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This dissertation examines aspects of the relationship between connectivity and the 

development of genetic structure in subdivided coral reef populations using both 

simulation and algebraic methods.  The first chapter develops an object-oriented, 

individual based method of simulating the dynamics of genes in subdivided populations.  

The model is then used to investigate how changes to different components of population 

structure (e.g., connectivity, birth rate, population size) influence genetic structure 

through the use of autocorrelation analysis.  The autocorrelograms also demonstrate how 

relationships between populations change at different spatial and temporal scales.  The 

second chapter uses discrete multivariate distributions to model the relationship between 

connectivity, selection and resource use in subdivided populations.  The equations 

provide a stochastic basis for multiple-niche polymorphism through differential resource 

use, and the role of scale in changing selective weightings is also considered.  The third 

chapter uses matrix equations to study the expected development of genetic structure 

among Caribbean coral reefs.  The results show an expected break between eastern and 

western portions of the Caribbean, as well as additional nested structure within the 

Bahamas, the central Caribbean (Jamaica and the reefs of the Nicaraguan Rise) and the 

Mesoamerican Barrier Reef.  The matrix equations provide an efficient means of 

 
 



 
 

modeling the development of genetic structure in subdivided populations through time.  

The fourth chapter uses matrix equations to examine the expected development of genetic 

structure among Southeast Asian coral reefs.  Projecting genetic structure reveals an 

expected unidirectional connection from the South China Sea into the Coral Triangle 

region via the Sulu Sea.  Larvae appear to be restricted from moving back into the South 

China Sea by a cyclonic gyre in the Sulu Sea.  Additional structure is also evident, 

including distinct clusters within the Philippines, in the vicinity of the Makassar Strait, in 

the Flores Sea, and near Halmahera and the Banda Sea.  The ability to evaluate the 

expected development of genetic structure over time in subdivided populations offers a 

number of potential benefits, including the ability to ascertain the expected direction of 

gene flow, to delineate natural regions of exchange through clustering, or to identify 

critical areas for conservation or for managing the spread of invasive material via 

elasticity analysis. 
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CHAPTER 1:  INTRODUCTION AND LITERATURE REVIEW 
 
 
Background 

 
 

Developing an understanding of population genetic structure and the forces that 

shape it is of considerable importance for both conservation and research.  Genetic 

diversity provides the raw material for species diversification, and is an area of concern 

for managers when designing marine reserves and networks.  From a research 

perspective, studying population genetic structure provides insight into evolutionary and 

biogeographic processes and the forces that shape them.  There have been a growing 

number of studies of population genetic structure in marine environments, and there is 

clear evidence of genetic patterns at the regional scale (Benzie 1992; Benzie and 

Williams 1995; Doherty, Planes, and Mather 1995; Palumbi 1997; Planes and Fauvelot 

2002; Taylor and Hellberg 2003) Questions remain, however, regarding the specific 

processes responsible for generating the observed structure. 

Connectivity (the degree of exchange between subpopulations) is believed to play 

a critical role in generating genetic structure at the regional level, and has been identified 

as one of the most critical areas of research for understanding and managing populations 

of marine organisms (Sale et al. 2005).  This has been reflected by a rapidly growing 

interest in probing the “black box” of the process of larval transport, and the factors that 

affect it (Underwood and Keough 2001; Armsworth 2002; Cowen 2002; Leis and 

Carson-Ewart 2002; Thorrold et al. 2002; Warner and Cowen 2002; Kinlan and Gaines 

2003; Sale and Kritzer 2003).  Other forces could also play a significant role in 

generating regional-scale genetic structure.  For example, metapopulations with 
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high levels of productivity have the potential to contribute unequally to the gene pool 

(Hedgecock 1994), or evolutionary time-scale processes may have lasting influence on 

the system (McManus 1985; Benzie 1999).  Moreover, multiple factors may be acting in 

concert with one another in a complex manner.  The degree of influence of these various 

forces on population genetic structure and how they interact with one another is currently 

not well understood. 

One of the greatest obstacles in identifying the roots of genetic structuring in 

marine environments is the scale of the system.  Marine organisms produce large 

quantities of larval young which have the potential to disperse significant distances, and 

are typically subject to extremely high levels of mortality (Boehlert 1996).   The 

logistical difficulties associated with physically tracking marine larvae are not trivial.  

Although new techniques continue to be developed for monitoring the fate of marine 

larvae (otolith elemental analysis - Campana 1999, dye experiments - Kingsford 

unpublished; e.g. chemical labeling Jones et al. 1999; drifters - Domeier 2004), presently, 

empirical large-scale larval tracking remains an elusive prospect.   

As an alternative, researchers developed computer-based simulations that couple 

oceanographic models to models of larval dispersal in order to investigate the influence 

of physical processes on complex patterns of larval recruitment (Wolanski 2001; 

Armsworth 2002; James et al. 2002; Paris et al. 2002).  These kinds of models have 

considerable value because of their ability to evaluate the outcome of different ecological 

scenarios at large scales, a task which would be logistically impossible to replicate 

experimentally. 
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With the development of the new dispersal models there is an unprecedented 

opportunity to quantitatively test various theories regarding the processes governing 

regional-scale genetic structuring.  The dispersal simulations can be used in conjunction 

with quantitative population models to show the creation and flow of genes at ecosystem 

scales.  The key is to develop a framework in which it is possible to integrate aspects of 

migration, demographics, behavior and genetic processes. 

 

History 

 

Pioneered by the work of Fisher, Haldane and Wright (Fisher 1922, 1930; Wright 

1931; Haldane 1932; Wright 1937; Haldane 1939; Wright 1943) population genetics is 

the key field for studies of the dynamics of genes within populations.  Population 

geneticists have developed a number of equations and computer simulations to quantify 

the flow of genetic material through multiple generations. Some important issues still 

require attention however.  The first is the influence of complex spatial connectivity (i.e. 

migration) on population genetic structure.  Traditionally, the method of assessing the 

effects of migration on population genetic structure is to apply Wright’s “Island Model” 

(1931).  Wright’s model makes the assumption that all populations are connected to one 

another, and that all have an equal degree of connectivity. In most natural systems 

however, this assumption is grossly violated (Epperson 2003; Rice 2004).  Although 

there have been attempts to incorporate weighted migration effects (Malécot 1969; 

Wright 1969; Endler 1977; Maruyama 1977; Epperson 2003), algebraic analysis of 

spatially explicit population genetic processes can be complex.  A second issue stems 
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from the fact that population geneticists place emphasis on investigating genetically-

driven processes as opposed to demographically-driven processes, and in many cases, 

omit the role of fluctuating population sizes.  For instance, in some models it is assumed 

that processes of interest are taking place over a long period of time (i.e. evolutionary 

scale), and therefore the state of a population can be regarded as being a relatively 

transitory phenomenon (Nei 1987).  Nei also wrote however that genetic polymorphism 

and long-term evolution are merely two different phases of the same evolutionary process 

(Nei 1987).  If patterns of genetic polymorphism can be influenced by short-term 

population dynamics, one might reasonably expect that the effects of some short-term 

processes have the potential to cascade out and have impact on longer time scales 

(Slatkin 1977; Wade and McCauley 1988; Whitlock and McCauley 1990; Whitlock 

1992).   

The role of connectivity has been addressed in population dynamics studies, 

particularly those relating to population viability analysis (PVA - Beissinger 2002) and 

metapopulation analysis (Levins 1969; Hanski and Gilpin 1997; Hanski and Gaggiotti 

2004).  PVA chiefly concerns the assessment of whether or not a population or set of 

populations will persist through time, and there are several existing PVA software 

packages that incorporate aspects of spatial structure (Lacy 1993; Kingston 1995; 

Possingham and Davies 1995).  However, any genetic characteristics of populations are 

only incorporated in the form of inbreeding depression, if at all (Groom and Pascual 

1998).  There is a growing body of research regarding the genetic structure of 

metapopulations (Whitlock 1992; Gaggiotti 1996; Gaggiotti and Smouse 1996; Whitlock 

and Barton 1997; Rousset 1999, 1999).  As with population genetics studies however, 
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research tends to focus on a single measure of the system (e.g. effective population size - 

Whitlock and Barton 1997), or else changes to a single population (e.g. Gaggiotti and 

Smouse 1996). 

Considerable work has gone into the development of equations based on 

population genetic theory, but assembling a treatment of the system where it is possible 

to examine the interplay of different factors and the scales at which they exert their 

influence poses some challenges.  Analytic treatment of the problem leads to equations 

that tend to be tightly focused in terms of their scope, or alternatively require a 

sophisticated degree of mathematical understanding for both use and interpretation.  Gaps 

exist between the complexity of real-world systems and what is mathematically tractable.  

Part of the difficulty lies in the methods that are used to describe the system.  Many of the 

analytical techniques commonly used are designed for deterministic systems.  As stated 

by the population biologist Richard Lewontin however – “Biology, especially population 

biology is neither particle physics nor solar system astronomy.  Organisms and their 

populations are a nexus of a large number of individually weakly determining interacting 

forces.  One consequence is that different cases have different dynamics and that simple 

general functional forms may miss the important action.”  He goes on to state that 

“Population biology can only be built by breaking down the distinction between the study 

of population processes and the study of individual properties” (Lewontin 2004). 

Recently, there has been growing interest in the development of individual-based 

models (IBMs), also known as agent-based models (ABMs – although more correctly, 

IBMs are a specific type of ABM) or object-based models (OBMs).  Individual-based 

modeling makes use of object-oriented programming techniques to define objects or 
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“agents” with particular attributes and behavior, allowing for variation among individual 

objects.  The individual agents can then interact with one another within a given system, 

giving rise to emergent large-scale processes.  IBMs have garnered attention because of 

their ability to simulate complex behavior of systems through the application of simple 

underlying rules (first principles).  In addition, they do not require as many assumptions 

as more classical modeling frameworks.  For example, agent based models do not require 

homogeneity across the domain of study, and are capable of incorporating demographic 

stochasticity as well as rare and conditional events within the system (DeAngelis and 

Gross 1992).  In addition, IBMs can be coupled with Geographic Information Systems 

(GIS) in order to define a virtual environment that closely resembles real-world 

conditions.  Individual-based models provide an ideal environment for investigating 

complex, spatially explicit population genetic systems. 

Individual-based models are limited in an important respect however, in that they 

can be computationally intensive.  If the system is spatially and temporally extensive, it 

may be necessary to simulate billions or trillions of individual objects which, even given 

large increases in computing power, may be difficult to implement.  If simplifying 

assumptions can be made however, multivariate stochastic theory can be applied to 

greatly improve the efficiency of the model. Structured systems of stochastic branching 

processes in turn lead to the development of matrix-based models (Caswell 2001).  The 

two approaches are complementary, the choice between them depending on the level of 

realism desired from the models, and the degree to which simplifying assumptions hold.  

The power of individual-based models lies in their flexibility of design, whereas the 
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power of matrix-based models lies in their efficiency and ability to be manipulated 

algebraically. 

 

Objectives 

 

The purpose of the dissertation is to determine the relationship between aspects of 

connectivity and genetic structure, towards the goal of identifying the processes that 

create and maintain genetic structure in subdivided populations. 

To investigate the dynamics of systems in which population genetics, connectivity 

and population demographics interact in a dynamic manner, a theoretical framework for 

studying the dynamics of gene flow in marine metapopulations is developed, including 

both agent-based and analytical components.  Connectivity between populations is 

obtained by applying a dispersal-recruitment algorithm to the agents driven by a 

combination of physical oceanographic information and individual behavior. 

 

Using the results of the models, it is possible to: 

 

1) Investigate the expected spatial and temporal scale of genetic transport within 

coral reef ecosystems, as well as the relative importance of demographic 

parameters (birth rates, mortality rates, carrying capacities) and metapopulation 

structure (configuration, strength of migration). 
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2) Incorporate the effects of selection, and study how it interacts with migration to 

create structure. 

 

3) Evaluate the form, extent and spread of genetic material through a metapopulation 

framework by conducting simulated genetic tracer experiments. 

 

4) Examine differences between model results and empirical observations.  This will 

address the relative importance of neutral processes within the system. 

 

Outline 

 

The individual chapters are organized as follows: 

 

Chapter 2:  An individual-based simulation approach is developed for modeling 

the dynamics of genes in subdivided populations.  The model is then used to 

examine how changes to basic aspects of connectivity structure lead to changes in 

genetic structure.   

 

Chapter 3:  Discrete multivariate distributions are used to study how selection, 

migration and resource availability operate in concert to maintain genetic 

polymorphism in subdivided populations within a stochastic context. 
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Chapter 4:  Matrix-based projections of genetic structure are developed for 

Caribbean coral reef ecosystems, and elasticity analysis is used to identify 

populations that would have the greatest degree of influence when subjected to 

perturbations. 

 

Chapter 5:  Matrix-based projections of genetic structure are developed for 

Southeast Asian coral reef ecosystems.  The directionality of the matrices and 

derived genetic distances are used to identify likely sources of genetic structure 

and diversity in the region 

 

Significance 

 

Knowing the functional genetic consequences of different connectivity patterns is 

essential for a number of reasons, particularly with regard to designing marine protected 

areas (MPAs).  While it may be possible to set up a system of MPAs that maintains a 

sufficient population size, the genetic effects of implementing such a system may not be 

as clearly defined.  Protected area locations should be selected that in the long run avoid 

preserving extensive tracts of homogenous genetic material.  Also, if populations are 

highly segregated, they will be more vulnerable to extinction and over time may become 

genetically isolated and inbred. The models will also be able to identify “keystone” 

metapopulations – those that play a critical role in maintaining genetic structure, acting as 

an important connector, or as a major source of genetic diversity. 
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Another important practical application of the research will come from evaluating 

the potential spread of invasive genes.  Frequently, as part of restoration efforts, 

populations are supplemented using individuals foreign to the environment.  This can 

generate significant changes in genetic structure, as was recently discovered by a recent 

study that showed that terrapin turtles from northern Atlantic populations (South Carolina 

to New York) were more closely related Texas populations than those from Florida, 

presumably due to transplants that took place in the early 20th century (Hauswaldt and 

Glenn 2005).  The models that were developed are able to generate expected trajectories 

of this kind of genetic mixing. 

There has been a longstanding debate regarding the relative importance of neutral 

processes in evolution versus selection.  The Neutral Theory of Genetic Evolution was 

put forward by Kimura (Kimura 1983) who proposed that the majority of mutations are 

expected to have a relatively insignificant effect on organisms and therefore gene 

frequencies in populations are not determined by natural selection, but rather by a balance 

between the effects of mutation and random genetic drift.  Assuming that connectivity of 

coral reef fish populations is primarily physically driven (in conjunction with behavior), 

genetic structure should be resolved to some degree using realistic demographic 

parameters in conjunction with an oceanographically-derived connectivity matrix.  If the 

model results do not match the expected results, this would be a positive indication that 

processes other than neutral and migratory ones are of significance, such as selection. 

Under the proposed framework, three major ecological components will be 

integrated: demographics, connectivity and genetics.  However, other areas remain that 

have the potential to significantly influence the system, such as trophodynamic processes, 
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habitat, larval energetics and interspecific interactions (including predation).  Using either 

agent-based or analytical approaches, it is possible to incorporate these kinds of processes 

as well.  The level of simplicity or complexity of the model can be adjusted to a level 

suitable for studying the problem at hand. 

 

Summary 

 

 Understanding the relationship between connectivity and genetic structure is 

important for conservation management and scientific understanding of evolutionary 

processes.  Combining bio-oceanographic larval dispersal models with population genetic 

theory presents a new opportunity for studying the dispersal of genetic material through 

time and the development of genetic structure over large spatial and temporal scales.  

Object-oriented individual-based simulation as well as algebraic methods will be 

developed and used for this purpose, and applied to identify the manner in which various 

aspects of connectivity affect genetic structure, and how genes are expected to spread in 

real-world environments. 

 



 

CHAPTER 2:  AN OBJECT-ORIENTED, INDIVIDUAL-BASED APPROACH 
FOR SIMULATING THE DYNAMICS OF GENES IN SUBDIVIDED 
POPULATIONS 
 
 
Background 
 
 

Preservation of genetic diversity is an important consideration when managing 

populations (Chesser, Olin E. Rhodes, and Smith 1996; Avise 1998; Frankham, Ballou, 

and Briscoe 2002).  High levels of genetic diversity are expected to confer a greater 

degree of resilience to environmental perturbations (Amos and Balmford 2001; Reed and 

Frankham 2003; Hughes and Stachowicz 2004), and a diverse gene pool provides fuel for 

evolutionary processes (Amos and Harwood 1998).  Understanding how genetic structure 

is created and maintained takes on even greater significance in light of increasing 

concerns regarding habitat fragmentation (Andren 1994; Young, Boyle, and Brown 1996; 

Fahrig 2002), management of invasive organisms (Huxel 1999; Clavero and Garcia-

Berthou 2005) and potential habitat shifts due to climate change (McCarty 2001; 

McLaughlin et al. 2002; Hughes et al. 2003). 

Identifying the processes responsible for creating and maintaining genetic 

structure can be challenging.  Studies of a variety of organisms have demonstrated 

genetic structure at extensive scales (Benzie et al. 1994; Barber et al. 2002; Baums, 

Miller, and Hellberg 2005; Hauswaldt and Glenn 2005; Purcell et al. 2006), and empirical 

studies of large spatial extents with a fine degree of resolution may not be feasible, 

particularly when dealing with multiple species.  Temporal scaling is another important 

consideration.  Changes in genetic structure may result from shifting 

12 
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environmental conditions or may simply be a consequence of the amount of time required 

for material to diffuse through the system.  Demographic processes may also play an 

important role; levels of fecundity, mortality, immigration and emigration alter the degree 

of genetic exchange between populations and are capable of feeding back into one 

another (e.g. through density-dependent interactions) (Milligan, Leebensmack, and 

Strand 1994; Aars and Ims 2000).  The dynamics of genes in population networks 

(metapopulations - Levins 1969; Hanski and Gaggiotti 2004) can be extremely complex, 

especially in areas with extensive migration.  Although many genetic models 

incorporating migration have been developed (e.g. - Bodmer and Cavalli-Sforza 1968; 

Maruyama 1977; Nagylaki 1996; Fu, Gelfand, and Holsinger 2006), simplifying 

assumptions are often used to ensure analytic tractability, only simple connectivity 

structures are considered, or else the focus is on a very specific aspect of the system, 

leaving out potentially important interacting factors.  A means of studying complex 

interactions in population genetic networks at various spatial scales in a simple, yet 

flexible manner is needed. 

Individual-based models (IBMs) provide an effective means of studying complex 

systems (Doligez, Baril, and Joly 1998; Bousquet and Le Page 2004; Grimm et al. 2005; 

Breckling, Middelhoff, and Reuter 2006).  IBMs operate by programmatically defining 

objects and assigning particular properties or behavior to them (Grimm and Railsback 

2005).  Interactions between individual agents then give rise to emergent large-scale 

processes.  While the use of simulation for studying genetic systems is not new, object-

oriented individual based modeling does provide some key advantages.  The first is that it 

does not require homogeneity of the system; members can exhibit different properties and 
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behavior according to their unique environment.  IBMs also tend to be easier to 

parameterize, because input values correspond to the characteristics of individuals, the 

level at which data collection typically takes place.  Finally, abstraction and 

implementation (described below) allow for different components of the model to be 

altered without having to redesign the entire system. 

The purpose of this chapter is twofold.  First – to develop an object-oriented 

framework for modeling spatially explicit population genetic processes, and second – to 

demonstrate how the approach can be applied by evaluating the relationship between 

fundamental aspects of connectivity structure (e.g. number of connections, strength of 

connections, number of populations, configuration etc.) and genetic structure.  The latter 

goal is accomplished by generating and comparing Moran’s I-based spatial and temporal 

correlation surfaces.  In order to connect the approach with existing theory, algebraic 

formulae describing the expected trajectory of the system are also developed and 

discussed. 

 

Model Development 

 

The modeling framework (Fig. 2.1) was constructed using the Java programming 

language (v. 1.5) (Sun Microsystems 2006) and is built upon the development of the 

Organism interface (italicized words refer to program objects).  An interface is an 

abstract class; a class is a program object containing variables (properties) and methods 

(behavior).  Abstraction provides the ability to generically specify object behavior, while 

leaving the detail as to how they are performed to a separate implementing class.  This is 
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an important point as it means that different implementations may be developed and 

swapped into the model independently of other components.  This allows for flexible 

customization of the model system.  Organism encapsulates the properties and behavior 

of an individual member of a species (e.g. a single plant or animal).  In the sample 

implementation, each Organism has a unique identifier, sex, method of mating and 

Genotype.  A Genotype is composed of Chromosome pairs containing Genes (JGAP 

2007) and each gene acts as a container for particular allele values.  Note that the 

appellation “Gene” is related to the class’ origin as part of a genetic algorithms package.  

Ideally, Gene should contain one or more instances of a Locus class which would in turn 

be used to contain the allele values, however this was not adopted here since it would 

require extensive modifications to the existing JGAP classes.  Instead, different loci can 

be implemented as different Genes.  Allele values can take different forms, for example, 

boolean (true/false) values in the case simple dominant-recessive allele types or integers 

for microsatellite  sequences.  Collections of interbreeding Organisms form discrete 

Populations, and a set of Populations make up a Metapopulation. 

Members of individual Populations (the Organisms) mate with one another using 

the Reproduction interface.  Reproduction was implemented using a 

MonogamousSexualReproduction class, which pairs organisms with a single member of 

the opposite sex at each time step (i.e. no overlapping generations) on a random basis.  

Each pairing generates progeny according to an exact number (or a distribution if 

desired).  Each parent produces a gamete, which is generated through crossover and 

independent segregation of Chromosome pairs.  Although mutation is an important part 

of population genetic processes, it is not included in the simulations performed here.  
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Although it is possible for many mutations to take place during the course of a given 

simulation, the probability of their survival is relatively low (1/2N assuming a diploid 

population, where N is the number of organisms in the population).  Furthermore, the 

results are used to identify relative differences between populations.  If there is no spatial 

or temporal bias in the mutation rate, then the probability of a new mutation arising will 

be uniform across all populations, leaving the relative patterns unchanged.   Selection 

was also not addressed here, since most of the molecular markers commonly used in 

population genetics studies are assumed to be neutral. 

Once progeny have been produced for each population, they recruit back to their 

original population or migrate to a different one according to a given type of Movement.  

Movement was implemented using a transition probability matrix (connectivity matrix) 

where columns of the matrix represent source populations, rows represent destination 

populations, and cell contents describe the probability with which a given Organism 

migrates from a source population to a destination.  Elements along the diagonal of the 

matrix correspond to levels of self recruitment within a population.  Mathematically, this 

can be represented by  where M is a matrix of transition probabilities between 

populations and y is a column vector containing the collection of Organisms eligible for 

migration at each location at a given time t.  The structure of the connectivity matrix can 

be manipulated in a variety of ways, including expanding the neighborhood of 

distribution or altering the strength of connections.  This approach is similar to the one 

used in other existing transition matrix-based models (Bodmer and Cavalli-Sforza 1968; 

Fu, Gelfand, and Holsinger 2006), though here there is a difference in that Organisms are 

transported, not simply gene frequencies.  This is a key distinction - it means that in 

1t+ =y Myt
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addition to the genetic information, the characteristics and behavior of the genetic 

material’s host are also retained (e.g. age, condition, parentage).  Mortality was 

implemented at each time interval by randomly re-sampling a set number of individuals 

from each population following reproduction.  Time was considered to be discrete, and at 

each step results generated by the model were saved to a database.  The Java-based Colt 

package (CERN 2004) was used for generating random numbers. 

 

Simulations 

 

Simulations were carried out using the model implementation in order to evaluate 

how changes in connectivity structure or demographic parameters in the model generate 

changes in spatial and temporal genetic structure.  As a reference simulation, 10 

populations were constructed in a ring formation (1-dimensional stepping-stone), with 50 

male members and 50 female members within each population.  Exactly ten progeny 

were produced by each pairing, and populations were randomly culled to maintain 

exactly 100 individuals in each population while iterating through the model for 144 

generations.  All transitioning members were assumed to arrive at their intended 

destination (i.e. no transitional mortality).  For all simulations, initial members of 

populations were assigned genetic values corresponding to their population of origin (i.e. 

Organisms in population 1 at the start of the simulation were assigned Genes with a value 

of 1).  Although only the dynamics of a single Gene are considered here, it is possible to 

investigate multiple Genes and their interactions by adding multiple versions to a given 

Chromosome.  The populations were not structured according to age; all members had an 
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equal probability of mortality and each simulation was run 100 times.  The input 

parameters for the different simulations are summarized in Table 2.1. 

 

Space-time autocorrelation surfaces 

 

One way of identifying population genetic structure is through the use of 

autocorrelation statistics (Sokal and Wartenberg 1983; Sokal, Jacquez, and Wooten 1989; 

Slatkin and Arter 1991; Neigel 1997).  Autocorrelation examines the relationships 

between different objects and their descriptors with respect to a given distance measure.  

One of the more commonly used  metrics is Moran’s I (Cliff and Ord 1981; Barbujani 

1987; Epperson and Li 1996).  Moran’s I is a product-moment correlation defined by the 

equation 
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W is the total number of connections between populations, n is the total number of 

populations, wij is a matrix of connection strengths between populations i and j, and y is a 

vector of observed values.  In this case, the values are the frequencies of occurrence of a 

particular allele type over all model runs.  If measuring spatial autocorrelation of multiple 

loci, the RG statistic developed by Smouse and Peakall (1999) might also be used.  

Distance classes correspond to the number of joins traversed between populations, 

although alternative distance measurements may also be used.  It is important to make a 

distinction between the connectivity matrix and the distance matrix between populations.  

The connectivity matrix (M in Table 2.1) describes the degree of migration taking place 

 



19 
 

between populations, whereas the distance matrix (D in Table 2.1) establishes the relative 

position of the populations according to a particular measure, such as geographic 

distance.  Although the two are expected to be correlated, this is not a given.  Corrections 

to the Moran’s I values were made to account for small numbers of populations and 

confidence intervals were also determined (Cliff and Ord 1981).  Distance-based 

correlograms were constructed for each allele at each time step using the Moran’s I 

metric over non-accumulative distance classes (e.g. 1 to 2 and 2 to 3, as opposed to ≤ 2 

and ≤ 3), and then the correlograms at each time step were then combined to create a 

space-time correlogram surface (Fig. 2.2). The locations at which the correlogram 

intercepts the upper and lower confidence limit are shown, resulting in outlines of peaks 

or troughs of significant space-time autocorrelation.  All calculations were carried out 

using Matlab (The Mathworks 2007). 

A unique advantage of the autocorrelation surface is that it provides a concise 

means of showing the relationship between the various populations at different spatial 

and temporal scales.  The I values indicate the degree of relatedness between populations 

at the specified time and distance interval, where values near to 1 represent populations 

with similar values, and values close to -1 represent populations dissimilar in values (n.b. 

if extreme y values are heavily weighted, it is possible for I(d) values to exceed -1 and 1).  

Although the autocorrelation values for the different alleles were averaged in order to 

provide an overall measure of the genetic structure of the system, it is also possible to 

generate separate autocorrelation surfaces for each allele form. 
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Algebraic formulation of the model implementation 

 

If the simulation model is implemented as described above, it is also possible to 

provide equations describing the expected trajectory of the system.  Although Moran’s I 

typically takes the form shown in eq.1, it can also be expressed using vector-matrix 

notation as 

( ) (Eq. 2)I d
′

=
′

z Wz
z z

 

where z is the centered vector of the observed variables (i.e. y−y ) and W is the 

connection matrix between populations (wij in eq. 1).  The n and W terms are folded into 

W by multiplying and dividing wij by these values respectively. 

The expected population structure Q at the after each time step is given by 

( )1t t i+ •
= +Q K MBQ Qt  (Eq. 3 - See Appendix A for bar-dot notation),  

where K is a diagonal matrix of population carrying capacities, and B is a diagonal 

matrix of birth rates for each population.  The equation formalizes that the state of the 

system at t+1 is the result of migrating progeny (MBQt) combined with the original 

parent generation (+Qt), converted to probabilities via row standardization (bar-dot), and 

multiplied by carrying capacity (K).  If M,B and K can be assumed to be stationary, then 

( )
1

0  where      (Eq. 4 - See Appendix B for proof)i

t

t ii •

−

••
= = +Q K AK AQ A MB I  

where I is an identity matrix having the same dimensions as M and B.   

To use this relationship in conjunction with Moran’s I, the vector form of the 

equation needs to be modified to use matrices as opposed to vectors.  A partitioned 

matrix Q can be defined as the set of z vectors such that 
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{ }, ..1 2=Q z z . (Eq. 6)αz
 

where α is the number of different allele types in the population, indexed by h, and 

therefore
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The formulas integrate several basic aspects of population genetics: genetic 

structure (I(d)), demographic structure (Q, K and B), migration (M), and spatial structure 

(W).  Q describes the state of the system in terms of observations on a given variable 

(e.g. allele counts), K contains information on carrying capacity and B captures 

fecundity.  M describes the degree of migration taking place between populations.  W 

provides information on the relative positions of the different populations according to a 

specified distance.  This distance measure may be a linear measurement (e.g. geographic 

distance) or non-linear (e.g. distance according to flow).  Folding the number of 

connections (W in eq. 1) into wij and dividing by the total number of populations (n) 

standardizes the W matrix.  

In the form of a diagram (i.e. Fig. 2.2), Q represents the pie charts and their 

fractional content, M represents the arrows indicating movement between populations, 

and W describes how the different populations are spatially arranged.  The terms of the 

algebraic equation also map to individual classes of the simulation model.  M 

corresponds to the Movement interface, W is accounted for by the Habitat interface, and 

the matrix Q corresponds to Metapopulation, which contains Populations (row vectors) 

which in turn consist of Organisms and their genetic complement (entry counts).  The B 

matrix and the K matrix map to the Reproduction and Mortality classes respectively. 
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The formulas provide the expected outcome, but with any stochastic process there 

is also a variance component. Finding an analytical solution for the variance structure of 

the system can be difficult.  Pollard’s method (1969, Caswell 2002) can be used to 

project the variance structure of the system under conditions where the transition matrix 

is stationary through time, but in cases where the conditions change in a complex, 

nonlinear manner, numerical methods (i.e. simulation) provide the only practical means 

of evaluating the covariance structure of the system.  

 

Results 

 

If populations are completely isolated from one another, the connectivity matrix 

takes the form of an identity matrix and all progeny produced return to their sources of 

origin.  If individual populations begin with a mixture of different allele types, each will 

independently drift towards fixation of a single allele type with a probability equal to its 

initial frequency, assuming selective neutrality (Nei 1987).  If all populations are initially 

in a state of fixation and no allele forms are shared between them, no relationship will 

exist between the populations, and the autocorrelation structure will be undefined 

(because relationships between populations and themselves are not considered, all values 

of y will effectively be 0).  Populations that are completely and evenly interconnected 

will have a connectivity matrix where all values are equal (the transition probability will 

be 1/n, where n is the number of populations).  Although it is technically possible for the 

autocorrelation value to be undefined if all values are exactly the same (the expected 

values of yi and yj would equal ), it is more likely that there would be some variance in y
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the y terms and consequently I(d) would tend towards zero.  Here too, populations will 

eventually drift towards fixation of a single allele type, although since the populations are 

equally and evenly connected, they will function as a single population.  As a single unit, 

the populations will have a higher effective population size, and consequently the time to 

fixation will be much longer. 

More meaningful patterns are produced when migration between populations is 

restricted.  In the reference simulation (Fig. 2.5.1a), negative autocorrelation is initially 

more prevalent, but positive autocorrelation in the system quickly increases until a state 

of quasi-equilibrium is reached, with positive autocorrelation values at distances less than 

2, negative values at distances greater than 3 and 0 at a distance of 2.5.  This is to be 

expected of a 10-population ring; opposite sides (i.e. distance of 5) are expected to show 

the greatest differences in composition, and the relationships would be balanced at mid-

distance.  Eventually the patterns become chaotic as the populations in the system begin 

to resemble one another and spatial structure dissolves into stochastic noise.  The 

jaggedness in the lines of significance is the result of variability in the degree of variance 

of the autocorrelation values, and would be reduced by a greater number of simulation 

replicates. 

  Decreasing the relative strength of connections between populations extended the 

space-time autocorrelation pattern along the time axis, indicating a lengthening the 

amount of time required for genetic material to diffuse through the system (Fig. 2.5.1a, b, 

c).  In contrast, increasing the range at which populations were connected (Fig. 2.5.2a, b, 

c relative to 2.5.1a,b,c) caused the autocorrelation pattern to compress along the time 
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axis, meaning that although the spatial relationships between populations at each time 

interval remained the same, the overall duration of the process was shortened. 

With a greater number of populations, the autocorrelation pattern stretched along 

the time axis (Fig 2.5.3a,b,c), and the confidence interval also narrowed.  This is the 

result of effectively increasing the sample size.  By sampling a greater number of objects 

(in this case, populations) the overall variance in the system decreases.  Increasing the 

fecundity of members equally for all populations did not appear to affect the 

characteristics of the surface (Fig. 2.5.4a, b, c).  The populations reached a stable pattern 

at approximately the tenth generation, and the autocorrelation structure dissolved near 

generation fifty. 

In all of the simulations up to this point, the spatial arrangement of the 

populations (i.e. ring form) remained unchanged, and when adjusting model parameters, 

all populations were altered equivalently.  As a result, long-term changes to the 

autocorrelation structure only occurred in the temporal domain. By completely restricting 

gene flow between different portions of the metapopulation, it was possible to generate 

change in the overall structure spatial domain (Fig. 2.5.6a,b,c).  Differences developed 

not only in the location of the zero contour line, which decreased along the spatial axis, 

but also in the strength of the autocorrelation values, which also decreased.  Altering the 

arrangement of the populations generated changes in both the spatial and temporal 

domain, resulting in more complicated spatial-temporal genetic structures (Figs. 2.5.7 and 

2.5.8 a,b,c).  In the simulations using networked structures, autocorrelation structure was 

maintained for a longer period of time, although the zero line continued to remain near 

the center of the plot.  In contrast, using unbalanced population structures led to shifts in 

 



25 
 

the position of the zero contour line along the spatial axis, changes in the strength of 

autocorrelation values, and particularly in the last case, a considerably more complicated 

structural pattern. 

   

Discussion 

 

The autocorrelation surfaces demonstrate how the space-time structure of simple 

systems is affected by changes to connectivity and demographic structure.  The 

simulation results are meaningful for two reasons.  First, they provide evidence that the 

object-oriented model is sound.  Increasing the number and strength of connections to 

neighboring populations leads to a decrease in mixing time; increasing the number of 

populations increases mixing time (prolonging structure) and reduces the band of non-

significance around the zero line; partitioning populations leads to a reduction in the 

distance over which populations are similar, as well as a decrease in the magnitude of the 

autocorrelation values.  These findings are consistent with the behavior expected of the 

systems studied.  The results also have a more important second function however, in that 

they demonstrate that scalar changes to the system only affect the time scale of the 

autocorrelation surface.  Changes in the spatial domain occur when inter-population 

differences exist as a result of unequal migration, distance or demographic composition.  

Intuitively, this makes sense, because with structure, it is relative differences that are 

responsible for generating structure, as opposed to absolute ones.  This is also evident in 

the autocorrelation equations as well (e.g. 7).  Scalar multipliers factor out, and are 

eliminated by dividing out the terms in the numerator and denominator.  This is the 
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reason that changing the number of births and population size did not have a significant 

effect on the overall structure (although).  An important consequence of this is that if time 

scale is not of importance, but rather the manner in which the system changes through 

time, then the system can be scaled. In other words, it is possible to reduce population 

sizes and the birth rate, as long as all the different elements are scaled in proportion to 

one another.  Note that this does not mean that birth and population size are unimportant.  

The time interval over which a process occurs can be crucial (whether genetic spread 

occurs over the course of tens, hundreds or millions of generations is a significant 

distinction), and higher order aspects of the system, such as variance of the 

autocorrelation values will be affected as well, as was evident in the case where the 

number of populations was increased. 

The dissolving of autocorrelation structure that is evident towards the end of some 

of the simulations occurs due to the discrete nature of the populations.   With discrete 

values, the minimum detectable scaled difference between populations will be 1/2N 

(again assuming a diploid population).  As N increases, this difference decreases.  In 

discrete populations, as populations become well-mixed, the differences between them 

fall to zero.  In the algebraic formulation, elements of Qt can take on real (i.e. decimal) 

values, meaning that the minimum detectable difference can be infinitely small, and 

therefore structure can be maintained over a longer time interval, as was seen when the 

number of individuals per population was increased. 

The results also highlight the importance of scaling considerations when dealing 

with subdivided populations.  The space-time autocorrelation surfaces explicitly show 

that relationships between populations change depending on distance and time.  As 

 



27 
 

systems transition from being relatively closed to open (i.e. isolated to connected), 

statistical properties such as variance, covariance and correlation are significantly altered, 

especially in patchy environments.  Levin (1992) has noted that “The problem of pattern 

and scale is the central problem in ecology, unifying population biology and ecosystems 

science, and marrying basic and applied ecology.”  By examining autocorrelation 

patterns, not only is it possible to determine whether structure exists, but also the 

characteristic scales at which structure is evident in both space and time.  A critical aspect 

of this is that the scale of genetic processes within a system may be very different from 

the scale of demographic processes.  Host organisms are transient, but the information 

contained in genetic material is persistent through time.  Although spatial and temporal 

scales of genetic processes are affected by the life-history of the host, the spatial and 

temporal scales at which a biological organism functions will likely be quite different 

from those of the genetic material that it carries.  Typically, management activities are 

carried out with the goal of preserving population numbers, but if genetic diversity is to 

be preserved as well, then consideration should be given to the processes that determine 

genetic structure, and the scales at which those processes operate. 

The algebraic formulas provide an efficient way of representing the system, which 

raises the question as to whether there is a need for the simulation model.  Indeed, for 

some of the simulations provided, analytic solutions have already been found (e.g. 

stepping-stone/ring populations - Kimura and Weiss 1964; e.g. stepping-stone/ring 

populations - Malécot 1969; Malécot 1973, 1975; Maruyama 1977).  The structures 

examined were selected for illustrative purposes however, and are simple by design; real-

world systems are almost certainly much more complex, involving mixtures of source 
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and sink populations with differing degrees of migration taking place between them 

according to local conditions.  Individual organisms can also be expected to engage in 

context-specific behaviors based on their environment, including interactions with other 

organisms.  The equations define the system in a concise manner, but as the model 

continues to increase in terms of complexity, interpreting the system becomes more and 

more difficult, particularly as more probabilistic sources of variation are added, and 

higher order aspects such as variance exert greater influence on the system.  An 

advantage of the individual-based approach lies in its ability to encapsulate the 

characteristics and behavior of the host organism.   

In addition to its use in exploring theoretical concepts, this type of modeling 

approach can be applied practically as well.  Recently, models have been developed that 

are able to predict the dispersal of organisms from one location to another based on actual 

environmental conditions  (e.g. Cowen, Paris, and Srinivasan 2006).  The approach 

described here extends these models further by translating the movement of those 

individuals into movement of genetic material between populations.  These results can 

then be used to assess the population genetic consequences of habitat loss in real-world 

systems (removal of matrix elements), to determine characteristic spatial and temporal 

scales at which they operate (using the analytical methods shown in this manuscript) or to 

possibly to determine reserve designs that would maintain the greatest amount of 

biological diversity (set an objective function and simulate across a range of conditions).   

Cavalli-Sforza and Bodmer (1971) noted that the migration matrix may change 

with time, and in dynamic environments, this will almost certainly occur.  While this 

would lead to considerable analytical complexity, the simulation model is capable of 
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addressing this situation through the use of scheduling.  A lookup table can be created 

associating different transition matrices with a date-time code, and as the simulation 

progresses through time, transition matrices change accordingly.  In such a manner, it 

becomes possible to evaluate the expected trajectory of even highly variable systems. 

Object-oriented programming also provides the advantage of partitioning the 

problem into smaller modular units.  Because elements of the model such as Organism, 

Reproduction and Movement are interfaces, it is possible to create different 

implementations without needing to re-define the model.  For example, a simple 

implementation of Organism could be developed requiring only basic information such 

as its mode of reproduction and manner of movement.  A more realistic implementation 

might include methods for resolving interspecific interactions, reactions to given predator 

densities, energetics, and age structure.  The “realistic” class would presumably deliver 

more accurate results, but would require more parameterization.  Conversely, the generic 

implementation might require less input, but would only be capable of generating coarse 

approximations.  By having interfaces that can accept different implementations, the 

model can be configured to require the minimum amount of detail in order to sufficiently 

address the question at hand.  In many respects, biological systems are ideally suited for 

object-oriented modeling, since well-developed hierarchical classifications of organisms 

already exist (e.g. functional taxonomic classifications).  A further advantage of a 

modular-type approach is that it becomes easier for teams to work independently on 

small pieces of a much larger problem.  The pieces can then be assembled to form a 

greater whole.  Open-source code provides transparency, and individual classes can be 

reviewed and tested rigorously through unit testing. 
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Conclusions 

 

Object-oriented individual-based models provide a powerful and versatile means 

of exploring the interactions between migration, spatial structure and demographic 

parameters.  The space-time autocorrelation surfaces capture changes in genetic structure 

over space and time, and show that uniform changes to population structure only lead to 

changes in the temporal domain.  Changes in the spatial domain require relative 

differences between populations.  The matrix formulas relate between migration, 

demographic structure, geographic structure and genetic structure in an analytical 

manner, however an advantage of the object-oriented, individual-based approach is that it 

is able to integrate multiple sources of complex, non-linear variation without altering 

model structure through the use of abstraction and implementation.  The model has 

practical application for evaluating the development of genetic structure in real-world 

ecosystems by using real oceanographic data and realistic life-history parameters as 

input.  
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Table 2.1.  Input values for the simulation runs.  S – Set number, Sub – Subset, D – form 
of the distance matrix/spatial configuration (Fig. 2.3), M – form of the 
connectivity/transition matrix (Refer to Fig. 2.4 for matrix structure), b – number of 
offspring produced per pairing, n – total number of populations, K - carrying capacity of 
all individual populations.  *These transition matrices have the same circulant form as 
M(a), but have a greater number of populations. 
 
 
 
S Set Description Sub D M n b K 
1 1st order neighbors a a a 10 10 100 
  b a b 10 10 100 
  c a c 10 10 100 
2 2nd order neighbors a a d 10 10 100 
  b a e 10 10 100 
  c a f 10 10 100 
3 # Populations a a a* 15 10 100 
  b a a* 20 10 100 
  c a a* 40 10 100 
4 Fecundity a a a 10 5 100 
  b a a 10 20 100 
  c a a 10 50 100 
5 # Individuals per population a a a 10 10 200 
  b a a 10 10 400 
  c a a 10 10 1000
6 Partition a a g 20 10 100 
  b a h 20 10 100 
  c a i 20 10 100 
7 Network a b j 20 10 100 
  b c k 20 10 100 
  c d l 20 10 100 
8 Irregular a e m 20 10 100 
  b f n 20 10 100 
  c g o 20 10 100 
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Fig. 2.1.  Class diagram of the object-oriented, individual-based modeling framework.  
Relationships between classes are indicated by the arrows (e.g. a Population may contain 
several Organisms).  Numbers indicate the nature of the relationship: one to many (1 - ∞) 
or one to one (1 – 1) e.g. an Organism may have several manners by which it is able to 
reproduce (sexual reproduction vs. asexual reproduction through fragmentation or 
vegetative growth) but only one unique Genotype.  Italicized classes indicate interfaces. 
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Fig. 2.2.  A sample metapopulation is shown at different time steps along with 
corresponding autocorrelograms.  Dashed lines in the autocorrelograms indicate the 95% 
confidence interval.  All populations are initialized such that members are genetically 
labeled according to their population of origin.  Therefore at time 0, all populations are 
100% composed of the allele type corresponding to the population of origin (a).  
Following mating and dispersal of progeny, the genetic composition of the populations 
changes according to the transition matrix (b – time 1).  c shows the population 
composition at time 10 and d the composition at time 100.  Correlogram lines for each 
allele type are initially convergent, appearing as one line (b and c), but then separate over 
time (d).  The autocorrelograms for each time step were then stacked to provide a surface 
(e).  Axes on the 3-d surface were reversed to improve visibility.  Average 
autocorrelation values are shown, but surfaces for individual allele forms can also be 
produced.  f presents a 2-dimensional representation of e, corresponding to a view from 
above (but note re-orientation of axes).  The black line indicates where the 
autocorrelation surface intersects the zero plane, and the white lines show the boundaries 
of the 95% confidence interval. 
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Fig 2.3.  Distance input matrices.  Distances for a-e are the number of links traversed 
between populations.  The distance measurement for f is the path length, and for g it is 
Euclidean (straight line) distance between populations.  For purposes of comparison, all 
matrices were standardized according to their respective maximum distance. 
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Fig. 2.4.  Transition matrices.  Each matrix indicates the degree of migration taking place 
between populations as a fraction of the source. Columns represent source populations, 
rows represent destination populations.  Stronger levels of migration are indicated by 
darker colors.   For the first two rows, 0N refers to the percentage of individuals 
migrating to the same population, 1N refers to the percentage of individuals traveling to 
either nearest neighbor, and 2N refers to the percentage of individuals traveling to either 
second neighbor. 
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Fig. 2.5 (2 pages).  Space-time genetic structure plots (autocorellograms) for the 
simulations.  Number-letter combinations refer to the simulation set-subset code 
identified in Table I.  Surfaces indicate the average amount of spatial autocorrelation 
present over space and time.  Light shading indicates similarity between populations at 
the given distance and time, dark shading indicates dissimilarity.  The black line 
designates an autocorrelation value of 0.  Areas outside of the white lines indicate 
significant autocorrelation at a level of α = 0.05.  0N designates the percentage of 
individuals returning to the same population following migration.  1N and 2N denote 
connectivity levels for 1st and 2nd order neighbors respectively. 
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CHAPTER 3:  CONNECTIVITY, SELECTION AND RESOURCE USE IN 
SUBDIVIDED POPULATIONS – THEORY AND IMPLICATIONS 
 

Background 

 

Understanding how migration and selection interact is an important goal for 

population geneticists and evolutionary biologists (Lacy 1987; Hastings and Harrison 

1994; Chesser, Olin E. Rhodes, and Smith 1996; Barton and Whitlock 1997).  This effort 

also has practical importance - as connectivity structure (the relative exchange of 

individuals among geographically separated subpopulations - Cowen et al. 2007) is 

increasingly altered by habitat fragmentation and loss (Andren 1994; Young, Boyle, and 

Brown 1996; Bender, Contreras, and Fahrig 1998; Goodwin and Fahrig 2002; Ryall and 

Fahrig 2006), environmental managers must be aware of potential problems in 

maintaining adequate levels of genetic diversity over the long-term (Templeton et al. 

1990; Young, Boyle, and Brown 1996; Young and Clarke 2000).  Connectivity research 

typically involves large spatial and temporal scales however, making direct 

experimentation difficult, if not impossible.  Instead, models provide a more effective 

means of investigating these types of systems. 

Genetic models for interconnected populations have been developed by a number of 

different authors, with much of the research focusing on the effects of migration.  Some 

of the earliest research was performed by Wright (1931; 1937; 1943), and other 

approaches have subsequently been developed – e.g. stepping stone models, (Kimura and 

Weiss 1964; Malécot 1969; Maruyama 1977), diffusion models (Nagylaki 1978; 

Nagylaki and Moody 1980), and matrix models (Bodmer and Cavalli-Sforza 1968; Fu,
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Gelfand, and Holsinger 2006).  In addition to migration, selection is equally capable of 

playing a major role.  Selection affects genetic structure by biasing the sampling process.  

Integrating both migration and selection into a metapopulation (network of populations) 

model presents some challenges due to the multivariate nature of the system; activities of 

multiple populations need to be processed in parallel.  Although work has been done to 

address the joint effects of selection and migration (Maruyama 1977; Slatkin 1981; 

Barton 1993; Nagylaki 1996; Rousset 2004), their interaction in a metapopulation context 

has not been as well-studied (but see Barton and Whitlock 1997; Whitlock 2002), 

particularly when resource availability is also taken into consideration. 

Discrete multivariate distributions provide a means of efficiently simulating the 

transport of genetic material between interconnected populations in a probabilistic 

manner. Using combinations of discrete multivariate distributions, it is possible to create 

a neutral model of gene flow between populations.  Furthermore, by extending the model 

using weighted distributions, selection and the influence of resource availability can be 

incorporated as well.  Taking this approach leads naturally to stochastic formulation of 

multiple-niche polymorphism (Levene 1953; Dempster 1955) within a metapopulation 

context.  Relative differences in fitness values also affect the outcome of the evolutionary 

process, and this effect is shown to be scale-dependent. 

 

Definitions 

 

A population state matrix Q is defined, consisting of r populations (objects/rows) 

and s allele forms (descriptors/columns).  Individual elements are the number of alleles of 
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the given form in the designated population.  The Q matrix represents the proportional 

allelic content of the various populations (Fig. 3.1 – circles).  A stochastic transition 

matrix M is also defined, containing the probability of individuals migrating from a 

population j to population i, where i and j are row and column indices respectively in the 

interval 1 through r.  Columns of the matrix represent source populations and rows 

represent destination populations.  The sum of each individual column should equal 1.  

This is commonly referred to as a “forward” transition matrix, and is distinct from the 

row-standardized “backwards” transition matrix more commonly encountered in 

population genetics (e.g. Nagylaki 1982).  If loss of genetic material occurs during the 

transition (e.g. emigration, transitional mortality), this can be addressed by including an 

additional row containing the remaining probability (i.e. 1 m− ji ; refer to Appendix A for 

bar-dot notation conventions).  In Fig. 3.1, M is represented by the arrows between 

populations.  Lower case, bolded letters with subscripts (e.g. qi) refer to the vector of the 

corresponding matrix at the designated row or column subscript. 

 

Demographic processes 

 

Two important demographic processes are birth and mortality.  Birth is linked 

with recombination and segregation; mortality provides a second sampling process, and is 

linked with selection.  To account for the birth process, a random vector b may be 

defined, where bi is the number of births in the ith population.  Values of b were assigned 

using a degenerate distribution to control for variance resulting from the birth process, 

however alternative distributions (e.g. binomial, Poisson) could also be used.  For all 
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models, mating is assumed to occur randomly, and organisms are assumed to be diploid 

and hermaphroditic (random sexual pairing produces identical expected values - see 

Appendix B).  Determining the number and type of alleles produced as a result of 

reproduction involves more than just multiplying bi and qi, since resampling takes place 

due to segregation.  The number of new alleles produced of each type can be determined 

using the multinomial distribution ( )mn ,k p , where k is the number of items (alleles) 

being sampled and p is a vector of probabilities corresponding to the likelihood of a 

particular outcome (Johnson, Kotz, and Balakrishnan 1997).  In the following examples, 

1
2 i ib q ii ik u= = .  The 1/2 enters into the equation under the assumption of a diploid 

population, since alleles migrate in pairs.  Values for p are obtained by standardizing row 

vectors by the sum of their elements ( )i.e. .i iq=p i

( )mh ,k n

 

With mortality, the number of individuals sampled corresponds to the number of 

individuals surviving the mortality event multiplied by the ploidy level.  If the numbers 

of individuals within each population are extremely large, then the probability 

distribution of the survivors will be approximately multinomial (sampling with 

replacement).  If populations are of limited size however, then sampling should occur 

without replacement, which is instead given by the multivariate hypergeometric 

distribution , where k is the total number of items being selected, and n is a 

vector corresponding to the number of items in each category type   (Johnson, Kotz, and 

Balakrishnan 1997).  
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A neutral model with migration 

 

An algorithm describing the transition of the state of the system at one time step 

to the next (with non-replacement of populations) is given by the following steps: 

 

1. Determine the total number of progeny produced by population i at a 

given time step:  ,
1
2i i i tu b q= i . 

 

2. Determine the number of individuals transitioning from all source 

populations to the set of destination populations: ( )mn ,j i ju=v m . 

 

3. Determine the genetic composition of the incoming cohort based on the 

probabilities of the source population: ( )
1
mn 2 ,

s

i ij i
j

v q
=

∑ i

(

=g . 

 

4. Reduce each population to its respective carrying capacity zi:  

), 1 mh ,i iz+ =q gi t . 

 

The second step captures migration, the third – segregation, and the fourth - 

demographic mortality.  The first step parameterizes the second.  Both migration and 

segregation can be represented using the multinomial function since the probabilities do 

not change with each subsequent draw.  Determining the genetic composition of the 
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cohort is performed after migration for computational efficiency.  This is possible 

because individuals can be assigned to destinations independently of their genotype. 

To observe how the system changes in response to different levels of 

connectivity, numerical simulations were carried out in Java (v. 1.6) (Sun Microsystems 

2006) using algorithms translated from the C++ based stocc package developed by Fog 

(2006) (Java source available from the author upon request).  The form of migration used 

in the simulations was a nearest-neighbor stepping-stone model (e.g. Fig. 3.1); however 

the approach can be used in conjunction with a connectivity structure of arbitrary form.  

Each population was assigned a carrying capacity of 100 individuals (200 alleles), and 

the number of births was set at 10.  Allele counts for individual populations through time 

were written to an output file, and then imported into Matlab (The Mathworks 2007) for 

analysis.  Allele counts were converted into frequencies by cross-tabulating runs, time 

steps, populations and allele counts.  The resulting time-frequency surfaces were then 

averaged across all model runs (runs = 100) (Fig. 3.2).  The results of the simulation are 

shown in Fig. 3.3 (first row).  Note that because only two allele forms were used in the 

simulations, plots for only one form are shown, since plots for the second form would 

simply be a reflection of the first across y = 0.5. 

In the event that there is no migration between populations, each individual 

population is independent of the rest (M is an identity matrix and the associated sampling 

process can be eliminated from the equation).  Each population drifts towards fixation of 

a particular allele form with a probability equal to the initial frequency of that allele (Nei 

1987).  On the other extreme, assuming all populations are equally connected, then the 

entire group functions as a single, larger population.  The populations still drift towards 
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fixation or loss, however they do so jointly and at a slower rate. The pattern is stretched 

along the time axis; allele frequencies remain concentrated near middle values for a 

longer period of time (Fig. 3.3 – Neutral).  The appearance of the cloud is consistent with 

what would be expected from a diffusion-type process. 

 

Incorporating selection into the model 

 

Fitness and selective advantage have been well described, and form the basis of 

an extensive amount of population genetic theory (Haldane 1927; Fisher 1930; Wright 

1931; Kimura and Ohta 1971; Whitlock 2002).  In this situation however, there are 

additional complications in that multiple populations are being considered, it is possible 

to have multiple allele forms, and the fitness of a genotype at one location may be 

different at another.  For example, organisms that take up water rapidly might have an 

advantage in a humid environment, but might be at a disadvantage in a sere one.  These 

differences in relative fitness can be addressed by defining an n x m matrix Ω, where the 

entries correspond to the fitness of allele j at population i.  The multivariate 

hypergeometric function assumes that all allele forms have identical weight, and 

therefore to incorporate selective advantage, a different model is required. 

Fisher (1934; 1935) developed a noncentral hypergeometric model (NCH) that 

incorporates weighting, and the distribution was extended into its multivariate form by 

McCullagh and Nelder (1989; also see Fog 2008).  This function will be designated as 

, where k is the number of items being sampled, n is a vector corresponding (mf , ,k n ω)
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to the number of items in each category type, and ω corresponds to the fitness values for 

each category type.   

Fisher’s NCH assumes that the relative weights of organisms do not change as 

members are selected.  A second function which does adjust the weighting scheme as 

sampling proceeds is Wallenius’ NCH distribution (Wallenius 1963, Manly 1985).  The 

multivariate form of Wallenius’ NCH distribution was developed by Chesson (1976; also 

see Fog 2008).  This function will be designated by ( )mw , ,k n ω .  As the difference 

between k and N becomes large, Wallenius’ NCH is approximated by Fisher’s NCH. 

The relative fitness values within each population (ω) can be defined arbitrarily, 

but to proceed further, the concept of resource use is now introduced.  To provide a 

simple, illustrative scenario, an additive, one-to-one correspondence between genotype 

and phenotype is assumed (i.e. heterozygotes have intermediate fitness); an individual 

uses a unit of resource in proportion to its genotype (i.e. an individual with a genotype of 

a1a1 would require two units of Type I resource (white), a2a2 two units of Type II 

resource (black), and a1a2 or a2a1 one unit of Type I and one unit of Type II resource) 

(Fig. 3.4).  Therefore in a population with 150- units of Type I resource and 50 units of 

Type II resource, the fitnesses for a1 and a2 would be would be 0.75 and 0.25 

respectively, or standardizing the maximum fitness level to 1, 1 and 1/3 respectively.  In 

effect, this defines the niche space (albeit a simple one) available to the population 

(Hutchinson 1957, 1965; Leibold 1995).  Additional complexity may be introduced by 

increasing the number of different resource types (e.g. Type III, IV etc.).  The setup used 

in the simulations is shown in Fig. 3.4, with 250 units of Type I resource and 150 units of 
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Type II resource in the first population  (i.e. standardized weightings of 0.625 and 0.375), 

and alternating values for each subsequent population. 

In model runs involving selection and no migration, populations are quickly 

driven to fixation.  As the system shifts from closed (no migration) to open (equal 

migration), the system converges on the relative proportions of resource type (Fig. 3.3, 

rows 2 and 3).  Wallenius’ NCH follows the same basic pattern as Fisher’s NCH, but 

concentrates the allele frequencies to a greater degree and is slightly offset from the 

proportional resource values. 

 

Demand-side selection 

 

Fisher’s NCH, assumes that the relative fitnesses of different allele forms and 

genotypes do not change.  With the implementation of Wallenius’ NCH used above, 

weightings change with each draw, but the change is based on the characteristics of the 

population from which the sample is being drawn.  One must also consider the possibility 

however that the weightings might be affected by the characteristics of the habitat patch 

the organisms will be occupying.  Consider the analogy of a board containing five square 

holes and five round holes.  If the ten slots are to be filled from a source population of 

square and round pegs with the condition that the board can only be filled by pegs of the 

correct type, the resulting sample will always be five square pegs and five round pegs, 

regardless of the source population size and composition (as long as the number of source 

pegs of each type is greater than the number of corresponding destination spaces).  To 

address this, Wallenius’ NCH may be applied in a slightly different manner, such that 
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weightings are dependent on the characteristics of available resource rather than the 

composition of the population the sample is being drawn from (hence the appellation 

demand-side selection).  In this case ni = ρi/υi, where ρi is the amount of resources of type 

i in the population, and υi is a usage coefficient of that resource type (i.e. one instance of 

n will consume υ units of resource type i).  Note that ni is no longer the number of 

individuals in the source population, but rather the number of individuals the 

environment is capable of supporting, given the available resources.  The formula 

becomes 

[ ] ( )
1

/

1 10

Pr 1 i
i i

c c ki d

i ii

n
t

k
υ ω

= =

⎛ ⎞⎛ ⎞
= = −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∏ ∏∫K k dt  (Eq. 1), 

 
( )i i i id kω ρ υ= − , 

 
,i ik n n N= =∑ ∑  

 

which will be designated by: ( )mr , ,k n ρ , where ρ is a vector containing the amounts of 

available resources, and c is the number of different allele forms (the proof is given in 

Appendix D). 

In contrast to the invariant weightings of Fisher’s NCH or the source-driven 

frequency-dependence of the previous application of Wallenius’ NCH, here the outcome 

is influenced by the opportunities provided by the available niche space.  In the pegboard 

example, there was a stringent condition in that the number selected is equal to the total 

amount of resource.  Again, as the difference between the total amount of available 

resources and the total number of individuals increases, the constraint is relaxed, until 

eventually there is convergence back to Fisher’s NCH.  Note that resources are assumed 
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to be pooled; individuals do not have exclusive access to their respective resources, 

generating the co-dependency of the resource weightings. 

The simulations using the resource-based weighting scheme show a pattern 

similar to those obtained from the multivariate Fisher’s NCH and the previous Wallenius’ 

NCH runs (Fig. 3.3, last row), though allele frequencies tend to be closer to the 

proportional availability of resources.  There is a key difference however in the case with 

no migration.  When using Fisher’s and the previous Wallenius’ NCH as the mortality 

function, fixation is quickly reached.  Using resource-weighted sampling, even if an 

allele is at a considerable disadvantage in the general sense, it is able to persist for an 

extended period of time.  

 

Fitness values and scale dependency 

 

The results to this point have demonstrated the effects of altering the form of the 

mortality function and the strength of migration, however differences in fitness values 

within and between populations also have an effect.  If Ω is uniform (i.e. all selective 

weights are equal), then Ω has no effect on the outcome.  The result is a neutral process.  

This relationship should not be surprising, since a lack of differences in fitness values is 

the very definition of neutrality.  In contrast, as the elements of the weighting matrix 

become increasingly dissimilar, they exert a proportionally greater degree of influence on 

the system, which translates into an increasing degree of fixation (Fig 3.5).  The result is 

a smooth transition between neutrality and natural selection conditioned on relative 

fitness weightings, which in turn are dependent on resource availability. 
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However, if one accepts that the outcome of the evolutionary process can be 

mediated by relative differences in fitness values, and that fitness values may be affected 

by resource availability, one must also consider that the potential exists for the results to 

be scale dependent, since resource structure can change according to scale.  As an 

illustration, consider a situation in which there are four habitat patches, two of which 

have only Type I resource and two only have Type II resource, and there is equal 

migration between all populations (Fig. 3.6).  Under these conditions, using any of the 

weighted mortality functions, the allele frequencies will quickly be driven to fixation.  If 

the scale of the system changes however (e.g. combining patches or assuming that the 

organism has a greater range – Fig. 3.6 dashed boxes), this will generate a neutral 

outcome instead. 

  

Discussion 

 

Discrete multivariate models give concrete form to two important aspects of the 

relationship between connectivity structure, selection and resource availability.  The first 

is the ability for resource structure to influence the persistence of allele forms, allowing 

for survival even in the presence of what might be considered to be considerable fitness 

disadvantage.  In the example provided, the initial relative difference between the two 

allele forms in fitness was 0.4, orders of magnitude larger than what one would expect to 

find in real environments, but in spite of this, the sub-optimal allele form was able to 

maintain itself over an extended period of time because of the frequency-dependence of 

the fitness values.  The findings are consistent with formulas developed by Levene (1953) 
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and Dempster (1955), who generated deterministic models resulting in multiple-niche 

polymorphism.  Discrete multivariate distributions provide a stochastic foundation for 

those equations.  Stochastic formulations are relevant in that it is not only expectations 

that are important for projections, but higher order aspects of the process as well, such as 

variance.  The equations given could be used to generate weighted multi-type branching 

processes in the same way the multinomial distribution is used to generate standard 

multi-type branching processes (Caswell 2001).  Support for such a linkage is provided 

by Bulmer (1972), who noted that Levene’s formulas could be expressed in terms of 

matrices corresponding to a weighted version of Bodmer and Cavalli-Sforza’s model 

(1968).  Bulmer’s equations are deterministic however, and do not address the potential 

stochastic nature of the component matrices.  

Although multiple-niche polymorphism resulting from demand-side selection will 

be obscured by factors such as greater population numbers, less strict resource 

requirements and more complex genotype-fitness mapping, the fact that unoccupied 

niche space is capable of harboring allele forms that otherwise might be considered to be 

at an overall selective disadvantage warrants attention, particularly in environments 

where resources are extremely limited.  It should be emphasized that if selection is 

frequency dependent on resource availability, it is not the total niche space in a 

destination that is important, but rather the available niche space.  Consequently, the 

effect of demand-side selection may be significant, even in systems with a large resource 

base. 

The second point is that in heterogeneous environments, fitness weightings may 

change according to scale, and as a consequence the balance between whether an 
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evolutionary process is effectively neutral or driven by natural selection may also be 

scale-dependent.  At what scale then should fitness values be measured? The answer 

depends on the scale at which the host organism interacts with its environment, as it is the 

range of an organism that determines the extent to which resources are considered to be 

pooled.  The minimum degree of resolution with which the environment is resolved is 

referred to as the grain, and in conjunction with the extent (the range of the system), the 

two form the components of scale (Jenerett and Wu 2000).  The importance of scaling 

considerations has been recognized by ecologists (Levin 1992), however the potential 

effect of scale on selective weightings does not appear to have been given the same 

degree of attention.  An implicit assumption of many discrete-patch systems is that each 

individual patch is homogenous in composition, and with homogeneity comes scale-

independence, and as a result scaling effects can be ignored.  Real environments are 

rarely completely homogeneous however, and both the grain and extent of the 

environment from an organism’s perspective will likely change through time.  The 

discrete multivariate approach provides a direct means of incorporating scaling effects 

into the evolutionary process by providing a mechanism by which selective weights can 

be changed relative to one another by lumping and splitting the resource content of 

different patches. 

The analysis was facilitated by the direct, simple mapping between genotype and 

fitness values.  The reality is undoubtedly much more complex, involving multiple 

environmental factors, energetic costs as well as interactions at the level of the allele, 

locus and gene.  Although this genotype-fitness mapping is an important part of the 

system, it presents some challenges in terms of development.  Lewontin (1974) stated 
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that “To the present moment no one has succeeded in measuring with any accuracy the 

net fitness of genotype for any locus in any environment in nature.”  Although research 

into fitness values of artificial and natural populations has taken place since (Bijlsma-

Meeles and Bijlsma 1988; Fowler et al. 1997; Ochando and Ayala 1999; Shaver et al. 

2002), the prospects for meeting Lewontin’s challenge for individual loci on a 

widespread basis remain distant.  One possibility however is that the mapping may be 

flattened, meaning that it is not necessary to have information on the fitness values of 

individual allele forms and all of their potential interactions, only a more general 

relationship between genotypes and fitness.  Advances in high throughput genotyping 

(Kwok 2000; Pastinen et al. 2000; Richardson et al. 2007)  could be used in conjunction 

with various measures of fitness (e.g. growth,  lipid content or DNA to RNA ratios - 

Bergeron 1997; Buckley, Caldarone, and Ong 1999) in order to generate these kinds of 

mappings. 

The use of discrete multivariate sampling provides a means of simulating the 

genetic consequences of different connectivity regimes.  One limitation however is that 

the use of transition matrices in studying evolutionary processes is limited by their 

specificity; results cannot be generalized to other systems (Epperson 2003).  

Nevertheless, as physical environmental models become more available and accurate, 

generating these types of matrices as needed becomes a very real possibility (e.g. Cowen, 

Paris, and Srinivasan 2006).  One must be careful however to make the distinction 

between projection and forecasting (Caswell 2001).  The model only provides the 

expected trajectory of populations under a set of given expectations.  There may be a 

considerable amount of variation in an individual run.  Still, the approach is able to 
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provide a picture of what one might expect of a given system, and just as importantly, 

what is unexpected.  

 

Conclusions 

 

Discrete multivariate distributions provide a mechanism of unifying aspects of 

migration, selection and resource availability in metapopulations.  Different forms of 

mortality lead to different evolutionary outcomes, particularly in the case where there is 

differential resource use and resources are limiting.  The degree of similarity in fitness 

values affects the outcome of the evolutionary process (i.e. neutrality, natural selection), 

and since fitness values in heterogeneous environments are scale dependent, the outcome 

will also be scale-dependent. 
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Fig. 3.1.  Schematic representation of twelve populations and their respective allele 
frequencies connected by a circulant migration pattern.  The M matrix contains 
probabilities of migrating between a source population (columns) and a destination 
population (rows), and is represented in the population diagram by the arrows between 
populations (self-recruitment arrows are not shown).  The Q matrix contains information 
regarding allele frequencies (columns) in each population (rows).  In the population 
diagram, frequencies of allele type 1 (a1) are represented by shaded pie portions, and 
frequencies of allele type 2 (a2) are represented by the light pie portions.   
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Fig. 3.2.  Illustration of time-frequency plot construction. 
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Fig. 3.3.  Allele frequency probability plots for different levels of stepping stone 
migration and mortality models.  Horizontal axis is time in generations, vertical axis is 
the frequency of the allele in the population, and the shaded value is the probability of 
occurrence (at each time step all probabilities sum to 1).  Dashed lines indicate the 
proportions of available resource (as shown in Fig. 3.4), 0.625 in odd-numbered 
populations, 0.375 in even-numbered populations. 
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Fig. 3.4.  Twelve populations and their respective allele frequencies connected by a 
circulant migration pattern, with the addition of an exterior circle showing relative 
proportion of available resources.  The proportion of resource type I (ρ1) is represented 
by the dark portion, whereas the proportion of resource type II (ρ2) is given by the light 
portion.  Interior circles represent allele frequencies, identical to Fig. 3.1. 
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Fig. 3.5.  Allele frequency probability plots for 13 populations with a circulant migration 
structure, with 90% self-recruitment and 5% recruitment to either nearest neighbor (mf 
mortality).  Resource quantities were distributed among populations using a discretized 
normal distribution.  The variance parameter (σ) was determined as tan( / 2)σ πθ= , with 
θ ranging between 0 and 1.  Changing the value of θ alters the distribution of resources 
between an equal and even distribution of resources, and one where resources are unique 
to each population.  13 populations were used instead of 12 since an even number of 
populations would split the peak into two portions.  The number of different allele forms 
was increased to be equal to the number of populations (13) so that it would be possible 
to generate completely orthogonal resource vectors.  θ = 0 is not shown as all values fall 
on either the top or bottom boundary line. 
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Fig. 3.6.  A representation of how selective weightings may change according to scale.  
T-I and T-II refer to the proportional amount of Type I (white) and Type II (black) 
resources respectively.  By combining groups (e.g. due to increased range or by pooling 
populations), the proportion of resources changes accordingly. 
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CHAPTER 4:  SIMULATING THE GENETIC STRUCTURE OF CARIBBEAN 
CORAL REEF ECOSYSTEMS 
 
 
Background 
 
 

Understanding the development and form of large-scale population genetic 

structure is an area of growing interest for both scientists and managers (National 

Research Council (NRC) 2001; Roberts et al. 2003; Hedgecock, Barber, and Edmands 

2007).  The interest can be attributed in part to improvements in the ability to process 

large amounts of genetic data using multiple genetic markers (e.g. Richardson et al. 

2007), and also to increasing recognition of the importance of spatial aspects of 

conservation management, such as the degree of connectivity between subpopulations 

(Cowen et al. 2007).   

Evaluating genetic structure at large scales can be challenging due to the effort 

required to cover large spatial extents with a meaningful degree of resolution.  

Nevertheless, there have been several studies that have examined genetic patterns of coral 

reef organisms within the Caribbean.  Among the more consistent findings is evidence of 

a distinct genetic break between eastern and western populations in the Caribbean.  This 

has been observed for populations of Acropora palmata (Baums, Miller, and Hellberg 

2005) as well as Montastrea annularis (Foster et al. unpublished).  Additional structure is 

also apparent within the Bahamas as well.  Taylor and Hellberg (2003; 2006) have 

proposed additional breaks along the length of the Bahamas, and an examination of the 

gorgonian Pseudoptergorgia elisabethae by Gutierrez-Rodriguez and Lasker (2004) 

identified differences among populations located at Exuma Sound, in outlying areas, and 

near San Salvador Island.  Purcell et al. (2006) analyzed microsatellite data for Haemulon 
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flavolineatum and found significant, but weak structure. The authors proposed that the 

weakness in signal strength might be caused by overlapping populations. 

In addition to evaluating the form of regional-scale generic pattern however, it is 

important to consider the processes that create and maintain them as well.  Reconciling 

the factors believed to be responsible for generating genetic structure with real-world 

genetic patterns will lead to a better understanding of not only what the important 

processes actually are, but also the expected consequences if they were to change. 

Recently, models have been developed that couple oceanographic data with 

biological behavior of marine larvae (Cowen, Paris, and Srinivasan 2006).  Using these 

models in conjunction with matrix analysis, it is possible to determine how genetic 

structure is expected to develop as a result of natural processes.  This is accomplished by 

simulating the dispersal of marine larvae according to their own unique life-history traits, 

generating transition probability matrices, and projecting them through time to evaluate 

the expected development of genetic structure through time.  Coral reefs and their 

associated populations provide an ideal environment for applying this approach.  Coral 

reef communities are discrete habitats, and can be identified with a high degree of 

resolution over large spatial extents using remotely sensed imagery (Andréfouët et al. 

2006).  Corals and many of the organisms associated with them have a sessile adult stage 

and a pelagic larval stage, minimizing the potential for confounding effects from active 

behavioral migration as adults.  Furthermore, taken on a regional level (e.g. the 

Caribbean) they form a closed system, with no immigration or emigration.  Coral reefs 

also have considerable commercial importance as ecotourism destinations, and are the 

target of many marine protected area efforts (ISRS 2004). 
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I develop here an analytical means of using matrix analysis to evaluate the 

expected development of genetic structure in discretely subdivided populations.  

Although the approach is built on existing methods (Bodmer and Cavalli-Sforza 1968; 

Fu, Gelfand, and Holsinger 2006), because new recruits merge into existing populations 

rather than replacing them, changes to the form of the model were required.  To provide 

biological context, matrices derived from a bio-oceanographic larval dispersal model 

were used to project the expected development of genetic structure in Caribbean coral 

reef ecosystems.  The resulting patterns conform to field-based observations of genetic 

structure, suggesting that for some species, contemporary migration patterns may play a 

significant role in generating some of the genetic structure evident in Caribbean coral reef 

populations.  Elasticity analysis is also used to identify critical areas for connectivity in 

the region. 

 

Methods 

 

A GIS data layer of coral reefs and associated habitats were developed as part of 

the Millennium Reefs Assessment (Andréfouët et al. 2004).  The data was restricted to 

Caribbean environments that would be typically considered as coral reef (i.e. patch reef, 

spur and groove, not seagrass or shelf).  The subset was buffered to a distance of 5 

kilometers to account for the ability for larvae to engage in directed settlement behavior, 

and the resulting coverage was then split into discrete polygon units following Paris et al. 

(2005) using a tolerance level of 10 km (Fig. 4.1).  Tolerance in this case is defined as the 

minimum allowable distance between any two vertices along an arc, and was used to 
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provide a balance between preserving perimeter length and polygon area.  At the time at 

which the polygon layer was developed, Millennium Coral Reef data was not available 

for Venezuela.  Coral reef location information developed by UNEP-WCMC (Spalding, 

Ravilious, and Green 2001) was used for this area instead. 

Transition matrices describing the probability of migrants moving from one 

population to another (or self-recruiting) under different life-histories were constructed 

using a Java-based port of the bio-oceanographic dispersal model developed by Cowen, 

Paris and Srinivasan (Cowen, Paris, and Srinivasan 2006).  Current velocity information 

was obtained from the Hybrid Ocean Coordinate Model (HYCOM), using daily offline 

output for the time interval January 2, 2003 through December 25th, 2005.  1000 

individuals were released from each population at 30 day intervals.  Individuals became 

competent to settle after a period of 15 days (S1) or 5 days (S2), and were monitored for 

up to 30 days.  A mortality rate (z) of 0.2 per day was also applied to each transiting 

individual (Houde 1989).  The results were combined into a single transition matrix 

describing the number of survivors from a given source population (columns) arriving at 

the designated destination population (rows).  Another way to interpret the matrix is that 

the row index indicates the position of the base of an arrow and the column index 

indicates the position of the tip of an arrow connecting the two populations.  The value of 

the matrix at the intersection indicates the strength of the connection. 

To project expected genetic structure forward in time, a modified version of the 

matrix-based approach developed by Bodmer and Cavalli-Sforza (Bodmer and Cavalli-

Sforza 1968) was used.  The transition matrix M is applied to a state matrix Qt to yield 

the expected state of the population at time t+1, where tΔ encompasses a discrete 
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reproductive cycle.  Through recursive substitution, it can also be shown that Qt=MtQ0.  

This assumes that all elements of Q undergo transition however, which is not the case 

here.  Instead, it is only newly produced individuals which are transported, which then 

merge with existing populations.  To account for this, the formula may be re-expressed 

such that 

 

( )1t+Q K t t i•
= +MBQ Q . (Eq. 1) 

 

where K is a diagonal matrix of carrying capacity values for each population.  This 

simply states that the state of the system at t+1 is the result of migrating progeny (MBQt) 

combined with the original parent generation (+Qt), converted to probabilities via row 

standardization (bar-dot), and multiplied by carrying capacity (K).  The conversion of 

MBQt+Qt to probability values and multiplication by K produces expected values for the 

matrix the same way expected values of the vector-based multinomial distribution are 

derived by multiplying np, where n is the number of objects sampled, and p is a vector of 

their probability of being sampled.  The ordering of the multiplicative terms is 

significant.  From right to left, they represent the order in which the processes occur: 

birth first, then migration, followed by scaling to carrying capacity.  Using iterative 

substitution, it can be shown that 

 

( )
1

0  where      (Eq. 2 - See Appei

t

t ii •

−

••
= = +Q K AK AQ A MB I ndix B for proof)  
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If Q0 is equal to K, as would be the case if individuals were uniquely labeled 

according to their population of origin, the equation simplifies to ( )
t

t i•
=Q K AK

( )

.  If gene 

frequencies are of interest rather than expected allele counts, Qt may be divided by the 

carrying capacity K in which case the equation further reduces to
t

t i•
= KQ A .  The 

projections would therefore represent the overall probability that genetic material would 

transition from a source population to a destination population.  Note that although 

convergence over time is determined by the eigenvalues of MB, the ratio between MB 

and I affects the rate at which convergence occurs.    To provide a representative time 

scale, a reproductive output value of 500 per individual was used based on values for 

Stegastes partitus (~1000 successful hatches per female per spawning event (Cole and 

Sadovy 1995) - the probability of an individual within a population being male or female 

was assumed to be equal).  Relative carrying capacity was calculated based on reef area 

available within a given polygon.  Relative carrying capacity can be used instead of 

absolute carrying capacity due to the progressive row-normalization of the equation.  The 

most commonly used genetic markers in population genetic studies are assumed to be 

neutral, therefore the potential effects of selection were not considered.  The role of 

mutation was also not addressed, however the effects could be incorporated by 

multiplying the MBQ term by an additional matrix (e.g. MBQV) describing the 

probability of switching from one allele form to another (Fu, Gelfand, and Holsinger 

2006).  The degree of variance in the projected allele frequencies may be determined 

using Pollard’s model for projecting the moments of a multitype branching process 

(Pollard 1969; Caswell 2001), though this was not carried out due to the large number of 

populations. Elasticity analysis (Caswell 2001) was also performed to identify the relative 
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importance of linkages within the system.  Elasticity analysis measures the proportional 

response of matrix eigenvalues to proportional perturbations using partial derivatives.  

Elasticity was calculated as  

 

ij

ij

φ δλ
λ δφ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
E

( )

  (Eq. 3) 

 

i
=Φ AK i

( )

where , and λ is the dominant eigenvalue of the Φ matrix.  The dominant 

eigenvalue is the primary factor determining how the matrix changes upon 

exponentiation, and consequently the changes that exert the greatest effect on it will also 

have the greatest effect on the system as a whole. 

 

Results 

  

i•
AKTransition matrices showing the exponentiation of were generated using 

the input parameters provided.  Individuals tended to settle near to their population of 

origin, although there were exceptions for the reefs of Cay Sal (< LBB), eastern Cuba, the 

northern portion of Hispaniola (HPN), and for the chain of reefs along the Nicaraguan 

Rise south of Cuba, including the Cayman Islands and Swan Island (CCB-JAM) (Fig 

4.2a).  Decreasing the time to competency of the larvae resulted in a greater proportion of 

individuals settling back to or near their natal habitat (there was a 54% increase in the 

probability of settlement to reefs less than or equal to 50 km radial distance from the 

source).  The decrease in the values of the off-diagonal elements and the corresponding 
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increase in values near the diagonal demonstrate increased retention, although the general 

form of the matrix remained the same (Fig 4.2b). 

Projecting expected genetic connectivity forward through time, links between 

disparate populations become evident, represented as blocks in the resulting matrices (Fig 

4.2c,d).  Over time, populations become increasingly genetically connected with one 

another, and small-scale differences in allele frequencies erode (Fig 4.2d).  Even though 

many of the probabilities of the projected matrices were extremely low, relative 

differences between populations do persist (Fig 4.2e), providing the basis for the 

development of genetic structure.  The most obvious and persistent feature in the matrices 

is a break that begins near Puerto Rico, and encompasses the islands of the Lesser 

Antilles through to the Gulf of Venezuela.  The similarity matrix indicates that nested 

structure is also expected to develop within the Bahamas and in portions of the Western 

Caribbean.  A relationship between southern Cuba, Jamaica and the reefs of the 

Nicaraguan Rise is anticipated, as is a strong link between the Mesoamerican Barrier 

Reef and the Florida Keys (Fig 4.3). 

The elasticity matrix (Fig 4.2f) indicates that in general, proportional changes to 

any single population do not have a large effect on the dominant eigenvalue (λ) of the 

row-normalized AK matrix (average degree of proportional change = 2.85E-7), however 

the relative pattern indicates that changes to values in the Lesser Antilles (LAN), near 

Panama (PAN) and central Nicaragua (CCB), and in the Mesoamerican Barrier Reef 

(MBR) have the greatest influence on λ, and through it, the projected matrix values. 
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Discussion 

 

The matrices show the development of expected genetic connectivity patterns in 

the Caribbean through time, using the input parameters provided.  Although populations 

may not be connected in an obvious manner demographically, they may be linked 

genetically.  In particular, the projections show the formation of regional clusters, 

including the Lesser Antilles, the Bahamas and northern Cuba, and among the reefs of 

Panama and the Nicaraguan Rise.  The results are dependent on the input parameters 

used, however there is consistency with runs using other input parameters (e.g. 2b). 

Individuals persistently recruit back to or near their population of origin, and the structure 

of the matrix retains a similar overall form, indicating that for Caribbean coral reef 

ecosystems the overall characteristics of the projections are robust.  The projections 

demonstrate that a genetic break is expected from Puerto Rico down to the Gulf of 

Venezuela, which is consistent with observations from field studies (Starck and Colin 

1978; Taylor and Hellberg 2003; Baums, Miller, and Hellberg 2005) and previous 

independent simulations (Cowen, Paris, and Srinivasan 2006).  Note that although the 

break appears in the projected matrices at Puerto Rico and the Mona Passage, the 

distance matrix groups Puerto Rico more closely with Hispaniola and the Western 

Caribbean.  The Mona Passage is an area with highly variable current structure (Metcalf, 

Stalcup, and Atwood 1977), and the work by Baums et al. (2005) identified extensive 

mixing in this area as well.  It is possible that the variability in current structure results in 

a “leaky” northern boundary.  Simulations using specific life-history information as well 

as longer-term and higher resolution oceanographic data in this area will be required to 
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resolve the precise nature of the genetic break.  There also appears to be support for the 

existence of a weaker break in the Central Bahamas consistent with observations made by 

Taylor and Hellberg (2003; 2006).  The projections suggest that part of the weakness of 

this break stems from the fact that allele frequencies change along the length of the 

Bahamas, forming a gradient, although the sharpest transition does occur at the boundary 

between the Northern Bahamas (GBW, GBE) and the Southern Bahamas (MBH).  For at 

least some species, it appears that oceanographic currents play a significant role in 

shaping the genetic structure of Caribbean coral reef communities. 

The high degree of spread of genetic material across populations after only a few 

generations may seem questionable, however the powered matrix values of AK indicate 

the probability that any form of genetic material from a given source population reaches 

the corresponding destination.  The probability with which a new mutant would arise in a 

population would be 1/2N (assuming a diploid population), where N is the number of 

individuals in the population (which in this case equals the corresponding diagonal 

element of K).  This results in a decreased probability of transition, and consequently the 

amount of time it would take for a similar allele to spread to other populations.  The 

model also does not take into account mortality due to intra-population demographic 

processes.  It is likely that juveniles would experience greater mortality than established 

adults, which would further increase the time required for novel genes to spread.  

Assigning Q0 to be equal to K may also seem unusual, since populations are more likely 

to begin in a mixed state rather than in a unique condition.  However, if all populations 

are completely identical in terms of their composition, for structure to appear, new 

material would have to be injected into the system (e.g. via mutation).  Assuming that the 
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probability of the mutation being generated is uniform across time and space, then the 

probability of arising in any particular population will be equal, and if the new material is 

only generated in a single population at a time, then the result is equivalent to using an 

identity matrix, i.e. row-normalized K. 

Given the significant degree of structure expected to be present in the system 

from the simulations, why are strong breaks between populations not more evident in 

observations of natural populations (e.g. Shulman and Bermingham 1995; Purcell et al. 

2006)?  One possible answer to this lies in the relationship between the number of 

individuals sampled and the probability of sampling the available allele forms.  The 

matrix probabilities are the allele frequencies that would be expected from sampling the 

populations with a high (theoretically infinite) degree of accuracy.  Sampling a limited 

number of individuals increases perceived distances between populations, and decreases 

the amount of visible structure (Fig. 4.2f).  Structure may be present, but relative 

differences between populations might not be discernable given the available sampling 

power.  Typically, this problem is addressed by sampling more individuals or loci, and 

the matrix projections can be used to help identify the sample sizes required to bring 

genetic structure into focus.  It must be noted that the “markers” used by the matrix are 

idealized in the sense that each different form arises independently in a different 

population, and all populations have a unique marker associated with them.  In reality, 

some populations may not produce a unique mutation, or there may be homoplasy, 

reducing the amount of observable structure in the system.  It is also likely that additional 

processes are also contributing variability to natural populations, such as density 
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dependent effects, trophodynamics or disease, which could dampen structure even 

further. 

  Elasticity analysis identifies the Lesser Antilles, Panama, the Mesoamerican 

Barrier Reef, and the chain of reefs spanning the Nicaraguan Rise as areas that would 

experience the greatest proportional change due to perturbations in connectivity structure.  

The importance of the eastern Antilles stems from their position upstream of other 

populations in the Caribbean; they act as a source to other areas of the Caribbean without 

themselves being a sink.  Panama and the Mesoamerican Barrier Reef appear to be 

important due to a combination of extensive reef area capable of acting as a reservoir for 

genetic material, in conjunction with their proximity to gyres capable of dispersing and 

recirculating that material. 

The matrix model provides a powerful and concise means of evaluating the 

expected genetic structure of subdivided populations through time. Although the form of 

the equation is similar to other  approaches (Bodmer and Cavalli-Sforza 1968; Fu, 

Gelfand, and Holsinger 2006) there are also some critical differences.  Classic models 

assume that all elements of the Q matrix undergo transition, whereas here, migrants 

merge into previously existing populations.  There is an important consequence of this.  

Although the eventual trajectory of the population is ultimately determined by the 

combined effects of migration, birth and carrying capacity (MB and K), the magnitude of 

the difference between MB and I affects the rate at which convergence occurs.  

Therefore, if the time scale over which genetic structure develops is of importance, 

demographic factors (i.e. levels of birth and mortality relative to population size) must be 

taken into account. 
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An analytical solution for projecting expected genetic structure has several 

advantages over simulation-based approaches.  The results are more accurate and 

computationally efficient, and can be easily executed using a standard matrix package 

(e.g. Matlab, Scilab).  Although simulation-based frameworks can be robust and easy to 

conceptualize, the aforementioned importance of demographics with regards to time scale 

means that to capture the full dynamics of the populations using simulation, it would be 

necessary to simulate actual numbers of individuals present in the system.  For regional-

scale studies of marine systems, this could require simulating billions or trillions of 

individuals through time repeatedly, which would be challenging, even given exponential 

increases in computing power.  An analytical solution simplifies the calculations in the 

same way that the binomial function simplifies repeated sampling of a binary event.  The 

analytical model does have its own limitations in that the various matrices (M, B and K) 

are assumed to remain constant through time.  Although this is unlikely to be strictly true, 

if it can be assumed that events are independent of one another, have finite variance, and 

are generated through an identical process, then the central limit theorem will apply, 

meaning that the values will be approximately normally distributed about the mean of the 

set.  Evaluating the trajectory of a system in which connectivity changes over time in a 

complex, autocorrelated manner would likely require simulation (e.g. using individual-

based methods). 

It is important to keep in mind that the results are projections, not predictions.  

The model is not designed a priori to fit with any particular set of observations.  Instead, 

the model provides an expected set of patterns, and these expected results may be 

compared with observed results to test whether the assumptions regarding the system are 
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correct.  Here, the assumption is that oceanographic-driven migration is the primary force 

shaping genetic structure of populations associated with coral reef ecosystems, but the 

comparisons with existing studies do appear to provide support for this.  There are other 

factors that also have the potential to influence population genetic structure however, 

including age structure, biased patterns of mutation and demographic bottlenecks that 

could be explored as well. 

The use of matrix methods in conjunction with the output of bio-oceanographic 

larval dispersal models provides an effective means of evaluating the expected 

development of genetic structure over time.  With ongoing efforts to evaluate regional-

scale genetic structure of marine populations, the ability to cross-validate expectations 

from physical models with field-based observations will be a valuable tool for studying 

how genetic diversity is created and maintained in marine populations. 

 

Conclusions 

 

Matrix analysis was coupled with a bio-oceanographic larval dispersal model to 

evaluate the expected development of genetic structure in coral reef ecosystems.  

Applying this approach to Caribbean coral reef ecosystems demonstrates a clear expected 

genetic break between eastern and western portions of the Caribbean, which is 

concordant with previous simulations and field studies.  Other potentially important 

relationships include linkages among the reefs of the Nicaraguan Rise, and a strong 

connection between the Mesoamerican Barrier Reef and the Florida Keys.  Elasticity 

analysis suggests that the reefs that would generate the greatest proportional changes in 
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the matrix in response to perturbations are located in the Eastern Antilles, Panama, the 

Mesoamerican Barrier Reef and along the Nicaraguan Rise. A matrix-based approach to 

modeling genetic connectivity provides a concrete means of evaluating the relationship 

between genetic theory and field-based evidence in regional-scale environments, and 

provides a powerful way to study and visualize the development of genetic structure in 

large-scale ecosystems through time. 
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Fig. 4.1.  Map of derived polygon boundaries for the Caribbean divided into subregions.  
FLK – Florida Keys; LBB – Little Bahama Bank; GBW – Grand Bahama West; GBE – 
Grand Bahama East;  MBH – Mid-Bahamas; CBN – Cuba North; CBS – Cuba South; 
HPN Hispaniola; PR – Puerto Rico and the Virgin Islands; LAN – Lesser Antilles; SAE – 
South America East; SAW – South America West; PAN – Panama; CCB – Central 
Caribbean, including the Nicaraguan Rise; JAM – Jamaica, the Cayman Islands and 
Swan Island; MBR – Roatan and the Mesoamerican Barrier Reef.  Shading from light to 
dark indicates the ordering of the polygons within each region. 
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Fig. 4.2.  Transition matrix, projections and derived results.  The entries of the matrix 
represent the probability of finding genetic material that originated in the source 
population (columns)  in the destination population (rows) at the given time.  (a) 
Transition matrix A for Simulation 1 (S1):  competent to settle at day 15, 30 day pelagic 
larval duration.  (b) Transition matrix A for Simulation 2:  competent to settle at day 5, 
30 day pelagic larval duration.  (c) Probability of allele occurrence at t=10 for S1.  (d) 
Probability of allele occurrence at t=100 for S1. (e)  Similarity matrix for S1 at t=100.  

Similarity was calculated as 
1

r

ik ik
k

x y
=

∑ , where x and y are allele frequency vectors of two 

different populations (Nei 1987) (f) Elasticity values derived from transition matrix A for 
S1.  Axis values refer to the subregion beginning immediately after the line break. See 
Fig. 4.1 for abbreviations. 
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Fig. 4.3. (a)  Similarity matrices resulting from randomly sampling S1 at t=100 using 
1000 individuals per population (b) using 100 individuals per population. 
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CHAPTER 5:  SIMULATING THE GENETIC STRUCTURE OF SOUTHEAST 
ASIAN CORAL REEF ECOSYSTEMS 
 

Background 

 

The coral reefs of Southeast Asia are among the most diverse marine communities 

on earth (Roberts et al. 2002), and are key areas of interest for conservation (Burke, 

Selig, and Spalding 2002).  The processes leading to this high level of diversity remain 

unclear however.  Genetic data from the field has been used to infer connectivity, but the 

patterns appear to be complicated, possibly involving bi-directional interchanges between 

reefs of the Indo-West Pacific (IWP) and the open Pacific (Barber and Bellwood 2005).  

Nevertheless, given the limited resources available for conservation, it is imperative to 

find ways of identifying coral reef patches that play key roles in creating and maintaining 

long-term genetic diversity in the region.  Otherwise, they may be lost, adversely 

impacting levels of biological diversity and possibly ecosystem resilience as well 

(McClanahan, Polunin, and Done 2002; Hughes and Stachowicz 2004).  Although 

obtaining data from the field is essential, it is unreasonable to expect this to be possible 

for the entire region with a high degree of resolution over a long period of time.  

Modeling the system offers a more productive approach for understanding how the 

various populations relate to one another, and how genetic structure develops throughout 

the region. 

With recent developments in coupling biological larval dispersal models to 

hydrodynamic models, the possibility exists for determining the probability of migration 

between populations through simulation.   Matrices of these probability values can then
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be used in conjunction with life-history information to project the expected genetic 

structure of the system through time, and the expected structure can be compared with 

field-derived data to test whether assumptions regarding how the system functions are 

correct.  One significant advantage of this approach is that it provides a way of 

identifying the expected direction of gene flow over time.  An additional benefit comes 

from being able to assess the relative importance of contemporary migration patterns 

versus historical ones. Benzie (1999) noted that genetic structures of Tridacna maxima, 

T. gigas, T. derasa, Acanthaster plancki and Linckia laevigata appeared to be the result 

of historic dispersal events rather than contemporary gene flow.  If this is the case, then 

one might expect that genetic structure derived from field-based observations will have a 

significantly different form from one based on the oceanographic-based simulations. 

Here, matrix methods coupled with bio-oceanographic larval dispersal models are 

used to study the development of genetic structure in the Southeast Asian region resulting 

from oceanographic transport of marine larvae.  The matrices are used to determine the 

expected degree of relatedness between populations, as well as the direction of gene flow.  

The values can also be converted into diversity measurements to provide an estimate of 

what the pattern of diversity in the region would be expected to look like on the basis of 

contemporary migration patterns and unbiased mutation.  Elasticity analysis is also used 

to identify areas that would have the greatest effect on the system if perturbed. 
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Methods 

 

A GIS data layer of coral reef locations developed by Spalding et al. (2001) was used as 

the base coral reef layer, and was restricted to an area bounded by 15°S-30°N and 95°E-

140°E.  The subset was buffered to a distance of 5 kilometers to account for the ability 

for larvae to engage in directed settlement behavior, and the resulting coverage was then 

split into discrete polygon units at a tolerance level of 10 km (Fig. 5.1).  Tolerance in this 

case is defined as the minimum allowable distance between any two vertices along an 

arc, and was used to provide a balance between preserving perimeter length and polygon 

area. 

Transition matrices describing the probability of migrants moving from one 

population to another (and self-recruiting) under different life-histories were constructed 

using a Java-based port of the bio-oceanographic dispersal model developed by Cowen, 

Paris and Srinivasan (Cowen, Paris, and Srinivasan 2006).  Current velocity information 

was obtained from the Hybrid Ocean Coordinate Model (HYCOM), using daily offline 

output for the time interval January 2, 2003 through December 25th, 2005.  1000 

individuals were released from each population at 28 day intervals.  Individuals became 

competent to settle after a period of 15 days, and were monitored for up to 30 days, 

values that are consistent with values for Halichoeres sp. of the Pacific region (minimum 

- 20.8-4.9, average - 24+6.3 (Victor 1986)).  A mortality rate (z) of .2 per day was also 

applied to each transiting individual (Houde 1989).  The results were combined into a 

single transition matrix describing the number of survivors from a given source 

population (columns) arriving at the designated destination population (rows).  Another 
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way to interpret the matrix is that the row index indicates the position of the base of an 

arrow and the column index indicates the position of the tip of an arrow connecting the 

two populations.  The value of the matrix at the intersection indicates the strength of the 

connection. 

To project expected genetic structure forward in time, a modified version of the 

matrix-based approach developed by Bodmer and Cavalli-Sforza (1968) was used.  A 

sub-stochastic transition matrix M is applied to a state matrix Qt to yield the expected 

state of the population at time t+1, where tΔ encompasses a discrete reproductive cycle.  

The individual elements of M contain the probability of transitioning (migrating) from 

population j to population i, where i and j are row and column indices respectively.  

Through recursive substitution, it can also be shown that Qt=MtQ0.  This assumes that all 

elements of Q undergo transition however, which is not the case here.  Instead, it is only 

newly produced individuals which are transported, which then merge with existing 

populations.  To account for this, the formula may be re-expressed such that 

 

( )1+Q Kt t t i•
= +Q MBQ

( )

. (Eq. 1) 

 

From right to left, the terms represent the order in which the processes occur: birth first, 

then migration, integration into existing populations, and scaling to carrying capacity.  

Using iterative substitution, the recursion formula is determined as 
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( )
t

t i•
= AK

( )

If Q0 is equal to K, the equation simplifies toQ K .  If gene frequencies 

are of interest rather than expected allele counts, Qt may be divided by the carrying 

capacity K in which case the equation reduces to
t

it •
=Q A .  Although the eventual 

outcome is determined by the eigenvalues of MB, the ratio between MB and I affects the 

rate to convergence.    To provide a representative time scale, a reproductive output value 

of 500 per individual was used, the probability of an individual within a population being 

male or female was assumed to be equal).  The most commonly used genetic markers in 

population genetic studies are neutral, therefore the potential effects of selection were not 

considered.  The role of mutation was also not addressed, although the effects could be 

incorporated by multiplying the MBQ term by an additional matrix (e.g. MBQV) 

describing the probability of switching from one allele form to another (Fu, Gelfand, and 

Holsinger 2006).  If it can be assumed that there is no spatial or temporal bias to the 

mutations however, then the mutation matrix would contain identical values, and would 

be effectively eliminated upon row-normalization.  Similarity matrices were calculated as 

1 – DA, Nei’s genetic distance (Nei 1972), 

K

1,
s

ik jkki j q qS
=

= ∑

2

1

s

ijj
q

=
− ∑

, where q is an individual 

element of Q,  i and j are different row indices, k is a column index, and s is the number 

of columns.  The similarity/distance values were used in conjunction with UPGMA 

(unweighted pair group method with arithmetic mean) clustering to generate a spatial 

map of areas expected to have similar genetic composition.  The projected genetic matrix 

was also converted into diversity values by calculating one minus the concentration value 

for a given population (Legendre and Legendre 1998), 1 .  Elasticity analysis 

(Caswell 2001) was carried out to identify the relative importance of linkages within the 
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system.  Elasticity measures the proportional degree of change in matrix eigenvalues 

generated by proportional changes to individual matrix elements.  The results can be used 

to identify which populations are critical connectivity junctions, and should be preserved 

if current conditions are to be maintained. 

 

Results 

 

The transition matrix shows that a high overall level of self-recruitment is 

expected within the region (Fig. 5.2a).  Off-diagonal elements are evident in areas of 

exchange between the Spratly Islands (SIS), Palawan (PLW) and the Sulu Archipelago 

(SAR).  Projecting the genetic exchange matrix through time (Figs 5.2b and c), two 

extensive blocks become evident, the first consisting of reefs of the South China Sea 

(SCS; SCW-SAR), the second consisting of reefs of the Coral Triangle (CT), loosely 

defined as the area bounded by the Philippines, Borneo (Kalimantan) and New Guinea 

(SAR-NGN).  Reefs in the Gulf of Thailand, the Gulf of Tonkin and the Southwestern 

edge of Hainan, as well as those in the far northeast of the study region near Taiwan and 

the Ryukyu Islands do not appear to contribute significantly to genetic structure in the 

South China Sea.  The reefs of Vietnam do appear to play an active role, interacting with 

the Spratly Islands, the Philippines and the Sulu Archipelago.  There is an obvious 

asymmetry in the projected matrices, indicating that genetic material from the SCS is 

expected to flow into the CT, but not the reverse, with the exception of some 

contributions from reefs in the southern Philippines.  The key connection between the 

two regions appears to be the reefs of the Sulu Archipelago.  This can be confirmed using 
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kernel plots for particles released from the Spratly Islands, Sulu Archipelago and 

Makassar Strait (Fig 5.3).  The majority of the larvae originating in the Sulu Archipelago 

appear to be prevented from reaching Palawan by a cyclonic gyre in the Sulu Sea, 

whereas larvae originating in the SCS are able to pass through the Balabac Strait into the 

Sulu Sea, where they merge into flows leading through the Archipelago and continuing 

on southwards or eastwards. 

In addition to the macro-scale break between the SCS and the CT, nested structure 

is expected within these regions as well (Fig. 5.2b,c,d).  In the South China Sea, the 

Philippines form a distinct block, and substructure is associated with several of the 

islands.  Within the Coral Triangle, the reefs of the Makassar Strait (MKS) show 

divergence from other reefs of the CT region. Halmahera and Ceram also appear to form 

a cohesive unit, although connectivity drops off towards the southern islands in the 

eastern portion of the Banda Sea (BSE).  The associations with northern New Guinea 

reefs (NGN) are strong however, suggesting that connectivity is stronger along the 

northern coast.  This is reflected in the kernel plots (Fig 5.3), which show Halmahera and 

Northern New Guinea connected by an anticyclonic gyre.  The reefs of the Andaman Sea 

and southern Java are expected to be highly isolated from other areas within the region. 

Plotting the major clusters (Fig. 5.4) reveals a number of distinguishable regions, 

including:  the Spratly Islands, Halmahera, Southern Sumatra, Southern Java, Flores Sea, 

Makassar Strait, Eastern Sulawesi and Banda Sea, as well as reefs of the northwest 

Arafura Sea and various subdivisions within the Philippines.  The results show some 

correspondence with field observations made by Ablan et al. (2002), which indicated four 

major groups, the first two composed of reefs in the north and south of the SCS 
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respectively, the third made up of reefs the southern Philippines, Borneo and the eastern 

Indonesian Islands, and the fourth comprised of the eastern edge of the Philippines and 

outlying Pacific Islands based on 16 populations of Dascyllus trimaculatus.   

Converting the expected genetic structure into diversity values (Fig. 5.5) indicates 

that the areas expected to accumulate the greatest amount of diversity are the reefs near 

Halmahera and northern New Guinea.  This result is primarily a function of these areas 

existing in convergence zones.  The CT region also appears to develop a greater amount 

of diversity over time than the SCS, due in part to the unidirectional flow of genetic 

material from the SCS into the CT.   

Elasticity analysis of the projection matrix (Fig. 5.2e) shows that the reefs of the 

Sulu Archipelago are expected to have a significant effect on the dominant eigenvalue of 

the transition matrix and consequently the genetic diffusion process as whole, however 

Philippine reefs appear to have an even greater degree of influence.  Populations 

associated with the Strait of Malacca have the least effect on the system. 

 

Discussion 

 

The projected matrices provide insight into how genetic material is expected to 

spread throughout the region under current conditions.  Of considerable significance is 

the possible one-way link observed between the South China Sea and Coral Triangle 

regions.  The expected unidirectional flow of genetic material from the SCS into the CT 

indicates that the SCS may be acting as an upstream source of genetic diversity, in the 

same way that the Lesser Antilles are an upstream source of genetic material in the 
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Caribbean.  It is possible that some of the biological diversity found within the CT may 

be supported in part by the Spratly Islands and other areas within the SCS.  As a result, 

conservation of reefs in the SCS may extend beyond being a local concern to one 

affecting the entire IWP.  A more detailed examination of this connection using high-

resolution oceanographic models and sophisticated larval behavior is certainly warranted. 

The results also indicate that extensive genetic connectivity is expected among 

coral reefs throughout the Southeast Asian region, and the development of strong 

structural elements within the South China Sea region and the Coral Triangle is 

anticipated as well.  The lack of connectivity between areas east and west of the Strait of 

Malacca suggests that contemporary oceanographic conditions work against the 

introduction of genetic material from outlying areas in the west (e.g. Andaman Islands, 

Strait of Malacca, western Sumatra).  The IWP has been cited as a possible area of 

accumulation (Jokiel and Martinelli 1992; Pandolfi 1992), meaning that the region is 

expected to be an area of convergence for dispersal.  In order for the IWP to be gaining 

genetic material from external areas, migrants would need to be entering into the region 

principally from the east, however the transition matrix and kernel plots show that 

material is generally expected to be transported eastwards out of the region.  Given the 

degree of mortality expected over large distances, it seems unlikely that neutral genetic 

material originating in the open Pacific is swamping the genetic content of the IWP, at 

least for species with a relatively short pelagic larval duration.  It is plausible that the 

islands of the open Pacific may be acting as independent reservoirs of genetic material, 

and that some bi-directional exchange with the IWP takes place, however it appears as 

though the majority of the genetic exchange  is expected to occur within the boundaries 
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of the IWP.  Increasing the extent of the simulations to incorporate coral reefs of the open 

Pacific would provide a concrete means of addressing this question.   

It must be emphasized that the results only pertain to expectations based on 

contemporary conditions, not what has taken place in the evolutionary past.  To do 

otherwise would violate the assumption that the migration matrix is stationary through 

time, since major changes in oceanographic current structure have occurred over the 

long-term from sea level change and tectonic shifts.  Simulating long-term changes is 

possible, however it would require using a paleo-oceanographic model, which would be 

complicated by the need to account for shifting bathymetric conditions.   

According to the model, the areas expected to develop the greatest amount of 

genetic diversity occur near Halmahera and the Banda Sea.  This appears to primarily 

result of this area being a convergence point for organisms leaving the IWP, either from 

the Celebes Sea in the north, or the Banda Sea to the south.  It must be emphasized that 

genetic diversity does not map directly to biological diversity.  The former occurs within 

a single species, and is the result of a combination of mutation, migration, drift and 

selection.  The latter is a function of speciation, migration and evolutionary processes, but 

is also shaped by other forces such as interspecific competition and niche availability, and 

is also is the cumulative result of a diverse array of life history patterns.  Nevertheless, 

there are some common elements, in that mutation and speciation are similar processes, 

each resulting in the appearance of a new object type within a population, albeit over 

different time scales.  Because genes are carried by individuals, the migration pattern of 

genes would also be expected to correspond with the migration pattern of individuals.  

Because of this, the predictions for genetic diversity can be regarded as a type of neutral 
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model for biological diversity.  If overall genetic structure is robust with respect to 

changes in life history patterns, then the model can be used to determine where biological 

diversity is expected to arise on the basis of migration patterns. 

Diversity maps have been developed for the IWP for a variety of species 

associated with coral reef ecosystems  (Veron 2000; Spalding, Ravilious, and Green 

2001; Allen 2002; Roberts et al. 2002; Mora et al. 2003), and a consistent feature is that 

they the CT region as the primary location of diversity.  The map of expected genetic 

diversity reflects this pattern as well, suggesting a role for contemporary oceanographic 

patterns in shaping biological diversity.  One must be very cautious with this 

interpretation however, since diffusion of biological diversity operates on a much longer 

time scale than the diffusion of genetic diversity, and the assumption of a stationary 

migration matrix based on short-term simulation becomes much less tenable.  There are 

also discrepancies between the model pattern and some of the existing studies.  Work by 

Carpenter and Springer (2005) identified maximum levels of diversity near Luzon and the 

central islands of the Philippines as opposed to near Halmahera and the Banda Sea.  

Furthermore, Sumatra was also shown to have high levels of diversity, which was not the 

case with the current model.  It is possible that the differences might be due to 

underrepresentation of some areas in the field sampling scheme due to lower levels of 

accessibility to some reef areas, however another distinct possibility is the influence of 

historical effects, such as eustatic sea-level fluctuations (McManus 1985; Potts 1985).  

Without a doubt, patterns of biological diversity in Southeast Asia are the result of many 

complex and interacting processes (Hoeksema 2007) and must be studied accordingly, 
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however the matrix projections are able to provide some quantitative insight into the 

potential role of contemporary connectivity and demography in generating diversity. 

The formation of multiple clusters throughout the area, such as in the Philippines, 

in the Makassar Strait, in the Flores Sea and in the vicinity of Halmahera and the Banda 

Sea demonstrates that even given the production of large numbers of larvae throughout 

the region, there is still a considerable degree of regionalization, considerably more so 

than is evident in the Caribbean (previous chapter).  It is likely that adding age structure 

into the model would only strengthen the expected degree of structure even further.  The 

development of populations with a greater degree of panmixia would likely require 

longer pelagic larval durations, specific pelagic larval behavior, weaker settlement 

behavior, or possibly a combination of all three. 

The elasticity matrix provides information on the relative influence of 

connectivity elements on the dominant eigenvalue of the projection matrix.  Although the 

importance of Palawan and the Sulu Archipelago were previously observed, the coral 

reefs of the Philippines also appeared to have significant influence on the system, 

possibly due to being part of a tight, discretely linked network.  The Philippines are also 

situated near an area of strong oceanographic divergence, and larvae transported from the 

Philippines can enter into the Sulu Sea and transported into the Makassar Strait, 

westwards into the South China Sea, or south towards Halmahera and the Banda Sea. 

It is important to also point out that the results are projections, not predictions.  

The model results indicate what is expected of the system given particular input 

parameters.  Field data is vital for comparison with the model.  Having better data 

regarding current genetic structure would allow research to move beyond simply looking 
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at general dispersal patterns, and more towards actual predictive scenarios.  Pattern is 

often used to infer process, but this assumes that a model exists that includes the relevant 

factors, and has the relationships between them properly defined. 

 

Conclusions 

 

The reefs out Southeast Asia have complex demographic and genetic connectivity 

structure.  The genetic projections reveal that the flow of genetic material between the 

South China Sea and Coral Triangle is expected to be primarily unidirectional, with the 

Balabac Strait acting as a one way latch.  Larvae are transported southwards through the 

Sulu Archipelago and into the Makassar Strait, and appear to be prevented from moving 

into the South China Sea by a cyclonic gyre in the Sulu Sea.  The projected matrices also 

show the development of a number of regional clusters including groups of reefs near 

Halmahera, in the Flores Sea, in the Philippines, the Makassar Strait and in the Spratly 

Islands, among others.  Converting the projection matrices into diversity values reveals 

that areas expected to develop the greatest levels of neutral diversity lie in convergence 

zones, such as in the Flores Sea, the Sulu Archipelago and near Kepulauan Sangihe.  

Elasticity analysis shows that critical populations in terms of maintaining matrix structure 

are found in the Philippines, including the central islands as well as the Sulu Archipelago.  

The use of bio-oceanographic larval dispersal models in conjunction with matrix methods 

for projecting gene flow through time presents a new and powerful means of studying the 

processes underlying the development of genetic structure, explicitly demonstrating the 
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expected direction of gene flow as well as the natural development of clusters under 

contemporary oceanographic conditions.   
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Fig. 5.1 Map of derived polygons for Southeast Asia divided into subregions.  Because of 
their high resolution, the dividing lines between polygons are not shown, however the 
polygons are shaded from light to dark according to their order.    MGI – Mergui 
Archipelago, SCW – Sumatra and South China Sea West, SCN – South China Sea North, 
PHL – Philippines, SPI – Spratly Islands, PAL – Palawan, SAR – Sulu Archipelago, JVA 
– Java, MKS – Makassar Strait, TTM – Teluk Tomini, BSW – Banda Sea West, BSC – 
Banda Sea Central, HLM - Halmahera, BSE – Banda Sea East, NGN – New Guinea and 
the open Pacific. 
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Fig. 5.2.  Transition matrix, projections and derived results.  The entries of matrices a-c 
represent the probability of finding genetic material that originated in the source 
population (columns)  in the destination population (rows) at the given time.  (a) 
Transition matrix A for Simulation 1 (S1):  competent to settle at day 15, 30 day pelagic 
larval duration.  (b) Probability of allele occurrence at t=10.  (c) Probability of allele 
occurrence at t=100. (d) Similarity matrix at t=100.  The individual entries represent the 
degree of similarity between the row and column populations, and is symmetric.  

Similarity was calculated as 
1

r

ik ik
k

x y
=

∑ , where x and y are allele frequency vectors of the 

two different populations  (Nei 1987). (e) Elasticity magnitudes derived from transition 
matrix A.  Axis values refer to the subregion beginning immediately after the line break. 
See Fig. 5.1 for abbreviations. 
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Fig. 5.3.  Kernel density plots for selected regions in Southeast Asia.  Kernel Density 
plots were constructed by calculating the density of particle tracking points eligible for 
settling (i.e. age >= 15 days) over a .1 decimal degree (dd) radius.  Note that area 
measurements based on dd are not strictly equal, but since the region is near the equator, 
the distortional effects are minimal.  (a) release locations in the Spratly Islands (b) release 
locations in the Sulu Archipelago (c) release locations near the main Philippine Islands 
(d) release locations near Halmahera, Ceram and the Banda Sea. 
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Fig. 5.4.  UPGMA clustering of the similarity matrix (Fig. 5.4d) at t=100. 
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Fig. 5.5. Expected diversity values at t=100as percentiles for Southeast Asian coral reef 
communities.  Diversity was measured as one minus the concentration value for a given 
population (Legendre and Legendre 1998), . 2
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CHAPTER 6:  SYNTHESIS AND CONCLUSIONS 
 

The common thread binding the elements of this dissertation together is the 

relationship between connectivity and genetic structure.  The first chapter examined the 

manner in which genetic exchange occurs between populations on an individual basis, 

and the approach was linked to existing matrix-based theory in the context of spatial-

temporal autocorrelation.  The individual-based system was then used to evaluate 

fundamental relationships between connectivity structure and spatial-temporal genetic 

structure.  Scalar changes were shown to only affect the temporal domain, whereas 

changes to matrix structure had both spatial and temporal effects.  The second chapter 

addressed the potential role of selection in subdivided populations, emphasizing the effect 

of differential resource availability.  The modeling approach was based on the use of 

discrete multivariate distributions, which led naturally to a stochastic formulation of 

multiple-niche polymorphism.  The third and fourth chapters extended the stochastic 

approach developed in the second chapter into a full matrix-based treatment, which was 

used to examine expected genetic structure in Caribbean and Southeast Asian coral reef 

ecosystems respectively.  In the Caribbean, the matrices gave an indication of structure, 

in particular the definitive presence of a break between eastern and western portions of 

the Caribbean, with the two endpoints of the dividing line at Puerto Rico and the Gulf of 

Venezuela.  Elasticity analysis also revealed the populations that are most sensitive to 

proportional changes in values, the reefs of the Lesser Antilles, the Nicaraguan Rise and 

the Mesoamerican Barrier Reef.  The fourth chapter applied the matrix model to the 

Southeast Asian region, showing the interconnections between various areas and 

discussing the consequences in the context of generating biological diversity.
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All of the chapters address how the dynamics of genes in subdivided populations can be 

quantitatively modeled, as well as identifying some of the potential consequences that 

result from changes to connectivity structure.  However, the findings can also be set 

within the context of a much larger picture.  To proceed, it is important to begin by 

clarifying what is being discussed.  Connectivity has been described within this 

dissertation as “the degree of exchange between subpopulations” (Introduction) or “the 

relative exchange of individuals among geographically separated subpopulations” (from 

Cowen et al. 2007), both of which are true, but the definitions also need to be set within 

the context of an organism’s life cycle. After all, what constitutes exchange?  Is it any 

individual successfully transiting between populations?  Is it only those that are 

successful colonizers, or is it only those that are successfully reproduce as adults?  

Connectivity might also be integrated through time.  For example, populations could be 

considered to be connected even if they only interact sporadically.  The nature of the 

connections must also be considered.  Connections between populations may be binary 

(they exist, or do not), or quantitative (they have relative strengths).  Formalizing the 

system mathematically gives substance and clear definitions to the concepts, and allows 

them to relate to one another in a common framework. 

First, there must be some way of describing the system being studied.  In this 

case, populations are characterized in terms of their allele frequencies.  The frequencies 

can be arranged in a matrix where rows are populations, columns are alleles and entries 

are allele counts (although by row-normalizing, they can also be interpreted as allele 

frequencies).  This is the Q matrix referred to throughout the dissertation, and can be 

designated for a given time t by Qt.  Several transformations are then subsequently 
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applied to this matrix (Fig. 6.1).  First is birth (B), followed by migration (M), 

recruitment into destination populations (+I), and demographic (non-transitional) 

mortality (scaling to K).  Note that these are simply linear transformations, and other 

functions can be included as well (e.g. selection, resources, mutation, age-based 

mortality), as long as their (mathematical) bases can be accommodated by the equation.  

Taken in this manner, different forms of connectivity can be seen as the successive 

products of these operations.   The typical usage of connectivity is in the sense of 

demographic connectivity (i.e. the product of MBQ).  The values are quantitative, but 

can be translated into binary values by imposing the logical condition MBQ>0.  The 

result of K(MBQ+Q) corresponds to the number of individuals successfully reaching the 

age of reproduction (one turn of the life cycle has been completed).  This has been 

referred to as reproductive connectivity (Pineda, Hare, and Sponaugle 2007), and also 

corresponds to the concept of effective population size (Ne) from population genetics (i.e. 

effective connectivity).  If connectivity is to be evaluated through time, it must include all 

of the components of the life cycle that affect the state matrix in a relevant way, therefore 

reproductive/effective connectivity is the most relevant matrix for discussing population 

genetic projections. 

 

The roots of structure 

 

With the formalization of the life cycle, the next question to address is how the 

different processes act in concert (i.e. migration, demography, spatial structure and 

selection) to generate population genetic structure.  Fundamentally, structure is the result 
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of relative differences within and between populations.  This leads to the question of how 

to measure structure.  Many different methods have been developed for this purpose (e.g. 

FST, distance metrics, autocorrelation).  All are related by the fact that they define some 

sort of relationship between points on a hypervolume (vectors can be represented as 

points on a hypervolume displaced from the origin; normalizing standardizes the radius to 

1).  For example, Euclidean distance gives the straight line distance between points, 

Bhattacharya’s distance is the angular measurement between two population vectors, 

Nei’s Distance (DA) is the angle between square-rooted population vectors, and FST is the 

ratio of averaged concentration values. Other similarity and distance measurements are 

discussed in Legendre and Legendre (1998). 

If all points are identical to one another, are orthogonal or are randomly 

distributed within the hypersphere, then the relationships (distances) between all points 

would be equal (or the probability distribution of the distances would be uniform in the 

case of random points) and the result would be an absence of structure; there would be no 

relative differences.  Structural differences within the point cloud arise as a result of 

localized bias, or heterogeneity within the point cloud.  With heterogeneity also comes 

scale dependence.  Scaling re-partitions the data set, potentially changing the nature of 

the relationships between populations.  Autocorrelation enters into the picture here as 

well, relating differences between populations with respect to a given distance measure.  

This can be seen in the matrix-based representation of Moran’s I (Chapter 1), which 

projects the centered state matrix Q through the distance matrix W.  Structure 

characterizes the relationships between elements of pattern, but there is also a question of 
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how pattern develops over time.  This occurs through a recursive process, providing the 

basis for evolution. 

 

Modeling evolution: different approaches, different perspectives 

 

Several different approaches have been used to model the evolutionary process. 

The most classic approaches use deterministic equations, and frequently involve 

simplifying assumptions such as equal population sizes, equal migration, or a two-allele 

system.  Much of the research of the 1960s and 70s involved progressing into the use of 

differential equations and diffusion-based systems such as those developed by Kimura 

(1983).  Malécot (1969) developed the backwards-looking identity by descent measure 

which provides the basis of coalescence theory, and Maruyama (1969; 1977) explored 

various aspects of stepping-stone migration models.  At the same time, the foundations of 

matrix-based projections of genetic structure were laid (Bodmer and Cavalli-Sforza 

1968), and were recently extended by the work on exact moment calculations by Fu et al. 

(2006).  Individual-based models provide another means of studying the dynamics of 

genes in subdivided populations, and have their greatest value in addressing complex 

adaptive systems where individual differences are important.  But in situations where 

objects can be classified into groups with identical properties, it is far more efficient to 

use probability distributions.  This has the effect of not only reducing the number of 

calculations required to obtain a desired answer, but also provides quantitative insight 

into the development of higher-order aspects of the system, such as variance and 

covariance. Indeed, it is these higher-order aspects that hobble simulations, since their 
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analysis requires simulating the actual number of individuals present in the system.  This 

can prove challenging in tracking billions or trillions of individuals through time with 

multiple loci, with multiple runs to account for variance.  Even given exponential 

increases in computing power, this would be a formidable challenge. 

The link between individual-based simulation of populations and matrix-based 

methods was explored by Caswell (2002) in the context of projecting demographic 

processes through time.  Caswell discusses how improving the efficiency of individual 

based simulations leads to multivariate distributions (specifically the multinomial 

distribution), and branching processes, and from there to matrix projections.  The 

development of this dissertation’s chapters parallels this course as well, beginning with 

simulation, extending into multivariate distributions and then using matrix-based 

methods.  By incorporating selection and resource use, the multinomial distribution no 

longer provides an adequate representation of the sampling process, and was instead 

replaced by the various forms of the multivariate hypergeometric distribution (Chapter 2).  

Projecting allele frequencies of marine populations through time also introduces some 

additional elements to the calculations resulting from the re-integration of new progeny 

into existing populations (the +I elements of the equations in Chapters 3 and 4). 

For the most part, the various modeling approaches are simply variations on a 

common theme, depending mainly on whether the system is handled discretely or 

continuously, stochastically or deterministically, and if it has linear or non-linear 

components.  To illustrate this point, Cattell’s Data Box (Cattell 1966) provides a useful 

visual aid (Fig 6.2).  Cattell’s data box places data in the context of 3 different axes:  

objects, descriptors and time.  Objects are the items under study, descriptors are the 
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parameters used to characterize the objects, and time represents different temporal stages 

at which observations were made.  There are also 3 different “modes” associated with the 

box:  Q-mode, R-mode and T-mode.  The first tracks matrices of descriptors by time 

across different objects, the second – objects by time across different descriptors, and the 

third – objects and descriptors over time.  Evolutionary models are primarily concerned 

with the development of structure over time, and therefore T-mode is the natural mode of 

operation for them. Obviously, the box can be reshaped and permuted into different 

forms (e.g. time could instead be a descriptor), however the original form provides an 

intuitive means of visualizing the differences between different modeling approaches. 

The state matrix Q has been defined previously and referenced to a given time 

step t.  The B,M and K matrices (and any additional matrices) transform the state 

matrices, and project the state matrix forward in time (T-mode).  This is simply a re-

statement of the process described earlier in the chapter.  Specifically, the transformations 

are affine transformations, commonly used when manipulating computer graphics (e.g. 

scaling, rotation and shear).  Note that the elements are discrete.  A continuous time axis 

requires the use of continuous-time-based Markov transitions or delay differential 

equations.  A continuous state would require using integrodifference equations in the case 

of discrete time intervals or partial differential equations for continuous time intervals 

(e.g. Kimura’s diffusion-based approach).  It is possible that insights regarding the 

relationship between discrete and continuous models could be drawn from methods of 

converting between analog and digital signals (interpolation and re-sampling).  Methods 

for coupling integrodifference equations to matrix models have been explored by Neubert 

and Caswell (2000).  Fundamentally however, genes, alleles and DNA are discrete units 
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and are best represented by a discrete state.  Coalescence follows the most likely paths of 

arrows backwards through the transformations until they converge at a single common 

element. Incorporating stochasticity into the transformations through the use of 

probability distributions in the transformation matrix introduces variance and covariance 

into the system, degrading the average signal and decreasing the predictability of the 

system.  With nonlinear components (i.e. the state of the system at different time steps 

cannot be represented properly using a function) direct calculations (simulation) are the 

only option. 

There are many different ways to approach modeling the evolutionary process in 

interconnected populations, each involving tradeoffs between ease of use and 

understanding, realism of assumptions, and accuracy of the model.  One potential means 

of integrating the various approaches in a common framework is through the use of 

object-oriented modeling. 

 

Object-oriented architecture 

 

The basis of object-oriented modeling is the development of classes with 

properties and methods.  Programming is most commonly used in conjunction with 

simulation, due to the latter’s requirement for repetition and recursion, although object-

oriented modeling can be used to implement classic models as well.  One of the most 

classic and pervasive problems when modeling ecological systems is the difficulty in 

dealing with scale-dependent processes.  For example, changes in nutrient abundance 

may be insignificant over small scales, but dramatic over large ones.  Note however that 
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it is possible for changes at small scales to cascade out and affect larger processes (e.g. 

the potential effect of small scale eddies on the distribution of organisms).  Classic 

analytical methods do not provide a straightforward mechanism for filtering parameters 

on the basis of scale.  In contrast, object-oriented programming does provide this facility, 

through its use of interfaces (discussed in Chapter 1). 

Object-oriented programming provides a natural fit for biological systems.  

Biological organisms are already classified hierarchically in the Linnaean system, lending 

themselves to object-oriented design with inheritance.  Derived characteristics can be 

represented by extending a parent class (e.g. Perciformes extends Pisces).  Functional 

differences would translate into unique properties (variables) or behavior (methods).   

Object oriented modeling also has the additional advantage of being well established in 

the open-source community.  Open-source programming requires open access of 

information, transparency and constant scrutiny and revision.  These characteristics are 

the very premise of scientific inquiry.  Facilities such as Sourceforge 

(http://sourceforge.net) already exist as repositories for developing, managing and 

distributing these types of projects, and some of these ideas have also begun to enter into 

the consciousness of biologists as well (e.g. Bioforge – http://www.bioforge.net). 

One drawback to using object-oriented modeling is that sensitivity testing must be 

performed component-wise.  Each individual component class would need to be tested 

separately, and in the case of interactions, in conjunction with one another.  In contrast, 

an analytical approach allows for concise and accurate testing through derivative-based 

sensitivity analysis.  Another drawback is the inability to perform symbolic restructuring 

of the system, as is possible with an analytical model.  However, if a mechanism could be 
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developed for translating numeric programming (i.e. numbers, arrays, loops) into 

symbolic language (i.e. numbers, vectors and matrices; Σ and Π), this problem could be 

directly addressed.  This idea is not completely unreasonable, considering that symbolic 

math programs and associated simplifying routines already exist in existing software (e.g. 

Matlab, Maple).  Furthermore binary operations (implemented through machine 

language) are a common denominator, and provide a fundamental base for translating 

between programming syntax and arithmetic operations. 

 

Applications 

 

This dissertation has devoted considerable attention to the development of 

quantitative approaches for studying the behavior of genes in subdivided populations, but 

what are the potential applications?  Of what practical use is such an approach?  One of 

the primary goals of conservation is the preservation and maintenance of biological 

diversity.  Biologically diverse systems are capable of providing a greater array of 

services, are generally considered to be more robust and resilient, and tend to be more 

appealing in general.  But at the root of biological diversity is genetic diversity.  

Biological diversity is merely the phenotypic translation of genetic diversity.  Therefore, 

if scientists and managers are interested in maintaining biological diversity over the long 

term, an accounting should also be made for the optimal means of maintaining genetic 

diversity. The approaches developed here provide a way of quantitatively evaluating the 

expected behavior of the system given a certain set of assumptions regarding how the 

system functions (Chapters 3 and 4). 
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Determining the sensitivity of the system to disturbances is also of considerable 

importance for management.  The effects of different levels of disturbance can be 

evaluated through sensitivity analysis of the models.  For simulations, this is 

accomplished through systematic testing of the model objects and their interactions, and 

for matrix-based analytical systems this would be achieved through elasticity analysis. 

The results of sensitivity analysis can be used to identify which populations are critical 

connectivity junctions, and therefore should be preserved if the status quo is to be 

maintained.  Alternatively, in the case of invasive organisms, the results could be used to 

identify where management efforts would likely be most effective in containing 

outbreaks. 

 

Future directions and links to other disciplines 

 

There are many potential directions in which to proceed with further research.  

One possibility would be to explore the role of demography (e.g. population fluctuations, 

age-structure, habitat quality), and more explicit individual interactions.  The individual-

based framework developed in the first chapter represents an ideal framework for 

exploring these types of questions.  Greater availability of high-resolution data, as well as 

greater computing power for retrieving and processing data will also play a significant 

role in shaping the development of future research.  More detailed information will 

provide insight into the importance of near-shore processes and fine-scale hydrodynamic 

features. 

 



113 
 

In the course of this dissertation, several intriguing links to other disciplines have 

emerged.  In particular, there appear to be many links with quantum theory and relativity.  

For example, among the cornerstones of quantum theory are Hilbert Spaces.  Hilbert 

spaces are related to the inner products of normed vector spaces.  The normalization is 

performed explicitly in the equations, and the inner product is provided by examining the 

state of the genetic space as a genetic distance (Nei’s distance, which is the inner product 

of the square root of the vector space).  Another example is Minkowski distance (or p-

norm) - ( )
1/

1

pn
p

i
i

x
=
∑ .  This formula provides a convenient means of scaling the 

connectivity matrices to highlight different levels of connectivity, but is also associated 

with special relativity.  It is possible that the field of population genetics would benefit 

from development in this direction similar to the manner in which physics developed 

when it moved beyond deterministic Newtonian models into a probabilistic quantum 

framework.  Many mathematical tools have used in studying quantum theory, for instance 

tensors (Bowen and Wang 1976), quaternions (Hanson 2006) and geometric algebra 

(Hestenes 2004; Hestenes and Sobczyk 2004).  Geometric algebra is of considerable 

interest as it appears to be a simpler, superseding framework with respect to the other 

approaches (i.e. tensors and quaternions) and is particularly well-suited for dealing with 

problems of space-time.  Many of the common elements between population genetic 

modeling, quantum physics and computer graphics boil down to aspects of the dot 

product (angle) between normed vectors.  The dot product can represent a wide array of 

operations including multiplication and summation, multiplication of a row vector by a 

transpose or column vector, correlation, conditional expectation or projection of a vector 

onto a different line. 
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There are also links with active areas of research in computer science.  Affine 

transformations, quaternions and tensors have all been extensively used in the 

manipulation of computer graphics (Pletinckx 1989; Foley et al. 1995; Nealen et al. 

2006).  Selection is an optimization-based problem, leading into a sequence of what are 

referred to as NP-hard problems in computer science.  These include the Travelling 

Salesman Problem (TSP - Gutin and Punnen 2007), Quadratic Assignment Problem 

(QAP - Garey and Johnson 1979), and the Knapsack Problem (Kellerer, Pferschy, and 

Pisinger 2004).  Calculating the shortest path between two points in the presence of 

obstacles (e.g. distance “as the fish swims”) provides a concrete link to a long-standing 

problem in computational geometry (Hershberger and Suri 1997).  There also appears to 

be a link involving the Hadamard product and matrix product, serial versus parallel 

connections and quantum networks (Kauffman 1999).  This could have potential 

relevance for optimization and selection in subdivided environments since selective 

weightings in different environments can be expressed in terms of a Hadamard product, 

and projection takes place using matrix products. 

Clearly, there are many potential directions in which research may progress, and 

are likely beyond the scope of any single individual’s knowledge.  Instead, a 

multidisciplinary, collaborative approach is warranted to explore these problems and the 

links between them.  Identifying foundational links between such diverse fields will 

almost certainly have a significant impact on the development of science in general. 
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Fig. 6.1.  (a) Schematic representation of life cycle stages, associated processes and 
mathematical transformations.  B is a diagonal matrix containing per capita birth 
coefficients, M is the dispersal/migration matrix containing the probabilities of moving 
between populations, I is an identity matrix, K is a diagonal matrix containing carrying 
capacity values, and mn() is the multinomial function applied row-wise.  The lines 
beneath the boxed items indicate that the definition is associated with the above stages, 
processes and functions.  The closed dot at the beginning of the line indicates that the box 
is included in the definition.  The hollow dot indicates that all boxes up to, but not 
including that point are included in the definition. (b)  The life cycle continues iteratively 
through time, progressing through each function in sequence. 
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Fig. 6.2.  Cattell’s Data Box and associated modes.  The data boxes have three axes: 
objects, descriptors and time.  Q mode (blue) tracks descriptors versus time over different 
objects.  R mode involves objects versus time over various descriptors.  T mode tracks 
objects and descriptors through time.  With discrete entities, transformation of the state of 
the system is achieved through matrix multiplication. 
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APPENDIX A:  STANDARD BAR-DOT NOTATION 
 
Given a matrix X with R rows and C columns,  
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APPENDIX B:  PROOF OF THE PROJECTION FORMULA 
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APPENDIX C:  PROOF OF THE EQUIVALENCE OF HAPLOID AND DIPLOID 
ALLELE FREQUENCIES ARISING FROM RANDOM SAMPLING UNDER 
THE ASSUMPTION OF RANDOM MATING 
 

Consider I individuals, each having two characters (repetition allowed) from a set of J 

possible characters.  Let pij denote the proportion of occurrences of character j in 

individual i, for i = 1,…,I and j = 1,…,J.  For example, if for the first individual, the 

associated characters are AB, then 11
1
2

p = = 12p , and p1j = 0 for j > 2, and if CC is 

associated with the second individual, then p23 = 1 and p2j = 0 for .  We can now 

verify that if 

3j ≠

jpi  denotes the relative frequency of occurrence of character j in the whole 

population of I individuals, then we have for j = 1,…,J, 

 

1

1 .
I

j ij
i

p p
I =

= ∑i  

 

Suppose that there are K progenies.  Consider any sampling scheme in which, for any 

progeny k, the probability that an individual i is a parent, is the same for all i.  In such a 

case, this probability will equal 2/I since each progeny has two parents.  Let nijk denote 

the count of character j inherited from individual i by progeny k.  Thus each nijk has value 

1 if individual i is a parent of progeny k and contributes character j to the progeny; 

otherwise nijk equals (2/I)pij.  Also the proportion ˆ jkpi of occurrences of character j in 

progeny k is given by 
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1

1ˆ .
2

I

jk ijk
i

p n
=

= ∑i  

Thus the expected value of ˆ jkpi equals ( )( )( )1
1/ 2 2 / I

iji
I p

=∑ which in turn equals jpi .  

Since this answer is independent of k, and since the relative frequency of occurrence of 

character j in the collection of all progenies is a weighted average over k of ˆ jkpi , the 

expected value of this relative frequency must equal jpi , the relative frequency of 

occurrence of character j in the population of I individuals. 

 



 

APPENDIX D:  DISCRETE MULTIVARIATE DISTRIBUTIONS 
 
 
The forms of the discrete multivariate distributions used in the manuscripts are given 

below, with k as the number of items being selected, i as the number of categories being 

selected from, p as a probability of being selected, n as the number of items being 

selected from k, ω as a fitness value, c as the number of different item types, and t 

representing the action of a single draw from the system. 

 
Distribution name Formula 

Multinomial 
( ) ( )

11
Pr ! !i

c c
k

i i i i
ii

K k k p k
==

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= = ∏∩

1
0,

c

i i
i

k k k
=

≥ =∑
 

 

Multivariate 
Hypergeometric 1

Pr
c

i

ii

n n
k k=

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎡ ⎤ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

= = ∏K k
 

Fisher’s Noncentral 
Hypergeometric 1

Pr i
c

ki
i

ii

n n
k kω

=

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎡ ⎤ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

= = ∏K k

Wallenius’ Noncentral 
Hypergeometric 

[ ]
1

/

1 10

Pr (1 )i i

c c
i d k

i ii

n
t dt

k
ω

= =

⎛ ⎞⎛ ⎞
= = −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∏ ∏∫K k

( )i i id n k
 

= ω −
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APPENDIX E:  DEVELOPMENT OF THE RESOURCE-WEIGHTED VERSION 
OF WALLENIUS’ NON-CENTRAL HYPERGEOMETRIC DISTRIBUTION 
 
 
Let ρi be the amount of resources of type i available within a given population.  Let υi be 

a usage coefficient representing the amount of resource consumed.  Consequently, ni will 

be the number of individuals capable of being supported by the population (assuming 

individuals cannot outstrip the available resources), and so i i inρ υ= . 

 

Let d = ωi(υ ini- υ iki), and let a = ωi(ni-ki).  Therefore a = d/υi. 

 

1

0

Pr
c c

i

i ii

n
k= =

⎛ ⎞⎛ ⎞
⎡ ⎤ ⎜ ⎟⎜ ⎟⎣ ⎦

⎝ ⎠⎝ ⎠
= = ∏ ∏∫K k /

1 1

(1 )i ia kt dtω−

/(1 )i id kit dtυ ω−
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 (Chesson, 1976) 
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1 10

c c
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i ii
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Since  and( )i i i id nω υ υ− i in ( )i i i id kω ρ υ= − . ρ υ= , therefore 
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