey Shen, Hui Huang and Xiaogang Wu (2012) 

Systems biology approach to identify gene network signatures for colorectal cancer. 

Frontiers in Genetics, Vol. 3, pp. 80. 

9. Hui Huang, Xiaogang Wu, Sara Ibrahim, Sunil Badve, and Jake Y. Chen (2011) 

Predicting Drug Efficacy Based on the Integrated Breast Cancer Pathway Model. The 

2011 IEEE International Workshop on Genomic Signal Processing and Statistics 



 
 

10. Hui Huang, Xiaogang Wu, Shuyu Li, Sara Ibrahim, Taiwo Ajumobi, and Jake Y. 

Chen (2010) Evaluate Drug Effects on Gene Expression Profiles with Connectivity 

Maps. 2nd International Workshop on Data Mining for Biomarker Discovery at the 

2010 IEEE International Conference of Bioinformatics and Biomedicine. 

11. Hui Huang; Jiao Li; Chen, J.Y.; , "Disease gene-fishing in molecular interaction 

networks: A case study in colorectal cancer," Engineering in Medicine and Biology 

Society, 2009. Annual International Conference of the IEEE , vol., no., pp.6416-6419, 

3-6 Sept. 2009 doi: 10.1109/IEMBS.2009.5333750 

 

  

 

 


