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Robert Kenneth Morse 

Sensemaking During the Use of Learning Analytics in the Context of a Large 

College System 

This research took place as a cognitive exploration of sensemaking of 

learning analytics at Ivy Tech Community College of Indiana. For the courses 

with the largest online enrollment, quality standards in the course design are 

maintained by creating sections from a course design framework. This means all 

sections have the same starting content and the same framework for 

assessment. The course design framework is maintained by the curriculum 

committee composed of program chairs who oversee the program to which the 

course belongs. This research proposed to develop a learning analytics 

dashboard to elicit the best practices in instantiating a course design framework 

from the perspective of the program chair. The Instructional Design 

Implementation Dashboard, IDID, was designed to address the sensemaking 

needs of program chairs. The program chairs were asked to make sense of IDID 

built around the data collected from the course management system and the 

student information system. IDID leveraged metrics from the user activity and the 

learner performance from the learning management system, combined with data 

about the student demographics captured from the student information system.  

IDID was used to identify highly successful sections and examine the instructor 

behaviors that might be considered best practices. Data Frame Sensemaking 

theory was confirmed as an accurate description of the experience of program 
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chairs when using IDID. A revised model of Data Frame Sensemaking theory 

was developed to explain the interaction of those using the IDID platform. 

  Erin Brady, Ph.D., Chair 
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Chapter 1. Introduction 

1.1 Introduction: 

              Imagine for a moment a design scenario where a course is designed 

according to the Quality Matters™ (QM) design standards. A major principle 

presented by QM literature is the concept of alignment, whereby course 

materials, activities, and assessments align to session level objectives, which in 

turn align to course-level objectives. (Shattuck, 2007) In this activity, alignment 

that is captured in the Session Alignment Matrix or SAM, is evaluated across two 

conditions: horizontal alignment and vertical alignment. Horizontal alignment is 

achieved when the material, activities and assessment align within a session. For 

example, let’s state the course level learning objective as “Discuss the 

differences between federal and state government, including the relationship 

between the three branches of government.” This is broken down to two session 

level objectives which read, “Compare and contrast the Indiana state courts and 

federal court systems.  Include in your discussion an outline of the relation 

between the two courts, i.e., where do these two court structures connect or 

overlap?” and “Compare and contrast the functions of the executive, legislative, 

and judicial branches of government.  Include in your discussion the concept of 

checks and balances and how it applies to each branch.” In this scenario 

horizontal alignment is achieved through the alignment of the materials, a 

textbook chapter which compares the federal and state legal systems, the 

activities and assessments, a discussion board, a writing assignment, and a 

chapter quiz, all tie back to the stated learning objectives. Vertical alignment is 
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achieved when there is progression in the elements of instruction from one 

session to the next session. For this example vertical alignment is demonstrated 

in the learning of a case study analysis method in one session and the practice 

and then later assessment using this method in future sessions. 

How might we use alignment then, as a means of evaluating the overall 

course design quality? For instance, if the student is asked to write a culminating 

assignment like a presentation of a final project to classmates have they learned 

all the skills needed to be successful? Do students have the resources they need 

or know how to access the resources: in this scenario, they might need guidance 

on PowerPoint or where they can get help with academic presentations? In this 

way alignment is about filling in the instructional gaps so that students can 

successfully progress from one set of instructional experiences to the next set of 

instructional experiences. 

In 2006, under a grant from the Fund for Improvement of Post-Secondary 

Education (FIPSE), Quality Matters became the first intra-institutional quality 

course improvement process (Shattuck, 2007). Appendix A describes the history 

of quality initiatives in online education. The internationally subscribed program 

does allow for some benchmarking to other institutions but only evaluates course 

design. Course delivery falls outside the scope of the Quality Matters rubric and 

therefore is best evaluated through other evaluation methods.  So, within this 

scenario there exists the opportunity to evaluate how well the course design is 

implemented. 
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With increased focus on quality, many colleges and universities run large 

enrollment online courses by maintaining course masters or rather course design 

frameworks. A course design framework enables curriculum managers to 

instantiate hundreds of course sections by keeping under control the quality of 

common elements of instruction. By implementing the frameworks within a 

learning management system, data on the relative success of each section can 

be collected and analyzed in a learning analytics system.  

Attempting to describe the decision support that a learning analytics 

system provides, researchers such as Siemens (2012) have applied 

Sensemaking Theory (Weick, 1995) to understand end-user interaction within the 

system.  Russell, Steffik, Pirolli, and Card (1993) define sensemaking as “the 

process of searching for a representation and encoding data in that 

representation to answer task-specific questions.” (p. 1) More specifically 

sensemaking fits into the conceptual framework evaluating the user experience 

with learning analytic dashboards. In the words of  Verbert, K., Duval, E., Klerkx, 

J., Govaerts, S., & Santos, J. L. “Most evaluations evaluate only part of our 

conceptual framework and do not assess whether dashboards contribute to 

behavior change or new understanding, probably also because such assessment 

requires longitudinal studies” (2013, p.1 ). There is a known dependence on 

mental model formation to properly interpret what the analytic system represents 

(Greitzer, Noonan, & Franklin, 2011).  Liu and Stasko (2010) are very clear about 

the connection of mental models to analytic reasoning. They write, “Given a 

problem, a mental model of an interactive visualization can be constructed and 
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simulated in working memory for reasoning” (p. 1001). While this dependence on 

mental models has been shown, the knowledge sources that the user draws on 

to form the mental model of the interactive learning analytic are not yet fully 

identified. The knowledge sources which support mental model formation have 

not been explored fully in the conversations regarding user support for learning 

analytic systems. The discussion of user support for learning analytics has been 

limited to discussion of interface design and techniques of interaction (Keim et 

al., 2008). Even researchers such as Pirolli & Card (2005), Klein, Phillips, Rall, & 

Peluso (2007) and Attfield, Hara, & Wong (2010), who have developed models to 

explain sensemaking, do not mention the various sources of knowledge that a 

user might depend on to form his or her mental model of the interactive system. 

Knowing the sources of knowledge used to form a mental model of the system 

will assist system designers in developing support structures to promote 

sensemaking of the systems they design.  

Curriculum managers of course design frameworks are in need of decision 

support systems to make sense of the activity and performance data collected by 

various enterprise systems. 

1.2 Problem Statement: 

As previously stated, curriculum managers are tasked with making sense 

of large amounts of data collected from every section running a particular course 

design framework. In this case because every section across the state has 

implemented the same course design framework the course is referred to as 

statewide. There was no central repository for both usage statistics and grade 
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data. Figure 1 shows the current state of course reporting at Ivy Tech 

Community College of Indiana. 

 

Figure 1: Previous Course Reporting Framework 

In this image sections that end in the same letter are delivered in the same 

region. For each given region that offers a program, a program chair or designee 

participates in the curriculum committee for that program. Usage statistics and 

final grade reports are generated out of separate systems. Additionally, usage 

statistics are available at a section level with no aggregation of statistics from the 

same course design framework. Within the Ivy Tech Information Technology 

ecosystem there did not exist an analytic system to support the decisions that 

program chairs are required to make on large enrollment multiple section 

courses. These decisions might include determining the efficacy of optional or 

supplemental materials. Or the promotion of one set of materials or user 

behaviors over others that are not as effective. Furthermore, sense making 

theory lacks rich description around the knowledge that users draw from to form 

hypotheses about the system. Figure 2 represents the proposed course 

reporting system. The new system will provide aggregate usage statistics and 
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correlational summaries of the impact of usage on end of course performance. 

Instead of forcing program chairs to query multiple systems all the data from their 

courses will be collected in a single system. Aggregation of both usage data and 

grade data will be available at both the regional and statewide level. 

 

Figure 2: Proposed Course Reporting System 

1.3 The Statement of Purpose: 

The purpose of this research is to design a novel analytic system for the 

expressed purpose of supporting curriculum managers’ or program chairs’ efforts 

to improve course design frameworks. To accomplish this goal a set of system 

requirements from the perspective of program chairs will be captured. A further 

goal for this research is the exploration of the cognitive experience during use for 

course design decision makers using this system. A rich description of actual 

sensemaking is the expected outcome of this research. 
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1.4 Research Questions: 

Main Question 1: What are the most efficient design strategies for a 

progam chair-centered dashboard that supports the semester to semester 

decision making of program chairs?   

Sub-question 1: What are the requirements for program chair 

sensemaking of learning system data? 

Sub-question 2: How well do novel analytics tools support 

program chair information needs? 

Main Question 2: How does actual sense making by program chairs 

relate to sensemaking theory? 

1.5 Definitions: 

Key Terms: 

• Course Design Framework- Master set of initial materials that is 

imported into each section. 

• Curriculum Committee- The group of program chairs for each program. 

They are responsible for selecting the resources used and approving the 

course design framework. 

• Developers– the person responsible for building the course design 

framework in the learning management system. 

• Mentors– the shepherd of the implementation of a course design 

framework. 

• Program Chairs – the key decision makers regarding curriculum. They 

must approve all changes in the course framework. 
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• Region- Ivy Tech has 14 regions which act as administrative units.  Each 

region has a program chair. 

• Section-The point of implementing a course design framework by an 

instructor for a class of students. 

• Statewide- Refers to Course Design Frameworks which must be used as 

the starting point for every section in every region. 

1.6 Limitations: 

This research took place within the normal course development process at 

Ivy Tech Community College of Indiana. Courses are redeveloped at Ivy Tech on 

a three-year cycle. When a course is eligible for redevelopment the curriculum 

committee makes a decision if it will undergo major redevelopment or minor 

redevelopment. For courses in major redevelopment a brand-new session 

alignment matrix (SAM) is developed. For courses in minor redevelopment the 

existing course design is improved upon through the analysis of historical course 

data and instructor feedback. This research looked at actual sensemaking for 

courses in a minor course redevelopment. 

To this end the exploration of the sensemaking phenomenon was limited 

to actual sensemaking from real Ivy Tech courses. In no way was the experience 

of decision makers influenced by an artificial manipulation of the activity and 

performance data being investigated. This also means that there were no 

preconceived notions of a right or wrong way to use the Instructional Design 

Implementation Dashboard (IDID). Research into the quality of decisions 

supported by the IDID system is still needed. It is possible that the task list 
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provided a framework for sensemaking by end users. Users did not have a free 

form exploration of the learning analytics system. Instead users were guided 

through the analytics system with a series of questions they were asked to 

answer. It is possible that the task structure provided guidance to the 

sensemaking process. Furthermore, not only did I act as the investigator but, I 

was an active respondent in the consultation interviews and may have influenced 

the discussion through my role as Senior Instructional Designer for Quality 

Initiatives. Drake (2010) explores some of the challenges of insider research. 

She writes, “These differences offer illustrations of four aspects of the 

problematics of interviewing as follows: (1) personal relations and expectations 

position everyone in the interview; (2) the motivation for the research affects what 

the researcher learns; (3) the same material generates accounts that emphasize 

different things; and (4) things happen in people’s heads during the interviews 

that are not recorded.” (p. 85) 

1.7 Validity and Reliability: 

Following the claims of LeCompte and Preissle (1993) this research draws 

on the same criteria that demonstrate the high internal validity of the study. There 

were several practices that increased the validity and reliability of this research. 

First, the researcher was a part of the decision making team and had an equal 

stake in the proper application of the dashboard to make course improvement 

recommendations. As an insider research I am more familiar with the politics of 

institution and the cultural nuances which might be lost by someone outside the 

institution. The emergent categories are taken from the respondents’ own words. 
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Wherever possible I allowed the phrases to speak for themselves. I developed a 

code book for the qualitative analysis. I used my expertise in understanding the 

context of Ivy Tech and Human Computer Interaction to match each phrase to 

the most appropriate code in Nvivo. The observation occurred on the 

respondent’s own computer not a laboratory setting. Respondents were able to 

interact with the IDID platform on their own computers from their own offices. 

This allowed for maximum comfort in demonstrating their use of IDID. Finally, the 

data analysis incorporated the researcher’s own reflection and self-monitoring 

which Erickson (1973) calls disciplined subjectivity. While my own contributions 

to the interactions with respondents had an effect on the overall quality of the 

data collected, this insider researcher role was fully acknowledged and reflected 

on prior to and during data analysis. Here is a brief summary of my role from my 

own words during the pilot study. “As a senior leader of the course development 

process, the researcher is partly responsible for implementing course 

development policies. The researcher has been working with program chairs in 

the target program chair’s committee for almost five years.” It has since been 

another five years in completing this full research. Permission was sought at 

multiple levels of the institution. The Vice Chancellors of Academic Affairs who 

are the chief academic officers within each region were informed about the 

research and they forwarded my email on to their program chairs and 

encouraged participation in the research. This level of institutional sponsorship 

for the research may have had an effect on the level of participation I saw 

throughout this entire study. 
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1.8 Ethical Issues:  

There are several ethical issues which needed to be considered while 

conducting this research. Merriam (2009) writes, “the protection of subjects from 

harm, the right to privacy, the notion of informed consent, and the issue of 

deception all need to be considered ahead of time, but once in the field issues 

have to be resolved as they arise. This situational nature of ethical dilemmas 

depends not upon a set of general pre-established guidelines but upon the 

investigator’s own sensitivity and values.” (p.230) Given the collaborative nature 

of my research I had an obligation to guide the respondents to see patterns in the 

data that they might have missed without my assistance. This was necessary 

because I was serving in a dual role of both investigator and Senior Instructional 

Designer. The use of the IDID platform had the side effect of identifying 

underperforming sections. I was very careful not to allow the tool to be used in a 

punitive fashion for faculty who fell into this category. Individual instructors were 

not identified within the tool. Sections were instead identified by section number 

only thus attempting to focus the review on the most successful behaviors not on 

the individual instructors. Likewise the tool provided the ability to drill down to the 

individual student record, I was careful to make sure that all interaction remained 

at the aggregate level and did not identify individual students or faculty. Lawson, 

Beer, Rossi, Moore, and Fleming (2016) cited the definition of learning analytics 

from the first annual Learning Analytics and Knowledge conference and state 

that institutional use of analytics must be perceived as serving to benefit student 

learning. (p. 963)  Beattie, Woodley, and Souter (2014) proposed the 
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development of learner centered learning analytics. They write, “Learner-centred 

learning analytics provide a clear benefit to learners, are owned and co-produced 

by learners and are transparently and openly used in an environment of trust 

where data will not be used to disadvantage or negatively stereotype anyone.”p. 

423) Although, this project did fall short on fully disclosing to students how their 

data would be used there were some protections taken to protect student 

identities. All names were removed from the dataset so that individuals could 

only be identified by their student identification number. Each respondent was 

presented with an informed consent (Appendix B) which outlined the risks and 

benefits of the study and indicated clearly that participation at each step of the 

study was completely voluntary. The anonymity of the respondents was 

protected by using pseudonyms for each respondent. Pseudonyms were 

selected randomly by the researcher.  

1.9 Rationale and Significance: 

A tool for the identification of best practice in the instantiation of course 

design frameworks will be a major step forward for learning analytics. It will 

acknowledge that to be successful a community of practice must continue to 

refine and support its standards of practice. As Wenger & Snyder (2000) state, 

“[A community of practice is] an ideal forum for sharing and spreading best 

practices across a company.”(p. 141) According to Wenger (2011), “Communities 

of practice are groups of people who share a concern or a passion for something 

they do and learn how to do it better as they interact regularly.” (p.1) It is 

expected that the dependence on the range of knowledge sources will shift 
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towards greater need for contextual knowledge as the unit of analysis grows in 

complexity, which it is expected to be demonstrated through the shift from course 

level to campus level to region level analysis to system level analysis. An 

identification of the knowledge sources for mental model formation further 

supports the use of visual analytics by supporting the fundamental cognitive 

processes associated with sensemaking. It is expected that the knowledge 

typology proposed may be of use with minor modifications to other domains such 

as medicine or government.  

Both the design approach and the description of knowledge sources which 

support mental model formation will inform the field of visual analytics and, 

specifically, learning analytics. The most significant contribution is the revised 

model of data/frame sensemaking theory. This model describes actual 

sensemaking by users of IDID. Such a model would be useful to learning 

analytics systems designers and researchers as it describes the cognitive 

phases a user experiences when interacting with a learning analytics system. 

1.10 Role of the Researcher:  

The researcher was the main instrument of data collection and acted in a 

dual role of researching the phenomenon and developing tools to improve the 

state of data reporting from the college’s learning management system. Not only 

did I act as the main filter for data collection and analysis but also, I was 

responsible for the continuous improvement of the college’s course design 

frameworks. In this capacity I was able to apply my expertise in learning analytics 

to the interpretation of user experience of the IDID system. 
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1.11 Research Assumption: 

A requirement was that the tool would address the needs of a variety of 

stakeholders at multiple levels of the institution. The main assumption of this 

research was that if the needs of the curriculum owners could be met, then the 

needs of the other groups, such as course developers, course mentors, and 

instructional designers would also be met. The curriculum owners were a much 

wider set of people, some of whom were also course developers or course 

mentors. While the design of the tool itself held to a rather positivist viewpoint 

regarding learner activity and performance, research of the tool remained in a 

rather constructivist camp, attempting to understand the ways in which users 

made sense of the data presented through the tool. This system works best on 

courses that require a lot of interaction with content from within the Learning 

Management System. Courses which have a lot of third party content which is 

managed in the third party system rather than a set of links to the same content 

in Learning Management System lose out on some of the insight gained by this 

system. Also the interaction in the course is sometimes mitigated by the content 

availability within Blackboard. For instance in some courses all the content is 

open and available to students from day one. In this case students could go in 

and download all their content on the first day of the semester. Subsequent 

interaction would occur within the local copy of the content rather than interacting 

with the content within Blackboard. This has the potential of skewing the activity 

data. Students would still be required to access each content item so use versus 
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non-use of course resources is still recorded but, there are some limitations to 

how one might interpret the activity data. 

1.12 Organization of Dissertation: 

This dissertation is organized as follows. Following this brief introduction, 

the relevant literature is explored and the research project is grounded in its 

theoretical base of Sensemaking Theory. After the literature review, the research 

methods are fully articulated, followed by a chapter describing the results of the 

study. Following a presentation of the results, there is a brief interpretation of the 

results and application back to sensemaking theory. This dissertation continues 

with a suggestion of further opportunities for inquiry. Finally, the dissertation 

concludes with a summary of the contributions of this research. 
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Chapter 2. Review of Theoretical Background 

The following is an outline of the literature that forms a theoretical base for 

the design of a Best Practice Finder. The Best Practice Finder or Instructional 

Design Implementation Dashboard (IDID) is a visual analytics dashboard which 

correlates the activity information, where students and faculty clicked in the 

learning management system, with the performance data, what the students 

received as a final grade. The purpose of the dashboard application is to 

leverage the millions of rows of data collected on students and instructors and 

present it in a way that allows for the easy identification of behaviors which lead 

to success. First, there will be a look back on the history of academic analytics 

and learning analytics. Second, a short overview of sensemaking theory and its 

application to understanding the user experience of visual analytics tools will be 

presented. Finally, there will be an exploration of recent trends in research of 

mental models of interactive systems and methods of eliciting the mental models 

of research respondents.  

2.1 Academic and Learning Analytics: 

Goldstein and Katz(2005) popularized the term “academic analytics” as 

part of an Educause Center for Applied Research study titled Academic 

Analytics: The Uses of Management Information and Technology in Higher 

Education. The report focused on how various institutions of higher education 

use analytic tools and to what degree. They defined five stages of application 

ranging from “extraction and reporting of transactional-level data” to analysis, 

predictive modeling, and ultimately action (triggered alerts). They found that 70 
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percent of the more than 300 institutions replying merely reported simple 

transactional data. (p.53) For education and business, analytics involves more 

than capturing and reporting data. The true advantage is predicting behavior and 

acting on that prediction. The results can then be fed back into the process, 

improving the predictions over time. By 2015, Educause had further refined their 

definition of academic analytics to encompass two main types of analytics. 

Institutional analytics are aimed at improving services and business practices of 

higher education and learning analytics are focused on improving student 

success. (Yanosky and Arroway, 2015)  

In 2007 the Association for the Advancement of Computing in Education 

published a special edition of the Journal of Interactive Learning Research titled 

“Usage Analysis”. Articles in this edition were grouped into one of four 

categories. First, usage tracking modeling explores modeling the data flow of 

usage tracking systems. This parallels the modeling of the learning systems but 

uses language and constructs to capture the domain specialization of tracking 

data.  Second, usage data analysis is used for descriptions of analysis systems. 

These may be web-based tools or separate database schema for analyzing 

usage data. These are in comparison to the third category, usage data 

visualization. Research in this area involves the development of tools to visualize 

the data. These tools differ from the previous category in that they provide 

exploration and interpretation, not necessarily summary of usage data. Fourth 

and finally, the usability of data explores how usage tracking data is used to 
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improve the learning system. A major theme in these articles is the development 

of design patterns. (Choquet, Luengo, & Yacef, 2007) 

Mazza and Botturi (2007) developed an extension to the popular open 

source learning system Moodle. GISMO stands for the Graphical Interactive 

Student Monitoring System. “[The research] illustrates how GISMO works, how it 

can be useful, and how it can be integrated in the day-to-day activity of online 

course management and delivery.” (Mazza and Botturi, 2007, p. 264) Around the 

same time period Educause, the premier organization supporting information 

technology in higher education, released a whitepaper on academic analytics.  

According to the Purdue Online Writing Lab (2017) “the purpose of a white paper 

is to advocate that a certain position is the best way to go or that a certain 

solution is best for a particular problem.” Academic analytics was coined as a 

term referring to the application of business intelligence methods to academic 

decision making. (Oblinger & Campbell,2007) 

Later that year John Campbell completed his PhD program where he 

researched the development of an early warning system that would draw 

together analytics from various academic systems at Purdue University. The 

project later became known as Signals. The basic premise was to create 

dashboards of the most likely predictors of success for students and automate 

some of the student services interventions. Signals is currently a collaboration 

between Purdue, Purdue Research Foundation, and Sungard Higher Education 

to bring this product to market. (Arnold, 2010) 
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In addition to Signals, there have been a number of recent ventures 

focused around the early warning problem space. David Yaskins left Blackboard 

Inc. to found his own corporation. Starfish Solutions was the product of his work. 

When first developed “The Starfish application consists of two programs: Early 

Alert, which helps institutions to identify at-risk students based on their 

interactions in class, and Connect, which provides students with a personalized 

contact list of instructors, advisors, tutors, and counselors.” (Schauffhauser, 

2010) In 2015 Hobsons, a leader in academic advising, retention, and student 

success, acquired Starfish Solutions. 

Starfish is a partner of Blackboard’s Learning system. It extends 

Blackboard through the installation of an Application Programming Interface 

(API) referred to as a building block. In recent years, the functionality of learning 

analytics within the Blackboard frameset have been improved greatly through the 

development of open source building blocks. Building blocks are java-based 

extensions to Blackboard which take advantage of the published APIs that 

Blackboard has made available to the developer community for the purpose of 

coding these extensions to their system. 

John Fritz (2010) of University of Maryland-Baltimore County has 

developed a building block related to the intent of this proposed research. This 

building block, called Check My Activity, allows students to compare their activity 

in the course against other students in the same class. It bins the grade book to 

allow students to check their activity against an anonymous set of their peers so 

students can self-regulate their learning behavior. However, Check My Activity 
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does not aggregate students across sections. This functionality makes this 

proposal stand apart as an instructional innovation. 

Fritz & Kunnen (2010) spoke about their experiences creating new tools to 

help monitor student behavior at the annual conference of the Educause 

Learning Initiative. Kunnen & Nucifora(2007) were awarded a grant through the 

Blackboard Greenhouse Initiative for their tool called Advanced System Tracking 

and Reporting (ASTRO). The ASTRO tool allows the system administrator to 

easily run reports on system usage across groups, schools, divisions, or other 

categories supported by course identifier naming conventions. From a technical 

perspective the tool was a massive step forward from the direct querying that 

was required from system administrators to get information out of the advanced 

system reporting (ASR) tool.   

Within their grant application Kunnen & Nucifora (2007), cite the 

contributions of Glenn Parker from University of South Florida. Parker has made 

many of his Standard Query Language scripts available to the larger Blackboard 

community. Without his contributions, ASTRO would not be as robust as it is 

today. Although ASTRO makes the data of the ASR more accessible by 

summarizing key patterns of activity, the results are still only accessible to a 

system administrator role.  

The inaugural conference on Learning Analytics and Knowledge was held 

in Banff, Canada in 2011. George Siemens (2012) cites the definition of learning 

analytics by the Society of Learning Analytics (SoLAR). According to SoLAR, 

“Learning Analytics is the measurement, collection, analysis and reporting of data 
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about learners and their contexts, for purposes of understanding and optimizing 

learning and the environments in which it occurs.” (Siemens, 2012, p. 4) This 

project sits between academic analytics and learning analytics as it seeks to 

optimize the learning design of large enrollment multiple section course design 

frameworks. 

Looking over the contributions of previous scholars in the area of learning 

management system analytics and looking toward trends in the industry, this 

project is positioned to make meaningful improvements to an already solid 

foundation in this field. One important change in the Blackboard Learning System 

that is worthy of further mention is the Open Database project. Until recently only 

the ASR schema has been documented well for product developers. Starting with 

release 9.1 Blackboard announced an effort they are making to document the full 

learning system schema. This documentation significantly reduces the 

development time for Building Block developers who are expanding on the 

functionality of the core system. 

 Fox (2006) defines a dashboard, “A dashboard is a visual display of the 

most important information needed to achieve one or more objectives; 

consolidated and arranged on a single screen so the information can be 

monitored at a glance.” (p. 34) The predominant audience of learning analytics 

dashboards are individual instructors or students. (Schwendimann et al, 2017) In 

fact, of the fifty-five learning analytics dashboards studied only five were built for 

administrators. Isljamovic & Lalic (2014) describe their academic dashboard 

which presents student performance data with several demographic factors so 
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that faculty and administrative staff can intervene with students who may need 

additional support before they result in a failing grade. Milevski, Gelova, & 

Zdrarev (2015) suggest several ways that data might be mined from Moodle 

installation to support the insight of teachers and administrators using that 

Learning Management System. Administrator use of learning analytics is not 

solely a higher education endeavor. Monroy, Rangel, & Whitaker (2013) explore 

their use of learning analytics within a K-12 environment through their tool 

STEMscopes. Orduna, Almeida, Lopez-de-Ipina, & Garcia-Zubia (2014) describe 

how learning analytics could be captured by a Remote Laboratory Management 

System. Rounding out the administrative uses of learning analytics Richards 

(2011) theorizes potential measures of engagement which could be collected 

from the learning management system. There is still plenty of room for a learning 

analytics dashboard which summarizes performance and activity at a course, 

campus, regional, and statewide level. 

Yoo, Lee, Jo, & Park (2015) evaluated ten popular learning analytics 

dashboards. None of these tools were built specifically with the course 

administrator in mind. Learning Analytics dashboards have been primarily 

focused around micro-level interactions.  (Verbert, Duval, Klerkx, Govaerts, & 

Santos, 2013) At the outset of their paper on learning analytics dashboards these 

authors indicate that their focus is on micro-level analytics not meso or macro 

level. Mendez, Ochoa, Chiluiza, & de Wever (2014) explore potential methods of 

assessing curricular difficulty and potential drop out paths. This research 

proposes several techniques to feed curricular redesign. Figure 3 shows the 
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various levels of learning analytics. The IDID system is positioned as a Meso-

level analytic system aggregating statewide usage and performance statistics. In 

fact, IDID stands apart from other analytic systems in its approach to aggregating 

data at the section, campus, region, or statewide level.

 

Figure 3: Categories of Analytics from Vaitsis, Hervatis, & Zary (2016) 

2.2 Sensemaking Theory: 

The NMC Horizon Report from 2013 defines learning analytics as the 

“field associated with deciphering trends and patterns from educational big data, 

or huge sets of student-related data, to further the advancement of a 

personalized, supportive system of higher education.” (Johnson, 2013)   

Applying Sensemaking Theory (Weick, 1995) to understand end user 

interaction with a learning analytic system there is a known dependence on 

mental model formation to properly interpret what the analytic system represents 

(Greitzer, Noonan, & Franklin, 2011).  Liu and Stasko (2010) are very clear about 

the connection of mental models to analytic reasoning. They write, “Given a 

problem, a mental model of an interactive visualization can be constructed and 

simulated in working memory for reasoning” (p. 1001). While this dependence on 
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mental models has been shown, the knowledge sources that the user draws on 

to form the mental model of the interactive learning analytic are not yet fully 

identified. The knowledge sources which support mental model formation have 

not been explored fully in conversations regarding user support for learning 

analytic systems. The discussion of user support for learning analytics has been 

limited to discussion of interface design and techniques of interaction (Keim et 

al., 2008). Even researchers such as Pirolli & Card (2005), Klein, Phillips, Rall, & 

Peluso (2007) and Attfield, Hara, & Wong (2010), who have developed models to 

explain sensemaking, do not mention the various sources of knowledge that a 

user might depend on to form his or her mental model of the interactive system. 

Knowing the sources of knowledge used to form a mental model of the system 

will assist system designers in developing support structures to promote 

sensemaking of the systems they design. 

Weick, K. E.(1995) wrote a seminal work on sensemaking from the 

organizational development standpoint. This work is often cited as a key process 

to describe user interaction with an information system. Ten years later, Weick, 

Sutcliffe, and Obstfeld (2005) expounded on these ideas to explore the impact of 

sensemaking on organizational theory. They write, “Sensemaking involves 

turning circumstances into a situation that is comprehended explicitly in words 

and that serves as a springboard into action.” (p. 409) Dervin (2003) posits that 

sensemaking ought to be an organizing paradigm for the study of information 

systems. A brief evolution of the scholarship of sensemaking specific to 

information systems and more specifically to visual analytics (VA) systems 
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follows. The sensemaking loop proposed by Russell, Stefik, Pirolli, and Card 

(1993) was originally described as the learning loop complex. The learning loop 

has three major stages. The generation loop is characterized by a search for 

representations. The analyst chooses from a set of system representations to 

one that best describes the problem space. The “representational shift loop” 

describes the process where the analyst adjusts his or her representation based 

on information that does not fit into his or her representation. The data coverage 

loop is a top-down application of the data into a representational form. It is 

described as the encoding of the data into visual elements that are easily 

understood by the analyst. 

The formation of a mental model is presented by Pirolli & Card (1999) as 

the union of the two major loops of activity related to user activity in an 

information system. The overall process is organized into two major loops of 

activities: (1) a foraging loop that involves processes aimed at seeking 

information, searching and filtering it, and reading and extracting information 

(Pirolli & Card, 1999) possibly into some schema, and (2) a sense making loop 

(Russell, Stefik, Pirolli, & Card, 1993) that involves iterative development of a 

mental model (a conceptualization) from the schema that best fits the evidence.   
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Figure 4: User Activity in Information Systems from Pirolli & Card (2005) 

Two additional points that the authors consider are that (1) much day to 

day activity with VA systems is more about extracting information than analyzing 

it and (2) experts apply their mental models at all stages of the process of figure 

4, for example in rapidly skimming and rejecting information in the early stages. 

The proposed research furthers the notion of mental model formation by drawing 

an explicit connection between steps 8 – schematize and 9- search for evidence. 

The placement of these steps in figure 3 indicates Pirolli & Card’s notion of the 

schematize step as bottom up and the search for evidence step as top down. 

These earlier models of sensemaking were applied to the information 

retrieval problem space. Keim et al. (2008) specifically apply it to the domain of 
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visual analytics. In a summary of sensemaking, they elaborate on a model of 

sensemaking proposed by a computer scientist. Van Wijk (2005) proposed a 

means to calculate the value of a visual analytic. In addition to devising formulas 

to account for various costs in visualization, Van Wijk (2005) proposes a means 

to calculate the learning effect of a visual analytic. The main issue with this 

formula is that it assumes an initial state of knowledge but never accounts for the 

various sources of knowledge which create this initial state within the mind of the 

analyst. 

This idea of economic visualization has become an important trend in the 

field.  Attfield, Hara, and, Wong (2010) describe the goals of a visualization as 

providing insight to support a solution. They write, “Klein observed that decision-

makers seldom evoke and comparatively evaluate multiple options to a problem 

(the normative or ‘rational’ approach). Instead, the situations they encounter 

evoke singular solutions in a process of ‘satisficing’; if the solution criteria are not 

met then another solution is sought and so on.”(p. 2) For visual analytic systems 

the balance between data synthesis and representation are made to produce 

visualizations that are “good enough” to support decision-making.  It is not 

necessarily a quest for the best but, rather a search for a solution that simply 

works.  They continue to further abstract the sensemaking loop. They write, “The 

sensemaking process is situated within a context of goals, interest and values. 

The significance of these is, (a) to determine the kind of model that the user is 

interested in generating i.e. one that can provide a basis for appropriate action in 

some domain or activity, and (b) that they may bias the kind of conclusion that is 
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reached.” (p. 2). All of this seems to clearly point toward an ethnographic 

approach to understanding user goals, interests, and values in order to shape 

designs that will support the knowledge needed to form a mental model of the 

system under analysis. Klein (2006) expounded on his data/frame theory of 

sensemaking. Under this theory the user goes through distinct stages, figure 5, 

of wrestling with a Data Frame otherwise known as a fragmentary mental model. 

The user goes from Seeking a Frame to Questioning the Frame, Comparing 

Frames, Preserving the Frame, Elaborating the Frame, or Re-Framing. Each of 

these stages is characterized by how the user defines, connects, or filters the 

data to make sense of it. 

 

Figure 5: Data/Frame Model of Sensemaking from Klein (2006) 

2.3 Measuring Mental Models: 

As explained in the section on Sensemaking above, the application of 

mental models to the VA problem space is an important process that needs 

further clarification. Merrill(2009)states the main issue at hand, “When left on 
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their own, [respondents] often activate an inappropriate mental model, thus 

increasing the mental effort required to acquire the integrated set of skills 

necessary to doing the task.” (p.51) However, the challenge of researching 

mental models is that often these exist at the implicit level. The mental model will 

be made manifest as the respondents attempt to complete the task. “Building on 

an inappropriate mental model often results in misconceptions that show up as 

errors when [respondents] attempt to complete new tasks.” (Merrill, 2009, p. 51) 

The term “mental models” has its origins in the writing of psychologist 

Kenneth Craik (1943). Johnson-Laird (1983) wrote an influential work on the 

subject which provided a cognitive framework and theoretical base that describes 

mental models as psychological representations of real, hypothetical, or 

imaginary situations.  Norman (1983) focused on a description of a mental 

representation of how a system operates. Senge (1990) defines mental models 

as one of the five disciplines that characterize a highly adaptable organization 

referred to as a learning organization. An important contribution for this era of 

thinking regarding mental models is the acknowledgement that mental models 

may not be explicitly known to users. They may be acting on the base of models 

that are seated in the implicit beliefs and attitudes. 

More recently Liu & Stasko (2010) apply the following set of 

characteristics to mental models of visual analytics systems.   

A mental model is a functional analogue representation to an 
external interactive visualization system with the following 
characteristics:  
 
•The structural and behavioral properties of external systems are 
preserved in mental models.  
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• A mental model can preserve schematic, semantic or item specific 
information about the underlying data.  
• Given a problem, a mental model of an interactive visualization 
can be constructed and simulated in working memory for reasoning 
(Liu and Stasko, 2010, p. 1001). 
 
Having accepted the characteristics of mental models, this project will 

depend heavily on methods to measure mental models. Sasse (1991) described 

several methods of eliciting user mental models including think-aloud and verbal 

protocols, system audit trails, performance analysis for problem solving and 

troubleshooting tasks, information retention over time, observation of system use, 

user’s explanation of the system, and user’s prediction of system performance.  

In Jonassen (1995) multiple evaluation points for mental models are articulated. 

Each point of measurement is geared toward describing one of the 

characteristics of a mental model. These range from a cognitive interview to 

describe personal relevance to teach back or think aloud, to describe the 

applicability/transferability of the model. The measurement techniques described 

in this conference paper are put into practice to evaluate the mental models of 

refrigerator technicians in Jonassen & Henning (1999).  They argue that mental 

models are evidenced in the artifacts developed by a community of practice. In 

this project the reports generated by an individual program chair for the purposes 

of support and argumentation related to course design decision making can be 

taken as artifacts developed by the community of practice.   
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Chapter 3. Methodology 

3.1 Introduction:  

This research uses a sequential, exploratory, mixed-methods approach. 

Data was collected concurrently within each phase but each phase sequentially 

built on the previous phase. There were three phases of research aligned with 

the aims of the research project.  This research pursued three specific aims. 

Aim I: Eliciting Dashboard Requirements. This aim identified the 

knowledge sources which support mental model formation for sensemaking of 

learning analytics. Seventy one program chairs of Ivy Tech who have decision 

making responsibilities for online course design frameworks responded to a 

survey in which they were asked to rank the sources of knowledge they draw on 

to support their sensmaking of learning analytics data. It was expected that 

respondents would confirm the proposed knowledge sources, which include 

knowledge of the statistics, knowledge of the domain, and knowledge of the 

system. Knowledge of the domain was further broken down into curriculum 

knowledge and pedagogical knowledge. Knowledge of the system was further 

broken down into technical knowledge and institutional knowledge. It was further 

expected that as analysis moves from the section level to the campus to the 

region to the system that the dependence on institutional knowledge will 

increase. It was further proposed that program chairs reporting higher levels of 

institutional knowledge will report that it is easier to form a mental model of the 

course design for the purposes of making sense of the learning analytics data 

than those who report lower levels of institutional knowledge. The survey 
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(Appendix B) asked respondents to provide written rationales for their rankings. 

These rationale were analyzed using the explication process outlined by 

Groenewald (2004).    

The outcome of Aim I was the development of requirements for users at 

different levels of both domain knowledge and system knowledge.  

Aim II: Building the Dashboard. Building on the requirements identified 

in Aim I, for each user type four design alternatives for a visual analytics tool and 

a knowledge support system were developed and evaluated through one-on-one 

user observation. The respondents were selected from the groups identified in 

Aim I. The respondents were from three different disciplines. One curriculum 

committee came from the School of Business, and two committees came from 

the School of Liberal Arts. Respectively, ACCT102, Managerial Accounting; 

MATH136, College Algebra; and PSYC201, Life Span Development were 

selected to participate in this phase of the research.   

The outcome of this aim was a set of design elements for the support of 

diverse knowledge needs as well as a working prototype of a learning analytics 

system. 

Aim III: Evaluating the Dashboard. The developed tool and support 

system was evaluated through a series of individual interviews coupled with a 

design confidence survey. The individuals were selected based on their 

participation in minor course redevelopment. Respondents were asked to 

indicate their reaction to the system and project its future impact on their course 

development. Aldag & Powers (1986) Attitudes toward Decision Process and 
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Solution survey was adapted to meet a learning analytics context. The specific 

proposition of Aim III is that committee members will react positively to the visual 

analytics system and their perceived level of participation will be directly 

proportional to the perceived impact of the visual analytics system on their 

course development. 

The outcome of this aim was a clear evaluation plan for on-going research 

of this tool.  

3.2 Rationale for Research Approach: 

As stated earlier this research uses a cognitive exploratory approach that 

is a sequential exploratory mixed-methods approach. It does so because the 

primary research question is to understand the cognitive processes of users of 

the Instructional Design Implementation Dashboard (IDID). Given this aim the 

primary motivation of the research is the rich description of the cognitive 

experience of those using the dashboard. In this way, the quantitative elements 

of the research design supported the qualitative elements of the research design. 

“Unlike the sequential explanatory approach, which is better suited to explaining 

and interpreting relationships, the primary focus of this model is to initially explore 

a phenomenon.” (Creswell, 2009, 211) 

3.3 Research Setting/Context: 

This research took place as a case study at Ivy Tech Community College 

of Indiana. Ivy Tech is the largest singly accredited statewide community college  

system in the United States. As a community college there is a strong reliance on 

adjunct faculty. In fact, 75% of the faculty from spring 2016 were adjunct faculty. 
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(Lorton-Rowland, personal communication, 2016) This dependence on part time 

instructors places a greater need on supporting a wide range of experiences and 

backgrounds. For the courses with the largest online enrollment, quality 

standards in the course design are maintained by creating sections around a 

course design framework. This means all sections have the same initial content 

and the same framework for assessment. The course design framework is 

maintained by the curriculum committee, composed of program chairs from each 

region offering the curriculum, who oversee the program to which the course 

belongs. 

This research seeks to expand the evaluation of course design by making 

the activity and performance data from statewide courses available for analysis 

and action by program chairs. Using a learning analytics tool known as the 

Instructional Design Implementation Dashboard (IDID), program chairs will be 

able to examine the impact of supplemental and ungraded resources on the 

actual outcomes of the courses. They will be able to compare instructional 

behaviors in the sections they manage to the behaviors of highly successful 

sections. They will be able to coach students in engaging with the course in ways 

that have proven to be successful for their peers. In this way the IDID platform 

will help program chairs identify and highlight the best practices in the 

implementation of their course design frameworks.     

Ivy Tech is creating a large data warehouse that combines institutional 

data from the student information system and the learning management system. 

The data warehouse is built in the Amazon Web Services private cloud.  In 2006 
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the college adopted Blackboard as its learning management system. Current 

aggregate reporting is available through Blackboard Analytics which is an 

additional service that Blackboard provides. Other Blackboard reporting options 

require system administrator access to run (Kunnen & Nucifora, 2007) and were 

not designed to meet the needs of program chairs. This research aims at 

designing and supporting a learning analytics front-end for the data warehouse 

that can be used by program chairs to make improvements to courses semester 

by semester. It demonstrates a potential learning analytics solution for displaying 

activity and performance data from large enrollment multiple section courses. 

Finally, it is only the first step to demonstrate and exemplify an opportunity to 

envision learning analytics for program chairs. 

Statewide Online courses at Ivy Tech are designed according to the 

Quality Matters(QM)™ design standards. At Ivy Tech the course design process 

begins with explicit mapping of the objectives to the assessments, materials, and 

activities in a document called the Session Alignment Matrix (SAM). Courses are 

reviewed against a custom version of the QM rubric (Appendix C) which contains 

a set of design standards. A course review is similar to other design inspection 

evaluation methods. (Nielsen, 1995) This project seeks to provide a holistic 

evaluation of the course design by adding user activity and student performance 

data to the review of the course for continuous improvement. 

3.4 Research Sample and Data Source: 

The research sample for Aim I, the requirements phase, was the entire 

population of program chairs responsible for a course within the library of 
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statewide courses. Program Chairs comprise the curriculum committee which is 

responsible for setting the curriculum or sequence of courses, the course outlines 

of record which contain the course descriptions, course objectives, and course 

content. They also maintain a list of acceptable textbooks which may be adopted 

for the course. In terms of online courses program chairs are responsible for 

providing feedback at each of the development milestones. This amounted to 

three hundred and fifty-four program chairs across the state. For Aim II, the user 

testing phase, the entire curriculum committees for Accounting, Behavioral 

Sciences, and Mathematics were invited to participate in brief one-on-one 

interviews with a data exploration from ACCT102 Managerial Accounting, 

PSYC201 Lifespan Development, and MATH136 College Algebra, respectively. 

For Aim III, the evaluation phase, the course developers and instructional 

designers responsible for making course improvement plans for the spring 2016 

term were asked to participate in one-on-one interviews regarding their use of the 

Instructional Design Implementation Dashboard roughly one week after a brief 

orientation session to the tool. The course improvement process is divided into 

two steps. First, the course improvement plan is drafted after reviewing the 

course data and feedback received from other instructors teaching the course. 

Second, the course improvement plan is implemented after the curriculum 

committee has the opportunity to send additional feedback and approve each 

item in the plan. 



37 

 

3.5 Data Collection Methods: 

For Aim I, the requirements phase, the data collection consisted of a brief 

survey developed in Zoho Creator™. The survey (Appendix B) used three static 

graphs, one pie chart of grade distributions, one bar graph of Activity counts, and 

one summary table of statistics from the Student Evaluation of Instruction. For 

each of these graphs respondents were asked to rank the importance of support 

materials that would aid them in the sensemaking process. These supporting 

materials included help with statistics, course content and objectives, 

instructional activities and course design, tools and materials, and institutional 

definitions or configurations. Additionally, respondents were asked to provide a 

rationale for their rankings, a short comment on what additional information they 

would like to know, and whether they would find each source of data useful. 

For Aim II, the user testing phase, a prototype of the dashboard was 

developed. The dashboard correlated end of term grades from Banner, the 

Student Information System, with activity information in Blackboard. The screens 

that were available were  

• Student Clicks which showed how item access related to end of 

term grades.  

• Internet vs. Traditional course delivery which provided a summary 

of the pass/fail/withdraw rates and grade distributions for both the 

internet-only sections and the traditional sections.  
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• Comparison of Pass rates provided a heat map of the 

pass/fail/withdraw rates for all sections statewide.  

• Comparison of Final Grade provided a heat map of the grade 

distribution in all sections statewide.  

• Instructor Clicks allowed for the comparison of the instructor 

behavior in a single section to the statewide average.  

• Student Clicks by Grade allowed the comparison of student 

behavior across any two grade groupings.  

• Student Profile provided a summary of which majors, divisions, 

and degree paths students in a particular class had declared. 

For Aim III, the dashboard was improved based on the user feedback from 

Aim II. The improved dashboard was evaluated in ten one-on-one contextual 

interviews. Following each interview the respondents were asked to complete a 

brief survey on decision confidence based on the perceptions of the degree the 

dashboard supported their decision making. The survey was adapted from Aldag 

& Powers (1986) Attitudes toward Decision Process and Solution survey. 

3.6 Data Analysis Methods: 

For Aim I, I analyzed the survey data by generating mean values for each 

of the knowledge categories. I also checked for correlations between the 

rankings and any of the demographic characteristics. All of the qualitative 

rationale were coded using Nvivo and then put into groups. The emergent 

requirements were then described. 



39 

For Aim II, I transcribed the dialogue from the usability interviews. The 

data was coded using NVivo into salient phases and grouped into clusters of 

meaningful recommendations. A set of design improvements thus resulted from 

the usability interviews. The dialogue was secondarily coded against Data Frame 

Sensemaking Theory (Klein, 2006) to match user experience to this theory and to 

refine the interpretations that would be needed in future aims. 

For Aim III, I transcribed the dialogue of the evaluation study interviews. 

The text was coded in NVivo based on the essence of what was being 

communicated. The codes were grouped and further consolidated. A second 

round of coding was completed where phrases were matched to phases in Data 

Frame Sensemaking Theory (Klein, 2006). 

3.7 Issues of Trustworthiness: 

Guba (1981) suggests four criteria that should be considered when 

judging the trustworthiness of a naturalistic inquiry. The tests of trustworthiness in 

naturalistic inquiry are credibility, transferability, dependability, and confirmability. 

Credibility was achieved through sufficient exposure to the subjects, coordination 

of both interview and survey data, collection of referential adequacy materials 

(each of the interviews was recorded to capture both screen movement but audio 

for transcription as well), the interviews were transcribed by a third party which 

further separates the dialogue for analysis from personal bias. Transferability 

was enhanced by developing rich thick descriptions of each interview and the 

characteristics of each respondent. Dependability was increased through the use 

of a research journal to capture my maturing ideas as the research progressed. 



40 

My research advisor acted as a dependability auditor checking my processes 

against established norms. Finally, confirmability was achieved through the 

triangulation of data and the practice of reflexivity. Through a bracketing 

approach, I attempted to suspend my own beliefs about the interface and see the 

experience through the eyes of each respondent. 
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Chapter 4. Results and Outcomes 

4.1 Introduction: 

The results have been divided by the four phases of this research project. 

First, a small study was conducted to see how learning analytics were used by 

program chairs in the Computer Information Systems program. Next, the 

population of program chairs at Ivy Tech was surveyed about how they would 

require additional knowledge support to make sense of the learning analytics 

given them. From this survey I was able to develop a set of requirements for the 

next generation learning analytics tool at Ivy Tech. The requirements were quite 

broad and it simply was not possible to develop a tool that would address all of 

the requirements. Instead I focused on a subset of requirements and designed a 

dashboard that could serve as a baseline tool and had the capability of scaling to 

encompass more of the overall requirements over time. The dashboard was 

tested through a series of one-on-one contextual interviews. Once optimized the 

dashboard was evaluated against real life course design situations. Each 

respondent was asked to demonstrate how he or she used the tool to develop a 

set of recommendations for the improvement of the course design. Finally, a 

decision confidence survey (Appendix E) was adapted and used to measure the 

confidence that each decision maker had when supported by the dashboard. 

4.2 Preliminary Findings: 

The main lesson from the preliminary work was a confirmation that 

aggregate reporting was a needed area of focus. One respondent said it clearly 

when she answered the question “How do you or does your committee use data 
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from statewide courses to improve the courses?” She said, “I’m not sure right 

now that we really do, because a lot of data is so hodge podge, it is so 

disconnected that is really hard to put any kind of connection to it to make it 

meaningful.” Respondent 6. 

The main outcome of the pilot study was a clarification of the tasks of 

program chairs in using learning analytics. Program chairs want learning 

analytics for statewide courses for two main reasons. First, they want to improve 

the design of the course and second, they want to monitor the consistency 

across sections. Appendix D shows that consistency was defined in three 

specific ways. Program chairs are concerned about ensuring that students are 

being evaluated consistently, that the instruction is consistent, and that the 

course policies are being consistently interpreted and applied across sections. 

The topic of grade inflation was a concern of both program chairs and students. 

One respondent said, 

“I don't want students to earn a grade that they feel...I don't want 
students to get a grade that they feel they didn't earn. And I believe 
that a lot of students are very conscious of that themselves and will 
even say well I earned an A but I'm really not comfortable with the 
material and I don't feel like I can do it in real life. So I do use those 
final grades as a possible indicator of grade inflation.” Respondent 
1. 
 
This is just one example of how consistency across sections is measured 

and applied by program chairs. By policy program chairs are responsible for 

ensuring the quality of their courses. What the pilot revealed was that quality 

equated to consistency from the program chair perspective. This was a key 

takeaway from this phase of the research. 
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4.3 Learning Analytics Requirements: 

Seventy-one responses out of three hundred fifty-four or about a 20% 

response rate to the survey was collected. The representation of those 

responding follows the same pattern as the school representation in the 

statewide library of courses. The main content of the survey asked respondents 

to rank order the importance of the five sources of knowledge already proposed 

to support their making sense of the data presented in the graphs. The means of 

the ranking was calculated as shown in figure 6.

 

Figure 6: Means of Knowledge Rankings 

 For all cases additional knowledge of course design was the most 

important source of additional knowledge and statistical knowledge was the 

lowest. An interesting side note was that multiple respondents’ rationales 

indicated that while they themselves were not in need of statistical knowledge it 

was important to include for their colleagues who were less data savvy. For the 

grade data, the second most important knowledge source was knowledge of the 

course content and objectives. The content category had a mean score of 3.71. 
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For the Learning Management System Activity data the second most important 

knowledge source was the knowledge of the tools used in the course. The tools 

category had a mean score of 3.52. This is not surprising since the activity data 

showed click counts by tool. So it follows that knowing which tools were used in 

the course would rank high as a knowledge need for making sense of that 

analytic. Additionally, in terms of sensemaking respondents felt most comfortable 

with knowing how to interpret the statistics presented in the pie chart. With the 

statistical knowledge need only increasing as the complexity of the visualization 

increased from pie chart to bar graph to statistical table.  

Beyond the simple calculation of means, a correlation coefficient was 

calculated within the knowledge types showing the strength of correlation 

between an application of one knowledge type to another application. There were 

only two knowledge types that showed significant correlations, r > .5. For the 

course content and objectives knowledge type, there was a significant correlation 

between grades and activity data. (r = .72) For the institutional knowledge type, 

there was a significant correlation between the grades data and the activity data.  

These results represent a moderate positive correlation showing that 

those that ranked institution data high for making sense of grade data also rated 

it high for the making sense of the activity data. (r =.53) Each of the demographic 

factors was examined systematically for its effect on the rankings. There were 

only two conditions that seem affected at all by demographic factors. Years at Ivy 

Tech appeared to affect the need for additional content knowledge. This might be 

due to the role that program chairs play in developing curriculum at Ivy Tech. The 
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program chairs are responsible for writing the course objectives in a document 

known as the course outline of record. The other demographic factor that affects 

the rankings of knowledge types was a significant difference between groups 

with QM Training and without QM Training. Quality Matters is an internationally 

recognized course quality improvement program whose main instrument is a 

rubric of design standards for online courses. There are multiple levels of 

certification beginning with the Applying the Quality Matter Rubric course, a basic 

orientation to the program. Given the strong focus on course design it is not 

surprising that those who participated in training expressed a strong need for 

knowledge about the course design than those without training. What is 

surprising is that this effect seems to be concentrated around the course design 

knowledge for the activity data only. As far as the survey is concerned the 

remaining area of analysis was to explore the themes that emerged from the 

rationale of the rankings. The emergent themes were coded, grouped, and 

recoded so that a full set of requirements could be connected back to the 

feedback collected from actual users. 

4.3.1 Emergent Requirements: 

Each rationale was coded and then categorized into four areas: 

Knowledge Support Requirements, Data Requirements, Interface Requirements, 

and Functional Requirements.  These requirements emerged from the qualitative 

data collected from the rationale of each ranking. The following presents each of 

the requirements areas along with a brief description of the major themes that 

coalesced into the requirements.  
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1. Support Requirements: 

1.1 Support with course design for those seeking support with content and 
objectives. 
1.2 Support with content and objectives for those seeking support with 
course design. 
1.3 Support with institutional definitions for those seeking support with 
statistics. 
1.4 Support with statistics for those seeking support with institutional 
definitions. 
 
The strong correlation between course design and course content 

suggests that if a program chair starts by looking at course design information he 

or she will likely also wish to look at course content information, or vice versa. 

Likewise there was a strong correlation between knowledge about the institution 

and knowledge about statistics. This suggests that if a user starts looking at 

information in one of these areas they will likely wish to look at the other 

knowledge support. These pairs of support needs, course design and course 

content and institutional knowledge and statistical knowledge, further exemplify a 

key finding that there are different types of sensemakers. There are those who 

are course-centered and those that are institution-centered. Course-centered 

sensemakers tend to focus first on the course design or course content. 

Institution-centered sensemakers tend to focus first on the characteristics that 

make the institution stand out. Course-centered sensemakers are in fact the 

largest group. However, institution-centered sensemakers are a strong minority. 

The final group of sensemakers was what I termed the information-centered 

sensemakers. Although this sensemaking type appear much more infrequently 

the fact that their primary objective was to understand as much information about 
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the course as possible makes them stand out as their own sensemaking group. 

This research showed that there were definite unique information needs between 

each of these groups. 

2. Data Requirements: 

2.1 Broad access to data 
2.1.1 Visibility of aggregate data to a broad audience 
2.1.2 Visibility of course specific data to appropriate instructors or 
chairs only 

2.2 Integration with data from external tools 
2.3 Connection to research literature for external validation 
2.4 Availability to query historical data 
2.5 Availability to query multiple ratings by multiple instructors 

Comments about the nature of the data coalesced into three groups. First, 

several comments emerged about broad access to data. Respondents wanted 

the data on course performance to be available so that what was successful in 

one course could be duplicated across all courses. One respondent wrote, “If we 

noticed certain trends (i.e. courses with certain tools/activities doing better than 

others), we may find ways to improve all of our online courses.” (Respondent 42) 

This also speaks to the unique course design environment at Ivy Tech. By 

standardizing the course design and leaving the assessment structure consistent 

between sections it is easier to make assumptions about the effectiveness of 

supplemental and optional content which may vary between sections.  

Broad access to data was further broken down into two specific 

requirements. First, the tool should make the aggregate data available to all 

instructors. Second, protecting the identity of individual instructors whose 

behavior might be called into question by this type of analytics system. Ivy Tech’s 
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lack of a faculty governance structure made it easier to deploy such a system. 

However, steps were taken to identify sections by section number only. So that 

individual instructors were not easily identified in the tool. 

Another interesting emergent theme was the need to integrate external 

sources of course data. External data has two requirements. First, in some 

courses much of the instruction occurs outside the institutional learning 

environment. One program chair stated the need clearly, “In some online courses 

75% of the course work is completed on a platform other than Blackboard. Such 

courses cannot be evaluated fairly by only looking at activity on Blackboard.” 

(Respondent 58) There were some respondents who raised questions regarding 

the use of third party tools and the impact on the course design process. This 

issue needs further exploration but, with the increased prevalence of LTI 

(Learning Tool Interoperability) systems it has become possible to pass learners 

between learning systems seamlessly without much disruption to the learning 

experience thus making the need to interconnect the learning analytics much 

more important. This raises important questions about learner privacy and data 

ownership. Beattie, Woodley, & Souter (2014) call for more learner education of 

how their data is being used by institutions to promote student success initiatives. 

They specifically call for a Charter of Learner Data Rights to promote the ethical 

use of learning data.  

The other side of the external data issue was a bit broader than simply 

passing learning data between systems. Curriculum managers want access to 

the latest learning research to validate their course designs and to support the 
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trends they see in the learning analytics. One respondent wrote they wanted, 

“Research that shows which tools are most effective in helping students be 

successful in an online course.” (Respondent 6) This points back to a major 

theme of learning analytics research in that good learning analytics research is 

grounded in learning theory. (Wise & Shaffer, 2015). 

The last set of data requirement themes emerging from survey responses 

were the requirements related to the breadth of the data collected and displayed. 

Respondents wanted the ability to query historical data. One respondent said 

they wanted, “historical data regarding grades over time in terms of evaluating for 

grade inflation.” (Respondent 24) This request poses some unique challenges 

since instructors are not assigned to the same section term after term. 

Furthermore instructors are not always assigned to the same course. Related to 

the issue of evaluating consistency of grading, one respondent wanted to verify 

that “An A from one instructor is the same as an A from another in same areas of 

the same course!” (Respondent 18) This could be achieved by random sampling 

of artifacts and secondary evaluation of the work to compare grading behavior. 

This requirement connects to a later requirement which calls for inter-rater 

reliability.  

3. Interface Requirements: 

3.1 Provide clear graphs 
3.2 Provide clear and related descriptions 
3.3 Include chart legends 
3.4 Allow for a variety of support paths. 
3.5 Allow for a variety of data display options. 
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The interface requirements highlight the comments respondents made 

regarding the display of data. Several requirements are standard requirements 

for any visual communications systems. They could have easily been pulled from 

a design guide on analytics systems. However, I did allow the requirements to 

emerge from the survey responses so these were expressed concerns by one or 

more of my respondents. Respondents commented on making sure the graphs 

and particularly the labels were easy to read and understand. They also wanted 

to make sure that the descriptive material presented with the data was easy to 

understand and clearly related to data presented. One respondent mentioned the 

need for clear legends on the charts that were displayed, He wrote, “Actually, I 

would need a legend, and I would need to know that apples are being compared 

to apples. What assumptions are being made when these charts are presented?” 

(Respondent 46) As is evident from the knowledge support rankings, decision 

makers do not all approach the data the same. Respondents had varying levels 

of experience and varying levels of knowledge about even their own courses. A 

clear requirement supported by the ranking data is that a new learning analytics 

tool built to support curriculum manager decision making needs to provide a 

variety of support paths. Some respondents even believed it would be necessary 

to critique the choice of data presentation in the static graphs of the survey. One 

respondent wrote, “Use another way to share data with the reader.” (Respondent 

2) Rephrased into a requirement, a learning analytics tool should allow for a 

variety of data display options.  

4. Functional Requirements: 
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4.1 Ability to display historical trends 
4.2 Ability to calculate inter-rater reliability 
4.3 Ability to conduct an item analysis of any assessment 
4.4 Ability to make comparisons at multiple levels 

The final grouping of requirements captures requests for specific functions 

that program chairs made. Already mentioned as a concern, grade inflation was 

mentioned several times. This respondent made the connection between 

showing historical trends and identifying grade inflation. “It is important to see 

how classes statewide compare to student success over several sessions. Grade 

inflation is an issue and must be considered before any data is of any value.” 

(Respondent 7) Beyond highlighting grade inflation through displaying historical 

trends, another concern raised by respondents was to somehow capture ways to 

judge the consistency of grading between instructors. One respondent wrote, 

“Some sort of data to show whether teachers are assessing students at the same 

level. Is it a teaching or grading issue?” (Respondent 67) Although not explicitly 

called by name, respondents were seeking a way to calculate interrater reliability. 

Stemler (2004) provides an overview of various statistical methods to arrive at 

interrater reliability. Another function requested is item analysis. Item analysis 

allows for in depth summary of responses on an assessment for the purpose of 

testing how well the item tests student knowledge. One program chair was able 

to express what the benefit of item analysis is from their perspective, “The 

breakdown of grades from the assessments within the class to help pinpoint 

areas of weakness.” (Respondent 45) The last emergent functional requirement 

was the use of the analytics system is best stated as an ability to make multiple 

comparisons on multiple levels. Respondents wish to compare section to 
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sections, group of student to group of student, etc. One respondent stated he/she 

wants, “To compare my region's grade distribution with the State average, I 

would want to know that the course was consistently delivered throughout the 

state.”(Respondent 10) However, comparison will need to be supported through 

the tool not just in the performance summaries. For instance, one potential use is 

to support the comparison of course policies. All of these factors have an impact 

on the student success, “classroom policies on submitting/accepting any late 

work, extra-credit and/or make-up material.” (Respondent 5) Since all these 

changes are recorded in the database it technically would not be hard to include 

comparisons of changes in the gradecenters between sections. 

The IDID is a front-end system for a larger data warehouse initiative. Both 

the main administrative system and the main academic system of the college are 

captured and transformed using Pentaho Data Integration and then loaded to a 

private cloud environment on Amazon Web Services. The data is uploaded into 

Postgres Databases for query in an analytics package of choice. For the IDID, 

Tableau Desktop Professional was used to create an interactive data workbook 

that could be used by the program chairs across the college. Future iterations of 

IDID would be built in the Pentaho Data Analytics platform which what the 

college has standardized on for an analytics solution. 
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4.3.2 Contextual Support: 

 

Figure 7: Two Main Avenues of Contextual Support 

One of the main contributions of the IDID is the embedded contextual 

support. As seen in figure 7, there are two main levels of contextual support built 

into the IDID platform. First Institutional Contextual Support appears at the 

bottom of each workbook page. This menu includes information about the 

dashboard, a data dictionary, a student profile, and statistics help. The Course 

Support Menu appears on the right side of most screens or below the Institutional 

Support on screens where the visualization takes up a majority of screen real 

estate. The course based context includes the particulars of the course 

curriculum, course objectives, course design, and course tools selected. At Ivy 

Course-level Contextual Support 

Institutional Contextual Support 
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Tech the curriculum is outlined in a document known as the Curriculum of 

Record shown in figure 8.  

For every program, the program requirements are clearly stated alongside 

the articulation requirements of transferring the degree to another college or 

university partner. The objectives and topics for each course are captured online 

in the Course Outline of Record (COR). The COR web is a web based database 

containing all the course objectives as illustrated in figure 9. It displays each set 

of course objectives along with the date they take effect. The first step in Ivy 

Tech’s course development process is the production of a course design 

document known as the Session Alignment Matrix (SAM).  

 

Figure 8: Curriculum of Record 
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The SAM is a table of the explicit alignment of activities, resources, and 

assessments to the course objectives as shown in figure 10. Figure 11 shows 

how the contextual support links are built into the IDID interface. The links are 

relative to the course under review. This figure shows total tool use by click in the 

Internet only version of the course. Clicking the tool from the list on the left 

changes the content title associated with that tool. Clicking on the content title 

Figure 10: Course Outline of Record Web 

Figure 9: Example of Session Alignment Matrix 
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changes the “grade by item” pie chart at the bottom of the page, so that the user 

can see the final grade distribution for students who accessed that content item.   

An alternative support structure to the course based support is located at 

the bottom of the dashboard and is presented as a series of institutional support 

links. The support links include information about the Dashboard, the data 

dictionary for the institution, profile information about the students in the course 

and tutorials of statistics used within the IDID platform.   While the majority of the 

links within this group are consistent from course to course, the student profile is 

course and term specific, which changes based on the actual population of 

students under analysis.  

In order to fully support the analytics provided in the IDID tool, the 

presentation of the data in both tabular and visual representations must have 

clear contexts which are both evident and decipherable without cognitive effort. It 

Figure 11: Early Prototype of Student Clicks Screen 
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must be clear whether a graph represents data from a single section, or if it is an 

aggregation of data at the campus or statewide level. Although this has already 

been mentioned in the section of emergent requirements, the importance of 

context was raised by several program chairs. As a rationale for the additional 

context program chairs that want to make sense of learning analytics, one 

respondent said, “Absent this additional contextual information counting 

responses or assessing percentages is meaningless.” (Survey Respondent 32) 

4.3.3 Multiple Comparisons between Sections: 

One of the main challenges of large multi-section course data is the 

presentation of data for the purposes of comparison. In this regards, IDID 

provides an opportunity to compare the performance in one section to the 

performance in another. A common request from program chairs is to monitor the 

differences between different versions of the same course. IDID allows for 

comparison of final grades of Internet and traditional courses. By default, the 

comparison is presented at a statewide level; however, program chairs often 

wish to see how the courses from their regions or campuses compare. IDID 

provides a quick means to adjust the composition of the comparison. From a 

simple drop-down menu, program chairs can include all sections or grouping of 

sections by campus or region. 
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In addition to grade comparisons that are used to monitor course quality, 

many program chairs like to compare the instructional behavior of their faculty 

members against the behaviors they see other faculty members exhibit. They 

may wonder if their faculty members are providing timely feedback to students or 

interacting with students in discussion boards or through messages. The 

comparison tools provided within IDID allow program chairs to begin to answer 

these questions.  

Figure 12 shows a comparison of instructional behavior from any two 

sections of the course. This screen was later reconfigured to display the average 

on all instructor’s behavior on the left and any section selected from the drop-

down menu on the right. From the drop-down menu, program chairs are able to 

select which section’s behaviors to display below each menu. This allows for 

flexibility in making comparisons.   

In addition to the comparison of overall section performance and instructor 

behavior, an important analytics task is comparing the behaviors of successful 

students against behaviors of less successful students. IDID allows the program 

Figure 12: Comparison of Activity in Two Sections 
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chair to quickly compare the behaviors of any two groups of students based on 

the final grades they received.   

It is hoped that the ability to compare the behaviors of groups of students 

will allow program chairs to evaluate the success of supplemental materials. 

Often different sets of materials are targeted for students needing remediation 

and for those who would benefit from materials that enrich the learning objectives 

and challenge their thinking. 

4.3.4 Highlighting Differences between Sections: 

One of the main goals of IDID is to highlight differences in the 

implementation of course design between sections. One of the ways that IDID 

highlights differences is through the use of heatmaps for quick comparisons 

between sections.   

 

Figure 13: Heat Map of Final Grades 
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There are two main ways that program chairs are able to compare the 

performance of sections. First, the pass/fail/withdraw rate is a calculated field 

which groups students based on their final grades according to the definitions of 

passing and failing determined by Ivy Tech’s participation in the Achieve the 

Dream Initiative. According to this national data-sharing program, passing is 

defined as achieving a grade of ‘A’,’B’, or ‘C’ and failing is defined as achieving a 

grade of ‘D’, ‘F’, or ‘FW’. The ‘FW’ grade shows on the transcript as an ‘F’, but is 

used to designate those students who have failed because they no longer 

participate in the course but did not complete the paperwork to withdraw from the 

course.   

The second comparison of section performance provided is a full 

categorization of final grades. Similar to figure 13, which represents a heat map 

of the pass/fail/withdraw rate, the heat map of final grades displays a table with 

squares of different sizes corresponding to the number of students who fit that 

Figure 14: Comparing Activity by Grade Groups 
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category. It is relatively easy to compare many sections and to identify the most 

successful sections for further investigation.  

On several sheets in IDID, the activity information is represented as a 

table of hit counts, figure 14. The background for each row is shaded based on a 

gradient representing the sum of the number of hits. For instance, if the 

Messages tool had 2,000 hits the background color of this row of data would be 

darker than the Check Grades tool, which only shows 1,000 hits.  

4.4 User Testing Procedure: 

User testing consisted of one-on-one recorded web conferences using 

GoToMeeting. IDID was shown on the screen and respondents first listened to a 

brief explanation of the interface and a brief orientation to the types of data 

displayed. Actual course data from the summer term 2014 was used and 

respondents interacted with the data from either ACCT102, Managerial 

Accounting, PSYC201, Life Span Development, or MATH136, College Algebra. 

There were a total of nine respondents. Four interacted with ACCT102, three 

interacted with MATH136, and two interacted with PSYC201. The respondents 

were asked the same set of questions.  

• Using the analytics system provided, identify under-utilized 
resources in the course.  

• Were the students who accessed these materials more or 
less successful than those who did not access them?  

• How critical are these resources to conveying the objectives 
for the course?  

• What recommendations could you make for improving the 
course design based on your review of this data?  

• Is the performance between sections consistent?  
• Are the instructors of your sections engaging with students in 

a consistent manner?  



62 

• What are your instructors of higher performing sections 
doing that you would want to encourage all faculty to do? 
 

The interviews were transcribed and then coded. First, free codes were 

created to capture the essence of what each respondent was saying. Codes 

were then grouped into more meaningful themes.  

4.5 User Testing Results: 

The emerging themes included benefits, current limitations, 

improvements, new elements, potential uses, potential misuses, and positive 

sentiments. Benefits were further broken into increasing accountability and 

decreasing the amount time needed to collect data. One respondent identified 

the benefit of IDID as being able to help measure the efficacy of course designs. 

“Okay, so this design -- what is the efficacy?  And we can now show them that -- 

exactly what you were saying.  The students who utilized this resource tended to 

be more successful than not.”-Respondent 6. One the major benefits of IDID was 

that correlated grade and activity. Program chairs were able to access one 

system rather than several to get the information they needed to make design 

decisions regarding their course design framework. In addition to streamlining the 

data collection this tool had the potential of increasing instructor accountability by 

showing the program chair exactly how each of his or her courses compares to 

the statewide average. 

Current limitations included items which still need to be more carefully 

considered, such as who should actually have access to the data compiled by 

IDID. Is the larger faculty and student community aware that their activity is being 



63 

monitored and if so, what is the effect of increased monitoring on activity? In 

other words, could the activity be artificially increased without really being related 

to engagement? Merely knowing they are being monitored might alter a learner 

or instructor’s behavior so that he or she will look good within the statistics. 

Several respondents expressed the difficulty of comparing across instructional 

methods. An Internet-only course should be compared to another Internet-only 

course, not necessarily a face-to-face course. One respondent stated it rather 

succinctly, “There again you know you have got to make sure that we are 

comparing apples and apples; because you have to be comparing internet 

versus internet there.” Respondent 8. Perhaps this concern is related to the fact 

that the Internet-only classes are all built upon the same course design 

framework or master course. In face-to-face courses, the instructor is provided 

much more leeway in how he or she designs his or her course. Although all 

modalities must be taught from the same objectives only the internet only 

courses must also use the same framework of assessments. Three respondents 

mentioned the fact that some instructors use messaging while others use email 

as the main form of communication. This simple complexity of communication 

strategies could easily show up in the activity data as email behavior remains 

uncaptured by the system. Future versions of IDID may not suffer the disparity of 

communication tool use. In late fall 2016 the college decided to transition to the 

Canvas Learning Management System. As part of the migration the policies were 

rewritten to encourage faculty to initiate all student communication within the 

Canvas Conversations. This decision was made to take advantage of the Canvas 
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Notifications system and allow the communications to be pushed to the prefer 

communication channel. 

One respondent mentioned the need for a team approach to decision 

making, “So that's how I do it because I figure I can't know -- I mean, there's no 

way I can know everything.  So I've just decided to surround myself with people 

that can help me and make the decisions.” Respondent 5. This suggests that 

faculty beyond the program chairs may need access to the IDID system. Two 

additional limitations seem to fit well together. First, the need for a proper 

orientation became quite apparent. As a new data tool, users need to be oriented 

to the tool as well as how to properly interpret the data produced by the system. 

Second, people need time to be able to digest all the information that is being 

presented to them through this tool. Program chairs need time to be able to 

explore the data on their own. This can be a challenge for faculty who are 

already stretched thin. Finding time to “play” in the IDID system can be a 

challenge and must be a priority if data is truly going to drive design decisions. 

As for improvements, the most frequent request was to translate the 

internal handles (Blackboards labels for the tools used) into language that is a 

little more understandable. As one respondent phrased it “more of a standard 

language rather than a Blackboard language.” Respondent 1. One example of 

this labelling difference is that tools that behind the control panel all begin with 

“cp_” as the start of the internal handle. Another indicated the need to show 

which sections were being referenced, “So it might be helpful. You know, I think 

what you've shown me here is that it's probably going to be helpful to actually list 
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someplace on the screen what sections are actually being called for in this item.” 

Respondent 2. While I was not able to add the specific sections to Student Clicks 

screen, I was able to add the total number of sections that the item appeared in. 

This change allowed users to more easily examine the scope of the change. 

They could more easily determine whether the content appeared in statewide 

course design framework, or if it was added to a regional course design 

framework, or if it was just added to a single section. 

Four respondents remarked on the speed of the application. This has 

been addressed in future versions of IDID by running on extracts from the data 

warehouse instead of making a live connection to the data warehouse. This does 

add a file management issue to IDID deployment since there is potential for 

multiple extracts to be created. Currently, the IDID workbooks are extracted and 

placed on a community of mentors for courses that going through a course 

improvement plan or a minor redevelopment. Another improvement that was 

made based on feedback was adding a label of the sample size below the pie 

charts on the Student Clicks page. This was a simple change but allowed users 

to easily measure the impact of the content item. Additionally, an additional pie 

chart with the total grade distribution for the class was added to the Student 

Clicks page to allow for quick comparison back to the full course grade 
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distribution. Figure 15 represents a later prototype of the system with the 

addition of sample size labels and an additional pie chart.  

Age, gender, and GPA were all suggested as additional sorting criteria for 

the Student Profile page. Two additional changes were suggested. First, several 

respondents wanted to see the grade distribution of each item in a course. 

Currently IDID is configured to show grade distributions of final grades only. 

However, there might be a need to show midterm grades or grades on the first 

test or project. This has the potential of changing the IDID platform from a purely 

summative evaluation tool to one that could be used after a major class 

milestone to check progress and suggest mid-course correction. The second 

request was to show an historical trend for grades by instructor. The general idea 

behind this is to compare current grading against past grading. Although that 

change is technically possible, it is beyond the current scope for IDID. This 

change would be a bit of challenge as instructors do not allows teach the same 

section number semester to semester.  

Sample size labels added. 

Pie chart of all grades 
for comparison. 

Figure 15: Later Prototype of Student Clicks Screen 
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One of the main themes was potential use. IDID could be used to derive 

profiles of students and analyze their performance, making recommendations on 

what behaviors the more successful students are performing in the LMS. This 

tool was designed with the needs of program chairs but, there are self-monitoring 

potentials that could be achieved if the tool was redesigned to show students the 

effects of their behavior. IDID could be used for formative evaluations providing 

the right background information to tell an instructor how best to customize his or 

her section based on the mix of students he or she has. It could be used to 

establish a minimum expectation of activity for instructors and benchmarks for 

program chairs to be able to coach their faculty members in improved teaching 

methods. Annually each program chair must complete a review of his or her 

program which includes an extensive summary of student demographics. This 

could be used as a part of program review thereby reducing the time needed to 

prepare the documentation for this process. 

Complementing potential use, respondents mentioned potential misuses 

of IDID. One respondent summarized her concern about other program chairs 

potentially misinterpreting the data. She said “And as we discussed, maybe to 

remind people the disclaimer about what the data is actually saying.  Because, 

you know, there are some disciplines that when you get data like this, you do 

understand that it's just data and offers you more questions really than definitive 

answers.  But there are some disciplines that don't think that way.  So maybe to 

remind them that this is an excellent tool.  It gives us the ability to ask these 

questions, but it shouldn't be used to do these other things.” Respondent 2. 
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Another potential challenge of the tool is that it makes no differentiation between 

8-week versus 16-week courses. It is possible that this could confound some of 

the data being presented. In particular the Last Login screen would be effected 

by changes in the class calendar. The best way to address this issue in a more 

immediate manner would be to filter out the 8 week classes. 

One respondent asked about whether this tool would be available to all 

instructors. She wondered about the need to have this data so widely distributed 

and questioned what would happen if it was reviewed by someone who did not 

know what they were looking at. It is possible that an over-zealous administrator 

could use this data as a way to seek out poorly performing instructors and 

penalize them. This makes the education about IDID and how to properly 

interpret the data all more important. 

The last major theme that emerged from the user testing interviews was 

an overall positive sentiment. In particular respondents believed that the interface 

was intuitive and easy to understand and they commented on the ability to do 

quick comparisons for items and sections at a campus or regional level. This 

ability to perform comparisons at a campus, regional, and statewide level makes 

IDID stand out apart from other learning analytics dashboard applications. 

4.6 Evaluation Results: 

The evaluation of IDID consisted of ten one-on-one interviews conducted 

using GoToMeeting™. Approximately one week prior to each interview a basic 

orientation to the tool was conducted in a one-on-one GoToMeeting™ session. 

The orientation sessions were not recorded but the follow-up interviews were 
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recorded and later transcribed for coding in NVivo™. The same set of questions 

was used in each interview and the basic format of the script will now serve as an 

organizational structure for the results. All respondents were able to use the 

dashboard to generate a set of recommendations for the improvement of the 

respective course design. The recommendations divided up into strategies to 

encourage student engagement and strategies to encourage instructor 

engagement. About half of the respondents noticed that students tend to skip the 

learning activities and move right into the assignments and assessments. The 

most successful students will complete the learning activities as intended but, the 

‘C’ and ‘D’ students will navigate to the first graded assignment even though they 

may not be prepared to complete it. The course design template that we use at 

Ivy Tech calls for a separation of learning activities (ungraded material) from 

assignments and assessments (graded material). Since many students were 

jumping right to the graded materials we have since redesigned the course 

template so that in each module there is single path through the content and 

learning activities are interspersed with assessments.  

One respondent mentioned that students were skipping over large 

portions of text as well. She said, “You know, the beginning when I asked the 

objectives from session, you know, your ability to do this and then at the bottom 

when it says, next session, I don’t think that they even read any of that.” 

Respondent 14. With the college’s transition to Canvas it will be easier to see 

amount of time spent on each of the pages within a module. Discussion Board 

activity mirrored the other forms of interaction in many of the courses. There was 
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a steady decrease in activity from the beginning to the end of the course. One 

respondent noticed the drop-off, “I noticed that there was a decrease in 

participation about mid-way through the course.” Respondent 19. This trend in 

participation created a reflection opportunity as the course design was evaluated. 

Course developers paused to consider if there was anything structurally 

occurring in the course to create an exodus at certain points in the semester. 

Discussion Board activity in some cases was affected by instructor engagement 

in the Discussion Board. One respondent made the connection, “If the instructor 

is fostering that community and making sure that students know that, number 

one, their posts are being taken seriously and they're being read.  And then 

number two, that you're a real person and you're making those connections for 

them, you know really helping to foster a learning community.” Respondent 14. 

Dixson (2010) highlights that student engagement is dependent on instructors 

engaging through multiple communication channels. 

Others identified the potential impact of the instructor, “But you have to 

read what they're saying.  Sometimes they'll say, ‘Oh did you notice that Mary 

also works in healthcare’ or whatever.  And so that little extra time in the 

beginning, I think, really helps.” Respondent 14. One respondent mentioned 

wanting to look more closely at the beginning sessions to see what the impact of 

instructor engagement was on overall retention. Salazar (2010) indicates that a 

key to student retention is early engagement of students and an early 

introduction to establish an online presence. This respondent said, “And, if you 

have a faculty member that's just saying, ‘Great job, great answers’, that's not 
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helpful to the student at all and I'm kinda curious to see and I don't know if we 

can find this information out but if I were to review what a, what a faculty member 

does in their first assignments and to see what the retention rate of those 

students is.” Respondent 12. This suggestion of content analysis to examine the 

nature of the feedback provided is an excellent next step for this research. 

All respondents answered in the affirmative to the following two questions. 

“Were you able to compare performance at the section level?” and “Were you 

able to compare instructor behavior statewide?” So at a minimum IDID was able 

to support the semester to semester needs of program chairs. To the question 

“What additional sources of data would you want to identify your best 

instructors?” I received a variety of responses. One of the most common 

responses was an inquiry about the total amount of time for an interaction, not 

just the number of clicks. This speaks to one of the current limitations of the IDID 

system. The system currently counts click activity only so it does not account for 

students who will interact with the system in very different ways. Such as that 

student who downloads all his readings at the beginning of the semester. This 

student may have low activity on the system but, since he has downloaded his 

own copy he may in fact be highly engaged with the course content. This is 

especially the case in courses that lend themselves to this behavior like courses 

which have a lot of articles to read. When the interaction can occur offline it is not 

captured by such a system.  One respondent phrased the question like this, “Is 

there any way to tell the amount of time rather than just clicks that students or 

instructors have?” Respondent 14. Another respondent thought that it would be 
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helpful to look at instructional trends over multiple semesters rather than simply 

relying on the last semester of data. IDID is currently configured to look at the 

activity and performance of the previous semester only. Adding additional terms 

to the analysis might improve the predictive accuracy of the behaviors that are 

identified within IDID. Two of the respondents commented on collecting and 

leveraging more qualitative data along with the quantitative data. One respondent 

remarked, “What I would say is, what I would need in order to get a full picture of 

the instructor performance, is I would need qualitative data, as well as 

quantitative.” Respondent 18. Content analysis or sentiment analysis could be 

applied to investigate what kind of interaction the most successful instructors are 

conducting. However, another respondent indicated that she would want to know 

more about the nature of the announcements being posted. How many are 

content related? How many are purely administrative? How many are leaving 

qualitative comments for students in the grade center? Finally, one respondent 

requested deeper analysis of instructor behavior by session of the course rather 

than overall tool count. Her argument was that by paying attention to what 

instructors do in the first two weeks of the course one would be able to tell who 

remains engaged with his or her students and who is able to keep the students 

engaged. One of the outstanding questions raised by this research is that of 

those instructors who showed higher than average gradebook activity are they 

grading at several times during the semester or are they grading in smaller 

batches throughout the semester.  
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In response to the question “What features of the tool did you like?”, all the 

respondents were positive about the tool and its potential impact. All respondents 

were happy that this research was being conducted and that someone was 

invested in creating data tools to help them be more successful. One respondent 

said “But, I mean, I think it's very good data.  It would take some time to really get 

used to how to use it but there's really good data there.” Respondent 10. There is 

much training needed to educate program chairs about what data is possible to 

report on and how to interpret the data. Other respondents commented on how 

simple the interface is to understand. Another respondent stated, “And that it 

consolidates it all into one pretty little package is nice.  That's what I like the best. 

Instead of having to try to decipher it yourself based on comparing side by side 

something in blackboard or something like that.” As compared to previous 

behavior piecing together data from disparate systems, IDID made a huge step 

forward in assembling the data in a single location. Another respondent noted the 

visual appeal of IDID. “Well, I really liked the graphs on the individual persons, I 

like when those pie charts come up and I can visually kind of see the breakdown 

along with the layer.”  IDID attempted to make the comparison predominantly 

visual in nature. Another respondent stated it a little differently, “So, not only do 

you have the numbers but you also have the visuals like those pie charts, the 

graphs, the bar graphs and it helps you to visualize the data rather than just 

looking at the numbers and having to make inferences from that.” Respondent 

18. The power of a visualization is that it sometimes allows the data patterns to 

be more evident than if the data was presented in another manner. 
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The predominant response to the question, “What features of the tool 

caused the most frustration?” was a resounding belief that nothing was 

frustrating. One respondent seemed to summarize the views of the majority, 

“There was really no frustration with any of the tools.” Respondent 19. There 

were some minor issues that are worthy of mention. Two respondents remarked 

about losing track of which filters had been applied. IDID tried to address this 

issue by placing all the filters applied to dataset are visible on the screen. One 

respondent requested additional granularity to the Student Clicks and Student 

Clicks by Grade pages. I was quickly able to add the course identification number 

as an additional filter on these pages, which gave her the level of detail she was 

wanting. Finally, there was one respondent who had some technical difficulty in 

that Information Technology installed the previous version of Tableau Reader on 

his desktop and he was unable to open the dashboard on his own. Working with 

local IT to insure the proper versions of software are installed if your learning 

analytics solution depends on this approach is the best solution to this problem. 

In Aim I, I identified three potential sensemaking groups. Those were 

course-centered, institution-centered, and information-centered sensemakers. 

When posed with a real course design scenario all sensemaking appeared to be 

course-centered. However, what did emerge from the data was that within this 

type of sensemaking there were several subgroups. Seven of the ten focused 

their sensemaking on the Student Clicks screen. Five of these seven were 

focused on the Student Clicks within the content and the other two focused on 

Student Clicks by Grade. It is worthy of mention that both respondents were 
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recommending improvements to the same course. One was the course mentor, 

while the other was the instructional designer. Two respondents focused early 

attention on the differences they were seeing between the Internet vs Traditional 

students. The last respondent jumped immediately to the Last Login screen to 

determine where within the course design we were losing students. It was hard to 

tell how much the interface design effected the sensemaking process. More 

research is needed with different designs to examine the potential impact of the 

dashboard layout on the sensemaking process. 

Nine out of ten respondents responded to the survey. Respondents were 

asked to rate their level of agreement with statements related to their confidence 

making decisions after using the system. The statements were presented with a 

five point Likert scales ranging from strongly agree to strongly disagree. Some of 

the statements were negatively worded to prevent simply marking each 

statement with strong agreement.   

Table 1: Results from the Decision Confidence Survey 

Field Min. Max. Mean Std. 
Deviation 

Variance 

The approach taken to make 
design decisions was very well 
structured. 

4.00 5.00 4.44 .50 .25 

My decisions for this course were 
good ones. 

4.00 5.00 4.22 .42 .17 

People in the course who would be 
affected by my decisions would 
probably be satisfied with them. 

3.00 5.00 3.89 .57 .32 

It took too much time to make 
decisions. 

1.00 2.00 1.78 .42 .17 

I’m pleased with the approach 
used to analyze the course data. 

4.00 5.00 4.44 .50 .25 
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Analyzing the course data 
improved my problem-solving 
skills. 

4.00 5.00 4.33 .47 .22 

I wish I had approached the course 
data differently. 

2.00 3.00 2.22 .42 .17 

I’m not sure my decisions were 
appropriate. 

2.00 3.00 2.22 .42 .17 

Analyzing the course data 
frustrated me. 

1.00 3.00 1.56 .68 .47 

I really felt lost in trying to tackle 
the course data. 

1.00 2.00 1.44 .50 .25 

I might find it hard to get my 
decisions implemented. 

1.00 3.00 2.00 .47 .22 

The time and effort used to analyze 
the course data were well spent. 

4.00 5.00 4.78 .42 .17 

My analysis of the course data was 
systematic. 

3.00 4.00 3.89 .31 .10 

Analyzing the course data was a 
useful learning experience. 

4.00 5.00 4.56 .50 .25 

I may have missed important 
things in the course data. 

2.00 4.00 3.11 .87 .77 

I could easily justify my design 
decisions. 

4.00 5.00 4.44 .50 .22 

Analyzing the course data was 
interesting. 

4.00 5.00 4.67 .47 .22 

The approach used to analyze the 
course data wasn’t worth the effort. 

1.00 2.00 1.33 .47 .22 

I’ll be able to handle future course 
design decisions better because of 
the approach I used to analyze the 
course. 

4.00 5.00 4.33 .47 .22 

I’m not confident about my 
decisions. 

1.00 4.00 1.78 .92 .84 

I analyzed the course data in a 
step-by-step manner. 

2.00 5.00 3.89 .74 .54 

 

The two statements that had the greatest variance were “I’m not confident 

about my decisions”, which had a variance of .84, and, “I may have missed 

important things in the course data”, which had a variance of .77. This illustrates 

that these two statements had the largest range of responses. Furthermore, this 

two statements had the highest standard deviation at .92 and .87 respectively. 
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Showing that these statements had the greatest average distance from the 

average. This shows that these two responses were the least concentrated 

around the mean for each statement. 

  Figure 16 shows the breakdown of respondent’s main role at Ivy Tech. 

There were three respondents whose main role was course developer and two 

whose main role was course mentor. Two respondents were instructional 

designers. This shows that the course redesign responsibilities do not fall to 

program chairs. Full time faculty and adjuncts as well as program chairs serve as 

course developers or course mentors and are primarily responsible for reviewing 

the course data and making recommendations for improvement. 

 

 

  

Figure 16: Breakdown of Respondent's Main Role at Ivy Tech 
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Figure 17 represents the graph of the number of years respondents have 

been teaching online. Four respondents indicated that they have been teaching 

online 6-10 years. Three respondents indicated that they have been teaching 

online for 2-5 years. And only two respondents indicated they have been 

teaching online for 11-20 years. 

Figure 18 represents the number of years that respondent have been Ivy 

Tech. There were three respondents who indicated they had been at Ivy Tech 2-

5 years. There were three respondents who indicated they had been at Ivy Tech 

6-10 years. Two responded they had been at Ivy Tech 11-20 years. One 

responded that he or she had been at Ivy Tech for over 20 years. 

 

 

 

 

 

Figure 17: Number of Years Respondents Have Been Teaching Online 
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4.6.1 Summaries of User Experience with IDID: 

The following vignettes are actual user experiences of the IDID platform. 

All names have been changed to protect the identity of the user. Refer to 

Appendix H for a full system walkthrough. 

Anna Brown has been an adjunct faculty member for several years. She 

has experience as a professional accountant. She is both a course developer 

and a mentor. She is comfortable with analytics software and even exported 

some of the data provided into Excel for further analysis. The main 

recommendation that she had was to reorganize the course in a way that forces 

students to complete the learning activities before moving on to the assignments 

and assessments. She also suggested redesigning some of the Discussion 

Boards into blog assignments to encourage more interactivity as well as finding 

new resources to bring the subject matter alive and increase student 

engagement. Overall, she was happy with IDID remarking that it brought a lot of 

good data together in one place. She expressed a little frustration with setting the 

filters and forgetting that the filters were in place. 

Figure 18: Number of Years Respondents Have Been at Ivy Tech 
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Isabella Veracruz has been at Ivy Tech for eight years. She has been an 

adjunct faculty member for that time completing the Ivy Tech Online Instructor 

and Online Mentor certifications as well as the peer reviewer certification with 

Quality Matters (QM). She has served as course developer and course mentor 

for Spanish I, II, III, and IV. She interacted with data from SPAN 201, Spanish III, 

as the course developer for this course and in preparing for a course redesign. 

She determined that students accessed the first session, read the instructions for 

the corresponding third-party application and had little need to access the 

remaining sessions in Blackboard other than to complete the Discussion Board. 

Additionally, instructors who had lower levels of engagement in Blackboard 

tended to have lower pass rates with one exception. There was one instructor 

who only accessed the gradecenter 76 times for 26 students or roughly 3 times 

per student who had extremely high pass rates. The rigor of this instructor's 

grading was drawn into question. The recommendations for improvement 

included slight revision to the instructional materials of each class session within 

Blackboard as a means to increase student engagement. Additionally, the 

instructor guide should be revised to encourage increased instructor engagement 

with the content. The one improvement to IDID that was recommended was the 

inclusion of some summary statistics showing merely total access time in 

Blackboard. It was difficult to determine the nature of the clicks through a simple 

count of clicks. Length of stay might help determine whether the click was a 

mistake in navigation or was more intentional. 
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Julie Klein has been a program chair since 2012. She has completed the 

IVYC101 and IVYC251 courses, the Ivy Tech Online Instructor and Online 

Mentor certifications. She has been a mentor and a developer. She did not have 

much time to explore the data set before the meeting. She did notice that 

students were skipping over the learning activities and jumping straight into the 

assignments and assessments. She wanted a way to look into instructor 

behaviors by session, particularly the first session. There was quite a bit of 

discussion about the differences between the motivation and intention of F and 

FW students. She was rather concerned about the number of students who were 

“gaming the system.” Specifically, the concern came in two ways: students who 

play at completing the assessments through trial and error rather than study and 

review and students who remain enrolled long enough to get their financial aid 

money, then do not participate in any class activities. 

Jeff Rawlings has been a program chair for seven years but for the last 

three years he has been a Department Chair. He has served as a course 

developer and a course mentor. He holds certifications as an online instructor 

and a course mentor as well as the Applying the Quality Matters Rubric 

certification (QM). His biggest frustration was that IT installed the wrong version 

of the Tableau reader and he was unable to fully review the data set prior to the 

meeting. In fact, he required me to share my screen and navigate through the 

data. The biggest issue that was discovered in the data was that there are many 

students who are skipping the learning activities folder and jumping right into the 

assignments and assessments folder. He suggested adaptive release, a feature 
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in Blackboard of conditional releasing content, forcing students to complete 

something in the learning activities before the assignment and assessments 

would be available to them.  

Lucy Crawley is a course developer and mentor who also acts as an 

online technology coordinator for her region. She has regional administrator 

access to Blackboard which has been beneficial in the past, allowing her and her 

co-developer to inspect specific sections for instructor announcements and 

qualitative grading comments. She described her approach to analyzing the data 

as very systematic at the section level. Her data package was slightly modified to 

allow filtering of a Blackboard course identification on both the Student Clicks 

page and the Student’s Activity by Grade page. She was conducting A/B testing 

of two distinct course designs and evaluating the relative impact of the designs 

on student interaction at different grade ranges.  

Samantha Peters has been an instructional designer for the past three 

years at Ivy Tech. She did not explore the data in depth before the interview 

because her developer was very comfortable working with the data set. She 

indicated that she would start her analysis on the Internet Versus Traditional 

screen. She mentioned that the development process is condensed so she does 

not have a great deal of time to analyze what is occurring in the various sections. 

If she had more time, she would be interested in looking at what specific activities 

were occurring in the traditional course that might translate well to the internet 

only modality.  
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Trisha James has been on faculty at Ivy Tech for twenty-eight years. She 

started as an adjunct faculty and moved into full-time status. She seemed to 

approach this project in a very methodical step-by-step manner. She followed the 

instructions quite closely and arranged her comments on her use in that order as 

well. One of the most interesting things she mentioned was that she moves back 

and forth between screens very fluidly. She might see something on one screen 

which will cause her to look for the same data from a slightly different perspective 

on another screen. Additionally, she was asked about the embedded contextual 

support and she confirmed what another respondent observed, which was that 

the data dictionary was not used. 

Kelly Hudson is a full-time faculty member. She started with an exploration 

of the Last Log In page. She indicated that her analysis showed that in the first 

few days, students discover that the course is much more work than they had 

expected. However, past the first week, there did not seem to be a point in the 

semester that was resulting in significant withdrawals. When she looked at the 

Internet Versus Traditional screen, she saw that a lot more students take this 

course online as compared to those who take it in the traditional format. Further, 

it was noted that there was a fairly even distribution of As, Bs, and Cs in the 

online courses, whereas in the traditional courses there we very few Cs. She did 

note that the traditional course uses a completely different textbook and a 

different course design so it is difficult to compare the Internet and traditional 

formats. She described the importance of building community to influence the 

failure and withdrawal rates. She discussed the benefit of including a syllabus 
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quiz to get students to read the syllabus and become comfortable with how the 

course is organized. The course maybe mistitled and should be called Business 

Communications instead of Technical Writing. This course is hugely popular with 

guest students; especially, juniors or seniors at Indiana University and Purdue 

University who need a second English course. Students are bypassing the 

learning activities and navigating directly to the assignments and assessments. 

She suggested that we could put a “carrot” in the learning activities, like 

examples of successful student work.  

Michael Phillips is an instructional designer. He has worked in this role for 

one and half years. Prior to becoming an instructional designer he served as an 

online technology coordinator. He has completed multiple QM certifications 

including the Applying the Quality Matters Rubric Certification, the Peer Reviewer 

Certification, and the Online Facilitator Certification. He immediately noted that 

he and the developer focused heavily on the Student Clicks by Grade screen. 

They compared the behavior of A and B students against the behavior of C and 

D students. They found that the A and B students were accessing the practice 

activities, whereas the C and D students tended to skip the optional learning 

activities and jump right into the graded assignments and assessments. They 

decided to change the optional activities into required activities and reexamine 

the course data in a future semester to see if that change made a difference. He 

also mentioned that some of the questions raised by the data are more easily 

handled by the subject matter expert, who is much more familiar with the course 

content, than by the instructional designer. He went on to explain his role as an 
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instructional designer. That role is to make sure the developer has access to the 

data, to review the findings with the developer, and to help the developer 

implement the changes suggested by his or her interpretation of the data. He 

mentioned that he did not need to direct the developer to any of the embedded 

contextual support because the supporting documents like the Session 

Alignment Matrix (SAM) are provided to the developer in advance to their 

exploration of this data. "I was able to get who I would consider a pretty non-

technical person to be able to use it without too much of a problem.  I think that 

speaks volumes to being pretty usable."  
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Chapter 5. Discussion and Conclusion 

The first major outcome of this project was the design requirements for a 

learning analytics dashboard designed specifically for program chairs. These 

requirements could be useful for any college or university seeking to develop 

such tools for their program chairs. While these requirements were written with 

Ivy Tech specifically in mind, it is expected that others who use curriculum 

owners to manage course design frameworks would find the requirements useful. 

The requirements took into account not only the sensemaking support needs, but 

also the data requirements, interface requirements, and functional requirements 

for a learning analytics tool built to address the needs of program chairs. 

Although the requirements were not all addressed in the prototype design of the 

Instructional Design Implementation Dashboard (IDID), the design was intended 

to provide embedded contextual support at both a course and institutional level, 

multiple comparisons between sections, and highlighting differences between 

sections. The prototype is built as a front end to a larger data warehouse project.  

The data warehouse combines data from the Student Information System (in the 

case of Ivy Tech, we use Banner) and data from the learning management 

system (in the case of Ivy Tech, we use Blackboard). The queries used in 

Tableau combine the three different tables from the data warehouse. The 

Blackboard activity table, which contains one row per student per activity record 

from Blackboard, is joined to the instructor role table to indicate whether the 

activity is from an instructor or a student and it is joined to the unit record table, 

which is the student’s final grade and midterm grade as well as a number of 
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demographic variables for each student. Figure 19, represents the architecture 

of the NewT data warehouse. The custom SQL for the IDID in Tableau are 

provided in Appendix F. 

The student information system is replicated in Golden Gate then 

transformed in Pentaho Data Integration. Pentaho Data Integration also queries 

the Blackboard Open Database and pulls all activity and grade data off of this 

system on a daily basis. All of this data is pushed into Postgres Databases on 

Amazon Redshift. The Redshift instances are queried using Tableau Desktop to 

create extracted workbooks. The extracted workbooks are shared with course 

mentors and course developers through the course mentors organization. 

Thereby, limiting access of the workbooks to users who have a legitimate need to 

review the workbooks.    

Figure 19: NewT Data Warehouse Architecture 
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As an additional layer of analysis, the observations of the user testing 

sessions and later the evaluation phase were coded against Data/Frame Theory 

of Sensemaking. Klein(2006) describes the connection between data inputs and 

mental representations (frames). The Data/Frame Theory describes six 

processes on frames during sensemaking: seeking a frame, elaborating the 

frame, questioning the frame, comparing frames, preserving the frame, and 

reframing. Appendix G contains a full elaboration of these sensemaking stages 

and examples of how some of these stages were experienced by users of the 

IDID platform.  

The dominant feature of Seeking a Frame is the user’s search for a mental 

representation that matches what they are seeing in the data. The two sub-steps 

that were most frequently expressed were finding Anchors and Searching for 

Information. The observations that were coded as Finding Anchors were those 

that drew attention to a particular aspect in the data. It varied from Searching for 

Information in the depth of attention drawn to the data. While Finding Anchors 

scans the data to find a frame to hold onto, Searching for Information is a broad 

look at data that fits the chosen frame. 

Elaborating a Frame occurs when the user begins to fill in the pieces of his 

or her frame either through Adding and Filling Slots or through drawing on 

previous knowledge. Klein(2006) defines this as Internal Knowledge. Out of the 

four interviews that were coded as Internal Knowledge, one respondent in 

particular drew much of her insights from internal knowledge, that is, knowledge 

about the course that was not evident through the data being investigated. The 
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most prevalent sub-step in Elaborating a Frame was Adding and Filling Slots. 

This was characterized by users filling in a richer picture of what was occurring in 

the courses. Seeking Data occurred when users began to investigate the data 

more deeply. 

Questioning the Frame occurs when one of three things appears in the 

data. First, anomaly detection happens when something strange occurs in the 

data. Second, inconsistent data occurs when something in the data does not 

make sense. From the evaluation study, one respondent said “That means three 

times during the semester for each student.” Respondent 11. She was trying to 

reason why the gradecenter was only accessed 76 times. The final stage of 

Questioning the Frame is from violated expectancies. This occurred in the user 

testing when the user expected to see age, gender, and GPA in the student 

profile, but instead that area shows major, division, and degree aspirations. 

Comparing Frames was experienced very little in the user testing and 

evaluation of IDID. Seeking Distinguishing Evidence was supported by the IDID 

application. Here is what one respondent said, “I used this data to look at student 

activity within the course.  I looked at it from the standpoint of specific sections 

compared to designs that ran concurrently during the fall term.  I was looking to 

see in the students click page.  I specifically brought up the 2 different designs to 

see how whether or not one design had a great participation from students than 

another.  I also appreciated the fact that I could separate out which course 

sections that I was looking at.” Respondent 15. 
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Preserving the Frame occurs when the user adjusts the data to make it fit 

with his or her perception of reality. Only two sub-steps were experienced by 

users and each of these was only experienced one time. These were Explaining 

the Data Away and Knowledge Shields. The unaccounted for sub-steps were 

Distortions and Fixation Errors. Under Explaining the Data Away, the user tries to 

rationalize why the data is shaped the way it is. This can be seen in this 

exchange were the user tries to reason why the F and D students showed higher 

average clicks than A, B, and C students. The user says, “I would look at that too 

to make sure, did they really prepare for these quizzes, which it appears to be 

me, yes they did, because it shows that up is 1.7 versus 2.8, so even though 

there are more on the average for the failures or the D's, than the passes, so 

there is probably some other way that those who got the A, B, C's prepared for 

their performance result that was seen.” Respondent 17. Knowledge Shields 

occurs when the user holds onto their frame in the face of contradictory data.  

Reframing occurs when the user decides to revisit data based on a new 

mental model. Reframing involves Establishing New Anchors, which are new 

areas of evidence found in the data to support the formation of a new frame. In 

order to reframe, the user may revisit previously discarded data, thus Recovering 

Discarded Data or Re-Interpreting Data. In this example of Revising Goals, the 

user has modified his or her suggested improvement, “There's something that 

needs to be done to encourage the instructor to have more interaction or give 

more updated feedback to the students.” Respondent 11.  
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The two most prevalent phases based on the user testing were Seeking a 

Frame and Elaborating a Frame. This should not be surprising, given the context 

of the user testing and evaluation scenarios. Making sense of activity data at this 

level was a new skill that the respondents were asked to perform. The user 

testing confirmed the need for a proper orientation to the data as well as to give 

the respondents sufficient time to explore the data on their own. It is not 

surprising that the predominant sensemaking activities were Seeking a Frame 

and Elaborating a Frame. For the user testing from within Seeking a Frame the 

most prevalent task was Constructing a New Frame. For the evaluation phase 

the most prevalent tasks were Finding an Anchor and Searching for Information. 

For the user testing the most prevalent task from within Elaborating a Frame was 

the application of internal knowledge. This shifted a little in the evaluation phase 

to Adding and Filling Slots. However, Internal Knowledge had the highest number 

of references. Again, this was not surprising, because all respondents had a 

large body of experience from past courses to apply.   

Turning attention to those processes of sensemaking that were not 

evident within the user testing session and evaluation, Preserving the Frame and 

Reframing were two processes that seemed to be ignored by the user testing 

and evaluation sessions. It could be that in order to perform these functions, one 

has to commit to a particular frame of reference. Perhaps these were not seen 

because they require assumptions of what the data should look like and being a 

new analytics tool, many respondents were unsure about these assumptions. For 

the user testing, under Questioning the Frame there were two instances of 



92 

violated expectancies. There were only three such instances during the 

evaluation. It is likely that respondents had not established any expectancies for 

this data. There was one instance in which the respondent did expect to find a 

certain type of information and what was actually shown was not expected. The 

respondent said, “Okay, okay.  All right.  So like on the Student Profile, it's going 

to tell me if they're male, female, single, their age...” During the evaluation a 

respondent questioned the data stating that “where the pass rate is 100 percent, 

that is really unbelievable for me.” Respondent 11. 

There are several implications of the IDID system that are worthy of 

discussion. First, one the main goals IDID was to improve the evaluation of our 

courses by adding usage statistics to the overall analysis of the course for the 

redevelopment process. This immediately raises questions about data privacy 

and ownership. This is further compounded as we try to bring more and more of 

the data from the learning ecosystem into our data warehouse. As we begin to 

make data sharing agreements with third party content providers, ownership of 

the learning data is drawn into question. More education is needed with end 

users regarding their data rights and how to protect their data. The challenge is 

that by offering an opt-out for students we run the risk of no longer maintaining a 

usable data set. So there is a rub between working to improve student 

performance and at what cost to the student does this insight bring. I would 

argue that a solid awareness campaign for students would encourage rather than 

discourage participation. It would at the minimum raise awareness of data which 

is being collected on their learning. Third parties like Pearson, McGrawHill, and 
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Cengage use learning data to improve their products. Students are signing over 

their data rights when they sign the user agreement to set up an account on 

these systems.  

In addition to training students on the use of their data, we have a ways to 

go to better educate faculty about the use of their data. As Ellis (2011) states it, 

“The concern that some may have at being ‘surveilled’ through an analytics 

strategy may raise concerns about privacy and academic freedom and may raise 

the spectre of a ‘big brother’ institution.” (p.11) The challenge is to demonstrate 

the effect on student performance and to develop an attitude of continuous 

improvement within the faculty. The data should be used for positive professional 

development opportunities rather than a means to discipline under performing 

faculty. There must be a commitment to this approach to the data from all levels 

of leadership. 

Not only should faculty be trained on an awareness of what data is being 

collected and how it is being analyzed but, they should receive training on how to 

ask good questions of the learning data. Undoubtedly this tool will make new 

data available that has previously not been presented in a format that is easy to 

consume. As the faculty become more familiar with working with learning data 

there may be new questions that they raise that could trigger development of 

other learning analytics systems.  

The expected outcome of the IDID system is increased student success. 

Primarily it seeks to do this through improved course design. This would lead to 

an improved instructional experience for both students and instructors. Through 
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the identification and promotion of behavior that has proven to be successful 

IDID seeks to identify best practice from both the student and instructor 

perspective. The tool allows for the articulation of profiles of proven behavior. 

This would provide students and instructional support staff to obtain knowledge 

of what success looks like from an activity standpoint. It would pinpoint precisely 

where the most successful students are spending their time thus improving 

student advising. Students would have more information to use to decide what 

materials to spend their time on within the course. 
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Chapter 6. Opportunities for Future Research 

This research was the first foray into the application of big data and 

learning analytics at Ivy Tech Community College. Since starting this project, the 

college has started an initiative called Project Early Success, PES for short. 

(Schneider, 2016). PES seeks to identify at-risk students by using a machine 

learning algorithm to predict student success based on a number of factors. A 

strong predictor of success is access to Blackboard. PES uses the same query of 

the Blackboard Open Database that is used to populate the IDID project. PES is 

a statewide initiative and the college is measuring its impact. 

Machine learning and task automation provide an exciting area of potential 

improvement for the IDID system. Training systems to identify patterns in the 

interaction data can be used to improve the predictive nature of systems such as 

PES. IDID could be reconfigured to look at midterm or final exam or some other 

key assessment. Or, performance on one of these milestone assessments could 

be factored into the predictive model for the end of term grade. Semantic 

analysis could be coupled with machine learning to discover the content posted 

by highly successful students or the content posted by the most highly successful 

instructors. Automated identification of high performing behaviors would allow for 

computer generated reporting of tasks which are today manual processes within 

the IDID system. Specifically, automated identification of content that does not 

receive a specified threshold of activity would allow the course design decision 

maker to rely on the technology to presort the items that would warrant further 
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investigation. This could potentially improve the overall decision confidence by 

reducing the likelihood of overlooking something of significance within the data. 

In addition to the Blackboard activity data we are seeking to enhance the 

data warehouse with some additional data not currently available to us. For 

example we have engaged with each of the major publishing partners to 

establish a regular data feed of student activity data from their systems into our 

data warehouse. The main issue is that typically 75% to 90% of all student 

learning activity is taking place in systems outside of Ivy Tech owned platforms. 

Pearson My Math Lab or McGraw Hill Connect serve as examples of these third 

party systems. The desire is to bring the activity stream from these systems into 

the data warehouse so that we have reporting capability over the entire learning 

cycle. Without that data major activities related to student learning remain 

invisible to Ivy Tech. Having this data would allow us to extend IDID to include 

insight in the instructional design of these third party systems. 

There are a number of ways to expand the functionality of the IDID 

platform. An easy win would be to incorporate Quality Matters review data into 

the dashboard as well. This would expand the role of the QM review to 

incorporate usage data. Even if a learning object is well designed and aligned to 

the objectives, if it is not receiving any attention, it should either be removed or 

the message around the object needs to be changed.  

Another area of potential future investigation is the exploration of grade 

data on the analysis of instructional design efficacy. Currently IDID is configured 

to look at correlation of final grade and activity information. It would be helpful to 
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allow for the configuration of which grade to correlate. The same questions about 

the efficacy of item access on final grade could easily be applied to the midterm 

grade or any other major assessment in the course. For example, we could see 

the impact of item access on the final exam or the final research project.  

There is a potential for research on grade analysis in and of itself. We 

could perform a regression analysis on the major assessments in the course and 

verify that they statistically contribute to the overall success in the course. This 

type of analysis further validates the course design by insuring that the major 

assessment are in fact contributing to success in the course.  

There is also Learning Management System data that we are not 

capturing today, which would provide intriguing channels of additional inquiry. For 

example, we could capture Discussion Boards or class announcements and 

perform semantic analysis on the content to categorize the types of engagement 

that highly successful instructors are performing. For instance, are the 

announcements generally related to the content or are they administrative in 

nature? If they are content related, are there certain themes that are receiving 

more attention than others? This would be an exciting research opportunity that 

merits further investigation.  

Beyond the potential avenues of learning analytics research that is now 

opened up by this research there is a whole range of additional user research 

opportunities. We could test multiple dashboards to identify the characteristics of 

highly usable designs. There is much more about the sensemaking process that 

we have yet to uncover. How exactly does a frame become established? What 
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are the precise patterns in the data that cause fixation or consideration of 

alternative frames? Are there ways to present the visualization that contribute to 

either fixation or consideration of alternative frames?  

Although I captured the screencast, it would be informative to collect 

additional data such as eye movement during the “think aloud session” of 

sensemaking. In fact, it would be fascinating to compare initial sensemaking with 

the summarized sensemaking activity which was captured in this study. In such 

future research one could compare actual sensemaking with perceived 

sensemaking. 

In December 2016, the college announced its intention to migrate to the 

Canvas learning management system effective summer 2017. IDID will need to 

be reconfigured to use data from the Canvas Data Portal. Besides page views 

the system will show student and instructor activity in conversations, discussion 

boards, assignments, and quizzes. I am working with the team for Decision 

Support to create a Canvas Data cube in our data warehouse environment. It is 

likely that the IDID tool will be rebuilt in Pentaho which is the underlying Business 

Intelligence suite that the college has adopted. 

The implications of dashboard design are enormous and the potential 

research of instructional design evaluation is equally as large an opportunity for 

future researchers. This research barely scratches the surface of what we know 

about the sensemaking process. Much more investigation of this phenomenon in 

other contexts is needed to more richly describe the process.  
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Chapter 7. Summary of Contributions 

There are three main areas of contribution to this study. These correspond 

to the phases or aims of the research. The study first sought to capture the user 

requirements of a new learning analytics system from the perspective of program 

chairs. These requirements needed to account for the sensemaking needs of the 

user. Second, a novel learning analytics tool was developed which aggregates 

learner activity information and correlates it to end of course performance. IDID 

in itself is a contribution of this research. Finally, the user experience was related 

back to theoretical sensemaking and Klein’s(2006) Data / Frame Theory of 

Sensemaking was confirmed with actual sensemaking experiences. This further 

refines the model and provides actual user experiences from which to design 

future learning analytics tools. 

7.1 Requirements: 

The first major contribution of this study was the comprehensive set of 

requirements derived from the survey of sensemaking needs of program chairs. 

These requirements were divided into the knowledge support requirements, data 

requirements, interface requirements, and functional requirements. These 

requirements could be applied to learning analytics for curriculum owners in large 

college systems. The knowledge support typology, figure 20, could be useful in a 

number of similar contexts. It provides a framework around which to consider 

providing knowledge support to help make academic decisions.  
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Originally, I had proposed the need for statistical knowledge, domain 

knowledge, and system knowledge. However, the survey responses uncovered 

the need to answer the questions about who was involved in the learning activity. 

Participants indicated the need to know who was teaching and who was learning. 

Figure 18 shows the revised typology of support needs along with specific types 

of support and examples of support resources. The typology could be applied to 

any learning analytics situation to describe the knowledge support needed to 

make sense of the analytics. 

In addition to the requirements three main design themes emerged out of 

the rationale for sensemaking rankings. These were embedded contextual 

support at both course and institutional levels, multiple comparisons between 

sections, and highlighting differences between sections. Taken together these 

requirements called for a data warehouse solution. It was fortunate that Ivy Tech 

Figure 20: Typology of Knowledge Support Needs 
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was launching a large data warehouse project at the same time I began to 

develop solutions to meet the stated requirements. It is expected that other 

learning analytics applications would find similar differences in the types of 

sensemakers using their systems. At a minimum learning analytics designers 

should consider the support needs of institution centered, course centered, and 

information centered sensemakers.  

7.2 Instructional Design Implementation Dashboard: 

The Instructional Design Implementation Dashboard was another major 

contribution to the field. The SQL queries that were developed could be used by 

future researcher or learning analytics dashboard developers to correlate grade 

data with learner activity data coming from the Blackboard learning management 

system. Appendix F outlines the custom SQL that was developed for this project. 

This project confirmed the importance of user testing, because several users 

reacted to the design in unexpected ways. For instance, user testing uncovered 

small design enhancements that made a big difference for users. One example 

of this was the inclusion of sample sizes below each of the charts and graphs. 

Another design enhancement was the inclusion of a static graph which 

represented the grade distribution of all students so that the user could compare 

the impact of content items on the grade distribution.  The design and 

development of the IDID platform is well documented so that it could easily be 

replicated at other institutions. 
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7.3 Revised Sensemaking Model: 

Perhaps the biggest contribution to the field was the confirmation of 

Data/Frame Sensemaking Theory. The revised model is presented here. 

In this model, figure 21, the elements of theory that were not 

demonstrated by the recorded user experience are presented in italics. Those 

that appeared in five or more cases are presented in bold text. Predominantly, 

the sensemaking process begins with Seeking a Frame. Most often this stage of 

sensemaking was seen as Searching for Information or Finding Anchors. This 

stage is foundational to all the other stages. Following from Seeking a Frame, the 

sensemaking process moved into Elaborating the Frame or less frequently into 

Questioning the Frame and Comparing Frames. While Elaborating the Frame, 

the most frequent step was Adding and Filling Slots. This step was characterized 

by an elaboration of the user’s mental model governing his or her personal 

Frame Data 

Seeking a Frame 

• Searching for information 
• Finding anchors 
• Building on FMMs 
• Constructing a new frame 

Elaborating the Frame 
• Seeking data 
• Inferring data 
• Extending the frame 
• Adding or filling slots 

Questioning the Frame 
• Inconsistent data 
• Anomaly detection 
• Violated expectancies 

Reframing 

• Establishing new anchors 
• Recovering discarded data 
• Reinterpreting data 
• Revising goals 

Preserving the Frame 
• Knowledge shields 
• Explaining away data 
• Distortions 
• Fixation errors 

Comparing Frames 
• Sharpening distinctions 
• Identifying alternative frames 
• Simultaneous testing 

• Recognize/construct 
a frame 

• Define, connect, 
and filter the data 

Figure 21: Revised Data/Frame Sensemaking Model 
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understanding of the story the data represented. Sometimes the Sensemaking 

process would flow from Seeking a Frame to Elaborating the Frame to 

Questioning the Frame or Comparing Frame. If the sensemaker revised his or 

her goals or began searching for new anchors, then he or she entered a 

Reframing stage. If instead the user retains an existing frame in the face of 

contradictory data, he or she starts Preserving the Frame. These two stages, 

Reframing and Preserving the Frame, were less frequently experienced by users 

of the Instructional Design Implementation Dashboard. Future research of these 

two stages should be conducted which might involve some contrived data to 

highlight the inconsistencies which cause the user to either make a decision to 

hold onto his or her existing frame or search for a new frame. One of challenges 

of capturing actual sensemaking scenarios is that the data do not represent the 

inconsistencies that are prerequisites for the Reframing and Preserving the 

Frame phases of sensemaking. Much more data on real world experience of 

sensemaking is needed to either confirm or refute the model presented here. 

However, it is useful to learning analytics system designers to know the general 

progression of cognition while making sense of the learning analytics system. 

The Data Frame Model of Sensemaking aptly described the actual sensemaking 

experiences of real users given real world data from large online courses. 
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Appendix A 

Overview of Quality Initiatives in Online Education 

As early as 2000, the eight regional accreditation commissions agreed, 

“that institutions undertake the assessment and improvement of their quality, 

giving particular emphasis to student learning” (Higher Learning Commission, 

2007, p. 1). These guidelines were titled the Best Practices in Online Certification 

and Degree Programs. Other quality initiatives within the last few years exist to 

identify best practice on an institutional level. A seminal report, Quality on the 

Line (IHEP, 2000), which identified 21 benchmark areas of highly successful 

online programs, and the Sloan-C Quality Scorecard (Sloan-C, 2011) are just two 

of the quality improvement programs that outline best practice recommendations 

for online programs.   

In May 2002, reacting to the Best Practices in Online Certification and 

Degree Programs, a group of faculty, staff, and students at California State 

University Chico began to develop a rubric for determining the quality of online 

instruction (Sederberg, 2003). The Rubric for Online Instruction (CSU Chico, 

2003) was used a means to identify within that institution examples of 

instructional best practice that are worthy of being recognized. In 2006 under a 

grant from the Fund for Improvement of Post-Secondary Education (FIPSE),   

Quality Matters (QM) became the first intra-institutional quality course 

improvement process (Shattuck, 2007). The internationally subscribed program 

does allow for some benchmarking to other institutions but only evaluates course 
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design. Course delivery falls outside the scope of the Quality Matters rubric and 

therefore is best evaluated through other evaluation methods.   

The Instructional Design Implementation Dashboard (IDID) developed 

here displays course design information such as a breakdown of course 

elements filtered by aggregate student performance data and allows for drill 

down to view the activity information of both instructors and students in these 

highly successful course sections. Such an analytic are used by program chairs 

on a curriculum committee to identify and promote best practices in the 

implementation of the course design framework at the section, or regional level. It 

is conceivable that program specific thresholds of activity and performance could 

be established to generate an early warning system to identify at-risk students or 

absent instructors. 

If the course design framework was used in both credit and noncredit 

courses or in online and traditional courses there would be an expectation that 

the patterns of activity and performance would shift depending on the shifts in 

context. It is expected that the IDID will aid course curriculum committees in the 

preparation of an instructor guide which accompanies the course design 

framework.  
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Appendix B 

INDIANA UNIVERSITY INFORMED CONSENT STATEMENT FOR 

User Testing of the "Instructional Design Implementation Dashboard" 

Thank you for participating in this study! 
This is a study of the knowledge support for learning analytics to improve course 
design at Ivy Tech Community College of Indiana. This study supports doctoral 
research in Human-Computer Interaction (HCI). This research is being 
conducted by Robert Morse under the direction of Davide Bolchini, School of 
Informatics, Indiana University Purdue University Indianapolis (IUPUI). 

This exempt study has been approved (study #14011) by the HSRB(Human 
Subjects Research Board) for human subjects research at Ivy Tech Community 
College 

STUDY PURPOSE. This study tests a contextual support structure for a learning 
analytic system. Data presented is from a real Ivy Tech course from the Summer 
2014 term.  

PROCEDURES FOR THE STUDY. If you agree to be in the study you will asked 
to interact with the analytic system to make several instructional design decisions 
to improve the statewide course. 

RISKS OF TAKING PART IN THE STUDY. While on the study, the risks are: By 
participating in the study, you may feel some fatigue from making these course 
design decisions, the same fatigue that you will feel when making curriculum 
designs as a normal part of job responsibilities. 

BENEFITS OF TAKING PART IN THE STUDY. You will be exposed to an 
analytic system built on course data from the Summer 2014. Participating in the 
survey may result in thinking differently about your course and course data. 

ALTERNATIVES TO TAKING PART IN THE STUDY. You may decide at any 
time not to participate in this study. 

CONFIDENTIALITY. Respondents will be coded and responses will be 
preserved for triangulation should you be selected for future phases of this study. 
No personal data will be collected or used for research purposes. No personal 
information will be distributed or shared with anyone outside this research study, 
unless required by law. 

COSTS. No costs are associated to you for taking part in this study. 
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CONTACTS FOR QUESTIONS OR PROBLEMS. For questions about the study 
you can contact Robert Morse(rkmorse@iupui.edu). 

For questions about your rights as a research respondent or to discuss problems, 
complaints or concerns about a research study, or to obtain information, or offer 
input, contact the IU Human Subjects Office at (812) 856-4242 or (800) 696-
2949, or by email at irb@iu.edu. 

VOLUNTARY NATURE OF STUDY. Taking part in this study is voluntary. You 
may choose not to take part or may leave the study at any time. Your decision 
whether or not to participate in this study will not affect your current or future 
relations with Ivy Tech Community College or Indiana University-Purdue 
University Indianapolis. 

 
Course Design Decision Tasks 

Using the analytic system provided, identify under-utilized resources in the 
course?  
Were the students who accessed these materials more or less successful than 
those who did not access them? 
How critical are these resources to conveying the objectives for the course? 
What recommendations could you make for improving the course design based 
on your review of this data? 
Is the performance between sections consistent? 
Are the instructors of your sections engaging with students in a consistent 
manner? 
What are your instructors of higher performing sections doing that you would 
want to encourage all faculty to do? 
  

mailto:rkmorse@iupui.edu
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Appendix C 

Ivy Tech Custom Quality MattersTM Rubric Standards 
Based on the Fifth Edition, 2014, with Assigned Point Values 
For more information visit https://sites.google.com/a/ivytech.edu/qm/ 
Course Overview and Introduction 
1.8 The self-introduction by the instructor is appropriate and is available 
online. 
1.9 Learners are asked to introduce themselves to the class. 
1.10 The course uses the official Ivy Tech Online course syllabus template. 

 
1 
1 
3 

Learning Objectives (Competencies) 
2.1 The course learning objectives, or course/program competencies, 
describe outcomes that are measurable. 
2.2 The module/unit learning objectives or competencies describe 
outcomes that are measurable and consistent with the course-level 
objectives or competencies. 
2.3 All learning objectives or competencies are stated clearly and written 
from the learner’s perspective. 
2.4 The relationship between learning objectives or competencies and 
course activities is clearly stated. 
2.5 The learning objectives or competencies are suited to the level of the 
course. 

 
3 
3 
 
3 
3 
3 

Assessment and Measurement 
3.1 The assessments measure the stated learning objectives or 
competencies. 
3.2 The course grading policy is stated clearly. 
3.3 Specific and descriptive criteria are provided for the evaluation of 
learners’ work and are tied to the course grading policy. 
3.4 The assessment instruments selected are sequenced, varied, and 
suited to the learner work being assessed. 
3.5 The course provides learners with multiple opportunities to track their 
learning progress. 

 
3 
3 
3 
 
2 
2 

Instructional Materials 
4.1 The instructional materials contribute to the achievement of the stated 
course and module/unit learning objectives or competencies. 
4.2 Both the purpose of instructional materials and how the materials are to 
be used for learning activities are clearly explained. 
4.3 All instructional materials used in the course are appropriately cited. 
4.4 The instructional materials are current. 
4.5 A variety of instructional materials is used in the course. 
4.6 The distinction between required and optional materials is clearly 
explained. 

 
3 
 
3 
 
2 
2 
2 
1 

Course Activities and Learner Interaction 
5.1 The learning activities promote the achievement of the stated learning 
objectives or competencies. 

 
3 
3 
3 
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5.2 Learning activities provide opportunities for interaction that support 
active learning. 
5.3 The instructor’s plan for classroom response time and feedback on 
assignments is clearly stated 
Course Technology 
6.1 The tools used in the course support the learning objectives and 
competencies. 
6.2 Course tools promote learner engagement and active learning. 
6.3 Technologies required in the course are readily obtainable. 
6.4 The course technologies are current. 
6.5 Links are provided to privacy policies for all external tools required in 
the course. 

 
3 
3 
2 
1 
1 

Learner Support 
7.1 The course instructions articulate or link to a clear description of the 
technical support offered and how to obtain it. 
7.2 Course instructions articulate or link to the institution’s accessibility 
policies and services. 

 
3 
3 

Accessibility and Usability 
8.1 Course navigation facilitates ease of use. 
8.2 Information is provided about the accessibility of all technologies 
required in the course. 
8.3 The course provides alternative means of access to course materials in 
formats that meet the needs of diverse learners. 
8.4 The course design facilitates readability. 
8.5 Course multimedia facilitate ease of use. 
8.6 The course uses the official Ivy Tech Online course design template. 

 
3 
3 
2 
2 
2 
3 

To meet standards all 3 point (essential) standards must be met and the 
course must earn at least 73 points.  
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Appendix D  

Coding Structure – Preliminary Study 

Name References Sources 

Consistency   

Consistent Evaluation 4 5 

Consistent Instruction 2 3 

Consistent Interpretation 1 1 

Demographics   

Development Experience 4 5 

Online Teaching Experience 2 2 

Time at Ivy Tech 4 5 

Time program chair 2 3 

Data-Driven Course Design Decision Making   

Data Reporting   

Data Aggregation   

Aggregation by Region 2 2 

Appropriate Levels of Aggregation 1 1 

Section Level Reporting 2 3 

Reporting Tools 1 1 

Banner Capabilities 1 1 

Assignment Reporting 1 1 

Third-party Tool Adoption 1 1 

Item Analysis 1 2 
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Pre-Test/Post-Test Comparison 1 3 

Current Use of Course Data   

Don't Use Data 2 2 

Disconnected Data 1 1 

Anecdotal Evidence 1 1 

Grades   

Grade Inflation 1 1 

Student Success 1 1 

Usage Statistics   

Comparing Students and Instructors 3 3 

Course Component Use 2 3 

Instructor Engagement 1 3 

Student Engagement 1 1 

Complicated Navigation 1 1 

Last Date of Attendance 1 1 

Student Surveys 1 2 

System Expectations 1 1 

Bell-Curve 1 1 

Expected Presentation of Data 1 1 

Face to Face versus Online Modality 1 2 

Visual Appeal 1 2 
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Appendix E  

Decision Support Confidence Survey 

INDIANA UNIVERSITY INFORMED CONSENT STATEMENT FOR Evaluation of 
the "Instructional Design Implementation Dashboard" Thank you for participating 
in this study! This is a study of the knowledge support for learning analytics to 
improve course design at Ivy Tech Community College of Indiana. This study 
supports doctoral research in Human-Computer Interaction (HCI). This research 
is being conducted by Robert Morse under the direction of Davide Bolchini, 
School of Informatics, Indiana University Purdue University Indianapolis (IUPUI). 
This exempt study has been approved (study #15006) by the HSRB(Human 
Subjects Research Board) for human subjects research at Ivy Tech Community 
College  
STUDY PURPOSE. This study tests a contextual support structure for a learning 
analytic system. The analytic system presents data from the spring, summer, or 
fall 2015 terms.  
PROCEDURES FOR THE STUDY. If you agree to be in the study you will 
evaluate how well the system supported your decision making.  
RISKS OF TAKING PART IN THE STUDY. While on the study, the risks are: By 
participating in the study, you may feel some fatigue from making these course 
design decisions, the same fatigue that you will feel when making curriculum 
designs as a normal part of job responsibilities.  
BENEFITS OF TAKING PART IN THE STUDY. You will be exposed to an 
analytic system built on course data from the spring, summer, or fall 2015 terms. 
Participating in the survey may result in thinking differently about your course and 
course data.  
ALTERNATIVES TO TAKING PART IN THE STUDY. You may decide at any 
time not to participate in this study.  
CONFIDENTIALITY. Respondents will be coded and responses will be 
preserved for triangulation should you be selected for future phases of this study. 
No personal data will be collected or used for research purposes. No personal 
information will be distributed or shared with anyone outside this research study, 
unless required by law.  
COSTS. No costs are associated to you for taking part in this study.  
CONTACTS FOR QUESTIONS OR PROBLEMS. For questions about the study 
you can contact Robert Morse(rkmorse@iupui.edu). For questions about your 
rights as a research respondent or to discuss problems, complaints or concerns 
about a research study, or to obtain information, or offer input, contact the IU 
Human Subjects Office at (812) 856-4242 or (800) 696-2949, or by email at 
irb@iu.edu.  
VOLUNTARY NATURE OF STUDY. Taking part in this study is voluntary. You 
may choose not to take part or may leave the study at any time. Your decision 
whether or not to participate in this study will not affect your current or future 

mailto:irb@iu.edu
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relations with Ivy Tech Community College or Indiana University-Purdue 
University Indianapolis.If you content to participate, choose that option below.  
 Yes, I consent. 
 No, no thank you. 
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Reflecting on 
your use of the 

Instructional 
Design 

Implementation 
Dashboard, 
select the 
degree of 

agreement with 
each of the 
statements 

below.  

Strongly 
Disagree Disagree 

Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

The approach 
taken to make 

design 
decisions was 

very well 
structured. 

          

My decisions 
for this course 

were good 
ones. 

          

People in the 
course who 
would be 

affected by my 
decisions 

would probably 
be satisfied 
with them. 

          

It took too 
much time to 

make 
decisions. 

          

I'm pleased 
with the 

approach used 
to analyze the 
course data. 

          

Analyzing the 
course data 
improved my 

problem-
solving skills. 

          
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I wish I had 
approached 
the course 

data differently. 

          

I'm not sure my 
decisions were 

appropriate. 
          

Analyzing the 
course data 

frustrated me. 
          

I really felt lost 
in trying to 
tackle the 

course data. 

          

I might find it 
hard to get my 

decisions 
implemented. 

          

The time and 
effort used to 
analyze the 
course data 
were well 

spent. 

          

My analysis of 
the course 
data was 

systematic. 

          

Analyzing the 
course data 
was a useful 

learning 
experience. 

          

I may have 
missed 

important 
things in the 
course data. 

          

I could easily 
justify my 

design 
decisions. 

          
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Analyzing the 
course data 

was 
interesting. 

          

The approach 
used to 

analyze the 
course data 
wasn't worth 

the effort. 

          

I'll be able to 
handle future 
course design 

decisions 
better because 

of the 
approach I 

used to 
analyze the 

course. 

          

I'm not 
confident 
about my 
decisions. 

          

I analyzed the 
course data in 
a step-by-step 

manner. 

          
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What is your regional affiliation. 
 Northwest 
 Northcentral 
 Northeast 
 Lafayette 
 Kokomo 
 East Central 
 Wabash Valley 
 Central Indiana 
 Richmond 
 Columbus 
 Southwest 
 Sellersburg 
 Bloomington 
 Central Office 
 
How would you define your main role at Ivy Tech? 
 Online Technology Coordinator 
 Program Chair 
 Course Developer 
 Course Mentor 
 School Dean 
 Instructional Designer/Institutional Researcher 
 Other Administrator 
 
How many years have been teaching online? 
 1 year or less 
 2-5 years 
 6-10 years 
 11-20 years 
 over 20 years 
 
How many years have you been at Ivy Tech? 
 1 year or less 
 2 to 5 years 
 6 to 10 years 
 11 to 20 years 
 over 20 years 
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Which IVYC courses have you completed? 
 IVYC101-Online Faculty Certification 
 IVYC201-Online Developer Certification 
 IVYC251-Online Mentor Certification 
 
Which Quality Matters Training courses have you completed?  
 APPQMR-Applying the Quality Matters Rubric 
 PRC-Peer Reviewer Certification 
 OFC-Online Facilitator Certification 
 MRC-Master Reviewer Certification 
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Appendix F  

Custom SQL for IDID 

SELECT "Activity"."user_id" AS "user_id", 
  "Activity"."student_id" AS "student_id", 
  "Activity"."event_type" AS "event_type", 
  "Activity"."internal_handle" AS "internal_handle", 
  "Activity"."logtime" AS "logtime", 
  "Activity"."bb_course_id" AS "bb_course_id", 
  "Activity"."course_id" AS "course_id", 
  "Activity"."content_title" AS "content_title", 
  "bb_instructor"."instructor_role" AS "instructor_role", 
  "dw_unit_record"."mid_term_grade" AS "mid_term_grade", 
  "dw_unit_record"."final_grade" AS "final_grade", 
"dw_unit_record"."instructional_method" AS "instructional_method", 
"dw_unit_record"."county" AS "county", 
"dw_unit_record"."course_campus" AS "course_campus", 
"dw_unit_record"."course_section" AS "course_section", 
"dw_unit_record"."degree" AS "degree", 
"dw_unit_record"."division" AS "division", 
"dw_unit_record"."major_description" AS "major_description", 
"dw_unit_record"."gender" AS "gender", 
"dw_unit_record"."age" AS "age" 
FROM ( 
  SELECT DISTINCT "BB Activity"."user_id" AS "user_id", 
    "BB Activity"."student_id" AS "student_id", 
    "BB Activity"."event_type" AS "event_type", 
    "BB Activity"."internal_handle" AS "internal_handle", 
    "BB Activity"."logtime" AS "logtime", 
    "BB Activity"."course_id" AS "bb_course_id", 
   SUBSTRING("BB Activity"."course_id",1,7) AS "course_id", 
  "BB Activity"."data" AS "content_title" 
  FROM  "public"."bb_activity" "BB Activity"  
  WHERE "BB Activity"."course_id" LIKE <Parameters.COURSEID>+'%' 
  AND "BB Activity"."course_id" LIKE '%'+<Parameters.TERM> 
) "Activity" 
  LEFT JOIN "public"."bb_instructor" "bb_instructor" ON 
(("Activity"."bb_course_id" = "bb_instructor"."course_id") AND ("Activity"."user_id" 
= "bb_instructor"."user_id")) 
  LEFT JOIN "public"."dw_unit_record" "dw_unit_record" ON 
(("Activity"."course_id" = "dw_unit_record"."course_id") AND 
("Activity"."student_id" = "dw_unit_record"."student_id") AND 
("dw_unit_record"."academic_period"= <Parameters.TERM>) AND 
("dw_unit_record"."capture_date"='MAY-13-2016')) 
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Appendix G 

Stage in 
Sensemaking  

Definition  Example  

I. Elaborating the  
Frame  

      

a. Seeking Data  statement of  
application/data 
location   

a. “I'm going to go over to the 
Content Title and look at some 
specific kinds of content and, let's 
see."  

b. Inferring Data  statement indicating 
something that is 
inferred and not 
present  
in the data  

b. “Well yes. It would cause me to 
go look at them to see exactly what 
they are asking to see if that is the 
thing that makes the difference.”  

c. Extending the 
Frame  

statements expanding  
the current 
understanding  

c. “Anything that's graded is easy 
because there's not a grade every 
week, so I know the students who 
are doing the assignments. It's how 
they're preparing for the 
assignments is more of a mystery."  

d. Adding and 
Filling Slots  

statements providing 
a more complete 
picture  

d. “But, since we're counting 
students, I don't expect it to be as 
high as it is. Okay, I get that. We 
got a big group of B students. Okay, 
so we might be seeing here a 
distribution pretty close to the 
overall distribution of the course 
grades?”  

e. Internal 
Knowledge  

statements applying 
prior knowledge 
about Ivy Tech or 
teaching in general.  

e. “The results of the classroom 
versus online, grade comparison, 
are kind of, in this class, would be 
what I would have expected.”  

II. Questioning 
the  
Frame  

   
   

a. Inconsistent 
Data  

statement 
acknowledging that 
the data does not 
match the frame  

a. “So it's, I don't know, I don't 
understand how the instructor can 
just access 76 times the grade book 
when we had at least 15, I don't 
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know how many students, and the, I 
don't know.”   

b. Anomaly 
Detection  

detection of one piece 
of data that does not 
match the frame  

b. “And while we're doing that, I'm 
looking at the pie chart that's 
showing a total of three students.”  

c. Violated 
Expectancies  

statements of when 
something is not as it 
was expected  

c. “Okay, okay.  All right.  So like on 
the Student Profile, it's going to tell 
me if they're male, female, single, 
their age...”  

III. Preserving 
the  
Frame  

      

a. Knowledge 
Shields  

holding onto the 
frame  
in the face of 
contradictory data  

a. “No they have a lot of interaction.  
If you check on the discussion 
board, the interests have like 6000 
or something like that.” 

 
b. Explaining the 
Data Away  

developing 
justifications for why 
the data does not 
match the frame  

b. “Okay, okay.  So then that makes 
-- okay, okay.  So check grade.  Oh, 
let me see.  Well these -- well, it 
doesn't look like there's much 
emailing of students going on.  
That's pretty low.  Tab Information, 
Student, Tasks -- I'm not quite sure 
what the Tasks, what they do here. 
“  

c. Distortions  instead of changing 
frames sticking with a 
flawed frame  

   

d. Fixation Errors  

remaining overly 
focused on the frame 
instead of changing 
frames  

d. “Well, I'm trying to get at the 
reason then that a person would 
want to look at this Student Profile, 
would it be then for me a program 
person to decide whether to offer a 
class on the internet, traditional, 
day, evening.  I mean, is that what 
we're trying to get at with this 
information, I guess?”  
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IV. Comparing 
the Frame        
a. Sharpening 
Distinctions  

collecting data to 
support one frame  

a. “So we are going to move them 
from optional, or mostly optional 
there were a few that were 
required, to be required across the 
board.” 

b. Seeking 
Distinguishing  
Evidence  

collecting data for an 
opposing frame  

b.” So, will I see a sort of shift to 
down toward the lower end of the 
scale?”  

c. Identifying  
Alternative 
Frames  

elaborate on 
alternative frames  

c. “Okay. So we might want to label 
that so that we know for sure what 
we're looking at because my first 
interpretation of that was I was 
looking at clicks. Because I would 
expect that the A students to have a 
huge number of clicks.”  

d. Simultaneous 
Testing  

Looking at the  
characterisitics of two 
or more frames  

d. “Based on that, looking at this it 
allowed me to see whether one 
course design allowed or fostered 
greater student participation and I 
was able to determine that, to a 
degree.  I could not reach statistical 
significance but they got it and I 
don't know if I will but I could tell 
that students were more active, 
overall, in one course from 
another.”  

V.  Seeking A 
Frame  

      

a. Searching for 
Information  

statements of an 
emerging frame. The 
frame formation and 
data search go hand 
and hand at this 
stage.  

a. Because if we're talking -- 
because I'd want to know first 
whether we're talking about a 
course that inherently has some 
problems with it or if it's one of 
those courses where we're just 
trying to tweak things.  
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b. Finding 
Anchors  

statements about 
one or two key data 
elements that forms 
the basis of an 
emerging frame.  

b. Especially in kind of our setting 
because if you were doing those at 
maybe Lafayette, you know, 
probably age wouldn't be that much 
of a factor because everybody, 
most of the people would be 
between 18 and 22 or 23 but here 
at Ivy Tech, you know, I have 
students in their sixties, so.  

c. Building on 
FMMs  

pre-exisiting ideas 
about the reasons 
behind the data.  

c. So what I'm wondering here is, 
will students perform more poorly; 
be more nervous about their grades 
and then clicking more frequently?  

d. Constructing a 
New Frame  

the application of data 
to support an 
alternative idea  

d. So it gives us a nice -- at least in 
a business sense -- it gives us a 
benchmark that students who are 
successful in the class, this is what 
they do.  So then we can bring up 
the behavior of the other students.  

e. Schema  
the application of data 
to solve a problem.  

e."Now those are, in the pie chart, 
we're seeing numbers of students. Is 
that right?"  

VI. Reframing        

a. Establishing 
New Anchors  

statements of 
interpreting data as 
being important 
versus irrelevant.  

a. “Mm-hm.  And if you check the 
amounts, that's -- requiring so I don't 
know how representative can be 
that, but the entry point in the 
announcements has like 5000.” 

b. Recovering 
Discarded Data  

reviewing data that is 
now relevant      

c. Re-Interpreting 
Data  

further refining the 
frame based on 
previously discarded 
data.  

  c. “So using this instructor as an 
example to go backward and see 
what specifically this instructed did, 
especially the good thing in this 
course is that the instructor is the 
one that is making the revisions and 
so there is also a tendency to overdo 
it.  This is what I did and we expect 
everybody to do the same, whether 
or not it was bring the same impact, 
is something to watch and see.”  
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d. Revising Goals  

The overall goals may 
need to be 
reexamined as the 
frame changes  

d. “And actually, I might compare the 
traditional to the -- well, I guess not 
everybody uses the traditional class 
like I do so forget that."   

e. Sensemaking 
Recovery  

When the data 
causes the frame to 
be reexamined and a 
more complete frame 
emerges.  

e. “R: So we can compared the two.  
I'm not seeing it.  They're not doing 
it. 
I: Yes because if C and D students 
weren't doing it, then it won't show 
up in the list.” 
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Appendix H: IDID Walkthrough 

 
 

Course ID is entered here. 

Course Term is entered here. 

Institutional Contextual Support is provided throughout the application. 

Page tabs provide 
an alternative 
navigation path. 

To start the analysis, click here. 
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Course ID displayed for quick awareness of the data. Filters remind viewer of which 
instructional method is displayed 

Static chart of 
all final 
grades is 
displayed for 
quick 
comparison. 

63 students clicked on the Session 5: Learning 
Activities folder a total of 126 times across 11 
sections. Of the students who accessed this item, the 
overall success rate is much higher than the population 
of those who took the course.  
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Filters allow the 
program chair to 
narrow his or 
her search to a 
specific set of 
campuses. 

This particular course is offered 
predominantly in the Internet Only modality. 
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Filters allow a program chair to narrow 
his or her search to a specific set of 
campuses. 

On this screen, the user is taking note of any 
sections that warrant further investigation. In 
particular he or she is looking for sections that 
have an overall higher pass rate an overall 
higher failure or withdraw rate. 
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Filters are provided to 
help the program chair 
narrow his or her search. 

IDID provides an alternative means to 
see the grade distribution by letter 
grade. 
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The filter allows the program chair to 
select a single section and compare the 
instructor’s behavior against the 
average. 

This instructor is accessing the Grade 
Details feature of the grade center almost 5 
times the average instructor. 

This instructor has entered the 
discussion board about two and half 
times the average instructor 
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Filters allow the 
user to compare any 
two grade 
groupings. 

The user can 
compare across 
tools and then 
focus into 
content titles. 

Although the average clicks is very 
similar, the behavior occurred in ten 
sections for A,B,C students and only in 
two sections for D,F,FW students. 
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The user looks for 
patterns in the last log in 
behavior of students who 
have withdrawn or 
otherwise failed. 
Although it is not present 
in this course it can 
identify areas of the 
course calendar which 
could be leading to 
higher withdrawal rates. 
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Filters allow the 
program chair to 
inspect the 
demographic 
characteristics for 
his or her campus. 
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The Curriculum of Record 
website is linked to from 
within IDID to provide 
course level contextual 
support. 
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The Course Outline 
of Record website, 
which outlines all 
course objectives, is 
linked from within 
IDID to provide 
course-level 
contextual support. 
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A Data Dictionary is provided to help explain how IDID 
displays data. 
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This page was included to provide some statistical support for 
the visualizations displayed within IDID 
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