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Kislaya Kunjan 

 

A BIG DATA AGUMENTED ANALYTICS PLATFORM TO OPERATIONALIZE EFFICIENCIES AT 

COMMUNITY CLINICS 

 

Community Health Centers (CHCs) play a pivotal role in delivery of primary healthcare to 

the underserved, yet have not benefited from a modern data analytics platform that can support 

clinical, operational and financial decision making across the continuum of care. This research is 

based on a systems redesign collaborative of seven CHC organizations spread across Indiana to 

improve efficiency and access to care.   

Three research questions (RQs) formed the basis of this research, each of which seeks to 

address known knowledge gaps in the literature and identify areas for future research in health 

informatics. The first RQ seeks to understand the information needs to support operations at 

CHCs and implement an information architecture to support those needs. The second RQ 

leverages the implemented data infrastructure to evaluate how advanced analytics can guide 

open access scheduling – a specific use case of this research. Finally, the third RQ seeks to 

understand how the data can be visualized to support decision making among varying roles in 

CHCs. 

Based on the unique work and information flow needs uncovered at these CHCs, an end-

to-end analytics solution was designed, developed and validated within the framework of a rapid 

learning health system. The solution comprised of a novel heterogeneous longitudinal clinic data 

warehouse augmented with big data technologies and dashboard visualizations to inform CHCs 

regarding operational priorities and to support engagement in the systems redesign initiative. 

Application of predictive analytics on the health center data guided the implementation of open 

access scheduling and up to a 15% reduction in the missed appointment rates. Performance 

measures of importance to specific job profiles within the CHCs were uncovered. This was 

followed by a user-centered design of an online interactive dashboard to support rapid 

assessments of care delivery. The impact of the dashboard was assessed over time and formally 

validated through a usability study involving cognitive task analysis and a system usability scale 

questionnaire.  
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Wider scale implementation of the data aggregation and analytics platform through 

regional health information networks could better support a range of health system redesign 

initiatives in order to address the national ‘triple aim’ of healthcare. 

        Josette F. Jones, RN, Ph.D., Chair 
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CHAPTER 1: GENERAL BACKGROUND 

 Introduction 

The United States (US) healthcare system is beset with inadequate access, increasing 

costs, and low or inconsistent quality of care1. Average healthcare expenditure per capita is two-

and-a-half times that of other developed countries even as the overall health care ranking remains 

low2. Primary health care is particularly challenged in terms of access, costs and outcomes relative 

to peer economies3.  

Concurrently, the healthcare landscape is entering a new era with the passage of the two 

important federal legislation: Health Information Technology for Economic and Clinical Health 

(HITECH) Act and the Patient Protection and Affordable Care Act (ACA). The HITECH Act passed in 

20094, has been promoting the adoption and meaningful use of health information technology 

(IT), notably Electronic Health Record systems (EHRs)5 and health information exchanges (HIEs)6. 

The ACA passed in 2012,7 is greatly expanding health insurance access to citizens and creating 

new incentives to change clinical practice through better care coordination and quality. The 

provisions from both these legislations are making electronic healthcare data integral for clinical 

practice as well as making primary care health providers more accessible to patients8. The rapid 

adoption of Health IT is also catalyzing the premise of a highly participatory rapid learning health 

system (LHS), which seeks to derive actionable knowledge based on real-world experiences of 

millions of patients receiving care from health care providers, thereby hoping to reduce the 17-

year average latency between discovery of new medical knowledge and its widespread use9. The 

Institute for Healthcare Improvement (IHI)10  posits that new health system designs must be 

developed to simultaneously pursue the three dimensions (“triple aim”) of healthcare: improve 

the patient experience of care (including quality and satisfaction); improve the health of 

populations; and reduce the per capita cost of health care. More recently, the ‘triple aim’ has 

been expanded to a ‘quadruple aim’, adding the goal of improving the work life of health care 

providers 11 . Leveraging health IT has been recognized as key to achieving these “aims” of 

healthcare12,13. 

Within primary care, Community Health Centers (CHCs) function as ‘safety net’ 

ambulatory providers of acute, chronic and preventive care services to the low income and in 

medically underserved areas.14 There are 1375 federally supported CHC organizations, also known 

as Federally Qualified Health Centers (FQHCs) or simply, health centers, that are spread over 9800 

clinical service delivery sites serving over 23 million patients15. The passage of the key provisions 
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of the ACA starting in 2014 aimed at reducing the uninsured population, has led to CHCs assuming 

a greater role in the primary care delivery landscape16. This is because the previously uninsured 

population now has coverage through the ACA and seeks health care predominantly at the CHCs17. 

The CHCs in turn have also received additional funding to meet this new demand for services 

through facility construction, renovation and the acquisition of health IT18,19. The expansion and 

investment in health IT serves to enhance the role of CHCs in the learning health system paradigm.  

CHCs do share some health IT commonalities with other outpatient primary care clinics 

(many of which are affiliated with large hospital systems). In particular, they both rely on EHRs as 

a means to capture clinical information and manage their practice. However, CHCs differ 

significantly from other outpatient clinics in terms of their patient population. From a financial 

perspective, this creates challenging revenue streams due to a disadvantageous payer mix, with 

average operating margins at CHCs being less than 1%. This in turn limits their ability to make 

substantial capital investments (either in terms of facilities or health IT solutions)20. However, with 

federal funding support for health IT, the CHCs have seen great expansion in their implementation 

and use of EHRs since 201021. Over 92% of all CHCs now use EHRs, which is higher than other 

office-based physician practices22.  

CHCs are keen to achieve the status of patient-centered medical homes (PCMH)23 – a care 

delivery model which is patient-centered (responsive to individual patient preferences, needs and 

values) and coordinated through a primary care physician while being committed to quality and 

safety. Two-thirds (68%) of CHCs have thus far achieved PCMH recognition (a provision within the 

ACA). A critical factor for achieving PCMH recognition relates to improving patient appointment 

access defined in terms of providing same day appointments to patients (through more open 

scheduling), monitoring no-shows, and identifying opportunities to improve patient access to 

appointments24. CHCs are known to face unusually high no-show rates,25 partially attributable to 

their unique clientele, difficulty in retaining providers needed for building patient relationships 

that in turn support visit adherence26, and their inability (as safety-net providers) to penalize those 

who don’t show for their scheduled appointments. This calls for a greater understanding of the 

clinic operations and in particular as it pertains to the appointment scheduling system and how it 

can be redesigned to deliver high quality care in terms of appointment access, outcomes, and 

costs27.   

This research builds upon efforts to better understand the unique work and information 

flow needs at CHCs from a health IT perspective. It then builds an analytics platform to support 
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an operational redesign initiative aimed at delivering care that is efficient and accessible. 

Improving access to care through a redesign of the appointment scheduling system is a specific 

use case of this research, given its importance in light of CHCs achieving PCMH recognition. 

However, the data analytics supports measures that extend beyond the optimization of the 

scheduling system. Definitions of key terms used in this dissertation are included at the end of 

this chapter.  

1.1.1 Importance of Topic 

Despite having the most expensive health care delivery system, the US ranks last overall 

among 11 industrialized countries on measures of health system quality (effectiveness, safety, 

coordination, patient-centeredness), access to care (costs, timeliness of care), efficiency, equity, 

healthy lives, and health expenditures per capita28. The US Department of Health and Human 

Services (HHS) through the Office of the National Coordinator for Health IT (ONC) has been making 

unprecedented efforts to put information technology to work in health care29. More importantly, 

the ACA has established comprehensive healthcare insurance reforms to increase access to 

healthcare, improve quality, lower costs, provide comprehensive care through PCMH30. Not only 

does the ACA rely on CHCs to provide care for the millions of newly insured patients, but also ties 

increased funding to demonstrated quality and efficiency31.  

Various federally funded agencies, such as AHRQ (Agency for Healthcare Research and 

Quality), NIH (National Institutes of Health), and PCORI (Patient-Centered Outcomes Research 

Institute) are fostering health IT innovations32, with focus on such initiatives as Health Information 

Exchanges (HIE), Usability and system design for integration with clinic workflow, Big Data to 

Knowledge (BD2K) Initiative 33 , and PCORnet (National Patient-Centered Clinical Research 

Network)34.  

For the nation to remain competitive, it is important to assess the impact of federal 

legislation and associated initiatives on access to health care, and ultimately the quality of care 

for the underserved (especially in the areas of preventive care and chronic disease management). 

AHRQ’s National Healthcare Disparities Report (2013) examined the differences in quality of care 

among racial and ethnic groups, and brought to light the lack of a comprehensive set of data 

elements that can produce national and state estimates for healthcare quality (in terms of 

effectiveness of care, patient safety, timeliness of care, patient centeredness, and efficiency of 

care).35 Notably, Indiana ranks in the lowest quartile in the quality of ambulatory care (about 55% 

of ambulatory care services are with primary care providers36 and CHCs account for a sizeable 
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portion of those visits), yet the state ranked in the highest quartile in terms of hospital care. This 

report underscores the value of improving the various the dimensions of care (outcomes, access, 

efficiency, equity) in primary care and community health center settings, in particular, given their 

increasing importance in the era of the ACA. Furthermore, increasing healthcare spending on 

primary care has been shown to pay for itself via resulting reductions in overall health spending37.  

Sound data-driven clinical and operational decision making plays a crucial role in 

improving the quality of care, yet challenges remain in the design, development, implementation, 

adoption and utilization of health IT solutions (of which EHR systems are the most visible 

component)38. Leveraging health IT solutions for improving clinical and operational performance 

often requires the creation of data repositories39 since they reduce barriers in assessing and 

analyzing data in an efficient and cost-effective manner40. A data warehouse that can efficiently 

aggregate structured and unstructured data from multiple disparate data sources, including 

patient records, clinical quality scores, and payer data can be used to improve clinical and financial 

outcomes across the CHC practice and the region at large, as well as foster informatics and 

operations research 41 , 42 . Actionable discoveries through aggregation, statistical analysis and 

creative slice-and-dice of data is at the foundation of a data-driven business43.  

1.1.2 Defining Healthcare Access and Efficiency 

Access to care and efficiency are important concepts within the context of this research 

and hence are explained in greater detail. As noted, additional terms used in this document have 

been defined at the end of this chapter.  

Access to health care means having "the timely use of personal health services to achieve 

the best health outcomes"44. Attaining satisfactory access to care requires three discrete steps: 

Gaining entry into the health care system, getting access to sites of care where patients can 

receive needed services and finally finding providers who meet the needs of individual patients 

and with whom patients can develop a relationship based on mutual communication and trust45. 

A common way to measure health care access is to assess the presence or absence of specific 

resources that facilitate health care, such as having health insurance or a usual source of care.  

Within the context of healthcare operational research, however, access to care is defined 

more in terms of assessments of how easily patients can gain access to needed health care. A few 

common operational measures related to this include: patient demand (for appointment), 

available supply (of appointment slots), patient wait time for appointments, no-show rates, office 

visit cycle time, and patient satisfaction46. Operational measures on patient access are influenced 
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by the scheduling system in place. In a system of open access scheduling (also known as advanced 

access and same-day scheduling), most, if not all patients can receive an appointment slot on the 

day they call, almost always with their personal physician47. This model replaces the traditional 

approach of differentiating between urgent and routine appointments, which results in the 

routine visits being put off until a later date. The traditional scheduling approach also fosters high 

no-show rates, demand variability,48  and often diverts frustrated patients to urgent care/ER 

facilities where they receive less personalized care at a much higher cost to the healthcare 

system49.   

Efficiency: Efficiency is the ability to avoid waste in producing a desired result. Efficiency 

(η) is often measured as the ratio of useful work output to total work input or 𝜂 =
𝑊𝑜𝑢𝑡

𝑊𝑖𝑛
. In 

ambulatory healthcare operations, a closely related term is that of production efficiency or 

productivity, where the work output is usually the number of patients seen, but can also be 

measured as billed revenue and Relative Value Units (units to quantify the provider work, practice 

expense, and malpractice costs for specific services to appropriately establish payment)50. Work 

input is usually a time interval defined in hours, days or months.  

 Review of the Literature and Knowledge Gaps 

A review of the literature and the knowledge gaps within the area of healthcare data 

analytics is described. The area is broken down into 3 sections namely, information needs and 

challenges, advanced analytics, and finally user-centered dashboards, particularly as applied to 

community health centers. 

1.2.1 Information Needs and Challenges 

The need to increase patients’ access to health care, make the care better coordinated, 

and more effective and efficient is well established.51 While federal incentives from meeting 

‘Meaningful Use’ requirements 52 , has led to an increased adoption of EHR systems, many 

technological challenges have come to the fore, including interoperability challenges and difficulty 

leveraging the large data sets for meaningful analytics.53 While health centers continue to make 

progress using health IT systems, key challenges have become evident in organizing and validating 

data from EHRs and other IT systems. The urgency of responding to these challenges can often 

cause organizations to be reactive and fragmented in their approach to analytics, without the 

opportunity to first build a solid infrastructure for data management and use 54 . Therefore, 

although CHCs have made progress in adopting EHR systems, analyzing data from these systems 

remains complex and time consuming, limiting the ability of clinic leaders to draw meaningful 
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insights55. Even with rapid adoption of advanced health IT at certain health centers, the availability 

of functionalities supporting performance measurement and feedback has lagged even further56. 

An understanding of the operational domain through a work and information needs 

analysis is at the very foundation of a multi-source data integration and analytics platform57. 

Specifically, there is a need to understand the facts, procedures, and processes involved in 

generating the data. A lack of this understanding makes it difficult to identify the data elements 

and navigate through the explanations in the data dictionary. Understanding the “why” and 

“how” a particular data element is collected or measured ensures that important information 

about the processes and systems that generated the original data is not lost in the integration 

process and that data summaries do not lead to poor conclusions. 

Recent studies have shown that the impact of health IT on efficiency are mixed and that 

is attributed to sluggish adoption of EHR systems system coupled with poor interoperability, and 

the failure of organizations to integrate the technology into existing workflow or reengineer care 

processes to take full advantage of efficiencies offered by the health IT58. Some of proposed 

strategies for enhancing the benefits of EHRs include: mandating vendors to open-up their APIs 

(application program interfaces), incentivizing development of low-cost consumer informatics 

tools, and promoting congressional review of HIPAA (Health Insurance Portability and 

Accountability Act) to optimize the balance between data privacy and reuse59. 

While much of the focus of the last decade, via meaningful use incentives has been to 

encourage health care providers to implement EHRs and capture and share data important to 

quality and cost, the work ahead is to ensure that systems are designed and implemented in a 

way that yields the promised benefits to efficiency and quality60. A study assessing the impact on 

CHCs efficiency following EHR implementation showed that there were efficiency improvements 

tied to clinical process (e.g. ordering labs), but the impact from an operational perspective was 

not as well studied61. Elsewhere, CHCs lagged behind in the use of health IT for performance 

monitoring likely due to resource constraints for training and ongoing IT support62. A study on 

using EHRs and data warehouses collaboratively in CHCs have highlighted implementation 

challenges along with the need for big data augmentation63.  

This research intends to fill in the knowledge gap of understanding the unique 

information needs of CHCs in the post-HITECH era and then designing a CHC-centric information 

architecture aimed at supporting data-driven systems redesign initiatives in these settings.  
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1.2.2 Advanced Analytics 

The combination of data warehousing, data mining and evidence-based medicine has 

commenced an innovative application field of information technology in the health care 

industry 64 . Since the early 2000s, studies became increasingly common on appointment 

scheduling systems in health care, particularly as some large primary care clinic systems began 

implementing open access scheduling65. Research has identified several factors that affect the 

performance of appointment scheduling systems, including: arrival and service time variability, 

patient and provider preferences, available information technology and the experience level of 

the scheduling staff66. Methods from industrial engineering and operations research (such as 

agent-based discrete event simulation modeling and stochastic models) have been applied in 

health care to inform outpatient scheduling67.  

The area of appointment scheduling has greater relevance in CHCs due to their unusually 

high no-show rates68. Predictive modeling of no-shows based on logistic regression has been 

widely performed to improve clinic scheduling systems in a number of care settings. For example, 

a pediatric clinic performed no-show modeling to deal with overbooking effectively69. The study 

showed that appointment no-show modeling has negative impacts that include underutilized 

medical resources, increased healthcare costs, decreased access to care, and reduced clinic 

efficiency and provider productivity. A study in a Veteran Affairs Medical Center performed no-

show modeling to improve capacity utilization70. Studies at a primary care center demonstrated 

that no-show behavior was independently correlated with the following four factors: the patient's 

age and race, the presence of any physician-identified psychosocial problems, and the percent of 

non-cancelled appointments that were kept during the prior 12 months71. Another study in an 

academic practice site illustrated that no-show analysis was used to assess the effect of moving 

to a carve-out model of an advanced access scheduling system on no-show rates72. This specific 

study found that the lead time for an available appointment was not a significant factor in 

appointment keeping behavior and that implementation of the concepts of advanced access 

scheduling does not directly result in a reduction in no-show rates. Instead, provider-patient 

continuity, wait time to an appointment, and other factors may be a more important measures. 

Previous study also showed that implementing open access requires an overhaul of scheduling 

infrastructure, including decreasing appointment types, simplifying operational processes, using 

past appointment requests to predict future demand and developing contingency plans for times 

when demand exceeds prediction73.  
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Interestingly, no-show prediction has also been applied in airline bookings to maximize 

revenue, where travelers’ no-show and standby behavior was predicted using passenger and 

directional itinerary information74. Passenger-based predictive modeling of airline no-show rates 

was implemented using three different predictive methods:  a C4.5 decision-tree, a segmented 

Naive Bayes algorithm, and a new aggregation method for an ensemble of probabilistic models75. 

In addition, there are studies that have applied text mining techniques like co-location/co-

occurrence identification and topic modeling for various healthcare applications. These include: 

redundancies in EHR corpora76, translation of medical summaries77, semantic classification of 

consumer health content78, and automatically labeling topics in drug-drug reactions79. 

The literature review calls for a need to develop patient-centered scheduling system that 

most commonly involve some form of open access scheduling, yet it is not known how to best 

design open access scheduling interventions for CHCs and in particular, how advanced data 

analytics can help. The study applies statistical and machine learning models on large scale clinic 

appointment data from multiple clinics to identify patterns of no shows and cancellations 

necessary to guide implementation of open access scheduling as well as shed light on patient 

behavior and preferences. Additional analytics is performed to assess efficiencies and provider 

work output. Finally, the knowledge discovery process is used to guide operationalization of a 

patient-centered scheduling system in community health centers.  

1.2.3 User-Centered Dashboards  

The concept of user-centered design is rather simple – taking the user into account every 

step of the way as a product is developed, but the implications of this simple concept are quite 

complex80. Within the context of healthcare, the user can be a patient and/or some healthcare 

personnel. Interestingly, the term ‘patient-centered’ has been in use since the 1970s81. If health 

care organizations seek to become patient-centered, they must create and nurture an 

environment in which their most important asset—their workforce—is valued and patients are 

engaged in all efforts to improve care. An important way to achieve this commitment and 

engagement is to involve employees and patients directly in the design and implementation of 

patient-centered processes82.  

The premise of a learning healthcare system (LHS) is based on data capture, analysis, 

interpretation and then delivery of tailored messages to individual decision makers in the health 

care practice before implementing the recommended changes 83 . Despite the importance of 

tailoring messages for decision makers, there is a lack of research on understanding the nature of 
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customization for individual roles (providers, management and support staff) in health centers. 

Alignment of information systems with organizational objectives and strategies is a key 

management objective in health care organizations84. The vast majority healthcare organizations 

experience conflicts varying from minor disagreements to fully disruptive behavior among nurses, 

physicians, physician assistants and administrators85. There often are inherent structural tensions 

or conflict between physicians, mid-level providers (nurse practitioner/physician assistant), 

clinical support staff (nurses, patient care assistants), and administrative staff86. By understanding 

the unique information needs of different stakeholders, Information systems can be designed to 

support the core missions of the health center87.  

A recent systematic review of the current state of evidence for the use of clinical and 

quality dashboards in health care environments found that there is considerable heterogeneity in 

the design of dashboards and users targeted88. The review called for detailed research studies to 

obtain evidence of the efficacy and establish guidelines for the dashboard design. Several 

standardized measures have been developed to capture patient reported outcomes (such as 

symptom status, physical function, mental health, social function, and wellbeing) with a focus on 

improving the quality of care from the patient’s perspective 89 . Evidence-based practice 

dashboards for nursing have also been evaluated90. For providers, user-centered design principles 

have been applied to develop graphical dashboards of healthcare questionnaire responses from 

patients. Performance measurement often use scorecards, dashboards, and key performance 

indicators (KPIs) and to effectively measure the same, providers need more than just a balanced 

scorecard. They must also be able to access performance data from a central data warehouse91. 

In particular, data-driven decision making in healthcare is particularly valuable when 

incorporating predictive measures (as opposed to simply historical or descriptive data)92. Studies 

have called for rapid and low cost impact assessment of interventions through health care 

management dashboards and recommend use of experienced evaluators and standard 

methods93. Finally, research calls for applying the emerging area of visual analytics (the science of 

analytical reasoning facilitated by advanced interactive visual interfaces94) as a means to address 

many of the information overload challenges when making sense of large multisource healthcare 

data sets95.  

In summary, there is a gap in knowledge when it comes to understanding what are the 

various performance measures of interest to various roles within a community health center. This 

is at the foundation of a LHS platform that tailors analytics to stakeholders. Furthermore, existing 
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CHC information solutions from EHRs and analytics vendors are more focused on providing 

mandatory reporting solutions as opposed to delivering dashboard visualizations that are 

designed, developed and implemented using user-centered principles. There is also a need for 

appropriate methods to assess the usability and efficacy of dashboards on decision making. In this 

research study, we apply usability principles and agile development methods to engage with 

stakeholders at community health centers to design, implement and assess visual analytics based 

dashboards to support operational performance monitoring and decision making.  

1.2.4 Rationale of the Proposed Research 

To be successful in the evolving era of healthcare, CHCs that provide care for the 

underserved populations must not only skillfully adopt EHR systems, but also use data in new 

ways to manage patient care and their clinic operations to realize improvements96. Review of the 

literature has highlighted the need for advanced predictive and visual analytics that is supported 

by an optimal information architecture at the back end and user-centered design principles on 

the front end to delivery role-specific measures of interest. The specific gaps in knowledge 

addressed by the dissertation include: information needs assessments within health centers, 

advanced analytics to support optimize operations and finally, development of user-centered 

dashboards to support system redesign initiatives. This research has sought to understand the 

clinic work and information flow needs that will guide the development of an analytics and 

visualization platform supported by robust backend data systems. It intends to address the unmet 

need for leveraging health IT solutions within CHCs to improve appointment access, efficiencies, 

and quality of care. It is centered on building a clinic data architecture that is augmented with big 

data technologies and clinic-specific analytics in order to enhance the operational and financial 

health of the community health care system. Here, analytics are applied to the use case of 

implementing open access scheduling. The research will focus on aiding CHC managers, providers 

and staff better understand the issues of patient access to appointments and impact of local 

interventions through visualization of data elements that reflect key quality measures.  

This work carefully considers the unique information needs and workflow of CHCs, with 

the goal of supporting thoughtful planning and effective decision-making to redesign care. Data-

driven dashboards tailored for operational decision making can better meet the needs of 

management, when backed by use of predictive analytics, apply web-based interactive 

visualizations and apply standard usability principles to gather design input as well as rapidly 

assess the learnability and usefulness of such tools. 
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 Research Questions 

The overall hypothesis driving this research proposal is that a user-centered data analytics 

platform improves operational decision making at health centers. The impact on operational 

decision making will be evaluated through improvements in targeted clinic performance 

measures and qualitative feedback from participating health centers.   

Successful implementation of organizational interventions depends on multiple factors 

(notably organizational engagement and culture), as well as how thoroughly the organization has 

followed the implementation program. In order to be considered an evidence-based 

organizational intervention, it was decided that CHC managers must find the analytics platform 

to have content validity (the extent to which the measures represent all facets of the given 

construct) and support organizational buy-in. This is a necessary step to support the 

implementation of any intervention aimed at improving clinic performance. Optimizing open 

access scheduling is a specific use case for this analytics.  

The proposal seeks to understand the information needs within CHCs, build a 

multidimensional data architecture and analytics platform responsive to the expressed needs, 

and lastly incorporate role-specific analytics into a user-centered interactive dashboard to serve 

as a novel decision support tool geared towards improving clinic operational performance.  

There are 3 research questions (RQs) governing this research and each is associated with 

2 sub-RQs, as outlined below. Hypotheses, where applicable (i.e. when the study uses quantitative 

methods) are also noted under each of the sub-RQs.  

 RQ1: What are the operational information needs at CHCs and the optimal data 

architecture to support those needs? – The Information Architecture 

o What are the information needs to support operations at CHCs? 

o What is the optimal data architecture to support those needs? 

 RQ2: How can clinic-specific analytics guide appointment access? – The Data Analytics 

o How can predictive analytics be used to optimize appointment 

scheduling? 

 Specific Hypothesis: The time dimension of appointments is 

independent of appointment adherence 

o How can analytics be used to better evaluate provider productivity? 

 Specific Hypothesis: Productivity measured as Visits/hour and 

RVUs are directly correlated 
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 RQ3: How can clinic-specific data be harnessed to effectively promote reflection and 

decision making among varying roles in community healthcare delivery settings? – The Dashboard 

o What role-specific measures are effective for performance monitoring in 

health centers? 

o What are the design and assessment needs for interactive dashboards of 

user-defined performance metrics? 

The underlined words are used as labels to refer to the RQs/sub-RQs in the next section 

illustrating their inter-relationship.   

1.3.1 Inter-relationship of the RQs 

RQ1 is the foundational component of this research in that it aims to understand the 

information needs at CHCs and supporting those needs through an enterprise data warehouse 

(EDW). The EDW serves as a data source for clinic-specific analytics (RQ2) focused on optimizing 

clinic operations. The two primary operational data analytics tied to the use case of implementing 

open access scheduling are: predictive analytics on appointment adherence; and analyzing 

provider productivity. The clinic-specific data analytics also informs the design of the visualizations 

within the dashboard. The EDW serves as the back-end to the dashboard design and 

implementation (RQ3). This interrelation between the hypothesis, the RQs and the associated 

sub-RQs is illustrated in Figure 1.  

 

Figure 1: Connected Map of the RQs 
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1.3.2 Applying the Conceptual Framework of LHS 

The Institute of Medicine (IoM)97 has defined a ‘Learning Healthcare System’ (LHS) as a 

system in which, “science, informatics, incentives, and culture are aligned for continuous 

improvement and innovation, with best practices seamlessly embedded in the delivery process, 

and new knowledge captured as an integral by-product of the delivery experience”98.  

In this research, the LHS framework has been adapted for operationalizing a user-

centered data analytics platform. The LHS has a virtuous cycle of 6 steps99 that are shown in 

capitalized form: Plan/Gather data, Assemble Data, Analyze Data, Interpret Findings, Tailored 

Messaging, and Change Practice. The adaptation of the LHS cycle from a health IT driven 

operational optimization perspective has been referenced within brackets for each of the steps. 

Figure 2 illustrates the application of this conceptual framework for this research.  

 

Figure 2: Framework of the Learning Healthcare System Cycle applied in this research 

The first step in this research was to gather operational data from the CHCs on their 

information needs and challenges through questionnaires, interviews, process mapping, and data 

from the clinic EHRs and other operational/financial data stores. An efficient data 

repository/warehouse was then created to house collected data, followed by performing clinic-

specific data mining/analytics and interpretation of the findings using tailored dashboard 

visualizations that expose the impact of implemented changes and need for additional change.  

The change in practice then feeds back into the cycle, creating a continuous learning system. 
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It should be noted here that the steps of gathering data through interpreting findings is 

made possible by recent IT innovations, but steps of tailoring messages specific to decisions 

makers and changing practice presents a challenge that requires the incorporation of methods 

from disciplines such as implementation science, human-computer interaction, and health 

economics100.   

 Overview of the Subsequent Dissertation Chapters  

The subsequent dissertation chapters 2, 3, 4 and 5, correspond to RQ 1, RQ 2, RQ 3, and 

closing remarks, respectively. Each of those chapters are written in the form an expanded journal 

article containing sections on introduction, literature review and identified gaps, methods used, 

results, discussion and conclusion. A brief summary of the research aim/hypothesis for each of 

the chapters along with the methods and results is now provided.  

RQ 1/Chapter 2: The research question guiding this chapter is ‘What are the operational 

information needs at CHCs and the optimal data architecture to support those needs?’ referred 

to as the ‘The Information Architecture’. The title of this chapter is: Information Needs at 

Community Clinics: Challenges and Solutions. The methods used to answer this RQ is primarily 

qualitative in nature and include: Use of a detailed CHC information questionnaire, rapid-

ethnography-based workflow observations, and semi-structured interviews. The chapter maps 

the clinic workflows, describes the CHC information needs and challenges faced from a health IT 

perspective and designs and implements a data architecture tailored to the needs in CHCs that 

operate in a resource constrained environment. A data warehouse augmented with big data 

technologies has been populated with over 3.5 million visits records over six years from seven 

different CHC organizations using four different EHR systems. The chosen data infrastructure 

directly addressed the information challenges faced by the CHCs. This set the stage for clinic-

specific data analytics to guide a particular intervention, aimed at improving access to 

appointments, described in Chapter 3.  

RQ 2/Chapter 3: The research question guiding this chapter is ‘What are key clinic-specific 

analytics needed to guide appointment access?’ referred to as ‘The Data Analytics’. The title of 

this chapter is: Large Scale Appointment Data Mining: Informing Patient-Centered Scheduling. The 

methods used to answer this RQ are quantitative in nature. There are two chosen use cases (the 

sub-RQs) that demonstrate the value of the analytics for appointment access, each having its own 

hypothesis. The first evaluates the value of predictive analytics to optimize appointment 

scheduling and the specific hypothesis is that the time dimension of appointments is independent 
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of patient appointment adherence. The second sub-RQ is aimed at understanding the best 

approach to evaluate provider productivity and the specific hypothesis is that the productivity 

measured as visits/hour and RVUs (relative value units) are directly correlated. Following the steps 

of data extraction and scrubbing, statistical analysis, machine learning and visualization 

techniques are applied to evaluate the hypotheses. The results show that some aspects of the 

time dimension have a strong effect on patient appointment adherence, notably the lead time for 

appointment. The analysis also shows that the productivity assessments using RVUs are a better 

indicator of provider productivity. The information needs uncovered in Chapter 2 (RQ1) and the 

analytic results described in Chapter 3 (RQ2) lead to the need to find an effective means to present 

data analytics to a variety of user groups (RQ3), which is discussed in Chapter 4.  

RQ 3/Chapter 4:  The research question guiding this chapter is ‘How can clinic-specific 

data be harnessed to effectively promote reflection and decision making among varying roles in 

community healthcare delivery settings?’ referred to as ‘The Dashboard’. The title of this chapter 

is: A User-Centered Dashboard for Care Delivery in Community Health Centers: Design, 

Development and Evaluation. The methods used to answer this RQ are both qualitative and 

quantitative in nature. The chapter describes the process of design, development, 

implementation and usability testing of an interactive web dashboard that is driven by the data 

warehouse created in RQ1. The design phase discovers role-specific measures of interest to the 

various CHC staff through the application of the card sorting technique and probing with a high-

fidelity prototype dashboard. Following the development and deployment of the dashboard, a 

cognitive task analysis/walk-through and an enhanced system usability survey was conducted to 

assess the usability of the dashboard. Over 45 different measures are uncovered and dominant 

themes identified specific to various employee roles within CHCs. Survey results showed that 

users found the dashboard to be highly usable.  

Closing Remarks/Chapter 5: The dissertation concludes with a summary of the results 

from the three RQs, scientific contribution to the field, future work, limitations, and final remarks.  

 Innovation 

The process of healthcare delivery is creating volumes of data in large-scale organizational 

and clinical information systems. This calls for integrating informatics and health services research 

to understand the structure and function of information systems to use existing data effectively 

through advanced analytics as well develop new tools to collect data, with an aim to improve 

healthcare delivery in line with the LHS framework101. The novel aspects of this research are at 
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the interface of informatics, health services research, implementation science, and systems 

redesign. In particular, the research lays out an innovative approach to foster a LHS-based 

framework in CHCs which have unique needs and barriers.  

Multi-EHR Integrated Repository: This research has identified and validated a core set of 

clinical and practice management data elements from 4 different EHR data models, with one 

consisting of as many as 1900 tables and 31,000 column names. A method was developed that 

integrates the data model from these 4 EHR systems. This rich multi-CHC multi-EHR longitudinal 

data repository of over 3.5 million patient-visit records demonstrates a big data augmented 

community health information network to perform practice-based research. The warehouse 

architecture addresses the unique information needs of collaborating CHCs. This is the first time 

that a health center data warehouse has been architected based on aggregation of EHR and 

operational data to inform and assess the impact of iterative health systems redesign efforts. 

Notably, the Indiana University School of Informatics and Computing has invested in personnel to 

extend and support this resource to foster collaborative research and partnerships with the state-

wide primary care association. 

Advanced Clinic-specific Analytics: Implementing interventions that optimize 

appointment scheduling is a challenging system redesign proposition. This dissertation research 

makes use of advanced data analytic methods of relevance to CHC operations and applies a 

unique combination of machine learning, statistical analysis and visualization techniques to guide 

effective implementation and monitoring of appointment access.  

Role-specific Measures of interest: While there is a well-documented need for business 

intelligence in healthcare and the benefit of dashboards (that include rich interactive 

visualizations customized to individual users) as a tool to meet this need, this research uncovers 

role-specific performance measures of interest within health centers and shows how user-

centered interactive visual dashboards can be designed and implemented to support those 

measures.   

Summarily, the combination of data warehousing, machine learning and visualization has 

commenced an innovative application field of information technology in the health care 

industry102 and this research seeks to build an information infrastructure around that to offer 

support to each stage of the operational learning health system cycle as applied to CHCs.  
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 Key Concepts and Definitions 

Affordable Care Act103: The comprehensive health care reform law enacted in March, 

2010. The law has 3 primary goals: Make affordable health insurance available to more people 

(The law provides consumers with subsidies (“premium tax credits”) that lower costs for 

households with incomes between 100% and 400% of the federal poverty level); Expand the 

Medicaid program to cover all adults with income below 138% of the federal poverty level (Not 

all states have expanded their Medicaid programs); Support innovative medical care delivery 

methods designed to lower the costs of health care generally. 

Acute Care104: Same as urgent care, is care for an illness, injury or condition serious 

enough that a reasonable person would seek care right away, but not so severe that it requires 

emergency room care.  

Big Data105: Big data is a term for data sets that are so large or complex that traditional 

data processing applications are inadequate. Challenges include analysis, capture, data curation, 

search, sharing, storage, transfer, visualization, querying, updating and information privacy. 

Chronic Disease Management106: An integrated care approach to managing illness which 

includes screenings, check-ups, monitoring and coordinating treatment, and patient education. It 

can improve the individual’s quality of life while reducing health care costs associated with chronic 

diseases, by preventing or minimizing the effects of the disease. 

Community Health Centers (CHCs)107: They are funded nonprofit health centers or clinics 

that serve medically underserved areas and populations. CHCs that received federal funding 

through Health Resources and Services Administration are called Federally Qualified Health 

Centers (FQHCs). FQHCs provide primary care services regardless of the individual’s ability to pay. 

Data Analytics108 (also Data Mining): Health care analytics is a product category used in 

the marketing of business software and consulting services. It makes extensive use of data and 

statistical methods to perform explanatory and predictive modeling. Related fields are data 

mining, and knowledge discovery in databases (KDD). Data mining is the application of specific 

algorithms for extracting patterns from data and is a specific step within the larger KDD process109.  

Data Warehouse110: In computing, a data warehouse (DW), also known as an enterprise 

data warehouse (EDW), is a system used for reporting and data analysis, and is considered as a 

core component of the business intelligence environment. DWs are central repositories of 

integrated data from one or more disparate sources. 
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Decision Making 111 : Decision-making is the process of identifying and choosing 

alternatives based on the values and preferences of the decision-maker. 

EHRs112: An electronic health record (EHR) is a digital version of a patient’s paper chart. 

EHR systems (EHRs) are real-time, patient-centered records that make information available 

instantly and securely to authorized users. While EHRs do contain the medical and treatment 

histories of patients, they are built to go beyond standard clinical data collected in a provider’s 

office and can be inclusive of a broader view of a patient’s care. Modern EHR systems have native 

integration with Practice Management (PM) systems as well.  

Federal Poverty Level (FPL)113: A measure of income issued every year by the Department 

of Health and Human Services. Federal poverty levels are used to determine an individual’s 

eligibility for certain programs and benefits, including savings on Marketplace health insurance, 

and Medicaid and CHIP coverage. For e.g., per 2016 guidelines, it was $11,880 for individuals and 

$20,160 for a family of three.  

Health IT114: Health information technology (health IT) makes it possible for health care 

providers to better manage patient care through secure use and sharing of health information. 

Health IT includes the use of electronic health records (EHRs) instead of paper medical records to 

maintain people's health information. 

Information Architecture (IA): IA is a structural design of how all the components in 

information are integrated. It includes, the hardware, software, data marts and/or granular data 

warehouses115. The main components of IA are: plans, policies, principles, data models, standards, 

frameworks, technologies, organization, and processes. They are often equated with enterprise 

data architecture and data warehouse architecture. The Data Management Association (DAMA) 

posits a top-to-bottom hierarchy of knowledge, information, and data116.  

Information Needs: Information needs arise when people recognize a gap in their state of 

knowledge, that is, when they experience ‘an anomalous state of knowledge’ and wish to resolve 

that anomaly117. It is the need for information that individuals ought to have to do their job 

effectively or solve a problem satisfactorily. There is an implied value judgement in this – the 

meeting of need is beneficial or necessary to the person – and would be recognized as such.  

People do not have information needs per se, rather they experience a problem or difficulty or 

are under some pressure, and these cognitive and emotional needs may be met, by obtaining and 

then applying the appropriate information118.  
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Medicaid119: Insurance program that provides free or low-cost health coverage to some 

low-income people, families and children, pregnant women, the elderly, and people with 

disabilities. Many states have expanded their Medicaid programs to cover all people below certain 

income levels. 

Business informatics (BI) or Organizational Informatics 120 : Business Informatics (also 

known as Organizational Informatics) includes information technology, with a focus on the 

development of solutions for business problems. Information Systems has been said to have an 

"explanation-oriented" focus in contrast to the "solution-oriented" focus that dominates BI. BI 

researchers mainly focus on the creation of IT solutions for challenges they have observed or 

assumed. 

Patient-Centered Outcomes Research 121 : Research that compares different medical 

treatments and interventions to provide evidence on which strategies are most effective in 

different populations and situations. The goal is to empower the patients and their doctors with 

additional information to make sound health care decisions. 

Preventive Services 122 : Routine health care that includes screenings, check-ups, and 

patient counseling to prevent illnesses, disease, or other health problems. 

Primary Care123: Health services that cover a range of prevention, wellness, and treatment 

for common illnesses. Primary care providers include doctors, nurses, nurse practitioners, and 

physician assistants. They often maintain long-term relationships with you and advise and treat 

you on a range of health related issues. They may also coordinate your care with specialists. 

Primary Care Providers 124 : A physician (M.D. – Medical Doctor or D.O. – Doctor of 

Osteopathic Medicine), nurse practitioner, clinical nurse specialist or physician assistant, as 

allowed under state law, who provides, coordinates or helps a patient access a range of health 

care services. 

Usability125: Usability is the ease of use and learnability of a human-made object such as 

a tool or device. In software engineering, usability is the degree to which a software can be used 

by specified consumers to achieve quantified objectives with effectiveness, efficiency, and 

satisfaction in a quantified context of use. 

User-Centered Design126: The User-centered design (UCD) process outlines the phases 

throughout a design and development life-cycle all while focusing on gaining a deep 

understanding of who will be using the product. There are many variations of the UCD process.  It 



 

20 

can be incorporated into waterfall, agile, and other approaches. Depending on the needs, the 

user-centered design process is comprised of a number of methods and related tasks.  

User Experience127: User experience (UX) focuses on having a deep understanding of 

users, what they need, what they value, their abilities, and also their limitations.  It also takes into 

account the business goals and objectives of the group managing the project. UX best practices 

promote improving the quality of the user’s interaction with and perceptions of the product and 

any related services. 

Workflow128: Workflow is the sequence of physical and mental tasks performed by various 

people within and between work environments. It can occur at several levels (one person, 

between people, across organizations) and can occur sequentially or simultaneously. Workflows 

may be viewed as one fundamental building block to be combined with other parts of an 

organization's structure such as information technology, teams, projects and hierarchies. For 

example, the workflow of ordering a medication includes communication between the provider 

and the patient, the provider's thought process, the physical action by the provider of writing a 

paper prescription or entering an electronic prescription into an electronic health record and 

transmitting the order electronically or having the patient take the prescription to the pharmacy 

to have the prescription filled. 
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CHAPTER 2: INFORMATION NEEDS AT COMMUNITY CLINICS: CHALLENGES AND SOLUTIONS 

 Introduction 

A strong primary health care system can improve individual and population health 

outcomes while limiting the cost of health service provision129. Within the primary care sector, 

Community Health Centers (CHCs) function as ‘safety net’ providers of acute, chronic and 

preventive care services to low income and in medically underserved areas130. They have assumed 

greater importance with the passage of the Affordable Care Act (ACA), which has made healthcare 

more patient-centered, affordable and above all much more accessible to this newly insured 

patient population131. In 2015, there were 1375 federally qualified community health centers 

spread over 9800 neighborhood service sites that handle over 90 million patient-visits a year132. 

Effective and meaningful use of health information technology (IT) is vital to improving quality, 

efficiency, and reducing disparities in healthcare133.  

The National Healthcare Disparities Report examined the differences in quality of care 

among racial and ethnic groups, and brought to light the lack of a comprehensive set of data 

elements that can produce national and state estimates for healthcare quality (in terms of 

effectiveness of care, patient safety, timeliness of care, patient centeredness, and efficiency of 

care).134 Notably, Indiana ranks in the lowest quartile in the quality of ambulatory care (about 55% 

of ambulatory care services are with primary care providers135 and CHCs account for a sizeable 

portion of those visits), yet the state ranked in the highest quartile in terms of hospital care. This 

underscores the value of improving the various the dimensions of care (outcomes, access, 

efficiency, equity) in primary care delivered in CHC settings, in particular, given the large increase 

in patient volume accessing healthcare in the era of the ACA.  

Sound data-driven clinical and operational decision making plays a crucial role in 

improving the quality of care, yet challenges remain in the design, development, adoption, 

implementation, and use of health IT solutions, of which electronic health records (EHRs) are the 

most visible component136. Leveraging health IT solutions for improving clinical and operational 

performance often requires the creation of data repositories137 since they reduce the barriers to 

accessing and analyzing the data in an efficient and cost-effective manner138. A data warehouse 

that can efficiently aggregate structured and unstructured data from multiple disparate data 

sources – including patient records, clinical quality scores, and payer data – can be used to 

improve clinical and financial outcomes across the CHC practice as well as foster informatics and 

operations research139,140. Actionable discoveries through aggregation, statistical analysis and 
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creative slicing-and-dicing of data is at the foundation of a data-driven business141. However, 

deriving knowledge from health care data requires an in-depth understanding of both the work 

and information flow within the source organizations142. 

Like all primary care clinics, CHCs also rely on EHRs as a means to capture clinical 

information and manage their practice, however, they differ in terms of their patient population. 

Figure 3 highlights the notable differences between the CHC patient population and the general 

US population in terms of the poverty level [e.g. 72% of CHC patients are at the Federal Poverty 

Level (FPL) vs. 15% for the US population], race [24% vs. 13% Black/African American], ethnicity 

[35% vs. 17% Hispanic], and insurance mix [42% vs. 16% Medicaid]143.  

 

Figure 3: The CHC patient population in contrast to the general US population 

The over representation of an indigent, uninsured and Medicaid patient population at 

CHCs affects their overall clinical operations, including their health IT. Notably, a disadvantageous 

payer mix at CHCs leads to average operating margins being less than 1%, which leaves them 

poorly equipped to make substantial capital investments (either in terms of facilities or health IT 

solutions)144. However, with federal funding support for health IT, the CHCs have seen great 

expansion in their implementation and use of EHRs since 2010145, with over 92% of all CHCs now 

using EHRs.  

Whereas federal incentives for meeting ‘Meaningful Use requirements146, has led to an 

increased adoption of EHRs across practices, many technological challenges have come to the 

fore. This is especially true when CHCs attempt to leverage large data sets for meaningful 

Poverty Level Race Ethnicity Insurance



 

23 

analytics, which requires organizing and validating data from EHRs and other health IT systems 

147. The urgency of responding to such a challenge can cause organizations to be reactive and 

fragmented in their approach to analytics, without the opportunity to first build a solid 

infrastructure for data management and use148. Even with rapid adoption of advanced health IT 

at certain health centers, the implementation has lagged for functionalities supporting 

performance measurement and reporting149.  

An understanding of the operational domain through a workflow and information needs 

analysis is at the very foundation of a multi-source data integration and analytics platform and in 

particular there is a need to understand the domain knowledge; the data model; and the data 

itself150. A lack of understanding of the facts, procedures, and processes involved in generating 

the data makes it difficult to identify the data elements and navigate through the explanations in 

the data dictionary (a collection of descriptions of the data objects or data models used in a 

particular database). Understanding the “why” and “how” a particular data element is collected 

or measured ensures that important information about the processes and systems that generated 

the original data is not lost in the integration process and that data summaries do not lead to 

faulty conclusions.  

2.1.1 Knowledge Gaps 

The need to improve access and efficiency in healthcare is well-established 151 . The 

effective utilization of health IT systems can support improvements in clinic operations, while 

yielding cost savings for health centers and payers alike152. Although CHCs have made progress in 

adopting EHR systems, the analysis of data from these systems remains complex and time 

consuming, limiting the ability of clinic leaders to draw meaningful insights153. CHCs, not unlike 

other health systems, are a potentially valuable source of clinical and administrative data. 

However, when the data is hard to extract or when it resides in multiple disparate silos, health 

systems cannot easily aggregate, analyze and assess the data in a cost-effective manner154.  

Systematic reviews have identified challenges faced by healthcare institutions to leverage 

their data for meaningful analytics. CHCs in particular face several resource barriers in this regard: 

general shortage of clinical and technologically skilled individuals in rural/underserved areas155; 

lack of integration into centralized health IT networks, or the scale necessary to justify set up of 

independent health IT infrastructure156; and shortage of CHC-specific vendor product offerings for 

analytics157. However, all these studies were done long before the implementation of the HITECH 



 

24 

Act in 2009 and in particular, the study 158  evaluating information needs for rural health 

‘professionals’ was done in 2000.   

The state of Indiana is among the few in the country that has not yet benefited from a 

Community Health Information Network, better known as Health Center Controlled Networks 

(HCCNs) – a network of primary care health centers that works towards achieving meaningful use 

of EHR systems and adopting technology-enabled quality improvement strategies, and engaging 

in health information exchange to strengthen the quality of care and improve patient health 

outcomes. This is in stark contrast to the fact that the state is home to the nation’s largest health 

information exchange159.   

Lastly, while, there are multiple HCCNs in the nation160, even those networks realize the 

need to augment their data warehouses with new technologies in the wake of the big data 

revolution161. It remains to be seen on how this can be implemented cost-effectively in resource 

constrained settings, such as CHCs. There is also lack of research identifying the resources needed 

at federally qualified health centers to benefit from this big data revolution162.  

The study intends to fill in the knowledge gap of understanding the unique information, 

analytic and resource needs of CHCs in the post-HITECH era and then designing a CHC-centric 

information architecture to address those needs for sound data-driven care delivery in these 

settings. The study also serves to propel forward the CHCs in Indiana, which is home to the largest 

HIE in the country, yet lacks an HCCN.  

2.1.2 Understanding Information Needs and Information Architecture 

Considering the importance of ‘information needs’ in this study, we start with defining 

what that is. The book, ‘Assessing Information Needs: Tools, Techniques and Concepts for the 

Internet Age’163 describes information needs as one that arises when a person recognizes a gap in 

his/her state of knowledge and wishes to resolve that gap. People do not have information needs 

per se, rather they experience a problem or difficulty, and these cognitive and emotional needs 

may be met, by obtaining and then applying that information.  The authors point to four primary 

methods to yield the necessary high quality data to assess information needs: interviews, 

questionnaires, diaries, and observation. Of these, interviews are considered superior, 

particularly in-depth open-ended interviews and when combined with questionnaires and 

observations offer a fuller, richer and more trustworthy source of data.  

Information Architecture (IA) is a structural design of how all the components in 

information are integrated. It includes, the hardware, software, data marts and/or granular data 
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warehouses164. They are often equated with enterprise data architecture and data warehouse 

architecture, although it should be pointed out here that the Data Management Association 

(DAMA) posits a top-to-bottom hierarchy of knowledge, information, and data165. Specifically, 

data, “is the representation of facts as text, numbers, graphics, images, sound or video”, while 

information is obtained by interpreting the context around data and finally, the resulting 

information then creates new knowledge that guides decision making.  

2.1.3 Research Question 

There are two research questions guiding this chapter. The first one is what are the 

information and analytic needs to support operations at CHCs, and secondly, what is the optimal 

data architecture to support those needs.  

The present research study is an offshoot of a larger 3-year health systems redesign 

research project funded by the Patient Centered Outcomes Research Institute (PCORI)166. The 

larger project aims to improve efficiency and access to care for CHCs in the state by: identifying 

successful strategies to improve access; applying Delphi expert panel methods to enumerate and 

prioritize identify feasible and valid patient-centered, strategies for change; applying workflow 

and simulation modeling to develop clinic-centered recommendations for scheduling and access 

practice and policy changes; and finally, determining whether implementing patient-centered 

system of culture change and expanded open-access can improve access to care, relative to 

existing approaches. The focus of this chapter is on the health IT related needs of CHCs and how 

those needs are being met, which is critical to optimizing health care delivery.  

 Methods 

2.2.1 Study Participants 

Our research team partnered with 7 CHC systems representing 40 different sites 

geographically spread across the state of Indiana and serving over 150,000 patients each year. 

These CHCs were part of the larger collaborative project aimed at improving access to care. The 

CHCs operated in urban, semi-urban and rural settings and provide care to a diverse patient 

population in terms of race, ethnicity, insurance status, and income levels.  

2.2.2 Specific Approach 

The study took a novel approach to redesigning health systems based on clinic 

organizational information needs. In assessing the information needs for CHCs, the “positive 

deviance” framework – an established problem solving approach from complexity science167 was 

applied. Positive deviants are individuals (or even organizations) who have an uncommon or 
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unique approach to solving challenges and consistently demonstrate high performance in a given 

area of interest168. The positive deviant individuals are neither rebels nor do they disrupt their 

organizations, instead, they consider achieving the collective goal more valuable and important 

than conforming to organizational limitations and conventional wisdoms169. The ‘positive deviant’ 

individuals for this study were recommended by the clinic manager or the CHC-leadership. 

The goal of this work was to understand the necessary information architecture at CHCs 

to support decisions about implementing change to improve clinic efficiency and access to care. 

Three complementary methods were used to accomplish this aim: 1) a clinic information 

questionnaire; 2) semi-structured interviews with key informants; and 3) workflow observations. 

Qualitative analysis of barriers and solutions in work and information flow was then performed 

to determine the appropriate information architecture. 

2.2.2.1 Clinic Questionnaire 

A 20-page CHC Information Questionnaire was developed that had detailed sets of 

questions on various aspects of the CHC operations. The questionnaire contained a mix of 

structured and open ended/descriptive questions and was adapted from multiple surveys 

compiled by AHRQ on workflow and IT assessments, and systems redesign170. The sections and 

major sub-sections within each questionnaire were: Clinic Information (name, site locations, 

services offered, health IT systems used, patient demographics); Service Information 

(appointment scheduling system, phone system, remote EHR access, policies for managing missed 

appointments, after hour calls/emails); Patient Visit Information (patient orientation, visit 

workflow, walk-ins, labs, shared/group visits, referrals, care-coordination, care teams, culturally 

appropriate services); Enrollment Practices (assistance with enrollment, best practices, problems, 

barriers); Quality and Performance Measures (measures tracked, how is it done and the role of 

IT). The instrument was drafted and refined by the study investigators. The questionnaire for each 

of the seven CHCs was filled out by the clinic site manager.  

Data from the clinic questionnaire was collated across all seven CHCs and the notable 

characteristics were extracted and summarized based on an internal group consensus. 

2.2.2.2 Clinic Staff Interviews 

The next step was to understand the staff perspectives on the care delivery process, 

followed by workflow observations. There were two sets of interviews conducted. The first set of 

interviews was aimed at understanding the staff barriers to improving efficiency and access to 

care at CHCs and what specific strategies helped overcome some of those barriers. Within the 
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context of these interview, there were challenges identified related to the use of health IT – the 

focus of the current study. The authors interviewed staff (N = 49) that included providers, 

administrators, nurses (RN and LPN), medical assistants, schedulers, front desk staff, social 

workers, care navigators and billing coordinators. All interviews were audio-recorded. The 

interview data were then transcribed and analyzed using a thematic and iterative approach. To 

increase the reliability of the coding process, a team of four researchers independently analyzed 

the same interview in order to categorize the responses, and repeated the process with new set 

of interviews until the codebook reached stability. Each of the interviews was then individually 

analyzed using the final codebook imported into a qualitative data analysis software, NVivo 10 

from QSR International.  For this particular study, only the codes labelled as ‘health IT’ were 

examined. 

In addition to this first set of interviews, there was a second set of interviews specifically 

related to health IT. These key informant interviews of CHC staff were designed to characterize 

and enumerate barriers from a health IT perspective. The interviews were conducted face-to-face 

with at least two staff members (‘the positive deviants’) within each CHC. In-depth semi-

structured interviews (N = 16) were carried with key informants (CEO, Medical Directors, Clinic 

Manager, IT director, Scheduler, QA manager) from at all seven CHCs. The topics explored in the 

interviews were guided by the aims of the study and implicitly focused on health IT-related needs, 

barriers, and facilitators.  Unlike the first set of interviews wherein a formal thematic content 

analysis was performed, in this round of interviews, we reviewed and analyzed the collection of 

interview transcripts with the goal of identifying all issues centered around health IT.  

2.2.2.3 Clinic Workflow Observations 

Workflow observations was a multi-member effort, where individuals from the research 

team were assigned to observe and record various appointment related functions in a CHC. These 

included: front office, patient registration/check-in, phone triaging, scheduling, enrollment, 

referrals, labs, and check-out. The clinical aspects (e.g. ‘intake’ by Medical Assistant and ‘exam’ 

by physicians, physician assistants or nurse practitioners) were demonstrated by the staff, but not 

directly observed during the actual patient encounter to preserve confidentiality.  AHRQ has 

developed a toolkit for ‘Workflow Assessment in Health IT’171, which was leveraged to capture the 

workflow information. This is a 5 step process: Step 1: Decide what processes to examine; Step 2: 

Create a preliminary flowchart; Step 3: Add detail to the flowchart and collect artifacts; Step 4: 

Determine who needs to be observed; Step 5: Observe and refine the flow charts.  
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A rapid ethnographic approach was used to probe into the work and information flow 

process172. Ethnography, which is ‘on the ground’ detailed observation and documentation, is 

considered rapid when there is a triangulation of the findings to ensure that they are accelerated, 

comprehensive and well developed. Typically, these data collection efforts occur over a few days, 

compared to the longer period for traditional ethnography. The workflow observations described 

above, as well as key informant interviews are considered part of the rapid ethnography. The 

following types of triangulation was done173,174: Methods triangulation (by using qualitative data 

from the workflow observations with the quantitative data included with the questionnaire); 

triangulation of sources (by comparing observations from different employees in the clinic); 

observer triangulation (using multiple observers for same processes). The goal was not to seek 

consensus, but to understand multiple ways of seeing the observational data.  

The entire study, including the data collection from the clinics, was IRB approved by the 

Indiana University Office of Research Administration. Written documentation of these 

agreements, policies and approvals were shared with each partner prior to any data sharing. 

 Results 

For this study, the results presented are focused on the health IT aspects tied to CHC 

operations. What follows are the related results from the clinic questionnaire, the themes from 

the semi-structured interviews and the findings from the work and information flow modeling. All 

of this informed the design of an information architecture, the core component of which is a 

multi-CHC data warehouse.  

2.3.1 Clinic Survey Results 

Four different EHRs were encountered at the seven CHCs based on different technology 

architectures: Client-Server based EHRs (GE Centricity, and NextGen) and Cloud-based EHRs 

(eClinicalWorks, and AthenaHealth). These four EHRs fall in the top 10 most popular ambulatory 

EHRs in the market. Two out of the seven CHCs were contemplating changing their EHR, while one 

made the switch in mid-2015. All seven CHCs had been with an EHR for at least 5 years.  

Achieving PCMH status was one of the policy and financial initiatives that influenced both 

clinic operations and the adoption of health IT. One of the underlying principles for PCMH is 

enhanced access, i.e. making care available through systems such as open access scheduling and 

expanded hours. Table 1 provides information on the participating CHC systems, number of 

patients served, the number of physical service delivery sites, and the appointment scheduling 

method currently in place. We found that all of the CHC systems in our collaborative that are listed 
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as using the traditional appointment scheduling method were actually in the midst of providing 

more hours to accommodate same-day/walk-in patients. 

CHC System Patients/Year Sites HER used Scheduling Type 

CHC-S 7,324 1 eClinicalWorks Modified Open Access 

CHC-H 59,286 12 eClinicalWorks Modified Open Access 

CHC-O 20,703 9 Athena Health Modified Open Access 

CHC-N 13,002 3 NextGen Traditional  

CHC-R 42,092 8 NextGen Traditional 

CHC-P 4,764 2 GE Centricity Traditional 

CHC-V 7,525 5 GE Centricity Traditional 

Totals 154,696 42  
 

Table 1: Select operational data on Participating Community Health Care Systems (2015) 

The data from the EHR and scheduling systems were pulled using one of three methods 

depending on the reporting capabilities of the EHR used by each CHC and our needs. These data 

extraction methods included: Access to Reporting Module [CHC-S, CHC-O]; Direct Access to EHR 

Database [CHC-P]; and SQL-based Reporting [CHC-H, CHC-N, CHC-R, CHC-V].  

The types of specialty services (beyond adult family medicine) offered at the CHCs is 

shown in Figure 4. All seven CHCs provided pediatrics and OB/GYN care, while only 3 of the seven 

provided pulmonary care, smoking cessation and podiatry care.   

 

Figure 4: Availability of specialty care and services at the participating CHC Systems (N=7). 

In terms of scheduling appointments, all seven CHC systems offered phone calls and in-

person visits, referrals from hospitals and patient portals. All clinics provided advice over phone 

and have enabled provider access to EHR remotely.  Access modalities are shown in Figure 5. 
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Figure 5.  Modes of access to care at the seven CHC Systems in Indiana 

2.3.2 Information Needs and Challenges 

From the first set of interviews looking at the broader area of improving efficiency and 

access to care, there was a specific theme related to health IT. It was labeled as ‘challenges with 

use of health IT’. There were other themes/sub-themes related to technology as well, but those 

were from the patient’s perspective and have been in a separate research paper175. The issues 

uncovered from the specific theme on health IT were combined with the subsequent set of key 

informant interviews. The second set of interviews, were focused on the implementation and 

utilization of health IT in the CHCs. The following 5 themes and key associated sub-themes (in 

brackets) were identified from this combined set of interviews:  1) Personnel Constraints (training 

needs, time consumption); 2) Reporting Challenges (system deficiencies, inaccuracies); 3) Cost of 

Ownership (EHR purchase/set-up costs; ongoing maintenance/upgrade costs); 4) Workflow 

Management (tracking patient flow, resolving open/pending tasks); 5) System Limitations (poor 

interoperability, data migration).  

Each of these themes are further described below with excerpts from the interview 

transcripts that best highlighted the issue. The names of the EHR systems used have been 

redacted.  

Personnel Resource Constraints: All seven CHCs reported facing varying levels of 

personnel related resource constraints that was hampering their ability to leverage health IT for 

their operational and clinical quality improvement initiatives. Two of the largest sized CHCs had 

the economies of scale to sustain an internal IT department with at least 2 FTE openings. However, 

they too faced challenges in hiring, training, and retention of skilled employees. The following 

excerpts illustrate these challenges.  
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CHC COO: We’ve gotten so big so quick and so, high on our priority list is we are 
in search of an IT team…Unfortunately, we still do a lot of manual reporting work. 
And I know we can do canned reports on [EHR Name-1] and some we can build, 
but we don’t have a person that has the experience or even has enough time that 
can focus on that. That’s probably our frustration.  
CHC IT Manager: We know we can run many reports in [EHR Name-3], but we 
need training on how to use them!  
CHC QA Manager: None of us in the CHC know how to use the reporting system 
within [EHR Name-4]. We are only able to use it for the annual UDS [Uniform Data 
System] reports [for the Federal Bureau of Primary Healthcare]. [EHR Name-4] 
training is very expensive! 
Reporting Challenges: Closely intertwined with resource constraints is the ability to run 

needed reports using the EHR data. This was one of the most important challenges at CHCs, 

considering how critical reporting is for CHCs, be it for mandatory federal grant funding purposes 

or making operational improvements. There are issues with reports that are not accurate or 

representative of the CHC needs. Additionally, a large amount of time is spent on using the EHR 

in a meaningful way.  

CHC QA Manager: [EHR Name-4] has some canned reports [like one that reports 
productivity] but the calculation is not how we want.  
CHC COO: When you’re in [EHR Name-1], every day is so frustrating. When you’re 
drilling down to know how many hypertensives we have, well it’s in the EHR, but 
trying to pull a report that shows us this, umm, that’s probably one of our biggest 
weaknesses right now.  
CHC Operations Manager: We are not able to run the [appointment] no-show 
reports using the [EHR Name-3] report builder. Their canned productivity report is 
not correct and they have not been able to fix it for us. We are having to calculate 
that manually each month…. We got a low score in our children and teens BMI 
percentile quality measure [reported to HRSA/UDS]. Our population health 
management tool cannot pull that data since the percentile value is not stored as 
structured field within [EHR Name-3]. 
CHC Clinic Supervisor on Time Spent on the EHR: Our EHR s***. I’ll tell you that, I 
say it all the time. My boss told me that no matter how much it s*** we’re not 
getting rid of it.….The biggest problem we have is with our time [we spend on it]. 
Cost: The primary concern with CHCs here relates to the high upfront cost with the 

purchase and set-up of the new EHRs. Without federal funding these would have been hard to 

achieve, but the ongoing maintenance and upgrade costs (for newer modules or compliance with 

new federal requirements) takes a hit on the CHC budget. These issues have led to creation of 

new pricing models (with EHR Name-3], such as charging CHCs as a percentage of their billing 

volume, provided the CHC uses the EHR's claims processing services.   

CHC QA Manager: We are paying a lot of money for [EHR Name-4]. We are 
evaluating alternatives. We like [EHR Name-3] because they charge us as a % of 
our practice revenue while using their billing services.  
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CHC COO on the EHR Costs: [EHR Name-1] will get you for every dime that you 
have! I don’t even want to begin to tell you how much money we’ve had to spend 
on [EHR Name-1]….Everything in [EHR Name-1] is a cost. And so you can’t get to 
the next step without purchasing an interface to get to the Meaningful Use 
requirements. 
Workflow: Every step of the workflow needs to move seamlessly and in particular, the 

patient flow from arrival/check-in through departure/check-out flow, so that providers can 

operate efficiently and maximize time with patients. This is predicated upon automated tracking 

and reporting of the operational workflow. However, this remains a challenge with most EHRs 

and may often require the use of additional tools, leading to increased costs and redundancies. 

Interestingly, while EHR Name-3 is known to have this capability the CHC which uses that EHR is 

not able to process that particular report.  

CHC-V Clinic Manager: There’s no way in our [EHR Name-2] to track the in-
between times [of the patient flow through the clinic]. One of the great things I 
have heard about [EHR Name-3], that we are looking at, other than being cloud-
based which I kinda like, but also has its faults, is that they can get down in the 
weeds and track all this [patient flow]....so you can really wrap your brain around 
what’s actually going on [in the clinic].  
CHC-O Clinic Supervisor: With [EHR Name-3] I have to [manually] go through every 
single patient [to track their flow]. I do an audit on primary care to see the patient 
flow, particularly when I get complaints from patients.    
System Limitations: Despite the rapid increase in EHR adoption, interoperability between 

various health IT vendors is very limited. The large EHR vendors in particular are resistant to 

implement efficient data interchanges due to competitive reasons and lack of federal mandates. 

Poor interoperability may also occur between subsystems of a same software product when those 

sub-systems are often brought into the vendor’s product fold through acquisitions. Such is the 

case with EHR Name-2 vendor, which had acquired the practice management solution and later 

integrated that into their clinical solution. When CHCs change vendors (which is not uncommon), 

the issue of data migration becomes important.   

CHC-V Clinic Manager: We use [EHR Name-2] for clinical and for practice 
management. They’re, 2 separate systems [from the same company] and they’re 
supposed to talk, sometimes they do, sometimes they don’t. The [EHR Name-2] 
didn’t make [the PM solution], they acquired it so it’s got [EHR Name-2]’s name 
on it and they say that they work as one, but they don’t! 
CHC-O IT Manager: We moved from [EHR Name-2] to [the cloud-based] [EHR 
Name-3]….The version upgrade of [client-server based] [EHR Name-2] was 
causing many issues which prompted this change to [EHR Name-3]….Not all info 
was migrated into [EHR Name-3]. All of the structured data migration did not take 
happen as well as promised. It is only available as an ‘archive’….[On the positive 
front] we like the national level bench marking available within [EHR Name-3]. 



 

33 

The interview excerpts are representative of concerns we found throughout the seven 

CHCs participating in the study, irrespective of the EHR system they use, in terms of being able to 

leverage their data for efficient and cost effective analytics. Only one out of the seven CHCs in our 

study had a full time data analyst to support the organizational reporting/analytic needs. Not 

surprisingly, this clinic was also part of the largest CHC system in the state catering to over 60,000 

patients across more than 10 sites in the Indianapolis metro area.  

Most CHCs interviewed, expressed keen interest in being able to effectively draw insights 

from their data from their health IT systems, even as they encountered challenges in doing so 

using their existing EHR systems and reporting solutions. The key informant interview process 

highlighted several challenges in getting access to information and generating reports to support 

the care delivery process. One positive is that they have all benefited from investments in their 

ONC-certified EHRs using federal incentive dollars that started flowing in since the passage of the 

HITECH act of 2009 (that directly awarded health centers to support the purchase of health IT). 

The challenge that remains is leveraging the data in an effective and meaningful way to support 

improvements in clinical and operational outcomes.  

2.3.3 Work and Information Flow Modeling 

A generalized work and information flow map based on observations at each of the seven 

CHCs is shown in Figure 6. Referring to the figure, the process starts by either an incoming 

phone/email or a scheduled patient visit and the work and information flow path is dependent 

on the patient’s reason for contacting the clinic [such as a request for information/medication 

refill, lab request or provider visit]. The flow path is different from established vs. new patients 

and acuity of the visit.  
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Figure 6: Generalized Work and Information Flow Possibilities within CHCs 

The flow path provides an understanding of the workflow, which then makes it possible 

to associate that with the information needs. EHR data is directly associated with all of the 

activities shown in the workflow map for either information retrieval or documentation. This 

understanding of the domain guides the development of the information architecture described 

in the next section.   

2.3.4 Summary of the Information Needs 

The information needs assessment gathered through the clinic information tool, the key 

informant interviews and the workflow observations warranted the design and implementation 

of an appropriate information architecture. The information architecture refers to the manner in 

which the components of the information system are organized and integrated and is often 

synonymous with enterprise data architecture and data warehouse architecture.  

There were various challenges uncovered through the key informant interviews, which 

were inhibiting effective utilization of health IT in the CHCs. These centered around: personnel 

constraints; cost of ownership of health IT systems; reporting challenges; workflow management; 

system limitations in terms of interoperability and data migration. Each of these challenges played 

a part in the design of the information architecture as described in the next section.  

2.3.5 The Clinic Data Warehouse Architecture 

A common and widely accepted technical definition of a data warehouse is that it is a 

‘subject-oriented, integrated, non-volatile, and time-variant collection of data to support decision 
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making’176. Data warehousing methodologies share a common set of tasks, including business 

requirements analysis, data design, architectural design, implementation and deployment177. A 

data warehouse contains only alpha-numeric data, excluding documents or other types of 

content. The data is stored separately from the organization’s primary applications such as 

EHR/PM systems. The data is transformed to match a uniform data model, cleansed of duplicates 

and inaccuracies, and is extracted with business intelligence and reporting tools. A data 

warehouse contains the entire scope of data and can be used for both very general and very 

specific analysis and reporting. 178  Being a centralized store of data generated by multiple 

departments/sources, it is specially designed for data analysis, generating reports, and for other 

ad-hoc queries and turning them into meaningful data, so business decisions can be made based 

on this information. The major elements of developing any data warehouse are: planning; design 

of the data model; deployment of the technical infrastructure; and testing.  

The general themes uncovered from the information needs assessments and its impact 

on the information architecture and specifically a centralized data warehouse platform for 

multiple participating health centers, is now described.  

Personnel Constraints: A data warehousing platform for any organization requires 

multiple skill sets. Common roles include that of a project manager, database administrator, 

technical architect, ETL developer, front-end developer, trainer, data modeler, and QA. Since 

these are roles, a person may often take on multiple roles. While it is difficult to find people with 

extensive data warehousing experience, the situation is worse in non-metropolitan areas where 

most of the health centers are located. In such a situation there is a need to develop a data 

warehousing platform that is not constrained by such resources.  

Reporting Challenges: The primary goal of a health center like all other organizations, is 

to make better decisions, be it financial, operational or clinical. A data warehouse enables better 

decision-making since the latter stores credible facts and statistics, and decision makers will be 

able to quickly retrieve that information based on their needs from a single point of truth as 

opposed to fragmented datasets. When data is standardized, there is also greater confidence in 

its accuracy. Without a data warehousing architecture, an information system that relies on using 

disparate data sources for analytics and combining them as necessary, would contain any number 

and types of data stores and analytics software. Such a system is complex and difficult to monitor, 

track or manage in an effective manner. 
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Cost of Ownership: Beyond the upfront cost of an EHR license and implementation and 

the maintenance costs, health centers dislike the idea of paying more for custom reporting and 

analytics. A multi-CHC centralized data warehouse containing normalized data for clinical and 

operational reporting is much more cost-effective than each individual health center having to 

work with their health IT vendor for custom reporting and analytics.  

Workflow Management: Tracking and streamlining patient flow from check-in through 

check-out through a health center is critical both from an operational efficiency perspective as 

well as improving patient satisfaction. Additionally, from a workflow perspective it is important 

that users and consumers of health IT systems be able to use those systems effectively as well as 

identify and resolve any pending action items promptly. Appropriate data reporting, visualizations 

and analytic capabilities from a centralized data warehouse platform can support workflow 

management and make up for deficiencies of source health IT systems.  

System Limitations: An appropriately designed information architecture can support 

information exchange between disparate software systems, be in different EHR systems or even 

external organizations like regional health information exchanges. When health centers change 

EHRs, data migration becomes a critical issue to be dealt with. A data warehouse platform 

presupposes knowledge of the EHR database structure and dictionary, which can support data 

migration related decision making and activities (such as data mapping/conversions, chart 

abstraction, etc.).  

Given that CHC organizations have limited internal IT resources to dedicate to the creation 

and management of an effective warehousing system, they stand to gain from an architecture 

that benefits from economies of scale, yet is responsive to stakeholder information needs - as 

implemented in this study. The selected IA overcomes the challenges related to accessing and 

normalizing multi EHR systems data, generating operational performance reports, and performing 

associated analytics on data extracts. These challenges were magnified at smaller CHCs that 

lacked or could not afford the necessary IT resources for implementation, maintenance and 

upkeep. At the same time the data infrastructure had to be non-complex, efficient, adaptive, 

scalable, and benefited from a centralized resource allocation, yet provided the flexibility to 

perform onsite reporting and analytics by CHC staff.  The organization and integration of data is 

achieved through working closely with the health centers in understanding their work flow and 

data modeling of their EHRs. The IA based on the information needs of the CHCs is now described.  
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2.3.6 Data Flow 

We identified two primary categories of data that would directly be able to fulfill the 

health IT needs of the participating health centers. This includes: 1) Patient Level Data from 

integrated EHR/PM (Practice Management) Systems - the primary data source; and 2) Aggregated 

Clinic-level Data on Quality and Operations from Uniform Data Systems and IRS form 990. These 

two data categories are captured and integrated into a Microsoft SQL server based data 

warehouse augmented with Apache Hadoop based big data technologies. There is a data 

presentation layer where the data normalization occurs before any reporting and analytics is 

performed. This information flow diagram for the CDW is illustrated in Figure 7. 

 

Figure 7: Information Flow Diagram for the Clinic Data Warehouse  

The design and conceptualization of the CDW was based on the requirements gathered 

from all the stakeholders involved through an extensive multi-method needs assessment phase. 

While the initial choice of the data elements was driven by a narrow purpose to model and 

simulate the clinic’s scheduling system, it soon expanded in scope to serve as a multidimensional 

CDW sourcing information from various domains. The objective was to understand the 

implications of the clinic operational characteristics on the clinic performance, particularly access 

to care, over time. For example, the CDW was used for evaluating the impact of specific scheduling 

methods on appointment adherence (no-shows, cancellations, reschedules), resource utilization, 

productivity, and various patient outcome measures.  

The system architecture was defined by a subgroup of the research investigators in terms 

of: data sources, data model, interoperability requirements, data standards, data acquisition 

technologies, modes of acquisition, storage in a database server, privacy and security standards 

set up, data validity checks, data back-up performance and potential to build tools for data 

management and visualization. Roles and responsibilities were set for each of the above tasks, 
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along with defining the business model. The policies and procedures were written, reviewed by 

CHC IT staff, leadership, legal counsel and revised. These policies and procedures were then 

developed into a written data sharing agreement and policies, which were signed by CHC 

leadership and Indiana University research leadership.  

2.3.7 Obtaining Clinic and Patient Level EHR Data 

The clinic financial and operational data categories include: operational data (clinic type, 

certification status, locations, size, patient mix, payer mix, service mix, staff utilization, scheduling 

system in use, enrollment system, quality measures and other dimensions of care, data from 

phone systems); and financial data (revenue, expense, margins, cash flow, payroll). The 

operational and financial data was obtained from the audited financial statements of the clinics, 

IRS Form 990 (annual returns for certain federally tax-exempt organizations) and Uniform Data 

Systems (UDS) filings. UDS reporting is done annually by all HRSA-funded health centers on a core 

set of information, including data on patient demographics, services provided, clinical indicators, 

utilization rates, costs, and revenues.  

It was the patient level data that served as a backbone of the data warehouse. The data 

elements selected are those that are digitally captured as part of routine clinical practice in the 

EHR and reported to CMS. Collecting this data required the development of a core data model, 

given that information was being collected information from different healthcare facilities using 

different Patient Management and EHR systems. At a minimum the data elements were based off 

of the ‘common Meaningful Use data set’. The data model incorporated elements and practices 

of those used by other large organizations, including: HL7’s C-CDA179, PCORnet180, and FDA’s 

Sentinel Initiative181. The data model helped promote efficient and streamlined collection of the 

data generated in each of the healthcare centers by organizing data into a standard structure.  

The core data element categories included: patient demographics, appointment data, 

date/time stamps of key events for patient and data flow, insurance information, provider 

information, medical problem list, encounter diagnoses, immunizations, medications, laboratory 

data, care plan, procedures, and healthcare referral information.   

While multiple ways to acquire patient data from the EHR were explored, the one 

ultimately selected was dependent on the EHR reporting capabilities, health IT resources in the 

health center, the data architecture of the CDW and the preferences of the CHC partners. The 

most efficient method involved obtaining the data dictionary/metadata (tables, column names, 

definition/meaning, data type, predefined values sets/descriptive text) of the relevant electronic 
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datasets in place at each health center where possible, and identify the various data elements of 

our interest. The data elements were selected from four different EHR data models, with one 

consisting of as many as 1900 tables and 31,000 column names. SQL queries were then generated 

for each of the individual electronic datasets and given to the clinic staff to execute them on their 

database server. It was necessary to work closely with each CHC IT staff to extract the requested 

data, link and conduct de-identification procedures outlined in the project plan. De-identification 

was then verified in accordance with HIPAA safe-harbor provisions182 by health center IT staff. The 

center then shared the data through a HIPAA compliant secure online healthcare data portal. The 

raw data was prepped programmatically before populating into the Microsoft SQL Database 

Server of the CDW making it available for ad-hoc querying and reporting. This eventual process 

required much discussion, revision, and assessment of risks with the various parties to ensure that 

all reasonable efforts were made to protect the confidentiality of the data. Figure 8 shows this 

process flow of data collection from the clinic EHRs. 
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Figure 8: Process flow of data collection from the Clinic EHR Systems 

In the current scenario, given the need for automated and rapid data ingestion, the data 

modeling technique was based on de-normalized tables. All table joins were performed at the 

presentation/analytics end of the information architecture. This has become possible with recent 

developments in the emerging area of visual analytic tools. It should be noted here that from a 

technical perspective, in a production environment involving nightly data refreshes, the process 

of loading the data into the warehouse would be automated. In such a case, we would have direct 

access to the database server to enable automated extraction of the data and transportation of 

the data from the EMR/EPM system(s) to the CDW. This automated process would involve the 

steps of: making a direct connection to the EMR/EPM database, execution of SQL queries, transfer 
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of the data file to an SFTP server in the CDW environment, and finally the consumption of the 

incremental data extract by the data warehouse.  

The data collection exercise, comprising over six years of EHR and UDS data (2010-16) 

from all participating clinics, has been completed. For all subsequent data requests (which are 

done on a monthly basis), the clinic only had to re-run the queries to append to the clinic-specific 

database. Data was mapped by the CDW staff to the same consistent format (e.g., with the same 

variable name, precision, and other metadata). This step was important in order to create a 

platform with much more rapid analytic capabilities.  

Note that the data was already de-identified before populating into the database. A 

pseudo patient ID at the clinic level was used to map the data residing in different tables. In the 

first round of data collection, many of the raw data tables had to be prepared before loading them 

into the database. Populating free text information was particularly challenging given the 

existence of delimiters like commas, tabs and new lines. However, this was resolved 

programmatically and by specifying the input file format. Subsequent data loading was much 

more streamlined. Figure 9 shows the entity-relationship diagram for one of the clinic-specific 

database. There is a ‘person’ table at the center to which most of the other tables map. A person 

will have multiple encounters, diagnoses, payers and so on, while a ‘provider master’ table is 

mapped to tables like medication, procedures (performed on the ‘person’). 

 

Figure 9: Snapshot of the truncated E-R/Database Diagram of the CDW 
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2.3.8 Pilot Big Data Augmentation 

While there is a mix of structured and unstructured data in the CDW, the data size and 

ingestion rate of the current warehouse is not yet of the big data scale. However, there is a need 

to pilot the augmentation of big data technologies for specific use cases, within the context of 

traditional data warehousing and analytics for CHCs. The augmentation happened through 

deploying an open-source software framework, called Apache Hadoop – which is used for 

distributed storage and processing of very large data sets in a fault tolerant manner using 

commodity hardware. The primary use case for the CDW was data archival. The combination of 

low-cost, scalable and query-able storage offered by Hadoop’s file storage subsystem was used 

to archive historical data from the data warehouse, which otherwise would have to be stored 

offline on relatively high cost tape/optical media.    

Figure 10 illustrates the advantage in terms of cost, scalability, and query ability when 

using the big data/Hadoop platform for data archival compared to traditional data archival on 

tapes and optical media.  

 

Figure 10: Big Data use case illustration for data warehouse archival 

To illustrate this big data augmentation, two tasks where performed: 1) data archival to 

Hadoop and 2) querying from Hadoop for data visualization. To accomplish this, Apache Sqoop 

was utilized which is a command-line interface application for transferring data between 

relational databases and Hadoop. The Sqoop script was written to directly connect to the CDW 

using a JDBC driver and then move the tables directly into HDFS (Hadoop Distributed File System). 

Secondly, to show that querying and visual analytics can be performed on the data, a connection 

to the archived table was made and the data visualization was performed.  The visualization 

served to validate the aforementioned tasks.  
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2.3.9 Technology Infrastructure 

The CDW was administered through a new dedicated server that is housed within the 

Indiana University School of Informatics and Computing. The server specifications selected were 

such that it allowed for scalability in processing power and storage. The base hardware specs 

include: Intel Xeon CPU E-5 3.3GHz processor, 128 GB RAM, and 4x1 TB Hard Drives in a single 

Raid 1 array. It is running Windows Server 2012 with two partitions: One for the operating 

system/software applications and the other for data storage. The advantage of using dual 

partitions is in being able to perform the additional security step of data encryption. The server 

had remote desktop access for select authorized users and can also be accessed remotely through 

a SSL-VPN client. The server has an internal IP address and as such, does not allow internet access 

for data security reasons. Data was copied to the server by mapping a network drive using the 

UNC path.  

The core software applications installed were: MS SQL Server (for database 

management), SAS and R (for statistical analysis); RapidMiner Studio (for data mining); and 

Tableau (for data visualization/dashboards). For the pilot big data augmentation piece, the 

Hortonworks’ Hadoop data platform was deployed on an Oracle VM Virtualbox to create a single 

node (pseudo-distributed) Linux cluster. The sandbox VM mode allowed for full off network 

control of the data environment for data protection and security. The components of particular 

use within the Hadoop Data Platform were: Sqoop (to move data between relational databases 

and Hadoop File System) and Hive (a data warehousing solution to transform MapReduce jobs in 

Hadoop and one that leverages SQL and is suited for batch analytics). 

The multidimensional Clinic Data Warehouse continues to capture clinical and 

operational data from CHCs in a uniform format to facilitate comparisons and analyses over time. 

The clinic data warehouse currently stores over 3.5 million patient-visit records on about 0.5 

million unique patients from 2010-16 from all seven CHCs. It includes detailed information on 

appointments, scheduling, prescriptions, lab tests, screening/preventive measures, 

immunization, and quality measures under Meaningful Use Stage 2 criteria183. This volume of rich, 

longitudinal patient data is lending itself to large-scale data analytics tied to improving clinical and 

operational performance.  

For the purposes of illustration of a use case of the CDW, a sample visualization of the 

patient flow time distribution at one of the sites in a participating CHCs is shown in  



 

43 

Figure 11. The patient flow stages are [seen on the top]: arrival  check-in  intake  

exam  sign-off  check-out and the associated wait times between the stages. This particular 

histogram view shows the exam wait time for providers (names hidden) who were taking longer 

for their examinations. The filters on the right of the image allow for the real-time interaction with 

the visualization.    

 

Figure 11: Visualization depicting the patient flow from arrival through check-out 

 Discussion 

The discussion section provides a summary of the key findings, the study challenges and 

strategies employed, the study limitations, implications in the context of the totality of evidence, 

and future research directions.  

2.4.1 Summary of Key Findings 

This study has taken a novel approach towards systems redesign initiatives leveraging 

best practices and based on CHC staff-centered information needs. The needs assessment phase 

utilized multiple methods that complimented each other: administering a survey questionnaire 

to the CHC primary site manager, performing semi-structured interviews with key informants at 

all seven CHCs, and finally workflow observations of the key processes at the clinic sites. These 

methods informed the health IT related needs and uncovered wide ranging challenges related to 

EHR procurement, implementation and the ability to leverage data from health IT systems (EHR, 

operational, financial and quality) to support clinical and operational performance improvement. 

These challenges included: resource constraints (training needs, time consumption); reporting 

challenges (system deficiencies, inaccuracies); cost of ownership (EHR purchase/set-up costs; 

ongoing maintenance/upgrade costs); workflow management (tracking patient flow, resolving 

open/pending tasks); and system limitations (poor interoperability, data migration). A 
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collaborative data warehousing solution has been designed and implemented as a means to 

overcome the challenges CHCs face in being able to benefit from analytics driven by a robust, 

centralized, and scalable data infrastructure and one that is augmented with big data 

technologies. Furthermore, the CDW architecture is such that it is straightforward, easy to use, 

has low maintenance cost, and the analytic capabilities complements the existing functionality of 

the various EHR systems in use at the CHCs.  

2.4.2 Study Challenges and Strategies 

There were various challenges encountered in acquiring the data from the clinics. For 

most clinics, this was the first time they received such a request to extract EHR data. Thus far, the 

clinics primarily ran reports to fulfill government requirements, in tandem with manual charting. 

Even though the clinics lacked adequate time or resources for learning and drawing insights from 

their data, they all readily recognized its importance to support their evidence-based quality 

improvement efforts. Adhering to Meaningful Use Stage 3 requirements and securing Patient-

Centered Medical Home certifications with an adequate reporting infrastructure were prime 

concerns.  

In terms of strategies, the study authors engaged meaningfully with all the clinics and 

presented a value proposition to the clinic leadership. The researchers benefited from a high level 

of participation and trust from the participating health centers, which was crucial to the success 

of this endeavor. The clinic staff were interviewed to understand their challenges and learn from 

their innovations, coupled with onsite workflow observations of key processes. The EHR data 

dictionary from two different EHR systems (covering five out of the seven CHCs) was obtained. 

These EHRs were based on client-server architecture. The data dictionary allowed the 

identification of all the data elements of interest and creation of the SQL queries to be executed 

on their database servers. This made it less onerous on the clinics as they simply had to run the 

provided queries and share the extracted data with the researchers. The remaining two CHCs 

were using a cloud-based EHR with no direct access to the database server. For those, the data 

was pulled using a web-based reporting tool that was integrated with the EHR.   

There are many industry surveys that rate EHR systems on different dimensions. The 

researchers do not feel it appropriate to deliver an opinion piece on any particular EHR vendor, 

although we did identify many challenges from the user perspectives. Technology has been 

rapidly evolving in this space with an increasing shift from the traditional client-server 

architecture towards cloud based applications (particularly for small to medium sized ambulatory 
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health centers), which allows for easy integration with external applications. Centralized data 

warehouse and analytics solutions such as the one developed in this research has been received 

enthusiastically by almost all CHCs in the study. They clearly want to benefit from economies of 

scale and assess their performance internally and relatively to peer health centers. As the state 

primary care association takes steps towards establishing a HCCN, the work demonstrated here 

is poised to support that effort. 

2.4.3 Limitations of the Study 

The findings from the study reflect the unique characteristics and information needs of 

CHCs in the state of Indiana and therefore may not entirely reflect other CHCs in the US. The data 

warehouse architecture which in turn was influenced by the information needs of these CHCs will 

have similar limits on the generalizability. Secondly, the data model may not reflect the universe 

of EHRs in the ambulatory care space. The data dictionaries (i.e. information describing the 

contents, format, structure and relationships within the database) were from four different 

commercial EHR vendors and other administrative systems. The data model may be less 

representative of other primary care practices who are not dedicated to meeting needs of the 

underserved. Finally, the design of the architecture and resource constraints imposed certain 

practical limitations on the frequency of data collected from the clinics, which in turn defined the 

type of analytics and decision support that can be performed. Further research is needed to 

investigate strategies for more efficient data sharing and use of standard data formats and 

ontologies, to expand this research. A collaboration with the state primary care association and 

their health center controlled network, will overcome some of these limitations.  

2.4.4 Implications in the Context of the Totality of Evidence 

The ability for clinic leaders to draw meaningful insights requires simplifying the process 

of data access and knowledge discover 184 , 185  while augmenting data warehouses with new 

technologies in the wake of the big data revolution186. Enabling structured accessible secure data 

captured through EHR systems provide mechanisms where clinical care informs research, and 

insights derived from research are reinvested in care. But challenges related to standardization, 

access, interoperability, and development of real-time analytics must be overcome to realize 

these benefits187. The potential quality and efficiency benefits derived from EHR usage has been 

shown to be particularly important for resource-constrained organizations, such as CHCs, that are 

constantly challenged to ‘do more with less’188,189,190. 
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Studies have shown that data warehouses with appropriate analytic capabilities are 

generally most useful to a CHC within the context of participation in a larger organization such as 

a CHIN/HCCN or a large multisite health center, because of the economies of scale 191 . The 

information architecture developed as part of this study is an important step towards realizing 

the goal of a first state-wide multi-CHC information network. The architecture implemented is 

unique in that is tailored to the information needs of CHCs and addresses the challenges faced by 

them when it comes to leveraging their health IT system. Studies can be planned that leverage 

the CDW for system redesign initiatives and research in primary care. Providing the health centers 

with easy access to their data and enabling performance benchmarking against their peers can be 

powerful, creating opportunities for testing new technology solutions and positive change. 

The CDW provides for the first time in the state of Indiana, a foundation for healthcare 

data analytics across the community health center operations and research enterprise. A modern 

analytics platform supported by such CDWs when widely implemented can better support health 

system redesign initiatives to address the ‘quadruple aim’ (better care experience for individuals, 

better health for populations, lower per capita cost of care and better work life of providers)192.  

2.4.5 Future Research Directions 

Future work in this area can benefit from near real-time data warehousing193, where 

incremental data extracts from the source systems are populated into the data warehouse for use 

cases that warrant such a need. From an operational perspective, these would be of particular 

value when monitoring patient flow through the clinic or responding on scheduling changes 

caused by patient non-adherence to their appointments.  

From an analytics perspective, there are several research opportunities based on 

leveraging the CDW.  Analytics can be broadly classified as being, descriptive, predictive, and 

prescriptive analytics. A few research examples under, ‘descriptive analytics’ are: development of 

enriched process models based on EHR time-stamps; ranking clinics based on adherence to 

evidence based best practices; and peer comparisons at the state and national level. Under 

‘predictive analytics’ machine-learning models are built for various clinical applications including 

predicting treatment compliance and performing longitudinal network analysis and risk 

stratification of disease. Note that although patient data in the CDW is de-identified, a pseudo 

patient ID will allow longitudinal patient-centered studies across care settings. Assessing the 

impact of the affordable care act (ACA) on access to care will be of particular and timely relevance, 
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considering that the CDW contains multidimensional and longitudinal (2010-16) data that is both 

pre and post implementation of the ACA.  

Under ‘prescriptive analytics’ findings from the predictive analytics can be incorporated 

into standalone software applications or embedded within patient management systems to 

provide personalized decision support. The data can be further enriched by including external 

variables, such as data from community and geo-spatial information systems. There are 

opportunities for research and development of new technologies for patient engagement and 

management in the community, as well as integration of disparate care providers and care sites 

(inpatient, outpatient, community, “minute” clinics, prisons, other) as part of a care management 

team. The community clinics stand to benefit from such analytics since they lack the infrastructure 

that is usually available to academic medical centers. Enabling access to this dataset fosters 

community informatics research and development to improve care delivery, patient engagement 

and efficiency. A novel multidimensional clinic data warehouse of CHCs has been developed that 

supports data analytics and dashboards for improving access to care. If this effort is sustained and 

expanded, it should enable data-driven systems redesign, research, education and training, 

technology development and testing, and informed decision making over the years. 

 Conclusions 

The study has developed a detailed understanding of the CHC information needs using 

multiple complimentary methods: questionnaires, key informant interviews, and workflow 

observations. The information needs called for design of a multidimensional clinic data warehouse 

- one that integrates patient, operational, financial, and quality data. We are encouraged that 

both the Indiana University and the state community health center primary care association have 

decided to enter into a partnership to foster further collaboration. A centralized data architecture 

was chosen that is relatively easy to implement and sustain, yet is rich in scope and content. Most 

importantly though it holds great meaning and relevance to the participating health centers, since 

the information architecture directly addresses their information needs and challenges. The goal 

is to enable free standing CHCs to participate in this data warehouse, in the same way that large 

hospitals participate in HIEs and benefit from large scale healthcare data analytics to improve 

overall clinic operational performance and achieve better scores on the ever evolving clinical 

quality measures in the value-based payment era. Developing strategies for interacting with 

technology developers and entrepreneurs, in order to test the feasibility of new tools and 

prototypes should speed innovation and dissemination of effective IT. Ultimately, expanding on 
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the model of a CDW should help CHCs better meet the needs of their patients in continually 

learning, evaluating, and redesigning care. 
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CHAPTER 3: LARGE SCALE APPOINTMENT DATA MINING: INFORMING PATIENT-CENTERED 

SCHEDULING 

 Introduction 

The Institute of Medicine’s (IOM) landmark 2001 report ‘Crossing the Quality Chasm’194 

defined high-quality health care as care that is safe, effective, patient-centered, efficient, 

equitable, and timely. IOM had released another report195 in 2015 on transforming health care 

scheduling and access, which noted that timeliness was not as well-studied or understood as the 

other dimensions. Specifically, considerable evidence exists that poor access and long wait times 

negatively impact patients and families, as well as providers, in terms of health outcomes, patient 

satisfaction with care, health care utilization, and organizational reputation196,197.  

Health care access is a significant challenge in the US for many individuals for a variety of 

reasons, including inadequate health insurance coverage and an insufficient number of health 

care providers. The Affordable Care Act (ACA)198 legislation has sought to address access problems 

by expanding Medicaid coverage and availability of insurance through the health insurance 

exchanges199. At the forefront of dealing with this challenge are Community Health Centers (CHCs) 

- safety net providers that are federally supported to provide primary care to socio-economically 

disadvantaged patient populations with or without health insurance and often living in medically 

underserved areas200.  

Access to health care means having "the timely use of personal health services to achieve 

the best health outcomes"201 and is assessed by the presence or absence of specific resources 

that facilitate health care, such as having health insurance or a usual source of care. Within the 

context of healthcare operational research, however, access to care is assessed more in terms of 

how easily patients can gain access to needed health care. Common operational measures 

include: patient demand (for appointment), available supply (of appointment slots), patient wait 

time for appointments, no-show rates, office visit cycle time, and patient satisfaction202. Not 

surprisingly, these operational measures are going to be influenced by the appointment 

scheduling system in place.  

Efficient and effective scheduling is critical for optimal utilization of scarce medical staff 

resources, especially in CHCs. Generally, two main classes of health care appointment scheduling 

are used203. One is the traditional scheduling system, where most if not all the appointments are 

booked in advance, and any urgent care needs are either deflected or added to existing 

appointments through double booking. The other is open access (also known as advanced access 
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or same day scheduling), where a majority of the appointment slots may be held open for patients 

who call that day for routine, urgent or preventive visits, while the remainder are booked 

appointments.  

Some of the problems with traditional scheduling systems include: delays in ability to 

schedule an appointment, high rates of missed appointments, high variability in staff workload;204 

poor patient satisfaction due to the long appointment lead times and lack of continuity of care205. 

The traditional scheduling approach also often diverts frustrated patients to urgent care facilities 

or Emergency Rooms (ERs) where they receive less personalized care at a much higher cost to the 

healthcare system206,207. Open access scheduling in general has been shown to address these 

issues by significantly reducing no-show rates and patient wait times208. However, implementing 

open access has its own challenges and failures, and requires a redesign of the clinic operations209. 

Key to implementing an open access scheduling system is to simplify both the appointment types, 

as well as the duration. Open access also requires a closer monitoring of the supply (provider 

availability) and demand (patient needs and appointment adherence), and matching these two 

variables across the time dimension210.  

3.1.1 Motivation  

Effective appointment scheduling is of great importance in light of recent health care 

legislation, notably as health centers strive to achieve Patient-Centered Medical Home (PCMH)211 

recognition – a provision within the ACA. PCMH is a care delivery model which is patient-centered 

(responsive to individual patient preferences, needs and values) and coordinated through a 

primary care physician while being committed to quality and safety.   

A critical factor in achieving PCMH recognition is the patient access in a health center. The 

PCMH model of care has a set of standards and elements to be met and the very first standard 

calls to ‘Enhance Access and Continuity’. The first element within this standard pertains to 

provisioning for same day appointments. Specifically, the CHCs aiming for PCMH recognitions are 

expected to implement more same-day appointments through open access scheduling, monitor 

their no-shows, and identify opportunities to improve patient access to appointments212. This calls 

for a greater understanding of the CHC patient scheduling systems and potentially leveraging their 

data infrastructure to design and implement patient-centered scheduling systems.  

This chapter is focused on guiding the implementation of an optimized open access 

scheduling system through advanced analytic methods. It is part of a larger systems-based 

research project funded by the Patient-Centered Outcomes Research Institute (PCORI) 213  on 
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improving efficiency and access to care in seven CHCs with over 40 clinical sites across the state 

of Indiana. The CHCs were selected such that they represented a broad range of urban, semi-

urban and rural settings and provided care to a diverse patient population in terms of race, 

ethnicity, insurance status, and income levels.   

3.1.2 Research Question 

The primary research question (RQs) for this chapter is: How can clinic-specific analytics 

guide appointment access? There are two related sub-RQs each with its own hypothesis. The first 

being how can predictive analytics be used to optimize appointment scheduling, with the specific 

hypothesis being: The time dimension of appointments is independent of appointment 

adherence. The second sub-RQ is: How can analytics be used to better evaluate provider 

productivity? The specific hypothesis associated with that is the productivity measured as 

visits/hour and RVUs are directly correlated. Within the context of appointment scheduling and 

in particular, when a clinic includes open access hours in their schedule, it is important to 

understand the predictors of appointment adherence and also optimize the selection of the open 

access hours. In addition, accurate assessment of productivity is important in an open access 

scheduling system since high appointment adherence accompanied by a low productivity can 

adversely impact health center operations.  

3.1.3 Related Work 

The combination of data warehousing, data mining and evidence-based medicine has 

commenced an innovative application field of information technology in the health care 

industry214.  Studies have shown that CHCs are known to face unusually high no-show rates,215 

partially attributable to their unique patient groups, difficulty in retaining providers, and their 

inability (as safety-net providers) to penalize those who no-show216.  

Studies on appointment scheduling systems in health care became increasingly common 

since the early 2000s, when some large primary care clinic systems began implementing open 

access scheduling 217 . Research has identified several factors that affect the performance of 

appointment scheduling systems, including: arrival and service time variability, patient and 

provider preferences, available information technology and the experience level of the scheduling 

staff 218 . Methods from industrial engineering and operations research (such as agent-based 

discrete event simulation modeling and stochastic models) have been applied in health care to 

inform outpatient scheduling 219 , 220 . Related work on predictive analytics and monitoring 

productivity are now described.  
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3.1.3.1 Predictive Analytics 

Predictive modeling of no-shows based on logistic regression has been widely performed 

to improve clinic scheduling systems in a number of care settings.  For example, a pediatric clinic 

performed no-show modeling to effectively deal with overbooking221. The study showed that 

appointment no-shows have negative impacts that include underutilized medical resources, 

increased healthcare costs, decreased access to care, and reduced clinic efficiency and provider 

productivity. A study in a Veteran Affairs Medical Center performed no-show modeling to improve 

capacity utilization222. Prior studies at a primary care center demonstrated that no-show behavior 

was independently correlated with the following four factors: the patient's age and race, the 

presence of any physician-identified psychosocial problems, and the percent of non-cancelled 

appointments that were kept during the prior 12 months 223 . Another study in an academic 

practice site illustrated that no-show analysis was used to assess the effect of moving to a carve-

out model - traditional scheduling with some open access included (carved out) on no-show 

rates224. This specific study found that the lead time for an available appointment was not a 

significant factor in appointment keeping behavior and that implementation of the concepts of 

advanced access scheduling does not directly result in a reduction in no-show rates. Instead, 

provider-patient continuity, wait time to an appointment, and other factors may be a more 

important measures. Previous study also showed that implementing open access requires an 

overhaul of scheduling infrastructure, including decreasing appointment types, simplifying 

operational processes, using past appointment requests to predict future demand and developing 

contingency plans for times when demand exceeds prediction225.  

A study assessing the impact of overbooking on patient access and provider productivity 

found that patient access and provider productivity are significantly improved with overbooking, 

but that overbooking causes increases in both patient wait times and provider overtime. The 

study performed a series of simulation experiments and determined that overbooking provides 

greater utility when clinics serve larger numbers of patients, no-show rates are higher, and service 

variability is lower.226 

There are studies that have applied text mining techniques like co-location/co-occurrence 

identification and topic modeling for various healthcare applications. These include: redundancies 

in EHR corpora227, translation of medical summaries228, semantic classification of consumer health 

content229, and automatically labeling topics in drug-drug reactions230. 
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3.1.3.2 Monitoring Productivity 

Measuring provider productivity in ambulatory care has long since been an important tool 

used by healthcare managers to identify inefficiencies and control rising costs since at least since 

the 1980s231. Later the relative value units (RVUs) was developed by the Center for Medicare and 

Medicaid Services as a means to value clinical care since the early nineties232. RVUs are a measure 

of value used in the US Medicare reimbursement formula for physician services and is based on 

physician work, practice expense, and professional malpractice insurance expense233. Different 

from the practice expense RVU and the malpractice RVU, the work RVU (wRVU) is a constant value 

across specialties and geographic locations, providing a good standard for the value of work 

performed. It takes into account the physician’s expertise, the time and technical skill spent in 

performing the entire service (including the mental effort and judgment expended by the 

physician prior to, during and after the patient encounter terminates), including documentation 

of the service234.  

An article discussing the practical applications of relative value units (RVUs) for managing 

a medical practice, showed that RVUs empower practice administrators to objectively measure 

and quantify a medical practice's physician productivity and performance data versus traditional 

productivity measures such as office visits, net charges, or net collections, as used in many 

organizations235. It also allows common denominator analyses and per-unit comparisons for both 

clinical productivity and expense data benchmarking across clinics. Despite the apparent benefits 

of using RVUs for productivity assessments, there was no evidence in the literature or practice of 

its use among community health centers. Lack of a financial incentive has been a reason for this 

status quo, given that the Medicaid reimbursement model is one that is visit-based236. Based on 

evidence gathered working closely with health centers, another reason for this is a lack of easy 

access to normalized Electronic Health Record/Practice Management (EHR/EPM) data and the 

limited analytics capabilities at health centers.  

3.1.4 Knowledge Gaps 

There are knowledge gaps uncovered from the review of the literature above. First, it is 

well-known that there is a need to develop patient-centered scheduling system that most 

commonly involve some form of open access scheduling. What is not known is how to best design 

open access scheduling interventions for CHCs and in particular, how advanced data analytics can 

help.  



 

54 

Second, previous studies have shown that implementing open access scheduling can 

overcome many of the challenges with traditional scheduling methods and that no-show analysis 

with simulation modeling has been used in the past to guide such interventions. However, prior 

studies show that patient demographic and appointment related variables that can predict 

appointment adherence are highly dependent on the care settings, such as primary care (adult, 

pediatrics, behavioral health), specialty care, hospitals, and academic health centers. CHCs as a 

care setting for no-show modeling has not been studied as much considering their unique 

characteristics in term of patient demographics and their revenue model. The significance of the 

time dimension (a key variable identified in the IOM report) as a predictor variable has not been 

analyzed. Mining of large scale clinic appointment data from a large number of clinics could 

potentially identify patterns of no shows and cancellations, guide consideration of modified open 

access timing [such as time of the day and day of the week, month of the year, season] and provide 

insight into patient behavior, preferences and practices. 

Third, in terms of statistical/machine learning algorithms most no-show models are based 

on logistic regression based, with the exception of the airline industry, which has applied 

association rules based no-show modeling. Visual models like decision trees when used in 

combination of logistic regression provide unique insights into the appointment adherence in 

being easily interpretable by lay users.  Additionally, text mining techniques, including n-gram 

analysis can be applied to the unstructured/free text corpus within the appointment scheduling 

systems and uncover hitherto unavailable new knowledge.  

Fourth, assessing scheduling system requires a consideration of its impact on clinic 

efficiency and in particular provider productivity. In particular, CHCs are known to assess provider 

productivity in terms of billable visits/hour. However, studies have shown the limitation of these 

methods in representing true provider work and benchmarking across sites and between CHCs.  

To ensure the validity of the knowledge discovered from databases (KDD), the process of 

data preparation, selection, cleaning, incorporation of appropriate prior knowledge, and proper 

interpretation of the results of mining is required237. In this specific research project, KDD process 

is used to guide patient-centered scheduling in community health centers, followed by 

operationalization of the findings.  

 Approach 

The description of the data (source, extraction transformation and loading process, 

dataset creation) and the analytic methods applied are described in the sections ahead.   
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The CHCs in this study use variants of traditional scheduling methods, some with few 

hours a day allocated for same-day appointments (aka modified open access). The CHCs 

accommodated patients with acute care needs through either one or more of the following ways: 

asking patients to use open access hours or extended clinic hours (during the weekday or on 

Saturday); double booking appointments; or routing them to one of their urgent care clinics.  

3.2.1 Obtaining Clinic and Patient Level Data 

A multidimensional clinic data warehouse (CDW) has been developed based on the 

requirements gathered from the key stakeholders in the seven participating CHC systems. The 

data used in this project is devoid of any protected health information (PHI) under the HIPAA 

privacy rule and was obtained under institutional IRB approval and a business associate 

agreement with the participating health centers. The patient level data served as the most 

important component of the data warehouse. The data elements selected were those that are 

digitally captured as part of routine clinical practice captured using the clinic EHR and practice 

management (PM) systems.  

Details on design and development of that data warehouse has been documented in our 

previous publication238. Briefly, there were three primary data sources loaded into the data 

warehouse: 1) Patient-level data from the EHR/PM systems and included: patient demographics, 

clinic scheduling/appointment data, date/time stamps of key events for patient-flow, insurance 

information, provider information, medical problem list, encounter diagnoses, immunizations, 

medications, laboratory data, care plan, procedures, and health care referral information; 2) CHC 

operational data including phone reports, clinic type, certification status, locations, size, patient 

mix, payer mix, service mix, staff utilization, scheduling system, enrollment system, quality 

measures and other dimensions of care; and 3) CHC financial data, including revenue, expense, 

margins, cash flow, and payroll. The clinic operational and financial data was obtained from the 

audited financial statements of the clinics, IRS Form 990, which is the annual tax return for certain 

federally tax-exempt organizations, and HRSA’s Uniform Data Systems (UDS) filings. The data from 

the EHR and scheduling systems were pulled using one of three methods depending on the 

reporting functionalities of the EHR used by the CHC and our needs. This was supplemented with 

a structured questionnaire completed through an interview with the clinical manager, followed 

with workflow observations and opportunistic interviews as appropriate, in the clinic. The latter 

served to triangulate on the information inferred from the quantitative data. 
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3.2.2 Data-Set 

The data analytics for this study was performed on three of the seven CHCs, which were 

selected for implementing expanded open access scheduling. We use the following pseudonyms 

CHC-S, CHC-O and CHC-P for the three clinics that constituted the intervention group, while the 

rest served as the control group for the larger project. The three health systems selected were 

particularly interested in sharing their data to participate in an intervention to improve clinic 

scheduling.  

3.2.3 Data Analytics 

Machine learning, statistical analysis and data visualization techniques were used to 

analyze the clinic appointment dataset. The first step of the data analysis was data cleaning and 

validation. In this case, the dataset was cleansed of any duplicates. As expected with database 

table normalization, there were several dictionary/reference tables containing information on 

appointment types, patient profile, delivery of care, and providers. Two categories of analyses, in 

particular, were considered to hold the greatest relevance – appointment adherence and provider 

productivity.  

3.2.3.1 Appointment Adherence Analysis 

Appointment adherence is defined in terms of missed appointment rates, be it from no-

shows or cancellations. The dataset was mined and analyzed to assess the patterns of 

appointments associated with an extensive set of variables. These variables included: 

appointment/visit type, time dimension (time of day, day or week, month of year, season), lead-

time from appointment, patient characteristics (such as age, income level, and gender), insurance 

type, provider characteristics (age, gender, specialty, longevity with clinic), and facility types 

(primary care, urgent care) and location (urban, rural, mobile clinics).   

There are two major considerations for data analyses: a) One can optimize the open 

access hours based on the time dimension (i.e., identify the times most suitable for open access 

or walk-in appointments); and b) Incorporating patient profile data will help identify profiles of 

patients who are likely to miss appointments.  

3.2.3.2 Clinic Efficiency Analysis 

Efficiency (η) is often measured as the ratio of useful work output to total work input, or 

𝜂 =
𝑊𝑜𝑢𝑡

𝑊𝑖𝑛
. A closely related term is production efficiency or productivity in ambulatory healthcare 

operations, which is the work units/scheduled [bookable] clinical hour, where the work output is 

usually the number of patient seen, but can also be measured as billed revenue. Work input is 
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usually a time interval defined in hours, days or weeks. Visit volume can quite simply be the total 

number of patient visits, but an alternative measure is what is known as the work relative value 

units (wRVUs) earned 239 . The wRVU is a constant value across specialties and geographic 

locations, providing a CPT (current procedural terminology) code-based medical standard for the 

value of work performed by a provider. The wRVU accounts for time, technical skill, mental effort 

and judgment, and stress to provide a service, while being blind to the payer mix or amount of 

revenue generated.  

With regards to the provider productivity, most CHCs measure productivity based on a 

calculation of patient visits/hour and then incentivize providers when they exceed pre-set 

benchmarks (set at 2.5 visits/hour for Nurse Practitioners and 2.75 visits/hour for MD providers). 

While this method is simple, both the literature 240  and the clinic leadership recognize the 

problems with this approach, since the level of work required varies amongst the patient visits. 

The providers scheduling template does not reflect the reality of the hours the provider actually 

worked, since there is non-clinical time (admin, lunch, and meetings) as well as missed 

appointments, both of which directly impact provider productivity. Additionally, when an 

appointment slot is double booked, the appointment duration is to be counted only once even as 

the visit count will be two (if both scheduled patients show up). 

In this study, we have automated the process to extract data from the EHR for the 

computation of provider productivity. We also compared and assessed the differences between 

wRVUs and traditional measures (such as visits/hour for primary care providers) at a large CHC.  

3.2.3.3 Analytic Methods 

To perform the analytics on the intervention CHCs in this study, we used RapidMiner 7 

for machine learning (decision tree modeling)241, R for statistical analysis/text mining (chi-square 

test, logistic regression, n-gram analysis)242, and Tableau 10.0 for data visualization243.  

A decision tree builds classification or regression models in the form of a tree structure 

with decision nodes and leaf nodes. In a decision tree, each leaf node represents a value of the 

label attribute given the values of the input attributes represented by the path from the root to 

the leaf. The advantage of decision trees is that they are powerful classification methods which 

can also be understood easily.  

The C4.5 algorithm244 is an algorithm to generate a decision tree for classification. At each 

node of the tree, C4.5 chooses the attribute of the data that most effectively splits its set of 

samples into subsets enriched in one class or the other. The splitting criterion is the normalized 
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information gain. The attribute with the highest gain in normalized information is chosen to make 

the decision. This process will be recursive with the C4.5 algorithm on the smaller sub-lists. 

Chi-squared test is a statistical test applied to sets of categorical data to evaluate how 

likely it is that any observed difference between the sets arose by chance. A limitation of this test 

is that it does not give us much information about the strength of the relationship. Logistic 

regression is used to model dichotomous outcome variables (in this case show or missed status 

for the previous scheduled appointments). The log odds of the outcome are modeled as a linear 

combination of the predictor variables. A required package to perform this analyses using R was 

nnet, which is used for feed-forward neural networks and multinomial log-linear models. The 

logistic regression coefficients give the change in the odds of the outcome for a one-unit increase 

in the continuous predictor variable. If the predictor variable is categorical, the coefficient gives 

the change in the odds of the outcome vs. a predefined reference. 

N-Gram Analysis: Use of n-grams is common in the field of computational linguistics and 

probability. N-gram is a contiguous sequence of ‘n’ items (typically words) from a given sequence 

of text. When n = 1, 2, 3, it referred to as a unigram, bigram or trigram respectively. We applied 

uni-, bi- and tri-gram analysis of the appointment reasons, which is a free text field in the EHR. 

We have developed an automatic process to extract the common patient visit reasons. The steps 

are highlighted in  Figure 12.  

 

Figure 12: Steps for n-gram analysis 

The main packages within R required to perform this analysis include: tm (for text mining), 

ggplot2 (advanced graphing package), and wordcloud (for generating word/tag clouds).  

 Results 

3.3.1 Results Overview 

In this section, we will first summarize the clinic and patient characteristics of the three 

participating health centers in this study. Then, the we will present the results from the analyses 

of the patient appointment scheduling datasets and apply the analytical results to guide open 

access scheduling. The specific analyses include predictive modeling of appointment adherence 

based on the decision tree algorithm; chi-square and logistic regression to quantify the impact of 

the predictor variables; visual representation of the results using a stacked bar graph; text mining 

of the unstructured/free text field describing the reason for the visit when the appointment type 

is same-day; and lastly, productivity analysis.  

Text Pre-Processing Tokenization Frequency Extraction Tag Cloud/Plot
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3.3.2 Clinic Data Characteristics 

First, the CHC-level information was gathered from the operational data stores and in 

particular the 2015 UDS filings. In addition, a clinic questionnaire for each participating CHC was 

used to understand the appointment scheduling procedures. The combined information was 

analyzed and the key characteristics for the year 2015 are summarized in Table 2.  

CHC Characteristic CHC-S CHC-O CHC-P 

# of Patients [for all sites of a CHC] 9,502 20,610 4,989 

CHC Care Setting/Location Urban Semi-Urban Rural 

Services Offered [Medical-M, 
Dental-D, Behavioral Health-BH] 

M M, D, BH M, BH 

# of Visits 
 [incl. Physician, NP, Nurse] 

54,344 63,108 13,110 

# of Primary Care Sites  
[excl. Mobile Clinic] 

1  3 2 

# of Providers [MDs and NPs]; FTEs 1 MD; 22 NP 4.5 MD; 11.5 NP No MDs; 8 NP 

Provider Tenure  
[Avg. in mo., for MD/NPs] 

16 mo; 11 mo 55 mo; 32 mo 64 mo 

Ratio of Number of Visits to 
Providers 

9,502/23 = 413 20,610/16 = 1288 4,989/8 = 624 

Scheduling Method  
[Pre-booked and Open Access (OA)] 

AM: Pre-booked 
PM: Mostly OA 

1-2 PM & 6-7 PM 
are Open Access 

1 hr/provider 
each day is OA 

Appt. Adherence Rates  
[No Show-NS; Cancellations-C, %] 

22% NS; 13% C 18% NS; 14% C 20% NS; 13% C 

Table 2: CHC-level Characteristics for Patient Visits for 2015 

The table shows the diversity of CHCs in terms of: the patient populations (5000 to 21,000 

patients/yr.), care settings, medical services offered, the types and tenure of the providers, ratios 

of patient visits to providers [413 to 1288], and appointment adherence rates. One of the clinics 

had a high provider turnover, a problem brought out during the interviews with the CHC 

leadership. However, the relatively small number of physicians in these clinics emphasize the 

importance of provider stability in determining access to care.  Another important finding is that 

while modified open access makes it easier to accommodate acute care visits, the open access 

hours are rather limited (1-2 hours/day). Mornings are typically pre-booked ahead of time, while 

select hours in the afternoons are reserved for same day/open access hours. This limited number 

of open access hours are not enough to mitigate the missed (no-show and cancellation) 

appointment rates (over 30% at all three of the participating CHCs). After reviewing the practice 

characteristics, it was clear that both the number of open access hours offered each day and the 
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timing of the offerings could be optimized to maximize provider utilization at all three of the 

intervention CHCs.  

One of the clinics (CHC-P) is unique in that it is nurse practitioner driven organization. It 

has two different sites forty miles apart in a largely rural setting and uses the traditional method 

of appointment scheduling. Mining the CHC-P appointment data brought forth an intriguing 

difference in their no-show and cancellation rates for the two clinical sites. The clinic headquarter 

site [Site-D] had a 57% higher no-show rate than the other site [Site-M] (22% vs 14%) and a 56% 

higher cancellation rate (14% vs 9%). We sought to understand the underlying reasons for these 

differences through numerous meetings with the site managers and further analysis of their EHR 

data, including patient demographics and visit characteristics. Site-M handles half as many 

patient-visits as Site-D [5500 vs. 11,000; has one-third as many providers [5 vs. 15]; and a relatively 

large Hispanic patient population [46% vs. 13%]. Analysis of the appointment types showed that 

while about 70% of the appointments are for chronic, acute and physicals, Site-M has 3 times as 

many pre-natal visits [6% vs. 2%]. Interviews with the site managers highlighted the dynamism 

and diligence of the lead NP at Site-M. Corroborating evidence from our interviews, Site-M’s 

patient satisfaction surveys included positive comments about the lead NP’s attention and 

diligence as well as the efficient operation of the clinic.  

With this information on the clinic operational characteristic, we now describe the results 

from the data analytics, starting with the decision tree modeling. 

3.3.3 Decision Tree Modeling 

We represented the visit adherence in terms of appointment and patient characteristics using a 

decision tree model. The target class was binary: Completed (i.e. patient showed up for the 

appointment) or Missed (i.e. patient either no-showed or cancelled the appointment). The data 

corresponded to CHC-S (the one having the highest no-show rates) and the attributes included: 

Appointment Duration, Insurance, Visit Type, Patient Web Portal Enabled Status, Lead Time, 

New/Established Patient, Patient Age Group, Ethnicity, Race, Language and Gender. Data for ‘lead 

time’ was categorized into discrete ranges. The decision tree generated from the dataset is shown 

in Figure 13.  
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Figure 13: Decision Tree Model to predict Appointment Adherence 
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At the root of the decision tree is the ‘lead time’, which is defined as the time difference 

between the appointment creation date and the actual appointment date. Being at the root of 

the decision tree, implies that the lead time is the most significant predictor variable determining 

appointment adherence. This finding supports the notion of a scheduling system based on making 

more same-day appointment slots available (since a smaller lead time will lead to higher 

appointment adherence) as well as avoiding scheduling appointments too far in the future. Other 

attributes that held significance (i.e. provided the greatest information gain) included: new 

patient vs. established patient, patient ethnicity, race, age group, and visit type. 

Furthermore, visually tracing through the decision tree allowed for examining various scenarios. 

As an example, an acute visit type for a patient with Hispanic ethnicity whose appointment is 

scheduled the same day, is highly likely to show up for the visit. In another scenario, a wellness 

visit for an African American patient who is new to the clinic and whose appointment is scheduled 

more than ten days before the actual appointment date is highly likely to miss his/her 

appointment. Thus, the decision tree model helps demonstrate the importance of different 

variables and their linkage to others, in determining the outcome of interest (adherence). A 

decision tree can also be converted into a set of rules since it creates if-then constructs to separate 

the data into increasingly homogenous sub-sets. Referring to the tree above,  

IF  (Patient > 65 years old)  

    and  (Patient Type = New),  

    and  (Appt. Lead Time > 10 days) 

Then  

    there is high probability (> 90%) that patient will miss his/her appointment 

This visual representation with simple if-then constructs makes the decision tree 

technique an extremely useful tool to guide open access scheduling. For instance, patients with 

high likelihood to miss their appointments are good candidates for double booking or more 

intensive appointment reminder systems.  

3.3.4 Statistical Analysis 

Following decision tree modeling, statistical approaches were applied to quantify the 

predictors for appointment adherence in terms of odd ratios from the logistic regression and also 

assess the strength of association between each variable and the appointment adherence using 

chi-square test of independence. The outcome variable of interest is ‘show status’, which is the 
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binary values of 0 or 1. The show status of 0 implies the patient missed the appointment (no-

shows or cancellations), while a status of 1 implied the patient showed up for the appointment.  

The statistical analysis specifically focused on the predictor variables in the time 

dimension, given their importance for designing the optimal appointment schedule and the fact 

that knowledge of these would allow for deciding the hours allocated for open access. The specific 

variables in this dimension included: ApptLeadTime (same-day and not same-day), ApptStartHour 

(8:00am-06:00pm), ApptDay (Mon-Sat), ApptMonth (Jan-Dec), and ApptSeason (Winter and non-

Winter).  

The null hypothesis (H0) was that the ‘ShowStatus’ is independent of these variables in 

the time dimension. The Pearson’s Chi-Square test of independence revealed that the ‘show 

status’ is dependent on each of the time dimensions (p value was < 0.05) for CHC-S and CHC-O. 

For CHC-N, the show status was not significantly dependent on the season (p value was > 0.05), 

and the dependence on ApptHour and ApptMonth was not significant at the 99% confidence 

interval (p value was > 0.01). The results are summarized in Table 3.  

Pearson's Chi-Square Test of Independence [Format: χ2; df; p-value] for ‘show 
status’ prediction  

CHC-S CHC-O CHC-N 

Sample Size 17,449 49,118 6,708  

LeadTime 848.71; 1; < 2.2e-16 1376.1; 1; < 2.2e-16 399.95; 1; < 2.2e-16 

Season 918.22; 1; < 2.2e-16 10.762; 1; 0.001036 0.45043; 1; 0.5021 

ApptHr 230.71; 10; < 2.2e-16 165.65; 12; < 2.2e-16 20.388; 11; 0.04029 

ApptDay 36.982; 4; 1.816e-07 22.751; 6; 0.0008843 19.406; 5; 0.001614 

ApptMonth 2736.4; 11; < 2.2e-16 90.019; 11; 1.653e-14 20.181; 11; 0.04292 

Table 3: Pearson’s Chi-Square Test of Independence for prediction of ‘show status’  

For the logistic regression analysis, the log odd of the outcome was modeled as a linear 

combination of the predictor variables (i.e. the five time dimensions).  

ShowStatus ~ ApptLeadTime + ApptHour + ApptDay + ApptMonth + ApptSeason  

The change in the odds of the outcome is always with reference to a value. The reference 

values for the different variables are 8:00 am for ApptHr, Fri for ApptDay, April for ApptMonth, 

non-Winter for ApptSeason, and Non-Same Day appointment for the ApptLeadTime. We present 

some of the key odds ratios from the logistic regression analysis for each of the CHC in Table 4.  

Logistic Regression: Key Odds Ratios 

Variable Reference CHC-S CHC-O CHC-N 

ApptLeadTime Non-Same Day 3.77 3.15 16.61 

ApptSeason Non-Winter 0.95 0.91 0.91 
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ApptHour 8:00 AM 0.92 1.21 0.98 

11:00 AM 
    

2:00 PM 
 

1.08 1.16 0.95 

3:00 PM 
 

0.89 1.12 1.16 

4:00 PM 
 

0.82 1.28 1.02 

ApptMonth April 
   

Jan 
 

1.33 1.06 0.94 

May 
 

0.93 0.92 0.75 

Aug 
 

0.90 1.44 0.77 

Sep 
 

0.97 1.26 0.74 

Oct 
 

1.02 1.26 0.82 

Dec 
 

1.003 1.10 0.80 

ApptDay Fri 
   

Mon 
 

0.83 1.07 1.20 

Thu 
 

0.98 1.14 1.19 

Table 4: Key Odds Ratios of the time-based variables for prediction of ‘ShowStatus’. 

The odds ratio for same-day vs. non same-day, ranged from 3.15 to 16.61, showed that 

the ApptLeadTime was a strong determinant of appointment adherence. This implies that the 

likelihood of a patient showing up for their appointment scheduled in the same day is anywhere 

from 3 to 17 times higher than that for appointments not scheduled the same day. This represents 

a significant impact and support the progressive implementation of more same-day appointments 

to improve appointment adherence.  The odds ratio for winter vs. rest of the year was 0.9 (i.e. 

10% lower likelihood of appointment adherence in winter months) for CHC-O and CHC-N.  

The results also showed that even for the same predictor variable, the effect may be 

different for different clinical settings due to a unique attribute such as the characteristics of the 

patient population or the organizational culture of the clinic. For example, one important odds 

ratio was between 4:00 pm relative to 8:00 am being equal to 1.28 for CHC-O (i.e. a 28% higher 

likelihood for appointment adherence at 4:00 pm relative to 8:00 am), but this was opposite for 

CHC-S where the odds ratio was 0.82 (i.e. showing appointment adherence was 18% lower for 

4:00 when compared with 8:00 am).   

3.3.5 Visual Plots 

The analytical results were visualized through an interactive dashboard, developed using 

Tableau -  visualization software. To visualize the appointment adherence for a provider at 

different times of the week, we started with an illustration of how a provider schedule spreads 

out over a typical week. Figure 14 illustrates appointment adherence for a random week (Monday 

through Friday) at a given CHC, organized by the time of the day along the y-axis (from 9:00 am 
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to 5:00 pm). Appointment adherence was grouped into three categories, namely: Completed, 

Cancelled, and No-Show. The bubble size represents the appointment duration (legend on top 

right for 15 to 60 minutes). For example, looking at Friday between 4:00-5:00 pm, there were two 

completed visits: one for 30-minutes and the other for a 15minute duration. There is one 30-

minute appointment cancellation which had been scheduled for 4:00 PM, and one 30-minute 

appointment scheduled at 4:30 pm where the patient didn’t show or call to cancel (no show).  

 

Figure 14: Illustration of Patient Visit Adherence for a randomly selected week at a clinic 

Figure 15 provides another type of visualization in the form of stacked line and bar graphs of the 

appointment adherence (complete, cancelled, or no show) based on the cumulative data from 

January to December 2015. The data showed that fewer appointments are scheduled before 9 

am, or at 12 pm, or after 4 pm. However, no show and cancellation rates are high at these time 

slots. In particular, there are more no-shows in the morning times [7:00 – 8:00 am] and relative 

high no shows around noon. For the rest of the times of the day, the no show rate is around 15%. 

These results are in line with the results from the logistic regression analysis.   
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Figure 15: Appointment Adherence by the time of the day for an entire year 

Figure 16 compares the visit adherence patterns for the three CHCs we evaluated. The 

average rates for no-show vary from 15 to 23%, cancellations rates from 8 to 17% and successful 

visit rates from 69 to 77%. There are distinct visit adherence patterns within the CHC hours of 

operation. For example, the no-show rates are consistently highest in the morning across each of 

the CHCs; the peak no-show rates vary from 7:00 am to 9:00 am among the CHCs. The lowest no-

show rates occur in the early afternoon (1:00 – 2:00 pm) across all three CHCs. The pattern for 

cancellations rates are also fairly consistent, in that most of them occur late in the afternoon after 

3:00 pm. Notably, appointments with high completion rates are in the early afternoon (1:00 – 

3:00 pm) and in the evenings at 6:00 pm at all the three CHCs. In two out of the three CHCs, the 

7:00 am time slot also has high visit success rates.  
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Figure 16: Appointment Adherence by the time of the date across the 3 CHCs in the study 

After identifying these patterns, we could recommend to all three clinics that they 

schedule same-day/open access hours in the late morning [10:00 am – noon] because of the high 

no-show rates during those hours and it would still allow adequate time in the morning for 

patients to call in and schedule a same-day appointment. Offering more same-day appointment 

slots during this historically high no-show time period should improve access for patients while 

reducing the no-show rate for the clinic.  

3.3.6 Operationalizing the Findings 

The findings from of our statistical analysis was applied to the clinical operations of CHC-

S, which had the highest no-show rates relative to the other intervention clinics. They had recently 

achieved PCMH recognition and were keen to optimize their same-day appointment scheduling, 

in particular, having a more sophisticated approach to selecting open access hours. This CHC had 

been using a modified open access scheduling system, where mornings were scheduled in 

advance and afternoons were being left open for walk-in appointments (although this was not 

strictly enforced). 

We examined the appointment adherence pattern for CHC-S to guide the selection of 

open access hours. Prior analysis had provided guidance on the relative importance of various 

predictors for appointment adherence (in particular the lead time) and the patterns seen across 

a day. Specifically, based on the high missed appointments rates in the morning, we 

recommended that CHC-S keep the early morning hours as scheduled, but have open access hours 
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in the late morning from 10:00 am to noon (to allow time for patients to call in for same-day 

appointments). For afternoons, we recommended CHC-S have scheduled appointments until 2:00 

pm and then open access hours after that (to combat the higher cancelled appointment rates 

occurring during that time period).  

CHC-S implemented the schedule change in June 2016 based on the recommended 

changes. Their overall missed appointment rates (no shows and cancellations) dropped from an 

average of 37% (during March-May) to 31% (during Jun-Sep) - a 16% reduction (Figure 17).  

 

Figure 17:  Appointment Adherence Trend for CHC-S 

CHC-S was thus able to see an immediate benefit of modifying the open access 

hours based on knowledge extracted from their scheduling data.  

3.3.7 N-Gram Analysis of Unstructured Text 

PCMH standards for measuring access to care require that health centers report a certain 

percentage of appointments as reserved for same day access. To meet this requirement, CHC-S 

found it easier to create ‘same-day’ as an appointment type as a means to meet the PCMH 

reporting requirement. However, unlike other appointment types – such as wellness, hospital 

follow-up, or chronic care management – an appointment type labelled ‘same-day’ says nothing 

about the actual reason for appointment unless one were to analyze the free text entered in the 

‘reason for appointment.’  Not only is that information useful to understand the trend in 

appointment purpose, it is critical information used to reduce the number of appointment types, 

which in turn helps with implementing an open access scheduling system.  

34.8% 40.6% 36.0% 32.6% 31.8% 27.3% 31.6%

65.2% 59.4% 64.0% 67.4% 68.2% 72.7% 68.4%

Mar Apr May Jun Jul Aug Sep

Appointment Adherence Trend for CHC-S after Implementing 
Same-day Access Hours in Jun 2016

Completed Missed
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We performed text mining of appointment reason (an unstructured text field) for CHC-S 

to understand the reasons for those appointments categorized under ‘same-day’ – they represent 

about 20% of the appointments for this CHC.  

We found that the tri-gram analysis gave the most meaningful outcomes in the context 

of extracting the appointment reason. This is because a uni-gram analysis showed words, like 

cough, sore, lower, pain, pressure, which lack complete meaning. Bi-gram was better, but still had 

phrases that were not easy to interpret, such as ‘lower back’, ‘right knee’, and ‘high blood’. The 

tag cloud for the tri-gram analysis is shown in Figure 18. 

 

Figure 18: Tri-gram tag cloud of the appointment reason for same-day appointments 

We can see that the most common reason for visits include sore throat, cough, fever and 

hypertension, all of which are non-urgent or chronic health conditions. This shows that same-day 

visits were not being used exclusively for acute conditions as one might expect. We also 

recommended CHC-S (as well as to CHC-O and CHC-N) to avoid using same-day as an appointment 

type (to simplify and minimize the number of appointment types for easier scheduling). Rather, 

we suggested using a report generated from their EHR data that identified same day 

appointments by comparing the ‘appointment creation date’ and the ‘appointment scheduled 

date.’   
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3.3.8 Productivity Analysis 

Finally, we analyzed the appointment data for 12 months (July, 2015 through June, 2016] 

representing about 37, 400 appointments at the main primary care site of CHC-O – the largest of 

the three CHCs in this study.  There were 13 providers who worked for each of those months, of 

which five were medical doctors (MDs) and the remaining eight were nurse practitioners (NPs). 

Table 5 shows the measured productivity values for each of the primary care providers at CHC-O 

with embedded data bars to visually represent the values.  

Provider Visits/hr wRVUs/hr

P1, MD 2.86 1.85

P2, MD 2.79 1.77

P3, NP 2.77 1.98

P4, NP 2.70 1.84

P5, NP 2.70 2.33

P6, NP 2.61 2.14

P7, NP 2.58 2.19

P8, MD 2.40 2.02

P9, NP 2.32 1.87

P10, MD 2.25 2.33

P11, MD 2.07 1.81

P12, NP 2.04 1.39

P13, NP 1.66 2.08  

Table 5: Provider productivity at a large clinic in terms of Visits and wRVUs per hour 

Referring to the table, the highest productivity over the 12-month period was for P1 (2.86 

visits/hour), while the lowest was for P13 (1.66 visits/hour). wRVUs was highest for P5 (2.33 

wRVUs/hour) and lowest for P12 (1.39 wRVUs/hr). Interestingly though, while P1 had the highest 

visits/hour, the productivity in terms of wRVU was in the lowest quartile (1.85 wRVUs/hr). In 

contrast, P13 had the lowest productivity in visits/hour but their wRVU ranked in the top 40% 

(2.08 wRVUs/hr). These results show that the visits/hours can mask the complexity of work that 

a provider performs during a single visit and thus is not a representative metric to assess providers 

work output at the chosen CHC. 

 Discussion 

3.4.1 Summary of Key Findings 

The chapter sought to understand how clinic-specific analytics can guide appointment 

access. Firstly, predictive analytics was applied to optimize appointment scheduling with a focus 

on the time dimension of appointments and appointment adherence. Secondly, scheduling data 
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was analyzed to accurately assess provider productivity and specifically the suitability of RVUs per 

hour in community health centers. The results for both of these sub-research questions are 

summarized ahead.  

Exploratory and predictive modeling of data extracted from clinic EHR systems can 

provide important insights into key operational factors that govern the implementation of 

patient-centered scheduling. The analysis included a wide range of variables related to patient 

characteristics, visit types and time dimension that were evaluated to assess impact on 

appointment adherence. A decision tree algorithm was first applied to predict appointment 

adherence. Interestingly, the lead time for the appointment was the most significant predictor of 

appointment adherence. Although this variable has not been as widely studied, it is consistent 

with an article assessing the effectiveness of reminder systems to reduce the no-show rates245. 

Predictive analysis based on the decision tree model also provided insights on multiple 

demographic (age, race, ethnicity, insurance status), clinical (new patient, visit type) and 

operational (visit duration, web-enabled) variables that are associated with appointment 

adherence.  

Logistic regression was then applied to quantify the impact of lead time and other 

variables in the time dimension (such as time of the day, day of the week, month of the year, and 

season) on appointment adherence. This showed that patients scheduled for same day 

appointments were at least three times more likely to show for their appointment when 

compared to patients who had scheduled non-same day appointments. This among other factors 

(such as visit type, ethnicity, race, new vs. established patient, and appointment duration) were 

possible predictors of appointment adherence. There were differences in the statistical measures 

(odds ratios and p-values) among the three participating CHCs, likely due to the differences in the 

operational and patient characteristics of the clinics. Knowledge discovered from the decision tree 

and logistic regression regarding the patient appointment adherence can directly guide effective 

schedule utilization through appropriate double booking (for example, double booking two 

patient appointments that are likely to be a no-show) and appointment reminder systems 

(targeting chronic no-show patients with more intensive reminder systems).  

Visual analytics was used to assess the time dimension of the appointment and its 

association with appointment adherence. The visual plots reaffirmed that appointment 

adherence is significantly related to the time of day that the appointment is scheduled. These 

distinct patterns inform selection of booked and open access hours. Across each of the three CHC 
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organizations, we consistently saw high no-show or cancellation rates in the morning from 8:00 

to 9:00 am and in the late afternoon after 3:00 pm. Early afternoon and evenings have the lowest 

no-show rates across all of the CHCs. Based on these findings, clinics using a mix of booked and 

open access hours should consider having fewer booked appointments in the early morning, more 

booked appointments in the early afternoon and offer open access hours during late morning and 

late afternoon.  

Graphical representation of these results in the form of decision trees and visualizations 

could be made available to schedulers, or incorporated in electronic scheduling algorithms and 

tools to maximize provider utilization. As a use case, this pattern analysis was applied to one of 

the CHCs that was keen to optimize the selection of their open access hours. The scheduling 

changes implemented as a result of the analysis led to a 16% reduction in missed appointment 

rates at this CHC. In this same CHC we used text mining, specifically trigram analysis, of the 

unstructured text in the appointment reason fields to efficiently discover the reason for patient 

visits (mostly, non-acute or chronic health conditions) under same-day appointment type. The tri-

gram analysis was shown to be the most preferred route in discovering these reasons for 

appointment and is likely generalizable when dealing with short phrases of clinical terms.   

Lastly, the productivity analysis for one of the largest CHCs in the study showed that 

wRVUs are much more accurate representation of provider work relative to visits/hour, which is 

the current standard in CHCs, and should be used for assessing productivity with any scheduling 

system (open access or otherwise). This productivity data analysis highlighted the importance of 

using wRVUs within the community health center enterprise and specifically showed that 

wRVUs/hour and visits/hour are not directly correlated (thereby disproving the hypothesis). The 

lack of data normalization and analytic capabilities at the health centers was one reason (in 

addition to the current visit volume based Medicaid reimbursement model) why this wasn’t being 

applied despite its obvious importance for practice management. 

3.4.2 Strengths and Limitations of the Study 

We designed and implemented a CHC data warehouse merging data from multiple CHCs 

across Indiana. This is a rich repository of data from all seven participating CHCs for appointments 

since January 2010 to the present. Out of the seven CHCs participating in the larger project three 

were chosen for the analysis completed in this study as part of the intervention group. The CHCs 

selected were such that they served geographically and ethnically diverse patient populations and 

represented different modalities of appointment scheduling. Furthermore, CHCs included in the 
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intervention group were chosen based on their interest in improving access, so may have 

represented those with the most to gain, or those most committed to change. However, 

comparison of characteristics of the clinics chosen for inclusion and those that were not, showed 

that they shared many similar clinic operational characteristics.  

Predictive modeling provides likelihood (probability) information, which may be difficult 

to interpret at times. Predicting the future using relations derived from historical data is 

inherently challenging when system involves people (i.e. patients and providers). There is also the 

possibility of not considering variables that may be critical to the predicted outcome due to 

unavailability of data. Additionally, modifying appointment hours requires a flexibility in how the 

providers may be scheduled, which may pose challenges. These results should be considered as 

potentially important to providers, but reconfirmed within a given clinic system before changes 

in scheduling are made. 

Finally, assessing provider utilization through productivity measures should take into 

account the ‘value of the work’ through such measures as wRVUs, as opposed to a simply counting 

the billable visit volume. wRVUs/hour give a more accurate representation of the provider work 

and can unmask the reasons why a provider may have high productivity numbers assessed using 

visits/hour.   

We believe the knowledge discovered from mining the EHR/PM data will be relevant to 

many CHCs in the state and across the country. This is due to the relative homogeneity of the 

patient demographic served by CHC (specifically those with socio-economic challenges), and 

similar clinic operational and financial characteristics. The study findings however may not be 

generalizable to other non-CHC ambulatory health centers. 

3.4.3 Implications in the Context of the Totality of Evidence 

The study has many implications in the area of knowledge discovery from health center 

EHR and practice management databases, specifically when applied to designing patient-centered 

scheduling system. The current study applies advanced data analytics on a multidimensional CHC 

data warehouse to guide the design of unique scheduling interventions to improve access to care 

in three CHCs. Prior research has shown great variability in factors (e.g. patient demographics and 

appointment variables) that affect patient appointment adherence and potential interventions 

due to the difference in care settings. Prior studies at a primary care center demonstrated that 

no-show behavior was independently correlated with the patient's age and race, the presence of 

any physician-identified psychosocial problems, and the percent of non-cancelled appointments 
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that were kept during the prior 12 months246. Notably though, in an academic practice site no-

show analysis found that the lead time for an available appointment was not a significant factor 

in appointment keeping behavior and that implementation of the concepts of advanced access 

scheduling did not directly result in a reduction in no-show rates247. Instead, provider-patient 

continuity, wait time to an appointment, and other factors may be a more important measures. 

A pediatric clinic dealt with the problem of no-shows through overbooking248. However, a study 

assessing the impact of overbooking on patient access and provider productivity found that 

patient access and provider productivity are significantly improved with overbooking, even as 

overbooking caused increases in both patient wait times and provider overtime249. 

This study provides further evidence of predictive value of patient demographics and 

appointment variable through the application of multiple complementary analytic methods: 

machine learning, statistical analysis and visualization techniques, which are easy to interpret and 

apply in clinic practice. Delivering the PCMH promise of improved access to healthcare requires 

that the health center provide for same-day appointments and monitor its effectiveness.  This 

study adds to the evidence on implementing operational changes that support the open access 

scheduling paradigm. 

Assessing the impact of open access scheduling interventions on production efficiency is 

also critical and the study shows the need to consider provider time, skill, training and intensity 

required to provide care as opposed to the simplistic billable visit count for internal fairness as 

well as regional benchmarking. This is particularly relevant as the health care system moves 

towards rewarding value more than volume as noted in a perspective article250 that calls for a 

reconfigured RVU system that accounts for physicians' services in a variety of delivery and 

payment contexts. 

3.4.4 Future Research Directions 

Further studies are needed to confirm these findings in other populations and determine 

how best to incorporate such factors in developing tools to optimize patient-centered scheduling.  

Open access scheduling methods may be optimized by appointment analysis and ongoing 

monitoring to derive the benefits associated with such an approach.  Given the importance of 

effectively utilizing scarce health care resources and appointments, there is a need for further 

research into models, strategies and technological and organizational change solutions. 
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 Conclusion 

The study has applied advanced exploratory and predictive analytics on EHR data to 

inform patient-centered scheduling and has uncovered factors that govern appointment 

adherence based on a multi-CHC EHR and practice management data warehouse built for the 

purpose of improving efficiency and access to care. Appointment adherence was significantly 

correlated with the time dimension (lead time, time of day, day of the week, month of the year, 

season) and there were distinct patterns identified in the data from participating clinics. The 

process applied in this study can be used to guide the selection of open access hours and optimize 

the provider schedule utilization. Open access scheduling methods require ongoing monitoring, 

and analysis for matching of supply (providers, staffing, open slots) and demand (appointment 

requests), to derive the benefits associated with such an approach. The study highlights the need 

for greater ‘in-CHC’ data analytic capabilities as well as additional research aimed at re-designing 

the care delivery process at CHCs for improving access and efficiency in an increasingly value-

driven healthcare system. 
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CHAPTER 4: A USER-CENTERED DASHBOARD FOR CARE DELIVERY IN COMMUNITY CLINICS: 

DESIGN, DEVELOPMENT AND EVALUATION 

 Introduction 

‘You cannot manage what you do not measure’ is an old adage that applies to all 

industries, and health care is no exception. While health care has lagged behind other industries 

in the use of modern analytics, the Health Information Technology for Economic and Clinical 

Health (HITECH) Act has been recognized as the single most potent force to change this through 

promotion of ‘meaningful use’ of electronic health record data251. Additionally, the Affordable 

Care Act (ACA) has established comprehensive healthcare insurance reforms to increase access 

to healthcare, improve quality, lower costs, and provide comprehensive care through patient-

centered medical homes (PCMH)252, 253.   

Within the context of primary care, Community Health Centers (CHCs) provide health care 

to low income uninsured/underinsured individuals. CHCs play a crucial role in implementing the 

provisions within the ACA, by providing access to high-quality patient-centered care - that which 

is responsive to individual patient preferences, needs and values254. The ACA also ties increased 

funding to demonstrated quality and efficiency improvements255, which require CHCs to leverage 

their clinical and practice management data to drive improvements in their care delivery 

process256.  Delivery of patient-centered care has much to do with the design and implementation 

of an effective appointment scheduling system, in particular the provision of open access 

scheduling. An optimized appointment schedule is an essential mechanism for the delivery of 

patient-centered care because it affords the flexibility needed to meet patient preference for 

appointment times, especially for urgent health care needs257,258. In order to evaluate the impact 

of efforts to optimize appointment scheduling or other facets of healthcare delivery, health 

systems need suitably designed business intelligence (BI) tools259.  

Performance dashboards, built on a data integration and BI infrastructure, are 

multilayered applications that can enable organizations to measure, monitor, and manage 

business performance more effectively 260 . Interactive self-serve cloud-based performance 

dashboards represent the ‘new face’ of BI that link strategy and performance across all types of 

users within an organization, not just senior management, business analyst and power users261.  

With the increasing prevalence of scorecards, dashboards and other visualization tools 

for decision makers to draw insights from their data, the issue of visual information design has 

assumed more importance than ever262. A key design element for effective data representation is 

understanding the information needs of the end-users: What metrics do the users need? What 
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context does each metric require (target, variance, trend, breakdown by regions)? What is the 

visual representation that best communicates the metric (table, bar chart, pie graph, line chart, 

scatter plot or some entirely unique visual)? This underscores the need for visual tools to be 

appropriately designed and implemented for community health centers to support effective 

decision making.   

4.1.1 Related Work 

The premise of a learning healthcare system (LHS) is based on data capture, analysis, 

interpretation and then delivery of tailored messages to individual decision makers in the health 

care practice263. Despite the importance of tailoring messages for decision makers, there is poor 

understanding of the nature of customization for individual roles (providers, management and 

support staff) in health centers. In particular, alignment of information systems with 

organizational objectives and strategies is a key management objective in health care 

organizations 264 . Studies have shown that the vast majority of healthcare organizations 

experience conflicts varying from minor disagreements to fully disruptive behavior among nurses, 

physicians, physician assistants and administrators265. There often are inherent structural tensions 

or conflict between physicians, mid-level providers (nurse practitioner/physician assistant), 

clinical support staff (nurses, patient care assistants), and administrative staff266. Inadequate 

resolution of structural tensions and conflict stifles organizational innovation and growth267. By 

understanding the unique information needs of different stakeholders, Information systems can 

be designed to enable staff buy-in to support the core missions of the health center and help 

facilitate data-based vs. emotion-based conflict resolution to ease tensions268.  

A recent systematic review of evidence supporting the use of clinical and quality 

dashboards in health care environments found that there is considerable heterogeneity in the 

design of dashboards and the users targeted269. The review called for detailed research studies to 

establish guidelines for dashboard design and provide evidence that these tools make an impact. 

Several standardized measures have been developed to capture patient reported outcomes (such 

as symptom status, physical function, mental health, social function, and wellbeing) with a focus 

on improving the quality of care from the patient’s perspective270. However, in order to leverage 

these metrics and operationalize evidence-based practice management, clinic managers need 

tools that facilitate the generation of knowledge and insight from data271.  

Despite substantial evidence showing the benefits of deploying EHRs and health 

information systems, healthcare providers often report only modest improvements in their ability 
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to make better decisions based on using more comprehensive clinical information. This is largely 

due to a lack of appropriate visual analytics that can address information overload challenges272. 

Information overload is the problem that arises when individuals try to analyze a number of 

variables that surpass the limits of human cognition273. In fact, studies have shown that access to 

comprehensive and large-scale clinical data resources have resulted in analytical processes 

becoming more difficult274. The challenges noted in the study stem from (a) clinicians trying to 

combine data from different disparate systems and make sense of the patient’s condition within 

the context of the patient’s medical history, (b) administrators trying to make decisions grounded 

in data, (c) researchers trying to understand differences in population outcomes, and (d) patients 

trying to make use of their own medical data. The study also noted inadequate levels of 

stakeholder engagement in implementation of integrated data analytic systems as one of the 

barriers to benefiting from such systems. Visual analytics (the science of analytical reasoning 

facilitated by advanced interactive visual interfaces) has been noted as an emerging discipline 

with significant promise in addressing many of the information overload challenges and 

healthcare data-driven decision making inherent in multi-dimensional data analytics and 

presentation275.  

The Veteran Health Administration’s (VHA’s) foray into large scale data analytics has 

shown that managers and clinical end users of data are critical participants in the decision making 

process about which reports, analyses and associated data elements need to be prioritized for 

standardization and validation at the national level276. The VHA also recognized the need to 

include improved BI tools that can simplify sophisticated analyses, thereby minimizing the need 

for extensive end-user training.  

There are several examples of dashboards that are built upon databases of community-

based health indicators. Most of these are maintained by government agencies such as the Center 

for Diseases Prevention and Control (CDC) and several non-profit organizations. While these 

dashboards are designed for a general audience (often including the lay public), there are 

dashboards specifically designed for healthcare settings to guide decision making. User-centered 

design (UCD) principles (i.e. designing for and involving users in the design of information 

systems277) have been applied in the design of dashboards for clinicians and patients that address 

specific health care situations such as: reflecting on quality indicators on cancer care278, accessing 

data for diabetes care279, quality of life reports for patients with prostate cancer280, longitudinal 
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data for post-kidney pediatric transplant patients281, psychotherapy progress tracking282, and 

integrating patient-reported outcomes into spine surgical care283.    

Despite the existence of many health related dashboards, there remains a need for 

additional research to more rigorously test their effectiveness. Some of the key topics for future 

research include metrics selection, relationships among metrics, and the ultimate question of 

whether dashboards provide sufficient benefits to justify the resource allocation required for 

adoption284.  Validated survey instruments to measure the effectiveness of dashboards to support 

decision-making in healthcare have been developed 285 . One such instrument measures 

satisfaction with a web-based decision support system286 and another examines the effect of 

dashboards on practitioner performance and patient outcomes287. There have also been studies 

examining the impact of clinical dashboards on workflow, care quality and patient safety in an 

intensive care unit environment288, as well as in primary care environments and community health 

programs289. The latter demonstrated the use of dashboards that assess the short-term effects of 

health programs on performance indicators of interest to program managers – including 

awareness of ongoing programs, program enrollment, and cost per client.  

In summary, the paradigm of a learning health system calls for leveraging the data 

infrastructure for tailoring analytics and messaging for end users with a goal to align internal 

stakeholders and minimize structural conflicts. This requires an understanding the different roles 

and their performance monitoring measures. What is also important is to benefit from designing 

user-centered dashboards containing visualizations that reduce the problem of information 

overload. There is also a need to use robust methods to assess the usability and impact of the 

dashboard on decision making.  From the above review of the literature, we identify the specific 

knowledge gaps that warrant this study.   

4.1.2 Knowledge Gap 

Review of the related research in the space of data analytics and presentation in the 

healthcare space has provided the foundation for our research questions. First, we understand 

that within the paradigm of a learning healthcare system (LHS), any decision support system 

needs to be tailored to the end user. Second, we know from multiple studies that there are 

inherent structural tensions or conflict among clinic staff – including providers (physicians, nurse 

practitioners), clinical support staff (nurses, medical assistants), administrative staff (front desk, 

appointment schedulers, enrollment specialists) and clinic management (Chief Medical, 

Executive, and Operating Officers – CMO, CEO, COO), and other ancillary support staff members 
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(such as technology support). By understanding the unique performance monitoring needs of all 

these distinct roles within a CHC healthcare delivery environment, a tailored information 

dashboard designed to support the monitoring of role-specific goals and priorities for a shared 

core mission may improve communication and mitigate internal staff conflict.  

Research on dashboards has thus far been focused on either health indicators (public 

facing) or patient reported outcomes (patient or clinician facing). In contrast, management facing 

dashboards have largely been serviced by commercial vendors who have focused more on 

financial and/or quality measures with little emphasis on the health care operational 

characteristics that underlie and affect these measures. Operational measures have assumed 

greater importance in the era of patient-centered care delivery environment, with particular 

emphasis on operational efficiency and improved patient access to healthcare.  

Reporting packages that are part of EHR systems, are often inadequate in meeting 

requirements of individual CHCs290. They are geared towards meeting the reporting requirements 

at a federal level in accordance with meaningful use incentives and grant requirements291. These 

reporting solutions are important to CHCs, but fall short of providing operationally meaningful 

analytics, let alone understanding role-specific needs within CHCs, user-centered design of the 

interface or visual analytics with real-time interactivity. Similar issues were uncovered as VHA 

made their foray into advanced analytics292. Beyond the challenge of dealing with information 

overload and data governance, VHA faced organizational challenges in not having a sound 

understanding of which reports and analyses are most critical to care delivery and which data 

elements need to be prioritized for standardization and validation at the national level. They have 

explicitly called for more research on understanding user needs, build evidence about the efficacy 

of providing dashboards to clinic staff, and for validated guidelines for the design of clinic 

dashboards. The VHA experience also highlighted the need for implementing self-serve BI tools 

that can enable automated sophisticated analyses without the user having to know how to write 

complicated executable query code for ad hoc analyses and reports. Dashboards that incorporate 

visual analytics and usability principles during the design and assessment have a potential to 

address some of these challenges. Lastly, post-dashboard implementation examination of the 

effectiveness of dashboard as a decision support tool has not been adequately studied in the era 

of modern visual analytics.  

In summary, there is a gap in knowledge when it comes to understanding what are the 

various performance measures of interest to various roles within a community health center. This 
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is at the foundation of a LHS platform that tailors analytics to stakeholders. Furthermore, existing 

CHC information solutions from EHR and BI vendors are more focused on providing mandatory 

reporting solutions as opposed to delivering dashboard visualizations that are designed, 

developed and implemented using user-centered principles. There is also a need for appropriate 

methods to assess the usability and efficacy of dashboards on decision making. In this research 

study, we apply usability principles and agile development methods to engage with stakeholders 

at community health centers to design, implement and assess visual analytics based dashboards 

to support operational performance monitoring and decision making.  

4.1.3 Research Question 

The overarching research question that addresses existing gaps in the literature and 

governs this study is: How can clinic-specific data be harnessed to promote reflection and decision 

making among varying roles in community healthcare delivery settings? Specifically: 1) What role-

specific measures are effective for performance monitoring in health centers? and 2) What are 

the design and assessment needs for interactive dashboards of user-defined performance metrics 

for CHCs? 

The work presented in this paper identifies the role-specific measures for performance 

monitoring in community health centers and delivers these measures via interactive user-center 

designed dashboard.  

 Methods 

4.2.1 Background 

The CHC dashboard design work is a part of a larger 3-year research project funded by the 

Patient Centered Outcomes Research Institute (PCORI). The larger project aims to improve patient 

access to healthcare at CHCs in three steps: 1) identifying common barriers and successful patient-

centered strategies to accessing healthcare; 2) applying Delphi expert panel methods along with 

workflow and simulation modeling to identify feasible interventions to reduce patient barriers to 

getting needed healthcare and develop patient-centered appointment scheduling strategies; and 

3) determining if implementing patient-centered interventions and scheduling systems can 

improve access to care, relative to existing approaches. As part of this larger project, a 

multidimensional data warehouse was developed using the EHR and various operational and 

financial data stores to support simulation modeling and development of performance 

monitoring process293. There are seven CHC organizations representing over 40 different clinical 

sites spread across the state of Indiana that are participating in the study. The clinics selected 
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were such that they represent urban, semi-urban and rural settings and provide care to diverse 

patient population in terms of race, ethnicity, insurance types, and income levels.  

4.2.2 Overall Approach 

An iterative, user-centered design (UCD) approach was employed to create a dashboard 

that is tailored to the unique needs of CHC staff including administrators, providers and support 

staff (clinical and non-clinical). The design approach included a user needs assessment phase to 

determine the ideal collection of measures to support role-specific decision-making. User 

preferences for navigation and data organization were then evaluated using a high fidelity 

prototype in a second phase of our user-centered design approach. Together, these two phases 

informed the development of the final interactive dashboard that was deployed in the field at our 

study CHC site. Post-deployment, the usability of the dashboard was assessed and user 

perceptions about the value of the tool were collected. Following the needs assessment phase, 

there were periodic group meetings, where the lead author demonstrated the dashboard to the 

clinic staff. This facilitated rapid iterative modifications to the dashboard design.  

The study approach shares similarity to typical phases of the systems development life-

cycle from requirements gathering to deployment but applied the principles of the agile 

application software development 294 . Figure 19 shows the specific phases of the dashboard 

deployment, with the associated rapid iterations and associated tasks within each phase of this 

study.  

  

Figure 19: Dashboard Development Phases and the Associated Usability Evaluation 

The specific details on each phase of the dashboard study from initial planning through 

usability assessment are described next.  

4.2.3 Study Design 

A high level project plan outlined the road-map of the dashboard implementation. This 

included, the selection of the participating health center, the timeline, the software platform to 
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be used, and the overall approach to be followed. A baseline list of measures was developed 

based on prior work done by the researchers on re-designing health systems to improve access 

to care as well as performance measures discussed in the health services literature. Efficient face 

to face communication between the researchers and the clinic staff was built in throughout the 

development lifecycle. In addition, we incorporated short feedback loops and process adaptability 

as expected of an agile development methodology.   

4.2.3.1 Participants 

The input on design requirements of a data analytics platform was obtained from the 

seven CHCs participating in the larger study via clinic questionnaires, workflow observations and 

key informant interviews – all of which provided information on the challenges and needs of 

analyzing EHR data and generating reports. However, a formal sequential user-centered design 

process (interviews to uncover role-specific measures, card sorting exercise, cognitive task 

analysis and a SUS survey) was applied to only one of these CHCs (namely, CHC-O). There were 

multiple reasons for taking this approach. First, CHC-O was among the larger semi-urban multi-

site CHC and had characteristics that were fairly representative of other CHCs and thus allowed 

us to developed a dashboard that was more generalizable to our other study sites. Specifically, 

CHC-O had four physical primary care sites that served both an urban and rural population, had a 

mix of MD and NP providers, and offered the wide range of services (medical, dental, behavioral 

health) and sites (including school based and mobile clinics). The second and equally important 

reason was that CHC-O was most responsive and eager about the potential benefits of an 

enhanced analytics platform. Additionally, CHC-O had also switched from an older EHR (client-

server architecture based) to a modern cloud based EHR in mid-2015 thus offering a deeper 

perspective about differences in EHR reporting functionality when compared with our other 

partner CHCs. The characteristics of CHC-O are outlined in Table 6.  

CHC Characteristic CHC-O 

# of Patients [Across all sites] 20,610 

# of Visits [incl. Physician, NP, Nurse Visits] 63,108 

Care Setting Semi-Urban 

Services Offered [Medical-M, Dental-D, Behavioral Health-
BH] 

M, D, BH 

# of Primary Care Sites [excl. Mobile Clinics] 4 

# of Providers [MDs and Nurse Practitioners], FTEs 4.5 MD; 11.5 NP 

Table 6: Characteristics of the Participating CHC in the Dashboard Study 
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4.2.3.2 Selection of Staff for Interviews 

The clinic leadership at CHC-O was asked to identify the various roles within the CHC and 

the appropriate personnel who should be interviewed to develop the list of performance 

measures that would feed into a dashboard. The different roles identified at CHC-O included: 

Administrators [CEO, COO, CMO]; Admin Support [Quality Assurance/Improvement - QA/QI], 

Operations Manager, Clinic Supervisor, IT Staff]; Providers [MD, Nurse Practitioner (NP)]; Provider 

Support [Medical Assistant (MA), Registered Nurse (RN), Scheduler, and Patient Care Rep (PCR)]. 

At least 1-2 key individuals representing each role were selected at CHC-O. Seven staff were 

interviewed in the pre-dashboard user-centered design phase, while eight staff were involved in 

the usability testing phase post-dashboard implementation. Six interviewees were common 

across both groups and in both cases there was adequate representation of the different roles 

within the CHC.  

4.2.3.3 Software Platform Selection 

 Various potential software systems were evaluated, including open source applications: 

Elastic’s Kibana295  and D3.js296  [both of which are based on JavaScript] and commercial data 

visualization software: Tableau297, and Power BI298. The governing criteria for selection were: 

richness of visualization features; data security, web-based access for the end-user, ease of 

programmability [for sustainability], and one that could better leverage the Indiana University (IU) 

research infrastructure. The software that best met these needs was Tableau – a popular 

interactive data visualization software focused on business intelligence. The product queries 

databases and flat files to generate a number of graph types that can be combined into 

dashboards and shared over a network or the web299. 

4.2.3.4 Requirements Gathering 

Several methods from the field of human computer interaction were applied in a 

lightweight manner during requirements gathering phase. First, the specific information needs of 

potential dashboard users were evaluated through contextual interviews. This was followed with 

an application of the card-sorting technique to define preferences for performance measures and 

information architecture design. Finally, a high fidelity prototype of the dashboard was tested 

with users and feedback was implemented iteratively in the design. About one hour was allocated 

for each individual session with the following break-down of time: 30 minutes for Contextual 

Interview; 20 minutes for the Card Sorting activity; and 10 minutes for the Prototype Dashboard 

evaluation.  
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4.2.3.5 Contextual Interviews for User Needs 

Role-specific contextual interviews were carried out at the clinic site. Contextual 

interview is a critical method in gathering design requirements and involves naturally probing into 

users work in their own space (as opposed to being in a controlled lab)300. The purpose was to 

gain an understanding of the individual’s decision making requirements and how it is currently 

accomplished, independent of the technological capabilities. The types of questions asked were 

along the following lines: Describe your role in the clinic? What decisions are you responsible for? 

Do you currently use data to make these decisions? If so, where do you get data? Is there any 

additional data/info that would help you with your decisions? How do you know you are doing a 

good job? How do you assess the impact of changes you implement?  Participants were also asked 

to show the researcher, if possible, where they currently get information to make decisions in 

their work and assess their work performance.  

Participants were probed with questions and encouraged to think beyond what is 

currently available to identify new performance measures. The interviewee was encouraged to 

think of any and all types of measures they felt would be useful in their work, without being 

concerned about the practicality of accessing such measures (in particular data availability). This 

allowed for an extensive list of measures to be gathered for this study. This process brought out 

new measures of interest, which were noted down on index cards to be used in combination with 

the predefined deck of cards (derived from apriori knowledge of the researchers) as part of the 

card sorting session. This allowed for data gained from contextual interviews to be quickly 

integrated into the iterative design of the dashboard. Field notes were also collected during the 

interviews and were reviewed by the lead author after the all the sessions were complete for 

important themes that crossed over different clinic roles. 

4.2.3.6 Card Sorting for Information Architecture 

The Card Sorting method301 is an established technique in the area of user experience 

design and is used to develop the information architecture (the structure and organization of the 

information) for the dashboard. This technique is used to gain insight on how users mentally 

categorize and prioritize information302. Information architecture is an important determinant for 

the usability of system design303, given that an effective information system enables the user to 

find what they need efficiently and accurately. Different users have different views and priorities 

regarding the information contained in the system.  
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Individual card sorting sessions were chosen over group sessions in order to focus on 

understanding the individual role specific measures, which can be very difficult to discern in a 

group setting. And since this was a small face to face study, we used index cards (the measures 

from the baseline list were individually typed up, while the measures emerging from contextual 

interviews were hand written). Each card contained the name of the metric, a description, 

potential filters for slicing/dicing the data, and the data refresh frequency. Table 7 shows the 

format of one of the measures that was presented to the user in the card sorting exercise.  

Name of Metric Description Filters [Slice/Dice Options] Frequency 

Appointment Adherence 
% of no-shows and 
cancellations 

By Site; Provider; Appt 
Type; Appt DateTime;  

Biweekly 

Table 7: Example of a dashboard measure presented during the card sorting technique 

Cards containing the list of measures from apriori knowledge and new ones uncovered in 

the preceding contextual interview step were presented to the user. To begin with there were 25 

cards and that expanded to over 45 by the end of the needs assessment phase. The end-user was 

asked to sort each card into categories that made sense to them. They were also asked to assign 

a priority level - high, low, intermediate, to each measure.   

All the measures that were uncovered from each interviewee were then organized into a 

master list. The data model was reviewed to assess if each particular measure could be 

implemented into the dashboard. Those measures that were supported by the existing dataset 

were implemented, while those that require development of new informatics tools to gather the 

supporting data were noted as such, but not implemented in the dashboard.  

4.2.3.7 Prototype for Interaction Design 

A high fidelity dashboard prototype, using sample EHR data from CHC-O, was built using 

Tableau. The dashboard prototype included the common visualizations such as bar graphs, line 

graphs, bubble charts, and a geo-map. Figure 20 shows the dashboard prototype used to obtain 

feedback on the design of the interactivity.  
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Figure 20: Prototype Dashboard used to obtain feedback on interaction design 

Providing a high fidelity prototype (one that shares foundational similarities to the end 

product), allowed more reliable assessment of user preferences as well as uncovered new 

preferences for data visualization. After a demonstration of the prototype dashboard, participants 

were probed on the various interaction features including: preferred user interface elements 

(including input controls, navigational and informational components); preferred visual design 

(typography, images and colors); and preferred mode of delivery of the dashboard (static reports 

vs. interactive visualizations delivered from a web portal). These sessions were audio recorded 

and field notes were gathered. Audio recordings were transcribed to text and the first author 

reviewed the transcription and notes looking for common preferences across participants, which 

were incorporated into the dashboard design where feasible. 

4.2.3.8 Development of the Dashboard 

 Tableau software (version 10) was installed on a Windows Server that housed the data 

warehouse containing EHR, operational and financial data from all CHCs participating in this study. 

All the visualizations were developed based on the analytic needs identified as being of value to 

the end user. De-identified data from the clinic health IT systems was pulled and loaded into the 

data warehouse. Each dashboard visualization was linked to one or more database tables. All table 

joins and other data processing tasks were performing within the Tableau interface to allow for 

rapid automated updates dynamically every time the source database was updated with the 

newer data set.  
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4.2.3.9 Deployment, Training and Iteration on the Design 

To allow for secure web based access of the dashboard visualizations hosted on the IU 

Tableau server, IU affiliate accounts (designed for external collaborators) were created for the 

CHC staff. Once staff at the clinic were assigned user names and agreed to the terms of use, access 

to their clinic-specific Tableau dashboards was provided, along with the ability to interact with 

this new visual interface to their data.  

Basic training was provided using a customized train the trainer model – in this case 

training was offered to a super user of the system identified within CHC-O.  The training was 

carried out over two sessions. In the first session, the super user was provided high level training 

following which, the super user provided detailed feedback on each visualization to make sure it 

was truly represented their clinic operations. Following the completion of the first training 

session, changes to the dashboard were implemented and then in a second session the super user 

was provided with a demo of the revised dashboard. The super user then moved forward with 

training the other participating staff members at the clinic during an internal meeting.   

The dashboards were published three months before the usability study was performed. 

During this interim period, the dashboard was refined iteratively based on feedback received 

during biweekly team meetings, called as AIM meetings. AIM stood for ‘access is meaningful’. 

These were meetings with key members of the CHC staff and also served as a source of 

information on the impact of the dashboard on decision making. The AIM meetings included the 

members of the research team (including the lead author) and a AIM committee (n = 6) from the 

CHC. The latter included a committee chair (the ‘champion’) and five other staff members 

representing different functional roles at the CHC, all of whom were also part of the dashboard 

design and assessment group (n = 8).  

4.2.3.10 System Usability Assessment  

4.2.3.10.1 Usability Overview 

Usability testing refers to the evaluation of information systems that involves testing of 

subjects as they perform tasks using the system. There are multiple methods to assess usability 

of a system. Survey questionnaires are often used as a primary method of assessing the impact of 

a system on work tasks, given their advantages (insignificant cost, ease of administering via the 

web, and quick analysis). However, relying on surveys alone provides limited information on the 

actual process of using an information system in performing complex tasks. In addition, the pre-

determined questions in a survey instrument may not identify new or emergent issues that may 
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not have been considered in the design of the survey. There are also issues surround poor recall 

when asking users to rate a system following gap in time from last use. The above deficiencies can 

be overcome when using survey questionnaires as one type of data collected in a multi-method 

evaluation of information systems304.  

For this study, two methods were employed to assess the usability of the dashboard: 

Pluralistic Cognitive Walkthrough (a task-based usability inspection method) and Usability Survey 

(a usability test method). Each of these is now described.   

4.2.3.10.2 Pluralistic Cognitive Walk-through 

Cognitive walk-through (CW) is a task-oriented usability inspection method which is used 

to identify usability issues in interactive systems and emphasizes simulation of cognitive issues, 

such as learnability, and user actions needed to perform those tasks305. A pluralistic cognitive 

walkthrough is a modification to CW in that it involves conducting review meetings where the 

end-user and the developer step through specific scenarios together and discuss usability issues 

that may arise306. An onsite pluralistic CW was performed with each of the dashboard eight users 

at CHC-O to inspect the usability of the dashboard. Each participating user was provided with a 

laptop and a mouse to perform the specified tasks. 

The aim of the pluralistic cognitive walkthrough was to allow participants to interact with 

the dashboard while assessing both the usefulness and ease of use. Three specific tasks were 

developed and these related to: appointment adherence, productivity, and patient demographics. 

These represented common scenarios of user interaction with the dashboard. Each of these tasks 

had specific sub-tasks. Field notes were used to capture the user actions and system responses 

and corresponding usability issues. Each participant was encouraged to ‘think aloud’ while 

executing the required task so that the audio recording could be used as a reliable method to 

capture the session activities. Screen capture software was used to record the user interaction 

with the dashboard, which complimented the field notes taken by the researcher. The field notes 

informed the usability of the system in terms of user actions, system responses and corresponding 

usability issues (if any). The audio was later transcribed and the author read through the 

transcription to check for any missed information. 

4.2.3.10.3 Usability Survey 

The System Usability Scale (SUS) 307 is a well validated tool with references in over 1200 

articles and publications 308 . The SUS is a Likert scale survey instrument which includes 10 

questions to which users respond by ranking 1 to 5 based on how much they agree or disagree 
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with the statement they are reading. 1 means they strongly disagree and 5 means they strongly 

agree.  

It may be noted here that besides SUS, there are other options to judge the usability of a 

dashboard, such as SUMI (Software Usability Measurement Inventory), SUPR-Q (Standardized 

User Experience Percentile Rank Questionnaire), and QUIS (Questionnaire for User Interaction 

Satisfaction), but the unique advantage of SUS is that it is comparatively quick, easy and 

inexpensive, whilst still being a reliable way of gauging usability, particularly when used in early 

stages of a software tool such as this dashboard on small sample sizes.  

The original SUS was slightly modified to include two sections. The first section contained 

the standard ten SUS questions on a five point Likert scale. The second section obtained 

background information on the participant: their role in CHC, length of service, comfort level with 

computer and the internet, willingness to spend time to learn to use the dashboard effectively, 

and perception on the dashboard allowing them to their job better. The survey was delivered 

online at the end of the usability assessment phase and the users completed it on the spot.  

 Results 

Results are shared starting with the user requirement gathering and analysis phase of the 

dashboard development process. This phase involved contextual interviews, card sorting and 

interaction design evaluation using a prototype dashboard. We then describe the dashboard 

design, development and finally, the usability evaluation.   

4.3.1 Results from the Needs Assessment Phase  

We had originally identified 25 different measures that were found to be relevant for 

ongoing performance monitoring of a community health center. These measures were identified 

through a review of the literature, key informant interviews with staff at each of the seven CHCs 

on the topic of improving efficiency and access to care, a clinic questionnaire, and workflow 

observations.  

The contextual interviews explored staff roles and their performance monitoring needs 

at CHC-O. The latter added 20 additional measures, bringing the total to 45 different measures. 

Using the card sorting technique, each participant selected measures that were important for 

their role, grouped them into categories, and then prioritized based on the order of importance.   

While there was some amount of overlap in the measures selected, there were unique 

measures (‘dominant themes’) tied to specific roles in the CHC. For example, the dominant theme 

that related to the CEO of the clinic was a measure to assess how effective their internal 
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communications and directives were. Specifically, the CEO wanted to increase collaboration and 

engagement with staff so they could take ownership of the organization values and priorities. 

While this was the dominant theme, there was also an interest in operational measures such as 

monitoring patient flow and throughput within the clinic (particularly when there are deviations 

from the norms), and appointment adherence (such as no-show and cancellations rates). The 

interest of the operations manager of the CHC were driven by a desire to improve provider 

schedule management and tracking supply/demand and productivity. The CMO was concerned 

about closure of all open issues (such as review lab results, medication refills, visit sign offs) and 

wanted to track provider productivity and adherence to scheduling templates. An MD provider 

was concerned about care team implementation and wanted to track appointment adherence, 

patient throughput and quality scores. The Nurse Practitioner’s dominant concern related to 

reducing the patient check-in time. The Lead Medical Assistant (MA) of the clinic had great 

interest in knowing about all of the things they do right when supporting their providers as part 

of the care team. Her concern was that too often the feedback mechanism was used as a sounding 

board for negativity, while reinforcement of positive aspects was lacking. In terms of measures, 

the MA wanted to track schedule coverage, open patient requests and appointment adherence. 

The scheduler was concerned about not having enough appointment slots available to meet 

patient demand, while wanting to track the incoming phone wait times and appointment demand. 

Finally, the patient care representative (PCR) at the front office was interested in being able to 

see patient registration information in a single view rather than moving through multiple screens. 

She also wanted to be able to assess door to door time as well as receive feedback from providers 

on how their scheduling performance.  

Table 8 shows this information grouped by the 8 different roles within the clinic, the top 

3 measures of interest of them and the dominant theme that emerged from interaction during 

the interviews.   

Role/Specific Title Top 3 Key Operational Measures Dominant Theme 

CHC Leadership/CEO Patient flow Status; Patient 
Throughput; Appointment Adherence 

Communication Effectiveness 

Operations Manager Supply and Demand; Productivity; 
Continuity of Care Assessment 

Schedule Management 

CMO  Productivity; Appointment Lead 
Times; Patient Satisfaction Scores  

Closure of Open Issues [Labs, 
Medication, visit sign-offs] 

Provider (MD) Appointment Adherence; Door to 
Door Time; QA/QI Scores 

Evaluation of Care Teams 
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Provider (NP) Appointment Adherence; Door to 
Door Time; Schedule Coverage 

Reducing time from Arrival to 
Exam 

Lead MA Schedule Coverage; Open Patient 
Requests; Appointment Adherence 

Feedback from Providers and 
Patients [including positive] 

Scheduler Incoming Phone Wait Times; Appt 
Demand; Cont. of Care Assessment 

Non-Availability of 
Appointment Slots 

Front Desk/PCR Door to Door Time; Provider 
Feedback; Open Patient Requests 

Quick view of the Patient 
Information in the EMR 

Table 8: Role-specific measures of interest uncovered during the contextual interviews 

4.3.1.1 Prototype Dashboard Evaluation 

A sample dashboard containing four different types of visualizations was shown to the 

users and they were asked to use the dashboard and provide feedback in terms of: organization, 

interactivity, colors, graph types, filters for data slicing, access and delivery mechanism. The users 

were thus far only used to seeing tables and line charts in static spreadsheets generated internally 

or reports on financial performance. All users found the ability to interact with the dashboard by 

running scenarios using the various filters associated with each visualization to be beneficial. For 

example, the prototype dashboard allowed the users to see the graphic on no-show rates and see 

how those numbers varied for patients having different insurance types (such as Medicaid, 

private/commercial, uninsured/self-pay,) and visit types (such as lab visit, wellness, chronic). 

There was an interest in layering, i.e. the ability to clicking into the visualizations and see the 

underlying data. With regard to the mode of delivery of the dashboard, most users expressed 

interested in periodic email updates (as is typically the norm with traditional reporting solutions). 

However, when the users were made aware of the possibility of an interactive dashboard always 

accessible via a web portal, all users preferred the same (but still wanted to receive notifications 

via email to serve as a trigger to click and view the online dashboard).  

4.3.2 Dashboard Design and Development 

4.3.2.1 Overview 

The visualizations were developed in Tableau Desktop version and then deployed on the 

Tableau Server hosted by the university. Tableau allowed development of visualizations by 

connecting to various data sources, including Microsoft SQL Server Database, which was used for 

the clinic data warehouse in this research project.   

Visualizations were designed in such a fashion that each encompasses more than one measure. 

For example, a single visualization sheet, called ‘Appointment Analysis’ addressed 2 measures, 

namely appointment adherence (i.e. no show and cancellation rates) and the visit volume 

(equivalent to the demand for clinic services).  Similarly, the scheduled hours available for 
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appointment (equivalent to supply or capacity of providers), productivity (defined in terms of 

visits/hour), and the number of new patients, are 3 different measures available as a single 

visualization sheet, called ‘Productivity’.  

4.3.2.2 Core Measures 

Each CHC had different data generation capabilities, which was governed by their 

EHR/Practice Management (PM) system being used, and the level of data extraction rights 

available. However, there are a core set of dashboard visualizations that was made available to 

each of the CHC organizations participating in this study. These 15 core visualizations are listed in 

Table 9. 

Core Measures for Project Filter Criteria/Selections Source 

Appointment Volume Appt Status, Provider, Site, Date, Pt. Profile EHR/PM 

Patient Booking to Appt. Time  By Appt Status, Provider, Site, Time Period EHR/PM 

CPT Visits [CPT Code] Provider, Site, Date EHR/PM 

Appointment Types Provider, Site, Date EHR/PM 

Diagnostic Visits [ICD Code] Provider, Site, Date EHR/PM 

Patient Throughput Workflow Stage, Provider, Site, Date EHR/PM 

Productivity [Visits/hour] Provider, Site, New Patients, Date EHR/PM 

Schedule Coverage/Utilization Provider, Site, Date EHR/PM 

Patient Geo-Map Superimposed on US Census Statistics EHR/PM 

Revenue, Expense By Source, Year IRS 990 

Federal Quality Measures Measure type, CHC, Year UDS309 

Patient Demographics By Race, Gender, Age, Ethnicity, Language UDS 

Patient Characteristics Insurance, Poverty Level UDS 

Clinic Services Offered By Service Type UDS 

Patient Satisfaction Score CHC, Pre and Post Intervention Survey 

Table 9: Core set of dashboard measures available for each CHC 

Note that these 15 core visualizations represent 25 different measures. In addition, there 

were 20 additional measures which were CHC-specific. These depended on the EHR capabilities 

or the use of specific information systems (such as sophisticated phone systems). These measures 

include: Charge Entry Lag, Enabling Services Coded, Phone Abandonment Rates, Auto registry 

calls, Phone Requests, Incoming Phone Wait times, Internal Phone Wait times, Continuity of care 

assessment, New Employee Retention, Patient Payments, Open Patient Request, Medical Records 

availability, Errors in Orders, Provider Feedback, Patient Feedback, Transfers to Urgent Care and 

ER Visits, Panel Sizes, Provider Complaints, Provider Orders, and Email communication types and 

volume.  
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4.3.2.3 Visualizations 

Developing the dashboard visualizations required transformation of the data using the 

data visualization software. Some of the common transformation activities included: creating 

calculated fields, embedding multiple if/else conditions, data binning, grouping picklists, creating 

aliases for source database fieldnames, and changing data types. There was a particular challenge 

related to productivity calculations. None of the four different EHRs used by the seven CHCs in 

the larger study had the capability to provide accurate productivity calculations, per the 

administration’s needs. This made productivity calculations (required for provider incentive 

calculations and monitoring by the board of directors) a laborious process every month. The 

primary challenges were in computing the number of scheduled appointment duration/hours 

(including shows, no-shows, cancellations), while at the same not double counting the duration, 

if an appointment is double booked. To accomplish this, a custom de-duplicated database table 

was created to compute the appointment hours and then an ‘outer join’ was performed with the 

appointments table.  

Screenshots of a select few data visualizations showing the variety of graphical displays 

and data filtering options are presented. Figure 21 shows example of landing page once the user 

logs into the web portal using their affiliate account. The landing page in this case shows all the 

visualizations pertaining to the statewide comparative data on community health centers, such 

as size of each health center by patient volume, patient demographics (age, race, ethnicity, 

insurance types), services offered, clinical quality measures, cost of care delivery, and site 

locations. 
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Figure 21: Web portal for secure access to the dashboard 

Figure 22 shows the geo-map of the incoming patient population (user definable 

threshold of > 10 unique patients per zip code) for CHC-O, superimposed on the per-capita income 

by the zip code. This helped the administration to visualize the ‘blank spaces’ in the map where 

the clinic would focus its outreach efforts.  

 

Figure 22: Geo-map of the patients at CHC-O layered on per capital income by zip code 

Figure 23 shows the trend of ICD 10 codes (above an editable threshold count) for the 

primary patient diagnoses. The clinic administrators were able to spot a clear downward trend in 
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the volume of patients with hypertension and diabetes starting in Jan of 2016, triggering a root 

cause analysis of this problem.  

 

Figure 23: ICD 10 codes for the patient diagnoses 

4.3.2.4 Design Iterations 

We used an agile iterative design process for implementing the dashboard. Biweekly 

meetings with the clinic team insured that existing visualizations could be modified in rapid design 

cycles such that the needs of the end user were being integrated throughout the development 

process. 

The needs assessment phase informed the measures of relevance as well as the 

interaction design, but the types of graphical displays/visualization for each measure was 

assessed post implementation of the dashboard. In some cases, the chosen visualization met the 

needs of the users, while in others the staff had specific requirements. As an example, the staff 

found the appointment adherence visualization in the form of a stacked bar to be appropriate, 
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since it showed the numbers and percentages for the appointment status (show, no-show, 

cancellations by patient, cancellations by provider, reschedules) by the month. However, there 

were specific preferences in the use of the color scheme in the stacked bars. They specifically 

wanted red for no-shows to display their non-desirability, while green to be used for completed 

visits.  

The staff did not want to see the productivity report graphically, preferring instead to see 

it in the form of a table so that the numbers could be shared with the individual providers. The 

CHC management were open about sharing productivity data of all providers to promote a healthy 

competitive spirit. They also wanted to see a service line level summary for presentation to the 

CHC board, and even had a preference in the ordering of the service lines (primary care, followed 

by family practice, OB, pediatrics, behavioral health, family planning, mobile clinics and urgent 

care). This ranking was based on the relative importance (patient visit volume and revenue) of the 

departments for the health center practice.   

On the primary diagnoses by ICD 10 code visualization, within primary care the most 

frequent code was I10 – Essential (primary) Hypertension, followed by E11.9 – Type 2 Diabetes 

without complications. However, the CMO noted that there was variability in which particular ICD 

code was used by the provider. Taking diabetes as an example, there was interest in also being 

able to group the diagnoses at higher level. So E11.x series would be one group related to Type 2 

diabetes irrespective of the complication (noted by the ‘x’). After implementing that change, the 

reported incidence of Type 2 diabetes diagnosis was 3 times higher than any form of 

hypertension.   

On the patient geo-map the clinic leadership wanted to see more granularity on the 

patient residential location (down to the street level as opposed to just the zip code level) in order 

to optimize their marketing and outreach efforts.  

4.3.2.5 Impact on Decision Making 

We sought to gain an insight into the how the dashboard was facilitating decision making 

at the CHC to better manage their operations. This assessment was done during biweekly staff 

meetings, wherein at least 30 minutes was allocated for reflection work with the dashboard. 

These discussions were also transcribed. A selection of use cases demonstrating the impact of the 

dashboard on decision making is described. Select quotes from the transcripts are included, 

where applicable, to offer context.  
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4.3.2.6 Enabling a culture of data-driven decision making 

We found that the dashboard appears to be enabling a culture of data-driven decision 

making for CHC management and staff. The CEO of CHC-O informed the researcher team that the 

entire administrative staff is “excited about this dashboard and what the data is telling them.” The 

CEO also stated that they now need to work on “addressing the operational challenges being 

brought out by the data visualizations.” The Indiana Primary Healthcare Care Association (IPHCA) 

has been briefed on this 7-CHC data warehouse and dashboard platform. IPHCA believes that this 

work will directly support their plan to implement a state-wide community health information 

network to support greater data-driven operational and clinical quality improvements for all 27+ 

CHCs in the state.  

4.3.2.7 Guiding the Implementation of Open Access Scheduling 

Implementing open access scheduling, wherein a majority of the appointment slots are 

left open for same day walk-in appointment, is an important component of a patient-centered 

medical home (PCMH) 310  – a care delivery model which is patient-centered (responsive to 

individual patient preferences, needs and values) and coordinated through a primary care 

physician while being committed to quality and safety. The dashboard supports the 

implementation of such a scheduling system by showing the benefit in terms of a significantly 

reduced no-show rates for same-day appointments (< 8% no show rate for same day appointment 

vs. > 25% for appointments not scheduled the same day). The CMO stated that, “we have always 

felt that scheduling appointments too far out will have a high no-show rate associated with them, 

but now your data [visualization] is proving that.” The CMO was also able to identify the variability 

among provider/scheduler compliance with implementing open access hours. After seeing the 

lead time distribution for providers not following the open access appointment template, and the 

associated 2-3x higher now show rates, the CMO remarked that “our schedule is being sabotaged 

by our schedulers, with some tacit approval from some providers.” This led to convening of a 

special ‘lunch-n-learn’ session with all providers to emphasize the importance of open access 

scheduling in not only reducing no-show rates, but also in streamlining clinic operations and 

improving patient satisfaction.  

The lead scheduler at CHC-O, asserted that the dashboard “will be very helpful in doing 

my job better.” In particular, she commented that knowing the open access hours and the 

associated call volume will help her with ‘planning call center staffing needs.” When looking at 

the data visualization, the staff also noticed an unusually high no-show rate during the period of 
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January, 2016 through February 2016. Upon identifying this spike in no-shows, they were able to 

reflect and understand this increase knowing that their automated appointment reminder system 

was temporarily dysfunctional during that period which was the reason identified for this spike. 

4.3.2.8 Reporting of Productivity 

CHCs typically measure productivity based on a calculation of patient visits/hour. Like 

most of CHCs in our study, CHC-O performs this computation manually using spreadsheets. Not 

only is this a time consuming process, it was found to be prone to errors. The researchers were 

able to automate the calculation and presentation of the provider productivity data based on an 

extract of their EHR data. We worked with the clinic operations manager to validate the data 

(particularly identifying what all visits counts as billable) and appropriately accounting for the 

patient contact hours. The CMO stated that their EHR vendor had not been able to create a 

productivity report that met their needs and applauded the work done by the researchers in 

“providing an automated accurate productivity report.” The IT manager went far as suggesting 

that the “the productivity report design shown in the dashboard should be copyrighted!” 

4.3.2.9 Patient Flow Tracking 

Tracking the patient flow within a CHC from arrival through departure is critical for 

streamlining CHC operations. Some EHRs are better than others in the tracking capabilities. The 

EHR used by CHC-O was among the better EHRs that provide good tracking functionality, but staff 

were still unable to effectively extract meaning from the data. The research team developed a 

patient flow tracking visualization, which took the form of an interactive storyline we called ‘5-

stage patient throughput.’  The storyline combined multiple workbooks on patient flow in CHC-O 

in the form frequency distribution of time duration, including the intermediate wait times. Data 

could be filtered by the responsible provider/clinic staff.  The clinic manager noted that every time 

she performed process audits or tried to identify bottlenecks, she had to manually follow patients 

to track the time intervals from arrival through departure. The clinic manager commented that 

“but now with your dashboard I can analyze all of this, without having to go through a manual 

process.” The Lead MA of CHC-O, commented that “I knew that Dr. [---] took a long time 

completing his patient encounter, and now your chart is confirming that.” She decided to share 

this data with the concerned provider.   

4.3.3 System Usability Study Results 

The usability of the dashboard was assessed using two methods: pluralistic cognitive 

walk-through and a usability survey. The results from each of these methods are presented next.  
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4.3.3.1 Results from the Cognitive Walk-through 

There were three tasks and associated sub-tasks to perform the cognitive walkthrough. 

Prior to performing these tasks, the user signed into the web portal containing the dashboard for 

CHC-O. There was minimal guidance offered for completion of the various tasks. There were eight 

users, of which five were interacting with the dashboard for the first time, while three out of the 

eight users had used the dashboard multiple times in the month prior to this session. Except for 

one user (who had joined CHC-O a month prior), all else were familiar with the project and had 

seen the author perform the demo during earlier team meetings. First time users were 

intentionally asked to participate in the task analysis to assess the learnability and level of training 

warranted. Field notes, screen captures, and video/audio recordings of each cognitive-walk 

through session were reviewed and the findings (expected user actions, system response, and 

problems experienced by the users) are presented below, organized by each task category and 

sub-task (framed as a question). For each sub-task, we state the expected user interaction with 

the dashboard, the system (dashboard) response, and usability problems, if applicable.  

Task 1 relates to appointment analysis and the associated visualization (Figure 24) 

illustrates the user interaction with the dashboard. On the right are the various filter selections to 

run various interactive scenarios. 

 

 

Figure 24: Visualization on Appointment Analysis 

Task 1: User analyzed appointment adherence among primary care patients 

Lead time 

bin filter 
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 Sub-task 1: What was the no-show and cancellation rate during June 2016 within primary 

care? 

o Expected User Interaction: The visualization tab, labeled as ‘Appointment 

Analysis’ showed the appointment adherence (complete, no-show, cancellations, 

reschedules) for each month of the year since January, 2015 in the form a stacked 

bar graph. The user would notice the percentage of no-shows and cancellations 

for the month of June, 2016 referenced in the horizontal axis.   

o Dashboard Response: The percentage numbers displayed on the stacked bar for 

each month. Additional information (such as number of patients) shows up upon 

hovering or clicking over the particular bar for the month of June. No-show was 

20% and cancellations rates was 14% (cancellations were summed up by provider 

and patient) 

o Problems: The context sensitive display of the text box upon hovering over the 

no-show and cancellation zone on the bar graph was not obvious and bothersome 

to a (first time) user (refer again to Figure 24 to see the context sensitive text box 

that shows up upon hovering over stacked bar). The others did not express any 

concern with that and saw its purpose.  

 Sub-task 2: What was the impact of scheduling appointments with a wait time of ≥ 30 

days on the no-show and cancellation rates?  

o Expected User Interaction: The same visualization tab, labeled ‘Appointment 

Analysis’ showed the appointment adherence (Figure 26). There was a filter 

labeled ‘lead time’, which had a multi-select picklist with bin size increments of 

30 days. The user had to select all and then unselect the first option for the lead 

time that corresponds to 0-29 days.  

o Dashboard Response: The visualization updated automatically to show the 

revised no-show and cancellation rates. No-show rate went up to 28% and 

cancellations rates went up to 24% when the lead time bin sizes selected were ≥ 

30 days. 

o Problem: The method of de-selecting all options in a multi-select filter was not 

immediately apparent (the user is required to check ‘All’ and then uncheck the 

‘All’ box to deselect all options). Secondly, the bin size categories selection was 

not intuitive. So, if there were 5 bins for the appointment lead time with a bin 
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size of 30 days then it was not readily clear what range of days, does 0, 30, 60, 90, 

120 and so on meant (the lead time bin filters are displayed on Figure 24 on the 

bottom right). When asked to select days greater than equal to 30 days, the users 

were unclear if they should include or leave out 30. Bin sizes are forward looking, 

i.e. 0 means 0-29 days, 30 means 30-59 days, and so on, with each bin label 

designating the lower limit of the range of numbers that is assigned to the bin 

(with the lower limit being inclusive). 

Task 2: Find out the provider productivity in primary care 

 Sub-task 1: Which provider(s) had met their productivity targets [>= 2.5 visits/hour] for 

June, 2016? 

o Expected User Action: The user had to go to the visualization tab, labeled as 

‘Provider Productivity’ which showed a table with the various measures related 

to productivity (number of billable visits, scheduled patient contact hours, 

visits/hour, number of no-shows, number of cancellations, and number of new 

patients) for individual providers grouped by department (primary care, 

pediatrics, OB/GYN, behavioral health, family planning, urgent care). The user 

had to go to the pane for the primary care department and find those providers 

whose productivity exceeded 2.5 visits/hour.  

o Dashboard Response: There was only 1 out of the 15 primary care providers who 

exceeded 2.5 visits/hour in the month of June.  

o Problem: None 

 Sub-task 2: What was the complete visit count and productivity of the primary care 

department? 

o Expected User Interaction: Within the same ‘Provider Productivity’ tab, the user 

had to look at the grand total of visits for the primary care department for that 

particular month.  The underlying calculation for productivity was total visits 

divided by total scheduled patient contact hours.  

o Dashboard Response: The department productivity was displayed in the 

summary row.  

o Problem: None 

Task 3: Analyze the patient demographics and disease conditions 

 Sub-task 1: Which zip code brought in the second largest number of patients to CHC-O? 
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o Expected User Interaction: The relevant visualization tab was ‘Patient Map,’ 

which was a geo-map of the patients based on their residential zip code. The 

count of patients from each zip code was displayed as a bubble (whose size based 

on the number) along with the textual information on the patient count and zip 

code. This was superimposed on top of a per capita income map by the zip code.  

o Dashboard Response: The zip code with the second largest number of patients 

was displayed on the map, which was from an adjoining zip code to where the 

primary care site was located.  

o Problem: None  

 Sub-task 2: What was the most common primary diagnosis for urgent care visits in 

January, 2015? 

o Expected User Interaction: The associated visualization tab was labeled as ‘ICD 

Codes,’ which was a stacked bar graph of the count of appointments by the 

primary patient diagnoses and month on the horizontal axis. The user had to use 

the department filter to only show the count of the diagnoses for urgent care.  

o Dashboard Response: For the month of January, the most common primary ICD 

10 diagnoses in the urgent care department was ‘acute sinusitis’ with ‘acute 

pharyngitis’ being a close second.   

o Problem: None 

All users were able to perform the assigned tasks without much guidance. This is not as 

surprising considering that, for one, the users were all comfortable with computers and the web 

(their EHR is cloud-based) and secondly, the data visualization software interface is known to have 

an easy user interface.  

4.3.3.2 Common Usability Challenges 

Beyond the task specific usability issues, there were some common usability challenges 

encountered, particularly by the first time untrained users (five out of the eight participants). For 

one, the context sensitive text box upon hovering across the graphical sub-objects came across as 

a surprise to many participants (and annoyance to one). However, the participants later realized 

the value of the large hovering text in that they would otherwise be required to visually match 

the graph elements to a legend. Secondly, the participants struggled to easily navigate the various 

tabs corresponding different visualizations on the web portal. There was an inconspicuous scroll 

bar on the top that the first time users struggled noticing. This made navigating the tabs easier 
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once they found this scroll bar. Three out of the eight users, were actually returning to the home 

page of the dashboard and then opening up the particular visualization, instead of clicking on the 

adjacent navigations tabs. Thirdly, two users tended to overuse the filters (for example, selecting 

a single month from the filter, instead of reading the values straight off the graph showing data 

for all months). Most of these initial issues were resolved with continued use of the dashboard 

for the remaining tasks and suggestions made by the researcher.  

4.3.3.3 SUS Survey Results 

Soon after completion of the cognitive walkthrough, the users were asked to fill out the 

system usability scale (SUS) survey. As discussed earlier, the survey had 2 sections. The first 

section contained the standard ten SUS questions on a five point Likert scale. The second section 

obtained background information on the participant (their role in CHC-O, length of service, 

comfort level with computer and the internet, willingness to spend time to learn to use the 

dashboard effectively, and perception on the dashboard allowing them to their job better). For 

the latter two questions, seven out of the eight answered a score of five (strongly agree).  

For the SUS survey used for the dashboard, the average score turned out to be 81.25 

(range: 50 to 100 and standard deviation of 17.1). All SUS and supplementary questions with the 

individual scores by the role and the average scores are shown in Table 10. 

SUS Questions (↓) and Role/Job Title (→) Scheduler

Grants & 

Comms. Mgr CMO Lead MA

Operations 

Mgr

Clinic 

Supervisor CEO

Compliance 

& IS Mgr Avg.

I think that I would like to use this system 

frequently 5 5 4 5 5 5 1 5 4.4

I found the system unnecessarily complex 1 1 1 2 2 1 3 1 1.5

I thought the system was easy to use 5 5 4 3 4 5 3 5 4.3

I think that I would need the support of a 

technical person to be able to use the system 2 1 2 3 2 1 5 1 2.1

I found the various functions in this system were 

well integrated 5 5 4 4 4 5 4 5 4.5

I thought there was way too much inconsistency 

in this system 1 1 1 3 2 1 1 1 1.4

I would imagine that most people would learn 

to use this system very quickly 5 3 3 2 4 5 2 4 3.5

I found the system very cumbersome to use 1 1 1 2 3 1 3 1 1.6

I felt very confident using the system 4 4 4 3 4 5 4 5 4.1

I needed to learn a lot of things before I could 

get going with this system 2 1 1 3 2 1 2 1 1.6

Raw SUS Score 37 37 33 24 30 40 20 39 32.5

Computed SUS Score 92.5 92.5 82.5 60 75 100 50 97.5 81.3

Supplementary Questions

How many years have you worked here? 13 12 4 5 6 0.2 0.2 18 7.3

Please rate your ability to use computers and 

the internet 4 5 4 4 4 4 4 5 4.3

I am willing to spend time to learn to use the 

dashboard effectively 5 5 4 5 5 5 5 5 4.9

I believe the dashboard will allow me to do my 

job better 5 5 4 5 5 5 5 5 4.9  

Table 10: Results of the SUS survey and the supplementary information 
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There are guidelines to interpret the SUS score. The average SUS score is 68 from 500 

studies that have used this test over the years. A recent research311 has shown that two questions 

in the test also evaluate learnability while the remaining eight assess usability.  Studies that score 

80.3 or higher are given an A grade and interpreted as ‘People love your site/application and will 

recommend it to their friends/colleagues’.  

 Discussion 

4.4.1 Summary of Key Findings 

The current study on the design and implementation of a CHC and role-specific dashboard 

is part of a larger research project aimed at improving efficiency and access to care in seven CHCs 

across the state of Indiana. It leverages multi-EHR clinic data warehouse and CHC-specific 

workflow models developed as part of the larger study. In this particular study, key informant 

interviews of CHC staff was performed to uncover the information needs and gaps in meeting 

those needs to support clinic operations. Then a user-centered design (UCD) methodology was 

applied which included open card sorting and interactive assessment using a high fidelity 

prototype. Following completion of the needs assessment phase, dashboards were designed and 

deployed on a secure web portal. Agile and iterative design methods were applied to refine the 

dashboard to efficiently meet end user needs. Finally, a study to assess the usability and 

effectiveness of the dashboard for supporting decision making was performed. Each aspect of the 

study, namely, needs assessment, dashboard implementation, and finally usability testing is 

further described. 

Needs Assessment: We started off with a baseline set of 25 dashboard measures based 

on a review of the literature and our prior experience working with health centers to improve 

access to care. As part of the needs assessment phase, the number of measures increased to 45. 

Importantly, the study discovered unique and hitherto unknown measures based on the specific 

role of the users in the CHC, covering a wide range of roles from the CEO to the patient care 

representative at the front desk.  

Dashboard Implementation: The visualizations were all interactive and combined multiple 

measures into one. There were measures for which existing information systems were 

inadequate, such as surveys on staff satisfaction and team work. The study is informing the 

development of appropriate informatics tools to capture that information in an automated and 

time efficient manner to support future implementation in a CHC dashboard. The dashboard 

clearly elicited significant enthusiasm by all staff within the CHC. Reports and insights, previously 
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not easily available were now made possible through the dashboard (the productivity analysis and 

patient throughput visualization embedded in the dashboard being prime examples). 

Usability Testing: The task analysis brought forth some interactivity and navigation 

related issues for first time untrained users, but resolved with continued use. The usefulness of 

the dashboard as tool for operational decision making was ascertained through frequent 

meetings between the researchers and the clinic staff. In general, the dashboard acts to support 

a culture of data-driven vs. emotion-driven decision making. Specific areas of impact included, 

guiding the design of open access scheduling systems, automating the assessment of provider 

productivity, improving patient-throughput, and supporting patient outreach efforts. Ranking of 

the system, per SUS scores, shows the participants found the dashboard to be both easy to learn 

and usable.  

4.4.2 Limitations of the Study 

The study has certain limitations. The first relates to the generalizability of the findings 

from the dashboard design. The study is based on knowledge gained from working with seven 

CHC organizations with over 40 clinic sites in the state of Indiana. However, a great majority of 

the work to specifically inform the dashboard design development was done with a single clinic, 

CHC-O, one of the large CHCs in the state. All six of the other CHCs received a similar dashboard 

as CHC-O, but it there was no design work or testing completed at those sites. CHC-O was selected 

because it was representative of other CHCs in terms of its characteristics: mid-size with rural and 

urban sites, serving a racially diverse patient population, and having mixed providers (NPs and 

MDs). In comparison with other clinics, CHC-O already employed modern information and 

communication technologies (cloud based EHR/Practice Management System, advanced phone 

systems) and management was particularly open and willing to share its data and work with it to 

form insights into clinic operations. Nevertheless, each CHC is unique in their own way that 

extends beyond the type of the patient population they serve. There are subtle differences related 

to organization culture and leadership, and the data infrastructure. These warrant additional user-

centered design work at other CHCs.  

Secondly, the sample size of the usability study was small (n = 8). While this informs the 

design of the dashboard, it limits the statistical significance of the findings. A larger study involving 

all seven CHCs and their key staff members [n ~ 50] will shed more light on the findings and allow 

for high powered statistical analyses.  
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There is also the issue of the data latency involved with the data warehouse linked to the 

dashboard. There are practical limitations on how frequently the source data from the EHR could 

be queried, extracted and loaded into the data warehouse. While the current frequency 

(fortnightly), was adequate for many of the measures being tracked, there are some measures 

(such as ones that track the real-time patient flow through the clinic) which would benefit from a 

live connection to the EHR database. However, this would require creating secure web services 

based interface with the EHR vendors.  

The study represents an early phase implementation of the dashboard. Ongoing 

assessment of the dashboard is needed to evaluate its continued utilization, through means such 

as user log files in the server. The inclusion of key operational measures such as appointment 

adherence and productivity in the dashboard will encourage its continued use, while 

visualizations such as patient geo-maps will help guide CHC outreach efforts.  

Finally, there is the issue of sustainability of the dashboard beyond the larger project end 

date. Currently the data warehouse and dashboard is hosted on an infrastructure hosted by the 

research team, which necessitates the users log in to a separate web portal. The ongoing plans to 

set up a health center controlled network by state primary care association may allow for 

continued provision of data analytics as a service to the enrolled CHC organizations.  

4.4.3 Study Implications 

We describe the implications of this study in terms of the following areas: a) supporting a 

learning health care system; b) uncovering clinic role-specific measures; and c) implementing a 

user-centered dashboard  

Supporting a LHS: The widespread adoption of EHRs continues to make increasing volume 

of health care information available in computable form as well. Secured and trusted use of these 

data is the cornerstone for health care transformation 312 . The learning health care system 

framework when applied to health center redesign is based upon leveraging routinely captured 

EHR/PM data to continuously improve their clinic operations and quality measures. One of the 

key components of that framework is the delivery of tailored messages for stakeholders to 

support effective decision making. This study leverages a multi-CHC heterogeneous data 

warehouse developed and validated by the researchers to support tailored operational decision 

making.  

Clinic Role-Specific Measures: Structural conflicts among internal stakeholders leads to 

poor alignment of goals in an organization and healthcare is no exception. While this is a 
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multifaceted problem with many reasons, studies have shown that this conflict originate from 

differences in expectations and desires regarding data, interests, structure, relationships, and 

values313. An understanding of the different roles within a health center and their performance 

monitoring needs can help alleviate some of these issues. Research has not yet shown how 

information systems like dashboards may be designed based on an understanding of role-specific 

decision-making within ambulatory health centers. Typical roles within CHCs that benefit from a 

dashboard include: clinic administrators (such as CEO, COO, CMO), support staff for 

administrators (such as clinic site managers, quality assurance, analysts, front office staff), 

providers (MD and Nurse Practitioners) and support staff for providers (such as nurses, medical 

assistants, schedulers, and patient care representatives). The study has tried to uncover the 

performance monitoring needs and dominant themes of personnel in the front office to the CEO 

at a large semi-urban health center.  

User-Centered Dashboard: Management information systems have been studied since 

the 1980s 314 . Tools for rapid data analytics and decisions support within clinic settings are 

increasingly becoming important even as the analytical processes have become more difficult. 

Inadequate levels of stakeholder engagement in implementation of integrated data analytic 

systems is one of the barriers to benefiting from such systems315. Visual analytics has been noted 

as an emerging discipline with significant promise in addressing many of the information overload 

challenges and healthcare data-driven decision making inherent in multi-dimensional data 

analytics and presentation316. One of the key contributions of the study beyond the understanding 

of the clinic role-specific performance measures of interest is how to engage with the 

stakeholders in implementing data visualizations to support decision making.  

The study prioritized a core set of measures that were implemented in the dashboard for 

which data was available within different EHR data models, and other operational data stores like 

phone systems. However, there also were several performance measures that emerged from the 

study for which data does not currently exist or is not easily extractable. Another key contribution 

of the study is that it informs the development and implementation of tools that can enable the 

capture of such data as part of routine clinic operations. These can then be part of an enhanced 

performance dashboard of the future. Even though this dashboard was designed to be clinic-

facing, the study had a patient advocate whose perspective enriched the design of the dashboard 

visualizations. The methods used in this study also can inform important work on developing a 

patient-facing dashboard of clinic measures.  
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 Conclusion 

The learning health system paradigm calls for a need to understand clinic role-specific 

measures of interest and then deliver those measures in the form of interactive user-centered 

visualizations. Examining underlying information systems as a means to support rapid decision 

making is essential in the resource constrained environments prevalent in community health 

centers where meaningful information can drive important change to improve access to care. A 

user-centered agile system development methodology was employed to design and develop a 

dashboard that addressed the direct needs of the end-users at community health centers. The 

dashboard was delivered over the web and linked at the back-end to a data warehouse that is 

refreshed periodically. The usefulness and usability of the dashboard was assessed using multiple 

methods of usability evaluation, including, cognitive walk-through and a usability survey. The 

study found the dashboard to be easily learnable and highly usable. Larger studies on multiple 

CHC organizations in the state and beyond can improve the generalizability of the findings and 

guide development of health informatics tools.  
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CHAPTER 5: CLOSNG REMARKS 

 Overview 

Community health centers (CHCs) play a pivotal role in primary healthcare delivery to the 

underserved and have been at the forefront in the adoption of health information technologies. 

An in-depth understanding of the information needs of these organizations in the post HITECH 

era is vital to designing an information architecture that is appropriate for CHCs as they seek to 

improve efficiency and access to care. It may be pointed out here that information needs arise 

when people or organizations recognize gaps in their state of knowledge and wish to resolve that 

gap by applying the needed information317. CHCs often lack the resources and data infrastructure 

to benefit from a modern analytics platform that can support clinical, operational and financial 

decision making across the practice. Delivering patient-centered care has assumed vital 

importance at CHCs in light of recent federal legislation, and one of the key components of that 

is improving patient access to appointments. In particular, greater open access scheduling 

(wherein a portion of the schedule is left open for same-day appointments – a use case for this 

research) can potentially overcome the challenges of inefficiencies and poor access associated 

with traditional scheduling protocols, but also require careful optimization of the provider 

schedule supported with an overhaul of the data infrastructure 318 . There is inadequate 

understanding of the analytic needs and in particular patient and appointment-related variables 

that can predict the adherence of patient visits in community health center (CHC) settings. While 

no-show modeling has been performed in a variety of settings, there is great variation in the 

significant predictors of appointment adherence depending on the care settings319. Notably, a 

prior study in an academic medical center did not find lead time for an appointment to be a 

significant predictor of no-show behavior and that implementation of the concepts of advanced 

access scheduling did not directly result in a reduction in no-show rates320. There is also a lack of 

research on how EHR and practice management data can be presented to help CHC staff align 

with the core mission, goals, and priorities of the health center 321. Little is known about user-

specific needs among the various CHC staff roles and how dashboards can be designed that 

address those needs in an effective way 322.  

The overall hypothesis driving this research has been that a user-centered data analytics 

platform would support implementation of interventions aimed at improving efficiency and 

access to care within the framework of a learning health system (LHS). Within the LHS framework, 

the CHC stakeholders must find the analytics platform to have content validity (the extent to 
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which the measures represent all facets of the given construct) and support organizational 

leadership and staff buy-in. With that in mind, this research has sought to understand the 

information needs within CHCs, build a multidimensional data architecture and analytics platform 

to support that need, and lastly incorporate role-specific analytics into a user-centered interactive 

dashboard to serve as a novel decision support tool geared towards improving efficiency and 

access to care. Figure 25 shows the LHS framework showing the three RQs and as well as the 

outcomes (text in blue) from the application of the framework.  

 

Figure 25: Application of the LHS framework Research Summaries 

There were three research questions (RQs) that formed the basis of this research. We re-

state each RQ governing the individual chapters (2, 3 and 4) and summarize how the results from 

each of these chapters addressed gaps in the literature as well as identified areas for future 

research in health informatics.  

5.1.1 The Information Architecture 

The first research question was referred to as the ‘information architecture’. RQ1 had two 

parts to it: 1) What is the information needs to support operations at CHCs? and, 2) What is the 

optimal data architecture to support those needs?  

Chapter 2 of this document addresses RQ1. We assessed the information needs of seven 

CHC systems across the state of Indiana, using a detailed information questionnaire, workflow 

observations (that leveraged the rapid ethnography method) and semi-structured interviews. We 

found that CHCs faced numerous resource challenges in leveraging electronic health records 
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(EHRs) to support improvements in clinical, operational and financial outcomes across the 

practice. Based on the unique constraints of CHCs and their distinct work and information flow, 

we designed and implemented a multi-CHC data warehouse architecture. The clinic data 

warehouse (CDW) comprised multi-EHR databases that integrated patient-level EHRs along with 

operational, financial and quality data stores. The patient level data serves as a backbone of the 

data warehouse and has been extracted from each CHC’s EHR system with data dating back to 

2010. The various categories of the EHR data included: patient profiles, appointment/encounter 

details, diagnoses, labs, immunizations, observations, vitals, labs, medication, and billing.  

Additionally, clinic operational and financial data was obtained from the CHCs through their 

audited financial statements, tax filings and annual UDS (Uniform Data Systems) submissions to 

the US Bureau of Primary Health Care.  

This chapter detailed the rationale for the research project, the information needs, the 

data architecture employed, the content of the data warehouse, and the challenges experienced 

and strategies used in the development of this repository that may help other researchers, 

managers and leaders in health informatics. The resulting multidimensional data warehouse is 

highly practical. It provides a foundation for a community health information network (CHIN) 

complimented with wide-ranging healthcare data analytics (RQ2) to support the community 

health center research enterprise.  

5.1.2 The Data Analytics 

The second research question was referred to as the ‘data analytics’, with the primary 

research question being: How can clinic-specific analytics guide open access scheduling. There 

were two sub-research questions, each with an associated hypothesis. The first sub-RQ being, 

how can predictive analytics be used to optimize appointment access and in particular, what is 

the association between the time dimension of appointments and patient adherence to their 

appointments. The second sub-RQ being, how data analytics can be used to better evaluate 

provider productivity. We analyzed large scale appointment data on a multi-CHC data warehouse 

using a combination of decision tree, logistic regression, visual analytics, and n-gram modeling to 

examine the patterns of patient volume, missed appointments and optimal capacity utilization 

with open access scheduling interventions. We investigated three uniquely different CHCs that 

cared for a diverse patient population and operate in rural, urban and semi-urban areas, 

respectively. Analytical results showed that lead time (the duration between the time when the 

appointment was made and the scheduled appointment time) was notably the most significant 
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predictor of appointment adherence. Patients scheduled the same-day for their appointment 

were at least three times more likely to show up for their appointment when compared to 

patients with non-same day scheduled appointments. The knowledge discovered from the 

analytics was applied to the optimization of open access hours, which subsequently resulted in 

more than 15% improvement in appointment adherence (no-shows and cancellations) at a health 

center that piloted this intervention. Our analysis also revealed that conventional measurement 

of provider productivity, using visits/hour, was not a true representation of provider work. 

Instead, the work relative value units (wRVUs) – a standard for the value of physician work 

performed accounting for the physician’s expertise, the time and technical skill spent in 

performing the entire service, is a better productivity measurement. We found that the wRVUs 

per hour was not correlated with the simplistic patient visits per unit of provider time. There was 

no evidence in the literature or practice of its use among community health centers, likely 

stemming from a simple visit volume-based Medicaid reimbursement model323. This is despite the 

known benefits of using RVUs to objectively measure and quantify a medical practice's physician 

productivity and performance data versus traditional productivity measures (such as office visits, 

net charges, or net collections) as used in many organizations324. This research made use of CHC 

practice management data to highlight the importance of using wRVUs for equitable assessment 

and benchmarking of provider work vis-à-vis existing approaches.  

Open access scheduling methods require ongoing monitoring, and analysis for matching 

of supply (providers, staffing, open slots) and demand (appointment requests), to derive the 

benefits associated with such an approach. The study highlighted the need for greater in-CHC 

visual data analytic capabilities (RQ3) tied with re-designing the care delivery process at CHCs for 

improving access and efficiency in an increasingly value-driven healthcare system. 

5.1.3 The Dashboard 

The third RQ was referred to as the ‘dashboard’, with the primary question being: How 

can clinic-specific data be harnessed to promote reflection and decision making among varying 

roles in community healthcare delivery settings? Specifically: 1) What role-specific measures are 

effective for performance monitoring in health centers? and 2) What are the design and 

assessment needs for interactive dashboards of user-defined performance metrics for CHCs? The 

work presented in this chapter identified the role-specific measures for performance monitoring 

in community health centers and delivered these measures via interactive user-center designed 

dashboard. The study leveraged a multidimensional data warehouse developed as part of a 
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collaborative of CHCs across the state of Indiana. We applied a user-centered design process to 

uncover the analytic needs of relevance to different role-based users within a large semi-urban 

multi-site CHC.  

Over 45 different measures were revealed along with a categorization of the dominant 

themes specific to different roles within the organization. A core-set of these measures were then 

implemented in a web-based dashboard prototype developed using iterative agile principles. The 

dashboard contained interactive visualizations grounded in data from electronic health record 

(EHR) and practice management (PM) systems along with operational data stores for assessing 

the care delivery process. The usability of the dashboard prototype was assessed through a 

pluralistic cognitive task walk-through and a modified System Usability Scale (SUS) survey. The 

dashboard was evaluated as having high learnability, ease of use and applicability for community 

health center practice management. But more importantly, it helped the CHC staff align with their 

core mission, goals and priorities. The emergent role-specific measures and lessons learned from 

the user-centered design process made a contribution to implementation science and design 

research, as well as had practical applications in supporting health center operations. 

 Scientific Contribution and Future Research 

The contribution to the discipline of health informatics stems from provisioning a rich 

data repository of longitudinal healthcare and administrative data with an associated clinic-

specific analytics and a user-centered dashboard to sustain informatics research and provide 

educational opportunities. The work falls within the framework of a learning health care system 

from a health center operational perspective. The key contributions to the field and the associated 

areas for future research are described in the sections ahead. 

5.2.1 Guiding a Health Centered Controlled Network 

The research has uncovered information needs and operational challenges of CHCs, 

considering the resource constraints they face. A solution common across all these health centers 

was enabling economies of scale for health informatics support. A notable mechanism to achieve 

that are state-wide Health Center Controlled Networks (HCCNs) which until 2016, Indiana has not 

benefited from. HCCNs are supported by the Health Resources and Services Administration (HRSA 

– an agency within the US Department of Health and Human Services). They are a group of safety 

net providers working together to improve access to care, enhance quality of care and achieve 

cost efficiencies through the redesign of practices to integrate services, optimize patient 

outcomes, or negotiate managed care contracts on behalf of the participating members325. The 
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HCCNs are based on a foundation of shared health IT infrastructure and assist with: Adoption and 

implementation of certified EHR technology; Meeting meaningful use requirements under the 

CMS EHR Incentive Programs; and Improve clinical and operational quality, reduce health 

disparities, improve population health through health information technology, and achieve 

patient centered medical home recognition. 

The data warehousing and analytics platform has demonstrated the feasibility of a multi-

site Community Health Information Network for practice-based research. The work is directly 

benefiting the setting up a state-wide HCCN that will sustain research, education and operational 

improvements in CHCs across the state. This will impact the lives of about half a million patients 

each year in this state as clinics leverage data to deliver more patient-centered care.  

Future research in this area will leverage the HCCN for real-time data warehousing and 

analytics (as opposed to the current batch analytics which has a data latency period). Additional 

research on web services will support more efficient interoperability. There are many population 

health management solutions that focus on reporting of clinical quality measures derived from 

EHRs, but additional research is needed on standardizing practice management measures to 

support improvements in efficiency, effectiveness and value – one of the core objectives of 

HCCNs.  

5.2.2 Modeling and Analytics 

Research using machine learning algorithms and simulation modeling have already been 

made possible through the clinic data warehouse (CDW) based on different EHR data models 

(NextGen, AthenaHealth, eClinicalWorks, and GE Centricity). There are innumerable research 

opportunities possible from the CDW and the associated analytics. The latter are broadly classified 

as being, descriptive, predictive, and prescriptive analytics. A few research examples under, 

‘descriptive analytics’ are: development of enriched care-flow/process models based on EHR 

time-stamps; ranking clinics based on adherence to evidence based best practices; and peer 

comparisons at the state and national level.  Under ‘predictive analytics’ the goal is to go beyond 

building machine-learning models of patient no-show behavior and look at other aspects for 

population health management, such as risk stratification modeling and treatment adherence 

analytics; perform agent-based modeling and simulation of clinic operations to improve 

efficiency; and to perform longitudinal network analysis of diseases. Assessing the impact of the 

affordable care act (ACA) on access to care could be of particular and timely relevance.  
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Under ‘prescriptive analytics,’ findings from the predictive analytics can be incorporated 

into standalone software applications or embedded within patient management systems to 

provide personalized decision support. The data can be further enriched by including external 

variables, such as data from community and geo-spatial information systems. There are 

opportunities for research and development of new technologies for patient engagement and 

management in the community, as well as integration of disparate care providers and care sites 

(inpatient, outpatient, community, “minute” clinics, prisons, other) as part of a care management 

team. The community clinics stand to benefit from such analytics since they lack the infrastructure 

that is usually available to academic medical centers. The study also shows that there is great 

opportunity to foster community informatics research and development using this data to 

improve care delivery, patient engagement and efficiency.  

5.2.3 Informatics Tools for Health Centers 

The dashboard visualizations have enabled rapid discovery of insights that hitherto 

required days of data cleaning and analysis. The research has created a methodology for 

developing ‘rapid’ user-centered visual analytics platform using multiple EHR data models. But 

more importantly, the research has identified key role-based operational performance 

monitoring metrics. The study prioritized a core set of measures that were implemented in the 

dashboard for which data was available within different EHR data models, and other operational 

data stores like phone systems. However, there also were several performance measures that 

emerged from the study for which data does not currently exist or is not easily extractable. As 

such, another key contribution of the study is that it informs the development and 

implementation of tools that can enable the capture of such data as part of routine clinic 

operations. These can then be part of an enhanced performance dashboard of the future. Even 

though this dashboard was designed to be clinic-facing, the study had a patient advocate whose 

perspective enriched the design of the dashboard visualizations. The methods used in this study 

can also inform work on developing a patient-facing dashboard of clinic and operational 

measures.  

5.2.4 Training and Education 

The longitudinal (2010-16) and de-identified repository of EHR and Practice Management 

data has been used as a basis for multiple undergraduate and graduate level courses in the 

Department of BioHealth Informatics at the Indiana University School of Informatics and 

Computing (Indianapolis, IN). One of the CHCs formally granted permission to use all of their de-
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identified data in the CDW for educational purposes. This rich data set is proving to be of great 

value, considering how challenging it has been for the department to access a real life dataset for 

teaching.  

The courses that have already made use this dataset for teaching include: B535 - Clinical 

Information Systems, B513 - The Design, Implementation, and Evaluation of Electronic Health 

Record Systems; and M200 - Database Design for Health Information Management. For the latter 

2 courses, the EHR/PM data was imported into OpenMRS326 (an open source medical record 

system platform led by the Regenstrief Institute 327 ) to facilitate real-world experience for 

students.    

The author was also invited for multiple guest lectures to showcase parts of his research. 

These include presentations on ‘Application of Mixed Methods Research’ as part of the curriculum 

for B575 (Informatics Research Design), and on Clinical and Business Intelligence for B641 

(Business of Health Informatics). Finally, the research work and resulting analytics platform (CDW 

and the dashboard) are the subject of multiple grant applications and collaboration opportunities.  

 Limitations 

There is a broad representation of CHCs of Indiana in this research, particularly in terms 

of information needs assessment and the development of the CDW. The latter was based on 

working with seven CHC organizations with over 40 clinic sites. However, specific aspects of the 

research, including mining of appointment scheduling data and user-centered dashboard 

development was done with a smaller sub-set of three CHCs. In particular, a great majority of the 

work to inform the dashboard design development was done with one CHC (CHC-O), one of the 

largest CHCs in the state. The six other CHCs received a similar dashboard as CHC-O, although the 

differences in the EHR data models limited the types of visualizations incorporated into their 

dashboard. CHC-O was selected as a basis, because it was representative of other CHCs in terms 

of its characteristics: mid-size with rural and urban sites, serving a racially diverse patient 

population, and having mixed providers (NPs and MDs). A similar level of work is warranted with 

other clinics across Indiana and beyond to increase generalizability, especially considering the 

uniqueness of all CHCs in such attributes as organizational culture and resource availability.  

Studies are also needed to confirm these findings in other populations and to determine 

how to incorporate such factors in developing tools to optimize patient-centered scheduling.  

Open access scheduling methods may be optimized by appointment analysis and ongoing 

monitoring to derive the benefits associated with such an approach.  Given the importance of 
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effectively utilizing scarce health care resources and appointments, there is a need for further 

research into models, strategies and technological and organizational change solutions. 

 Conclusion 

The research work presented in this dissertation is a result of a partnership with seven 

CHCs across the state of Indiana that offer primary care services through about 40 clinic sites 

caring for over 150,000 patients annually. Using the framework of an operational LHS, the 

research has considered the unique work and information flow needs at these CHCs and identified 

knowledge gaps in the literature to develop a novel multidimensional clinic data warehouse of 

CHCs to support data analytics and dashboards for improving efficiency and access to care.  

The study has developed a detailed understanding of the CHC information needs using 

multiple complimentary methods: questionnaires, key informant interviews, and workflow 

observations. The information needs defined through this work called for the design of a 

multidimensional clinic data warehouse - one that integrates patient, operational, financial, and 

quality data. A centralized data architecture was chosen that was relatively easy to implement 

and sustain, yet rich in scope and content, and most importantly relevant to the participating 

clinics. The goal was to enable free standing CHCs to participate in this data warehouse, in the 

same way that large hospitals participate in HIEs and benefit from large scale healthcare data 

analytics to improve overall clinic operational performance and achieve better scores on the ever 

evolving clinical quality and operational measures. Developing strategies for interacting with 

technology developers and entrepreneurs, in order to test the feasibility of new tools and 

prototypes should speed innovation and dissemination of effective IT. Ultimately, expanding on 

the model of a CDW should help CHCs better meet the needs of their patients in continually 

evaluating, learning from and redesigning care. 

The study has applied advanced exploratory and predictive analytics on EHR data to 

inform patient-centered scheduling and has uncovered the factors that govern appointment 

adherence based on multi-CHC EHR and practice management data warehouse purpose-built for 

improving efficiency and access to care. Appointment adherence is significantly correlated with 

the time dimension and there are distinct patterns that clinics can use to guide the selection of 

open access hours and optimize the provider schedule utilization. Operationalizing this at a CHC 

led to over a 15% reduction in no-show and cancellation rates post intervention. We uncovered 

new data analytic needs and developed a novel low-cost model to give clinics access to actionable 

data. It also highlighted the need for additional research aimed at re-designing the care delivery 
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process at CHCs for improving access and efficiency in an increasingly value-driven healthcare 

system. 

The learning health system paradigm also calls for a need to understand clinic role-specific 

measures of interest and then deliver those measures in the form of interactive user-centered 

visualizations that efficiently tap into underlying information systems in resource constrained 

environments prevalent in CHCs. A user-centered agile system development methodology was 

employed to design and develop a dashboard that addressed the direct needs of the end-users at 

community health centers. The study discovered at least 45 unique measures tied to specific role 

of the users in the CHC, from the CEO to the patient care representative at the front desk many 

of which were hitherto unknown. The dashboard was delivered over the web and linked at the 

back-end to a data warehouse that was refreshed periodically. The usefulness and usability of the 

dashboard was assessed using multiple methods of usability evaluation, including, cognitive walk-

through and a usability survey. The study found the dashboard to be easily learnable and highly 

usable. Larger studies on multiple CHC organizations in the state and beyond can improve the 

generalizability of the findings and guide development of health informatics tools. 

To be successful in the evolving era of healthcare and information technology, health 

centers that provide care for the underserved populations, must not only skillfully adopt EHR 

systems, but also use data in new ways to manage patient care and their clinic operations to 

realize improvements. This research has carefully studied the unique workflow and information 

needs of CHCs, with the goal of supporting thoughtful planning and effective decision-making 

among all roles in CHCs – providers, staff, and administrators. The development of the data 

warehouse and the analytics platform in this work, however technologically involved, is only a 

means to an end. The real challenge that this research has tried to understand is how to make the 

information technology fit into the operational goals and technical capabilities of the concerning 

healthcare organization. Without this link, there can be no success in a technology project.  

Secondly, the exploratory and predictive analytics of this research work is of value to the 

health center administrators and clinicians, but operationalizing those required two things: one is 

to be able to visualize the impact and the second is to ensure that the visualizations are made role 

specific. Each stakeholder has their own set of priorities and concerns, which may also lead to 

internal conflicts. While there are organizational values and culture that govern health center 

operations, each job function in a health center has certain uniqueness, and provisioning role-

centered tools is a novel aspect addressed by this research.  
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Referring back to the learning health systems framework, this research has made a 

contribution in understanding how to help CHCs participate in the virtuous cycle of data-driven 

continuous learning and improvement. It has created models for design and development of a 

data warehouse driven analytic and visualization tools that are sustainable in resource 

constrained health systems and tailored to their unique needs. With the recent creation of an 

HCCN in Indiana under the auspices of the state primary care association and the partnership with 

the school, this research work is going to be expanded. The research is poised to enable data-

driven systems redesign, research, education and training, technology development and testing, 

and informed decision making by the participating stakeholders.  
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2001-2003 Research Assistant/Teaching Assistant (RA/TA)  

Completed an interdisciplinary project involving the design, build and testing 

of a portable infrared spectroscopy based system for glucose sensing and 

pathogen detection; Also served as a TA for undergraduate courses in 

engineering 

 Saint-Gobain (India) Ltd  India 

1998-2001 Sales Engineer (Industrial Abrasives, Non Wovens and Lubricants) 

Exemplary sales performer in a $2M sales territory, recording >25% growth 

through a network of dealers and key direct accounts across a wide spectrum 

of manufacturing industries 

TECHNOLOGY SKILLS 

Extremely proficient in the entire MS Office Suite, including Access, Project, Visio, SharePoint 

Software Development: Web [HTML/CSS, XML, PHP/MySQL, JavaScript]; CMS [Joomla, Drupal, 

Moodle], Databases (MS SQL Server, MySQL Workbench, Crystal Reports); Salesforce Apex 

Application Software: R, SAS (Statistics); RapidMiner (Machine Learning); Tableau (Visualization); 

Simul8 (Simulation); nVivo (Qualitative Analysis); Salesforce (CRM); Maple (Engineering Analysis); 

SolidWorks (CAD); ANSYS (FEA); NI LabVIEW (Data Acquisition) 
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record; Submitted to EAI Endorsed Transactions, 2016 
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Practices to Overcome Access to Care Challenges in Community Health Centers: A 

“Positive Deviance” Approach; Submitted to Medical Care  

PANELS, SHORT PAPERS, ABSTRACTS, POSTERS  

 Doebbeling, B.N., Toscos, T., Kunjan, K, Wu, H., Improving Access to Care and Efficiency: 

Patient-Centered Methods and Strategies; Accepted Panel for iHealth 2017 Clinical 

Informatics Conference, Philadelphia, PA, May 2-4, 2017 

 Kunjan, K (2016). A Big Data Augmented Heterogeneous Warehouse and Analytics 
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 Kunjan, K and Lloyd, F.; A Continuous Blood Glucose Monitoring System Using Mid IR 
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Technology Meeting, Atlanta, Nov 2006 

PATENTS 

 Kunjan, K and Lloyd, F; Automated Blood Sampler and Analyzer; US Pat. 8,384,844; Dec 

2008 

 Kunjan, K and Lloyd, F.; Continuous Whole Blood Glucose Monitor; US Pat. 11982565; 

Nov 2006 

 Gore, J, Kumar S, Kunjan, K, et. al.; Method and apparatus for measuring a substance in 
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GRANTS 

 National Science Foundation Travel Grant ($2000) to Pervasive Health Conference, 

Cancun, Mexico, May 16-18, 2016 

 National Institute of Justice (NIJ) Paul Coverdell Forensic Science Improvement Grant 

($300,000) for the Marion County Coroner’s Office, Indianapolis, IN; FY 2009-10 

[$125,000] and FY 2011-12 [$175,000] 

 Purdue University Technology Innovation Award ($250,000) for commercialization of 

university research in the area of mid infrared sensing for biological applications; Gore, J 

and Kunjan, K; 2002-04 
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 American Medical Informatics Association [AMIA] 2017 Annual Symposium Nov, 2017 

Washington DC 
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doctoral candidate in the Indiana University School of Informatics in Computing, 
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care at community health centers across the state of Indiana.  

 Received recognition by Mayor Ballard of Indianapolis, IN as a consultant for successfully 

implementing a lean six sigma project, reducing the cycle time by half for forensic 
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 Photo Featured in Nanotechnology/MEMS in a book ‘Engineering and Technology’ by 

Michael Hacker, et. al., [ISBN 13: 9781418073893] [2010] 
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continuous glucose sensor for diabetes monitoring [2004] 
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