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Akshay A Desai 

DATA ANALYSIS AND CREATION OF EPIGENTICS DATABASE 

Abstract 

 This thesis is aimed at creating a pipeline for analyzing DNA methylation 

epigenetics data and creating a data model structured well enough to store the analysis 

results of the pipeline. In addition to storing the results, the model is also designed to 

hold information which will help researchers to decipher a meaningful epigenetics sense 

from the results made available. Current major epigenetics resources such as PubMeth, 

MethyCancer, MethDB and NCBI’s Epigenomics database fail to provide holistic view of 

epigenetics. They provide datasets produced from different analysis techniques which 

raises an important issue of data integration. The resources also fail to include 

numerous factors defining the epigenetic nature of a gene. Some of the resources are 

also struggling to keep the data stored in their databases up-to-date. This has 

diminished their validity and coverage of epigenetics data. In this thesis we have tackled 

a major branch of epigenetics: DNA methylation. As a case study to prove the 

effectiveness of our pipeline, we have used stage-wise DNA methylation and expression 

raw data for Lung adenocarcinoma (LUAD) from TCGA data repository. The pipeline 

helped us to identify progressive methylation patterns across different stages of LUAD. It 

also identified some key targets which have a potential for being a drug target. Along 

with the results from methylation data analysis pipeline we combined data from various 

online data reserves such as KEGG database, GO database, UCSC database and 

BioGRID database which helped us to overcome the shortcomings of existing data 

collections and present a resource as complete solution for studying DNA methylation 

epigenetics data.       
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Chapter 1 Introduction 

1.1 What is Epigenetics? 

The genotypic make up of monozygous twins is identical. However, a study[1] on 

monozygous twins proved that they are not identical as they do not show same disease 

susceptibility. The study also observed that this deviation in susceptibility increases with 

the ageing of twins. Now the cause of most diseases is attributed to the alteration in the 

expression level of genes. This alteration affects the normal functionality of the protein 

machinery involved in the concerned affected biological process, hence the disease. In 

monozygotic twins if the genetic makeup is not altered than what are the possible 

reasons for the variation in disease susceptibility? What are the factors responsible for 

affecting the gene expression levels other than mutations in DNA sequences? A 

substantial part of these questions is answered by a new field called “Epigenetics”. 

Epigenetics was first defined by Conrad Waddington in 1940. According to 

Conrad Waddington epigenetics is “the interactions of genes with their environment 

which bring the phenotype into being”. As biological terms have different meanings for 

different people[2], epigenetics is no exception to this tradition. In contrast to Conrad’s 

definition, Arthur Riggs et al defined epigenetics as “the study of mitotically and/or 

meiotically heritable changes in gene function that cannot be explained by changes in 

DNA sequence”[3]. The two definitions mentioned explain important aspects of 

epigenetics but do not cover the field in totality. One definition explains epigenetics from 

a developmental biologist perceptive and the other one defines what epigenetics is not 

i.e. an inheritance of mutations. But the definition from an article[2] in nature very well 

summarizes the concept. It states that epigenetics is “the structural adaptation of 

chromosomal regions so as to register, signal or perpetuate altered activity states”.   
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Epigenetics marks determine the functional output of the information that is 

stored in the genome. These marks are the link between prenatal and postnatal 

exposures and the phenotypic changes happening later in life. This connection is 

beautifully explained by a BBC T.V science programme. It states that “at heart of this 

new field is a simple but contentious idea- that genes have ‘memory’. That the lives of 

your grandparents - the air they breathed, the food they ate, even the things they saw - 

can directly affect you, decades later, despite your never experiencing these things 

yourself. And that what you do in your lifetime could in turn affect your grandchildren.” 

Epigenetics tries to explain genes beyond the DNA. The word epigenetics also literally 

means ‘above the genetics’ which is now often used to explain gene expression changes 

that occur without the change in DNA sequence. It explains the heritable changes in 

gene expression or cellular phenotype caused by the factors other than changes in DNA 

sequences. These factors could be nutrition, stress or other environmental influences 

which causes a gene to turn on or off. These changes may remain through cell divisions 

for the remainder of the cell’s life and may also last for generations. However, there is no 

change in the underlying DNA sequence of the organism; instead, non-genetic factors 

cause the organism’s genes to behave differently.  

DNA methylation and histone modification are the two important molecular 

mechanisms playing a major role in epigenetic regulation of genes[4]. These 

modifications affect both DNA and chromatin.   

1.2 Important parts of epigenetic machinery. 

Most widely studied phenomenon related to epigenetics is DNA methylation. 

DNA methylation occurs at the carbon-5 position of cytosine in CpG dinucleotides. 

Histone modifications is the next most common phenomenon studied related to 

epigenetics. Histone modifications are the post-translational modifications which cause 
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the changes to the chromatin packaging of DNA. Apart from these two commonly 

studied mechanisms other epigenetic controls include regulation by microRNAs which 

are non-coding RNAs and processes that manage higher-level packaging of chromatin 

within the nucleus. 

There are regions in human genome with more than 200 bases which consist of 

at least 50% G+C content and at least 0.6 ratio of observed to statistically expected CpG 

frequencies. These CpG dinucleotides clusters are called CpG islands. The “p” in CpG 

stands for “phosphodiester bond”. This bond is present between cytosine and guanine 

which are the “C” and “G” in CpG. Cytosine methylation is the most extensively studied 

phenomenon in context with epigenetic modifications. Modifications in the methylation 

state of CpG island are epigenetically important because about 60% of human gene 

promoters are associated with CpG islands. These promoter regions are usually un-

methylated in normal cells but nearly 6% of them become methylated. This methylation 

occurs in a tissue-specific manner during early development or in different tissues[5]. 

CpG-island methylation is commonly associated with silencing of genes which causes 

the reduction in the expression level of these genes. This kind of methylation is the only 

epigenetic modification that directly affects the DNA, hence the name “DNA 

methylation”. DNA methylation causes the replacement of hydrogen atom of the cytosine 

base by a methyl group which affects the accessibility of transcription binding sites thus 

causing the silencing of genes. In cancer, epigenetic modification due to DNA 

methylation causes the silencing of tumor suppressing genes. 

Histone modification is another important epigenetic factor. Nucleosome at the 

core contains a histone octamer comprising of 2 copies each of H2A, H2B, H3 and H4. A 

DNA of 147-bp segment is wrapped around the histone octamer in 1.65 turns. 

Neighboring nucleosomes are separated by a ~50 bp of DNA. H1 is the histone which 

binds to the linker DNA, binding off the nucleosome at the location where DNA enters 
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and leaves, hence it is called the linker histone. The core histones are modified at their 

amino-terminal tails by acetylation, phosphorylation, methylation and ubiquitylation. 

These modifications play an important role in gene regulation by defining the gene 

activity based on the combined acetylation, phosphorylation and methylation status and 

occur mostly post-transcriptionally.  

There are 3 classes of chromatin-remodeling proteins in mammalian cells. These 

complexes are SWI/SNF/Brm, ISWI and Mi-2/NuRD and contain different catalytic 

ATPase subunits with associated proteins. The enzymes involved in chromatin-

remodeling use the ATP hydrolysis energy to influence the structure of nucleosome and 

the DNA wrapped on it. Such influence of these proteins affects the accessibility of 

chromatin to various chromatin proteins that control transcription, DNA replication, 

recombination and other biological processes.      

1.3 Epigenetics: Hope for Cancer cure. 

Global changes in DNA methylation, histone modification and chromatin-

modifying enzyme expression profiles characterizes the cancer epigenome[6]. Cancer 

cells acquire a specific hypomethylation and hypermethylation patterns at the CpG 

islands of the promoter regions of genes. Hypomethylation at promoter regions of 

oncogenes activates their aberrant expression while hypermethylation at promoter 

regions leads to inactivation of tumor suppressor genes. Chromosomal instability, 

translocations and gene disruption is caused by the global hypomethylation at repetitive 

sequences[7]. Hypomethylation in the promoter regions of genes like S100P in 

pancreatic cancer, SNCG in breast and ovarian cancers and MAGE and DPP6 in 

melanomas is a well-studied phenomenon. Hypermethylation on the other hand is 

mainly observed at specific CpG islands and affects genes involved in the main cellular 
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pathways like DNA repair, vitamin response, Ras signaling, cell cycle control, p53 

network and apoptosis.  

In cancer cells a global reduction of mono-acetylated H4K16 is observed as an 

important histone modification. This loss in acetylation is mainly due to the 

overexpression of entities belonging to Sirtuin family of proteins[8]. Apart from the global 

loss of H4K16, there is a variation in the distribution of the histone methyl marks in 

cancer cells that is observed. This variation is mainly caused due to the alteration in the 

expression of histone methyltransferases and demethylases. Histone phosphorylation, 

too, according to current studies is found to be relevant for cancer studies. JAK2, a non-

receptor tyrosine kinase, is involved in hematological malignancies by getting activated 

through chromosomal translocations and point mutations. In addition to methylation and 

histone modifications, all families of chromatin remodelers are associated with cancer. 

Promoter hypermethylation of MLH1 in colon cancer is observed which proves the 

involvement of nucleosome remodeling in the transcriptional down regulation by 

promoter hypermethylation.     

Epigenetic therapy is targeted towards reprogramming the network of chemical 

changes that alter the functioning of cancer cells DNA rather than destroying them by 

disrupting their DNA or affecting important cancer pathways. The possibility for therapy 

has arisen due to the reversible nature of epigenetic changes. Hence the main aim of 

therapy is to restore ‘normal epigenome’. The first epigenetics drugs to be proposed for 

cancer treatment are DNA methylation inhibitors. Drugs such as 5-Aza-CR (azacitidine) 

and 5-aza-CdR (decitabine) which are DNA methylation inhibitors are approved by FDA 

for treating myelodysplastic syndromes[9]. A recent clinical trial conducted by 

researchers at John Hopkins institute proved the effectiveness of low-dose azacitidine 

combined with entinostat which is another epigenetic drug, for treating patients with 

advanced lung cancer. Apart from lung cancer the team also proved the effectiveness of 



  

6 
  

low doses of these drugs with antitumor effects in cell lines and in mouse models for 

different cancers such as leukemia, breast and colon cancer. 

Often loss of histone acetylation is also attributed to the aberrant gene silencing 

in cancer. HDAC inhibitors have been proved to demonstrate anti-tumorigenic effects 

which include activities such as growth arrest, apoptosis and the induction of 

differentiation. These inhibitors help in re-establishing the normal histone acetylation 

patterns and reactivating silenced tumor suppressor genes[10]. Suberoylanilide 

hydroxamic acid (SAHA) is one such HDAC inhibitor which has been proved for its use 

in clinic for treating T cell cutaneous lymphoma. Combinatorial cancer treatment 

strategies have also been explored which includes use of both DNA methylation and 

HDAC inhibitors for treating cancer. The study exploring the combinatorial effects 

showed that the activation of certain tumor suppressor genes was seen only when 5-

Aza-CdR was administered in combination with trichostatin A. A combination of 5-Aza-

CdR also enhanced the anti-tumorigenic activity of depsipeptide on leukemic cells. 

Similar combinatorial effect was observed when phenyl-butyrate and 5-Aza-CdR where 

used together to demonstrate the reduction of lung tumor formation in mice. Apart from 

DNA methylation and HDAC inhibitors, HMT inhibitors and miRNAs are also explored for 

epigenetic therapy and hold a great potential. Thus epigenetics has defined a new way 

and inculcated a hope in the war against cancer. It has provided a fresh approach in 

understanding the underlying principle for cancer treatment.          

1.4 Network Biology 

A systematic catalogue of all molecules and their key interactions in a desired 

cellular system is important for any post-genomic biomedical research. Need to 

understand the interactions between these molecules and the functionality of these 

interactions lead to the development of “network biology” field. The advances in network 
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biology have helped to build new conceptual framework that has revolutionized our 

understanding about the biology and disease pathologies. It has been well established 

now that a complex interaction between different cellular components such as proteins, 

DNA, RNA and small molecules define a biological characteristic. Thus it is important to 

understand the dynamics and structure of complex intercellular interactions that are the 

underlying principles in formation of structure and function of a living cell.  

Current high-throughput data analysis techniques for understanding epigenetic 

processes generate different types of interactions which include types such as protein-

protein interaction, metabolic, signaling and transcription-regulatory networks. Each 

molecule is represented as a node in the network while the interactions between 

different molecules are represented by the edges of a network. A network of these 

networks helps us to understand the behavior of cell. Network biology quantifies different 

aspects of a given biological network which helps to characterize various biological 

systems. Following are some of the important network measures that let us compare 

and characterize different complex networks: 

a. Degree: The degree of a node in a network is defined as the number of connections 

or edges the node has to other nodes. In a directed network every node has two types of 

degrees; in-degree and out-degree. In-degree defines the number of incoming edges 

while the out-degree defines the number of outgoing edges.  

b. Degree distribution: It is the fraction of nodes in the network with degree k. Thus, the 

degree distribution P (k) is calculated by obtaining the nodes with degree k and dividing 

by the total number of nodes. This kind of distribution allows differentiation between 

different classes of the network.  

c. Shortest path and mean path length: Shortest path is the path with the smallest 

number of links between any selected nodes which are the nodes of interest. Whereas 
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mean path length is the average of the shortest paths between all pairs of nodes and 

provides a measurement which facilitates the overall network navigability. 

d. Clustering coefficient: It is defined as the measure which helps to calculate the degree 

to which nodes in a graph tend to cluster together. 

 Network biology has become an integral part of any biological data analysis. It 

has helped to understand various complex biological machineries and produce some 

important inference mechanisms. The field has great potential to interpret epigenetic 

data which is been generated now-a-days using different high-throughput processes. 
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Chapter 2 Background 

2.1 Current approaches for analyzing epigenetic data. 

A genome wide mapping of epigenetic information is done by using techniques which 

use a three-stage design. In first stage epigenetic information is obtained by 

biochemically converting it into genetic information. This conversion is achieved by 

enriching specific genomic regions which show aberrant epigenetic modifications. 

Second stage involves employment of high-throughput data generation techniques such 

as microarray and sequencing techniques. These techniques generate data which help 

to interpret epigenetic modifications and make a scientific prediction or analysis of the 

process. The third stage includes computational algorithms to make actual inference 

from the data generated from microarray and sequencing methods. 

Bisulphite treatment of DNA is the popular method for detecting DNA methylation. It 

reproducibly alters un-methylated cytosines to uracil, leaving methylated cytosines 

unchanged. This resolution of treatment yields single-nucleotide resolution information 

about the methylation status of a sequence of DNA. In addition combining this 

methodology with sequencing technologies and amplifying it with methylation-specific 

PCR allows investigating DNA methylation even at low quantities. Techniques such as 

ChIP-on-chip which are based on chromatin immunoprecipitation have recently made a 

major contribution in epigenomics profiling of cancer cells. Identification of histone 

modification is more challenging compared to DNA methylation assay[6]. The standard 

technique for finding histone modification is mass spectrometry but the technique is 

complex and difficult to implement genome-wide. ChIP-on-chip with genomic platforms is 

also used for analyzing histone modification data.         

Projects such as AHEAD Task, ENCODE Project, HEP Project Consortium have 

developed ground breaking techniques which have improved large-scale experimental 
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methods and have introduced new bioinformatic methods for analyzing epigenetic data 

generated by the methods. One of the projects ENCODE which was aimed to mapping 

functional elements in the human genome has greatly contributed in standardizing the 

epigenome data analysis process. The first step in the process involves unsupervised 

segmentation of chromatin data which is based on the wavelet smoothing and hidden 

Markov models[11]. The second step is the joint statistical analysis on the datasets from 

ENCODE pilot phase. This is an exploratory procedure on a large and heterogeneous 

datasets which hold a good amount of epigenetic information. Third step included 

annotation of functional promoters using alternative prediction methods which were 

developed and evaluated for the project. This step proves the ability of epigenetic data to 

improve the accuracy of promoter annotation. Fourth the overlap between two sets of 

genomic features is assessed by determining the significance of overlap by the statistical 

test developed by the researchers working in ENCODE project. This statistical test helps 

them to evaluate the significance of overlap between regions such as CpG islands and 

un-methylated genomic regions. The test also helps to obtain more realistic P-values 

compared to other randomization-based methods which give an over-estimated 

significance[11]. Fifth the epigenome datasets from the ENCODE project are 

incorporated into UCSC Genome Browser. UCSC genome Browser provides 

visualization and retrieval of these genomic and epigenomics datasets. Thus, these are 

the steps that were standardized by ENCODE project for analyzing epigenomics data. 

In addition to the techniques mentioned, bioinformatics methods like text mining and 

data mining combined with system’s biology also play an important role in analyzing 

epigenomics data. These techniques are widely used for downstream filtering, 

processing and annotation of the data.         
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2.2 Available epigenetic data resources: Features and Limitations 

 

Figure 1: PubMeth results for querying with specific cancer type 

 

PubMeth, MethyCancer, MethDB and NCBI’s Epigenomics database are the main 

data resources that are currently available providing useful information for epigenetic 

research. PubMeth is a database consisting of genes which are found to be methylated 

in specific cancer types. It is a cancer methylation database using text-mining from 

Medline/PubMed abstracts in addition to manual reading and annotation of preselected 

abstracts for extracting methylated genes[12]. The interface is designed to rank, 

summarize and present data in such a way that the information present in database is 

easily accessible. In PubMeth database a query can be either genes based or can be 

cancer type based. Thus PubMeth tries to collect information on methylated genes in 

different cancer types from all possible available literature data and provides an interface 

which summarizes the collected data. 
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Figure 2 Search panel for MethyCancer database 

 

MethyCancer is a database holding information on the relationship between DNA 

methylation, gene expression and cancer. This interplay between different facets of 

epigenetics is made available in the database through integration of large-scale data, its 

production and mining. The main data sources for the database are public resources 

which are accompanied by manual curation of the data obtained. In addition to public 

sources, the Cancer Epigenome Project in China also acts as a major contributor of 

experimental data to the database. Database holds 4 main types of data: CGI clones 

and global CGI predictions, DNA methylation data, cancer information, genes and 

mutations and correlation among DNA methylation, gene expression and cancer[13].  
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Figure 3 Search panel for MethDB database 

 

DNA methylation data for the database is collected from MethDB, HEP and Methylation 

Landscape of Human Genome at Columbia University (Columbia)[14].              

MethDB database stores information related to the degree of methylation in total 

DNA, DNA fragments and single nucleotide positions[15]. It also contains data on the 

nature and origin of the samples along with data obtained from the experiments. It 

provides a graphical and alphanumeric representation of methylation patterns and 

profiles helping in bringing the heterogeneous data on DNA methylation under one 

destination. The entries present in the database are cross-linked to other databases by 

including hyper-links to external data resources. Results received from database are 

distinguishable into 3 forms: methylation content, methylation profile and methylation 

pattern.       
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Figure 4 Search panel for Epigenomics database 

 

NCBI’s Epigenomics database is constructed by picking epigenetics oriented data 

from data archives like Gene Expression Omnibus and Sequence Read Archives[16]. 

Epigenetic data collected is then put to review, annotation and reformation. The raw data 

is processed by mapping it to generate genomic coordinates. These genomic 

coordinates are used to build genomic tracks which are used for visual representation of 

the data. The coverage of Epigenomics database currently covers data tracks for DNA 

methylation, histone modification, expression of small non-coding RNAs and chromatin 

accessibility. Transcription factors, components of the core machinery and histone 

modifying enzymes which are considered as chromatin associated factors are also made 

available through the database. ‘Studies’ and the ‘samples’ are two basic types of 

records in Epigenomics database.        

    Even though the above mentioned databases cover important epigenetic data, 

they fail to provide a universal view of epigenomics. PubMeth database does not cover 

all genes responsible for epigenetic modifications. Text-mining sources for the database 

are restricted to the abstracts from PubMed and Medline which does not include the 

complete set -+of literature that is present for epigenetics. Apart from text-mining related 
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statistics the database has no extra information related to epigenetics associated genes. 

It also fails to provide quantitative measures for DNA methylation levels. MethDB only 

focuses on DNA methylation whose information is general and sample oriented. In 

addition to this it is not optimized to cancer related queries either. MethyCancer also as 

an epigenetic database fails to answer every aspect of epigenomics modification. The 

data present in the database is not updated and the interface provides a complicated 

view which makes it difficult to query the database. NCBI’s Epigenomics primary data 

sources are GEO and SRA which inhibits database to contain complete data related to 

epigenetics. Considering the shortcomings and pitfalls of current epigenetic data 

resources there is a need for new data reserve which will have a greater coverage of the 

data and has information for better understanding the field. 

2.3 Thesis Statement 

Currently all major epigenetic databases lack in terms of the coverage of data stored 

in them and further these databases fail to undertake a universal data processing 

methodology. Each database has its own data processing pipeline which mostly focuses 

on cell lines rather than cancer and their sub-types as whole. They lack information 

which would help to provide a full epigenetic view for given components of the 

machinery. Most of the databases also fail to provide information on environmental 

factors which play a pivotal role in defining the epigenomics landscape. There is also a 

poor mapping or association between epigenetically affected genes and their role in 

major cancer pathways. Considering these shortcomings led to the idea of building a 

standard pipeline for analyzing epigenetic data and building a robust but universal data 

model which will house the data processed from this pipeline. 

This thesis mainly focuses on DNA methylation aspect of epigenetics as it has the 

major contribution in observed and cancerous epigenetic aberrations. We have built a 
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robust pipeline for processing the DNA methylation data obtained from ‘The Cancer 

Genome Atlas (TCGA)’ (http://cancergenome.nih.gov/). The pipeline processes the 

methylation data for different patients from TCGA using various statistical concepts and 

combines system biology[17] to make meaningful sense from the results obtained. Each 

cancer methylation data is processed stage-wise so the pipeline provides granularity in 

understanding the process as well helps to have a high level comparative view to 

understand the progression of methylation across different stages of cancer. Finally the 

results obtained from this pipeline are dumped into a database modeled to hold 

information for each cancer, stage-wise, and provide epigenetic attributes such as 

environmental factors, pathways, protein-protein interactions which help to understand 

the methylation state of a gene and its effect on other important cellular mechanisms. 

The scope and importance of pipeline is proved by using ‘Lung Adenocarcinoma 

(LUAD)’ as a case study. Lung cancer is one of the most common cancers. In United 

States 226,160 new cases were expected to be diagnosed in 2012 

(http://www.cancer.gov/cancertopics/types/lung). Lung cancer is morphologically divided 

into non-small cell (NSCLC) and small cell (SCLC)[18]. Lung adenocarcinoma (LUAD) is 

currently the most common of the lung cancers in both smokers and non-smokers. We 

have analyzed the DNA methylation data for different patients from TCGA repository and 

have provided a stage-wise result set. Using system’s biology we have obtained 

methylation patterns for LUAD across its different stages. These results are stored along 

with the stage-wise results for other cancers in our epigenetic database. Our database 

helps researchers to make epigenetic sense from the data made available to them.      

 

 

http://cancergenome.nih.gov/
http://www.cancer.gov/cancertopics/types/lung
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Chapter 3 Methods 

3.1 Analysis Pipeline 

In order to understand a methylation data for a particular cancer in stage specific 

manner, the analysis pipeline was divided into following sections: 

Section1. Identification of significant genes from expression data 

The level 3 data available from TCGA was segregated based on the stages 

provided in Metadata. If 65% of the data for  a gene was log2  ≥ 1.4 or ≤ -1.4 , then the 

gene was considered for further analysis as it obeyed the stringency with respect to fold 

change > 2.5 (a log2 ratio of 1 represents a 2-fold change) [19].  The average value for 

each gene was then computed and considered for the next level analysis. If a gene was 

represented by two or more probes, then the median of its expression value was used.   

Section2. Identification of significant DNA Methylated genes from methylation 

data 

The beta-values [20], for normal and disease samples were downloaded from the 

TCGA for Illumnia HumanMethylation27 and stratified by stage. The difference between 

the normal and the disease beta-values were then calculated.  Genes with beta-values 

greater than 0.25 were considered hypermethylated and those with beta-values less 

than -0.25 were considered hypomethylated [20]. Using the Mann-Whitney U test [21], p-

values were computed for each gene. This test was considered as it can handle 

variance for unequal sample sizes. For the study the analysis of q-value and 1% FDR 

gave threshold for the p-values for all the stages[22]. Our analysis identified p-value < 

0.001, as the optimal threshold across all the stages. These genes were termed as 

“Significant DNA methylated genes”. Since the sample sizes were small, to get true 
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inferences resampling technique was performed. The samples were permuted large 

number of times (1000) and Mann Whitney Test was performed for each permuted 

samples and p-values were computed[23]. 

The DNA methylated genes were then annotated with pathway information using 

KEGG [24]. This information was used to understand the stage-wise profile of pathways 

consisting of DNA methylated genes. This analysis found common and unique pathways 

across stages. One of the limitations of the pathway analysis was that the analysis was 

limited to the mapping of DNA methylated genes with KEGG pathways. 

 

Section3. Understanding the DNA methylated genes based on stage-specific    

networks 

To understand the significance of the DNA methylated genes for a cancer, stage-

specific networks were obtained using the following steps: 

Identification of gene-gene interactions and DNA methylated-gene interactions 

from BioGRID 

The gene-gene physical association among significant genes and DNA 

methylated genes was identified using BioGRID [25].  This integrated network was 

analyzed across different stages to capture the differences and commonality based on 

the following criteria: (i) two DNA methylated genes interacted; (ii) the DNA  methylated 

gene has interaction with an expressed gene; or, (iii) the DNA methylated gene has 

interactions with a gene other than the significant genes in the given stage. This 

association was termed as “missing link” and the gene as “novel gene”, if the novel gene 

has an interaction with an expressed gene in the given stage or in other stages. Also the 

novel gene was expressed in previous or subsequent stages. This novel gene was then 
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evaluated using biomedical literature for its significance with the DNA methylated gene 

and the given cancer. 

The nodes and the edges of each stage-specific network were annotated with 

their respective topological and biological features. The statistical computing tool R 

(www.r-project.org) was used to compute the topological features betweeness and 

clustering coefficient for each node (gene) in the network. The two biological features 

considered for analysis were: Pathway Significance Score and Gene Ontology Semantic 

Similarity. The Pathway Significance Score was based on the occurrence of the given 

gene in a pathway class i.e., the lung cancer pathways, other cancer pathways, or other 

pathways (includes metabolic) as given in KEGG [24]. These features were normalized 

individually and the average of these features defined the NodeStrength of a node 

(gene), given as: 

               
                                                               

 
 

(i)  

Betweeness of a gene   was defined as the inverse of the ratio of the total number of 

shortest paths from gene s to node t given by     to the number of total paths passing 

through node  (        [26]. This was computed as: 

            (        )   ∑
       

        
 

(ii)  

Clustering Coefficient (Cv) was defined as a function based on the triplets of the genes 

in the network, where a triplet consisted of the three genes (nodes) connected by either 
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two open or three closed undirected ties [27]. The clustering coefficient for the genes in 

the undirected graph (stage- specific network) was computed as: 

 

For a graph         consisting of vertices   and a set of edges  , where      connects 

vertex    vertex    and the neighborhood    for this vertex    was defined as: 

   {          } 

(iii)  

And where    represents the number of vertices in the neighborhood of   . The 

clustering coefficient for this local graph was then computed as: 

                            
   {                    } 

         
 

(iv)  

Pathway Significance Score 

The pathways associated with each node’s   (genes) were identified using KEGG, and 

Pathway Significance Score was computed as; 

                           

  {     [(
                 

               
)                                ]}

        

 

(v)  

Where, Pathway Significance Score for lung cancer case study determined the level of 

importance of a gene in the lung cancer pathways,  non- lung cancer pathways (can be 

other cancer pathways)  and other pathways (i.e. pathways that are not termed as lung 
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cancer pathways or non-lung cancer pathways); frequency of terms equaled the count of 

the gene in lung cancer pathways, non-lung cancer pathways and other pathways; Total 

frequency was equal to the count of the lung cancer pathways, non-lung cancer 

pathways and other pathways; Strength  represented the importance of  the pathway in 

the stage-wise network.  For all the stage-specific network lung cancer pathway was 

given a prior score of 3, non-lung cancer pathways were given a prior score of 2 and 

other pathways were given a prior   score of 1. 

EdgeStrength 

For any two interacting nodes (genes) in the network, EdgeStrength was 

computed based on their Gene Ontology Semantic Similarity. This was calculated using 

the GOSemSim package R [28].  

All the genes and their edges in the stage-specific network were then annotated 

with their NodeStrength and EdgeStrength. The DNA methylated genes were ranked 

based on their NodeStrength. The highly ranked DNA methylated genes were used to 

identify subnetworks as described in the following section. 

Section4. Identification and scoring of epigenetically relevant subnetworks across 

stages 

To understand the functional significance of DNA methylated genes in the 

different stages of cancer, graph techniques were used to identify the subnetworks [29-

31]. To compare and elucidate the interaction network of DNA methylated genes across 

stages is a hard problem. Therefore in this work, subnetworks of different sizes were 

identified and analyzed across the stages to understand the interaction profile of DNA 

methylated genes. As these were open subnetworks i.e. no size and shape limitation, 

therefore an NP-hard problem. To understand these subnetworks functionally, the genes 
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in these subnetworks, were analyzed based on KEGG pathways and these were 

understood in four categories: (i) genes identified in cancer pathways other than lung 

cancer pathways, (ii) genes identified in lung cancer pathways, (iii) genes identified in 

signaling pathways (not present in (i) and (ii), and (iv) genes in the metabolic pathways 

and other pathways. Starting with the DNA methylated gene as a seed, its interactions 

were identified, propagated, and analyzed based on the above four different categories. 

These subnetworks correlate to distinct functions that specify the distinct mechanism 

that can be compared across the stages. These subnetworks were further analyzed 

identified based on their NodeStrength and EdgeStrength.  

The DNA methylated genes in each stage were ranked based on their beta-value. The 

DNA methylated gene with the highest beta-value was considered as a SEED.  The 

SEED and expand algorithm was then used to identify the next connecting gene and 

edge based on the NodeStrength and EdgeStrength. Thus, subnetworks of different 

sizes were identified and connected in each of the stage-specific network and scored 

based on their SubnetworkStrength which was computed as; 

                    
∑                 ∑             

     
   

   
   

               
 

(vi)  

Where,    are nodes,   are edges, and   is number of nodes or edges. 

As this is an open network and subsequently an NP-hard problem, as large 

number of subnetworks of different size are possible. Analyzing these subnetworks 

individually with respect to all its nodes (genes) is both time consuming and hard. 

Therefore, the subnetworks were further classified based on the nodes (genes) that 

were present in the different pathway class, namely, Lung Cancer pathways, Cancer 
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Pathways, Signaling Pathways and Metabolic Pathways.  The subnetworks were 

compared for their commonality and uniqueness across stages to identify the possible 

DNA methylated genes that could be potential targets. The literature was then consulted 

to validate the significance of these DNA methylated genes. 

3.2 Data model for Epigenetics Database      

The data model for epigenetic database was designed based on the requirement 

to hold the results from DNA methylation data processing pipeline and the data obtained 

from different web resources which help to define the epigenetics characteristics of a 

significantly methylated gene. The data model shown in Figure 5 is designed using 

MYSQL workbench[32].  

For analysis results the model holds information such as gene symbol, beta-

value for showing the methylation level of gene in a particular cancer, p-value to 

determine the significance level of the beta-value and stage-wise information. The data 

model also supports information from other important databases such as KEGG 

database[24], some tables from UCSC Genome Browser[33], BioGRID database[25] 

and GO database. KEGG database provide information on the pathways and the 

disease annotation for these pathways along with the information on the environmental 

factors affecting the pathway[24]. This relation was of special importance to the model 

as it helped us to make a connection between the significantly methylated genes, 

pathways they are involved in and the possible environmental factors responsible for the 

current state of genes in the cancer condition. The association helps to distinguish our 

data resource from the present epigenetic data resources. UCSC Genome Browser 

tables help to provide annotations and gene symbol conversions between various data 

sources used in the model[33]. The ID conversion provided by the Genome Browser act 
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as a foreign key between multiple important tables in our database. Whereas BioGRID 

fill in the physical interaction information which helps us to understand the role of 

significantly methylated genes in larger cellular mechanisms and points us to the 

possible area of the cell that needs to be analyzed for better understanding cancer[25].

 

Figure 5 Data model for Epigenetics database 
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3.3 Implementation of Data model for Epigenetics Database 

 

Figure 6 Implementation of Database 

 

 The data model for Epigenetics Database is implemented in 3 layers: Data 

storage layer, Application layer and Client Layer as shown in Figure8. To implement the 

architecture Linux Apache MySQL PHP (LAMP) stack was used.  

Data Storage Layer: 

 Database was implemented using MySQL database management system. The 

database has two interfaces. At first interface the data is dumped into the database as 

shown in Figure6 while at the second interface the data is pulled out of database so that 

it can be displayed by the web application. The query for inserting data in database is: 
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INSERT INTO methylation (gene_name,beta_value,p_value,state,stage,cancer,platform)  

VALUES (   from Python Parser); 

The data from other online data resources was directly imported from text files 

downloaded from these databases. The command used for importing the data from tab 

delimited text files: 

LOAD DATA INFILE 'database.txt' INTO TABLE epigentics_database_table FIELDS 

TERMINATED BY '\t' LINES TERMINATED BY '\n'; 

Application Layer: 

The application layer has 3 main components: Database Interface, Query Engine 

and Web Interface. Database Interface was implemented by forming a connection 

between PHP and database server. In order to make this connection “mysqli_connect ()” 

function from standard PHP library was used by providing proper credentials and the 

database name. Query Engine includes a collection of SQL queries that were used to 

extract relevant information from the database to fulfill various functionalities that are 

made available through interface. Web interface for the application was built using PHP 

and the site is hosted on Linux based server. Additional concepts of web programming 

were used for web interface implementation. Cascading Style Sheets (CSS) were used 

for designing various elements used on web page. Complex logic was implemented by 

making AJAX calls to various web pages. The whole of data storage and application 

layer is present on a server named “Regen” belonging to TiMAP group at IUPUI. 

 

 



  

27 
  

 Client layer:   

Client layer involves usage of browsers such as Mozilla Firefox, Google Chrome, 

and Internet Explorer by users to access the web interface from application layer. The 

link to access our web interface: 

 http://regen.informatics.iupui.edu/cgi-bin/epigenetics/DEVenv/index.php 

Through this layer users can select different options that are made available to them 

through web interface. These options then get converted into queries and fetch 

corresponding data from database. These actions are processed by initiating a HTTP 

requests to the server and completed by receiving an appropriate response from web 

server. Apache server application was used to handle HTTP requests from client 

browser, process them appropriately and to respond with a proper HTTP response. 

3.4 Python Parser 

In order to implement the above mentioned DNA methylation data analysis 

pipeline and integrate the results from pipeline to the data model of database, a python 

parser was built to carry out the necessary functionalities.  

The parser has 3 main roles to perform: collect raw data for respective cancer 

type from TCGA data repository, process the collected data through the designed 

pipeline and finally dump the results in the database in the format set by data model. A 

user provides a link for raw data to the parser. After the link is provided the parser 

downloads datasets for the concerned cancer. Along with the link to the raw datasets a 

metadata file containing the stage-wise information for the patients whose data is 

downloaded needs to be provided. Following the downloading step, the parser parses 

the metadata file and segregates the methylation data into different folders according to 

http://regen.informatics.iupui.edu/cgi-bin/epigenetics/DEVenv/index.php
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the stages defined in the file. It generates a tree structure for the files to be stored. The 

topmost node of the folder structure is named with the cancer name. This node is then 

sub-branched into the folders with stage number on them. The automation of this step 

saves the user from the laborious task of manually segregating the dataset files. For 

segregation the parser uses dictionary data structure in which the stage number is 

stored as a key and patient data filenames as values. When it scans the super set of 

datasets it uses this data structure to correctly divide the files in respective stage folders. 

Once the data is segregated correctly, the next step is of data cleaning and merging the 

datasets. At the data cleaning step duplicates are handled in the file by calculating 

median between multiple beta-values for same gene. Once the file is remedied from 

duplicated beta values the data for individual patients is merged and again the folder 

tree structure is further sub-branched into normal and cancer folders. This sub-branching 

happens for each stage present in the cancer.  

 

Figure 7 Python Parser 
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The data is now ready for identifying significant methylated epigenetics genes for the 

cancer. The statistical processing on the dataset was performed by using the 

appropriate statistical packages from R. In order to integrate python parser with R 

environment, system calls are made to the R interpreter from Python code. R provides a 

wide range of flexibility in setting different parameters for the statistical functions present 

in it. Once the analytical steps are performed on the data, the data is molded in a 

template that is consistent with the data model used to store data in epigenetics 

database. As soon as the data is loaded in database and a positive token is received 

from database server, the lifecycle for Python parser is finished. 

3.5 Case Study: LUAD 

The overall methodology for the stage-wise identification of LUAD process 

is shown in Figure 8 that includes four unique steps (A-D).  

 

Figure 8  Methodology to obtain patterns across stages of LUAD 
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Step A: the gene expression data from UNC AgilentG4502A_07_3 was analyzed based 

on the log2 values to obtain the differentially expressed genes.  

Step B: the methylation data from Illumina HumanMethylation27 for each stage was 

analyzed based on the beta value to obtain the differentially expressed methylated 

genes.  

Step C: the data obtained from step A and B was integrated to obtain a stage-specific 

network of LUAD. This network was annotated with the topological and biological 

features and analyzed for methylated pattern identification.  

Step D: the stage-specific subnetworks were obtained for LUAD. Details of each of 

these steps are now described in the following sections.  

Details of each of these steps are provided in the analysis pipeline section. 

Data 

The gene expression and DNA methylation data for LUAD were downloaded from 

TCGA.  The gene expression data were generated by UNC AgilentG4502A_07_3 and 

the methylation profiles were generated by Illumina HumanMethylation27 DNA Analysis 

which contains 27,578 CpG dinucleotides in 14,495 genes[34]. These dataset were 

downloaded on 10-12-2012 and arranged with respect to the four stages of LUAD. 

Across all these stage-wise data, the patient’s age ranged from 58-75 with few outliers. 
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Chapter 4 Results 

The objective of this thesis was to design DNA methylation data analysis pipeline 

and prove the robustness of database as a universal epigenetic analysis result storage 

unit. The database currently holds epigenetically relevant information for: Lung 

Adenocarcinoma (LUAD), Colon Adenocarcinoma (COAD) and Breast invasive 

carcinoma (BRCA). Each cancer has the significant methylated gene information 

segregated in stage-specific manner. The stage specific methylated gene is further 

annotated with data integrated from various other databases to make epigenetic sense 

out of data. Table 12 in Appendix section shows the fields present in databases selected 

for annotations. The table also states reason for selecting particular database for 

annotation of methylated gene. LUAD was considered as a case study to prove the 

effectiveness of pipeline in analyzing DNA methylation data sets to obtain meaningful 

analysis. The TCGA data associated with LUAD was classified based on four stages.  

Across all these stage-wise data, the patient’s age ranged from 58-75 with few outliers.  

4.1 Effectiveness of analysis pipeline  

Identification of highly scored significant DNA methylated genes 

The Significant expressed genes and Significant DNA methylated genes were 

identified based on the p-values and beta-values for each stage as described in the 

methodology.  Resampling technique performed the correction and provided the set of p-

values. Using the technique used in paper [22], p-value of 0.0012 was obtained from q-

values. Using this cutoff the Significant DNA methylated genes were re-evaluated and 

overlap between the previous and resampled results was calculated. A substantial 

amount of overlap between old and new set of Significant DNA methylated genes was 

observed. Figure 16 in Appendix shows the p-value correction for original and corrected 
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Stage I data after resampling.  The DNA methylated genes were then further classified 

as hypermethylated and hypomethylated (methodology section).  Table 8 lists the 

statistics for each stage.  

The significant DNA methylated genes were analyzed and ranked based on their 

beta-values. Table 2 lists the top 10 hyper/hypomethylated genes across stages in 

descending order of their beta-values. 

As shown in Table 2, 10 of the highly methylated genes in Stage I were common 

across the three Stages (Table 1). Of these 10, 7: AJAP1, ATP8A2, HOXA9, PTGDR, 

SIX6, TLX3, TMEM130 were hypermethylated and the three: KRTAP8-1, MMP26 and 

REG3A were hypomethylated. Three of the seven (Stage I) genes: AJAP1, TLX3, 

PTGDR were also identified in Stage III. Interestingly the three top scored 

hypomethylated genes in Stage I were identified as top scored hypermethylated in Stage 

II.  In addition, some of the top scored DNA methylated genes were common across two 

stages only (Table 1): LY96 was the top scored hypomethylated gene and top scored 

hypermethylated in Stage I and II respectively. While HOXA4, HOXD10, KRTAP15-1, 

LEP and NKX6-2 were identified as common across Stage II or III (Table 1). Table 2 

also identified unique top scored DNA methylated genes i.e. 3 for Stage I, 8 for Stage II 

and 13 for Stage III. Comparison of highly DNA methylated genes across stages (Table 

2) with common methylated genes across stages (Table 1) also depicts that a large 

number of the highly methylated genes are common across the stages and these can 

play an important role for understanding the disease. 
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Table 1 Common DNA methylated genes across stages 

Stages DNA methylated genes 

Number List of genes 

Common DNA 
methylated genes 
across the three 
stages 

34 AJAP1, ATP8A2, CCDC140, CNTP2, CYYR1, 
EVX1, FERD3L, FOXG1, GRIK3, GRM6, HAND2, 
HOXA9, HOXB4, HOXD4, HOXD9, HOXD12, 
INPP5B, OTX2, KRTAP8-1, MMP26, PHOX2A, 
PLEKHA6, POU4F2, PRAC, PRKCB, PTGDR, 
REG3A, SIX6, SLC6A2, SPAG6, TBX20, TLX3, 
TMEM130, ZNF560 

Common DNA 
methylated genes 
across Stage I & II 

12 ADCY4, BHMT, C12orf34, CDO1, LVRN, LY96, 
MSC, PCDHGA12, POU3F3, ZNF154, ZNF577, IHH 

Common DNA 
methylated genes 
across Stage II & III 

30 BARHL2, C10orf81, CCDC140, DEFB119, DIO3, 
FAM135B, FAM83A, GRIK2, HOXA4,  HOXD10, 
HS3ST2, KCNS2, KRTAP15-1, LEP, LHX1, LYPD5, 
MAGEB6, NEUROG1, NKX6-2, OR5I1, SERPINB5, 
SPHKAP, TAL1, TBX4, TBX5, TCN1, TMEM132D, 
VSX1, ZNF454, IGKV7-3 

Common 
hypermethylated 
genes across Stage 
I and Stage III 

42 AJAP1, ATP8A2, CCDC140, CNTP2, CYYR1, 
EVX1, FERD3L, FOXG1, FOXI2, GALR1, GAS7, 
GRIK2, GRM6, HAND2, HLA-G, HOXA7, HOXA9, 
HOXB4, HOXD4, HOXD8, HOXD9, HOXD12, 
INPP5B, NID2, NPY, OTX2, PAX7, PHOX2A, 
PLEKHA6, POU4F2, PRAC, PRKCB, PTGDR, SIX6, 
SLC6A2, SOX17, SPAG6, TBX20, TLX3, 
TMEM130, VIPR2, ZNF560 

Common 
hypomethylated 
genes across Stage 
I and Stage III 

3 CORO6, MMP26, REG3A 

 

Table 2 Identification of top beta-value scored DNA methylated genes across stages 

Stage Hyper/Hypo Genes in descending order of beta-values (p<0.001) 

I Hyper TLX3  > NEFM  >  PTGDR  >  AJAP1  >  SIX6  >  HOXA9  
>  TMEM130  > HISTIH3G  >  ATP8A2  > NID2 

Hypo MMP26 > KRTAP 8-1 > REG3A > CORO6 > LY96 

II Hyper LY96 > C10orf81> KRTAP8-1 > MMP26 > REG3A > 
DEFB 119 > NMUR2 > MAGEB6 > IGKV7-3 <  KRTAP15-
1 

Hypo HTR2C > GRIK3 > CNTP2 > SPHKAP > TMEM132D > 
NEFH > LEP > ZNF177 > HOXD10 > NKX 6-2 

III Hyper TLX3 > HOXB4 > AJAP1 > HOXA4 > HOXD9 > PTGDR > 
LYPD5 > FZD10 > HOXD12 > NECAB2 

Hypo CHR6 > C13orf28 > TMEM156 > XDH > FGF6 > IVL >  
G6PC > KRTAP13-2 > C10orf39 > FCRL3 
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Network construction and analysis 

A systems biology approach was used to determine the significance of the DNA 

methylated genes in terms of their associated expressed genes in each stage. The 

interactions between the significant genes (both methylated and non-methylated as 

listed in Table 3), were identified using BioGRID[25] and stage-specific networks were 

constructed. These networks were then annotated with respect to their DNA methylated 

genes.  

Table 3 DNA methylated gene interactions across stages 

Stage Number of DNA methylated genes Number of interactions 

I 72 228 

II 93 273 

III 170 660 

 

The gene interaction analysis showed that each DNA methylated gene also 

interacted with additional genes in BioGRID [25]. These additional genes were analyzed 

for their expression in all the stages to determine if DNA methylation affected their 

expression.  These interactions were termed as “missing links”, and the additional genes 

as “novel genes”. Table 4 gives the profile of the missing links. 

Table 4 Novel genes (Missing Link-methodology) discovered using BioGRID 

Stage Missing 
Links 

Novel 
genes 

Number of DNA 
methylated 

genes 

Number of novel genes and the stages 
where these are identified 

I 27 27 16 6(Stage II, III),6 (Stage II),3 (Stage III) 

II 43 33 25 10 (Stage I, III), 2 (Stage III) 

III 132 83 32 34 (Stage I, II), 3 (Stage I), 7 (Stage II) 

 

Further analysis of the 27 novel Stage I genes for their significance in other stages 

indicated 6 of them in Stage II: ANXA7, APBB1IP, MDK, PFDN1, TINF2, TLE2; 3 in 

Stage III: CUL5, CTNNB1 and SQSTM1 and 6 in Stages II and III: CALM1, CTNNB1,c-
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JUN, SMAD1, TINF2.  Of the 33 novel Stage II genes 2 were associated in Stage III: 

A2M and CTNNB1I; and 10 genes in Stages I and III:  FOXA2, HK3, NCF1, NRIP1, 

PDLIM1, SP1, SUMO1, TCF4, TLR4, and TNN. Analyses of the 83 novel Stage III genes 

found three in Stage I: ELN, FAS and TEX11; 7 in Stage II: ANXA7, APBB1IP, MDK, 

PFDN1, STAT3, TLE2, UBE2B and 34 in Stages I and II:BCR, DLG3m, DLG4, EGFR, 

DSP, MAFF, PICK1 etc.      

  Figure 9 shows the stage-specific networks of DNA methylated genes. From this 

figure it can be seen that Stage III networks were more connected and dense as 

compared to other two stage networks, suggesting the greater number of epigenetically 

modified genes in later stages can influence the LUAD network. 

 

Figure 9 Stage-wise network patterns for methylated genes in LUAD 
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To compare stage-wise networks, DNA methylated gene subnetworks were identified 

and analyzed. Figure 15 in Appendix section shows the distribution of important classes 

of pathway across different stages of LUAD. SEED and expand algorithm (described in 

methods) was used to identify the subnetworks. Table 9 in Appendix list the number of 

subnetworks. These subnetworks were overlapping as the genes in them belonged to 

different pathway class. Table 9 in Appendix shows that the number of subnetworks 

drastically increases between sizes four and five in most of the stages, making it an NP-

hard problem. This sharp increase in the number of sub-network suggests that though 

the DNA methylated gene is not directly connected to a hub node, its interaction path 

has a hub node. This further indicates that a DNA methylated gene can influence the 

whole network of a given stage. Table 5 lists the subnetworks with greater number of 

connections identified in all three stages. 

Table 5 Analysis of hub genes in the DNA methylated subnetworks of size 4 

Stage Sub-network Connectivity profile of the hub node 
across pathways 
Cancer Lung 

cancer 
Signaling Meta-

bolic+ 
others 

I (i) PHOX2A*:HAND2*:PPP2R5D:UBC 
(ii) HLA-G*:COPB1:TRIM37:UBC 
(iii) LY96*:TLR4:SIGIRR:UBC  

23 13 71 288 

 (iv)HLA-G*:COPB1:UBC:CUL1 
(v)FOXG1*:FOXH1:SMAD3:CUL1 

21 14 35 114 

 (vi)HLA-G*:COPB1:UBC:SKP2 19 10 17 38 

II (i)PHOX2A*:c-JUN:SUMO3:UBC 
(ii)TAL1*:HDAC1:IRF5:UBC 

23 14 74 254 

 (iii)PRKCB*:HIST1H3I:CUL4A:CUL1  20 14 74 253 

III (i)PHOX2A*:c-JUN:SUMO3:UBC 
(ii)PHOX2A*:HAND2*:PPP2R5D:UBC  

22 10 64 235 

 (iii)PRKCB*:HIST1H3I:CUL4A:CUL1 20 13 35 102 

  *: commonality with Table 1 

As shown in Table 5, UBC and CUL1 were identified as hub gene across the 

three stages and their connectivity profile changes with pathway class. The other hub 

genes (number of connections) identified in Stages I and III were: SIRT7 (6), CDK2 (5), 
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PMS2 (4 connections), SUMO2 (3), SMAD3 (7), SMAD4 (5), and SMAD2 (4). The 

analysis also identified LY96 sub-network in Stage I consisting of the hub gene TLR4 

interacting with seven other genes. Though LY96 was also identified in Stage II, the 

comparative sub-network was smaller and this gene was not identified at all in Stage III. 

HLA-G was present in Stage I but not in Stage II; therefore all its sub-networks were 

missing. In Stage II and III, c-Jun a TF was identified as a hub gene. PHOX2A was the 

DNA methylated gene associated with c-Jun in both stages.  There was similarity across 

common gene (see Table 1) with Table 6, depicting that subnetworks constructed out of 

common genes across or between two stages can be of significance for LUAD.  The size 

four subnetworks were further compared across the stages to understand their 

commonality and uniqueness (Table 10 in Appendix). These size four subnetworks were 

analyzed for their common DNA methylated genes. The common DNA methylated 

genes in these size four subnetworks present across cancer, lung cancer and signaling 

pathway classes were FOXG1 and PHOX2A (see in Table 1 also). The other common 

significant but not methylated genes present in these subnetworks were FOXH1, 

FOXO3, HAND2, MYC, RB1, SMAD2, SMAD3, SMAD4, and TP53. The unique genes in 

these subnetworks that were associated with other cancer and lung-cancer pathways 

were LEF1, AR, GATA4, and SKP2. Similarly, in the metabolic pathways class, the 

highly conserved common sub-networks of GRIK2, GRIK3, GRIK5, and GRID2 were 

identified across all stages. Of these GRIK3 was methylated in all the three stages 

(Table 1) and GRIK2 in Stages I and III (Table 1).   

Analysis of these subnetworks is an NP-hard problem because these are large 

open subnetworks.  To reduce the complexity, the nodes and edges were scored based 

on the NodeStrength and EdgeStrength as given in methods section. The top scored 

size four subnetworks of each stage (Table 5 and Table 9 in Appendix) were propagated 
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and compared to identify the largest conserved subnetworks across the stages. This 

analysis identified a sub-network of size 11 with seven conserved genes: UBC, KRAS, 

PIK3CA, PIK3R3, RAF1, BRAF, and RAP1A.  The g:Profiler tool was used for the  

enrichment analysis on the top scored sub-network given in Table 6.  This analysis 

showed that these subnetworks to be enriched with common genes across stages 

(shown in Table 1), indicating that commonality across stages of LUAD can be critical in 

identifying the target genes.  

Table 6 Enrichment analysis of the top scored subnetworks 

Stage Biological Process p-value  Genes in subnetworks 

Common 
across 
all 
Stages 

Activation of MAPKK 
activity 

1.12E-03 PHOX2A*, HAND2*, 
PPP2R5D, UBC, KRAS, 
PIK3CA, PIK3R3, RAF1, 
BRAF, RAP1A 

I & II Co-SMAD binding 1.2E-05 FOXG1*, FOXH1, 
SMAD2, SMAD1, 
MED15, UBC, KRAS, 
PIK3CA, PIK3R3, RAF1, 
BRAF, RAP1A 

II & III Nerve growth factor 
receptor signaling 
pathways 

2.21E-04 HOXD4*, INPP5B, 
SLC6A2, STX1A, 
VAMP1, UBC, KRAS, 
PIK3CA, PIK3R3, RAF1, 
BRAF, RAPIA 

I & III Positive regulation of 
peptidyl-serine 
phosphorylation 

1.42E-03 NPY*, NPY1R, LSM7, 
NR1H2, RMI1, UBC, 
KRAS, PIK3CA, PIK3R3, 
RAF1, BRAF 

I Transmembrane 
receptor protein 
tyrosine kinase 
signaling pathway 

1.87E-03 HLA-G*, COPB1, UBC, 
KRAS, PIK3CA, PIK3R3, 
RAF1, BRAF, RAP1A 

II DNA helicase 
complex 

6.8E-05 SERPINB5*, UCHL5, 
ACTR8, ACTR5, UBC, 
KRAS, PIK3CA, PIK3R3, 
RAF1, BRAF 

III Nerve growth factor 
receptor signaling 
pathway 

5.5E-04 HOXB4*, CREBBP, 
KLF13, UBC, KRAS, 
PIK3CA, PIK3R3, RAF1, 
BRAF, RAP1A 

 *: commonality with Table 1 
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4.2 Database statistics 

In order to avoid the loss of methylation data due to statistical stringency, the data 

entering the database skips the q-value filter for the p-values. This allows a researcher 

to select a data filtration of his/her choice in downstream processing based on the p-

values provided through the database interface. The statistics shown in table 7 varies 

from the statistics in table 8 for LUAD because of the q-value filtration.       

Table 7 Distribution of methylated genes for cancer data in database 

 LUAD COAD` BRCA 

 Hyper Hypo Hyper Hypo Hyper Hypo 

Stage1 134 21 507 441 0 0 

Stage2 108 39 685 241 391 137 

Stage3 231 119 616 340 208 124 

Stage4 0 0 0 0 - - 

   

The methylated stage specific genes are annotated with following data: 

1. Gene name 

2. Beta value 

3. P value 

4. State 

5. Stage 

6. Pathway 

7. Go Terms 

8. Interaction 

9. Disease 

The disease column is further connected to “Environmental Factors” responsible for 

inception of the disease. This is an important link as the knowledge of “Environmental 
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Factors” is a key point in understanding the variation of methylation levels based on the 

external factors. 

Table 8 Distribution of significant genes and methylated genes across the four stages of 
LUAD 

4.3 Database Interface    

 Epigenetics database can be queried using a combination of 3 options that are 

presented at the homepage of the interface for the database. Figure 10 shows the home 

page of the website for the database. The left panel on the page has external links to 

additional electronic resources of epigenetic data. Central panel holds the searching 

capability. First the user can select from the list of cancer types that are currently present 

in the database. Based on the cancer type associated stages get populated into the 

“Select Stage” dropdown. From the options displayed, one can select information for 

individual stages or can call for a combined result set of all stages present in the 

selected cancer.  The third option provides the usability of filtering the result set on the 

basis of state of the gene whether it is hyper or hypo methylated. User can also choose 

to obtain a combined result set of hyper/hypomethylated genes for a cancer type and its 

stage. 

Stage Number of 
Normal 

Samples 

Number of 
Disease 
Samples 

Significant 
Genes 

DNA Methylated 
Genes 

Hyper Hypo 

I  9 35 15994 67 5 

II 7 14 16275 20 73 

III 5 11 14688 110 60 

IV 2 6 14814 0 0 
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Figure 10 Home page for Epigenetics Database 

 

Figure 11 shows the LUAD result table filtered for hypermethylated genes in 

Stage 1 of cancer. Each gene in the table is characterized both statistically and with 

epigenetic relevant information. The statistics includes beta and p values for a 

methylated gene. These measures can be used by researchers to set up their own 

downstream processing experiments and derive results or networks for their respective 

researches. Beta values also state the methylation level of the genes in that specific 

cancer whereas the p-values state the statistical significance of the methylation level 

which is based on Mann Whitney test. Other epigenetically associated parameters such 

as pathways, GO terms, interactions and disease information help in understanding the 

role and nature of gene which can be used to make inferences for treating them.          
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Figure 11 Result Table for options selected for query engine 

 

 The most important association of the database is shown in Figure 12. It shows 

the relationship between a gene, pathways it is present in and the disease caused by its 

malfunctioning. Disease field is then related to the environmental factors that may be 

responsible for the aberration of a gene’s normal function. This loop completes the basic 

requirement of an epigenetic study which is the role of environmental factors in 

controlling the activity of a gene. Finally Figure 13 and 14 show the tables with GO terms 

and physical interactions for a gene. These tables help to elucidate the functions and 

interacting genes that may be affected by the methylation of a gene and can provide a 

local target for understanding the molecular working of a cancer.   
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Figure 12 Relationship between gene, pathway, disease and factors causing the 
disease 
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Figure 13 GO Terms associated with a methylated gene 

 

 

Figure 14 Interactions for a particular gene 
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Chapter 5 Conclusion 

Our work proved the importance of integrating methylation data with the 

expression data for finding the patterns in a cancer. It showed the robustness of pipeline 

built for identifying key patterns which were helpful for distinguishing stages within a 

cancer and understanding critical targets for drug treatment. In addition to pipeline the 

data model used to store the meaningful data from analysis uses a sound parser, 

emphasizes the application of process automation and data warehousing for 

epigenetics.  

The DNA methylation epigenetics data analysis pipeline is entirely based on the 

available TCGA data, which has the limitation of unequal samples, still we were able to 

prove the advantage of integrating epigenetic data, expression data and protein-protein 

interaction knowledge for advancing of systematic understanding of LUAD. This 

understanding can be further improved by incorporating the system biology approach to 

the epigenetic profile across the different stages of cancer data. This study’s detailed 

analysis of epigenetics genes identified 72, 93 and 170 epigenetic genes across Stages 

I, II and III of LUAD. A set of 32 common epigenetic genes was identified across the 

three stages, and it was observed that methylation patterns were similar across Stages I 

and III, but were different in Stage II. The study also identified known and novel 

epigenetic genes across stages that were important   in LUAD, these genes could be 

further validated in the laboratory for their scope as targets. The novel epigenetic genes 

identified were PTGDR, POU4F2, TLX3, and MMP26 along with these genes study 

identified early and late expression profiles of NEUROG1, AJAP1, and CORO6 in LUAD. 

System biology approach stated that epigenetic genes were not the hub nodes but could 

still affect the hub genes in the networks, eventually playing a critical role in the disease 

mechanism. Subnetworks of size 11 with 7 conserved genes across the three stages 
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were all literature validated, confirming their importance in LUAD. Therefore, it can be 

concluded that integrating epigenetic genes with expression data can be useful for 

comprehending in-depth disease mechanism and for the ultimate goal of better target 

identification. 

The data model built to house the analysis results has a structure capable of 

managing the current input of data with flexibility to incorporate future changes which will 

come by integration of sequencing data. Currently the database holds analysis results 

for 3 cancers: Lung adenocarcinoma (LUAD), Colon adenocarcinoma (COAD) and 

Breast invasive carcinoma (BRCA). The web interface for this cancer results provides a 

structure and data which is more epigenetically meaningful compared to other databases 

which just display experimental data rather than compiling them in a way which makes 

sense to lot of scientist. Our database and its interface is designed in both simplistic as 

well as deep way that it will help a novice in the field to have it as its starting point and 

act as a support mechanism for a seasoned epigenetics analyst. The interface helps a 

user to query our database with multiple options which include a combination of 3 fields: 

cancer type, cancer stage and state of the genes. A user can select one of the cancer 

types that are currently available in our database and accordingly can select one of the 

stages or information on all stages. Once the cancer type and stage is selected an 

additional filter of methylation state is made available which helps them to extract genes 

whose state can be hypermethylated or hypomethylated. This provides the depth and 

granularity of analysis which is often required in understanding the epigenomics 

landscape of any cancer. On selecting above mentioned options a result table is 

displayed with multiple fields explaining the epigenetic parameters affected in that 

cancer. Beta-value field provides quantitative measure for a gene to determine its state 

in a cancer which can be either hyper or hypomethylated. The p-value field provides the 
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statistical significance measure which helps researchers to infer the qualitative meaning 

of beta-values. Additional fields such as Pathways, GO terms, Interactions and Disease 

help in understanding the relationship of gene with other cellular components covering 

most of the factors which can have influence on the activity of gene fulfilling the most 

important requirement of any epigenetic study. The disease field throws light on the role 

of gene in other diseases which brings in the additional information on the ways to tackle 

the gene aberration. Environmental factors field having the factors affecting the gene in 

a particular disease form help us to link these factors back to the state of gene in cancer. 

Thus our database provides a holistic view of DNA methylation epigenetic state of all 

affected genes in a particular cancer. 

Hence using the pipeline developed through this thesis work and the data model 

designed to store the analysis results a researcher can create an experimental 

framework for any cancer study that he wishes to understand. The interface for database 

has a visual display which is created by a compilation of the fields that bring more 

epigenetic sense to the methylation data. Integration of methylation and expression data 

in the pipeline identifies important patterns and key targets which can help in prognosis 

of variable stages in cancer. The pipeline in conjunction with database can be utilized to 

design a strong architecture to detect the signs of aberrant DNA methylation of gene 

which can help in early detection of cancer.           
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Chapter 6 Discussion 

Current epigenetic resources lack important parameters which make it difficult for 

researchers to picture a complete epigenomics working for any cellular machinery 

involved in cancer. There are numerous analysis pipelines available to analyze 

epigenetic data making it difficult to integrate them. We provide a solution to these 

problems by developing a universal pipeline not only to obtain significant methylated 

genes but to identify progressive methylation patterns present in different stages of any 

cancer. Although our pipeline was built using TCGA datasets, it can be extended to any 

platform providing beta-values and log2 ratios for the genes involved in cancer. The 

parser gives a great advantage in automating the execution of pipeline and saves the 

laborious tasks which often lead to human error.  

Our pipeline for LUAD as a case study showed that the maximum number of 

DNA methylated genes was identified for Stage III followed by Stage II and then Stage I. 

None of the genes in Stage IV met the filtering criteria; therefore, no genes were 

identified as DNA methylated. From Table 1, it can be seen that hypermethylated genes 

were more prevalent in Stages I and III than in Stage II. Though this study identified 34 

common DNA methylated genes (see Table 2) across the three stages, many of these 

have not been previously studied in LUAD. The HOX genes that were common across 

the three stages are TFs and grouped into four HOX families, A, B, C, and D; equivalent 

numbered HOX genes (HOXA9, HOXB9) in each family groups (A, B, C, D) are 

paralogs.  The analysis found HOXA4, HOXA9, HOXB4, HOXD9, and HOXD12 genes 

with high methylation value, suggesting these genes play an important role in all stages 

of LUAD. These genes are known to be involved in cell proliferation while preventing 

apoptosis and help in survival [35], dysregulated behavior of HOX genes has been  

observed in ovarian cancer [36]. Early stage HOXA9 methylation has been identified in 
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lung cancer and used in early detection and prognosis [37, 38]. Our analysis found HOX 

genes in all stages, with hypermethylation in Stages I and III, hypomethylation in Stage 

II. While no previous studies have associated the profile of HOX genes with stages, 

though re-appearance was identified and our analysis demonstrated this aspect. Another 

gene identified by our analysis across all three stages was PTGDR, which was highly 

hypermethylated in Stages I and III (Table 1). PTGDR has been negatively correlated 

with smoking [39] and methylated in colon cancer [40], however, prior studies have not 

investigated its role in LUAD.  POU4F2 and TLX3 were identified in all three stages   and 

TLX3 was highly methylated in Stages I and III (Table 1). Previous studies have found 

them as methylated in leukemia and breast cancer respectively [41, 42] but not in LUAD.  

Overexpression of TBX20, which was also identified in this study (see Table 1) has been 

reported in lung cancer [43]. EVX1 and OTX2 (see Table 2) were identified as 

methylated in NSCLC and lung cancer [44, 45].  MMP26 has been associated with tumor 

development, invasion and metastasis of NSCLC but its methylation profile was not 

reported [46], our analysis showed it to be highly hypomethylated in Stage II (Table 1). 

There was no literature evidence about KPTAP8-1, REG2A, and SLX6 for their 

significance or methylation in lung cancer.  

Of the 12 common methylated genes common to Stages I and II, LY96 has been 

previously associated with lung cancer [47]; ZNF577 and LVRN  has been identified as 

methylated in lung cancer [45] and renal carcinoma, but not in LUAD [48].  LY96 was 

highly hypomethylated in Stage I and hypermethylated in Stage II (as shown in Table 1), 

suggesting further investigation into its role in LUAD. 

In addition to pipeline the data model for database is only designed to capture 

the DNA methylation aspect of epigenetic study. In order to be called as epigenetic 

database the coverage needs to be extended to other wings of epigenetics which 
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include concepts such as histone modifications and data on chromatin remodeling. But 

the model provides a complete solution for DNA methylation data. It covers all important 

aspects that are needed for a researcher to understand the problem and provides 

sufficient fields to come with possible cure. The initial version of database was aimed to 

tackle the major epigenetic sub-type which is DNA methylation. Fields such as 

pathways, go terms, interactions are considered to be important factors affected by DNA 

methylation aberration. Understanding the relation between other cellular components 

can throw light on the role of affected gene and its cause of variation from normal state. 

The field for environmental factors included from KEGG database [24] includes the basic 

requirement for epigenetics analysis which most of the data resources in this sector fail 

to include in their data model. It laid a foundation which has given a way to a framework 

which can be used to include different data structures required to process different types 

of epigenetics data.     

Thus the combination of analysis pipeline, parser implementing the pipeline and 

the data model housing the analysis results can be used for efficient processing of any 

DNA methylation epigenetic data.  
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Chapter 7 Future Work 

Inclusion of other epigenetics branches such as histone modifications and 

chromatin remodeling data analysis forms the major task for the future work of our 

epigenetics system. We also wish to include sequence data which seems to be the 

future form for any kind of scientific data that would be available for analysis. For data 

model, it will be extended to accommodate these new forms of data that would be 

coming from the new pipelines designed. The interface will have more epigenetics 

analysis tools which researchers can use to analyze their datasets. The pipeline parser 

would also be made available through interface so that it can be used by researchers to 

automate their experimental analysis. We also wish to integrate various visualization 

tools such as Cytoscape [49] and Circos [50] through our interface which would help in 

visualization of analysis results.   

 

 

 

 

 

 

 

 

 

 



  

52 
  

Chapter 8 References 

1. Wong AH, Gottesman II, Petronis A: Phenotypic differences in genetically identical 
organisms: the epigenetic perspective. Human Molecular Genetics 2005, 14(suppl 
1):R11-R18. 

2. Bird A: Perceptions of epigenetics. Nature 2007, 447(7143):396-398. 
3. Russo VE, Martienssen RA, Riggs AD: Epigenetic mechanisms of gene regulation: Cold 

Spring Harbor Laboratory Press; 1996. 
4. Jaenisch R, Bird A: Epigenetic regulation of gene expression: how the genome 

integrates intrinsic and environmental signals. Nature genetics 2003, 33:245-254. 
5. Straussman R, Nejman D, Roberts D, Steinfeld I, Blum B, Benvenisty N, Simon I, Yakhini 

Z, Cedar H: Developmental programming of CpG island methylation profiles in the 
human genome. Nature structural & molecular biology 2009, 16(5):564-571. 

6. Esteller M: Cancer epigenomics: DNA methylomes and histone-modification maps. 
Nature Reviews Genetics 2007, 8(4):286-298. 

7. Goelz SE, Vogelstein B, Feinberg A: Hypomethylation of DNA from benign and 
malignant human colon neoplasms. Science 1985, 228(4696):187-190. 

8. Schemies J, Uciechowska U, Sippl W, Jung M: NAD+‐dependent histone deacetylases 
(sirtuins) as novel therapeutic targets. Medicinal research reviews 2010, 30(6):861-889. 

9. Plimack ER, Kantarjian HM, Issa J-P: Decitabine and its role in the treatment of 
hematopoietic malignancies. Leukemia & lymphoma 2007, 48(8):1472-1481. 

10. Lane AA, Chabner BA: Histone deacetylase inhibitors in cancer therapy. Journal of 
Clinical Oncology 2009, 27(32):5459-5468. 

11. Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, 
Snyder M, Dermitzakis ET, Thurman RE: Identification and analysis of functional 
elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 
447(7146):799-816. 

12. Ongenaert M, Van Neste L, De Meyer T, Menschaert G, Bekaert S, Van Criekinge W: 
PubMeth: a cancer methylation database combining text-mining and expert 
annotation. Nucleic acids research 2008, 36(suppl 1):D842-D846. 

13. He X, Chang S, Zhang J, Zhao Q, Xiang H, Kusonmano K, Yang L, Sun ZS, Yang H, Wang J: 
MethyCancer: the database of human DNA methylation and cancer. Nucleic acids 
research 2008, 36(suppl 1):D836-D841. 

14. Rollins RA, Haghighi F, Edwards JR, Das R, Zhang MQ, Ju J, Bestor TH: Large-scale 
structure of genomic methylation patterns. Genome research 2006, 16(2):157-163. 

15. Grunau C, Renault E, Rosenthal A, Roizes G: MethDB—a public database for DNA 
methylation data. Nucleic acids research 2001, 29(1):270-274. 

16. Fingerman IM, McDaniel L, Zhang X, Ratzat W, Hassan T, Jiang Z, Cohen RF, Schuler GD: 
NCBI Epigenomics: a new public resource for exploring epigenomic data sets. Nucleic 
acids research 2011, 39(suppl 1):D908-D912. 

17. Kitano H: Systems biology: a brief overview. Science 2002, 295(5560):1662-1664. 
18. Lokk K, Vooder T, Kolde R, Välk K, Võsa U, Roosipuu R, Milani L, Fischer K, Koltsina M, 

Urgard E: Methylation markers of early-stage non-small cell lung cancer. PloS one 
2012, 7(6):e39813. 

19. Chen C, Grennan K, Badner J, Zhang D, Gershon E, Jin L, Liu C: Removing batch effects in 
analysis of expression microarray data: an evaluation of six batch adjustment 
methods. PloS one 2011, 6(2):e17238. 



  

53 
  

20. Walter K, Holcomb T, Januario T, Du P, Evangelista M, Kartha N, Iniguez L, Soriano R, 
Huw L, Stern H: DNA methylation profiling defines clinically relevant biological subsets 
of non–small cell lung cancer. Clinical Cancer Research 2012, 18(8):2360-2373. 

21. Kruskal WH: Historical notes on the Wilcoxon Unpaired Two-Sample Test. Journal of 
the American Statistical Association 1957, 52(279):356-360. 

22. Storey JD: A direct approach to false discovery rates. Journal of the Royal Statistical 
Society: Series B (Statistical Methodology) 2002, 64(3):479-498. 

23. Efron B, Tibshirani R: An introduction to the bootstrap, vol. 57: CRC press; 1993. 
24. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids 

research 2000, 28(1):27-30. 
25. Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general 

repository for interaction datasets. Nucleic acids research 2006, 34(suppl 1):D535-
D539. 

26. Newman M: Networks: an introduction: Oxford University Press; 2009. 
27. Watts DJ, Strogatz SH: Collective dynamics of ‘small-world’networks. Nature 1998, 

393(6684):440-442. 
28. Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S: GOSemSim: an R package for measuring semantic 

similarity among GO terms and gene products. Bioinformatics 2010, 26(7):976-978. 
29. Chuang H-Y, Lee E, Liu Y-T, Lee D, Ideker T: Network-based classification of breast 

cancer metastasis. Molecular systems biology 2007, 3(1). 
30. Milenković T, Memišević V, Bonato A, Pržulj N: Dominating biological networks. PloS 

one 2011, 6(8):e23016. 
31. Vidal M, Cusick ME, Barabasi A-L: Interactome networks and human disease. Cell 2011, 

144(6):986-998. 
32. Kroenke D, Auer DJ: Database processing: Science research associates Reading, MA; 

1977. 
33. Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu Y, Roskin KM, Schwartz M, 

Sugnet CW, Thomas DJ: The UCSC genome browser database. Nucleic acids research 
2003, 31(1):51-54. 

34. Sabbah C, Mazo G, Paccard C, Reyal F, Hupé P: SMETHILLIUM: spatial normalization 
method for Illumina infinium HumanMethylation BeadChip. Bioinformatics 2011, 
27(12):1693-1695. 

35. Gray S, Pandha HS, Michael A, Middleton G, Morgan R: HOX genes in pancreatic 
development and cancer. Jop 2011, 12(3):216-219. 

36. Kelly ZL, Michael A, Butler-Manuel S, Pandha HS, Morgan R: HOX genes in ovarian 
cancer. Journal of ovarian research 2011, 4(1):1-6. 

37. Hwang S-H, Kim KU, Kim J-E, Kim H-H, Lee MK, Lee CH, Lee S-Y, Oh T, An S: Detection of 
HOXA9 gene methylation in tumor tissues and induced sputum samples from primary 
lung cancer patients. Clinical Chemistry and Laboratory Medicine 2011, 49(4):699-704. 

38. Rauch T, Wang Z, Zhang X, Zhong X, Wu X, Lau SK, Kernstine KH, Riggs AD, Pfeifer GP: 
Homeobox gene methylation in lung cancer studied by genome-wide analysis with a 
microarray-based methylated CpG island recovery assay. Proceedings of the National 
Academy of Sciences 2007, 104(13):5527-5532. 

39. Charlesworth JC, Curran JE, Johnson MP, Göring HH, Dyer TD, Diego VP, Kent JW, 
Mahaney MC, Almasy L, MacCluer JW: Transcriptomic epidemiology of smoking: the 
effect of smoking on gene expression in lymphocytes. BMC medical genomics 2010, 
3(1):29. 



  

54 
  

40. Spisák S, Kalmár A, Galamb O, Wichmann B, Sipos F, Péterfia B, Csabai I, Kovalszky I, 
Semsey S, Tulassay Z: Genome-wide screening of genes regulated by DNA methylation 
in colon cancer development. PloS one 2012, 7(10):e46215. 

41. Vilas–Zornoza A, Agirre X, Martin-Palanco V, Martín-Subero JI, San José-Eneriz E, Garate 
L, Alvarez S, Miranda E, Rodriguez-Otero P, Rifón J: Frequent and simultaneous 
epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia. PloS 
one 2011, 6(2):e17012. 

42. Hartmann O, Spyratos F, Harbeck N, Dietrich D, Fassbender A, Schmitt M, Eppenberger-
Castori S, Vuaroqueaux V, Lerebours F, Welzel K: DNA methylation markers predict 
outcome in node-positive, estrogen receptor-positive breast cancer with adjuvant 
anthracycline-based chemotherapy. Clinical Cancer Research 2009, 15(1):315-323. 

43. Davis E, Teng H, Bilican B, Parker M, Liu B, Carriera S, Goding C, Prince S: Ectopic Tbx2 
expression results in polyploidy and cisplatin resistance. Oncogene 2007, 27(7):976-
984. 

44. Geng J, Sun J, Lin Q, Gu J, Zhao Y, Zhang H, Feng X, He Y, Wang W, Zhou X: Methylation 
status of NEUROG2 and NID2 improves the diagnosis of stage I NSCLC. Oncology 
Letters 2012, 3(4):901-906. 

45. Rauch TA, Wang Z, Wu X, Kernstine KH, Riggs AD, Pfeifer GP: DNA methylation 
biomarkers for lung cancer. Tumor Biology 2012, 33(2):287-296. 

46. Zhang Y, Zhao H, Wang Y, Lin Y, Tan Y, Fang X, Zheng L: Non-small cell lung cancer 
invasion and metastasis promoted by MMP-26. Molecular Medicine Reports 2011, 
4(6):1201-1209. 

47. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D: GeneCards: integrating information 
about genes, proteins and diseases. Trends in Genetics 1997, 13(4):163. 

48. López-Lago MA, Thodima VJ, Guttapalli A, Chan T, Heguy A, Molina AM, Reuter VE, 
Motzer RJ, Chaganti RS: Genomic deregulation during metastasis of renal cell 
carcinoma implements a myofibroblast-like program of gene expression. Cancer 
research 2010, 70(23):9682-9692. 

49. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, 
Ideker T: Cytoscape: a software environment for integrated models of biomolecular 
interaction networks. Genome research 2003, 13(11):2498-2504. 

50. Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: 
Circos: an information aesthetic for comparative genomics. Genome research 2009, 
19(9):1639-1645. 

 

 

 

 



  

55 
  

Chapter 9 Appendix 

9.1 Pathway Distribution across stages for LUAD 

 

Figure 15 Pathway Distribution 
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Table 9 Pathway distribution according to sub-network sizes 

Stage Sub-
network 

Size 

Pathway distribution 

Cancer Lung cancer Signaling Metabolic +others 

I 2 1 - 3 5 

 3 4 1 5 10 

 4 68 45 175 568 

 5 2685 1466 5072 1263 

II 2 3 1 2 6 

 3 58 19 69 107 

 4 1176 532 2049 4230 

 5 31982 15884 59137 133380 

III 2 3 1 3 7 

 3 80 33 95 155 

 4 1476 679 2578 5952 

 5 141149 19951 76205 175691 

 

Table 10 Analysis of common and unique sub-networks of size 4 revealing the 
significant genes 

Pathway Stages 

I & II & 
III 

I & II I & III II & III I II III 

Cancer 18 4 43 820 - 336 591 

Lung cancer 11 - 25 369 - 153 274 

Signaling 70 2 222 1372 27 641 1049 

Metabolic + 
others 

74 - 792 2844 135 1347 2677 

 

 

Table 11 DNA methylated genes in UBC subnetworks across stages 

Stage UBC interaction with methylated genes 

I FOXG1, GAS7, HLA-G, HOXD8, LY96, MSC, NPY, PHOX2A 

II ACTN2, CDO1, FOXG1, HOXA1, HOXD4, HTR2C, INPP5B, LHX1, 
NEFH, OTX2, PHOX2A, PRKCB, SERPINB5, SLC6A2, SRGN, and 

TAL1 

III ATP6VOD2, CFTR, CRMP1, DGKI, EPO, FLG, HAND2, HOXA7, 
HOXB4, HOXD4, HOXD12, IHH, INPP5B, NECAB2, NEUROG1, NPY, 

PDZRN3, POU3F1, PHOX2A, SGMS2, SLC6A2, SPTA1, TBX5, 
TMEM132D, WNK2 and XDH 
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9.2 P-value correction-before and after resampling and bootstrapping 

 

Figure 16 Resampling p-value correction 
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9.3 Epigenetic Data Annotation 

Table 12 Functional annotation 

Database Fields in Database Reason for selecting DB 

BioGRID  interactor_A 

 interactor_B 

 synonyms_interactor_A 

 synonyms_interactor_B 

 experiment_type 

 score 

 source_database 

BioGRID database 
provides information on 
physical interactions for 
methylated genes which 
can be used to understand 
the network of genes in a 
particular cancer. 

GO database 
(gene2go) 

 entrezid 

 go_id 

 go_term 

GO database provided the 
functional annotations to 
the gene. 

KEGG 
(KEGG_disease) 

 Entry 

 Name 

 Description 

 Category 

 Pathway 

 Gene 

 Env_factor 

Disease table from the 
KEGG database is used to 
include information on 
disease caused due to 
malfunctioning of pathways 
and environmental factors 
responsible for disease. 

KEGG 
(KEGG_gene_pathway) 

 name 

 pathway_id 

 entrezid 

Gene-pathway table from 
KEGG helps to extract 
pathways affected by the 
gene 

Entrez 
(Entrez2gene) 

 entrezid 

 gene 

Entrez2gene table is used 
for mapping entrezid to 
human readable gene 
symbols.  

UCSC genome browser 
(UCSC2GeneSymbol) 

 kgid 

 genesymbol 

UCSC2GeneSymbol table 
is used for mapping keg 
gene ids to human 
readable gene symbols. 
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