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Christopher John Oldfield 

INTRINSICALLY DISORDERED PROTEINS IN MOLECULAR RECOGNITION AND 

STRUCTURAL PROTEOMICS 

 

Intrinsically disordered proteins (IDPs) are abundant in nature, being more prevalent in 

the proteomes of eukaryotes than those of bacteria or archaea.  As introduced in Chapter I, these 

proteins, or portions of these proteins, lack stable equilibrium structures and instead have 

dynamic conformations that vary over time and population.  Despite the lack of preformed 

structure, IDPs carry out many and varied molecular functions and participate in vital biological 

pathways.  In particular, IDPs play important roles in cellular signaling that is, in part, enabled by 

the ability of IDPs to mediate molecular recognition.  In Chapter II, the role of intrinsic disorder 

in molecular recognition is examined through two example IDPs: p53 and 14-3-3.  The p53 

protein uses intrinsically disordered regions at its N- and C-termini to interact with a large 

number of partners, often using the same residues.  The 14-3-3 protein is a structured domain that 

uses the same binding site to recognize multiple intrinsically disordered partners.  Examination of 

the structural details of these interactions highlights the importance of intrinsic disorder and 

induced fit in molecular recognition.  More generally, many intrinsically disordered regions that 

mediate interactions share similar features that are identifiable from protein sequence.  Chapter 

IV reviews several models of IDP mediated protein-protein interactions that use completely 

different parameterizations.  Each model has its relative strengths in identifying novel interaction 

regions, and all suggest that IDP mediated interactions are common in nature.   In addition to the 

biologic importance of IDPs, they are also practically important in the structural study of proteins.  

The presence of intrinsic disordered regions can inhibit crystallization and solution NMR studies 

of otherwise well-structured proteins.  This problem is compounded in the context of high 

throughput structure determination.  In Chapter III, the effect of IDPs on structure determination 

by X-ray crystallography is examined.  It is found that protein crystals are intolerant of intrinsic 
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disorder by examining existing crystal structures from the PDB.  A retrospective analysis of 

Protein Structure Initiative data indicates that prediction of intrinsic disorder may be useful in the 

prioritization and improvement of targets for structure determination. 

 

Sarath Chandra Janga, Ph.D., Chair 
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I. INTRODUCTION 

Intrinsically disordered proteins (IDPs) 

The classic model of protein function is the sequence-structure-function paradigm; a 

protein's sequence determines the protein's three-dimensional structure (1)⁠, and the protein's 

structure determines the protein's function, via the lock-and-key mechanism (2)⁠.  This view likely 

arose because enzymes were the primary focus of early functional and structural characterizations 

of proteins.  Enzymes were convenient targets for study because their activities could be precisely 

quantified and related to physical characteristics of the enzyme, including protein structure.  

Many elegant studies have related the details of protein structure directly to function, e.g. the 

catalytic activity of α-chymotrypsin (3) and the allosteric mechanism of hemoglobin (4).  

Although contemporary structural biology appreciates the role of dynamics in protein function 

(5), these dynamics are relative to a stable equilibrium, and so the basic principle of sequence-

structure-function has and still remains true for enzymes.  However, not all proteins are enzymes. 

Contrary to the classic model of protein function, intrinsically disordered proteins (IDPs) 

function without the prerequisite of a stable structure (6)⁠.  The conformations of IDPs vary in 

time and over populations (7), and intrinsic disorder is encoded by the sequence of amino acids 

(8), similar to the encoding of specific protein structure in sequence.  The extent of intrinsic 

disorder varies from protein to protein (here, the term IDP is used loosely to refer both to proteins 

that are completely intrinsically disordered and those that consist of a mixture of ordered and 

disordered residues): from completely disordered proteins, to mostly disordered proteins with 

local regions of order, to mostly ordered proteins with local regions of disorder, to completely 

ordered proteins (9). Several authors have investigated the functional repertoire of IDPs (7, 10, 

11) ⁠, where one common functional indication is molecular recognition. 
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Physical characteristics 

IDPs have been experimentally characterized by a variety of methods, each with their 

own strengths and weaknesses.  The high resolution methods, X-ray crystallography and nuclear 

magnetic resonance (NMR), have the capability to characterize each residue of a protein as either 

disordered or ordered.  Other lower resolution methods, such as circular dichroism and small 

angle X-ray diffraction, can characterize the relative content of disordered residues in a protein.  

Although lower resolution methods cannot provide a precise residue-by-residue characterization 

of a protein, they can provide high level characterizations that can help to understand the 

structural state of a protein.  Further, low resolution methods can complement each other, e.g. 

combination of circular dichroism, limited proteolysis, and hydrophobic dye binding in 

characterizing the function of the molten globule clusterin (12), and be complemented by 

computational studies that can provide further insights, e.g. the combination of mass 

spectroscopy-resolved limited proteolysis and intrinsic disorder prediction to identify intrinsically 

disordered regions in XPA (13).  Also, for proteins containing both order and disorder, use of 

both high and low resolution methods in concert can provide an improved overview of the spatial 

relationships between the ordered and disordered regions, e.g. combining NMR with small angle 

X-ray diffraction as used for HMGB1 (14) and 4EBP1 (15). 

In the X-ray crystal structures of many proteins, some residues cannot be modeled due to 

the absence of corresponding electron density.  In fact, the majority of known IDP regions have 

been identified from regions of missing density X-ray crystal structures (16).  While rich in 

quantity, the quality of this characterization, in general, is poor.  Missing density is not positive 

identification of disorder; rather, it only identifies regions that do not share the same lattice 

symmetry with the rest of the protein structure, where disorder is only one of many possible 

reasons for a lack of symmetry (other reasons are discussed in Chapter III).  Some alternative 

methods for the solution of protein crystal structures have been developed that can give positive 

evidence of conformational disorder (17, 18), but these are not commonly used nor universally 
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applicable.  Therefore, missing density should be viewed as correlated with IDP regions and not 

as definitive identification of IDP regions. 

In contrast, several NMR experiments can not only give positive evidence for IDPs and 

IDP regions, they can also provide detailed information about the dynamics of each intrinsically 

disordered residue.  In this regard, the 1H-15N hetero nuclear NOE experiment provides direct 

evidence for intrinsic disorder at the per-residue level (19).  This experiment measures restriction 

of motion of backbone amide groups relative to the entire molecule, where a restrained backbone 

amide is strong evidence that a residue is ordered and an unrestrained backbone amide is strong 

evidence that a residue is disordered.  Furthermore, a disordered region with conformational bias 

can be detected by this method, which is particularly compelling when combined with other 

evidence.  For example, the IDP p27-KIP1 binds to the cyclin-CDK complex using two 

disordered regions separated by a third disordered linker region.  This linker was shown to have 

significant structural bias toward helix through a combination of 1H-15N hetero nuclear NOE and 

chemical shift biases, where the latter gives an indication of secondary structure (20).  Later work 

showed that this conformational bias is vital to the kinetics of the p27-cyclin/CDK interaction 

(21).  While the 1H-15N hetero nuclear NOE experiment is very powerful at characterizing 

dynamics, it is a less common use of protein NMR than the solution of protein structures.   

Solved NMR structures can also be used to identify intrinsically disordered residues in an 

analogous way to X-ray structures.  Since NMR structures are underdetermined – fewer 

constraints are available than degrees of freedom in the protein – it is a common practice to report 

multiple models that fit the available NMR-derived constraints equally well (22).  In these 

multiple structures, under- or un-constrained regions are often apparent through large variation in 

conformation.  These regions have been shown to closely correspond to regions of missing 

density in crystal structures of the same protein (23).  However, identification of disorder through 

conformational variability in NMR models has analogous drawbacks to identification of disorder 

by missing density in X-ray structures; several experimental and procedural complications can 
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give rise to lack of NMR constraints (22).  Therefore, similar to missing density, an under-

constrained region in a NMR structure is not a definitive indication of intrinsic disorder. 

Several experimental methods can be used for a lower resolution characterization of 

intrinsic disorder.  For example, limited proteolysis can identify whether protease cut sites reside 

in structured or unstructured regions.  Proteases hydrolyze sequence specific sites, but the rate at 

which those sites are hydrolyzed is directly related to whether they are ordered or disordered, 

where the rate of hydrolysis of disordered sites is orders of magnitude faster than the rate of 

ordered sites (24).  By resolving the proteolysis reaction over time and identification of 

proteolysis fragment via mass spectrometry, the relative cut rates of each site can be determined 

and thereby the order/disorder state of each cut site (13).  The number of sequence-specific cut 

sites limits the resolution of this method but can be increased by using multiple proteases. 

Another important experiment for the identification of IDPs is circular dichroism (CD).  

This experiment measures the differential absorption of left and right circularly polarized light, 

which is strongly dependent on the local environments of chiral centers in a molecule.  Since each 

residue (excepting glycine) has a chiral center at the α-carbon, the far-UV CD spectrum of a 

protein is highly dependent on conformation of the protein backbone.  Secondary structure types, 

α-helix and β-sheet, give distinct CD spectra, and lack of structure, so called random coil, also 

gives a distinct spectrum.  Many IDPs have been identified by their distinct CD spectra (25).  CD 

is an invaluable tool for initial, high level characterization of IDPs.  However, some types of IDPs 

– molten globules – can exhibit high a high content of secondary structure, so other additional 

methods are required to characterize these proteins. 

Finally, gel filtration and small angle X-ray scattering  (SAXS) are experiments that can 

provide high level characterization of proteins as ordered or disordered.   Gel filtration provides a 

relative measure of a protein's size in solution rather than its mass (26).  Since IDPs are somewhat 

more extended in solution than ordered proteins, a protein's solution size, combined with its 

molecular weight, can be used as positive evidence that a protein is disordered (27).  SAXS also 
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measures the solution dimensions of protein but in much more detail than gel filtration.  In the 

case of ordered proteins, SAXS can be used to obtain a low resolution structure (28), but for 

highly dynamic IDPs, possible conformations are too degenerate and the shape of the 

conformational ensemble can only be described at a qualitative level (29).  However, SAXS is 

very sensitive to residual structure in IDPs (29), and in the case of IDPs that contain partial 

structure or a biased conformational ensemble, a low resolution density map can be determined 

for constrained portions of the IDP (15). 

Many more methods for physical characterization of IDPs have been developed (30, 31), 

including deuterium exchange (32) and spin labeling (33).  All of these methods provide a unique 

perspective on the order-disorder state of a protein, probing different structural and chemical 

characteristics of protein structure.  No single method gives a complete picture of the 

conformational characteristics of IDPs in the same way that an X-ray structure characterizes an 

ordered protein, but through application of multiple methods much can be learned (34).  The 

physical characterization of IDPs is a field that is still evolving, and much of that evolution 

involves combination of both experimental and computational techniques, e.g. the combination of 

NMR and ensemble methods (35), and the combination of limited proteolysis and prediction of 

intrinsic disorder (13). 

Sequence characteristics 

Similar to the way a specific three dimension structure is encoded in the sequence of an 

ordered protein, the sequence also encodes a higher level, namely the ordered or disordered state 

of the protein.  The relationship between intrinsic disorder and protein sequence was first noted in 

the case of nucleic acid associated proteins, which are rich in disorder and carry a relatively high 

net positive charge (36).  Many subsequent studies have found that disordered proteins are also 

generally enriched in hydrophilic residues and depleted in hydrophobic residues, relative to 

structured proteins (37).  In addition to these general biases, disordered regions are highly 

enriched in proline (8), likely because it disrupts regular secondary structure, and depleted in 
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cysteine (8), likely because of its ability to stabilize structure by forming crosslinks.  

Additionally, while it might be presumed that the compositions of IDPs would be very similar to 

the compositions of protein surfaces, there are some notable differences (38).  One difference is 

that surfaces are generally enriched in all charged residues, but, compared to protein surfaces, 

IDPs are significantly less enriched in arginine and aspartic acid.  Another difference is that IDPs 

are significantly depleted in all aromatic residues, but surfaces show little or no depletion of 

tryptophan and tyrosine and even a slight enrichment in histidine.  The chemical and structural 

reasons for these asymmetries are currently not clear but likely relate to the hydrogen bonding 

potential of these three aromatics.  Another notable feature of many disordered proteins is a low 

complexity sequence (8); many disordered proteins use a limited number of amino acids in their 

sequences.  However, low complexity is not a requirement for a sequence to be disordered since 

many IDPs have a comparable complexity to ordered proteins (8). 

The compositional biases of IDPs are an indication that sequence encodes for disorder, 

and additional evidence is provided by prediction of disorder from sequence.  At the level of 

predicting disorder for an entire protein sequence or region, the mean absolute net charge and 

mean hydropathy separate ordered and disordered proteins very well (37), where disordered 

proteins tend to have a larger net charge and a lower hydrophobicity.  The charge-hydropathy 

approach was also applied to per-residue prediction with good results (39), though more 

sophisticated approaches are more accurate.  The first application of machine learning to 

prediction of intrinsic disorder from protein sequence was a neural network trained on several 

sequence attributes calculated on a small local window (40).  A generalized extension of this 

predictor has good accuracy in predicting novel regions of intrinsic disorder (8).  Subsequently, 

many predictors of intrinsic disorder from protein sequence have been developed using a variety 

of architectures (41), and prediction accuracy has reached a high level, as measured by objective 

evaluation (42).  This high level prediction accuracy is due in no small part to the increasing 

number of well characterized IDPs and IDP regions, many of which have been collected into the 
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Database of Protein Disorder (DisProt) (16).  The high level of prediction accuracy not only 

demonstrates the principle that intrinsic disorder is encoded by protein sequence, but provides a 

valuable research tool for the discovery of novel IDPs and investigating the role of IDPs in 

biology. 

Functional characteristics 

Application of disorder predictors to proteomes in all domains of life have helped provide 

insight into the biological roles of IDPs, and a significant amount of experimental data has been 

amassed on the novel and varied mechanisms by which IDPs carry out these roles (43).  

Correlations of functional annotations with disordered predictions (10, 11, 44) consistently 

indicate that intrinsic disorder plays a central role in cellular signaling.  This idea is supported by 

the importance of disorder in the regulation of transcription (45) and some key signaling pathway 

and proteins (46–48).  Also, eukaryotes are rich in intrinsic disorder relative to prokaryotes and 

archaea, which correlates with the increased complexity of signaling in eukaryotes (49).  

Signaling roles are fulfilled by IDPs' ability to mediate and regulate molecular recognition.  

Additionally, many IDPs have entropy-based functions; they have roles that rely directly on 

maintenance of their conformational heterogeneity.  Signaling and entropy-based functions are 

not mutually exclusive, which will be illustrated by an example.  

Many IDPs have been found to mediate interactions with other macromolecules, both 

nucleic acid and protein.  Nucleic acid binding was one of the first functions associated with IDPs 

(36).  Transcription factors (45), histones (50), and ribosomal proteins (51) are all rich in intrinsic 

disorder.  Often the nucleic binding interface itself is disordered, e.g. Myc (52) and HMG-I(Y) 

(53), which is consistent with a high positive charge density to complement the high negative 

charge of nucleic acid backbones.  In others, the nucleic acid binding domain is ordered, but 

disorder plays other important roles in other portions of these proteins (54), such as interactions 

with other proteins.  Many examples of intrinsic disorder mediating interactions with partner 

proteins have been reported (7, 55).  IDPs use fewer residues than ordered proteins to achieve 

7 
 



interfaces of comparable size (56) meaning that IDPs make efficient scaffolds (57) – scaffolds 

organize a large number of proteins to achieve higher level functions (58) and increase signaling 

efficiency (59).  Additionally, the conformational flexibility of IDPs allows them to bind to 

multiple partners with distinct recognition sites (60).  This ability to facilitate multiple specificity 

has been found in many IDPs (61) and is a focus of Chapter II. 

The signaling functions of IDPs are regulated in several ways. Signaling via molecular 

recognition is often regulated via post-translational modifications, and the sites of many types of 

post translational modification are preferentially located in IDP regions (62–64).  Post-

translational modifications provided a direct mechanism for modulating signaling interactions 

mediated by IDPs, where modifications may directly participate in or disrupt an interaction (60), 

or induce or disrupt conformations required for an interaction (65).  Also, mRNA encoding for 

IDP regions are preferential sites of alternative splicing (66), providing another mechanism for 

regulation of IDP proteins.  Finally, other regulation mechanisms, such as protein degradation and 

translation regulation, have also been correlated with IDPs (67), although the mechanistic role of 

IDPs in these modes of regulation is not clear.  The combined roles of IDPs in molecular 

recognition and regulation strongly suggest IDPs as a central feature of cellular signaling. 

In addition to signaling functions, many IDPs perform functions that are quintessentially 

intrinsically disordered.  These are functions that arise from the conformational heterogeneity of 

disordered proteins, which have been called entropy-based functions (7), and span a wide variety 

of mechanisms, which are illustrated here by a few examples.  For example, the Shaker voltage 

gated potassium channel protein consists of a transmembrane channel subunit and an intrinsically 

disordered plug subunit (68).  The duration of activation of the channel is determined by how 

long the plug subunit takes to rebind to the channel domain once it is displaced; the disordered 

plug domain acts as an entropic clock, where the duration of channel opening is related to the 

search space of the plug domain (69).  For another example, the nuclear pore complex contains 

several proteins with long disordered tails consisting of FG repeats (70).  These fill the wide 

8 
 



channel of the pore, which allows a free flow of ions but prevents larger molecules from freely 

passing through due to energy required to restrict the entropic freedom of the disordered tails 

(71).  A final example is the neurofilament H protein that plays a role in maintaining axon 

structure.  This IDP is highly phosphorylated and forms an extended bristle.  Multiple bristles 

arising from multiple subunits form a brush around each neurofilament, preventing the axon from 

collapsing, with electrostatic repulsion enhancing the excluded volume effects of the brushes 

(72).   

Molecular recognition, regulation, and entropic functions are not mutually exclusive, 

which is demonstrated by the example of the Sic1 protein.  Sic1 is an intrinsically disordered 

protein (73) that inhibits cell cycle progression until Sic1 is inactivated by proteolytic degradation 

by the SCF complex (74).  Recognition of Sic1 by SCF is mediated by Cdc4, which recognizes a 

phosphorylated motif.  Sic1 contains 9 suboptimal copies of the Cdc4 recognition motif (73), and 

phosphorylation of multiple suboptimal motif instances is required for high affinity binding of 

Sic1 by Cdc4 (75).  The requirement for multiple phosphorylations is remarkable because Cdc4 

only has a single motif recognition site (75).  Experiment (76) and modeling (77) results have 

indicated that tight binding is achieved through long range electrostatic interactions and transient 

interaction of multiple phosphorylated sites on Sic1 with the single Cdc4 motif binding interface, 

which is enabled by the intrinsic disorder of Sic1.  Sic1 embodies many of the hallmark features 

of intrinsically disordered proteins: regulation by post-translational modification, molecular 

recognition, and function through conformational diversity. 

There are also significant evolutionary implications of intrinsic disorder.  In agreement 

with indications of the role of intrinsic disorder in cellular signaling, intrinsic disorder is over 

represented in eukaryotic organisms, relative to archaea or bacteria (49).  Also, it has been 

suggested that the lack of requirement for order structure implies that IDPs should be more 

tolerant of random mutation due to genetic drift than ordered proteins, and for many IDPs this is 

the case (78, 79).  Furthermore, a specific sequence is not required for function of some IDPs, 
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where the primary functional requirement appears to be amino acid composition (80).  However, 

many other IDPs appear to be more conserved than expected (78, 79), possibly due to functional 

constraints on these proteins.  Indeed, several well characterized domain families have been 

found to contain conserved disordered regions (81) or even to be entirely disordered (82), 

suggesting that intrinsic disorder is positively selected for in evolution. 

Structural characteristics 

Much recent work has focused on describing the conformational characteristics of 

intrinsically disordered proteins at various levels of resolution.  At the coarsest level of resolution, 

the order-disorder continuum has been defined (83).  This formalism quantifies the relative 

conformational diversity of a protein as a single number, which represents the number of 

structures required to represent the protein's conformational diversity, where a value of 1 

indicates a single, stable equilibrium structure, and 0 represents a protein that requires an infinite 

number of structures to describe its diversity, which is not observed in practice.  At finer levels of 

resolution, ensemble modeling methods have been developed (35, 84).  These methods derive a 

set of static structures that in aggregate represent the solution structure of intrinsically disordered 

proteins.  A set of structures, combined with their respective relative populations, can be used to 

model experimental data and predict protein properties.  The finest resolution is provided by 

molecular dynamics simulations, which attempt to simulate the details of the behavior of proteins 

in solution (85).  Disordered proteins are particularly difficult to address with these methods 

because the large scale motions they undergo are on a very large time scale, requiring an 

enormous amount of computational resources to simulate (86).  Rather than direct simulation, 

approximation methods (87) have been very successful sampling the full conformational diversity 

of intrinsically disordered proteins.  

The picture of the solution characteristics of IDPs has been largely determined in broad 

strokes, and is highly dependent on sequence properties and context.  Sequence properties that 

affect solution conformations are primarily hydrophobicity and net charge; where hydrophobic 
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low charge sequences are more collapsed and hydrophilic, highly charged sequences are more 

expanded.  In fact, the hydrodynamic radius of peptides can be modeled directly by these 

properties (88).  The idea of collapsed IDPs composed of hydrophilic, uncharged residues is 

somewhat paradoxical, since one might expect that these residues should prefer to interact with 

water and form expanded structures.  However, recent evidence has shown that water is a poor 

solvent for the protein backbone, which drives these IDPs to collapse (89), and only in the 

presence of significant charge-charge repulsion do sequences form expanded structures (90).  

Even the poly-glutamine sequence forms a collapsed rather than an extended form (89), likely 

from the just mentioned backbone effects and also because the amide groups prefer to hydrogen 

bond with each other rather than with water.  Additionally, charge distribution plays a large part 

in the expansion of IDP sequences, where a highly asymmetrical charge distribution, e.g. acidic 

residues at the N-terminus and basic residues at the C-terminus, will cause a sequence to be less 

expanded than expected (91).  These observations suggest that the solution behavior of IDPs can 

be fine-tuned by nature through coarse compositional changes. 

The context dependence of intrinsic disorder is often functional.  Many examples of IDPs 

undergoing a disorder-to-order transition on binding have been determined, and so intrinsic 

disorder is contextually dependent on the absence of these binding partners.  This contextual 

dependence has inspired some to suggest that disorder is only as relevant to biology as protein 

folding, i.e. the bound state of these proteins is biologically active while the unbound state is not, 

and they prefer the nomenclature “proteins awaiting partners” to “IDPs” (92).  However, this 

view simply ignores the many IDPs with entropic functions.  Additionally, for IDPs that do bind 

to partners this view re-emphasizes the sequence-structure-function paradigm at the expense of 

consideration and understanding of the unbound state.  The practical importance of the unbound 

state of IDPs is demonstrated by the development of small molecule inhibitors that directly target 

the unbound, disordered states of IDPs (93).  Furthermore, maintained intrinsic disorder can play 

an integral role in binding, as in the case of Sic1.  The more interesting question is not necessarily 

11 
 



the structures formed when IDPs bind to partners, but how IDPs recognize partners and the 

functional implications of the disordered state. 

Disorder-to-order transitions (DOTs) 

For IDPs, molecular recognition is often concomitant with folding, where the IDP 

undergoes a DOT (94).  IDPs have been found to bind all types of biological molecules, including 

proteins, nucleic acids, small molecules, and various ions (7).  As a consequence of folding and 

binding, the structures of IDPs with molecular interaction functions in complex with their 

partners can be determined experimentally via X-ray crystallography or NMR spectroscopy.  For 

example, see (94) for examples of IDPs in complex with their partners.  Also, covalent 

modifications, such as phosphorylation or acetylation, can also induce a DOT, a process that is 

thought to be important for signaling and regulation (6, 94).  Finally, intrinsically disordered 

regions can become structured due to crystallization, particularly if they participate in crystal 

contacts (95), which are low affinity contacts that stabilize the crystal lattice.   

Between biologically relevant interactions, covalent modifications, and artificial factors, 

there are several factors that can cause an IDP to appear as well ordered in structure 

determination experiments.  This suggests that, at least potentially, there are a significant number 

of IDPs with structures in the PDB.  This has significant implication for structural biology 

methods that interpret proteins as rigidly structured or moderately flexible, such as homology 

modeling and docking.  This also has implications for bioinformatics, particularly prediction of 

intrinsic disorder from sequence.  Currently, the presence of DOT regions is appreciated in the 

field.  Unfortunately, since no reliable methods are available to identify these regions, this 

appreciation usually translates to exclusion of all ordered proteins that may contain DOT regions, 

namely all complex structures.   

Computational analysis of DOTs 

Several approaches have been used for examining DOT regions in experimentally 

determined protein structures.  In comparative structural analysis methods (96–98), multiple X-

12 
 



ray crystal structures of the same or similar protein are compared.  Since regions of missing 

density in X-ray crystal structures are indicative of an intrinsically disordered region, DOT 

regions are inferred where a region is present in one crystal structure but absent in another. 

Structural attributes have also been used to examine DOT regions (99, 100), where static 

parameters of the protein structure are used to characterize these regions.  Finally, a diverse set of 

sophisticated modeling methods has been brought to bear to investigate protein flexibility and 

intrinsic disorder (101–105).  

Comparative analysis 

Several groups have studied DOT regions in known protein structures by comparative 

structural analysis.  Le Gall et al. (96) mapped protein sequences in PDB to reference sequences 

in the SwissProt database.  DOTs were inferred from regions of defined density and regions of 

missing density that map to the same region of reference sequence structures.  This procedure 

identified a large number of DOT residues, but the prevalence of these residues is difficult to 

assess because of how the data are reported.  In a similar study, Zhang et al. (97) examined 

proteins with multiple structures in PDB and extracted regions that that were disordered in at least 

one structure but ordered in at least one other structure.  These authors found 2,819 DOT regions 

(Zhang et al. call these regions “dual personality fragments”; the difference between this 

interpretation and the DOT interpretation is semantic) in 1,535 identical protein clusters, which 

corresponds to at least one DOT region in 45% of proteins with more than one structure in PDB.  

Zhang et al. demonstrated that DOT regions are fairly common in the PDB, but neither study 

attempted to link DOT regions directly with a causal factor, such as molecular interactions or 

crystal contacts. 

A study by Fong et al. (98) focused on DOT regions in conserved binding modes 

(CBMs).  CBMs are a set of protein domain-domain interfaces that have been filtered for artificial 

or otherwise spurious interactions by selecting only those interactions between domain families 

that have been observed in multiple protein structures (106).  Structures with interactions 
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corresponding to CBMs were evaluated for DOTs by pairing these structures with structures of 

the monomeric form of the protein, an approach similar to that of Zhang et al.  Unfortunately 

Fong et al. do not report the raw results of this analysis and instead report the results of a cautious 

statistical test for the bias of interactions' residues to be DOT residues. Despite this cautious 

approach, they found that 42-75% of interfaces show a significant bias toward DOT residues, 

depending on the dataset.  However, many DOT regions were not accounted for by interactions, 

and many other DOT regions were found that are ordered in the monomeric structure and 

disordered in the complex structure, meaning that only a fraction of the DOT regions have causal 

indications in this study. 

While comparative structural analysis is a useful method for identifying DOT regions in 

protein structures, it suffers from reliance on reference monomers.  The fundamental difficulty is 

that reference monomers are not available for the majority of protein-protein, protein-nucleic 

acid, and protein-small molecule complexes.  This suggests that there may be far more DOT 

regions involved in molecular interactions than comparative analysis suggests.  The availability 

of reference monomers may even be biased against DOT containing proteins, since the presence 

of disorder is likely to be a confounding factor in protein crystallization.  Furthermore, there are 

often many contextual differences between the complex structure and reference structure that 

complicate a direct interpretation of the differences between them.  For instance, since the 

contents of the structures differ, there will nearly always be differences in crystallization 

conditions and crystal packing, both of which can induce DOTs.  Additionally, analysis can 

become quite complex if all the constituents of crystal structure, e.g. additional domains, multiple 

binding partners, and small molecules are considered.  

Structural analysis 

A more direct approach to identifying DOT regions in protein structure is through 

structural analysis.  The underlying hypothesis of this approach is that the structures of DOT 

regions and that of ordered regions differ in some significant respect that is detectable through 
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analysis of the protein's structure.  Two groups have taken this approach to DOTs in protein 

structures. 

Gunasekaran et al. studied the special case of an entire chain in a protein structure 

undergoing a DOT (100).  From the literature, the authors constructed a set of complexes 

involving disordered proteins and complexes involving ordered proteins, and then they examined 

these two sets for structural attributes that distinguish ordered proteins from disordered proteins.  

The authors reported two primary attributes: normalized surface area of the protein, calculated 

disregarding the other constituents of the complex, and normalized interface area, calculated as 

the difference between the protein's surface area with and without other complex constituents.  

Both parameters are normalized by the number of residues in the protein.  They found that the 

disordered proteins in their set were distinguished from the ordered proteins by both a 

significantly greater normalized surface area and a significantly greater normalized interface area.  

Mohan et al. also studied the special case of entire protein chains undergoing a DOT (99).  

However, the focus of this work was Molecular Recognition Features (MoRFs), which are short 

DOT regions within a longer region of disorder that are responsible for molecular recognition.  

Because these are short regions within a longer region of intrinsic disorder, the structures of 

complexes involving MoRFs contain only this short region bound to a partner.  Since there are 

only very few folded domains fewer than 70 residues in length, all proteins with a defined density 

shorter than this length and bound to a longer protein were selected from PDB and manually 

verified as lacking globular structure.  This procedure found 372 DOT proteins.  The DOT 

proteins found by this procedure were also consistent with the observations of Gunasekaran et al., 

with relatively large normalized surface and interface areas. 

Both of these studies demonstrated that structural analysis methods are useful for 

identifying DOTs.  However, both were limited to the case of entire proteins undergoing a DOT.  

For the more general case of DOTs that occur in the context of otherwise ordered proteins, such 

loops, termini, or inter-domain regions, the Mohan et al. method is inapplicable by definition and 
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the Gunasekaran et al. method fails because the normalized surface and interface areas are 

dominated by the ordered portion of the structure.  The latter approach might be extended to 

handle the more general case of DOT regions, which is a topic for further research. 

Model-based analysis 

Several modeling methods have been applied to, or are applicable to, investigation of 

DOTs from protein structure.  These methods are distinct from comparative and structural 

analysis in that they attempt to predict the physical behavior of proteins, to varying degrees of 

accuracy, based on an initial static structure.  From a practical perspective, they are also 

distinguished by being relatively complex to implement and computationally intensive to apply.   

Molecular dynamics has been applied by several groups in the study of IDPs in general 

and also to the study of DOTs specifically.  In general, molecular dynamics involves simulating 

the atomic motions of a protein in explicit or implicit solvent.  Molecular dynamics has 

successfully been used for discovering intrinsically disordered regions from proteins' structures, 

although relatively long simulations must be performed in order to access the large scale motions 

of IDPs (102, 104).  While powerful and informative, molecular dynamics is difficult to apply on 

a wide scale, both because individual simulations require some fine tuning, and because long 

simulations are computationally intensive.  Also, relatively extensive experience is required in 

order to perform a successful simulation, and so these methods are not generally accessible.  As 

an alternative, less precise but more computationally tractable and more accessible methods have 

been developed for the study of protein flexibility and disorder in protein structures. 

The approach of normal mode analysis has been developed for the study of protein 

flexibility (105).  Both Gaussian network models (107) and elastic network models (108) are 

examples of formalisms for normal mode analysis.  Normal mode analysis evaluates the 

characteristic frequency modes of a protein structure based on the force potentials between atoms, 

where Gaussian networks use realistic potentials and elastic networks use simplified spring 

potentials.  This approach has been used to characterize stabilization induced through crystal 
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packing (95).  Although this method has not been applied to the general study of IDP structures, it 

may be applicable in the sense of intrinsic disorder as an extreme case of flexibility.  However, 

the model's assumption of static non-covalent contacts complicates the interpretation of frequency 

modes in terms of intrinsic disorder, i.e. low frequency intrinsic disorder modes may be trapped 

by transient contacts present in the protein structure. 

Another modeling method developed for the study of protein flexibility is analysis of 

mechanical degrees of freedom, as implemented by the ProFlex algorithm (103).  There are many 

degrees of freedom in the conformation of a protein, which can be represented by backbone Φ 

and Ψ angles and side chain χ angles.  In a folded protein, these degrees of freedom are limited by 

the presence of stable non-covalent contacts between atoms.  The ProFlex algorithm measures 

how much each of a protein's conformational degrees of freedom are limited based on the 

protein's structure.  Over-constrained regions are considered stable and under-constrained regions 

are considered flexible.  Similar to Gaussian network analysis, this method may be applicable to 

IDPs as an extreme case of flexibility.  However, mechanical stability measurement does not 

make allowances for dynamic non-covalent contacts, so interpretation for intrinsically disordered 

regions is not straightforward. 

In contrast to Gaussian network and mechanical stability analyses, a method developed 

for the study of protein flexibility, called the COREX algorithm (101), does not assume static 

non-covalent contacts.  COREX is based on a two-state, i.e. folded and unfolded, model of 

thermodynamic stability.  The algorithm enumerates all the possible states of the protein, where 

each region of the protein can either be folded or unfolded, and calculates the energy of each state 

relative to a reference state, in which every residue is in the folded state.  The probability of a 

residue being unfolded is calculated as the sum of the Boltzmann weights of all states in which 

the residue is unfolded, which is the exponent of the state energy divided by the sum of the 

exponents of the energies of all of the states.  
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The COREX algorithm has been applied to several proteins with flexibility measured by 

various techniques, e.g. deuterium exchange (109), and shows good agreement with 

experimentally measured flexibilities.  This method is appropriate for studying IDPs, since 

estimating flexibility as an unfolding process describes the DOT process.  The disadvantages of 

this method are its computationally intensive nature and poor scaling properties.  The COREX 

algorithm calculates the surface area of every protein state, and the number of states increases 

exponentially with protein length.  Practically, the algorithm is computationally demanding for 

small proteins, around 180 residues, and quickly becomes intractable for average and long 

proteins.  

Overview 

Chapter II details published (60) work examining the ways in which disorder facilitates 

the regulatory functions of two protein hubs.  This work shows that intrinsic disorder is crucial 

for function of these hub proteins by enabling multiple specificity protein-protein interactions.  

Chapter III is a published (110) examination of the relationship between intrinsic disorder and the 

determination of protein structures by X-ray crystallography (note that Figure 10 and 

accompanying text did not appear in the original publication).  It was found that extensive 

intrinsic disorder can inhibit determination of a proteins structure and that protein crystals have an 

apparently limited tolerance for intrinsically disordered regions.  Chapter IV is a review of 

Molecular Recognition Features (MoRFs) highlighting some of this authors contributions (56, 61, 

99, 111, 112). 
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II. FLEXIBLE NETS: DISORDER AND INDUCED FIT IN THE ASSOCIATIONS OF P53 

AND 14-3-3 WITH THEIR PARTNERS 

Introduction 

Protein-protein interaction (PPI) networks integrate various biological signals including 

those used for energy generation, cell division and growth to give a few notable examples.  The 

architectures of the PPI networks indicate that they are nearly scale free (113–120).  That is, a 

log-log plot of the number of nodes versus the number of links (or interactions) at each node 

gives a straight line with a negative slope.  The negative slope means that these sets of 

interactions contain a few proteins (hubs) with many links and many proteins (non-hubs) with 

only a few links.  The term ‘hub protein’ is relative to the other proteins in a given PPI network, 

with no agreed upon number of links separating hubs and non-hubs. 

Several networks such as the internet, cellular phone systems, social interactions, author 

citations, and so on exhibit scale-free architecture.  With regard to PPIs, scale-free network 

architecture is suggested to provide several biological advantages.  For example, given the small 

fraction of hub proteins, random deleterious mutations will more likely occur in non-hub proteins.  

The elimination of the functions of such non-hub proteins typically have small effects and so, 

generally, are not serious.  In contrast, a deleterious mutation of a hub protein is more likely to be 

lethal (116–121).  Another advantage is that signals can traverse these networks in a small 

number of steps, so signal transduction efficiency is improved compared to that expected for 

random networks (119). 

Understanding PPI network evolution across different species is an important problem 

(122–125).  From this body of work, hub proteins appear to evolve more slowly than non-hub 

proteins, an observation that is consistent with Fisher's classic proposal that pleiotropy constrains 

evolution (126, 127).  Some proteins have multiple, simultaneous interactions (“party hubs”) 

(128) while others have multiple, sequential interactions (“date hubs”) (128).  Date hubs appear to 
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connect biological modules to each other (129) while party hubs evidently form scaffolds that 

assemble functional modules (128). 

The idea that PPI networks use scale-free network topology is receiving considerable 

attention, but some caution is in order.  Currently constructed networks are noisy, with both false 

positive and false negative interactions (120, 130–132).  Also, network coverage to date (133–

136) is not sufficient to prove scale-free architecture (137).  Whether PPI networks are truly 

scale-free or only approximately so, it nevertheless appears to be true that a relatively small 

number of proteins interact with many partners, either as date hubs or party hubs, while many 

proteins interact with just a few partners. 

The ability of a protein to bind to multiple partners was suggested to involve new 

principles (138).  Indeed, neither the lock-and-key (2) nor the original induced-fit (139) readily 

explains how one protein can bind to multiple partners.  Note that the original induced fit 

mechanism was defined as changes in a structured binding site upon binding to the partner (139), 

changes that are analogous to a glove altering its shape to fit a hand.  On the other hand, both 

theoretical and experimental studies over many years suggested that natively unstructured or 

intrinsically disordered proteins form multi-structure ensembles that present different structures 

for binding to different partners (140–146).  Based on these prior studies, we proposed that 

molecular recognition via DOTs provides a mechanism for hub proteins to specifically recognize 

multiple partners (47).  We pointed out earlier that intrinsic disorder could enable one protein to 

associate with multiple partners (one-to-many signaling) and could also enable multiple partners 

to associate with one protein (many-to-one signaling) (146). 

Recent bioinformatics studies support the importance of protein disorder for hubs (147–

151). While disorder appears to be more clearly associated with date hubs (149, 151) than with 

party hubs, some protein complexes clearly use long regions of disorder as a scaffold for 

assembling an interacting group of proteins (152–160).  Thus, the importance of disorder for 

party hubs needs to be examined further.  Additional evidence for the importance of disorder for 
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highly connected hub proteins comes from a structure-based study of the yeast protein interaction 

network (161).  The authors considered only interactions that could be mediated by domains with 

known structures and found that the degree distribution of the resulting network contained no 

proteins with more than 14 interactions, which is more than an order of magnitude less than is 

observed in one unfiltered, high confidence dataset (Jake Chen, personal communication).  This 

result indicates that a structure-based view of hub proteins is insufficient to explain the multitude 

of partners that interact with hub proteins. 

To improve understanding of the use of disorder for binding diversity, we studied two 

prototypical examples: p53 and 14-3-3.  Both are hubs that are clearly involved in crucial 

biological functions.  For example, p53 is a key player in a large signaling network involving the 

expression of genes carrying out such processes as cell cycle progression, apoptosis induction, 

DNA repair, response to cellular stress, etc. (162).  Loss of p53 function, either directly through 

mutation or indirectly through several other mechanisms, is often accompanied by cancerous 

transformation (163).  Cancers with mutations in p53 occur in colon, lung, esophagus, breast, 

liver, brain, reticuloendothelial tissues, and hemopoietic tissues (163).  The p53 protein induces 

or inhibits over 150 genes, including p21, GADD45, MDM2, IGFBP3, and BAX (164). 

The four regions or (not necessarily structured) domains in p53 are the N-terminal 

transcription activation domain, the central DNA binding domain, the C-terminal tetramerization 

domain, and the C-terminal regulatory domain.  The last two could be considered to be a single 

C-terminal domain with two subregions.  The transactivation region interacts with TFIID, TFIIH, 

Mdm2, RPA, CBP/p300 and CSN5/Jab1 among many other proteins (162).  The C-terminal 

domain interacts with GSK3β, PARP-1, TAF1, TRRAP, hGcn5, TAF, 14-3-3, S100B(ββ), and 

many other proteins (162). 

As for 14-3-3 proteins, they contribute to a wide range of crucial regulatory processes 

including signal transduction, apoptosis, cell cycle progression, DNA replication, and cell 

malignant transformation (165).  These activities involve 14-3-3 interactions with various 
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proteins in a phosphorylation-dependent manner.  More than 200 proteins have been shown to 

interact with members of 14-3-3 family (166–168), with these 14-3-3-interacting proteins 

amounting to approximately 0.6% of the human proteome (168).  One proposed functional model 

is that 14-3-3 binds to the specific target as a molecular anvil causing conformational changes in 

the partner.  In their turn, these changes can affect enzymatic (biological) activity of a target 

protein or mask or reveal specific motifs that regulate its localization, activity, phosphorylation 

state, and/or stability (169). 

The 14-3-3 protein has at least nine sequence isomers, called α, β, γ, δ, ε, η, σ, τ, and ζ 

(170).  All isomers are structured dimers with grooves that bind to more than 200 different 

partners, and the different partners have different sequences for their binding regions.  Screening 

experiments have identified individual peptides that bind to all the different isomers, suggesting 

that the binding grooves in the different isomers have some common features (171).  A recent 

bioinformatics study suggests that the partners of 14-3-3 utilize intrinsic disorder for binding 

(172). 

The interactions of p53 and 14-3-3 with their partners as reported previously (170, 173–

188) are examined herein but from an order-disorder point of view.  In the case of p53, different 

regions in the disordered tails enable this protein to bind to multiple partners at the same time.  In 

addition, one single region of disorder adopts clearly different secondary structures and uses the 

same amino acids to different extents in different binding interactions.  For this case the plasticity 

of the disordered region clearly enables the binding to multiple partners.  In the case of 14-3-3, 

the different partners have distinct sequences.  Their interactions with 14-3-3 show 

characteristics, such as hydrogen bonds between side chains of 14-3-3 and the backbone of the 

partners and such as hydrogen bonds between the backbone of the partners and water, indicating 

that the two partners were very likely unfolded in water just prior to association with 14-3-3.  The 

distinct sequences of the partners do not adopt identical backbone structures, and the various side 

chain interactions between 14-3-3 and the two different partners involve induced-fit adjustments 
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of the 14-3-3 structure.  Overall, these studies show how the plasticity of disordered proteins is 

used to enable the binding diversity of hub proteins, both for a single disordered region binding to 

multiple partners and for multiple disordered regions binding to the same partner. 

Results 

Intrinsic disorder and the molecular interactions of p53 

The p53 molecule interacts with many other proteins in order to carry out its signal 

transduction function.  A number of these are downstream targets, such as transcription factors, 

and others are activators or inhibitors of p53's transactivation function.  Many of these 

interactions have been mapped to regions of the p53 sequence (Figure 1, gray boxes): the N-

terminal domain (i.e., the transactivation domain), the C-terminal domain (i.e., the regulatory 

domain), and the DNA binding domain (DBD).  These domains have also been characterized in 

terms of their structure or lack thereof (Figure 1, red (disordered) and blue (structured) segments), 

where the DNA binding domain is intrinsically structured and the terminal domains are 

intrinsically disordered (189, 190).  While the tetramerization domain is structured (191), the 

structure is acquired upon the formation of the complex.  Additionally, multiple different 

posttranslational modifications have been identified in p53 (Figure 1, vertical ticks).  These 

modifications are relevant here because they are a common method for altering protein 

interactions. 
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Figure 1.  Summary of p53 interactions and structure.  Dark gray boxes indicate the approximate 

binding regions of p53's known binding partners.  The regions of p53 represented in structure 

complexes in PDB are represented by horizontal bars, labeled with the name of the binding 

partner.  For the DBD, the extent of the globular domain is indicated by the light gray box, where 

the internal horizontal bars indicate regions involved in binding to a particular partner.  Post 

translational modifications sites are represented by vertical ticks.  Experimentally characterized 

regions of disorder (red) and order (blue) are indicated by the horizontal bar.  Finally, predictions 

of disorder (scores > 0.5) and order (scores < 0.5) are shown for two PONDR predictors: VLXT 

(solid line) and VSL2P (dashed line).  All features are presented to scale, as indicated by the 

horizontal axis.  The p53 interaction partners and post translational modification sites have been 

adapted from Anderson & Appella (162). 
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Comparing the regions of order and disorder reveals a strong bias towards the 

localization of the interactions within the intrinsically disordered regions.  Overall, 60/84 = 71% 

of the interactions are mediated by intrinsically disordered regions in p53.  A bias toward 

intrinsically disordered regions is even more pronounced in the sites of posttranslational 

modifications, with 86%, 90%, and 100% of observed acetylation, phosphorylation, and protein 

conjugation sites, respectively, found in the disordered regions.  This is consistent with previous 

observation of a strong bias for post translational modifications toward intrinsically disordered 

regions (62).  This concentration of functional elements within intrinsically disordered regions 

compares to just 29% of the residues being disordered (47).  Clearly, p53 exhibits a highly biased 

use of disordered regions for mediating and modulating interactions with other proteins. 

In addition to experimentally characterized disorder, predictions of intrinsic disorder for 

p53 using both PONDR VL-XT (8) and VSL2 predictions (192) were carried out (Figure 1, 

graph).  The latter is one of the highest accuracy prediction algorithms available (193), whereas 

the former has been observed to be especially useful in identifying binding regions within longer 

regions of disorder (111, 194, 195) and to be much better at identifying such sites as compared to 

a number of different disorder predictors (196).  Both predictors give good agreement with the 

experimental determination of intrinsic disorder (7, 13, 44, 45, 62, 197–211), and in the case of 

p53 both of their predictions agree well with experimental characterization. 

Analysis of associations involving p53 using 3D structures 

The structures of 14 complexes between various regions of p53 and unique binding partners have 

been determined (Figure 1, horizontal bars).  For 10 of these partners, the interactions are 

mediated by regions experimentally characterized as intrinsically disordered, where PONDR VL-

XT detects the majority of these binding regions as short predictions of order within a longer 

prediction of disorder.  These structures are complexes between p53 and endogenous partners: 

cyclin A (173), sirtuin (174), CBP (175), S100ββ (176), set9 (177), tGcn5 (178), Rpa70 (179), 

MDM2 (180), Tfb1 (181), and itself (182).  The remaining four interactions are mediated by the 
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structured DBD, namely between p53 and three endogenous partners – DNA (183), 53BP1 (184), 

and 53BP2 (185) – and one exogenous partner – the large-T antigen (LTag) from simian virus 40 

(188). 

Protein complexes can be formed from the association of structured proteins by the 

folding of one disordered protein onto the surface of a structured partner or by the coupled 

folding and binding of intrinsically disordered proteins (100, 212–218).  Nussinov and 

collaborators (100) showed that a plot of normalized monomer area (NMA) versus normalized 

interface area (NIA) nicely separates complexes formed from structured proteins as compared to 

complexes formed from unfolded proteins by coupled binding and folding. That is, associations 

of structured proteins exhibit small NMAs and NIAs and so lie near the origin of the NMA-NIA 

plot.  Conversely, complexes formed by coupled binding and folding have much larger NMAs 

and NIAs and so are spread out and lie far from the origin of the NMA versus NIA plot.  Indeed, 

a linear boundary separates the two groups (100).  It should be emphasized that the NMA-NIA 

plot approach is a global measure of a protein's order-disorder monomeric state and has not been 

characterized on local order-disorder transitions (e.g. disordered binding loops in an otherwise 

well-ordered protein). 

As described in more detail in the implementation, by developing two separate NMA-

NIA plots, one for each partner of a complex (Figure 2A), and then by determining the distance to 

the linear boundary in each plot, a double NMA-NIA plot (Figure 2B) can be produced.  

Interacting pairs can be divided into the three groups given above, namely: (1) both partners are 

structured (region (i) of Figure 2B), i.e. both distances are negative; (2) one partner is structured 

and the second partner is disordered, i.e. the ordered partner has a negative distance and the 

disordered partner has a positive distance (regions (ii+ and ii-) of Figure 2B); and (3) both 

partners are intrinsically disordered, i.e. both distances are positive (region (iii) of Figure 2B).  

26 
 



Figure 2.  Double NMA-NIA plot for p53 complexes.  (A) The definition of boundary distance 

used in the double NMA-NIA plot, where ordered structures have a negative boundary distance 

and disordered structures have a positive boundary distance.  (B) The double NMA-NIA plot for 

the p53 structures shown in Figure 1, with the exception of DNA-bound p53. 
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A double NMA-NIA plot was calculated for 13 of the p53 complex structures (Figure 

2B).  The p53-DNA complex was excluded since the NMA-NIA analysis is not relevant for 

nucleic acids.  In the general case, the distinction between the distances of the two partners is 

arbitrary, so that the double NMA-NIA plot is symmetric about the diagonal.  However, here we 

restrict the p53 distance to one axis, so that group (2) is split into two sub groups (regions (ii+ and 

ii-)): the p53 segment is disordered and the partner is ordered (region (ii-)), and the p53 region is 

ordered and the partner is disordered (region (ii+)).  One interaction, the formation of the p53 

tetramer, is in the third group (region (iii)) and so therefore likely involves an association between 

two disordered partners.  This is consistent with experimental data (189).  At the opposite side of 

the spectrum, the three protein-protein complexes involving the p53 DBD domain are in group 1 

(region (iii)), indicating that all three are ordered prior to binding, which is consistent with the 

solution of structures for identical or homologous monomeric domains (e.g. p53 DBD (219), 

53BP1 BRCT domain (220), 53BP2 SH3 domain (221), and LTag (188)).  The other nine p53 

complexes found so far in the PDB are all in the group 2 quadrant (that is, in region (ii-), and so 

all likely involve a disordered region of p53 associating with a structured partner.  These results 

are likewise consistent with experimental data.  That is, these p53 regions are disordered in the 

unbound state (189, 190), and the isolated partners appear to be structured: MDM2 (222), Rpa70 

(179), Tfb1 (181), tGCN5 (223), Cyclin A/CDK2 (224), sirtuin (225), CBP (226), S100ββ (227), 

and set9 (228)). 

In summary, these data point out the importance of DOTs for many of the structurally 

characterized interactions involving the p53 hub protein.  While many previous studies discuss 

these same interactions, to our knowledge the importance of disorder has not been emphasized in 

those previous studies. 

Analysis of multiple specificities in the p53 C-terminus 

So far, complexes involving one region of the p53 sequence bound to four different 

partners have been determined and deposited in the PDB.  This region is from residue 374 to 388 
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in the p53 sequence bound to one of the following: cyclin A (173), sirtuin (174), CBP (175), or 

S100ββ (176).  The regions that mediate these interactions and their respective secondary 

structures were mapped precisely to the p53 sequence (Figure 3A).  Although slightly different 

residues of the p53 sequence are used in each interaction, there is a very high degree of overlap, 

with a span of 7 core residues being the same (Figure 3A).  Interestingly, the four complexes 

display all three major secondary structure types.  The core span becomes a helix when binding to 

S100ββ, a sheet when binding to sirtuin, and a coil with two distinct backbone trajectories when 

binding to CBP and cyclin A2 (Figure 3A). 
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Figure 3.  Sequence and structure comparison for the four overlapping complexes in the C-

terminus of p53.  (A) Primary, secondary, and quaternary structure of p53 complexes.  (B) The 

ΔASA for rigid association between the components of complexes for each residue in the relevant 

sequence region of p53.  The two hatched bars indicate acetylated lysine residues. 
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Because the secondary structures are distinct, it seems likely that p53 utilizes different 

residues for the interactions with these four different partners.  To examine this, the buried 

surface area for each residue in each interaction was quantified by calculating the ΔASA (Figure 

3B).  Different amino acid interaction profiles are seen for each of the interactions, showing that 

the same residues are used to different extents in the four interfaces.  The particularly large ΔASA 

peaks for K382 in complexes with CBP and sirtiun (indicated by the hatched bar) are due to extra 

buried areas arising from the acetylation of this residue.  This highlights the importance of 

posttranslational modification for altering PPI networks. 

Analysis of multiple specificities of the p53 DBD 

The p53 molecule contains another set of overlapping interactions that contrasts with 

those at the C-terminus.  These interactions are mediated by the DNA binding domain and 

include interactions with DNA (183), the BRCT domain of 53BP1 (184), the SH3 domain of 

53BP2 (185), and the large T-antigen (LTag) of Simian Virus 40 (188).  Here we compare these 

four interactions using the methods described in Figure 4. 

  

31 
 



Figure 4.  p53 DBD interaction with different binding partners.  The interaction profiles (A) and 

rendered structures (B) for the four unique complexes of the p53 DBD.  Rendered structures 

depict p53 as a ribbon and each interaction partner as a molecular surface.  The interaction 

profile-structure pairs are (from top to bottom): p53-DNA, p53-53BP1, p53-53BP2, and p53-

sv40. 
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The structures of the p53-DNA, the p53-53BP1, the p53-53BP2, and the p53-LTag 

complexes are shown (Figure 4B).  While all of the ligands are different, they all bind to basically 

the same region of p53. 

Comparison of the interface profiles of the four complexes (Figure 4A) shows a large 

difference in the pattern of interface residues used by p53.  For instance, there are several residues 

at the N-terminal end of the DBD which are only found in interaction with DNA.  Similarly, 

interface residues near the C-terminal end participate in binding to different extents in three 

interactions but not at all in the p53-53BP1 interaction.  The differing usage of residues in each 

interaction is the most prevalent feature of this data.  However, there are also several residues 

contributing an exceptionally large amount of surface area in each complex (e.g., M243 and 

R248). 

While the focus of this paper is on the roles of disorder in the interactions involving two 

different hub proteins, the DNA binding domain of p53 presents the opportunity to study 

structural changes involving one structured region binding to several different structured partners.  

For this purpose, we compiled a 4-panel set of plots for characterizing the induced fit as one 

protein binds to different partners (Figure 5).  These panels show the average interface area 

(Figure 5A), the standard deviation of the interface area (Figure 5B), the differences in side chain 

conformation (Figure 5C), and differences in backbone conformation (Figure 5D).  Furthermore, 

regions that are highly exposed to solvent are also indicated (Figure 5, blue shading), so that 

structural differences due to interactions can be distinguished from those due from intrinsic 

flexibility – disordered loops – or crystallization artifacts. 
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Figure 5.  Comparison of residue interactions with structural differences for bound p53 DBD.  

The average (A) and standard deviations (B) were calculated over the four interaction profiles of 

the p53 DBD shown in Figure 4.  These are shown aligned with the side chain RMSF (C) and the 

backbone RMSF (D) calculated from the four structures of bound p53 DBD.  Regions of residues 

that are highly exposed to solvent in all complex structures are indicated by the blue-shaded 

regions. 
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These induced-fit profiles exhibit a number of interesting features (Figure 5).  The most 

striking of these is the region from residue 240 to residue 250.  This region shows a large and 

variable interaction interface, which is associated with large side chain and backbone 

conformational differences.  This is true also of a smaller region around residue 120.  Other 

interaction regions show only side chain conformational differences associated with variable 

interface areas.  Other conformational differences observed are limited regions of high solvent 

exposure, which suggests that these changes are due the details of the crystallization conditions 

more than interaction with a particular binding partner. 

Together, these results suggest that multiple partners of p53 are accommodated by 

reusing similar binding interfaces.  This is facilitated by small scale or large scale structural 

differences, which range from differences in side chain conformation to backbone 

rearrangements.  It should be noted that this differs from our finding in a more limited analysis on 

only the p53-53BP1 and -53BP complexes (229). 

Analysis of the multiple specificities of 14-3-3 

Five different 3-D structures of the 14-3-3ζ protein bound to distinct partners were found in PDB.  

These partners include a peptide from the tail of histone H3 (230), serotonin N-acetyltransferase 

(AANAT) (186), a phage display-derived peptide (R18) (187), and motif 1 and 2 peptides (m1 

and m2, respectively) (170).  For AANAT, only the region within the canonical 14-3-3 binding 

site is included in our analysis with the globular region being deleted.  Two additional structures 

were not included because they were either unsuitable for structural analysis or were highly 

redundant with another structure.  All peptides are phosphorylated in their respective structures 

except R18, which contains a glutamate in place of the phosphoserine. 

The five bound peptides' sequences were aligned structurally as described in the methods. 

Likewise, the 14-3-3 domain structures were independently aligned, without considering the 

bound peptides.  Next the 14-3-3 alignment was anchored manually by the observed 

correspondence of the bound peptide Cα atoms at the 0 and -1 positions and by extending the 
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alignment without gaps from the anchor positions, thereby giving the final structural alignment 

(Figure 6A).  In terms of sequence, the R18 sequence has no identical positions to any other 

peptide.  The number of identities between the other peptides range from 1 to 4. 
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Figure 6.  Sequence and structure for five peptides bound to 14-3-3ζ.  (A) Sequence alignment of 

the bound peptides and the RMSF of their conformations.  Solid gray bars give the RMSF for 

four peptides – excluding R18 – and the hatched bars give the RMSF for all five peptides.  (B) 

Aligned ribbon representations of the structures of the five peptides, which were aligned through 

multiple alignment of their respectively bound 14-3-3 domains, shown along with a 

representative ribbon representation of a 14-3-3 domain. 
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There is high overlap in the backbone trajectories of the 5 peptides from position -3 to 1 

but large divergences at either end of the structural alignment (Figure 6A).  This divergence at the 

ends is apparent qualitatively in the superimposed structures of the five peptides (Figure 6B).  

Structural divergence and sequence variability are loosely correlated, where positions with three 

identical residues have a lower divergence than those with no identical residues.  This suggests 

that 14-3-3 may use different binding pocket residues to interact with different peptide residues.  

The R18 sequence, which is divergent from the others, makes a large contribution to the 

estimated RMSF values (indicated by the cross-hatched bars, Figure 6A). 

The factors contributing to the ability of 14-3-3 to bind to distinct peptides were 

estimated by a detailed structural analysis.  The peptide binding residues of 14-3-3 are located 

primarily in a central cleft, made up of four helices (Figure 7A), which has been noted previously 

by several researchers.  The standard deviation of ΔASA for the peptide binding residues (Figure 

7B) show that the residues with the most binding variability are located at either end of the 

central cleft, which is consistent with the variation of peptide backbone trajectories in these 

regions.  Backbone variability in bound 14-3-3 structures (Figure 7C) is restricted to the ends of 

most of the binding cleft helices.  These observations suggest that large a conformational change 

in 14-3-3 is not necessary for multiple specificities, although some small adjustments at the ends 

of binding helices may be necessary. 
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Figure 7.  Peptide binding residues of 14-3-3ζ.  (A) The Cβ atoms of all residues involved in 

binding in any of the five peptide bound structures are shown (red) along with the rest of the 

backbone (light blue ribbon).  (B) The standard deviation in the area bound on complex formation 

is displayed by coloring the Cβ atoms of peptide binding residues on a gradient, from a standard 

deviation of 0Å2 (blue) to 10Å2 and greater (red).  (C) The backbone RMSF of the 14-3-3 domain 

calculated over Cα atoms displayed as a color and radius gradient, from an RMSF of 0Å (blue, 

0.25Å) to an RMSF of 2.0Å and greater (red, 2.0Å).  (D) The side chain RMSF is displayed by 

coloring the Cβ atoms of peptide binding residues on a gradient, from a RMSF of 0Å (blue) to an 

RMSF of 0.50Å and greater (red).  All parameters were calculated using all five of the peptide-

14-3-3 complexes. 
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To assess the role of side chain conformational changes in peptide binding, the RMSF of 

side chain atoms was calculated (Figure 7D).  The side chain RMSF and standard deviation of 

ΔASAs give similar indications for many binding site residues, where residues used 

inconsistently across multiple complexes are the most likely to undergo conformational 

rearrangement.  These are the same residues that are located at the broadest parts of the binding 

site.  However, a few residues deep in the binding grove show both consistent participation in the 

binding interface and variable side chain conformation.  These observations suggest that the 

primary, high level mechanisms of 14-3-3 multiple specificity are a broad binding site that allows 

multiple trajectories (and therefore interaction with different residues) and side chain 

rearrangement to accommodate different peptide sequences. 

To further analyze the conformational changes in 14-3-3 upon binding to its multiple 

partners, we show the 4-panel induced-fit profile described above (Figure 8).  Contrary to the 

results seen for the p53 DBD, 14-3-3 is much more static in its multiple interactions.  All regions 

displaying large conformational differences across bound complexes are also highly exposed to 

solvent and play no direct role in mediating binding to any peptide.  The plots do show several 

small scale structural differences – side chain rearrangements – associated with variable 

participation in peptide binding, particularly in the regions 40-60 and 215-230. 
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Figure 8.  Comparison of residue interactions with structural differences for bound 14-3-3ζ.  The 

average (A) and standard deviations (B) were calculated over the five 14-3-3ζ-peptide interaction 

profiles.  These are shown aligned with the side chain RMSF (C) and the backbone RMSF (D) 

calculated from the five structures of bound 14-3-3ζ.  Regions of residues that are highly exposed 

to solvent in all complex structures are indicated by the blue-shaded regions.  
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14-3-3 binding to two different partners 

To gain further insight into 14-3-3 binding to different partners, we compared a pair of 14-3-3 

binding peptides in detail.  These two peptides, m1 and m2, were derived from two motifs, 

identified through the screening of peptide libraries for sequences that bound to all 14-3-3 

isoforms (171).  These two peptide structures have been compared previously (170), but here we 

reanalyze these structural data from the order-disorder point of view. 

As noted previously (170), the backbone traces of the two peptides are noticeably 

different even though the m1 and m2 peptides bind to essentially the same region of 14-3-3ζ 

(Figure 9A and B, respectively).  Examining the side chain interactions of these peptides with 

specific 14-3-3 residues (Figure 9C and D) shows that there is difference in the location and 

identity of the residues involved, which is consistent with the aggregate findings (Figure 7 and 

Figure 8).  Similarly, distinctive hydrogen bonding patterns are exhibited between the two 

peptides and 14-3-3ζ and between the two peptides and bound water (Figure 9C and D).  Since a 

cardinal feature of a structured protein is internal satisfaction of hydrogen bond donors and 

acceptors, these data are both consistent with the peptides being from unstructured regions of 

protein before binding. 
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Figure 9.  Detailed analysis of 14-3-3ζ peptide binding.  The m1 peptide (A, orange ribbon) and 

m2 peptide (B, red ribbon) bound to 14-3-3 (A and B, shown by the green and blue surface, 

respectively).  Details of 14-3-3 peptide binding are shown by a chemical schematic for the m1 

peptide (C) and the m2 peptide (D), where both crystallographic waters (blue) and implicit waters 

(red) are shown.  (E) Superposition of the backbone atoms from the 4 helices with the primary 

peptide binding residues for m1 (green) and m2 (blue) bound 14-3-3.  (F) Superposition of 

ribbons of the same 4 helices showing the side chains of the residues that participate in m1 

(green) and/or m2 (blue) binding. 
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The above data on the complexes suggest that 14-3-3ζ has distinct conformations when 

bound to the two different peptides.  Overlaying the backbone structures of the four binding 

helices from both complexes – based on a pair-wise alignment of the complete domains – shows 

only minor variability in conformation, with the most occurring at the helix spanning residues 

216 to 228 (Figure 9E).  Finally, comparison of side chain conformation in the two complexes 

shows significant differences in several of 14-3-3ζ side chains (Figure 9F, residues outlined in red 

show significant movement) and several other minor differences.  Overall, these data suggest that 

a difference in the conformations of some side chains with rather less difference in backbone 

conformations is sufficient to accommodate the binding of two different phosphopeptides by the 

14-3-3ζ molecule. 

Discussion 

Use of disordered regions for binding 

The large majority of the binding sites on the p53 sequence map to the disordered regions of this 

protein (Figure 1), indicating that intrinsic disorder commonly provides the binding sites for the 

various partners that associate with p53.  Recent bioinformatics investigations suggest that the 

majority use of disorder for binding to multiple partners is quite likely to be a general result (147–

151). 

The p53 binding sites are often indicated on the order-disorder predictions as dips, in 

other words as short segments with structure tendency flanked by regions of disorder tendency on 

both sides.  Starting from this observation, we previously developed a predictor of such regions, 

which we called molecular recognition features, or MoRFs, because such regions “morph” from 

disorder to order upon binding (111, 194).  Others have used the PONDR VL-XT order/disorder 

plots or MoRF predictors to identify potential binding sites that were subsequently verified by 

laboratory experiments (195, 231).  For some of these predicted examples, the regions did indeed 

form helices upon binding to their partners (232, 233).  By greatly enlarging the training set, we 

recently improved the MoRF predictor.  Interestingly, when tested against several order-disorder 
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predictors including ones from other laboratories, PONDR VL-XT gave the clearest indication of 

binding sites within disordered regions (196). 

Others developed a sequence-based approach to identify short, conserved recognition 

sites, called eukaryotic linear motifs (ELMs) (234–236).  While MoRFs are identified by general 

order/disorder tendencies and while ELMs are identified by motif discovery from sequence 

analysis, the resulting binding sites identified by both methods share several features (237).  The 

use of different residues in the same disordered fragment for one-to-many signaling leads to a 

potential problem with the ELM model.  That is, the concept behind ELMs is that each ELM uses 

a common set of amino acids for binding to different partners.  These common amino acids 

therefore show up as an over-represented pattern leading to a “linear motif”.  What if a region 

used to bind to multiple partners uses different secondary structures and different amino acids?  

In such a case, the residues in the “linear motif” would not necessarily be over-represented.  It 

will be interesting over time to determine whether ELMs having stronger signals use a reduced 

set of structures for their interactions. 

While the observed binding sites in the disordered regions of p53 have a localized 

tendency for ordered structure, not all disorder-associated binding sites exhibit such features.  We 

have found many binding sites that are associated with high disorder prediction values across the 

entire spans of the binding sites, one example of which was recently published (238).  Many of 

these dipless MoRFs form irregular structures upon binding with their partners, and often such 

binding regions are rich in proline.  Our recent study of the complexes that form when various 

disordered segments bind to ordered partners indicates that the disorder-associated binding 

regions have distinct sequence features, even when the bound structure is irregular or sheet 

instead of helix, and so it should be feasible to develop a specific predictor for each of the 

different types of MoRFs (56). 
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One-to-many signaling 

Date hubs bind to different proteins at different times.  Figure 3 shows how a single region of p53 

binds to four different partners.  The amino acids involved in each interaction show a significant 

overlap, and no two of these interactions could exist simultaneously.  Furthermore, the same 

residues adopt helix, sheet, and two different irregular structures when associated with the 

different partners.  Finally, the same amino acids are buried to very different extents in each of 

the molecular associations.  These results show very clearly how one segment of disordered 

protein can bind to multiple partners via the ability to adopt distinct conformations. 

The idea that one segment of protein can adopt different secondary structures depending 

on the context is not new.  Many unrelated proteins have identical subsequences of length six, and 

sometimes even up to length eight, with the same sequences often adopting different secondary 

structures in different contexts (239–241).  Such sequences have been called chameleons for their 

ability to adopt different structures in different environments (240–246).  Chameleon behavior 

could be an important feature that enables one disordered region to bind to multiple partners.  

With different secondary structures and with different side chain participation in the different 

complexes, it is as if one sequence can be “read” in multiple ways by the various binding 

partners. 

Chameleon behavior occurs for short peptides (octamers), for longer protein fragments, 

and even for entire proteins.  For example, the 17 residues-long arginine-rich RNA binding 

domain (residues 65–81) of the Jembrana disease virus (JDV) Tat protein recognizes two 

different transactivating response element (TAR) RNA sites, from human and bovine 

immunodeficiency viruses (HIV and BIV, respectively). The JDV segment adopts different 

conformations in the two RNA contexts and uses different amino acids for recognition (243).  In 

addition to the above conformational differences, the JDV domain requires the cyclin T1 protein 

for high-affinity binding to HIV TAR but not to BIV TAR (243).  Another protein with 

chameleon properties is human α-synuclein, which is implicated in Parkinson's disease and in a 
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number of other neurodegenerative disorders known as synucleinopathies.  This protein may 

remain substantially unfolded, or it may adopt an amyloidogenic partially folded structure, or it 

may fold into α-helical or β-strand species, including both monomeric and oligomeric species.  In 

addition, this protein can form several morphologically different types of aggregates, including 

oligomers (spheres or doughnuts), amorphous aggregates, and amyloid-like fibrils (145). 

Such chameleon sequences likely underlie the multiple specificity binding sites common 

in p53.  For a quick calculation of the implied degree of interface overlap, assume that each 

residue in a region has equal probability to interact with a partner and consider the C-terminus of 

p53.  The disordered C-terminus (~100 residues) associates with at least 44 distinct partners.  The 

average length of a binding site in this region is ~14 residues, which means that on average only 

100/14=7 partners bind at any given residue in the C-terminus.  This simple back-of-the-envelope 

calculation suggests that multiple specificity sequences may be the rule for p53 interactions, 

rather than a curiosity of a single region.  However, available data suggest that interactions do not 

overlap in a random fashion, but rather interactions are localized to specific regions.  For 

example, consider that the majority of the structures available for the C-terminus of p53 involved 

the same region of sequence.  Therefore, the back-of-the-envelope calculation provides an 

approximate minimum degree of overlap, where the actual degree of overlap is likely much 

higher.  This idea, which is an extension of a previous proposal (100), further suggests a general 

mechanism by which hub proteins could bind to such a large multitude of partners, which cannot 

be explained from the viewpoint of interaction between two structured proteins (161). 

Finally, the p53 DBD offers a counter example to the disorder-based view of date hubs.  

That is, it uses the same or similar face of its globular structure to bind to multiple partners.  

While the p53 DBD is a folded protein, it does exhibit some remarkable structural differences 

when bound to different partners.  It seems unlikely that these local regions of the p53 DBD 

structure are well folded in isolation, otherwise the association rate of some or all of these 

complexes would be relatively low.  This idea is supported by the finding that the p53 DBD is 
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only marginally stable at physiological temperature (247).  Therefore, it is plausible that these 

regions of the monomeric DBD are only transiently folded in solution, where crystallization 

conditions cause a shift toward the folded state in monomeric crystal structures.  The double NIA-

NMA plot data (Figure 2B) does not contradict this idea, since it is limited to global analysis and 

this idea only applies to local regions of the DBD.  This idea is conjecture and further 

experimental or simulation evidence is needed to test this idea.  In any event, however, the p53 

DBD demonstrates that even in proteins generally thought to be well folded, structural changes 

can still occur in association with multiple specificity. 

Many-to-one signaling 

In 14-3-3, a common binding groove in a structured dimeric protein can be fitted by multiple, 

distinct sequences provided by many different binding partners.  A recent bioinformatics study 

(172) found that14-3-3 proteins, and the 14-3-3 binding regions in particular, are predicted to be 

highly disordered by multiple disorder prediction methods.  The authors proposed that 14-3-3 

recognition generally involved coupled binding and folding of the recognition region.  Our results 

support this conclusion because the backbone of m1 and m2 peptides are highly hydrated in the 

bound state (Figure 9C and D), indicating that the binding peptide is likely to be unstructured 

prior to binding (62). 

One idea is that 14-3-3 holds its bound partner in a non-active state (172).  Even though 

14-3-3 likely binds to disordered regions in its partners (data herein and (172)), this idea of 

blocking the active structure could still be true.  For example, the productive state of 14-3-3's 

partner might involve the binding of the partner to a second partner via the same disordered 

region that binds to 14-3-3, in which case 14-3-3 binding would prevent the formation of the 

productive complex.  Another possibility is that the disordered region exhibits an equilibrium 

between a bound state that activates the protein and an unbound state that inactivates the protein.  

The association of the unbound disordered region with 14-3-3 would then hold 14-3-3's partner in 

the non-productive state as proposed previously. 
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We previously suggested that disordered segments with different sequences could use 

their flexibility to bind to a common binding site, thereby facilitating many-to-one signaling 

(146).  The multiple recognition of 14-3-3 depends on this mechanism to a considerable degree, 

with the different peptides taking different paths through the binding cleft and interacting with 

binding site residues in distinct ways (Figure 6B). 

In addition, structured proteins also have a degree of flexibility, and so the binding site 

backbone and side chain residues can undergo shifts (induced-fit mechanisms) to help 

accommodate interactions with distinct sequences (Figure 6 and Figure 8).  Thus, induced-fit 

mechanisms are important for structured protein interactions with different partners whether the 

partners are structured or intrinsically disordered. 

The induced-fit mechanisms observed for 14-3-3 and the DNA binding domain of p53 

are commonly observed in other situations.  For example, tethering, in which a peptide is 

covalently linked to its protein target to allow detection of low affinity interactions, often results 

large-scale side chain movements concomitant with peptide binding (248).  Also, when many 

different MoRFs and their binding partners are examined, induced-fit movements in the 

structured partners are very commonly observed (56).  Similarly, small backbone shifts and side 

chain conformational changes are both important for 14-3-3's ability to bind multiple partners. 

For all of these examples, the associations involve coupled binding and folding for the disordered 

peptide partner coupled with a near universal classical induced fit for the structured side of the 

partnership. 

One-to-many signaling vs. many-to-one signaling 

The p53 C-terminus and 14-3-3 use intrinsic disorder differently with regard to enabling 

multiple binding specificities.  In p53, drastic conformational changes enable distinct surfaces to 

be exposed to binding partners.  In 14-3-3, subtle differences in 14-3-3 conformation and peptide 

binding locations enable multiple specificities.  Why would nature use one mechanism rather than 

the other for a particular biological role?  The interactions of p53 serve to activate or inhibit its 
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primary role as a transcription regulator, while 14-3-3 alters the functions or subcellular 

localization of many proteins.  From this, one can make some highly speculative proposals: (1) 

disorder binding regions play a passive role in regulation by providing a specific binding site – 

i.e. the disordered regions are the identification sites of the protein to be regulated (9) – and (2) 

ordered proteins play the active role – i.e. altering the activity of the proteins they bind to – where 

recognition of disordered regions allows for a generalized specificity so that a single protein can 

alter the activity of many others.  Validation of the accuracy and generality of these ideas requires 

further study. 

Conclusion 

Here we have examined the mechanisms of multiple specificities in two date hub-like 

hub proteins.  Evidence here and elsewhere (147–151) suggests that disordered regions may be an 

extremely common mechanism by which hub proteins bind to their multitude of partners.  The 

specific examples of p53 and 14-3-3 contrast the mechanisms by which disorder facilitates 

multiple recognition.  Two regions of p53 are highlighted: the C-terminus, which is intrinsically 

disordered, and the central DNA binding domain, which is structured.  The C-terminus binds four 

different partners with the same residues, forming distinct structures and using distinct residues in 

their respective complexes.  The structural heterogeneity of the bound complexes highlights the 

importance of intrinsic disordered in the unbound state.  The DNA binding domain also binds to 

four different partners, where these complexes use some distinct residues and some common 

residues.  Residues that participate in multiple complexes show small to large scale structural 

rearrangements, which indicate either induced fit and/or structural instability in these regions.  

Both the C-terminal and DBD examples demonstrate how proteins can accommodate multiple 

partners through distinct conformations.  A contrasting example is provided by 14-3-3, which 

binds to multiple partners without large scale conformational changes.  14-3-3 accommodates 

multiple partners with distinct sequences via broad binding surfaces surrounding the common 

charge clamp.  Individual partners take different path over the binding surface with 
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accompanying changes in side chain conformation.  The variably in conformations of bound 

partners highlights how disordered fascilitates multiple recognition of 14-3-3.    

These examples suggest two distinct models of disorder mediated multiple recognition: 

one-to-many, where one disordered region recognizes multiple partners though assuming distinct 

conformations; and many-to-one, where many disordered regions recognize a single binding site 

on a structured partner.   Work subsequent to that presented here has found dozens of more 

examples of one-to-many (61) and many-to-one (Hsu et al., manuscript in preparation) binding in 

PDB.  For one-to-many binding, examples mirror binding observed for p53 C-terminus, where 

the region adopts unique conformations to accommodate different partners.  For many-to-one 

binding, binding sites showed widely varying amounts of overlap on the binding surface, which is 

consistent with the findings for 14-3-3.  This work indicates that these binding models may be 

common in nature.   

A next step in this research is to distinguish single target disordered regions from one-to-

many binding.  Specifically, several methods for predicting disordered regions have been 

developed (see Chapter IV), and could be extended for this purpose.  One possible avenue for 

extension is examination of relative conservation of single target and one-to-many disordered 

binding regions.  The hypothesis is that sequences of one-to-many binding regions will be more 

highly constrained between species than single target binding regions.  That is, residues in one-to-

many regions will be more resistant to mutation due to their participation in multiple interfaces, 

versus single target regions that can undergo correlated mutation with their partners without 

effecting other interactions.  Distinguishing single target and one-to-many regions is useful 

generally to find the relative prevalence of these regions, and also to help determine possible 

functions of novel binding regions. 
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Methods 

PONDRs VL-XT and VSL1 

Predictions of intrinsic disorder in HPV proteins were performed using a set of PONDR 

(Predictor Of Natural Disordered Regions) predictors, VL-XT and VSL2.  PONDR VL-XT 

integrates three feed forward neural networks: the Variously characterized Long, version 1 (VL1) 

predictor from Romero et al. 2001 (8), which predicts non-terminal residues, and the X-ray 

characterized N- and C- terminal predictors (XT) from Li et al. 1999 (249), which predicts 

terminal residues.  Output for the VL1 predictor starts and ends 11 amino acids from the termini.  

The XT predictor's output provides predictions up to 14 amino acids from their respective ends.  

A simple average is taken for the overlapping predictions; and a sliding window of 9 amino acids 

is used to smooth the prediction values along the length of the sequence.  Unsmoothed prediction 

values from the XT predictors are used for the first and last four sequence positions. 

The recently developed Various Short-Long, version 1 (PONDR-VSL1) algorithm is an 

ensemble of logistic regression models that predict per-residue order-disorder (192, 250).  Two 

models predict either long (>30 residues) or short (<15 residues) disordered regions based on 

features similar to those used by VL-XT.  The algorithm calculates a weighted average of these 

predictions, where the weights are determined by a meta-predictor that approximates the 

likelihood of a long disordered region within its 61-residue window.  Predictor inputs include 

PSI-blast profiles (251), and PHD (252), and PSI-pred (253) secondary structure predictions. 

Structure surface and complex interface analysis 

Solvent accessible surface area (ASA) was calculated from atomic protein structure 

numerically using the double cubic lattice method (254) as implemented in the Biochemical 

Algorithms Library (255).  Using this algorithm, ASA of residues and entire chains can be 

calculated. 

To determine interface areas, for example between two chains, the ASA of each 

individual chain is calculated, as well as the ASA of the complex.  The interface area is then 
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calculated as the change in ASA (ΔASA), i.e. the sum of the individual chain ASA minus the 

complex ASA.  Residues directly involved in interactions were identified from molecular 

structures as residues with a ΔASA greater than 1 Å2 (214, 215).  All calculations used a probe 

radius of 1.4 Å, which roughly corresponds to the size of a water molecule. 

Order-disorder evaluation from known structure 

The work of Gunasekaran et al. has previously shown that, in many cases, the order-

disorder state of a protein prior to complex formation is reflected in the complex structure (100). 

Specifically, a plot of the normalized monomer area (NMA) – ASA divided by the number of 

monomer residues – versus the normalized interface area (NIA) – ΔASA divided by the number 

of monomer residues – effectively distinguishes between ordered and disordered monomers using 

a linear boundary.  This effectiveness of this NMA-NIA plot has been validated on an expanded 

dataset and an optimal linear boundary has been estimated and evaluated. The equation for the 

novel boundary is: 

<NMA> = 157.43 – 3.51 <NIA> 

Since the NMA-NIA plot can only represent one partner of a complex, the double NMA-

NIA plot was developed to simultaneously represent both monomers of a binary complex – or 

complexes that can be treated as binary, such as two monomers bound to a dimer.  Rather than 

plotting the NMA and NIA directly, the Euclidean distance to the order-disorder boundary is 

calculated, where disordered monomers have a positive distance and ordered monomers have a 

negative distance.  Then the boundary distances of each monomer in a binary complex can be 

plotted against each other to give an overall order-disorder prediction for the complex.  

Other structure calculations 

The root mean squared fluctuation (RMSF) is a commonly used measure of variability 

across multiple structure alignments.  Here, RMSF of the protein backbone is approximated as the 

RMSF of the Cα atoms.  The equation used is 
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where 𝐶𝛼𝑗,𝑖 is the position vector of the ith Cα atom of the jth complex and 𝐶𝛼𝚤���� is the averaged 

position for the ith amino acid from the multiple sequence alignment of N structures.  The 

program MultiProt (256) was used to generate the multiple sequence alignments for RMSF 

calculation and structure rendering. 

To estimate side chain conformation variability among multiple protein structures, the 

RMSF of side chain residues was calculated.  In this calculation, the residue atoms Cα,Cβ, 

backbone carbonyl carbon, and backbone nitrogen were used to align a residue to a selected 

reference residue of the same type.  Thus aligned, the RMSF was calculated over side chain 

carbons beyond the Cβ.  Consequently, no side chain RMSF was calculated for Glycine or 

Alanine residues.  The RMSF was also corrected for the number of atoms in the side chain 

beyond the Cβ. 

The solvent accessibility of individual residues was calculated relative to an extended 

Gly-X-Gly model peptide (257), which gives a conservative estimate of relative solvent exposure, 

i.e. underestimates relative solvent exposure.  Residues exposed to solvent were defined as those 

with an accessible surface area at least 40% of that of the reference area for that residue type.  

This cutoff is arbitrary, but cutoffs for solvent exposed residues as low as 20% have been used by 

others, e.g. (258).  Solvent exposures were calculated in the context of binary complexes, which 

is valid for p53 complexes.  In 14-3-3 complexes, 14-3-3 forms homotypic dimmers in addition to 

binding to phosphopeptides, so residues found to be highly solvent exposed are either actually 

exposed to solvent or involved in the homodimer interface.   
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III. UTILIZATION OF PROTEIN INTRINSIC DISORDER KNOWLEDGE IN STRUCTURAL 

PROTEOMICS 

Introduction 

Structure determination, historically, has been attempted on a protein-by-protein basis, 

typically after an accumulation of years or decades of study on each particular protein.  

Information regarding solubility, stability, pH range, and temperature sensitivity was therefore 

generally well known.  Consequently, due to lack of suitable samples, structure determination 

was not usually attempted on proteins that were ill behaved in solution.  The Protein Structure 

Initiative (PSI) or Structural Genomics Initiative (SGI) (259–262) has turned the status quo on its 

head by attempting to determine structures without prior knowledge of a protein's behavior and to 

do this rapidly on a large scale.  Despite the obvious success of the PSI Centers in decreasing the 

overall cost of determining novel structures (263), ill-behaved proteins continue to represent 

major challenges that hamper the efficiency of structure determination.  One source of ill-behaved 

proteins is intrinsic protein disorder. 

Prediction techniques and data mining have shown that intrinsically disordered proteins 

(IDPs) and proteins with regions of intrinsic disorder are likely to be quite common (7, 8, 10, 49, 

264–266).  Disordered proteins or regions are defined herein as entire proteins or regions of 

proteins that lack a fixed tertiary structure.  A given region of intrinsic disorder might be ordered 

or disordered, depending on the physiological or experimental conditions.  For instance, a protein 

may undergo a DOT upon binding to a cofactor, DNA, or protein partner.  On the other hand, 

proteins that lose rigid structure in the presence of denaturants are not considered to be disordered 

proteins.  Similarly, proteins that fold into specific 3-D structure only under condition of extreme 

molecular crowding are not considered ordered.  IDPs and intrinsically disordered regions are 

noticeably different from structured globular proteins and their domains at several levels, 

including amino acid composition, sequence complexity, hydrophobicity, charge, and flexibility.  

55 
 



Many of these differences were used in the development of several disorder predictors (reviewed 

(41, 267–271)). 

Disordered protein can impact many of the processes in the structure determination 

pipeline, including expression and stability (272, 273), solubility (201, 274), and crystallization 

(12, 13, 201, 275–277).  Therefore, it is advantageous to filter highly disordered proteins from the 

target list.  Also, many structured proteins contain isolated regions of intrinsic disorder, which 

can inhibit crystallization.  Fragments remaining after removal of disordered regions may 

crystallize when the whole protein did not (201), and so a method for identification of disordered 

regions to allow for intelligent target improvement would be of great utility. 

Here we examine the impact of intrinsic disorder on the various stages of the structure 

determination pipeline and outline several applications of Predictors of Natural Disordered 

Regions (PONDRs) that can improve the efficiency of structure determination efforts.  To 

evaluate the tolerance of intrinsic disorder in protein crystals, missing density in the Protein Data 

Bank (PDB) was evaluated in light of the various sources of missing density in addition to 

intrinsic disorder.  This analysis indicates that extensive disorder in PDB is relatively rare and 

highlights the benefit of filtering crystallization targets for intrinsic disorder.  Several disorder-

based target prioritization criteria are evaluated and retrospectively applied to protein targets in 

the TargetTrack database, the progress tracking module of the PSI Structural Genomics 

Knowledgebase.  This evaluation suggests that disorder prediction provides an effective means 

for prioritizing targets for structure determination pipelines.  Finally, the use of disorder 

prediction for tailoring proteins for structure determination is examined. 

Materials and Methods 

Protein datasets 

For analysis of missing density, protein structures without nucleic acid from the July 

2012 version of PDB (278) were used in conjunction with the S2C database 

(http://dunbrack.fccc.edu/Guoli/s2c/index.php).  The latter provides alignments between residues 
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with defined density and the reported sequence (SEQRES), greatly simplifying identification of 

apparent missing density.  The number of residues and proportion of apparent missing density 

were calculated with respect to the contents of the asymmetric unit.  Several structures were 

excluded from the list of cases of extreme missing density due to idiosyncratic issues with these 

structures: 1EFM because a large portion of defined density was not fit by the author (279), 

1YD7 because no supporting reference was available and neither solvent content nor Mathew's 

coefficient was reported, and 3JQH and 4HB1 because these structures contain chains with exact 

repeats and the asymmetric unit contains less than one copy of the chain in the asymmetric unit.  

Three idealized sets of proteins were assembled for these studies.  The “ordered proteins” set 

consists of the entire sequences of all the X-ray crystallography-determined structures from PDB 

Select 25 proteins (280).  This set contains 929 proteins with 230,205 residues.  The “disordered 

proteins” set consists of proteins compiled from literature searches where the known disordered 

regions comprise ≥ 80% of the entire sequences.  This set contains 48 proteins with 9,219 

residues.  The “X-ray proteins with disorder” set consists of crystallized proteins with disordered 

regions ≥ 30 residues.  This set contains 53 proteins with 17,191 residues. 

We also analyzed all the proteins currently available at the PSI Structural Biology 

Knowledgebase (http://sbkb.org), namely at its target progress tracking module (TargetTrack: 

http://sbkb.org/tt/), which provides status and tracking information on the production protein 

targets and their structure solution (281).  Targets' sequence and status were taken from the XML 

distribution of the database, as of July 2012.  Status tags for each trial were normalized by adding 

tags from previous pipeline steps that were missing.  For targets with multiple trials, the trial 

showing the furthest pipeline progression was selected as representative of the target.  From 

302,311 selected targets deposited by worldwide Contributing Centers in to TargetTrack, 201,825 

were cloned, of which 120,802 were expressed.  Of the expressed proteins, 51,303 were purified, 

of which 8,168 were crystallized, of which 5,125 produced diffraction-quality crystals.  So far, 
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according to the July 2012 TargetTrack, 4,203 crystal and 1,600 NMR structures have been 

solved. 

Intrinsic disorder prediction 

PONDR algorithms predict per-residue, two-state order/disorder from amino acid 

sequence (40, 249, 282).  Although several PONDRs have been developed to date (8, 40, 193, 

249, 250, 282–286), only one of these predictors, VL-XT, is used here.  This choice of this 

predictor was made because PONDR VL-XT is one of the best characterized members of the set 

of PONDR predictors. 

PONDR predictions are real numbers between 0 and 1, where values of 0.5 or more are 

predictions of disorder.  Raw PONDR prediction output is commonly plotted, as distribution of 

disorder scores over the protein sequence.  An alternative representation is to map predictions to a 

bar, where black represents a region predicted to be disordered and white represents a region 

predicted to be ordered.  Predictions can also be quantified per-protein, using measures such as 

percent of residues predicted to be disordered or the longest predicted disordered region.  These 

measures are particularly useful because of the dependency of false positive rates on the length of 

the disorder prediction. 

PONDR VL-XT was constructed from a neural network trained on disordered proteins 

collected from the literature.  The VL-XT predictor integrates three feed-forward neural network 

predictors: the various long predictor version 1.0 (VL1) (284), the N-terminus predictor (XN), 

and the C-terminus predictor (XC) (249), and achieves good accuracy both on held-out training 

set sequences and on out-of-sample sequences (8).  Prediction of VL-XT on O_PDB_S25 (8), 

which is a set of defined density regions from sequence unique structures from PDB, gave an 

accuracy of 80%.  Prediction on the disordered data gave an accuracy of 60%, suggesting that 

VL-XT does not generalize well for prediction of disorder (8). 

PONDR is available on the web at http://www.pondr.com.  The web interface does not 

support batch predictions.  Arrangements for large numbers of predictions can be made by 
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contacting the corresponding authors.  It is important to note that although there are many 

predictors of protein intrinsic disorder (41, 267–271), we anticipate that similar results would be 

found with other predictors. 

Model fitting 

To evaluate combinations of disorder prediction based criteria, logistic regression models 

were fit using proteins that reached a given status in the structure determination pipeline as a 

positive set and remaining proteins as a negative set.  The purpose of fitting these models was not 

to create binary predictors of status progression, but rather to determine an appropriate linear 

combination of parameters.  The statistics package R (http://www.r-project.org/) was used to fit 

models, using the standard generalized linear model function to fit models and the package 

ROCR (287) to calculate the area under the curve (AUC) measure of predictor performance.  The 

AUC was selected to compare models because it emphasizes the separation of the positive and 

negative dataset, where 1.0 is prefect separation and 0.5 is completely interspersed, and is 

independent of any kind of prediction threshold. 

Results and Discussion 

Missing density and intrinsic disorder in the PDB 

To evaluate the tolerance of crystal structures for intrinsic disorder, we examined the -

extent of missing density in existing crystal structures.  Although missing density regions have 

often been equated to intrinsic disorder, apparent missing density in crystal structures may arise 

from several sources, including disordered regions, mobile domains, and proteolysis.  Disordered 

regions may be present in the crystal but fail to diffract X-rays due to heterogeneous or dynamic 

structure.  For multi-domain proteins, mobile domains may be present; a domain may have a 

heterogeneous or dynamic orientation and position in the crystal, resulting in missing density in 

the solved crystal structure.  Although not intrinsically disordered themselves, the mobility of 

domains may be facilitated by intrinsically disordered linkers.  Finally, rational or fortuitous 

proteolysis may occur prior to or during crystallization, but these altered sequences are often not 
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reflected in the PDB record.  While several authors have noted that removal of intrinsically 

disordered regions can facilitate crystallization and diffraction, e.g. Ref. (201), the use of 

proteolysis is not consistently reported and the integrity of crystallized chains not routinely 

verified. 

The most extreme cases of apparent missing density in terms of longest region of missing 

density and largest fraction of residues in missing density regions were collected from PDB 

(Table 1).  All of these structures have over half of their residues in apparent missing density 

regions or at least one apparent missing density region longer than 200 residues.  Much of the 

missing density found was due to the anticipated sources, (likely) proteolysis, (likely) mobile 

domains and intrinsic disorder, but much apparent missing density was due to misannotation.  

Misannotations are less frequent than other sources of missing density and are limited to cases 

where only a portion of a sequence was included in experiments, but a longer sequence was 

reported in the PDB record, e.g. PDB ID: 4ACO.  For the purposes of this study, apparent 

missing density due to misannotations is functionally equivalent to proteolysis.  Discounting 

misannotation and proteolysis, and PDB record limitations, missing density regions attributable to 

residues physically present in protein crystals are limited to about 50% of residues when mobile 

domains (around 40% of residues for confirmed cases of mobile domains) are present and about 

30% of residues for intrinsically disordered regions.   
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Table 1.  Extreme cases of missing density in the PDB.  The most extreme cases of apparent 

missing density in the PDB in terms of the longest missing density region (LMDR) and the 

fraction of residues in missing density regions (FMDR). 

Structure Residues LMDR FMDR 
Reason for extreme  
missing density Reference 

1M1J 2744 273 0.28 Disordered  (288) 
1SCF 1092 122 0.59 Misannotation (289)  
1SRQ 1364 208 0.25 Mobile domain (290)  
2HQX 492 116 0.63 Likely proteolysis  (291)  
2HZ7 851 220 0.35 Mobile domain  (292)  
2IG2 671 217 0.32 Likely mobile domain1  
2J4W 883 378 0.47 Likely mobile domain  (293) 
2J5L 1019 446 0.54 Likely mobile domain  (293) 
2JCH 720 217 0.36 Proteolysis (294, 295) 
2JE5 1440 222 0.36 Proteolysis  (295) 
2JKU 94 36 0.63 Proteolysis  (296) 
2VF4/2VF5 608 242 0.41 Mobile domain  (297) 
2WZL 303 196 0.65 Proteolysis  (298) 
3BJC 878 537 0.65 Misannotation  (299) 
3DUF/3DVA/ 
3DV0 

3632 263 0.22 Misannotation  (300) 

3EVY 478 147 0.65 Proteolysis2  
3FG7 796 277 0.73 Proteolysis  (301) 
3GHG 5768 362 0.33 Proteolysis and Disordered  (302) 
3JZY 510 385 0.76 Proteolysis2  
3KIC/3KIE 14720 216 0.29 Likely disordered1  (303) 
3L7L/3L7M/ 
3L7J/3L7I 

2916 313 0.44 Misannotation  (304) 

3NG9 7360 216 0.29 Likely disordered1  
3ORE 988 220 0.25 Likely mobile domain  (305) 
3R05/3QCW 2048 230 0.23 Likely mobile domain  (306) 
4ACO 956 419 0.53 Misannotation  (307) 
4AQ1 2044 264 0.22 Likely mobile domain  (308) 
1 Classification based in part on disorder prediction 

2 Based on authors note in the PDB record 
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To illustrate the implications of a large amount of intrinsic disorder on a protein crystal, 

the crystal lattice of the protein with the longest disordered region – fibrinogen (Figure 10, upper 

panel) – was rendered and compared to that of a well ordered protein – myoglobin (Figure 10, 

lower panel).  The crystal packing for fibrinogen clearly displays large gaps relative to the tight 

crystal packing of myoglobin.  However, the reported solvent content of each of these structures 

is comparable, 65.3% and 64.4% for fibrinogen and myoglobin, respectively.  This implies that 

the large gaps in the crystal lattice are packed with relatively compact intrinsically disordered 

residues.  One possible explanation for the high tolerance for intrinsic disorder in fibrinogen 

crystals is that the elongated structure of fibrinogen allows for a lattice with more gaps that would 

not be tolerated by packing of a globular protein. 
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Figure 10.  Examples of the crystal packing.  Packing of the unit cells of two different crystal 

structures are shown: fibrinogen (1M1J) and myoglobin (1MDN).  The surfaces of each copy of 

the asymmetric unit are rendered in different colors and truncated by the faces of the unit cell. 
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In addition to extreme cases of missing density in PDB, missing density across crystal 

structures in PDB was evaluated (Figure 11).  To account for the presence of mobile domains, we 

applied disorder prediction to the sequences of all PDB chains and filtered missing density 

regions by the fraction of residues predicted to be disordered.  However, we were unable to 

account for proteolysis or misannotation in this analysis, so these results should be considered an 

upper bound; there is less missing density due to residues physically present in the protein crystal 

than indicated by these results.  The cumulative fraction of missing density regions by length 

(Figure 11A) shows that missing density regions are often short, with between 85% and 95% of 

regions being 20 residues long or shorter depending on the predicted disorder cutoff.  Also, 

missing density regions with a moderate fraction of predicted disorder (0.3) tend to be longer than 

all missing density regions and regions with a larger proportion of predicted disorder, which 

suggests that many of these intermediately disordered regions may include mobile domains.  The 

cumulative fraction of structures by length of its longest missing density region (Figure 11B) 

shows that between 23% and 47% of structures have no missing density residues and that the vast 

majority of structures, between 85% and 95%, contain no missing density regions longer than 20 

residues. 
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Figure 11.  Cumulative histograms of missing density in the PDB.  Cumulative histograms of (A) 

missing density regions by length and (B) structures by length of the longest missing density 

region in any protein chain in the structure. For each, missing density regions were filtered by the 

fraction of residues predicted to be disordered: no filtering (threshold of 0.0), at least partially 

disordered (threshold of 0.3), mostly disordered (threshold of 0.7), and completely disordered 

(threshold of 1.0). 
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The overall picture of missing density in the PDB provided by this analysis is that 

missing density is infrequent in PDB structures, and when present tends to be limited to relatively 

short regions.  When long regions of disorder are present in the crystal (Table 1, structures 1M1J, 

3KIC, and 3NG9) the total proportion of disordered residues in the structure is below 30%.  

Disorder prediction suggests that much of the missing density in PDB does arise from 

intrinsically disordered regions, while some arises from mobile domains and an unknown amount 

from proteolysis and misannotation.  The limited amount of intrinsic disorder present as missing 

density regions agrees with the idea that intrinsically disordered regions, particularly long 

disordered regions, inhibit successful determination of crystal structures, and it suggests that 

avoiding or tailoring disordered proteins may aid in the determination of crystal structures. 

Target prioritization with disorder prediction 

Per-protein assessments of disorder by PONDR can contribute to a target prioritization 

scheme in a straightforward manner.  For example, a cut-off value for a given quantity establishes 

a filter, while weights determined from the given measure provide a means for prioritization.  

Using different scoring schemes, specific cut-off values are suggested below, but it is suggested 

that alternative values be considered for each particular application in order to balance the rates of 

false prediction of disorder with tolerable disorder content.  Likewise, the relative weights 

calculated from the different disorder schemes could be used to prioritize the selected targets with 

the proteins having less predicted disorder receiving the higher ranks. 

The genome-wide measures of predicted disorder will be effective in prioritization, 

provided proper attention is paid to the balance between false prediction of disorder and false 

prediction of order.  As illustrated in Table 2, the rate of false prediction of disorder drops 

drastically with increasing number of contiguous predictions of disorder.  However, there is a 

corresponding increase in false prediction of order.  There is no clear indication of the extent of 

this increase, due to the limited number of proteins in the current disorder protein dataset and 

uncertainty in the boundaries of disordered regions.  Prediction sensitivity will be most directly 

66 
 

zotero://attachment/1393/%23t0005
zotero://attachment/1393/%23t0005
zotero://attachment/1393/%23t0010
zotero://attachment/1393/%23t0010


affected by limiting the minimum size of disordered regions that prediction will detect.  Because 

many procedures in molecular biology, including protein crystallization, can be relatively 

insensitive to small regions of disorder, ignoring contiguous disorder predictions of modest length 

(e.g., less than 40 residues) should not adversely affect the practical use of PONDR predictions.  

The thresholds for any of the weighting schemes presented should be selected, in reference to 

Table 2, so that the overall rate of false prediction of disorder is in balance with the desired 

preference for the sensitivity of the predictions.  Finally, it should be noted that the rate of false 

prediction of disorder may be somewhat overestimated in Table 2.  The O_PDB_S25 contains 

chains from complex structures, which may contain DOT regions involved in binding (7) that are 

correctly predicted to be disordered. 
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Table 2.  PONDR VL-XT error rates as a function of number of consecutive prediction of 

disorder.  Pre-residue error rates are calculated as the number of amino acids in predicted 

disordered region of the given length or longer, divided by the number of residues in the set of 

ordered proteins.  Per-protein error rates are calculated as the number of proteins containing at 

least one predicted disordered region of the indicated length or longer, divided by the number of 

proteins in the set of ordered proteins.  These calculations were made using only residues with 

defined coordinates from the “ordered proteins” set. 

 

Minimum Number of 
Consecutive Predictions of 

Disorder 
Per-Residue 
Error Rate 

Per-Protein 
Error Rate 

1 20% 98% 
10 15% 82% 
20 8% 46% 
30 4% 29% 
40 2% 8% 
50 0.5% 2% 
60 0.1% 0.5% 
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Target prioritization using percent predicted protein disorder 

Shown in Figure 12A are the cumulative histograms for the ordered, disordered, and X-

ray with disorder datasets as a function of the percent of total sequence predicted to be 

disordered.  This measure gives good separation between the sets of structured proteins and 

disordered proteins and could serve to indicate proteins that are mostly disordered.  The weakness 

of this approach is that, while proteins that are highly disordered can be filtered, mostly ordered 

sequences containing enough disorder to hinder high throughput protocols may be overlooked by 

this measure.  However, if longer proteins receive a lower priority, a simple percent of residues 

predicted to be disordered cutoff may be useful without additional criteria. 
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Figure 12.  Cumulative histograms of predicted disorder in the ordered, disordered, and X-ray 

with disorder datasets.  Disorder is summarized for each protein in the set by three different 

methods: (A) the percentage of residues per-protein predicted to be disordered, (B) the longest 

consecutive disorder prediction, and (C) the number of residues within predicted regions of 

disorder of 20 residues or longer.  The dotted and dashed lines in each plot represent aggressive 

and conservative cutoffs, respectively, and are discussed in the text. 
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The percent of proteins with proportions of predicted disorder less than that indicated on 

the X-axis rises much more sharply for the ordered proteins and the X-ray proteins with disorder 

sets than the disordered protein set (see Figure 12A) .  Although such a relationship is expected 

for an order-disorder predictor of reasonable accuracy, the position of the X-ray disorder set is 

particularly important.  A large fraction of proteins in many genomes likely contain relatively 

long regions of disorder (10, 49, 264, 265), and such proteins should be removed from the 

structure determination target list.  However, the presence of relatively short regions of disorder 

does not imply that a protein would not be amenable to structure determination.  Since a high 

proportion of X-ray disorder proteins have relatively low predicted disorder content, a 

prioritization scheme using the percent of residues predicted to be disordered would be useful. 

Two example cut-off values are indicated in the cumulative histograms of Figure 12A.  

The dotted lines in the figure illustrate an aggressive filtering and weighting scheme using 30% or 

less of residues predicted to be disordered as the cutoff.  Based on these example datasets, this 

would eliminate 90% of the disordered proteins while retaining 75% of the ordered proteins and 

55% of the crystallizable proteins having disordered regions.  A more conservative cutoff is 

illustrated with the dashed lines in Figure 12A.  Using this threshold of 60% or less of each 

sequence predicted to be disordered, nearly all of the ordered proteins and the X-ray disordered 

proteins (98% and 96%, respectively) can be retained while eliminating over half (56%) of the 

disordered proteins. 

Target prioritization using total predicted protein disorder 

For larger proteins, a small percentage of predicted disorder could correspond to a large 

amount of total disorder, which could inhibit the structure determination process.  Two alternative 

measures of total predicted disorder are suggested as possibilities to overcome this problem (see 

Figure 12B and C).  Proteins removed from a target list by these two measures could be separated 

into their ordered regions and their disordered regions for further study. 
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The two suggested measures of total predicted disorder are analyzed in Figure 12B and 

C.  The first measure, Figure 12B, considers the longest disorder prediction in each protein, 

where the length is given by the x-axis value.  The second measure, Figure 12C, presents the 

number of residues in predicted regions of disorder of 20 residues or longer in each protein, 

where the number of residues is given by the x-axis value. 

The longest predicted disordered region could be used for prioritization by eliminating 

proteins with predicted disordered regions of 40 residues or longer.  Such an aggressive scheme 

would retain 91% of ordered proteins and 68% of X-ray disorder proteins as targets, and 

eliminate 58% of disordered proteins from consideration, as indicated by the dotted line in Figure 

12B.  A longest predicted disordered region cutoff of 70 residues, represented by the dashed line 

in the same figure, represents a more conservative filtering scheme.  This would retain 99% of 

ordered proteins and 89% of X-ray disordered proteins but eliminate only 29% of completely 

disordered proteins. 

Alternatively, the total number of residues in predicted disordered regions of 20 or longer 

could be used as a prioritization attribute, with a cutoff of 40 residues as indicated by the dashed 

line in Figure 12C.  Approximately 62% of disordered proteins could be filtered while retaining 

78% of ordered proteins and 59% of X-ray disorder proteins.  With a conservative threshold of 80 

residues, 94% of ordered proteins and 76% of X-ray disorder proteins are retained while 44% of 

the disordered proteins would be eliminated. 

Retrospective evaluation of predicted disorder based filtering 

The effectiveness of the proposed methods of disorder-based filtering for crystallization 

targets was examined through a retrospective evaluation.  For this, disorder predictions were 

made and evaluated for all proteins in the TargetTrack database.  Since the use of disorder-based 

filtering in selected proteins would confound retrospective evaluation, we examined the 

TargetTrack database for biases in the content of predicted disorder.  Based on the idea that 

targets were not filtered for disorder in the initial years of the PSI, targets were grouped by the 
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year they were first selected and the values of the filtering criteria were compared.  As can be 

seen by the plot of mean percent predicted disorder by year (Figure 13), targets selected in early 

years of the project have significantly more disorder than those selected in the latter years of the 

project.  Note that the high proportion of predicted disordered in targets selected in 2004 and 

prior relative to those selected in 2007 and later is not reflected in analogous plots for total 

disorder (Figure 14 and Figure 15).  The latter plots show no pattern in the bias of disorder 

content based on the selection year of targets.  These results suggest that disorder prediction has 

been used for target filtering by contributing centers using a criterion similar to percent predicted 

disorder.  Based on this result, targets selected in 2004 or before were taken as a set of unfiltered 

structure targets, and targets selected in 2007 and before were taken as a set of filtered targets. 
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Figure 13.  Predicted disorder in the TargetTrack database by year.  Means of the percentage of 

predicted disorder for targets in the TargetTrack database.  Targets are grouped by the year 

targets were first selected. Error bars give the 95% confidence interval of the mean. 
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Figure 14.  Means of the longest disordered region of targets in the TargetTrack database.  

Targets are grouped by the year targets were first selected.  Error bars give the 95% confidence 

interval of the mean. 
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Figure 15.  Means of the number of residues within predicted regions of disorder of 20 residues or 

longer of targets in the TargetTrack database.  Targets are grouped by the year targets were first 

selected.  Error bars give the 95% confidence interval of the mean. 
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Disorder prediction based filtering was evaluated by CDF plots for unfiltered targets 

using the proportion predicted disorder (Figure 16A), number of residues in disordered regions of 

20 residues or longer (Figure 16B), and longest disordered region (Figure 17) criteria.  These 

plots have one curve for each target status in the crystal structure pipeline, which progresses in 

the following order: selection, cloning, expression, purification, crystallization, diffraction, and 

structure determination.  Each criterion shows a progressive loss of disordered proteins in 

subsequent steps of the structure determination pipeline.  Also, the curves for targets with 

determined structures (black line in Figure 16A, B, and Figure 17) closely follow the curves for 

ordered proteins (empty line in Figure 12A, B, and C), which indicates that ordered proteins are 

an appropriate model for successful structure targets.  Comparison of the curves for selected 

targets with curves for targets with determined structures suggests that disorder based filtering 

provides an effective method for increasing pipeline efficiency; depending on criteria and 

threshold selection, 5% to 20% of selected proteins could be filtered at the suggested thresholds 

while losing relatively few successful structure targets. 
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Figure 16.  Cumulative histograms for targets in the TargetTrack database for (A and C) 

percentage of predicted disorder and (B and D) number of residues within predicted regions of 

disorder of 20 residues or longer.  Plots for two selection date thresholds are shown: (A and B) 

2004 or earlier and (C and D) 2007 or later. 
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Figure 17.  Cumulative histogram for the longest consecutive disorder prediction for targets in the 

TargetTrack database with selection dates in 2004 or earlier. 
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The impact of disorder based filtering was also investigated by examining filtering 

criteria for the set of filtered targets, i.e. those targets selected in 2007 and later.  As expected, the 

plots of proportion of predicted disorder (Figure 16C) show little to distinguish selected targets 

from successful structure targets.  Therefore, little efficiency could be gained from further filters 

based on this criterion.  However, both total disorder criteria, number of residues in LDRs (Figure 

16D) and longest disordered region (Figure 18), show a large difference in predicted disorder 

between selected and successful structure targets, although this difference is somewhat reduced 

compared to unfiltered targets (Figure 16 and Figure 18, respectfully).  This suggests that not 

only is a low proportion of intrinsic disorder important for successful structure determination, but 

also that there is a limit to the absolute number of disordered residues a well-diffracting crystal 

can tolerate.  Therefore, further gains in pipeline efficiency could possibly be gained by the use of 

multiple criteria. 

Combinations of disorder criteria were examined by fitting logistic regression models and 

evaluating these models with the AUC performance measure.  Single parameter models were also 

evaluated for comparison.  These models were fit on proteins selected in 2004 and prior from the 

TargetTrack database, using proteins yielding crystal structures as one class and all other proteins 

as the other class.  The goal in fitting these models was not to develop binary predictors of 

whether or not a protein will yield a crystal structure, but rather to determine an appropriate linear 

combination of parameters.  AUC is used as a measure of separation between the two classes, 

which is appropriate since AUC is independent of threshold and the logistic function transform. 
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Figure 18.  Cumulative histogram for the longest consecutive disorder prediction for targets in the 

TargetTrack database with selection dates in 2007 or later. 
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Comparison of AUCs for combinations of parameters (Table 3) shows that addition of 

parameters improves separation performance.  Combination of all three disorder prediction 

parameters provides the best performance.  However, all three parameters is only marginally 

better than the next best combination, fraction of disordered residues (FDR) and number of 

residues in long disordered regions (NDR), and the latter is examined further.  The cumulative 

histogram of the linear combination of FDR and NDR is shown in Figure 19.  Note that the linear 

combination is 0.0092 NDR–0.72 FDR, where the signs indicate that NDR has a negative impact 

on crystallization but that FDR has a positive impact on crystallization.  The apparent positive 

influence of FDR on pipeline progress, which contradicts the current working hypothesis, was 

investigated further by fitting FDR-NDR logistic regression models for each combination of 

subsequent target status tags (Table 4).  The positive relationship between FDR and structure 

pipeline progression persists except for progression of purified targets, for which both FDR and 

NDR are detrimental. 
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Table 3.  Logistic regression classification performance for combinations of disorder prediction-

based parameters, longest predicted disordered region (LDR), number of residues in predicted 

disordered regions longer than 20 residues, and fraction of residues predicted to be disordered, 

measured by the area under the curve (AUC). 

 

Disorder Parameter 
AUC LDR NDR FDR 

+ - - 0.578 ± 0.020 
- + - 0.584 ± 0.013 
- - + 0.533 ± 0.023 
+ + - 0.583 ± 0.020 
+ - + 0.589 ± 0.017 
- + + 0.595 ± 0.020 
+ + + 0.600 ± 0.020 
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Figure 19.  Cumulative histogram for targets in the TargetTrack database selected in 2004 or 

earlier by the linear combination of percentage of predicted disorder and number of residues 

within predicted regions of disorder of 20 residues or longer (equation given in text).  
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Table 4.  Performance and parameter ranges of logistic regression models from cross validation 

for targets selected in 2004 or earlier.  Positive (negative) parameter values indicate that greater 

(lesser) values inhibit (enhance) progression from the start status to the end status. 

Status Tags 
AUC 

Parameter Range 
Start End FDR NDR 
selected cloned 0.547 [0.595, 0.684] [0.00060, 0.00082] 
selected expressed 0.543 [-0.245, -0.171] [0.00182, 0.00202] 
selected purified 0.597 [-1.180, -1.114] [0.00834, 0.00900] 
selected crystallized 0.573 [-0.319, -0.248] [0.00592, 0.00638] 
selected diffraction 0.583 [-0.513, -0.328] [0.00695, 0.00828] 
selected crystal structure 0.594 [-0.887, -0.627] [0.00843, 0.00954] 
cloned expressed 0.551 [-0.769, -0.622] [0.00167, 0.00203] 
cloned purified 0.599 [-1.508, -1.434] [0.00848, 0.00878] 
cloned crystallized 0.562 [-0.566, -0.312] [0.00514, 0.00648] 
cloned diffraction 0.573 [-0.618, -0.493] [0.00643, 0.00739] 
cloned crystal structure 0.588 [-0.995, -0.766] [0.00826, 0.00915] 
expressed purified 0.595 [-1.231, -1.108] [0.00809, 0.00860] 
expressed crystallized 0.544 [-0.073, 0.219] [0.00403, 0.00459] 
expressed diffraction 0.556 [-0.194, 0.030] [0.00520, 0.00603] 
expressed crystal structure 0.572 [-0.488, -0.291] [0.00642, 0.00752] 
purified crystallized 0.519 [0.673, 1.073] [-0.00174, -0.00078] 
purified diffraction 0.521 [0.663, 0.907] [-0.00029, 0.00022] 
purified crystal structure 0.520 [0.344, 0.502] [0.00112, 0.00210] 
crystallized diffraction 0.531 [-0.333, 0.049] [0.00276, 0.00408] 
crystallized crystal structure 0.565 [-1.113, -0.775] [0.00495, 0.00656] 
diffraction crystal structure 0.559 [-1.949, -0.741] [0.00538, 0.00642] 
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The relationship between predicted disorder and structure pipeline progression suggested 

by these results is 3-fold: (1) NDR generally inhibits pipeline progression, while (2) FDR (in 

conjunction with NDR) benefits pipeline progression from expression through purification but (3) 

FDR (in conjunction with NDR) inhibits pipeline progression from purification through to 

crystallization.  Relationship (2) is somewhat contrary to the current working hypothesis, but can 

be reconciled in the following way.  Successful protein purification is dependent on protein 

solubility, so the current observation is consistent with recent results that show that intrinsic 

disorder can greatly increase protein solubility (309).  Relationships (1) and (3) agree with 

expectation since disorder has been observed to complicate each step in the structure 

determination process, from expression to solubility to crystallization. 

Expression levels can suffer from the reduced stability of intrinsically disordered 

proteins, due to their inherent proteolytic sensitivity; intrinsically disordered proteins are digested 

much faster than ordered proteins (24, 310–313).  Solubility of some proteins with disordered 

regions can be very low under conditions promoting the native state.  For example, the 

aggregation of wild type Bcl-2 was remedied by replacing its disordered region of Bcl-2 with a 

portion of the disordered region of Bcl-xL, reducing aggregation and allowing structure 

determination of the chimera (274).  Crystallization is unlikely for completely disordered proteins 

or proteins with too much intrinsic disorder because of their flexible and very dynamic nature.  

Myelin basic protein (MBP) exemplifies these troublemakers (314).  One exhaustive series of 

attempts to crystallize MBP for X-ray diffraction has been reported, where the authors tried 4,600 

different crystallization conditions but were unable to induce crystallization of MBP (275).  

Based on these observations the myelin basic protein has been suggested to belong to the 

category on “uncrystallizable” proteins.  It can be safely assumed that many other unsuccessful 

crystallization attempts for numerous other proteins have not been reported, since negative results 

are generally assumed to be unsuitable for publication.  In the case of MBP, several additional 

studies suggest that this protein lacks fixed 3D structure, existing instead as in intrinsically 

86 
 



disordered ensemble, which in turn have been suggested to provide the basis for its 

multifunctionality (315). 

Target improvement with disorder prediction 

Many protein structures in PDB are fragments of full-length gene products.  These 

structures often represent independently folding domains and are invaluable for understanding the 

biological functions of these proteins.  Ordered regions need to be identified and isolated, 

preferably without the use of extensive (and costly) experimentation.  This section illustrates 

some ways in which expert analysis of PONDR predictions can provide a starting point for the 

isolation of ordered regions and disordered regions from their larger host proteins. 

Disordered termini detection 

Many proteins contain long regions of disorder at either the amino or carboxyl terminus 

or at both termini.  Removing these terminal disordered regions can often improve protein 

handling and crystallizability.  Crystallization trials for three proteins, NEIL1 (201), RluC, and β-

recombinase, exemplify such a target improvement scheme.  The original crystallization attempts 

for these proteins began with the full-length sequences. 

NEIL1, a human homolog of Escherichia coli DNA glycosylase endonuclease VIII, 

represents an illustration of the non-trivial correlation between disorder, solubility, and 

crystallizability.  Crystallization trials for full-length C-terminally His-tagged NEIL1 failed to 

yield any crystals.  This inability to grow crystals was corroborated by the fact that the protein 

was polydisperse based on the dynamic light-scattering analysis, and this polydisperse feature 

persisted regardless of the temperature or buffer conditions used (201).  To overcome this 

obstacle, PONDR VL-XT was used to detect disordered region(s) in NEIL1 that may hinder 

crystallization.  This analysis predicted that the protein has a disordered C-terminal region (201).  

Based on this observation, a construct missing the entire disordered C-terminal region (last 106 

amino acids) in NEIL1 was designed.  Little or no soluble protein expression was observed with 

this construct.  A series of shorter C-terminal deletion constructs were cloned and checked for 
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expression.  These studies showed that deletions of > 100 amino acids did not yield any protein 

expression.  Therefore, a NEIL1 construct missing the C-terminal 100 amino acids 

(NEIL1CΔ100) was tested in crystallization studies.  This active construct was successfully 

overexpressed in E. coli, purified and crystallized (201).  Thus, this example clearly illustrates the 

potential utility of disorder prediction to increase chances for successful protein crystallization. 

Crystals were obtained for RluC after a 6-week crystallization period and the protein in 

the crystal was found to lack 88 residues from the amino terminus.  Further analysis showed that 

trace protease activity was likely responsible for the hydrolysis of the backbone.  Further 

crystallization trials using truncated RluC succeeded in 2–3 days (316).  PONDR predicts the 

removed region to be highly disordered, with a disorder–order boundary within 2 residues of the 

observed cleavage site.  Figure 20 shows this truncation from two perspectives: Figure 20A is a 

plot of the PONDR prediction with the removed region indicated and Figure 20B gives the order–

disorder prediction in the form of a bar with the crystallized region as indicated.  This bar-type 

representation is indicated here for later use. 
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Figure 20.  PONDR VL-XT predictions on the protein RluC.  PONDR VL-XT prediction output 

values plotted versus residue number, where the order-disorder threshold is indicated by the thin 

horizontal line at a score of 0.5 (A).  The region of this protein that was removed by proteolysis 

during crystallization trials is indicated by the thick gray bar.  In an alternative representation, 

PONDR VL-XT output scores are indicated in the upper bar of (B) in binary form where black 

bars (score ≥ 0.5) indicate disorder and white bars (score < 0.5) indicate order, with the sequence 

location indicated by the distance from the left end of the bar.  The region of the protein that was 

crystallized is shown by the lower bar of (B), coded white to indicate the region is ordered. 
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Crystallization of full-length β-recombinase required 6 months to produce small crystals.  

Analysis of the protein in the crystal revealed that 82 residues at the carboxyl terminal had been 

cleaved (317).  The removed region is predicted to be highly disordered by PONDR, with an 

order-disorder boundary within 10 residues of the cleavage site (data not shown). 

The removed regions of RluC and β-recombinase have not been convincingly 

characterized as completely disordered.  However, the extreme protease sensitivity of disordered 

regions suggests that these two proteins contain disorder, at least in the regions surrounding their 

cleavage sites.  Both of the cleaved loci are predicted to be disordered by PONDR VL-XT.  

Although neither of the termini of either protein is predicted to be completely disordered, removal 

of the bulk of the predicted disorder led to crystallization of both proteins. 

In practice, the fraction of residues predicted to be disordered at each terminus should be 

considered, not just long predictions of disordered at the termini.  If the terminal disorder 

represents a large portion of the predicted disorder in a protein, it is likely that removing such a 

region will improve a protein's crystallizability. 

Detection of ordered fragments 

Disorder prediction can be useful to identify the specific regions of proteins that may 

form rigid structures.  Figure 21 provides examples showing the relationship between PONDR 

predictions (upper bar) and the locations of structured fragments (lower bar) for a representative 

set of proteins. 
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Figure 21.  Comparison of PONDR predictions and protein fragments having 3-D structure.  

Proteins were chosen as representative of accurate and inaccurate PONDR VL-XT predictions.  

The PONDR VL-XT prediction for each protein is represented by the upper bar, where black 

disorder and white indicates order.  The lower bars represent determined structures with PDB 

accessions as labeled, where white indicates defined coordinates and black represents missing 

coordinates or divergent NMR structures.  Some examples are for proteins in isolation (1COK, 

1TSR, 1NRC, 2U1A, 1IMX, 1HCP, 1F3M A/B, 1F3M C/D, 1F7W), other structures are for long 

protein fragments in complexes with other proteins (mdm2 in 1YCR, 1I4E, 1QBQ) or nucleic 

acid (1JK1, 2RAM), some are for homooligomers (1TGK, 1G50, 1FBU, 1ICE), and some are for 

short protein fragments in complexes with other proteins (1FOS, p53 in 1YCR, 3SAK, 1DT7). 
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The predictions are obviously not perfect.  Short regions of predicted disorder are 

contained within ordered regions, and the fragment boundaries are often over- or under-predicted.  

Such inaccuracies can be partially attributed to disordered regions that are misclassified as 

ordered regions, as exemplified the c-fos and c-jun entries. 

Many ordered protein regions in PDB are involved in protein-protein or protein-nucleic 

acid complexes, yet these same regions are disordered in the absence of their partners.  By our 

definition, such regions should be classified as disordered, but such regions are typically 

misclassified as ordered in current data sets.  This adds noise to the data, which contributes to the 

observed error rates.  For example, DNA binding regions of proteins are often predicted to be 

disordered (264).  For some of these proteins experimental evidence has shown that such regions 

are disordered in the absence of DNA.  An example of this type is the c-fos/c-max leucine zipper 

DNA binding region.  Leucine zippers have been shown to be disordered in isolation from their 

zipper partner (318); therefore these regions of c-fos and c-jun are classified as disordered.  The 

1FOS crystal structure contains the leucine zipper dimerization regions of c-fos and c-jun, which 

are complexed to DNA.  The portions of these helices that make contact with the DNA are 

isolated from any other protein contacts, which suggest that these regions would be highly 

unstable in the absence of DNA, and indeed, these regions were predicted to be disordered.  

Similar behavior was also found for the c-Myc/Max leucine zipper DNA binding region.  

Furthermore, although c-Myc and Max were characterized by the well-defined, ordered structure 

in their tertiary complex with DNA (1NKP), the detailed structural characterization of unbound 

Max and c-Myc revealed that both proteins were highly disordered in their free forms and 

underwent mutual coupled binding and folding when their zipper domains interacted to form a 

helical coiled coil (Figure 22) (93, 319).  These examples show that comprehensive study of 

disorder predictions for regions involved in protein-ligand interactions may provide useful 

information for future attempts at identifying partners of intrinsically disordered protein regions. 
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Figure 22.  Intrinsic disorder-based interaction between c-Myc, Max and DNA. Both c-Myc and 

Max are intrinsically disordered in their unbound states (left side), but fold into coiled-coil dimer 

upon interaction with DNA (right side) (PDB ID: 1NKP).  c-Myc, Max, and DNA are shown as 

red ribbon, pink ribbon, and blue surface, respectively).  
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These results point to the importance of specific investigations of order–disorder 

boundaries to determine whether their prediction can be improved.  However, even without 

further refinement, disorder prediction can at least provide a useful starting point for structure 

studies by indicating possible locations of the ordered regions of proteins. 

Inclusion of binding partners 

While this paper has focused on the inhibition of protein structure determination by 

excessive amounts of intrinsic disorder, there are counter examples that do not fit this general 

trend, including structured proteins that do not form suitable crystals and disorder-containing 

proteins that do form suitable crystals.  Both of these features are discussed below in terms of a 

specific example. 

When a protein fails to crystallize or gives poor quality crystals, a common approach is to 

attempt to crystallize a homologue, often leading to a successful end result.  An interesting 

example is provided by attempts to determine the structure of protein phosphatase 1 (PP1) 

complexed with inhibitor 2 (I2).  When rabbit muscle PP1 was complexed with the rabbit I2 

protein, crystals that diffracted to ~ 4 Å were obtained (Tom Hurley, personal communication).  

However, when experiments were carried out using rat PP1 complexed with mouse I2, crystals 

were also obtained, but these diffracted to 2.5 Å, which was sufficient for 3D structure 

determination (320). 

The PP1:I2 complex also illustrates that proteins with substantial amounts of disorder can 

sometimes form crystals of sufficient quality for structure determination.  When not bound to PPI, 

the I2 protein is unstructured (320, 321).  Upon complex formation with PP1, three separate 

segments of I2 become structured, giving a total of 59 structured residues but with 154 residues 

that remain unobserved in the complex.  An NMR study of PP1 complexed with a large I2 

fragment, from residue 9 to 169, shows that 100 residues corresponding to two unobserved 

segments in the crystal indeed remain as a random coil in the complex.  Furthermore, large holes 

of sufficient size to accommodate models constructed for the IDP ensemble are observed for the 
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PP1:I2 crystal lattice (322).  This crystal structure is similar to those presented in Table 1, where 

a large disordered region can be accommodated by the crystal lattice if a sufficient number of 

ordered residues are present to support the lattice. 

Integration of disorder prediction with high throughput structure determination 

One use of PONDR in structural genomics would be to divide the target list into two 

separate pipelines: a structure pipeline, for whole proteins or protein domains for which standard 

structure determination would be appropriate (i.e., for highly ordered protein); and a disorder 

pipeline, for proteins or protein domains for which other methods of study would be appropriate 

(i.e., for highly disordered proteins).  Although a structure pipeline represents the current 

Structure Genomics methodologies, a disorder pipeline has not been implemented as of yet. 

The underlying rational for the PSI is that protein function can be inferred through 

knowledge of protein structure (259, 260).  Disordered proteins, however, are not encompassed 

by this view of protein function, including traditional ideas regarding protein flexibility, e.g. 

allostery and induced fit.  While much information can be gathered from disordered proteins 

through biophysical and biochemical methods, new models are required to translate this 

information into functional mechanisms.  The first step in the development of these new models 

is the accumulation of biophysical parameters from a broad range of disordered proteins.  

Through a centralized dataset of such information (e.g., DisProt database (16) or similar 

resources), generalities may emerge that will enable functional inferences, as is now possible with 

ordered proteins.  The lack of this accumulated information on disordered protein is a major block 

to understanding the mechanisms of disordered protein function. 

Disordered proteins can be analyzed by traditional biophysical methods including circular 

dichroism, infrared spectroscopy, fluorescence, various hydrodynamic studies, small-angle X-ray 

or neutron scattering, etc.  Studies using these methods provide a picture of the average 

conformational range of proteins (i.e., such methods when used in combination differentiate 

extended and collapsed disorder) (30, 31, 34, 313, 323).  Mapping protein disorder by the means 
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of limited proteolysis resolved through both SDS–PAGE and mass spectroscopy, which were 

successfully used to map disordered regions in XPA (13) and clusterin (12), would also be a 

generally applicable methodology.  These mapping studies localize disordered regions in terms of 

protein primary structure and can indicate the presence of structured domains, as in XPA (13), or 

indicate the presence of regions of secondary structure, as in clusterin (12).  A more complete 

picture of the conformational dynamics of disordered proteins could be obtained through the use 

of small molecule probes and cross-linkers that would indicate the time averaged spatial 

relationships of individual residues, although these techniques have yet to be explored in this 

context. 

A survey of disorder–function relationships for more than 90 proteins with 

experimentally determined regions of disorder of length ≥ 30 residues ascribed more than 25 

separate functions to the regions of disorder, with these functions falling into four broad 

categories: (i) molecular recognition, (ii) molecular assembly, (iii) protein modification, and (iv) 

entropic chains (7).  The molecular recognition category is especially interesting.  Molecular 

recognition by ordered proteins typically involves catalysis that can be described by the lock-and-

key paradigm, whereas molecular recognition by disordered proteins typically involves signaling 

with a DOT playing a key role.  Given that disordered regions have been implicated as the 

primary interaction regions in signaling events (9, 44, 47, 94, 264, 324, 325), these regions of 

proteins are prime candidates for use in proteomic binding assays.  Using protein chip technology 

(326), display of intrinsically disordered protein segments for screening against a host of gene 

products could prove to be advantageous in elucidating the web that underlies cell signaling.  

Thus, armed with biophysical and functional evidence, large advances in the understanding of 

disordered protein function could be made. 

Disorder prediction can be used to differentiate proteins that are likely to crystallize from 

proteins that are unlikely to crystallize or that are almost certain to not crystallize.  Proteins 

predicted to contain both ordered and disordered regions can be studied in both pipelines, using 

96 
 



disorder prediction as a starting point for any modification necessary to facilitate analyses (e.g., 

removal of disorder from structured domains and isolation of disordered regions).  Disorder 

prediction would also provide the basis for helping to identify structured and unstructured 

domains within multidomain proteins; such identified domains could then be recovered by 

genetic engineering and sent to their respective pipelines. 

The structure pipeline and disorder pipeline would collect ordered structure information 

and disorder structural information in complementary databases that would allow for concurrent 

study of some proteins in both contexts for the greatest possible efficiency and expediency.  

Regardless of whether an approach such as this is used, disorder prediction could aid selection 

and improvement of protein targets for the structure-determination pipeline through the filtering 

of disordered protein targets and isolation of ordered domains. 

Conclusion 

The impact of intrinsic disorder on the structure determination pipeline was studied 

retrospectively by examining missing density in the crystal structures and target progression in 

structural genomics relative to predicted intrinsic disorder.  Intrinsic disorder is tolerated to some 

extent in crystal structures, although extensive regions of intrinsic disorder are infrequent and are 

likely to require a sufficient relative proportion of ordered residues to support the crystal lattice.  

In fact, as shown in Table 1 and the associated references, large regions of apparently missing 

electron density in X-ray-determined protein structures in the PDB can arise from true intrinsic 

disorder, from mobile domains, from misannotation, or from unreported proteolysis, with 

intrinsic disorder accounting for about 30% of the mass of the protein in crystals containing the 

largest amounts of disorder.  Given the high solvent content (~ 50%) of typical protein crystals 

(Tom Hurley, personal communication), the capacity of protein crystals to accommodate such 

large amounts of disorder is not surprising.  This accommodation of disorder and the inaccuracy 

of disorder prediction (Table 2) combine to limit the ease of use of disorder prediction for 

filtering structural proteomic target lists.  
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Despite these limitations, the use of intrinsic disorder prediction for filtering targets is a 

viable method to improve the proportion of ordered targets in the structure determination 

pipeline.  Retrospective application of these methods additionally demonstrates that the effect of 

intrinsic disorder on structure determination is not only detrimental; increased success in 

purification is correlated with a higher proportion of predicted disordered residues, which agrees 

with recent observations (309).  For structure determination of individual proteins, prediction of 

intrinsic disorder can be an effective tool for tailoring proteins for structure determination.  

Though not developed to the extent to which automated analysis would be possible, consideration 

of prediction results on a protein-by-protein basis is certainly feasible.  For the time being, these 

methods will likely prove useful in a supplemental capacity.  That is, when difficult proteins are 

encountered, their PONDR predictions can be consulted to determine if they suggest an ordered 

region that might crystallize or a disordered terminus that could be easily removed.  In this way, 

PONDR predictions could be used to salvage regions of proteins for the structure pipeline and 

provide input for disorder analysis.  Finally, while this work focuses on the use of disorder 

prediction to facilitate structure determination, complementary approaches can be used to study 

those proteins and regions that fall outside the purview of direct structure determination methods. 

Several avenues are available to extend the current work.  One major challenge in 

studying intrinsic disorder from crystal structures is uncertainty in whether missing density is 

actually present in the crystal structure, or instead due to proteolysis or misannotation.  But, it 

may be possible to determine the presence or absence of missing directly from crystal structure 

data.  Specifically, protein crystal structures have a relatively narrow range of observed solvent 

contents.  Back calculation of the solvent content from the contents of the unit cell with and 

without inclusion of missing density regions may show whether presence or absence of missing 

density regions is more consistent with the allowable range of solvent contents.  While this 

method will not be sensitive enough for short missing density regions, it may be sensitive enough 

for large missing density regions.  Another avenue of further research is in structure pipeline 
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progress prediction, specifically development of stage specific predictors.  Model fitting results 

suggest that various stages of structure determination may have different, perhaps conflicting, 

attributes contributing to pipeline progression.  Stage focused models with a broader range of 

attributes will likely show better detection of targets that will progress through the structure 

determination pipeline. 
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IV. MOLECULAR RECOGNITION FEATURES  

The generality of IDP-mediated interactions is suggested by the large number of 

characterized DOT binding regions and the correlation between intrinsic disorder and regulatory 

functions.  Toward the end of estimating the prevalence of DOT regions and providing tools for 

helping to identify and characterize novel examples, several groups have developed predictors of 

DOT regions and related regions (111, 196, 234, 327–329).  Because these regions lack structure 

in the unbound state, all predictors developed to date are based on prediction from protein 

sequence.  Also, all predictors focus on regions that mediate interactions with proteins, thus so far 

ignoring the likely possibility that particular IDP subregions have evolved to bind DNA or RNA. 

Predictors of intrinsically disordered interaction regions 

A variety of methods have been developed to predict intrinsically disordered binding 

regions from sequence.  All of these methods have focused on regions shorter than typical folded 

domains.  This emphasis on short regions is based on the particular type region being modeled 

and complications in defining the interface of long DOT regions.  These predictors are based on 

two different views of these regions. 

In one view, these regions are modeled as short (on the order of 20 residues), DOT 

regions occurring within longer regions of intrinsic disorder, called Molecular Recognition 

Features (MoRF) (99, 111).  The inception of the MoRF model was the observation that some 

long regions of intrinsic disorder contained short predictions of order that correspond to regions 

responsible for molecular recognition (194).  In other words, while these regions had been 

demonstrated to be disordered when isolated from their binding partners, the sequence itself 

contains an intrinsic propensity to form structure, a propensity that is realized when binding to its 

partner.   Initial studies suggested that intrinsically disordered regions that formed α-helices in the 

bound state had particularly strong propensity to form structure, a property that was used to 

develop predictors of α-helix forming MoRFs (α-MoRFs) (111, 196).  Subsequently, a 
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generalized algorithm was developed for prediction of MoRFs regardless of the conformation of 

the bound state, MoRFpred (112).  Also, the independently developed ANCHOR predictor (327) 

is based on a definition of short,  DOT transitions regions similar to the MoRF definition. 

The other view of short intrinsically disordered binding regions is based on the idea of 

conserved, short (from 3 to no more than 15 residues), functional motifs, called Short Linear 

Motifs (SLiMs) (236).  The SLiM model is not directly dependent on intrinsic disorder in the 

unbound state.  However, instances of SLiMs have been shown to correspond closely to the 

MoRF model (237).  Generally, SLiM regions occur within longer regions of intrinsic disorder, 

but SLiMs show a propensity to be structured.  Regions flanking SLiMs have a propensity to be 

predicted to be disordered and flanking regions have compositions similar to intrinsically 

disordered proteins.  SLiMs, relative to their flanking regions, show an increased propensity to be 

predicted to be ordered and have compositions closer to ordered proteins.  Although SLiMs are in 

general correlated with regions of intrinsic disorder, it should be noted that some specific types 

and instances of SLiMs occur in an ordered context.  Several prediction methods are based on the 

SLiM model, including the ELM Server (234) and the Minimotif Miner (330).  Another 

prediction method, SLiMPred (328), while based on a SLiM dataset, takes a non-motif based 

approach to prediction of SLiMs. 

Datasets 

Ideally, development of a predictor of DOT binding regions would require only a positive 

dataset of known DOT binding regions and a negative dataset of other types of regions: folded 

domains and non-binding disordered regions.  Since the absence of known binding cannot be 

extrapolated to mean that a region cannot bind to any partner, it is difficult to assemble a negative 

dataset of non-binding disordered regions.  Different research groups have taken different 

approaches to addressing the problems associated with these types of regions.   
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α-MoRFs.  According to the MoRF model, MoRFs are short DOT regions.  Therefore, 

datasets for the various MoRF predictors were gathered from complexes in the PDB (278).  For 

the α-MoRF I dataset (14 α-MoRFs), helical fragments bound to longer, globular proteins were 

selected and verified for literature evidence of intrinsic disorder in the unbound state (111).  This 

approach was repeated for the α-MoRF II dataset, resulting in a lager set of MoRFs (196).  

Additionally, to further expand the dataset, homologous sequences to each MoRF-containing 

protein from UniProt were aligned to each MoRF region, and additional MoRF examples were 

selected at random from among those that align well to the MoRF region (54 MoRF + 48 

homologous MoRFs).  Control datasets were constructed from PDB monomers, i.e. sequences 

very unlikely to contain MoRF regions.  Development of the α-MoRFs predictors did not address 

false prediction of MoRFs within intrinsically disordered regions.  Again the problem is that if a 

given region predicted to be an α-MoRF is not known to bind to any partner, that does not mean 

that it does not bind to some yet to be discovered partner, so such false positives would be 

difficult to identify.  

MoRFpred.  A much larger dataset (840 MoRFs, 427 sequence unique clusters) was 

constructed by selecting bound fragments from PDB regardless of secondary structure and 

relaxing literature verification of intrinsic disorder in the unbound state (112).  For verification, 

fragments were analyzed by examining the relative bound and exposed surface areas (100), where 

this analysis indicated that fragment structures were consistent with disorder in the unbound state.   

Similar to α-MoRF predictors, a control dataset of monomers from PDB was used, but additional 

control sequences were taken from regions flanking MoRF regions.  The latter set of sequences is 

intrinsically disordered but assumed to be unlikely to contain MoRF regions.  Although there are 

some known exceptions to this assumption, e.g. the N-terminal MDM2 binding region of p53 is 

flanked by regions that interact with several other proteins (60), these types of exceptions were 

assumed to be rare. 
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ANCHOR.  Similar to MoRFs, the ANCHOR dataset is composed of short DOT binding 

regions (327).  All regions were verified to have experimental evidence of disorder in the 

unbound state in the literature.  The dataset constructed for ANCHOR optimization included an 

independent set of MoRF regions containing 46 examples, monomeric, ordered proteins, and bulk 

intrinsically disordered regions from the DisProt database (16).  Additionally, two validation sets 

were used: long DOT binding regions containing 28 examples and ordered protein that participate 

in complexes with other ordered proteins with 72 complexes in all.   

SLiMs.  Unlike the MoRF predictors and ANCHOR, the SLiMPred, ELM Server, and 

Minimotif Miner datasets are based on functional motifs rather than structural or functional 

propensities.  Consequently, the datasets used for these predictors do not rely on experimental 

structures.  For SLiMPred (328) and ELM server (234), the ELM database (331) is the primary 

dataset, which is a manually annotated set of functional motifs.  Minimotif Miner draws from 

several databases, as well as manually annotated motifs (330).  The control set for SLiMPred 

consisted of domains (as determined by a SMART (332) search) and non-SLiM residues of SLiM 

containing proteins (300 sequence unique SLiM containing proteins).  ELM server and Minimotif 

Miner do not use a control set per se, but rather use contextual filters to remove false positives 

after scanning for motifs. 

The datasets used in training and evaluation of predictors of DOT binding regions vary 

widely in terms of definition and experimental verification.  The α-MoRF predictors and 

ANCHOR used smaller, literature validated positive datasets, while the MoRFPred and SliMPred 

used much larger, but less well validated positive datasets.  Negative datasets vary even more 

than positive datasets, particularly with respect to treatment of disordered proteins, which are 

avoided in α-MoRF predictors, used in bulk in ANCHOR, and filtered for binding regions in 

MoRFPred and SLiMPred.  Ordered regions sets are similar across all predictors, consisting of 

monomeric, globular domains from PDB, except for MoRFPred, which additionally filtered out 
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structures with any missing residues that resulted in a significantly smaller ordered region dataset.  

Finally, ANCHOR also used additional evaluation sets: interfaces of structured proteins and long 

DOT binding regions. 

Architecture 

α-MoRFs.  The α-MoRF I (111) and II (196) predictors use similar architectures.  

Predictors are stacked with two stages: first, identification of potential MoRF regions, and 

second, classification of potential regions as MoRFs or non-MoRFs.  The first stage of the 

predictor identifies patterns in PONDR VLXT predictions that indicate the locations of regions of 

order propensity within longer regions of disorder.  The second stage distinguishes between  DOT 

binding regions and other causes of the disorder pattern, such as loops flanking a structured 

segment or false disorder predictions.  This predictor uses several sequence properties, including 

disorder prediction, secondary structure prediction, and hydropathy, which are averaged over the 

potential MoRF region, flanking regions, or both.  These attributes were used to train a quadratic 

discriminator and a neural network for α-MoRF I and II, respectively.  In both cases, averaging 

sequence properties over regions relative to the potential MoRF reduces the feature space 

sufficiently (6 features in both cases) to compensate for the limited number of examples. 

MoRFpred.  Unlike the α-MoRF prediction methods, which predict MoRFs per-region, 

the MoRFpred algorithm predicts MoRFs per-residue (112).  MoRFpred uses a support vector 

machine (SVM) with sequence and predicted features.  In addition to features considered in α-

MoRF predictors, the outputs of other prediction methods, such as B-factor and surface exposure 

prediction, and PSI-BLAST derived profiles were considered.  Features were aggregated over a 

series of sliding windows relative to the residue to be predicted, similar to region averaging in α-

MoRF predictors, and additionally features were calculated relative to a larger sequence window.   

Multiple sequence selection methods were used to select 24 features for the final SVM model.  
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SVM predictions were also augmented with alignments to MoRFs in the training set, which gave 

a small improvement to the true positive rate. 

ANCHOR.  The ANCHOR prediction method models DOT binding regions literally as 

disordered residues with a propensity to fold in a globular context (327).  The prediction score is 

a linear combination of the IUPred (333) disorder prediction score, the self-interaction energy, 

and the interaction energy gained in a globular context.  Energies are estimated as in IUPred, 

which are the averages of pairwise interaction energies between the residue of interest and a 

particular environment.  Model parameters were fit on short DOT binding regions, using globular 

proteins as a control set.  Concurrently, the rate of DOT binding residues in bulk intrinsic disorder 

was also coarsely minimized, which addresses the important objective of minimizing false 

prediction in intrinsically disordered regions in the absence of a disorder control set.  The set of 

long DOT binding regions was not used in training because the others observed that binding 

regions seem to be limited to discrete regions.  Rather than defining the discrete binding region 

within long DOT binding regions, they examined the behavior of the final predictor relative to the 

participation in the interface of each residue.   

SLiMPred.  MoRF predictors consider prediction context explicitly using region 

averaging.  Prediction context in the SLiMPred algorithm (328) is established through use of a 

bidirectional recurrent neural network (BRNN).  Connections in BRNNs link the internal state of 

an arbitrary number of previous and following residues to the prediction of the current residue.  

Inputs to the BRNN were protein sequence and predicted secondary structure, solvent 

accessibility, and structural motif (i.e. local conformation).    

Motif.  ELM Server (234) and Minimotif Miner (330) are based on matching motif 

patterns to regular expressions.  SLiM motifs are short (15 residues or less) and consequently 

many matches are expected to occur at random.  To reduce identification of false positive motif 

predictions or motif predictions that are irrelevant for a particular query, both methods apply 
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filters.  Two general types of filters are used: query sequence-based filters and database-based 

filters.  Query filters retain or remove predicted motifs based on predicted properties of a query 

sequence that favor or disfavor motif function, respectively.  For example, a motif found to be 

buried within a globular domain is likely to be a false positive motif prediction.  Other examples 

of query-based filters are domain prediction (234) and accessibility prediction (329).   Database-

based filters do not reduce false positives per se (330), but rather limit motif prediction to motifs 

that fit a certain set of criteria relevant to a given protein or query; these filters allow a subset of 

motifs to be selected based on information about the protein of interest.  For example, motifs that 

have been observed in a given taxonomic group or observed to be involved in a given biological 

process or cellular compartment can be selected (334).  Additionally, frequency statistics are used 

to rank matched motifs in reverse order of frequency of expected random matches (335).   

The architectures used for DOT datasets vary widely and the complexity of the approach, 

in terms of the number of parameters, is correlated with data set size.  The α-MoRF predictors 

have the smallest datasets and are relatively simple predictors, with a small number of parameters 

used in simple pattern recognition and a small statistical or neural network model.  The 

ANCHOR predictor has a comparable size DOT dataset as compared to the MoRF predictors, but 

uses a large number of interaction potentials.  However, potentials are derived primarily from the 

much larger ordered dataset, leaving only three free parameters trained on binding regions, 

making ANCHOR arguably the simplest DOT binding region predictor.  MoRFPred and 

SLiMPred have relatively complex architectures with a large number of parameters, but the 

dataset used to train these parameters is much larger than the other predictors.  In terms of 

parameters, motif-based predictors are among the most complex since they require a pattern for 

each type of motif, in addition to instance sequences. 

Also, all prediction architectures consider the larger sequence context when predicting 

DOT binding regions, though each in a different way.  The α-MoRF predictor and MoRFPred 
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consider context explicitly by considering features averaged over windows of the potential 

binding region and in the flanking sequence.  ANCHOR uses an extended window to measure the 

disordered context and intra-sequence interaction propensity of a target residue.  Context is an 

intrinsic feature of the bidirectional recurrent neural network (BRNN) architecture used by 

SLiMPred.  Finally, the sequence filters used in motif-based prediction establish the, for example, 

order-disorder context of predicted motifs through domain prediction. 

Evaluation 

Prediction methods.  The common evaluation for all prediction methods was the true 

positive rate for DOT binding regions and the false positive rate for monomeric globular proteins.  

However, this evaluation ignores some important cases, namely intrinsically disordered regions 

that do not contain binding sites and interfaces of ordered proteins.  The former is a difficult 

problem common to many bioinformatics prediction tasks due to lack of annotation not being 

equivalent to a negative annotation, and is dealt with in different ways by MoRFPred and 

ANCHOR authors.  ANCHOR authors also addressed the ordered interface control, and 

additionally they evaluated performance on long DOT binding regions. 

The primary evaluation of prediction methods can be grouped into two types of 

approaches relative to the positive and negative datasets: (i) a small, high-confidence positive set 

of DOT binding regions and a negative set of ordered regions and (ii) a large positive set of DOT 

binding regions and a negative set of disordered regions.  Approach (i) is in some senses an easier 

problem than approach (ii) for several reasons.  The larger positive datasets are likely to be 

noisier than the smaller, literature verified datasets.  Also, disordered negative datasets are noisier 

than ordered negative datasets; many unannotated binding regions may occur in disordered 

regions but not in ordered regions.  Finally, several of the prediction methods make use of 

disorder prediction directly as a base attribute, meaning that the there is a greater contrast 

between positive and negative datasets when using a ordered negative dataset as opposed to a 

disordered negative dataset.   
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The α-MoRF I and II predictors and ANCHOR use approach (i) to determine accuracy 

and both demonstrate high accuracy on their respective datasets.   MoRFPred and SLiMPred used 

approach (ii) to determine accuracy.  For a negative set, MoRFPred used non-MoRF residues 

from MoRF containing proteins, which contain both ordered and disordered residues, and 

residues flanking MoRF regions, which are likely to be disordered.  Similarly, SLiMPred used 

non-SLiM/non-domain residues for a negative set.  The demonstrated accuracies of these 

algorithms on these sets are markedly lower than in the cases of α-MoRF I and II predictors and 

ANCHOR.  This difference in evaluated accuracy is due to differences in the evaluation sets and 

does not reflect relative predictor accuracy.  

Additionally, both MoRFPred and SLiMPred authors compared their respective 

performances to other MoRF predictors, which also showed the same reduced accuracy on these 

datasets relative to their own datasets.  In the case of the SLiMPred dataset, ANCHOR showed a 

very similar accuracy to SLiMPred.  In the case of the MoRFPred dataset, α-MoRF predictors had 

a very low false positive rate, but also a low true positive rate.  The latter is not unexpected given 

the limited scope of these predictors.  ANCHOR showed a good true positive rate on this dataset, 

but also a very large false positive rate. 

Finally, ANCHOR was evaluated on additional datasets.  The fraction of bulk disorder 

residues predicted to be binding regions was reported to be about 45%.  Due to the ambiguity 

noted above, it is not known what the real target quantity should be, and it is constrained to be 

less than 50% during training.  ANCHOR was also evaluated on long DOT binding regions.  

Rather than predicting these long regions to be a single binding region, ANCHOR predicts them 

to be composed of several binding regions.  This segmentation of prediction suggests that long 

disordered binding regions are composed of several independent short binding regions.  This idea 

is supported by data for the p27-Cyclin/CDK complex, which shows that the prediction score is 

correlated with the number of atomic contacts per residue (327). 
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Motif methods.  It is generally believed that motif methods have a high false positive rate 

due to the low complexity of short motif patterns may frequently find matches at random.  

However, accuracy evaluations of the kind performed for prediction methods have not been 

reported for motif based methods, either with or without filtering.   This is at least in part due to 

different nature of the two methods; supervised predictors require a positive examples and 

negative examples for training that can also be used for evaluation, but motif-based methods 

require only positive examples.  Filter approaches partially mitigate the high false positive rate of 

motif methods.  Sequence filters remove hits that might occur within a structured protein and 

motif filters remove hits that arise from irrelevant motifs, in terms of cellular or functional 

context. 

An indirect evaluation of unfiltered motifs predictions confirms that the false positive rate 

is indeed quite high (336): (i) eukaryotic-specific domains are predicted at the same rate across 

eukaryotes, bacteria, and archaea, and (ii) motifs with narrow roles are predicted to occur 

frequently.  Motif prediction filter methods adequately address the source of error (i), since 

source organisms are generally well annotated.  Performance of filter methods for the source of 

error (ii) depends greatly on the completeness of the relevant functional annotations; filters will 

function properly for well annotated proteins, but will return false positives and negatives for 

missing and incorrect annotations, respectively. 

Comparison 

The SLiMPred authors compared their algorithm to ANCHOR and showed that the two 

algorithms have similar prediction accuracy – with nearly identical ROC curves – to ANCHOR 

across all examined datasets including long disordered regions (328) with two exceptions.  When 

applied to secondary structure sub-sets, the two prediction methods have similar accuracies for all 

subsets except for polyproline II helices, where SLiMPred shows a markedly higher accuracy.  

Also for prediction of ordered SLiMs and disordered SLiMs, i.e. SLiMs predicted to be ordered 

or disordered respectively, the algorithms showed similar accuracy on disordered SLiMs, but 
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SLiMPred demonstrated much higher prediction accuracy on ordered SLiMs.  It should be noted 

that IUPred was used to classify ordered and disordered SLiMs, and that the IUPred prediction 

score is one of ANCHORs three primary attributes.  Therefore this test is inherently biased 

against ANCHOR prediction, however it does beg for an evaluation of experimentally verified 

ordered and disordered SLiMs by ANCHOR and SLiMPred. 

In terms of best accuracy, there is no direct comparison of all methods, so no definitive 

statements can be made.  Inferring from similar evaluation accuracy of SLiMPred and ANCHOR 

(328) and the comparison of MoRFPred and ANCHOR (112), it is likely that MoRFPred has the 

highest prediction accuracy, with a slightly lower true positive rate but a much lower false 

positive rate than either ANCHOR or SLiMPred.  The α-MoRF predictors do not compare to the 

other predictors in terms of their true positive rate, due to the limited scope of these algorithms.  

However, they do compare well in terms of their false negative rates, which is somewhat 

surprising given that intrinsic disorder was not included in their negative training sets. 

An extensive comparison of DOT binding region prediction and motif prediction 

demonstrates a useful synergy between these approaches (336).  For many type of ligand binding 

motifs from the ELM database, two thirds of motif instances overlap with ANCHOR-predicted 

DOT binding motifs, but less than a fifth of predicted ligand binding motifs ANCHOR 

predictions.  This result suggest that DOT binding region may make an effective sequence filter 

of motif predictions by greatly increasing specificity with only a modest reduction in recall.  The 

observed overlap is highly dependent of the type of motif.  Motif instances occur in predicted 

ordered regions, disordered regions, or mixed environments.  Motif instances occurring in 

disordered regions generally show a high overlap with ANCHOR predictions, and motif instances 

in mixed order-disorder regions show a good but reduced overlap with ANCHOR predictions.  

Those few motif instances in ordered regions show very little overlap with ANCHOR predictions, 

which suggests that predictions of ordered regions would be an appropriate filter for these motif 
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types.  Also, secondary structure of the bound motif instance effects filtering efficiency; overlap 

with ANCHOR predictions is increased for motifs that form helix and somewhat decreased for 

motifs that form extended structures.  Finally, DOT binding region prediction can enrich 

predicted motifs in biologically relevant predictions, as demonstrated by overlap between 

predicted nuclear receptor box motifs and ANCHOR; ANCHOR filters nearly four fifths of the 

predicted nuclear receptor box motifs in the human proteome and the remaining predicted motifs 

are enriched in relevant Gene Ontology annotations: nuclear localization, regulation of 

transcription, transcription cofactor, and protein binding annotations. 

There are commonalities between the reviewed methods, but also important differences.  

The differences are particularly important for datasets and evaluation methods.  Some aspects of 

these differences may be leveraged in order to create improved predictors and extend biological 

knowledge.   

Conclusions 

Current DOT prediction methods are varied in every aspect: from the underlying model 

to the construction of datasets to methods of evaluation.  The similarity between the MoRF, 

SLIM, and motif models has been demonstrated.  But these models, which all address short DOT 

regions, have yet to be reconciled with long DOT regions, and a combined model of short and 

long regions would result in expanding available data for predictor development.  Also, control 

datasets need to be refined and expanded, particularly for non-interacting IDP control sequences.  

Finally, the complexity observed for some IDPs with respect to multiple binding suggests that 

prediction of binding sites from single sequences may be too limited. 

Expanding DOT Datasets 

Several surveys of DOT binding regions have shown that these regions come in various 

lengths: from short segments of a few residues to long regions of a size comparable to small 

folded domains.  Given the length heterogeneity of DOT binding regions, the current generation 

of predictors would seem to address only a portion of the prediction problem, which is the 
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prediction of short DOT regions.  Indeed, coverage of long disorder-to-order binding regions by 

current predictors has been shown to be quite poor (327, 328).  However, it may be the case that 

long DOT binding regions are composed of multiple, short DOT binding regions, which is 

suggested by one analysis (327).  Additional experimental evidence is required to verify if 

decomposition of long DOT binding regions to a combination of short regions is a generally valid 

approach.  However, this approach is consistent with the observation that long DOT regions have 

a low amount of intra-protein buried surface area in bound structures (100, 337), with much of the 

buried surface occurring between the disordered protein and its partner.  These observations 

suggest that the use of short regions for predictor development may be an adequate, in the 

absence of additional experimental evidence. 

Many additional DOT examples may be available from the PDB, but to date, there has 

not been a comprehensive study of the DOTs present in protein structures in the PDB.  Reported 

surveys, which rely on comparative analysis, have been limited by availability and reliability of 

reference monomer structures. Though limited, these surveys suggest that DOTs may be a 

common feature in protein complex structures.  Therefore, a survey of DOTs independent of 

reference monomers could potentially reveal many more novel DOT regions.  Model-based 

analyses, particularly molecular dynamics and thermodynamic stability analysis (i.e. COREX), 

are theoretically capable of performing a survey of DOTs in the PDB.  However, the 

computational demands and practical limitations make such a survey intractable.  Alternatively, 

structural analysis has been shown to be a promising method for analyzing complex structures for 

the presence of DOTs (e.g. surface area analysis (100)).  However, current methods are only 

applicable to entire proteins, and are applicable to protein containing both DOT and structured 

regions.  At least one alternative method designed for the classification of DOT and structured 

regions has been developed (51), but not well characterized.  Also, other methods developed for 

flexibility analysis, such as normal mode (105) or mechanical (103) analyses, may be repurposed 
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for identification of DOT regions.  Development and characterization of new analyses will help to 

greatly expand DOT region datasets. 

Another avenue for expanding DOT datasets is to combine the datasets of the current 

methods.  All methods reviewed here relied on short binding regions as a positive dataset for 

training.  Generally, complex structures were used to determine the bounds of the DOT binding 

region and disorder in the unbound state was verified to differing extents, where larger datasets 

precluded strict validation used for smaller datasets.  For motif based methods, short motif 

patterns and instances were collected from the literature and are consequently well verified.  

Although there exists some overlap between these sources of short DOT binding regions, a union 

of these two sources would significantly increase the size of available datasets.  Such an approach 

should consider that some minority of motifs are known to be or likely to be in a structured 

context or themselves structured prior to binding. 

It is a general concern that some ordered regions might be included in constructing 

datasets of DOT regions.  Some smaller datasets require literature evidence of intrinsic disorder 

in the unbound state (111, 327), but this approach is prohibitive for construction of larger 

datasets.  Although structural analysis can give an indication of the order-disorder state of the 

isolated monomer (100), this analysis assumes a structure is available and only applies to the 

fragment present in the structure.  The more important question is if the fragment is structured or 

disordered in the context of the parent protein.  Several ELM motifs types seem to occur within a 

disordered context (237), but the binding regions themselves are not necessarily disordered.  In 

other words, a DOT region may occur as an unstructured loop or tail of a structured domain, e.g. 

14-3-3 binding region of serotonin N-acetyltransferase (186).  Such regions lack the disordered 

context of typical MoRFs and are difficult for predictors that rely on this context for prediction.  

It is clear that these types of DOTs do not fit neatly into the MoRF model and may require 

treatment as a special case.  However, the increased performance of SLiMPred on these regions, 
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relative to ANCHOR, suggests that special treatment may not be necessary given the appropriate 

attributes and prediction architecture.  Similar difficulties arise when constructing an appropriate 

control set. 

Control Datasets 

A control set is necessary for training prediction methods and for estimation of the rate of 

false prediction.  In the motif-based formulation of the DOT binding region prediction problem, 

sets of motif instances that do not bind to associated domains are very difficult, if not infeasible, 

to construct.  For this reason, there has been no direct quantification of the false positive rate of 

motif-based methods.  Prediction methods however require a control set for training, and 

generally two types of protein regions are used, ordered and disordered.   

For ordered sequences, generally only sequences with monomeric structures are used.  

Generally complexes are avoided due to the possibility that one or more of the partners is 

disordered in the unbound state, except where additional evidence is available to indicate the 

complex is formed by ordered monomers.   

Intrinsically disordered regions are problematic for the same reason that motif control 

datasets are problematic; it is generally not known whether a given disordered region binds to any 

partners.  One approach to this problem is to assume that interaction regions are sparse and that 

residues outside of known binding domains do not interact with partners, which is the approach 

taken by MoRFPred and SLiMPred.  However, the interaction map of p53 (60), one of the most 

intensely studied proteins in the human genome, shows that its interactions are tiled over the 

disordered termini.  While p53 may not be a prototypical protein, this observation does call into 

question the assumption of sparsity of interaction regions within disordered segments.  

Improving Prediction Model 

The example of p53 raises two complications with prediction of intrinsically disordered 

binding regions.  Under the current model of DOT binding region prediction, a residue is 

predicted to be a binding residue if it interacts with any partner.  This implies that the correct 
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prediction for the N-terminus of p53 – according to the interaction map which shows that the N-

terminus is tiled with interaction sites, would have nearly the entirety of the N-terminus predicted 

as binding residues.  While correct under the current model, such a prediction is not practically 

very useful for novel proteins and may be misleading.  The other complication is one-to-many 

binding regions, in which the same region or overlapping regions bind to multiple partners.  That 

is, it is tempting to interpret predictions of binding sites as binding to a single partner, but 

multiple partners may be involved.  Current predictors do not address this complication.  Motif-

based methods do not suffer these complications, but do not predict novel binding sites. 

A more useful and transparent prediction model would decompose a protein into non-

binding sites and competent, perhaps overlapping, binding sites.  However, direct application of a 

single sequence approach to decomposition represents a large increase in algorithm sophistication 

and complexity, and would not address the case of one-to-many binding.  An alternative approach 

that may be more effective would be to combine binding site prediction with knowledge of a 

particular partner.  Such an approach has been applied in the analysis of peptide binding domains, 

such as SH3 (338) domains.  This approach considers the peptide binding site of the peptide 

binding domain to predict peptide sequences compatible with binding to a particular instance of a 

peptide binding domain.  In a sense, this method constructs a pseudo motif, which is dependent 

on the details of the binding partner.  Another approach is to consider coevolving residues 

between two binding partners in the form of mutual information (339).  Generalization of these 

types of methods, in combination with consideration of context provided by the current 

generation of binding site predictors, may be the way forward to the next generation of DOT 

binding region prediction. 
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