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potential resource for discovering novel therapies and in repositioning existing drugs. The 
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across the different scientific disciplines to uncover interactions that are not explicitly 
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can take advantage of this newly acquired knowledge to make informed decisions. 
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existing scientific data and literature resources in the discovery of novel molecular targets 
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chapter 2 by exploring a microarray dataset from an estradiol gene sensitivity study I was 
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the laboratory.  In chapter 3 of my dissertation, through the use of a manually curated 

corpus and machine learning algorithms, I identified and extracted genes that are 
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integrating information across various scientific disciplines. 
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Chapter 1: A translational bioinformatic approach in identifying and validating an 

interaction between Vitamin A and CYP19A1 

1.1 Introduction: 

The Cytochrome P450 (CYP) system consists of 57 enzymes, which are further 

classified into 18 families and 43 subfamilies based on sequence similarity[1]. They play 

a crucial role in the metabolism of various chemicals both endogenous and exogenous[2]. 

The members of the first three CYP families 1-3 are mainly involved in the metabolism 

of exogenous compounds such as medications, whereas the members of the other families 

are involved largely in the metabolism of endogenous compounds such as cholesterol, 

bile acids, steroid hormones and fatty acids. A given CYP enzyme can metabolize 

multiple substrates and a given substrate can be metabolized by multiple CYPs. 

Mutations or the absence of genes encoding the CYP enzymes can not only result in 

altered drug response but can also make an individual more susceptible to human disease 

such as glaucoma[3-7] and elevated cholesterol[8].Even a single mutation has the 

potential to alter the structure of these enzymes, resulting in altered activity or substrate 

specificity[9]. Furthermore, the co-administration of multiple drugs can influence the 

enzymes involved in their metabolism either through induction or inhibition [10]. Age 

and sex as well can influence CYP activity, studies have shown that CYP3A4 activity is 

higher in adults compared to fetus [11] and that women metabolize CYP3A4 faster than 

men [12, 13]. A wealth of information on the CYP variants is available at the Human 

Cytochrome P450 Allele Nomenclature website [14]. Despite the presence of this large 

amount of information it is still challenging to optimize therapy to meet an individual’s 

needs, especially with the increasing usage of supplements and herbal medications.  
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One of the challenges of personalized medicine is to identify or fine tune drug 

combinations without drastically affecting the metabolic pathway of either. There are 

numerous studies that have shown that the activity of these enzymes are influenced by 

various upstream regulatory mechanisms [13, 15-24], which in turn can potentially 

influence drug response. Despite the use of various patient characteristics there still exist 

a substantial amount of variations in drug response and mainly due to the nature and 

combinations of sources of variation. One such factor is the increasing use of dietary 

supplements that are not always taken into account while drugs are prescribed, which can 

potentially alter Cytochrome P450 activity [25, 26]. The mining of previously published 

literature across various disciplines has been very useful and effective in identifying 

potential drug interaction and rofecoxib is an excellent example, where the drugs toxic 

effect was present in literature before the drug was recalled [27]. Thus translational 

bioinformatics methods summarizing the literature data have proven to be an effective 

way of uncovering interactions that could be beneficial or harmful. In our study we were 

able to identify a correlation between retinoic acid and aromatase gene expression 

through bioinformatics analyses of existing databases. We were able to functionally 

validate this bioinformatic prediction in three different cell lines using physiological 

concentrations of retinoic acid. Our studies show that retinoic acid substantially alters the 

expression of the aromatase gene. 

1.2 Materials and methods: 

1.2.1 CYPs and their super-regulators 

 For this study we choose seven CYP subfamilies (CYP1A, CYP2A, CYP2B, 

CYP2C, CYP2D, CYP2E, and CYP3A) that are mainly responsible for metabolizing 
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more than 90% of drugs as well as CYP19A1 that is largely involved in the biosynthesis 

of estrogens. In order to identify compounds that indirectly affected the CYP 

activity/expression we used previously published endogenous CYP regulators[13, 15-24] 

from the literature and those that had a significant influence over the expression as well 

as activity of these CYP enzymes from the human liver bank gene expression quantitative 

loci data set[28]. These endogenous CYP regulators that had a direct effect on CYP 

enzymes were used as seed to identify compounds (Super-Regulators) that in turn 

influenced their regulation.  

1.2.2 Identification of compounds that influence CYP regulators. 

The endogenous CYP regulators were uploaded into Metacore (Thomson Reuters, 

NY, USA), a web based computational tool backed by text mining capabilities to build a 

highly interconnected network of CYP regulators and compounds that influenced their 

expression. Each node in the network represented a CYP regulator or a compound and 

the edges represented the interaction between the two denoting either an activation or 

inhibition. Not all CYP regulators were associated with upstream compounds. The CYP 

regulators that were not associated with any compounds and compounds that had fewer 

than 3 edges were eliminated from further analysis. The  CYP regulators from the above 

list (compounds (edges =>3) – CYP regulator) were used to build a second network along 

with the 10 CYP enzymes, namely CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2C8, 

CYP2C9, CYP2D6, CYP2E1,CYP3A4, AND CYP19A1 to further confirm the 

interactions between them. The results from the above two networks namely the 

[Compounds (edges =>3) - CYP regulator] and [CYP regulator- CYP enzyme] was 

merged to form the final network using Cytoscape[29] to represent the overall interaction 
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between the compounds, CYP regulators and CYP enzymes. Using this network the path 

from a given compound to its terminal leaf, which was either a CYP regulator or CYP 

enzyme was traced, thus predicting the interaction between the compound and CYPs. 

1.2.3 Influence of retinoic acid on DAX1/CYP19A1 gene expression: 

1.2.3.1 Cell culture and treatment: 

Three cell lines namely, JEG3 (Placental Cancer), HeLa (Cervical Cancer), and 

LNCAP (Prostate Cancer) were chosen to study the expression of the CYP19A1 

(Aromatase) and DAX1 genes. The cells were plated in six T25 flasks at a density of 0.25 

X 106 cells/ flask and grown in DMEM with 10% FBS. After 24 hours the media was 

removed and the cells were washed 3 times with DMEM containing 10% charcoal 

stripped FBS and cells were then allowed to grow in the new media. The media was 

replaced with fresh media every 24 hours for two more days. After 72 hours of initial 

media change the cells in each of the six flasks were treated with either vehicle (0.01% 

Ethanol) or All Trans Retinoic Acid (ATRA) (Sigma-Aldrich, USA) at 0.1nM. 1nM, 

10nM, 100nM and 1000nM respectively.  

1.2.3.2 RNA extraction, cDNA synthesis and Gene Expression: 

After 24 hours of treatment the cells were harvested and RNA extracted using 

miRNeasy Kit (Qiagen Inc., USA) according to the manufactures protocol. The RNA was 

then quantified using Quant-IT Kit (Life Technologies, USA) on the Qubit Fluorometer 

(Life Technologies, USA) according to the manufactures protocol. The cDNA was 

synthesized using the QuantiTect Reverse Transcription Kit (Qiagen Inc. USA) according 

to the manufactures protocol from 1ug of RNA. The gene expression for CYP19A1 and 

DAX1 was measured with the respective Taqman Gene Expression Assays (Life 
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Technologies, USA) on the iCycler instrument (Bio-Rad Inc., USA) in accordance with 

the manufactures protocol. 

1.3 Results: 

1.3.1 CYPs and their regulatory network 

The initial network between the compounds and CYP regulators consisted of 868 

edges between the compounds and CYP regulators, with 15 large clusters (Figure 1). The 

top 15 clusters were around the following CYP regulators namely, ESR1, PXR, 

PPARalpha, LXRalpha, GCRalpha, LXRbeta, AHR, PPARgamma, PPARbeta, VDR, 

FXR, RXRbeta, LHR, CAR and TRbeta. The number of compounds that formed these 

cluster ranged from 187 to 7, thus representing the extent to which a single CYP regulator 

can be influenced by multiple compounds. This network was further reduced by 

eliminating compounds that had less than 3 edges with other CYP regulators. The final 

regulatory network mainly consisted of the 134 edges between 42 nodes which included 

9 CYPs, 16 CYP regulators and 17 compounds (Figure 2). All of the drug metabolizing 

CYP enzymes including the CYP19A1 had either a compound or CYP regulator 

upstream. Only CYP2E1 did not have any compound or CYP regulators associated with 

it. The resultant network clearly indicated the potential influence of retinoic acid 

(Vitamin A) on the expression of CYP19A1 (Aromatase) through DAX1.  
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Figure 1: Compound - CYP Regulator Network. The overall network consisting of 868 

interaction between the various compounds and CYP regulators that they affect. The 

density of the cluster is proportional to the number of compounds that influence its 

activity, and the nodes between clusters represents the compounds that influence more 

than one CYP regulator. The top 15 clusters were formed around ESR1, PXR, 

PPARalpha, LXRalpha, GCRalpha, LXRbeta, AHR, PPARgamma, PPARbeta, VDR, 

FXR, RXRbeta, LHR, CAR and TRbeta (the respective nodes are highlighted in red and 

interaction between retinoic acid and DAX1 is highlighted by the yellow rectangle). 



7 

 

 

Figure 2: Compound - CYP Regulator - CYP Network. The above network shows the 

interaction between the Compounds, CYP regulators and CYPs. Green arrows represent 

up regulation and red arrows represent down regulation of the respective gene. The 

interaction between retinoic acid, DAX1 and CYP19A1 is highlighted by the yellow 

triangle. 

 

1.3.2 Influence of ATRA on CYP19A1 (Aromatase) and DAX1 genes in the                                  

various cell lines: 

The above hypothesis that retinoic acid alters the expression of aromatase gene 

was experimentally verified using three different cells lines, namely JEG3, HeLa and 

LNCaP. Each cell line was treated with various concentrations of ATRA ranging from 

0.1nM to 1uM, which included the physiological concentration at which retinoic acid is 

found in humans. The physiological concentration of retinoic acid in human plasma is 

around 4.9 ng/ml and all-trans retinoic acid (ATRA) accounts for ~75% of the total[30]. 
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After a 24 hour treatment period the cells were harvested, RNA extracted and the 

expression was measured for CYP19A1 and DAX1 using the respective Taqman gene 

expression assays. The expression of aromatase gene increased proportionally with 

increasing concentrations of ATRA and tapered off at 10nM ATRA (Figure 3). DAX1 

expression was observed only in the HeLa cell line showing a decrease in activity with 

increasing concentration of ATRA (Figure 4). The above experiments were performed in 

triplicates on different days for each cell line.  

 

Cell Line Gene F(5/12) p-value 

HeLa 
CYP19A1 9.775 0.0007 

DAX1 8.1982 0.0014 

JEG3 CYP19A1 2.8328 0.0647 

LNCaP CYP19A1 1.4003 0.292 

Table 1: F-statistic along with the p-value for the effect of ATRA on the expression of 

CYP19A1 (aromatase) and DAX1 across the each cell lines 
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Figure 3: Relative fold change of aromatase gene in response to various concentrations 

of ATRA.

 

Figure 4: Relative fold change of DAX1 gene in response to various concentrations of 

ATRA. 
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A one-way between treatments ANOVA was conducted to compare the effect of 

retinoic acid on the expression of CYP19A1 and DAX1 in the three different cell lines. 

There was a significant effect of retinoic acid on the expression of CYP19A1 and DAX1 

at the p<0.05 level in the HeLa cell line (Table 1). Further, post hoc comparison using the 

Tukey test showed that the fold change for treatments (0.1nM, 1nM, 10nM and 100nM) 

were significantly different from treatment at 1000nM. Thus indicating that the 

expression of aromatase gene proportionally increased with an increasing concentration 

of retinoic acid reaching 100nM, which included the physiological concentration at which 

retinoic acid is present in the human body. 

1.4 Discussion: 

In the current study we were able to identify 868 interactions between various 

chemical compounds and cytochrome P450 regulators. We choose to follow the 

interaction of retinoic acid on aromatase enzyme because of its possible significant 

application towards personalized medicine in endocrine therapy. The cell lines chosen for 

this study are known to express CYP19A1 and DAX1 (HeLa). In the cell experiments, 

we found that retinoic acid up-regulates the aromatase enzyme.  Retinoic acid a 

metabolite of Vitamin A is very commonly found in various foods and dietary 

supplements. Aromatase is a key enzyme involved in the biosynthesis of estrogens [31, 

32], which can catalyze the progression of estrogen-dependent breast cancers. The levels 

of aromatase activity and mRNA expression are higher in the breast cancer tissue than in 

normal tissue [33-35]. In addition to the ovarian supply of estrogens, aromatase enzyme 

is also involved in the local production of estrogens through the conversion of circulating 

adrenal androgens [36], thus having an immense potential to fuel estrogen receptor 
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positive breast cancer. DAX 1(dosage-sensitive sex reversal adrenal hypoplasia 

congenital critical region on the X-chromosome gene 1) is an orphan member of the 

nuclear receptor family [37, 38], and functions as global anti-steroid factor and represses 

the expression of many enzymes involved in the steroidogenic pathway, including 

aromatase [39, 40]. The expression of DAX 1 has been reported in breast cancers [41, 

42], although it’s exact mechanism is not fully understood. Aromatase inhibitors were 

developed and widely utilized to treat endocrine tumors[43], especially breast cancer with 

estrogen receptor positive patients. Therefore, the up regulation of aromatase would in 

turn result in higher levels of estrogens, and could possibly stimulate the endocrine tumor 

growth. Most importantly, the usage of Vitamin A could reduce the effectiveness of 

aromatase inhibitor treatment for cancer. Given the fact that Vitamin A is so commonly 

found in various food/supplement source, the chance for its potential influence is higher, 

thus we chose to validate its influence on aromatase expression.  

Our initial bioinformatics finding using the MetaCore database revealed that the 

presence of retinoic acid caused an up regulation of DAX1 and which in turn caused the 

down regulation of aromatase. In our functional study, only one cell line, namely the 

HeLa cells showed expression for DAX1. HeLa cells treated with retinoic acid showed a 

down regulation of DAX1 and an up regulation of aromatase expression. Though not in 

the exact same direction as the bioinformatics prediction, the overall experimental 

outcome in HeLa cells does bring out the possibility that when present, DAX1 expression 

is inversely related to CYP19A1 expression in the presence of retinoic acid. The other 

two cell lines did not show any expression for DAX1 but did show that retinoic acid up 

regulated CYP19A1 expression. DAX1 is an orphan member of the nuclear receptor 
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superfamily of transcription factors, whose disruption has been linked with increase 

expression of aromatase enzyme [39, 44]. Even though the cell lines chosen for this study 

are from extra gonadal sites it clearly shows that retinoic acid has a significant influence 

on aromatase expression in the presence or absence of DAX1. This finding is of 

importance as the use of aromatase inhibitors in treating breast cancer is widespread [45, 

46]. Though aromatase inhibitors are a gold standard in treating ER-positive breast 

cancer, resistance to this therapy still requires the use of other modes of suppression of 

intra-tumoral estrogen production[36], thus calling for further investigation into the 

underlying cause of resistance.  

In this part of the dissertation, we have shown that the use of curated literature 

data is valuable in discovering novel drug enzyme interactions, and potential clinically 

significant drug interactions. Our primary contribution is the established feasibility of this 

translational bioinformatics approach in detecting novel drug interaction signals. 
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Chapter 2: Discovery of the antiestrogenic properties of phenazopyridine 

2.1 Introduction: 

2.1.1 Drug repurposing: new uses for old drugs. 

Despite the increased resources and research put in by pharmaceutical companies, 

there is a huge concern about the number of new chemical entities that finally make it to 

the market as approved drugs [47-50]. This has led to an increasing interest in 

repurposing or repositioning existing drugs. Drug repurposing is the process of finding 

new indications for existing drugs and comes with the advantage of having established 

clinical and pharmacokinetic data associated with the old drug. In addition, it has reduced 

costs and a shorter time to market of 3 -12 years than the traditional de novo drug 

discovery and development process that can take 10 -17 years and incur huge costs 

(Figure 5) [51]. The average success rate across different therapeutic areas for a new 

chemical entity to emerge as an approved drug is approximately 11% and varies within 

each therapeutic area as shown in Figure 6. Approximately 90% of blockbuster drugs 

have additional indications were they can be potentially used for an indication other than 

the one for which they were originally approved[52]. There are many examples of drugs 

that are currently being used for an indication other than the one they were initially tested 

for, which include the classical sildenafil (Viagra) a PDE5 inhibitor which was initially 

tested for treating angina but repurposed to treat male erectile dysfunction[53] and 

thalidomide a TNF α inhibitor which was initially used as a sedative and in treating 

nausea and insomnia, today is used mainly in the treatment of multiple myeloma and 

complications associated with leprosy[54]. Table 2 shows some of the drugs that have 

been effectively repurposed along with their targets and new indications[55]. 
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Figure 5: A comparison of traditional de novo drug discovery and development versus 

drug repositioning. 

 

 

 

Figure 6: Success rates from first-in-man to registration. The overall success rate is 11%. 
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Table 2 : Examples of drugs that have been successfully repurposed. 

 

2.1.2 Gene Expression Profiling: 

The completion of the Human Genome Project and the advances in information 

and sequencing technology has led to the generation of immense amount of genetic data 

and related knowledge on how genes are involved in the various physiological processes 

as well as their influence on disease pathogenesis and drug response. This massive 

amounts of data can be exploited to identify pathways that are shared by diseases and 

influenced by drug action. Thus an understanding of the extent to which a gene is 

expressed and the conditions under which they are expressed can be used to understand 

the biological roles of the proteins and enzymes they encode as well as the manner in 

which they interact to maintain or disrupt homeostasis. Gene expression profiling has 
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been used for decades as a way to identify genes that are involved in various biological 

activities, susceptibility to disease, in identifying novel targets, in predicting toxicity of 

novel compounds and in patient drug response. A novel approach to exploit the gene 

expression data was developed at the broad institute, namely the connectivity map [56, 

57]. The connectivity map is based on the assumption that a given drug can be potentially 

used to treat a disease, if the disease gene expression signature is negatively correlated 

with the drugs gene expression profile. This database has the gene expression profiles 

from cultured human cells treated with varying concentrations of 1309 FDA approved 

bioactive small molecules. The main goal was to describe all biological states – 

physiological, disease or induced with a chemical, thus providing a tool for researchers 

studying a drug candidate, gene or disease condition to compare their signature with the 

ones present in the database to discover unexpected novel connections as shown in Figure 

7. 

 

 

Figure 7 : Concept behind the Connectivity Map. 
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2.1.3 Estrogens and antiestrogens: 

Estrogens are predominantly present in females and are crucial for the sexual and 

reproductive development and are mainly produced by the ovaries and to some extent in 

the fat cells and adrenal glands. They are also present in males but at lower levels than in 

females and are produced by the adrenal glands and testes. There are three hormones 

which are representative of estrogens, namely estrone, estradiol and estriol. Despite their 

predominant role in reproduction they also have many beneficial roles such as in 

neuroprotection [58-60], cardiovascular health [61-63], and bone health [64-67]. Apart 

from their many roles and benefits they bring to the human body, estrogens are also 

known to fuel the growth of breast, ovarian and uterine cancers [68, 69]. For decades 

antiestrogens have been used to either block the action of estrogens or lower their levels 

in the body through the use of aromatase inhibitors (AI), selective estrogen receptor 

modulators (SERM) or estrogen receptor downregulators (ERD). AI’s such as 

anastrazole, exemestane and letrozole inhibit the production of estrogens by blocking the 

aromatase enzyme which is involved in the conversion of androgens to estrogens. 

SERMs such as tamoxifen, toremifene, droloxifene, raloxifene and arzoxifene bind to 

estrogen receptors thereby preventing the action of estrogens. ERDs such as fulvestrant 

work by downregulating estrogen receptors and promote their degradation thus 

preventing estrogens from stimulating cell growth.  

 Estrogens are also used in combined oral contraceptives as an effective means to 

prevent pregnancy. Combined oral contraceptives contain estrogens and progestin. 

Estrogens play a crucial role in oral contraceptives as it has been shown that estrogen 

containing contraceptives are more effective than progestin only pill. Estrogens decrease 
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the secretion of FSH which inhibits follicular development and helps prevent ovulation 

and fertility. 

2.2 Methods: 

2.2.1 Identification of drugs having a similar gene expression profile as that of 

estradiol: 

A total of top 40 Estradiol regulated genes, 20 up regulated and 20 down 

regulated (Table 3) was obtained from a previous research work that studied the effects of 

endoxifen, 4-hydroxy-tamoxifen and estradiol on the global gene expression patterns in 

MCF7 cells using the Affymetrix U133A GeneChip Array [70]. The 40 estradiol 

sensitive genes selected for this study were mapped to their respective probe ID’s by 

querying the Affymetrix probe database through the NetAffy application. The final probe 

set representing the 20 up and 20 down regulated genes was queried against the CMap 

database that contains the drug-exposure gene expression data for 1309 compounds 

measured on cultured human cancer cell lines, to identify compounds that shared a 

similar or opposite gene expression profile to that of estradiol. 
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Upregulated Downregulated 
AREG BAGE 
CA2 BCAS1 
CA8 BLNK 

CAP2 C18orf1 
CDC20 C2orf54 

CXCL12 CALCOCO1 
EGR3 CALML5 
FHL1 CSGALNACT1 

GREB1 DAB2 
MDC1 DDIT4 

MYBL1 FBN2 
NPY1R GABARAPL3 
NR5A2 GABBR2 
PDZK1 HOP 
RAI14 IGFBP3 
RPLP2 PEX14 

SERPINA3 PLSCR4 
SGK3 PNRC1 

SNRPA1 PSCA 
SOX3 SAMD4A 

Table 3: Top 20 up and 20 down regulated estradiol sensitive genes. 

 

2.2.2 Effect of phenazopyridine on MCF-7 cell proliferation: 

MCF-7 cells were grown in DMEM medium supplemented with 10% fetal bovine 

serum in a T-75 flask maintained at 37ºC in 5% CO2 incubator. Once the cell culture 

reached around 80% confluency, the media was removed, cells trypsinized and re-

suspended in DMEM medium. The cell count was measured using the Beckman Z 

Coulter Counter. A solution containing 10,000 cells/ml was prepared. The cells were 

plated in 96-well plates at a seeding density of 1000 cells/well and allowed to grow for 24 
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hours. Phenazopyridine was prepared at the following concentrations, 100uM, 31.6uM, 

10uM, 3.2uM, 1uM, 0.32uM, 0.1uM and 0.032uM.  Each treatment was performed in 6 

wells including the vehicle (0.1% ethanol) which had 12 wells (Figure 8). The cells were 

treated for a total of 7 days with the media being replaced initial after 72hours and then 

every 48 hours for the remainder of days. On the 7th day the media was removed and the 

cells stained with a solution containing 0.5% crystal violet and 25% methanol for 10 

minutes. Following which the wells were rinsed with water 7 times and then 100ul of 

citrate buffer was added to each well. The absorbance was measured at 570nm using the 

Synergy 2 plate reader. 

 

 

Figure 8: Plate layout for the treatment of MCF-7 cells with phenazopyridine. 

 

2.2.3 Effect of estradiol on phenazopyridine induced inhibition of cell proliferation: 

This experiment was carried out to see if estradiol had any effect on the 

phenazopyridine induced inhibition of MCF-7 cell proliferation. The experimental 

procedure was followed as described above, except that the media was replaced after the 

initial 24 hours with DMEM supplemented with 10% charcoal stripped calf serum and 

included the treatments with estradiol prepared at two concentrations, 1nM and 10nM. 

The MCF-7 cells were plated in two 96 well plates at a seeding density of 1000cells/well. 

Plate 1 2 3 4 5 6 7 8 9 10 11 12
A
B 100uM 31.6uM 10uM 3.2uM 0uM 0uM 1uM 0.32uM 0.1uM 0.032uM
C 100uM 31.6uM 10uM 3.2uM 0uM 0uM 1uM 0.32uM 0.1uM 0.032uM
D 100uM 31.6uM 10uM 3.2uM 0uM 0uM 1uM 0.32uM 0.1uM 0.032uM
E 100uM 31.6uM 10uM 3.2uM 0uM 0uM 1uM 0.32uM 0.1uM 0.032uM
F 100uM 31.6uM 10uM 3.2uM 0uM 0uM 1uM 0.32uM 0.1uM 0.032uM
G 100uM 31.6uM 10uM 3.2uM 0uM 0uM 1uM 0.32uM 0.1uM 0.032uM
H
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Each plate received the drug treatment for phenazopyridine as shown in Figure 8 along 

with either 1nM or 10nM of estradiol. 

2.2.4 Influence of phenazopyridine and estradiol on progesterone receptor 

expression: 

MCF-7 cells were plated in four T-25 flask at a seeding density of 0.25 X 106 

cells in DMEM supplemented with 10% fetal bovine serum (FBS). After 24 hours the 

cells were rinsed 3 times with DMEM containing 10% charcoal stripped calf serum and 

the media was changed to DMEM supplemented with 10% charcoal stripped calf serum. 

The cells were allowed to grow in the new media for an additional two days with media 

being replaced every 24 hours. After 72 hours of initial media change the cells were 

treated with different combinations of the drugs as shown in Table 4 and allowed to grow 

for an additional 24 hours. The cells were harvested and RNA extracted using the 

miRNeasy (Qiagen) and quantified using the Quant-iT RNA kit (Life technologies) on 

the Qubit Fluorometer (Life Technologies, USA) according to the manufactures protocol. 

The cDNA was synthesized using QuantiTect Reverse Transcription Kit (Qiagen Inc. 

USA) and the expression of PGR and GAPDH was measured on the iCycler (BioRad) 

using the respective Taqman Gene Expression assays (Life Technologies). 
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Flask T-25 Estradiol (10nM) Phenazopyridine (10nM) 

1 X X 

2  X 

3   

4 X  

Table 4: The various combinations of treatments that were used to study the effect of the 

estradiol and phenazopyridine on PGR expression. 

 

2.2.5 Effect of phenazopyridine on tumor growth in athymic nude mice: 

A total of 50 athymic nude mice were used for the experiment. The animals were 

caged and experiments performed at the Indiana University in vivo therapeutics core 

laboratory following the approval and guidelines of the University. The MCF-7 cells 

were grown, harvested and stored as pellets containing 3 X 106 cells/pellet. To initiate the 

tumors, the pellet were implanted into the mammary fat pad of the athymic nude mice 

and allowed to grow for 5 weeks. In addition, to promote the growth of the estrogen 

receptor positive MCF-7 tumor, the mice were also implanted with estradiol pellets 

(Innovative Research of American, Florida). The tumor volume was measured on an 

average every 5 days by measuring the two longest perpendicular diameters of the tumor. 

Following the 5 weeks after MCF-7 cell and estradiol pellet implantation the mice that 

survived were divided into 4 groups, each consisting of 10 mice. The animals were 

separated into the individual groups maintaining the same average body weight across the 

groups. Each group received one of the following treatments: vehicle, 0.2mg/kg/day, 2 

mg/kg/day or 20mg/kg/day for a period of two weeks. The tumor volumes were measured 
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on an average every 4 days. At the end of the treatment the mice were sacrificed and the 

tumors were harvested. One half of the tumors was stored in RNA later and the other half 

was fixed in formalin and embedded in paraffin blocks. 

2.3 Results: 

2.3.1 Drugs with similar gene expression signature as estradiol: 

The gene expression profiles for drugs that are similar to that of estradiol was 

retrieved and Table 5  shows the top 9 compounds. The drugs that have a positive mean 

value are those that have a similar gene profile to that of estradiol and those that have a 

negative mean value have an opposite effect. All the results had a significant p-value 

associated with them. From the table it can be seen that the top four drugs namely, 

genistein, fulvestrant, estradiol and LY-294002 are drugs that have documented evidence 

of their estrogenic and antiestrogenic activities. They thus served as internal controls in 

validating the authenticity of this approach. It has been previously shown that genistein 

has similar action to that of estradiol in enhancing proliferation of MCF-7 breast cancer 

cells[71]. The antiestrogenic activity of fulvestrant has been well demonstrated with its 

effective use in treating breast cancer [72-81]. The eighth drug namely phenazopyridine 

with a mean of -0.53 is predicted to have a strong antiestrogenic activity with a 

significant p-value of 0.0019 (Table 5). 
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rank cmap name mean p-value 

1 Genistein 0.43 0 

2 Fulvestrant -0.42 0 

3 Estradiol 0.34 0 

4 LY-294002 -0.29 0 

5 Tanespimycin -0.32 0 

6 Trichostatin A -0.26 0 

7 Tretinoin -0.31 0.0004 

8 Phenazopyridine -0.53 0.0019 

9 Sirolimus -0.25 0.0022 
Table 5: Drugs with similar (+ mean) or opposite (- mean) gene expression signature to 

that of estradiol. 

 

2.3.2 Phenazopyridine inhibits the proliferation of MCF-7 cells: 

In order to validate the antiestrogenic activity of phenazopyridine, we analyzed 

the effect of the drug on the estrogen receptor positive cell line, MCF-7. These cells are 

estrogen dependent for their growth and thus an antiestrogen would be expected to 

interfere with the growth of these cells. The cells were grown in 96 well plates in FBS for 

7 days and treated with different concentrations of phenazopyridine following which they 

were stained and absorbance measured. The results showed a decline in number of viable 

cells which indicated that phenazopyridine inhibited MCF-7 cell proliferation in a dose 

dependent manner (Figure 9). Thus providing evidence for a possible antiestrogenic 

action exerted by phenazopyridine on the estrogen dependent MCF-7 cells. 
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Figure 9: Phenazopyridine inhibits the proliferation of MCF-7 cells. 

 

2.3.3 Effect of estradiol on phenazopyridine induced cell proliferation: 

It is well known that estradiol fuels the growth and proliferation of MCF-7 cells 

[82-87]. The goal here was to find out if estradiol had an effect on phenazopyridine’s 

inhibitory action on the proliferation of MCF-7 cells. As shown in the Figure 10 estradiol 

at 1nM and 10nM did not interfere with the inhibitory action exerted by phenazopyridine. 
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Figure 10: Estradiol does not inhibit the antiproliferative activity of phenazopyridine. 

 

2.3.4 Phenazopyridine effect on PGR expression: 

It has been previously shown that there exists a positive correlation between 

estrogen and progesterone receptor (PGR) expression [88, 89]. This fact was exploited in 

our study to see the effect of phenazopyridine on the estradiol sensitive gene. Our results 

showed that phenazopyridine was able to decrease the estradiol induced PGR expression 

by approximately 15%, which shows that it has some influence on the estradiol induced 

PGR expression (Figure 11). 
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Figure 11: Phenazopyridine partially inhibits the estradiol induced PGR expression. 

 

2.3.5 Phenazopyridine effect of tumor growth in vivo: 

To determine if phenazopyridine had similar effects in vivo, nude mice were 

injected with MCF-7 cells along with estradiol pellets. The mice were then treated with 

three different concentrations of phenazopyridine and the tumor volumes were measured. 

The vehicle and low doses (0.2 & 2mg/kg/day) had no effect on the tumor growth. The 

highest concentration (20mg/kg/day) had an initial effect in inhibiting tumor growth, but 

lost its effect after a period of 7 days suggesting that the tumor may have readjusted in 

some manner to overcome the initial inhibition from phenazopyridine (Figure 12). 
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Figure 12: Effect of Phenazopyridine on the implanted MCF-7 tumor growth in athymic 

mice. 

 

2.4 Discussion: 

In this part of the dissertation we have shown the effectiveness of using gene 

expression profiles in identifying new indications for existing drugs. Drug repurposing is 

one of the most efficient ways to identify new indications for existing drugs as well as for 

those that have failed clinical trials. Since most drugs hit multiple targets other than the 

target they are intended for [90], it is very likely that a given drugs side effect may hold 

the key to treatment of complex and rare disease. One of the most outstanding case of 

drug repurposing is that of thalidomide. It was originally developed to treat morning 

sickness during pregnancy, but had to be withdrawn due to its tragically dangerous side 

effects. A drug that was so dangerously toxic was several years later accidentally 

discovered to be beneficial in treating complications of leprosy and later in treating 

multiple myeloma. This brings out the fact that even the worst of side effects can find 

beneficial use in another disease state. The advances in technology has made it possible 
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to swift through large data sets, may it be from expression or literature to identify 

interconnected pathways that can be exploited to drive novel therapeutic interventions. 

In this study we were able to discover the antiestrogenic potential existent in a 

urinary analgesic drug.  Phenazopyridine is commonly prescribed to relieve urinary tract 

symptoms such as pain, burning, irritation and discomfort as well as urgent and frequent 

urination caused by urinary tract infections, surgery, injury or examination 

procedures[91]. Through in vitro proliferation studies on estrogen dependent MCF-7 cells 

we were able to confirm a potential antiestrogenic indication for this urinary analgesic. 

Further, we tested the effect of phenazopyridine in athymic nude mice that were injected 

with MCF7 cells and observed a reduction of the tumor volume during the initial phase of 

treatment at the highest dose.  

The fact that estradiol did not interfere with phenazopyridine’s antiproliferative 

effect could suggest that phenazopyridine may not be exerting its action at the receptor 

level. It is well know that there exists a positive correlation between estradiol and 

progesterone receptor expression. A study has previously shown that the estrogen 

induced transcription of the progesterone receptor gene does not equal estrogen receptor 

occupancy[92]. From our results, phenazopyridine does show a partial inhibition of 

estrogen induced progesterone receptor expression. This and the above fact suggests that 

phenazopyridine could be hitting targets downstream of the estrogen receptor in 

mediating its antiproliferative action. 

The in vivo study showed an initial decrease in tumor volume at the highest dose 

of phenazopyridine (20mg/kg/day) that lasted for only 7 days, following which the tumor 

continued to growth. This observation does not come as a surprise, as most cancers show 
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resistance to treatments. The resistance could be either primary where it exists prior to 

treatment or acquired where it develops following treatment [93, 94].  Compared to the in 

vitro environment, the in vivo environment comes with many levels of complexity and 

there are many more factors that come into play and additional resources available for the 

drug resistance variant cell type to utilize and over grow rapidly thereby acquiring 

resistance. This could be a possible explanation to resistance observed to 

phenazopyridine after initial treatment at 20mg/kg/day. In addition, the presence of the 

estradiol pellets may have played a role in further fueling this drug resistance acquired 

tumor growth. This resistance to drug observed here, confirms the difficulty that arise in 

treating cancers or the resistance seen to treatment as the tumors self-adjust to the tumor 

environment and are able to increase their immunity towards treatment.  

The fact that phenazopyridine showed a positive antiestrogenic action in vitro but 

was only partially seen in vivo brings out the complexity of the in vivo system compared 

to the basic unit a cell that was used in the in vitro studies. It clearly shows the necessity 

in identifying the network of molecular events that play a role in tumor progression in 

vivo when there are more resources and biological components that can influence and 

help the tumor cells adapt and evade drug action.  

Apart from its possible role in inhibiting cell proliferation, the predicted 

antiestrogenic activity may also interfere with combination oral contraceptives that are 

composed of estrogen and progestin. It can be argued that an antiestrogen could interfere 

with the estrogen levels and thus affect the effectiveness of the oral contraceptive pill. 

Not taking a pill on the prescribe schedule can lead to the ineffectiveness of the therapy, 

similarly an interference in estrogen levels through an antiestrogen, in this case 
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phenazopyridine which is primarily prescribed as a urinary analgesic could potentially 

reduce the effectiveness of oral contraceptives. Since our study is the first to identify a 

potential antiestrogenic action for phenazopyridine this drug interaction would never 

have been considered before. Retrospective studies will need to be performed to measure 

the frequency at which the two drugs have been prescribed together and if any 

unexpected outcomes were reported. This could be used to point out the possibility of 

phenazopyridine’s antiestrogenic property that could interfere with the oral 

contraceptives mechanism of action. 

These results prove the immense potential that informatics can play in discovering 

novel interaction and in identifying new indications to failed and existing drugs, thereby 

opening venues for novel therapeutic interventions. In this case a urinary analgesic that 

holds the potential to be used in treating cancer, if not by itself possibly in combination 

with other drugs, and its possible interaction with oral contraceptives. We can conclude 

that from the informatics and preliminary experimental analysis, phenazopyridine may be 

a potential candidate for development as a novel therapeutic agent with antiestrogenic 

properties. The precise underlying mechanism of it antiestrogenic action and its effect 

being overcome in the in vivo environment of athymic mice calls for further experimental 

validation by domain experts to elucidate the pathways that are activated there by 

blocking its anti-estrogenic activity in vivo. 

 Till date there has been no reports of phenazopyridine being used for an 

indication other than as a urinary analgesic. Our discovery of the antiestrogenic action of 

phenazopyridine is novel and has the potential of being used as an antiestrogen and 

possibly in treatment of cancers that are estrogen dependent. 
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Chapter 3: Genes essential for cell survival 

3.1 Introduction: 

3.1.1 Knowledge in literature: 

There is no lack for data or scientific literature as they continue to grow at an 

exceedingly exponential rate, yet there is this unquenchable thirst for knowledge. Figure 

13 shows the growth in MEDLINE abstracts between 2001 and 2014. The knowledge 

that can lead to new discoveries, aid in making clinical decisions and designing efficient 

therapeutic strategies are hidden within this huge mass of data and literature. It has been 

shown decades earlier that the medical literature holds hidden knowledge that can be 

exploited in treating complex diseases [95-100]. In spite of the availability of this huge 

amounts of literature two thirds of the questions that clinicians raise about patient care in 

their practices remain unanswered[101]. These question most often could be classified 

into a small set of generic questions[102] but require a diverse set of answers based on 

the clinicians specialty. With the advances in technology and the completion of the 

human genome we have data, but the challenge lies in how to identify the crucial 

knowledge that can lead to a better understanding of the disease pathology and equip the 

clinician to make informed decisions as to the best course of therapeutic action. In 

addition the various factors that can influence or contribute to disease susceptibility or 

progression poses a challenge to scientist in finding a preventative or therapeutic solution 

for these diseases [103-105]. The challenges in finding a cure are proportionally 

increasing with complexity presented by the disease. The question most commonly asked 

when dealing with huge amounts of data is, how the low value data can be transformed to 

high value knowledge that can be applied to treating complex diseases more effectively. 
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As shown in the Figure 14, data can be transformed into wisdom through the various 

stages employing various processes along the way[106]. 

 

 

Figure 13: Growth of MEDLINE abstracts between 2001 and 2014. 

 

 

Figure 14: The continuum of understanding 
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The heterogeneous nature of the scientific literature across multiple disciplines is 

something that can be exploited to identify crucial knowledge that underlies the essence 

of survival. The free availability of this unstructured text makes it the biggest and most 

widely used for the identification of new knowledge. It would be highly impossible for a 

human to devour this huge amount of literature to identify the dots that connect various 

components within a pathway that can be targeted to effectively treat a disease, especially 

when the information is present in non-interacting articles. Manual curation is a 

possibility with the advantage of being accurate, but comes at a high cost of time, labor 

and finding expertise in multiple disciplines. The use of computers and more specifically 

machine learning algorithms that can be trained to identify relevant literature and then 

extract the relationships between entities of interest to produce clinically applicable 

knowledge is gaining popularity in the race to find cures. The later though highly scalable 

with the ever increasing growth of literature is error prone due to the complexity of 

natural languages used. The ultimate goal of information access is to help the user or 

practitioner in finding relevant documents that satisfy their information needs so they can 

gain wisdom and apply it to their practice. The challenge still remains, how can we apply 

the continuum of understanding[106] in finding wisdom from the huge amounts data. 

3.1.2 Text mining for knowledge discovery: 

Text mining can be defined as the process of using computers to mine through 

large amounts of unstructured text to discover and extract knowledge. At the core of text 

mining is the ability to identify scientific information across diverse research fields and 

connect these pieces of information to generate hypotheses and discover new previously 

unknown connections that can be useful in developing therapeutic diagnostic tests or lead 
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to knowledge of prevention or treatment of diseases. There is no lack for data, but 

connecting the information across diverse disciplines is challenging [107-109].  

As shown in Figure 15, text mining basically consists of the following steps, 

namely, (i) information retrieval (IR),  (ii) information extraction (IE), (iii) knowledge 

discovery and (iv) hypothesis generation [110]. Information retrieval (IR) is the very first 

step in the text mining process and involves the retrieval of texts that are relevant to the 

user’s topic of interest. This step is initiated through the use of topic specific keywords to 

query the bibliographic databases such as MEDLINE. PubMed is the most commonly 

used IR system by majority of researchers, which houses more than 25 million references 

to scientific literature. Information extraction involves locating textual mentions of 

entities of interest and their relations with the aim of representing them in a structured 

format for easy of analysis. This step is backed by named entity recognition (NER), 

which identifies the relevant entities such as drug names, gene names, disease names or 

those that the user is interested from a predefined set of categories. NER is a very critical 

step in the information extraction task and falls into three main categories, namely: (i) 

dictionary-based[111, 112], (ii) rule-based[113], and machine learning based[114]. 

Knowledge discovery involves the creation of new knowledge by connecting the 

information extracted from the unstructured text in the preceding steps. Hypothesis 

generation involves identifying chance connections that hold the potential to be a solution 

to a problem. The hypothesis thus generated can be further validated through 

conventional experimentation. Text mining has many applications from business to 

medical research and has been applied to various cancer domains such as breast[115-

118], lung[119-121], pancreas[122], prostate[118, 119, 123-125], and ovary[126]. 
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Figure 15: The basic steps involved in text mining. 

 

Machine learning as the name states is the process where computer programs are 

designed to learn unique features about a dataset so they can make predictions about a 

previously unseen dataset. These methods are trained to distinguish between the relevant 

and irrelevant text documents based on the word content of these documents. The most 

common application is the development of a classifier that can distinguish texts into two 

or more classes based on the attributes measured in each distinct text class.   

WEKA (Waikato Environment for Knowledge Analysis) workbench is a 

collection of state of the art machine learning algorithms and data preprocessing tools 

developed at the University of Waikato[127]. It includes methods for main stream data 

mining problems such as regression, classification, clustering, association rule mining 
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and attribute selection.  Apart from the various algorithms it also provides methods for 

evaluation such as cross validation and standard numeric performance measures such as 

accuracy and root mean squared error. The availability of multiple algorithms and filters 

provides maximum flexibility to test on various datasets. It accepts input in its native file 

format called attribute relation file format (arff). It is implemented in java and runs on 

almost any platform. As shown in Figure 16 weka has multiple interfaces to it. The 

Explorer is the main and most commonly used interface in weka. It consists of six panels 

as shown in Figure 17. The preprocess panel is used for loading the dataset and 

preprocessing the data using one of weka’s inbuilt filters. If the data involves a 

classification or regression problem this can be handled in the classifier panel, which 

provides the various classification algorithms. The major algorithms for classification and 

regression in weka are, support vector machines, decision trees, rule sets, bayesian 

classifiers, logistic and linear regression, multi-layer perceptron and nearest-neighbor. It 

also has meta-learners such as bagging, boosting, stacking.  The third and fourth panel 

contain algorithms for clustering such as k-means and those to generate association to 

identify relationships between groups of attributes in the data. The fifth panel offers 

methods that can be used to identify attributes that are predictive of other attributes in the 

data. The sixth panel provides visualization tools for plotting the attributes representative 

of the data. 
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Figure 16: The WEKA interface and available tools. 
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Figure 17: The WEKA explorer. 

 

3.1.3 Model evaluation: 

Evaluating a model is an essential step as it provides information on the 

performance as well as how well a model may perform on future unseen datasets. Cross 

validation is a very good evaluation method when the available data is limited. Especially 

when the data generated has to be manually selected by an expert. Before running the 

cross validation the number of folds or how the data needs to be partitioned is decided. In 

a 10 fold cross validation, the data is partitioned into 10 equal parts and then 9 parts are 

used for training and one part is used for testing. This process is repeated 10 times, so 

each part has been used exactly once for testing. If the representative classes are not 



40 

equally distributed, this could lead to overrepresentation of a class in the test set because 

there was not enough representation of the class in the training set. Use of stratified cross 

validation can to an extent safeguard against such a situation. In the case of stratified 

cross validation the data is randomly divided into equal parts with the class representation 

maintained in close approximation to the entire dataset. The error estimate is calculated 

for each fold and finally the average of the individual errors is reported.  

 There are many performance measures that can be used to evaluate a classifier, 

some of which are as follows. Given a classifier that classifies text documents into two 

classes namely class A (positive) and B (negative). The correctness of classifier can be 

evaluated by calculating the number of instances that were correctly classified into class 

A (true positive), the number of instances that were correctly classified as not belonging 

to class A but belonging to class B (true negative), the number of instances that were 

wrongly classified as belonging to class A (false positive) and the number of instances 

that were wrongly classified as belonging to class B (false negative). These four values 

make up the confusion matrix as shown in Table 6. 

 

 

  Predicted Value 

  Positive Negative 

Actual 
Value 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

Table 6: Confusion matrix for binary text classification. 
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From the confusion matrix the following measures can be calculated: 

Accuracy: This provides the overall effectiveness of the classifier and is calculated as 

follows (TP + TN) / (TP + FP + FN + TN). 

Precision: This provides the proportion of documents classified as positive that are indeed 

truly positive and is calculated as follows, (TP) / (TP + FP). 

Recall (sensitivity): This provides the proportion of documents from the overall dataset 

that were classified as positive and is calculated as follows, (TP) / (TP + FN).  

F-score: This provides the accuracy of the binary classification and is calculated from the 

precision and recall as follows 2 * ((precision * recall) / (precision + recall)). 

Specificity: This provides the effectiveness of the classifier in identifying the negative 

instances and is calculated as follows (TN) / (FP + TN). 

The performance of a classifier can also be obtained from its error rate. This error 

rate needs to be estimated from a new previously unseen data, namely the test dataset. In 

this way the performance of the model is evaluated on the data that had no part in its 

training. The test data set should be representative of the classification problem at hand, 

basically it should be similar to the training dataset. To truly estimate the performance of 

the classifier it is very important to make sure that there is no overlap of data between the 

training and test datasets. Some of the commonly used methods are kappa statistic, mean 

absolute error, root mean squared error, relative absolute error and root relative squared 

error.  
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3.1.4 RNA interference: 

 RNA interference is a very powerful biological process that involves the silencing 

of gene expression in eukaryotic cells [128-133]. It is indeed a natural host defense 

mechanism by which exogenous genes, such as viruses are degraded [134-136]. Figure 

18, shows the mechanism through which gene silencing is achieved by RNA 

interference[137]. With the emergence of the RNA interference technology, scientist 

have been able to study the consequences of depleting the expression of specific genes 

that code for pathological proteins and are able to observe the resultant cellular 

phenotypes, which can provide insights into the significance of the gene. Diseases that 

are associated or driven by genes, such as cancer, autoimmune disease and viral disease 

can take advantage of RNA interference to generate a new class of therapeutics. Synthetic 

RNAi can be developed to trigger the RNA interference machinery to produce the desired 

silencing of genes [138-140]. The power of this process can be harnessed to identify and 

validated drug targets and also in the development of targeted gene specific medicine. 
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Figure 18: Mechanism of RNA interference. 

 

One of the benefits of RNA interference technology, is that it provides 

information about the function of genes within an organism and helps us in identifying 

essential genes. Essential genes are those that are very important towards the survival of a 

cell or organism[141].  Identification of the minimum essential genes required for a cell 

to survive and being able to generate distinct sets that can represent normal versus cancer 

cell survival will not only enhance our understanding on what causes a normal cell to 

progress into a cancerous cell but will also provide the precise location of the gene that is 

the driving force of uncontrolled cell proliferation. This crucial knowledge can guide in 

the development of targeted cancer treatments. For example, it is very evident today, that 

breast cancer is no longer a single disease but heterogeneous in nature requiring different 

prognosis and treatments [142-145]. Since tumors are highly heterogeneous in nature, 
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there may be more than one gene that needs to be targeted within the heterogeneous 

population of cells, which makes the treatment of cancer so complex. By identifying 

these essential genes, one can use them as building blocks to capture the heterogeneity of 

the tumor environment and improve the clinical decision making in treating them more 

effectively and with precision.  

3.2 Methods: 

3.2.1 Abstract selection and corpus construction:  

The Medline database was queried for abstracts that studied the effects of siRNA 

or drugs on cell lines using the following boolean query structure [(siRNA or shRNA or 

drug) AND (cell line name)] across 6 different cell lines, namely MCF7, MCF10A, 

SKBR3, HS578T, BT20, and MDAMB231 The results of the query were downloaded as 

a list of PMIDs (PubMed Identifier). The articles for the list of PMIDs were download in 

the XML format from NCBI and processed as follows. The XML for each of the 

retrieved article was parsed to extract the PMID, article title and article abstract. These 

files formed the initial unfiltered set of abstracts and were converted to a pdf format to 

aid in the manual process of scanning them to select the most relevant abstracts to 

construct the text corpus. In addition these abstracts were further divided among four 

other individuals consisting of a high school student and three master’s level students for 

manual scanning and classification. The abstracts were read and then grouped under four 

categories as follows: 

i. RNAi: These abstracts had siRNA/shRNA being studied, along with the 

cell line used and the resultant cell phenotype. 
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ii. Drug: These abstracts had a drug being studied, along with the cell line 

used and the resultant cell phenotype. 

iii. Drug-Drug: These abstracts had a drug interaction being studied, along 

with the cell line used and the resultant cell phenotype. 

iv. NA (Not Applicable): If the abstract did not fall into any of the above 

categories it was labelled as NA. 

For an abstract to be placed in any of the categories (i) – (iii) they needed to have 

all three components, namely siRNA or drug and cell line and resultant cell phenotype. If 

one of these components were not clearly stated or was missing, the abstract was placed 

in the NA category. Close to 2000 abstracts were manually screened using the above 

criteria. 

3.2.2 Training and testing datasets: 

The list of abstracts as PMIDs for each category was grouped together and 

converted into individual xml files respectively. These xml files were then processed to 

generate the individual text files represented by the PMIDs within each group. The text 

files for the abstracts classified as RNAi were used as the positive set and the remaining 

were used as the negative set. The training and testing datasets consisted of various 

combinations as shown in the Table 7. The text files representing the training and testing 

datasets were converted into the WEKA native file format, namely ARFF (attribute 

relation file format) using the java TextDirectoryLoader class. The ARFF file is an ASCII 

text file that describes a list of instances that share a set of attributes. The header of the 

file contains the name of the relation, the list of attributes along with their types, and the 

class information followed by the data. The classes were labelled as RNAi for the 
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abstracts from the positive set and Non_RNAi for the abstracts from the negative set. The 

structure of the .arff file is as shown in Figure 19. The final training set consisted of 120 

RNAi abstracts in the RNAi class and a total of 1700 abstracts from drug, drug-drug, NA 

and RNS in the Non_RNAi class. The testing set consisted of 101 RNAi abstracts in the 

RNAi class and a total of 1700 abstracts from drug, drug-drug, NA and RNS in the 

Non_RNAi class. 

 

Set Training Testing Data 

  Positive Negative Positive Negative   

1 100 300 100 300 r,d,dd,g 

2 100 100 100 100 r,d,dd,na 

3 100 300 100 300 r,d,dd,na 

4 100 400 100 400 r,d,dd,na,g 

5 120 1700 101 1700 r,d,dd,na,rns 
Table 7: Composition of the training and testing sets used to test the various weka 

classifiers. [r: RNAi abstracts, d: drug only abstract, dd: drug interaction abstracts, na: not 

applicable, rns: random negative set] 
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Figure 19: Structure of the WEKA ARFF file. 

 

3.2.3 Selection of algorithm: 

The training and testing set consists of the abstracts as shown in Table 7. 

Evaluation is key to identifying the best classifier that can perform the given task with the 

highest accuracy. With the limited amount of data for training and testing, the 10 fold 

stratified cross validation was chosen as the most appropriate method for evaluating the 

various classifiers. The dataset was evaluated using the following 7 classifiers, namely, 

ZeroR, NaiveBayes, K-nearest neighbor, J48, Random Forest, Support Vector Machine 
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and OneR. These are some of the most commonly used algorithms for text classification, 

except for ZeroR which was used here to get a baseline. The filtered classifier belonging 

to the WEKA meta classifier was used, since it has the advantage of simultaneous 

selection of a classifier and filter to evaluate the model. The various classifiers mentioned 

above were tested along with the string to word vector filter, as shown in Figure 20. The 

string to word filter converts string attributes into a set of attributes that represent the 

word occurrences from the text contained within the strings. The set of attributes is 

determined from the training data set. The string to word filter provides various options 

as shown in Figure 21 and is explained here. The IDFtransform or inverse document 

frequency transform calculates the word frequency of the term within the document set. 

The TFtransform or term frequency transform calculates the frequency of a given term 

with a document. The combination of IDF and TF reflects the importance of a word to a 

document within the corpus. The attributeIndices specifies the range of attributes to be 

acted upon. The attributeNamePrefix provides the option to add a prefix to the attribute 

names created. The doNotOperateOnPerClassBasis if set to true, results in the maximum 

number of words and the minimum term frequency not being enforced on a per class 

basis but would be based on the documents present in all the classes.  The invertSelection 

sets the attribute selection, if false then only the selected attributes within the range will 

be processed, if true only non-selected attributes will be processed. The 

lowerCaseTokens allows for the conversion of all words to lower case before being 

added to the dictionary. The minTermFrequency allows for selecting the minimum term 

frequency and operates on a per class basis. The normalizeDocLength, sets whether the 

word frequencies for an instance should be normalized or not. The outputWordCounts if 
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set to true gives the exact count of the words rather than just their presence or absence. 

The periodicPruning specifies the rate at which to periodically prune the dictionary. The 

stemmer allows for the selection of a stemming algorithm to stem the words. The 

available stemmers are IteratedLovinsStemmer, LovinsStemmer or SnowBallStemmer. 

The stopWords option allows for the use of a stop word dictionary to eliminate stop 

words. The tokenizer option allows for the selection of the tokenizing algorithm to be 

used. The available options are, alphabeticTokenizer, nGramTokenizer and 

wordTokenizer. The useStopList provide the option to use an additional list of words to 

eliminate. If used, the word in the stop list are eliminated. The wordsToKeep option 

specifies the number of word to keep per class. The 10 fold stratified cross validation 

option was selected and the data from the training set (Table 7) was evaluated to identify 

the best classifier. 
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Figure 20: The filtered classifier option allowing for the simultaneous selection of a 

classifier and filter. 
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Figure 21: The stringToWord filter and the various options available to process the text. 
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3.2.3 Training and testing the model: 

Based on the classification accuracy of the above 5 models, the top three were 

selected for training and testing These models were trained and then tested on the dataset 

shown in Table 7. The highest performing model namely SMO trained on Set 4 (SMO-4) 

was chosen as the model to be used on the unknown dataset. The model was further 

improved by adding a randomly generated set, to improve the classification of abstracts. 

A random number generating script was used to randomly select 10,000 numbers 

between 10000000 and 25000000. The numbers thus obtained were used as PMIDs to 

download the respective abstracts. These abstracts were processed and converted to the 

attribute relationship file format. The 10,000 abstracts were tested using the SMO-4 

model. The abstracts that were classified as RNAi by SMO-4 were eliminated. The 

remaining abstracts formed the random negative dataset. This step ensures that the 

random negative set is free of positive RNAi instances. The randomly generated dataset 

was included in the dataset 5. The dataset shown in Table 7 was used to evaluate a new 

model using the filtered classifier (SMO/StringToWordVector) and named as SMO-5. 

The performance of SMO seemed to be better and consistent and was chosen as the 

model of choice for further analysis.  

3.2.4 Generation of the screening dataset: 

The abstracts for the years 1975 – 2015 was downloaded from the MEDLINE 

database. The abstracts were downloaded and converted to individual text files retaining 

just the PMID, title and abstract information using the procedure as mentioned earlier. 

The text files were grouped by year and then converted to the attribute relationship file 

format using the WEKA TextDirectoryLoader class. The individual .arff weka input files 
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were updated to reflect the classes that were used to generate the classification model 

(SMO-5), namely RNAi and Non_RNAi.  

3.2.5 Extraction of RNAi relevant abstracts: 

The weka arff files containing the abstracts for each year from 2001 to 2015 was 

classified using the SMO-5 classification model on the Bigred2, a Cray XE6/XK7 

supercomputer with a hybrid architecture comprising of 1020 computing nodes. A total 

of 10.5 million abstracts were processed to be classified as RNAi or Non_RNAi. The 

resultant file containing the PMID’s along with the classification as RNAi or Non_RNAi 

was further processed to extract the PMIDs of abstracts classified as RNAi. The abstracts 

for these PMID’s were retrieved and converted to XML format retaining the PMID, 

article title and abstract using the methods previously described. 

3.2.6 Creation of dictionary for entity recognition: 

A perl module was created to house the dictionaries for gene names and cell line 

names. The list of gene names along with their aliases was downloaded from HGNC 

(HUGO Gene Nomenclature Committee) [146] and the list of cell lines names along with 

their aliases was downloaded from cellosaurus [147]. These list were further processed to 

form the final dictionary with cell line names and gene names normalized to their official 

names/symbols. These dictionaries are very comprehensive with the Gene dictionary 

containing 161863 entries and the cell line dictionary containing 73370 entries.  

3.2.7 Entity tagging and cell-gene information extraction: 

The abstracts that were classified as RNAi were further processed and the gene 

and cell line mentions were tagged with the normalized name of the cell line or gene 

name using the dictionary that was created as mentioned above. Once tagged the abstracts 
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were further processed to extract the cell line name and gene names. These were stored in 

a table format to preserve the genes studied in a given cell line within a given abstract.  

3.2.8 Validation of the essential genes: 

The extracted genes were ranked in descending order of number of studies 

associated. The genes that were studied on an average of 100 or more times were 

extracted and the cell lines in which these genes were studied on average of 20 or more 

times were extracted as well. In addition the top 20 most studied genes, the median 20 

genes and the bottom 20 genes were extracted. The correctness of the extracted cell gene 

associations was verified by selecting the relevant PMIDs and manually scanning for the 

presence of the cell and gene information that was extracted. The top genes predicted to 

be essential for cell survival was queried against the network of cancer genes[148] to 

identify their relevance to cancer and were also queried against the Therapeutics Target 

Database [149] to identify if they were drug targets. The genes were also queried against 

the DPSC database [150] at a threshold p-value of < 0.05 to check for them being 

reported as essential genes.  

Finally a network of the essential genes was built to check for interaction within 

themselves and with other genes using the GeneMANIA software[151]. 

3.3 Results: 

3.3.1 Identification of siRNA relevant abstracts and corpus creation: 

From the approximately 2000 abstracts that were manually screened 221 belonged 

to the RNAi class and 1644 belonged to the Non_RNAi class, which included abstracts 

from drug, drug-drug or the not applicable class as described in the methods section. The 
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average inter classification agreement among individuals who manually read the abstracts 

was 0.75.   

Since these abstracts were initially downloaded based on the specific cell lines 

prior to the manual scan, there were duplicate abstracts among the cell lines, which were 

eliminated from the dataset. The above mentioned datasets formed the text corpus to be 

used for RNAi text classification. This dataset was further divided into training and 

testing data for evaluating and training the models for RNAi text classification.  

3.3.2 Evaluation of the classifiers: 

Evaluation is key to identifying the best model for a given task. In order to get an 

estimate of the generalization error each of the classifiers chosen was evaluated using the 

10 fold stratified cross validation. In this way the performance of the model can be 

evaluated and decision made based on the classification accuracy of a given classifier for 

a given dataset. The classifiers were evaluated and the results as percent correctly 

classified are as shown in Table 8. The zeroR classifier is used here to determine the 

baseline performance and as a benchmark for the other classification methods used. The 

zeroR classifier is the simplest classification method and does not have any predictability 

power. It simply builds a frequency table of the given data and selects the most frequent 

value as its prediction. It can be noted from the Table 8 for zeroR that the percentage 

accurately predicted is the same as the percentage of the class that is most abundantly 

present. This is used as a bench mark and any value that falls below the accuracy of a 

zeroR classification would not be considered a good classifier, it would only be as good 

as a random guess.  
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From Table 8, it can be observed that the composition and balance between the 

positive and negative set does affect the accuracy results of some of the classifiers. 

Overall the J48, NaiveBayes and SMO seemed to be consistent across the various 

datasets and more immune to the varying changes between the dataset size and 

composition. 

 

Classifiers Set 1 Set 2 Set 3 Set 4 Set 5 

ZeroR 75 50 75 80 93.41 

NaiveBayes 93 89 93.25 92.4 95 

KNN 77 74 81 83.2 94.23 

J48 95 95 94.5 96.6 98.46 

RandomForest 91 95 84.75 82.8 93.41 

SMO 94.25 94.5 94.5 96 98.35 

OneR 88.75 78 88.75 91 96.09 
Table 8: The % accuracy of classification after evaluating each classifier on a given 

dataset using 10 fold stratified cross validation. 

 

3.3.3 Evaluating the performance of the top 3 models:  

The top 3 classifier models with the highest accuracy of prediction for a given 

dataset was chosen for further analysis to determine the final model to be selected for 

RNAi text classification. Each of the top 3 performing models evaluated on a given 

dataset was further trained on the respective datasets that were used for their evaluation in 

the 10 fold stratified cross validation, following which they were tested on a previously 
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unseen dataset, namely the test dataset. The performance results from training and testing 

are as shown in Table 9.  

 

Set 1 Train Test Set 2 Train Test Set 3 Train Test 
J48 99.5 94.5 J48 99 93 J48 99.5 94.5 
SMO 100 96.25 RandomForest 100 97.5 SMO 100 94.5 
NaiveBayes 98 86.5 SMO 100 93 NaiveBayes 98.5 84.25 
Set 4 Train Test Set 5 Train Test    
J48 99 92.4 J48 99.5 99.2    
SMO 100 93 SMO 100 98.5    
NaiveBayes 94.2 89 oneR 96.6 97.1    

Table 9: The % accurately classified by the top three models after training and testing. 

These models were previously evaluated using the 10 fold cross validation. 

 

In addition to the performance measures such as percent correctly classified, 

precision and recall, using the error rate is a good way of measuring the classifiers 

performance. Based on the classifiers prediction of whether an abstract belongs to the 

RNAi or Non_RNAi class, the proportion of error made over the whole dataset can be 

calculated thus giving the overall performance of a classifier. It can been seen from Table 

10 that J48 and SMO have the best performance according to the five error metrics. They 

have the lowest values for the mean absolute error, root mean squared error, relative 

absolute error and root relative squared error and the highest value for the kappa statistic 

making them the models of choice.  

It can be noted that J48 and SMO performed the best. Since SMO was 

consistently better across the various datasets and SVM being a preferred, faster 

performing and reliable classifier for text classification, it was chosen for further analysis. 

The various performance metrics for abstracts classified as RNAi are shown in detail for 
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the classifiers tested on dataset 5 in Table 11 and the classifier errors are shown in Table 

10. The J48 and SMO models performed the best with the SMO model being faster in 

time taken to build the model. In addition the ROC curve (Figure 22) for the SMO-5 

proves its efficiency as a very good classification model. 

 

Classifier Error ZeroR NaiveBayes KNN J48 RandomForest SMO OneR 
Kappa statistic                           0.00 0.66 0.23 0.87 0.00 0.86 0.57 
Mean absolute 
error                       0.12 0.05 0.0 : 6 0.02 0.09 0.02 0.04 
Root mean 
squared error                   0.25 0.22 0.24 0.12 0.20 0.13 0.20 
Relative 
absolute error                  100% 40.55% 47.10% 15.63% 73.11% 13.33% 31.55% 
Root relative 
squared error              100% 90.13% 96.73% 48.74% 79.35% 51.73% 79.59% 
Table 10: Classifier errors for the classifier’s tested on dataset 5. 

 

Classifiers Time (sec) TPR FPR Precision Recall F-Measure ROC Area 

ZeroR 2.45 0.00 0.00 0.00 0.00 0.00 0.50 

NaiveBayes 28.82 0.83 0.04 0.59 0.83 0.69 0.95 

KNN 3.22 0.14 0.00 0.90 0.14 0.25 0.57 

J48 116.14 0.83 0.00 0.93 0.83 0.88 0.92 

RandomForest 70.66 0.00 0.00 0.00 0.00 0.00 0.99 

SMO 6.46 0.82 0.01 0.93 0.82 0.87 0.91 

OneR 12.94 0.42 0.00 0.98 0.42 0.59 0.71 
Table 11: Performance metrics across the various classifiers tested on dataset 5 for 

abstracts classified as RNAi. [Time in seconds to build the model, True Positive Rate 

(TPR), False Positive Rate (FPR), Receiver Operator Characteristic (ROC)]. 
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Figure 22: AUC Receiver Operator Characteristics for the SMO-5 model. 

 

3.3.4 Genes essential for cancer cell survival: 

A total of 10.5 million abstracts from the years 2001 to 2015 were tested using the 

SMO_5 model which resulted in 32164 abstracts being classified as RNAi (Table 12). 

These abstracts spanned over 1467 cancer cell lines and 4373 genes. There was a total of 

25891 cell gene associations identified (Table 13), out of which 97% of the associations 

between a cell line and a gene occurred 5 or less times. Only 2 gene-cell line pairs were 

studied more than 90 times. Among the 1467 cell lines 88% of them had at least 1 or up 

to 25 genes studied in a given cell line (Table 14). Among the 4373 genes 96% of them 

were studied in at least 1 or up to 25 different cell lines (Table 15).  

The top 10 cell lines extracted namely, MCF7, MDA-MB-231, HELA, A549, 

HEPG2, HCT116, LNCAP, HEK293, SGC7901 and SW480 (Figure 23) had on an 

average 300 or more associated gene studies and represented Breast, Lung, Colon, 
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Gastric, Liver, Cervical, Prostate and Kidney cancers, which are some of the most 

common cancers that affect men and women. On analyzing the cell lines and genes 

extracted from these abstracts, the top 20 genes, namely AKT1, TP53, CDH1, CCND1, 

VEGFA, BCL2, EGF, CDKN1A, EPHB2, BIRC5, MYC, EGFR, SNAI1, VIM, BAX, 

IFI27, AHSA1, SRC, JUN and STAT3 had on an average 100 studies or more associated 

across different cell lines as shown in Figure 24. Among the top 20 genes, 9 of them are 

known cancer genes that have a role in cellular function as shown in Table 16 [148]. 

These functions are defined in the biological process branch of the Gene Ontology (GO) 

levels 5 and 6. Out of the top 20 genes queried against the DPSC database, 15 of the 

genes were found to be essential among the four cancer types, namely breast, colon, 

ovarian and pancreas. In addition 11 out of the 20 genes have active drugs that are being 

studied in clinical trials or being researched as a potential therapeutic target, some of 

which have been approved. (Table 17, Table 18) [149]. 
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Year Medline RNAi 

2001 424042 101 

2002 435427 180 

2003 472745 425 

2004 514910 745 

2005 575403 1101 

2006 620688 1503 

2007 652232 1724 

2008 701623 1996 

2009 742510 2308 

2010 801061 2707 

2011 862838 3070 

2012 931619 3923 

2013 978796 4048 

2014 1018012 4498 

2015 796876 3835 

Total 10528782 32164 
Table 12: The number of abstracts that were processed per year and the number of 

abstracts that were identified as relevant to RNA interference studies. 
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No. of Cell Gene Associations Frequency 
0 0 
5 25198 
10 461 
15 99 
20 52 
25 25 
30 15 
35 8 
40 4 
45 10 
50 1 
55 1 
60 6 
65 5 
70 1 
75 2 
80 0 
85 1 
90 2 
95 0 
100 0 

Table 13 : The number of times a given gene and cell line were studied together. 
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Genes / Cell Line Frequency 

0 0 

25 1291 

50 73 

100 54 

200 30 

300 10 

400 3 

500 1 

600 2 

700 0 

800 1 

900 1 

1000 0 

1100 1 

Table 14: Frequency of the number of genes being studied in a given cell line. 

 

 

Cell Lines/ Gene Frequency 
0 0 
25 4209 
50 96 
100 46 
150 10 
200 5 
250 3 
300 1 

Table 15: Frequency of the number of cell lines used to study a given gene. 
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Figure 23: Top 10 most studied cell lines 

 

 

 

Figure 24: The top 20 genes predicted to be essential for cell survival. 

0

200

400

600

800

1000

1200
N

o.
 o

f G
en

es

Cell Line Name

Top 10 Cell Lines

0

50

100

150

200

250

300

ak
t1

tp
53

cd
h1

cc
nd

1
ve

gf
a

bc
l2 eg
f

cd
kn

1a
ep

hb
2

bi
rc

5
m

yc
eg

fr
sn

ai
1

V
IM ba

x
ifi

27
ah

sa
1

sr
c

ju
n

st
at

3

N
o 

of
 C

el
l L

in
es

Gene Name

Top 20 Genes



65 

 

 

 

Functional 
Class AKT1 TP53 CDH1 CCND1 BCL2 CDKN1A MYC EGFR JUN 

Cell cycle X X   X X X X X   
Cell motility 
and 
interactions 

    X         X   

Cell response 
to stimuli X X   X X X       

Cellular 
metabolism X X   X   X X X X 

Cellular 
processes X X X X X     X X 

Development X X   X X X   X X 
DNA/RNA 
metabolism 
and 
transcription 

  X         X   X 

Immune 
system 
response 

X       X X       

Multicellular 
activities X       X         

Regulation of 
intracellular 
processes and 
metabolism 

X X X X X X X X X 

Regulation of 
transcription X X         X   X 

Signal 
transduction X X   X X X   X   

Table 16: The genes amongst the top 20 that are known to be cancer genes and their 

roles in the various processes required for cellular function. The presence of the X mark 

indicates that they are involved in that particular functional process of the cell. 
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Table 17: Genes targeted for treating various cancers along with the respective drugs 
used. 

 



67 

 

Table 18: Genes targeted for treating various cancers along with the respective drugs 
used. 
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The top 20 genes studied on an average 20 or more times in a given cell line was 

extracted and the cell lines were associated to their respective cancer types. The Table 19 

shows the number of genes among the top 20 genes associated with a given cancer type. 

All of the top 20 genes were studied in breast cancer, indicating the complexity of this 

disease and the network of genes that may play a role in the progression of this cancer. 

As shown in Figure 22, generated using GeneMANIA [151] these 20 genes are co-

expressed and interact with other genes that are required for cell cycle progression and 

metabolic activities of the cell. Figure 26 shows the top hit gene namely AKT1 and the 

other genes that are co-expressed or have an interaction with it. 
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Cancer Type Genes Studied 

Breast 20 

Lung 5 

Colon 3 

Liver 3 

Cervix 2 

Gastric 1 

Ovary 1 

Pancreas 1 

Prostate 1 

Table 19: The table shows the number of genes among the top 20 genes that were studied 

in a given cancer type. All 20 of them were studied in breast cancer. 
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Figure 25: Genes that are co-expressed and interact with the top 20 genes that were 

identified in different cancer types. The blue lines indicate genes that are co-expression 

and the pink lines indicate an interaction between the genes. 
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Figure 26: The gene network of the top hit gene AKT1 from our study and the other 

genes that are co-expressed or interact with it. The blue lines indicate genes that are co-

expression and the pink lines indicate an interaction between the genes. 
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3.3.5 Validation of Genes predicted to be essential: 

 The top 20 genes, the median 20 genes and bottom 20 genes were extracted and 

were manually verified from the respective abstracts for their essentiality in cell survival. 

The top 20 genes were all found to be essential towards cell survival. Among the median 

20 there were around four that were false positives and among the bottom 20 there were 

two that were false positives and four that were genes found to be essential in a non-

human species. 

3.4 Discussion: 

In multicellular organisms, cell death is a critical process by which the damaged 

cells or those that pose a threat to the organism are destroyed through a tightly regulated 

process of cell destruction [152-154]. This process is very essential for the overall health 

and survival of the organism as it gets rid of the cells that may interfere with its normal 

function [155]. It is clear that a crucial balance between cell proliferation and cell death 

should be maintained and tipping to one side could lead to a diseased state. Cancer, the 

uncontrolled proliferation of cells is one of the most complex and challenging disease to 

treat as it involves many underlying molecular mechanisms and moreover these 

mechanisms are shared alike by cancerous as well as normal cells. This sharing makes it 

difficult to therapeutically target cancerous cells without damaging the normal cells. Most 

of the chemotherapeutic agents available today are relatively nonspecific and cause 

considerable damage to the surrounding normal cells, leading to severe adverse events. 

Thus identifying those molecular mechanisms that are essential only to the survival of 

cancerous cells but not normal cells holds the key to effective cancer treatments. In 

addition the heterogeneity of cancer calls for a systematic identification of genes that are 
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essential for the growth of these diverse set of cells and the resultant cancer phenotype 

which can aid in the identification of potential drug targets.  

Our top hit, AKT is a major signaling hub for various downstream substrates and 

is known to be critical for cell growth and survival [156-158]. It is involved in the 

progression of many human cancers [159-161]. There are various therapeutic 

interventions that are currently being targeted towards the inhibition of AKT [162-164]. 

Perifosine, MK-2206, RX-0201, PBI-05204 and GSK2141795 are some of the potential 

AKT inhibitors being investigated in several cancers[164].The role of AKT in promoting 

cell proliferation and survival in hormone responsive MCF-7 breast cancer cells has been 

previously studied[83]. The investigational drug, MK-2206 has been found to be 

effective in treating breast cancer[165]. It has been shown that increased levels of AKT in 

certain cell lines is associated with acquired resistance to antiestrogenic therapy and an 

inhibition of AKT led to a pronounced growth inhibition of the cell lines[166]. With a 

wide array of involvement in cell survival and cancer progression, AKT is a potential 

drug target in cancer therapy, yet finding an optimal way to inhibit AKT has been 

elusive. Identifying the genes that are essential for cell survival and those that drive 

tumor resistance are critical pieces of information for developing targeted therapies to 

prevent the progression of cancer. 

p53 has been widely studied and is best known for its tumor suppressing ability 

through the initiation of apoptosis. The p53 gene once hailed as a potential therapeutic 

target to halt cancer is met with complexity as many of its functions remain unclear. As 

shown in Figure 27, its ability to regulate the same cellular processes both positively and 

negatively makes it hard to predict the outcomes of its activation[167].  
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Figure 27: p53 response to cellular stress can lead to cell survival or cell death 

  

 Moreover, the median 20 and bottom 20 genes, though not frequently studied may 

hold the answers to treating cancers that respond poorly to therapy. For example the 

NFAT gene from our bottom 20 gene list has been found to be involved in many solid 

tumors and malignancies[168-170]. This and many other genes extracted during this 

process can be exploited for their role in cancer. 

Most of the top essential genes identified and extracted through the large scale 

scanning of PubMed abstracts are involved in the survival pathways and in various 

malignancies – AKT1[162-164, 166, 171-175], TP53[167, 176, 177], CDH1[178, 179], 

CCND1[180], VEGFA[181, 182], BCL2[183, 184], ITK[185], CDKN1A[186], 

EPHB2[187, 188], BIRC5[189], MYC[190], EGFR[191, 192], VIM[193, 194], 

BAX[195], AHSA1[196], and SRC[197]. Figure 25 and Figure 26, show the number of 

genes that are either co-expressed or interact with the essential genes identified in this 
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study. This suggests that the growth and survival of cancer cells is sustained by a network 

of genes that come into harmony to fuel the cancer progression. This clearly brings out 

the importance in not only targeting essential genes, but also those that may be closely 

involved but not very evident as to their role in fueling cancer. This calls for an extensive 

mining of data and literature in search of genes that are less known but critical in cellular 

processes, as these could play a crucial role in the progression of complex disease just as 

rare SNPs do. The co expression of a gene may not mean that it is or has an influence on 

the essential gene identified here. But it could mean that in the absence of the targeted 

essential gene, the co-expressed gene could possible play a role in promoting cell 

survival, a fact that cannot be ruled out. The complexity of effectively treating cancers 

unfolds as the network of genes linked to essential genes grow. Identifying the potential 

interaction that exists between these genes and their individual roles in cell survival or the 

extent of their influence within a pathway can shed light into developing targeted 

therapies that destroy cancerous cells but leave the normal cells intact. 

 This approach in scanning millions of abstracts to identify top genes that are 

essential for survival is a feat that is not possible by an individual researcher or a group, 

just because of the sheer volume of literature that needs to be processed and the 

connections between entities to be made. Using machine learning algorithms, has not 

only helped narrow down the search and provided information about essential genes in 

different cancer types but also provided the building blocks to generate a network of 

interconnected genes and processes, which can be used to generate hypothesis that can be 

experimentally validated to improve our understanding of what triggers and maintains the 

growth of cancerous cells. This comprehensive list of genes that are predicted to be 
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essential in various cancer types can be used as an informational tool by researchers who 

wish to identify more genes that may be crucial to answer the questions they may have in 

treating a specific type of cancer. Moreover when the top essential genes do not provide 

all the answers that a research is seeking, they can expand their targeted gene list by 

utilize this resource to look up the less frequently studied genes which might prove to be 

more critical just as rare variants are in finding answers to treating complex diseases. 

Since genes that are essential are typically involved in biological processes that are 

critical to a cell, the identification of essential genes in other species through this process 

can be used as a method of identifying novel targets that would have otherwise gone 

unnoticed. 

There are a few limitations to the method used here. Even though majority of the 

genes found to be essential are identified and associated with their respective cancer cell 

lines, there have been instances where a gene or gene alias was the same as that of a 

commonly used word in English and got tagged incorrectly leading to a false positive. 

Another limitation of this process is that it cannot identify instances where a gene was 

specifically found to be not essential for a given cell line. 

It is very evident thus far that the efficacy of a therapeutic intervention is 

multifactorial in nature and in many cases the source of therapeutic disruption could be 

from an unsuspected source as shown in this dissertation. As in the case of vitamin A 

which is abundantly present in a range of daily consumed foods to multivitamin pills, its 

presence can lead to the upregulation of aromatase enzyme, which could possibly lead to 

an increase in estrogen production there by interfering with the efficacy of aromatase 

inhibitors. Further the identification of an antiestrogenic property for the urinary 
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analgesic phenazopyridine previously unknown could be exploited to alter estrogen 

action and can be further explored for any potential interactions with oral contraceptives 

that could influence their efficacy. Identifying genes that are essential for a cells survival 

can be utilized to target them in precisely shutting of resources that help cancer cells to 

survive. More importantly, the mining of scientific literature helps connect information 

across non interacting scientific articles as well as uncovering hidden knowledge leading 

to hypothesis with the potential for clinical applications in treating complex diseases. 
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