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 This dissertation explores the genetic basis of gene expression in Fundulus 

heteroclitus by focusing on the role of the environment and its effects on gene expression 

and by making direct estimates of heritability using cDNA microarrays.  The second 

chapter describes the utility of F. heteroclitus cDNA microarrays for studies of F. 

heteroclitus which seek to understand the genetic variation in gene expression.  

Measurements of mRNA fluorescence and concentration as well as differences in sample 

preparation and sampling of blood from a single individual over time demonstrate that F. 

heteroclitus cDNA microarrays are quantitative, reproducible and consistent.  The third 

chapter examines the effect of the environment and genetic factors on the variation of 

gene expression.  F. heteroclitus cDNA microarrays are used to determine whether a 

genetic component of gene expression can describe the variation in gene expression 

between inbred and outbred individuals from the same population.   



 The results show that variation in mRNA expression is related to the genetic 

variation among individuals within a group.  While chapter three reveals that there is a 

genetic component of variation in gene expression, the percentage of genes that are 

significantly heritable was not known.  In the fourth chapter, the heritability of the 

variation in gene expression is estimated to determine the genetic basis of gene 

expression in F1 individuals from natural, outbred populations of F. heteroclitus.  The 

data presented in chapter 4 are the first to formally estimate the genetic component of 

gene expression in F. heteroclitus.  The estimates of heritability range from 0.25 to 0.86 

depending on the estimation method with approximately 6.5% of genes having significant 

heritability. The results presented in this dissertation support the concept that genetic 

variation affects variation in mRNA expression among natural populations of F. 

heteroclitus.  Natural, heritable variation in gene expression is important for 

understanding evolutionary adaptation and the role of natural selection in evolutionary 

processes.  
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CHAPTER 1:  AN INTRODUCTION TO THE GENETICS OF GENE 
EXPRESSION IN FUNDULUS HETEROCLITUS  
  
Background 

 Evolution by natural selection requires heritable variation among traits that affect 

fitness.  One important source of variation is the difference among individuals in gene 

expression.  A full understanding of the role of differential gene expression among 

individuals within populations, and the ability of members of a population to adapt to 

changing environments, remains incomplete.  Variation in gene expression in the teleost 

fish Fundulus heteroclitus from Northern and Southern populations explains differences 

in cardiac metabolism (Oleksiak et al., 2005), and many genes have expression patterns 

indicative of evolution by natural selection (Oleksiak et al., 2002; Pierce, Crawford, 

1997).  Previous studies of F. heteroclitus assumed that a majority of this biologically 

important variation is genetically based.  However, only common gardened adults were 

used in these studies, therefore the assumption that variation in mRNA expression is 

genetically based is unsubstantiated and needs further examination.  The research 

presented in this dissertation examines the genetic basis of differences in gene expression 

in Fundulus heteroclitus. 

Functional Genetic Variation in Fundulus heteroclitus 
 
 F. heteroclitus provides a model system to investigate the evolutionary 

importance of gene expression.  This species is found in estuaries, bays and inlets along 

the Atlantic coastline of the United States from Maine to Georgia (Wiley, 1986).  F. 

heteroclitus resides in water temperatures ranging from 8.5ºC in the North to 20.4ºC in 

the South.  Therefore, this species is exposed to a steep thermal cline with a 1ºC change 

in temperature per degree latitude (Pierce, Crawford, 1997; Powers et al., 1993).  F. 

1 
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heteroclitus is a poikilotherm and is strongly influenced by its surrounding environment.  

One of the most important environmental variables affecting this species is temperature 

as is evidenced by studies showing differential measures of specific metabolic enzyme 

activity from Northern and Southern populations (Pierce, Crawford, 1997; Powers et al., 

1991).  Based on enzymatic studies and protein sequence analyses, it was hypothesized 

that populations of F. heteroclitus ranging from Maine to Georgia are genetically 

divergent. 

 Fundulus heteroclitus is highly polymorphic at a number of enzyme encoding 

loci.  An examination of 50 loci from fish collected along the Atlantic Coast found that 

45% of these loci were polymorphic (Powers et al., 1993).  Heritability studies have 

shown that 16 out of 17 polymorphic loci in F. heteroclitus F1 generations segregate as 

autosomally inherited codominant alleles (Powers et al., 1993).  Some of these 

polymorphic loci have allelic isozymes that change in frequency with latitude and type of 

aquatic environment.  Therefore, the degree of genetic diversity in a particular population 

can be attributed to latitude and clinal variation (Powers et al., 1991).  Why are alleles 

more or less prevalent at different latitudes?  To better understand the relationship 

between directional changes in genetic characters and latitude, analysis of mitochondrial 

DNA fragments was completed on coastal and bay populations of F. heteroclitus.   

 A cline in gene frequencies exists between Northern and Southern populations of 

F. heteroclitus.  Where this cline divides Northern and Southern populations of F. 

heteroclitus was determined using mitochondrial restriction fragment length 

polymorphisms (RFLPs).  Based on mitochondrial fragment mobility on electrophoretic 

gels, it was shown that populations from Maine to Vince Lombardi, New Jersey share 
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mitochondrial DNA sequences and populations from Stone Harbor, New Jersey to 

Georgia share mitochondrial DNA sequences (Powers et al., 1993).  It was suggested that 

the discontinuity of gene frequencies between Northern and Southern populations was 

consistent with the last glacial maximum that began 15,000 years ago near the Hudson 

River (Cronin et al., 1981; Powers et al., 1993).  However, nucleotide differences in 

mitochondrial haplotypes suggested that the Northern and Southern populations diverged 

before this last glacial event.  A study using five restriction enzymes on mitochondrial 

DNA sequences from 740 individuals collected from 29 locations along the Chesapeke 

and Delaware bays was completed to determine whether Northern mitochondrial DNA 

haplotypes could be detected as remnants of a preglaciation distribution (Avise, 1989; 

Powers et al., 1993).  Fifty mitochondrial DNA haplotypes were found with Northern, 

Southern and intermediate groupings.  These findings suggest that an intergrade zone 

exits at 41ºN latitude, and supports the idea that populations adapted to their local 

environments which led to genetic differences along a gradient (Powers et al., 1993). 

 Genetic divergence in F. heteroclitus is also attributed to biochemical differences 

which ultimately affect changes in physiological processes and gene expression.  

Biochemical analyses of lactate dehydrogenase-B4 (LDH- B4) in populations of F. 

heteroclitus demonstrated that functional differences exist between allelic isozymes of 

LDH- B4 which are genetically divergent between Northern and Southern populations 

(Powers et al., 1991).  LDH- B4
a and LDH- B4

b are codominant allelic isozymes of LDH-

B4 which is primarily responsible for converting lactate to pyruvate during aerobic 

respiration for the production of ATP and in gluconeogenesis (Powers et al., 1991).  The 

LDH- B4
b allele is predominant in the North and the LDH- B4

a allele is predominant in 
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the South while a mixture of both alleles is found at mid-latitudes (41ºN) (Powers et a

1991; Powers et al., 1993).   

l., 

 The alleles vary with latitude and functional differences exist between populations 

in the North which express LDH- B4
b and populations in the South which express the 

LDH- B4
a allele.  These include differences in catalytic efficiency, substrate and product 

inhibition, stability of LDH-B4 allelic isozymes, enzyme concentration, structure, 

swimming endurance, hatching time, development and survivial (Powers et al., 1993).  

For example, the LDH- B4
a allele has better efficiency at high temperatures than low 

temperatures whereas the LDH- B4
b allele has better efficiency at low temperatures than 

high which is consistent with their geographic distribution.  Heat denaturation studies 

showed that the structural stability of LDH- B4
b is greater than LDH- B4

a (Powers et al., 

1991).  LDH- B4 enzyme concentration was found to be two times as high in Maine F. 

heteroclitus liver than in Georgia livers even after fish were acclimated to the same 

temperatures in the laboratory (Powers et al., 1991).  Maine and Georgia fish have the 

same number of gene copies, but they were found to have different concentrations of 

messenger RNA (Powers et al., 1993).  Therefore, rates of LDH- B4 transcription were 

measured and it was found that Northern F. heteroclitus have increased rates of 

transcription than Southern populations of F. heteroclitus.  However, there was no 

reported difference in the overall total rate of transcription (Powers et al., 1993).  

Increased rates of transcription in the Northern population suggest that these fish elevate 

rates of transcription to compensate in colder waters.  Is the difference between Northern 

and Southern populations genetically driven?  Is the transcriptional regulation of 
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particular genes a more important causation of variation than variation in enzymatic 

processes?  

 Variation in gene expression among Fundulus species is hypothesized to be 

evolutionarily important (Oleksiak et al., 2005; Pierce, Crawford, 1997; Powers et al., 

1993).  It is apparent that populations of F. heteroclitus residing in different thermal 

regimes compensate in part by regulating their rates of transcription.  Therefore, the 

variation in the concentration of an enzyme may be selectively important (Pierce, 

Crawford, 1997).  A study examining the influence of temperature on enzyme 

concentration for 15 Fundulus taxa revealed that among eleven enzymes (lactate 

dehydrogenase and ten glycolytic enzymes), three enzymes (lactate dehydrogenase 

(LDH), glyceraldehydes-3-phosphoglycerokinase (GAPDH) and pyruvate kinase(PYK)) 

had concentrations that correlated negatively with temperature after phylogenetic effects 

were removed. The most parsimonious reason for this pattern among 15 Fundulus taxa, is 

that evolution by natural selection affects enzyme concentration. As temperature 

increased, the concentration of LDH, GAPDH and PYK enzymes decreased suggesting 

that enzyme concentration has evolved in response to temperature for these three 

enzymes, that the existing variation between other enzymes is not a direct adaptation to 

temperature, and most importantly, these three enzymes affect metabolic flux (Pierce, 

Crawford, 1997).  Specifically, these three enzymes explain much of the variation in 

glycolytic flux within and between F. heteroclitus populations (Podrabsky et al., 2000). 

 For one of the loci (Ldh-B) the adaptive difference in gene expression is due to 

nucleotide variation in the proximal promoter (Crawford et al., 1999).  All fixed 

differences in proximal promoter sequence between populations of F. heteroclitus were 
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found to reside in the functional regions (regions which affect transcription and bind 

transcription factors) of the Ldh-B proximal promoter (Crawford et al., 1999).  The 

number of fixed differences was found to be higher than the expected number for neutral 

evolutionary processes.  Therefore, variation in Ldh-B proximal promoter sequences is 

best explained by natural selection (Crawford et al., 1999).  Indeed, transcriptional 

regulation appears to play a major role in the variation of enzyme function.  Since 

enzyme function can be the result of mRNA expression, the focus of several studies has 

shifted from protein and biochemical analyses to the essential initial steps of transcription 

via global gene expression profiling. 

Microarrays 
 
 Microarrays provide a powerful means for the simultaneous examination of 

expression for thousands of genes.  DNA microarrays are classified into two types; 1) 

oligonucleotide arrays and 2) cDNA based microarrays.  Oligonucleotide microarrays 

consist of short or long, nucleotide probes that range from 25-150 nucleotides or longer 

(Antipova et al., 2002; Lettieri, 2006; Li et al., 2002).  These probes are synthesized 

rather than cloned.  Unlike oligonucleotide probes which are synthesized, cDNA 

microarrays are created by printing cDNA clones onto glass slides after amplification by 

PCR.  Oligonucleotide microarrays are often the platform of choice because they avoid 

problems such as cross-hybridization between mRNAs which may lead to false positive 

signals and inaccurate measures of changes in gene expression (Li et al., 2002).  

Oligonucleotide microarrays containing thousands of genes can be purchased or custom 

made for model organisms whose genome sequences are complete (Affymetrix, Inc.).  

However, cDNA microarrays are the method of choice for many laboratories whose 
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research involves the use of non-model organisms with incomplete genome sequences 

because it is the most cost-effective approach due to the relatively low cost of robotic 

spotting  (Auburn et al., 2005; Gracey et al., 2001; Lettieri, 2006; Renn et al., 2004; 

Williams et al., 2003).   

 The decision to use a cDNA microarray platform rather than oligonucleotide 

platforms for Funudlus heteroclitus is based on the lack of availability of a fully 

sequenced F. heteroclitus genome, the cost of synthesizing oligonucleotide arrays versus 

creating cDNA arrays in our own laboratory and the ease of isolation, normalization and 

sequencing of cDNAs in our laboratory (Oleksiak et al., 2001).  In addition, the questions 

addressed in this dissertation require the use of hundreds of individuals using an 

experimental design that allows for the simultaneous monitoring of hundreds of genes.  

Without the use of microarrays, the depth of gene expression analyses would be limited 

to one or a few genes using Northern blots, quantitative PCR, Serial Analysis of Gene 

Expression (SAGE) and Massively Parallel Signature Sequencing (MPSS) (Auburn et al., 

2005; Brenner et al., 2000; Velculescu et al., 2000).  New technologies such as 454 

pyrosequencing to assemble transcriptomes of various organisms have been successfully 

applied to both non-model and model species (Andreas et al., 2007; Moore et al., 2006; 

Vera et al., 2008; Wicker et al., 2006).  While this technology is accessible to non-model 

organisms, such as the Glanville fritillary butterfly, Melitaea cinxia, performing 454 

sequencing on F. heterclitus at this juncture would only serve to enrich the coverage and 

numbers of genes on our microarrays rather than address the specific goals outlined in 

this dissertation.  
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 The construction of cDNA microarrays is accomplished by the covalent bonding 

of cDNAs onto microscope slides in a specific manner.  cDNAs are isolated and 

sequenced using cDNA libraries followed by normalization of the cDNA library.  

Colonies from F. heteroclitus cDNA libraries are then randomly picked, amplified by 

PCR and sequenced (Oleksiak et al., 2001).  These sequences are then subtracted from 

the normalized library and the process is repeated until there is a desired number of 

cDNAs or genes.  The length of each cDNA printed on a slide is approximately 1.5 kb.  

Microarray studies in F. heteroclitus have utilized a variety of microarrays including 

heart ventricle and metabolic arrays (Oleksiak et al., 2002; Oleksiak et al., 2005; 

Whitehead, Crawford, 2006a).  In these studies, RNA isolated from F. heteroclitus 

individuals is amplified and labeled with either Cy3 or Cy5 fluorescent dye.  Upon 

hybridization to the microarray, the quantification of thousands of genes (specific to 

metabolism or to other processes) can be determined.  Microarray analyses have provided 

evidence in F. heteroclitus that patterns of gene expression are associated with 

differential use of particular metabolic substrates which ultimately affect performance 

(Oleksiak et al., 2005). 

 Recent microarray studies have focused on understanding differences in gene 

expression among populations of F. heteroclitus.  Variation in gene expression explains 

the variation in cardiac metabolism in different groups of individuals (Oleksiak et al., 

2005).  Using microarrays with 192 cDNAs from a F. heteroclitus cDNA library 

encoding proteins for cellular metabolism, 84% (112/119 genes included in analysis; 

p<0.01, range 104-117) and 79% (94/119 genes included in analysis; p<0.01, range 82-

106) of genes were differentially expressed in individuals from Northern and Southern 
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populations, respectively.  Although this is a large amount of variation, the results 

showed that differential expression of genes resulted in the use of the same substrate for 

individuals within a group to carry out metabolism.  Therefore, different combinations of 

genes explain substrate-specific metabolism suggesting that gene expression is 

biologically meaningful (Oleksiak et al., 2005).  The divergence in variation in gene 

expression between Northern and Southern populations of Fundulus is perhaps more 

important than variation in protein sequence because it can describe the evolutionary 

forces which act to cause changes in metabolic processes. 

 Many studies have shown that microarrays are equivalent in quantitative ability to 

northern blot and quantitative PCR techniques (Auburn et al., 2005; Ding et al., 2007; 

Draghici et al., 2006; Schena et al., 1995).  Studies have shown the utility of microarrays 

for quantifying and examining gene expression.  Microarray quantification is best 

realized if there is a linear relationship between fluorescence of the dye labeled sample 

and the RNA concentration of the sample.  For Fundulus arrays, 100 fold variation in the 

concentration of mRNA provides a linear signal for a vast majority of genes (92.9% or 

197/212 genes) (Scott et al., 2009).  Microarrays are an integral part of studies of 

heritability and will be used for the purposes of the work completed in this dissertation.   

 Except for studies that identify DNA changes responsible for the phenotypic 

changes in gene expression or other physiological processes, the genetic basis for 

variation in gene expression is not well studied.  However, the use of microarrays in 

conjunction with studies of heritability can provide evidence for genetic variation in gene 

expression (Jansen, Nap, 2001; Li, Burmeister, 2005).  This dissertation seeks to address 
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the genetic basis for evolved differences in gene expression in F. heteroclitus by 

investigating the heritability of gene expression with the use of microarrays. 

Heritability of Gene Expression 
 
 Measures of the heritability of gene expression have been documented in 

Drosophila, yeast and humans (Brem, Kruglyak, 2005; de Koning, Haley, 2005; Monks 

et al., 2004; Wayne et al., 2004).  Among humans (unrelated, siblings and monozygotic 

twins) there is greater similarity in gene expression between monozygotic twins than 

between siblings or unrelated individuals (Cheung et al., 2003a; Stamatoyannopoulos, 

2004).  For humans, twin-studies (Sharma et al., 2005; Tan et al., 2005) and replicate 

measures of the same individuals over time (Cobb et al., 2005; Eady et al., 2005; Radich 

et al., 2004; Whitney et al., 2003) suggest that there is a strong genetic component to the 

natural variation in mRNA expression.  Therefore, phenotypic expression in humans is 

familial and thus genetic.   

 Comparisons of gene expression between parents and offspring in lymphoblastoid 

cell lines for fifteen families of the Centre d’Etude du Polymorphisme Humain (CEPH) 

found that 31% (762 genes/2,430 genes) of differentially expressed genes were 

significantly heritable with a median of 0.34 (Monks et al., 2004).  Whole body transcript 

levels of 10 heterozygous Drosophila similans cross progeny males revealed that 8% 

(663 genes/7886 genes) had significant genetic variation with an h2 median of 

0.47(Wayne et al., 2004).  In studies of yeast, individual strains of Saccharomyces 

cerevisiae revealed that in 1528 out of 6215 genes, 84% were highly heritable indicating 

that variation is genetic in this system (Brem et al., 2002).    In another study 

investigating 112 segregants of  S.  cerevisiae, 3,546 of 5,727genes showed high 
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heritability with h2 values higher than 69% (Brem, Kruglyak, 2005).  These studies of 

heritability show that for each system heritability can be readily measured. 

 In F. heteroclitus approximately 18% (161 of 907 genes) of gene expression is 

statistically different between individuals from the same population which is concordant 

with other studies in yeast (24%) and Drosophila (25%) (Brem et al., 2002; Jin et al., 

2001; Oleksiak et al., 2002; Stamatoyannopoulos, 2004).  Studies of F. heteroclitus 

focusing on differential expression of cardiac metabolic genes revealed that an 

astounding 94% (112 of 119 genes) of gene expression is significantly different among 

individuals (Oleksiak et al., 2005).  Although there was large variation among 

individuals, these differences in gene expression were related to variation in cardiac 

metabolism.  For example, 84% of the variation in cardiac glucose utilization could be 

explained by patterns of gene expression (Oleksiak et al., 2005). Whether this variation is 

primarily due to genetic or environmental factors will help answer some fundamental 

questions about the purpose of such high levels of variation.  For example, how much of 

this variation has an affect on cardiac metabolism?  And, do genes whose variation in 

expression is highly heritable determine cardiac metabolic output more so than the 

expression of genes that are not as heritable?   

 Although there have been several studies suggesting the evolutionary significance 

of adaptation and gene expression in Fundulus (Crawford et al., 1999; Oleksiak et al., 

2005; Pierce, Crawford, 1997; Powers et al., 1991; Powers et al., 1993), to date, the 

heritability of gene expression phenotypes in F. heteroclitus has not been examined.  

Heritability and genetic studies in F. heteroclitus are important for understanding how 

many loci contribute to natural genetic variation.  My dissertation seeks to define narrow 
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sense heritability for gene expression.  Narrow sense heritability (h2) is the amount of 

phenotypic variation that is explained by additive genetic variation.  Heritability will be 

measured by regressing offspring values of gene expression versus mid-parent values 

(Cheung et al., 2003b; Falconer, Mackay, 1996).  Knowing the heritability of gene 

expression provides an important means for examining the genetics of gene expression.   

 Though not explored in this dissertation, expressed quantitative trait loci (eQTL), 

the loci which control differences in gene expression (de Koning, Haley, 2005), are 

important to discuss as they represent genomic regions for the genetic control of gene 

expression (Petretto et al., 2006).  eQTL studies are used to determine whether the 

location of a transcript within the genome in comparison to the location of an eQTL is cis 

or trans-acting (de Koning, Haley, 2005; Petretto et al., 2006).  The amount of cis-acting 

versus trans-acting variation is of recent interest as differences in eQTL position (cis or 

trans) are thought to contribute substantially to differences in gene expression and 

transcript levels.   

 eQTL studies are carried out using linkage analysis whereby the loci thought to 

control transcript levels of particular genes are mapped.  Variation is cis-acting if DNA 

variations in a gene directly influence transcript levels of that gene and trans-acting if a 

gene is influenced by other genetic variations (Doss et al., 2005).  eQTL studies in yeast, 

mice and humans suggest that both cis and trans-acting regulators affect patterns of gene 

expression.  In liver tissue gene expression studies in mice, for example, cis-acting eQTL 

with LOD scores greater than 4.3 account for 25% of the variation in transcription 

(Schadt et al., 2003).  The percentage increases to approximately 50% for eQTL with 

LOD scores greater than 7.0 (Schadt et al., 2003).  High LOD scores indicate tight 
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linkage between a marker and an eQTL.  In a follow-up analysis to verify that these cis-

acting eQTL were true positives, it was confirmed that approximately 64% of the cis-

acting eQTL with LOD scores greater than 4.3 were indeed true positives (Doss et al., 

2005).  In general, it is thought that up to one-third of eQTLs are cis-acting (Gibson, 

Weir, 2005). 

 In a study monitoring trans-acting regulatory variation in S. cerevisiae, it was 

found that of 2,294 differentially expressed genes linked to locations within the genome 

and 75% of those genes were not found to show self-linkage (Yvert et al., 2003).  This 

indicates that the majority of loci are trans-acting and that these regulators are 

responsible for the majority of gene expression variation (Yvert et al., 2003).  What is the 

contribution of cis or trans regulation to genetic variation in F. heteroclitus?  This 

proposed research will investigate the percentage of genes in F. heteroclitus that are 

regulated by cis-acting mechanisms.  However, differences in gene expression may not 

solely be attributed to either cis or trans acting regulators.  Variation must be viewed as 

complex interactions between many different loci some of which are cis-regulated and 

some of which are trans-regulated (Chesler et al., 2005).    Knowing what type of 

regulation occurs at particular loci will uncover whether adaptive differences between 

populations of F. heteroclitus are genetically controlled. 

 The concept of eQTL and linkage analysis can be extended to F. heteroclitus in 

the future by measuring the association between genetic markers (such as single 

nucleotide polymorphisms (SNPs) and microsatellites) and microarray gene expression 

phenotypes.    Analysis of the linkage between molecular markers and quantitative traits 

will reveal polymorphisms among individuals which can explain the genetic basis of 
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variation.  Linkage between genetic markers and quantitative traits in F. heteroclitus are 

expected to be similar to studies done in yeast, mice, rats and humans(de Koning, Haley, 

2005; Hubner et al., 2005; Schadt et al., 2003).  eQTL studies in rats identified 

approximately 1000 eQTL associated with the regulation in gene expression in fat and 

kidney tissue which are important for understanding the inheritance of metabolic 

syndrome (Hubner et al., 2005).  Furthermore, in human studies, CEPH pedigree studies 

found that for several cis-acting eQTLs identified by linkage mapping between parents 

and offspring, promoter polymorphisms which affect transcriptional regulation showed 

association with differences in transcript abundance (Gibson, Weir, 2005; Morley et al., 

2004).  The association of polymorphisms within regulatory regions and the degree of 

transcript abundance will provide evidence that particular genes or groups of genes are 

responsible for a given phenotype.  Upon the sequencing of the F. heteroclitus genome 

and the development of inbred lines in the future, eQTL studies in F. heteroclitus will 

provide insight into the underlying genetic causes of variation in gene expression and 

evolved differences in physiological functions.   

Objectives 
 
The specific aims of my dissertation are as follows:  

1.  To determine the quantitative capacity, technical and biological variation of Fundulus      

heteroclitus cDNA microarrays. 

2.  To test the hypothesis that there is a genetic basis for the inter-individual variation in 

mRNA expression by studying the effect of environmental variation on gene 

expression.  
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3.  To ascertain the heritability of gene expression by parent-offspring analyses using 13 

families from NJ and Fundulus heteroclitus cDNA microarrays. 

Significance 

  Each aim is discussed in the three subsequent chapters.  Chapter 2 discusses the 

importance of microarrays as tools for understanding the expression of hundreds to 

thousands of genes at one time.  In this chapter, I analyze the relationship between the 

amount of mRNA hybridized to a microarray and the resultant fluorescent signal.  These 

hybridizations demonstrate that for a wide range of mRNA concentrations, the 

fluorescent signal is a linear function of the amount of mRNA.  Additionally, the separate 

isolation, labeling or hybridization of RNA does not add significant amounts of variation 

in measures of gene expression using F. heteroclitus cDNA microarrays.  However, 

single or double rounds of RNA amplification for amino allyl labeling do have small but 

significant affects on 10% of genes, but this source of technical variation is easy to avoid 

by using either one or two rounds of amplification, but not both in the same experiment.  

To examine both technical and stochastic biological variation, mRNA expression was 

measured from the same five individuals over a six-week time course.  I concluded that 

there were few, if any, meaningful differences in gene expression among time points.  

Thus, microarray measures using standard laboratory procedures can be precise and 

quantitative and are not subject to significant random biological noise.   

 The hypothesis that variation in gene expression is a function of genetic variation 

is explored in Chapter 3 by altering both environmental and genetic backgrounds of F. 

heteroclitus. The effect of genetic and environmental variation on cardiac mRNA 

expression was examined using microarrays for three groups of Fundulus heteroclitus 
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from the same North Carolina population: (1) individuals sampled in the field (field), (2) 

field individuals acclimated for six months to common laboratory conditions (acclimated) 

or (3) individuals bred for ten successive generations in a common laboratory 

environment (G10).  Microsatellite analyses indicated that G10 individuals have 

significantly less genetic variation than individuals obtained in the field.  Similar to the 

genetic variation, G10 individuals had a significantly lower variation in mRNA 

expression across all genes in comparison to the other two groups (p ≤ 0.001).   

 When examining the gene specific variation among individuals, twenty-two of 

284 genes (7.7%) had significant differences in the variation in expression among groups.  

Of these, seventeen (75%) have lower variation in G10 individuals than in acclimated 

individuals and this is unlikely to occur by chance (χ2 p < 0.01).  Additionally, there were 

fewer genes with significant differences in expression in G10 versus either acclimated or 

field individuals: 66 genes have statistically different levels of expression versus 107 or 

97 for acclimated or field groups, respectively (23% vs. 38%, 34%).  Based on the 

permutation of the data, these differences in the number of genes with significant 

differences among individuals within a group are unlikely to occur by chance (p <0.01).  

Although, many genes differ among individuals within a group, few genes have 

significant differences in expression among groups (seven, 2.3%) and none of these are 

different between acclimated and field individuals.  The results support the concept that 

genetic variation affects variation in mRNA expression among these natural populations. 

 Chapter 4 describes the approaches used to determine whether gene expression is 

related to the genetic variation among individuals.  Microarray analyses were combined 

with genetics approaches to estimate heritability.  Two methods were used for estimating 
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heritability; 1) Regression analyses and 2) Components of variance analyses.  The 

regression analysis provides an estimation of narrow sense heritability and the 

components of variance analysis provide an estimation of broad sense heritability.  

Though the two methods differ in their ability to dissect genetic variance, they both 

nonetheless are an important means for genetic determination of mRNA expression. 

   To estimate narrow sense heritability, parent-offspring regressions were 

performed where the mean gene expression values of the male and female parents (mid-

parent gene expression values), the female parent expression values or the male parent 

expression values were regressed on the gene expression values of the F1 offspring.  

Broad sense heritability was estimated by calculating the components of variance for sib-

sib analyses using gene expression values from 13 F1 offspring families.  For the narrow 

sense heritability estimates, approximately 6.5%, 2.67% and 6.12% of genes had a 

significant heritability at p ≤ 0.05 for the mid-parent, female and male on offspring 

regressions, respectively.  For the mid-parent, female and male on offspring regressions, 

the median h2 was .861, .729 and .875, respectively.   The broad sense heritability 

analysis found that 8.86% of genes had significant heritability at p ≤ 0.05 with a median 

H2 of 0.25.  Though the approaches for estimating heritability differ, the results confirm 

that microarrays are a useful and effective tool for determining the genetic basis of gene 

expression.  In addition, these estimates of heritability provide the first data indicating 

that there is a genetic basis of gene expression in F. heteroclitus. 

Summary 

 The dissertation concludes with a summary of the findings throughout each 

chapter.  Microarrays are useful for understanding differential gene expression which in 
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turn is important for the methods used to estimate heritability.  The integration of these 

three chapters provides the first data suggesting that microarrays can be used to 

successfully determine the genetic basis of gene expression in Fundulus heteroclitus.  In 

addition to these findings, recommendations for future research are discussed. 



CHAPTER 2: TECHNICAL ANALYSIS OF cDNA MICROARRAYS 

Background   

 Microarrays simultaneously quantify several hundred to thousands of genes on a 

single glass slide and their use has greatly expanded the breadth of quantified gene 

expression (Brem et al., 2002; de Koning, Haley, 2005; Enard et al., 2002; Gibson et al., 

2004; Monks et al., 2004; Oleksiak et al., 2002; Oleksiak et al., 2005; Schadt et al., 2003; 

Townsend et al., 2003; Yvert et al., 2003).  Yet the preparation of RNA affects the 

precision of microarray measures and therefore the ability to accurately quantify the 

content of an RNA sample (Baugh et al., 2001).  Additionally, differences in microarray 

platforms, laboratory procedures and post-quantification analyses affect the precision 

among arrays (Bloom et al., 2004; Irizarry et al., 2005; Larkin et al., 2005; Quackenbush, 

2002).  Thus, technical variation can substantially affect the interpretation of microarrays. 

 For the teleost fish Fundulus heteroclitus variation among individuals in mRNA 

expression is extensive: > 60% of genes have significant differences in expression among 

individuals within a population (Oleksiak et al., 2002; Oleksiak et al., 2005; Whitehead, 

Crawford, 2006a; Whitehead, Crawford, 2006b).  Many of these differences in gene 

expression are associated with variation in cardiac metabolism (Oleksiak et al., 2005).  

However, the accuracy and biological relevance of these differences in expression 

depends on the technical variation inherent to microarray processing (Oleksiak et al., 

2002).   

 Accurate microarray quantification is best realized when there is a linear 

relationship between fluorescence and RNA concentration.  This linear relationship fails 

when the dynamic range of microarrays are exceeded.  For any microarray, there are two 

19 
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parameters that define its dynamic range: the range of fluorescence that can be measured 

and the range of RNA concentrations that can bind to a specific array feature.  These two 

components of the dynamic range reflect the two types of saturation that can occur on a 

microarray: photomultiplier tube (PMT) saturation and biological saturation.  A linear 

relationship between fluorescence and RNA concentration can only occur if the cDNA on 

the microarray captures proportional amounts of RNA and if the PMT is not saturated.   

The PMT measures the number of photons from the fluorescently labeled RNA that are 

excited by the lasers.  PMT saturation is a result of the photomultiplier tube becoming 

oversaturated due to an overabundance of converted electrons by the analog to digital 

(A/D) converter.  The A/D converter can only convert the PMT signal into a value less 

than or equal to  216-1 or 65,535 and thus any fluorescent photons captured at this value 

of 65,535 are not discernable (Yang et al., 2002).  This type of saturation can be avoided 

by reducing the PMT voltage and laser power.  Alternatively, the specific activity of the 

mRNA (number of fluorescent molecules per message) can be reduced.  However, the 

reduction of the PMT voltage, power of the lasers, or reduced labeling, does not address 

the question of whether or not a particular cDNA on a microarray is biologically 

saturated.  

 Biological saturation occurs when the amount of mRNA that can hybridize to the 

DNA on a microarray reaches a maximum binding capacity of the printed DNA.  If 

biological saturation is reached, then the amount of a mRNA will be underestimated and 

differences among arrays or experiments can not be appropriately determined.  To avoid 

biological saturation, the amount of target RNA must be present in quantities less than 

the amount that the cDNA on the microarray slide can bind.  To determine the range and 
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linear response of increasing amounts of mRNA, we hybridized a 500-fold concentration 

range of labeled RNA from cardiac tissue to the F. heteroclitus 384 cDNA metabolic 

microarray.   

 Sources of technical variation, other than PMT and biological saturation, come 

from methods used to fluorescently label the mRNA, the day on which the RNA is 

processed and varying amounts of available tissue (Gold et al., 2004; van Haaften et al., 

2006).  One of the most common approaches to fluorescently label mRNA for microarray 

studies is to amplify the RNA by synthesizing cDNA with a T7 RNA polymerase binding 

site.  RNA is then synthesized in vivo by using the T7 RNA polymerase to incorporate 

amino allyls followed by covalent binding of fluorescent molecules to the incorporated 

amino allyls (Vangelder et al., 1990).  For small amounts of starting mRNA, the 

synthesis of RNA using T7 can be repeated to double the amplification.  To understand 

the effect of a single round versus a double round of linear amplification we compared 

the quantification of RNA using both methods.   

 The day and process used to isolate mRNA are two additional sources of technical 

variation.  Variation in the preparation of mRNA could alter its quality affecting how 

well the RNA amplifies, is fluorescently labeled, and the signal observed on the 

microarray.  The day on which a tissue is sampled is not strictly technical but can 

introduce a second type of variation:  biological variation.  That is, isolating tissues on 

different days could introduce technical variation because of the precision of dissection 

and the quality of tissue or RNA preparation.  However, because tissues are sampled on 

different days, the organisms may be biologically different (under more or less stress, 

healthier, or just one day older).  To examine technical variation due only to RNA 



 22

isolation, a single blood sample was divided into four, RNA was separately isolated from 

each sample and, gene expression was quantified.  Biological variation was examined in 

a separate experiment where five fish were bled every two weeks for a total of six weeks 

in order to collect four separate samples from each individual.  Gene expression was 

quantified for these four temporally separate samples.  

 These experiments indicate that for a wide range of experimental conditions, 

microarray experiments using the Fundulus array are both accurate and precise. 

Materials and Methods 
 
Organism 
 Fundulus heteroclitus were caught from wild populations in Wiscasset, Maine, 

USA (43º57’41”N, 69º42’45”W) by minnow trap.  Fish were transported to the 

Rosenstiel School of Marine and Atmospheric Science at the University of Miami and 

acclimated to 20ºC and 15ppt for approximately 6 months.  

Blood Sampling 

Fundulus heteroclitus (N = 20) were anesthetized with MS222 (0.1 g·l-1) and 

given tags with subdermal latex markers.  Whole blood samples from each fish were 

taken every two weeks by caudal puncture using a 50 µl Hamilton syringe rinsed with 

heparinzed saline (50 i.u. ·ml-1).  Samples were immediately frozen in liquid N2 and 

stored at -80ºC.  Only individuals that had all four serial samples taken (N = 5) were used 

in the present study.   

RNA isolation and amino allyl labeling  
 
 Total RNA was isolated using 4.5M guanidinium thiocyanate, 2% N-

lauroylsarcosine, 50mM EDTA, 25mM Tris-HCl, 0.1M β-Mercaptoethanol and 2% 

Antifoam A.  The extracted RNA was further purified using a Qiagen RNeasy Mini kit in 



 23

accordance with the manufacturer’s protocols.  The quantity and quality of the RNA was 

determined using a spectrophotometer (Nanodrop, ND-1000 V3.2.1) and a bioanalyzer 

(Agilent 2100).  RNA was then converted into amino allyl labeled RNA (aRNA) using 

the Ambion Amino Allyl MessageAmp II aRNA Amplification kit.  This method 

converts poly-A RNA into cDNA with a T7 RNA polymerase binding site; T7 is then 

used to synthesize new strands of RNA (in vitro transcription)(Eberwine, 1996).  During 

this in vitro transcription of aRNA, an amino allyl UTP (aaUTP) is incorporated into the 

elongating strand.  aaUTP incorporation allows for the coupling of Cy3 or Cy5 dyes (GE 

biosciences) onto aRNA for microarray hybridization. 

 Dye labeled aRNA aliquots for each hybridization (typically 30 pmol each of Cy3 

and Cy5) were vacuum dried together and resuspended in 15μl hybridization buffer (final 

concentration of each labeled sample = 2 pmol/μl).  Hybridization buffer consisted of 5X 

SSPE, 1% SDS, 50% formamide, 1mg/ml polyA, 1mg/ml sheared herring sperm carrier 

DNA, and 1mg/ml BSA.  Slides were washed in sodium borohydride solution in order to 

reduce autofluorescence.  Following rinsing, slides were boiled for 2 minutes and spin-

dried in a centrifuge at 800 rpm for 3 minutes.  Samples (15μl) were heated to 90ºC for 2 

minutes, quick cooled to 42ºC, applied to the slide (hybridization zone area was 

350mm2), and covered with a cover slip.  Slides were placed in an airtight chamber 

humidified with paper soaked in 5X SSPE and incubated 24-48 hours at 42ºC.   

Microarrays  
 
 mRNA expression was measured using microarrays where each array had four 

spatially separated replicates per gene.  The 384 F. heteroclitus cDNA microarrays were 

printed using 55 control genes and 329 cDNAs which encode essential proteins for 



 24

cellular metabolism (Table 2.1).  The annotation of genes and related pathways used 

FunnyBase (Paschall et al., 2004) and these were manually compared to KEGG pathway 

designations.  Because many genes belong to more than one pathway, central metabolic 

pathways were preferentially used if the gene coded for a protein that was a catabolic or 

anabolic enzyme (versus acting in a signaling pathway that affected metabolism).  

Controls include DNA spots labeled with Cy5 (positive control for position and gridding) 

and Ctenophore cDNA as negative controls. 

 Microarrays were created by printing cDNAs amplified with amine-linked 

primers onto 3-D Link Activated slides (Surmodics Inc., Eden Prairie, MN) at the 

University of Miami’s microarray facility.  All printed cDNAs were re-sequenced from 

the same source used for printing.  The microarray slides were scanned using ScanArray 

Express.  The raw TIFF-image data was quantified using Imagene (v5).  

All experiments used a loop design for hybridization of dye labeled aRNA (Kerr, 

Churchill, 2001).  In a loop design (Kerr, Churchill, 2001) each individual is labeled with 

Cy3 and Cy5.  Each dye labeled sample is then hybridized on different arrays with 

another individual (Oleksiak et al., 2002).  Thus, each individual is hybridized to two 

arrays with four replicates per array for a total of eight technical replicates per individual.  

This experimental design is a more efficient use of resources, providing more data per 

array and is thus statistically more powerful than a reference design.  

 To test for the relationship between fluorescence and the quantity of RNA, five 

concentrations of fluorescently labeled RNA were used: 1.2 to 700 pmol of Cy3 or Cy5 

labeled mRNA where pmol are for the amount of incorporated dye (Table 2.2).  A 15 µl 

hybridization using the 384 cDNA array corresponds to 0.09 to 47 µM of Cy dye.  Cy5 



 25

dye labeled RNA was used at concentrations 18% less than Cy3 because the Cy5 dye is a 

more efficient fluorophore (greater fluorescence per photon) than the Cy3 dye.  The 

average of eight fluorescence values for each gene was normalized to the original 

concentration of RNA added.   

Criteria for Inclusion 
 
 For a gene to be included in an analysis, the average signal among all arrays and 

dyes had to exceed background but not exceed 95% of PMT saturation (65,535).  

Background signal was determined as the amount of fluorescence in negative control 

array elements.  Not all genes met these criteria and therefore were not included in the 

analysis.  

Statistics  
 
 To adjust for systematic variation, gene expression values were first sum 

normalized, log2 transformed, and then loess normalized using Microarray Data Analysis 

System Software (MIDAS) (Dudoit et al., 2003; Quackenbush, 2002) and SAS JMP 

Genomics v.6.0.2.  For every gene, eight fluorescence values were captured; four Cy3 

values and four Cy5 values. Analysis of variance (ANOVA) was performed using SAS 

JMP Genomics v.6.0.2.  To look for differences between single and double rounds of 

amplification the following ANOVA model was applied: yijkl = µ + Ai + Dj +Tk + Rl + 

εijkl where µ is the sample mean, Ai is the effect of the ith array (i=1-18), Dj is the effect 

of the jth dye (Cy3 or Cy5),  Tk is the effect of the number of rounds of amplification 

(single or double, k= 2), Rl is the effect of the day on which samples were prepared (

and epsilon is stochastic effects.  The number of rounds of amplification (single or 

double) and channel variables were treated as fixed effects and array, and day on which 

l=3), 
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samples were prepared were treated as random effects.  Statistical analyses of replicat

blood samples or repetitive measures of the same five individuals were applied to a 

separate ANOVA for each individual.  The ANOVA model for this comparison was as 

follows: y

e 

f 

th 

le, 

mnp= µ + Am + Dn + Tp + εmnp where µ is the sample mean, Am is the effect o

the mth array (m=1-4 for both replicate and repetitive samples), Dn is the effect of the n

dye (Cy3 or Cy5), Tp is the treatment effect and epsilon is stochastic effects.  Samp

representative of either one of four temporal samples from an individual or one of four 

replicate blood samples, and channel were treated as fixed effects.  Array was treated as a 

random effect.  Significant differences were evaluated with a p-value cut-off of 0.01. 

Results 
 
Biosaturation 
 
 The concentration of fluorescently labeled RNA (0.09 to 47 µM of Cy dye) 

represents 0.1X, 1X, 5X, 10X, 50X the concentration of RNA typically used on F. 

heteroclitus cDNA microarrays (Crawford, Oleksiak, 2007; Oleksiak et al., 2002; 

Oleksiak et al., 2005; Whitehead, Crawford, 2005; Whitehead, Crawford, 2006a) (Table 

2.2, MIAME GSE12858).  Among the 329 metabolic genes on the array, 212 of these 

genes met our criteria of being less than 95% of the PMT saturation and more than two 

standard deviations above the negative controls (Ctenophore cDNA with no similarity to 

vertebrate genes). 

 The linear relationship between the amount of RNA and relative fluorescence is 

shown in Figure 2.1.  To remove the gene specific differences in expression, the 

fluorescence at each concentration was divided by the mean fluorescence for that specific 

gene (Fig. 2.1).  The linear relationship between the amount of total fluorescent RNA 



 27

added and the measures of gene specific fluorescence was determined for each gene.  

Most genes (176/212 or 83%) had an R2 > 95% and 78 genes had a nearly perfect R2 (> 

0.995; Fig. 2.1B; Table 2.3).  Examining the 18 genes with the lowest R2 values (less 

than 0.8) revealed a non-linear relationship that can be explained by an apparent 

saturation at the 50X concentration of RNA (Fig. 2.1C).  The relationship disappears if 

the fluorescence values for the 50X concentrations of RNA are removed and the 0.1 to 

10X are plotted (Fig 2.1D-F).  In the 100-fold range (0.1 to 10X) only three genes (1.4%) 

had R2 values less than 0.8 (Table 2.3).  Examination of the higher concentrations (1.0 to 

50X) revealed 19 genes (9%) with R2 less than 0.8 (Table 2.3).  These data suggest that 

for most genes there is a linear relationship for a 500-fold range of RNA, however some 

cDNAs on the microarray will reach biological saturation at the highest RNA 

concentration.   

Variation in RNA preparation 
 
  To determine how RNA preparation affects variation, cardiac RNA from three 

individuals were combined, and then evenly divided and amino allyl and dye labeled on 

three separate days using single and double rounds of amplification (MIAME, 

GSE12858).  Only 110 genes met our criteria for inclusion because many genes were 

below the low cut-off (Ctenophore negative control cDNAs).  In this experiment fewer 

genes met our criteria of above background and below saturation due to sample RNA 

being divided for separate labeling using either single or double rounds of amplification.  

An ANOVA was performed to measure differences between single and double rounds of 

amino allyl labeled RNA amplification.  Twelve of the 110 genes (11%) used in this 

analysis were significantly different between single and double rounds of amplification at 
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p < 0.01.  The majority of genes (59%) had a higher fluorescence signal when only one 

round of amplification was performed.   

Consistency of Quantitative Determination 
 
 In teleost fish, red blood cell (RBCs) nuclei are transcriptionally active (Currie, 

Tufts, 1997; Koldkjaer et al., 2004), and these cells can be sampled without sacrificing 

the fish.  Thus to assess the consistency of microarray determinations, two experiments 

were performed on blood gene expression: 1) to examine technical variation a single 

sample of blood was divided into four samples; RNA isolations, amino allyl and dye 

labeling, hybridization and quantitative analyses were performed on each sample and 2) 

to examine biological variation, RNA isolated from blood from the five individuals were 

each sampled four times over a 6 week period (two weeks between samples). 

 A one-way ANOVA was used to test for the technical variation in gene 

expression between the four RNA samples isolated from a single blood sample (Fig. 2.2).  

Among all 252 genes (eight replicates per gene per sample) only 6 genes were 

significantly different for the four isolates at a critical p-value of 0.01.  Three false-

positives are expected at a p-value of 0.01 and thus with only 6 significant differences 

(Fig. 2.2) there is little evidence that separate RNA isolation, labeling and hybridization 

has much affect on measures of gene expression.  The lack of differences is not due to 

high technical variation: CV (standard deviation/mean) among the eight replicates was 

4% and, only three genes had a CV of > 10%.  Nor was it due to the low p-value of 0.01 

versus 0.05 (Fig. 2.2); the number of significant differences simply reflects the p-values. 

Random biological variation can contribute to differences in expression.  We tested for 

random biological variation by bleeding the same five individuals four times with two 
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weeks between bleedings (Fig. 2.3).  For each of the 304 genes that met our criteria, an 

ANOVA tested for differences in expression among the four different time periods for 

each individual (four sample periods with eight replicates per gene per sample period).  

Among the four temporal samples, there were between one and seven genes that had a 

significant difference in expression at a p-value of 0.01 (Fig. 2.3).  Only one individual 

had more than the expected number of false positives at the critical p-value: individual-00 

had 7 (2%) significant genes at p-value 0.01 for 304 genes.   

Discussion  
 
 Understanding sources of variation in gene expression is important for 

determining the biological importance of measured differences in mRNA expression.  

The analyses of technical variation in the metabolic F. heteroclitus cDNA microarray 

suggest that measures of gene expression using the F. heteroclitus 384 cDNA microarray 

are quantitative and precise.  This conclusion is based on the observation that there is a 

linear increase in fluorescence with increasing mRNA (Fig. 2.1), and that there is little 

additional variation due to RNA processing (Fig. 2.2) or the day on which RNA is 

isolated (Fig. 2.3).  

 There is a linear increase in fluorescence with increasing mRNA for 98.5% of 

genes between 0.1X to 10X concentrations (0.09 pmol/ul to 9.3 pmol/ul) and 95% of 

genes between 0.1X to 50X (0.09 pmol/ul to 47pmol/ul).  The linear relationship between 

RNA and fluorescence is quite strong for RNA concentrations of 0.1X to 10X having 

average R2 values of 0.97, and most genes (88%) have R2 values greater than 0.95 for 

these four concentrations.  The genes most affected by biological saturation do not have a 

high fluorescence; if anything, they are less than the average (genes with R2 < 0.8 for 1X 
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to 50X have a mean that is 60% of the mean for all other genes).  The two possible 

explanations for biological saturation with low fluorescence are that the synthesis of 

amino allyl labeled RNA for these genes is strongly truncated or that there is less DNA 

printed on the array for these genes.  Truncation of amino allyl labeling would produce 

many more short probes with few labels per probe.  Thus, to produce a similar 

fluorescence many more molecules would be necessary and these would saturate the 

DNA on the array.  These problems can be avoided by using moderate amounts of probe 

(< 10 pmol/ul).  We typically avoid this problem by using 0.7 to 2 pmol/ul.  Using 

concentrations of RNA up to 50X (47pmol/ul) is feasible, but our data suggest that at this 

high of a concentration some genes will biologically saturate the cDNA on the array and 

therefore should be avoided.   

 If RNA samples are amino allyl labeled using one round of T7-RNA synthesis 

(Eberwine, 1996) versus two rounds of T7-RNA synthesis, 11% of genes have significant 

differences in fluorescence at a p-value of 0.01.  Although this difference in gene 

expression for single versus double labeling is not large, it may be unacceptably high.  

Thus, we would suggest that for any one experiment that a researcher uses only single or 

double labeling procedures but not both within an individual experiment.  Approximately 

half (59%) of genes with a significant difference between single and double labeling were 

greater for single labeling.  The greater fluorescence for single labeling than that for 

double labeling would occur if cDNA or RNA synthesis was truncated with each round 

of labeling.  Truncation would occur if the synthesis of cDNA or RNA were incomplete 

forming shorter nucleotide sequences with less fluorescence per RNA.  
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 We used blood to test the effect of different RNA isolations, amino allyl labeling 

and hybridizations.  The first experiment used a single blood isolation that was divided 

into four equal samples.  There are few differences in expression, 2.4% at a p-value of 

0.01 (i.e., six versus the expected three false positives).  If a Bonferroni correction was 

applied none of these genes would be significant.  Therefore, technical errors do not 

necessarily contribute significant amounts of variation.  Similar conclusions were made 

about microarray results among laboratories: many different laboratories yielded similar 

results using different varieties of platforms (Bammler et al., 2005; Beissbarth et al., 

2000; Bloom et al., 2004; Irizarry et al., 2005; Larkin et al., 2005; Tan et al., 2003; Yauk 

et al., 2004).  However, a few laboratories yielded different results.  Together these data 

suggest that good experimental practice can minimize the effect of technical variation. 

 In a separate experiment, five individuals were bled once every two weeks during 

a six-week period, resulting in four serial blood samples from each individual.  Any 

differences in expression among sampling times could be due to technical variation, of 

which there is very little as shown by the previous experiment, or biological variation.  

That is, although fish appeared healthy, had normal blood glucose, and the stress 

hormone, cortisol, did not vary significantly (p > 0.1), gene expression could vary 

significantly for unknown biological reasons.  Yet, for the five individuals there are few, 

if any, meaningful differences in gene expression (only one individual had more than the 

expected number of false positives, Fig. 2.3).  These data confirm the observation that 

technical errors do not necessarily affect microarray measures.  Importantly, these data 

also suggest that for a tissue or blood sample there is little random stochastic variation in 

gene expression.  These data are in contrast to other publications suggesting that mRNA 



 32

expression is noisy and has large stochastic variation (Blake et al., 2003; Raj et al., 

2006).  The important distinction is that for a single cell, transcription is pulsatile, 

occurring in bursts (Blake et al., 2003; Raj et al., 2006), and for an individual cell this 

creates large stochastic variation in mRNA expression.  However, our results demonstrate 

that for millions of cells, this variation is not apparent across a 6-week time course.  We 

suggest that if there is a large stochastic variation in each cell, sampling of millions of 

cells masks this variation such that the amount of expression from any one gene is stable 

over time.  

 The microarrays used here have array elements for essential metabolic genes 

(Table 1) and are similar to the array elements used in previous work demonstrating 

larger inter-individual variation in gene expression (Oleksiak et al., 2002; Oleksiak et al., 

2005; Whitehead, Crawford, 2006a; Whitehead, Crawford, 2006b).  While the data 

presented here addresses the sources of variation in many microarray experiments, the 

lack of temporal variation in gene expression in our study may only reflect the expression 

of the metabolic genes.  However, these results are similar to studies of gene expression 

in humans where the same individuals were sampled over a time period of 24 hours to 

four weeks (Cobb et al., 2005; Eady et al., 2005; Whitney et al., 2003).  These studies 

also found relative stable expression of a more diverse set of genes when the same 

individuals were sampled over time.  Thus, although there are good biochemical or 

molecular reasons to expect stochastic variation in gene expression, this variation is not 

necessarily observed using routine sampling methods.   

 Microarrays are a useful technology for observing differences in gene expression 

and data extracted from microarrays can be reliably reproduced.  With reasonable care, 
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any experiment involving microarrays is capable of obtaining biological data that is not 

masked by technical variation thereby providing a true representation of the 

transcriptome under a particular set of conditions.  However, caution is required before 

making conclusions about the biological nature of the data until the sources of technical 

variation are understood.   
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Table 2.1  384 Microarray Metabolic Pathways 
 
 
Amino acid metabolism 28 
ATP synthesis 27 
Blood group glycolipid biosynthesis 3 
Channel 3 
Citrate cycle (TCA cycle) 24 
Fatty acid metabolism/transport 36 
Fructose and mannose metabolism 4 
Galactose metabolism 2 
Glutamate metabolism 7 
Glutathione metabolism 10 
Glycerolipid metabolism 7 
Glycolysis / Gluconeogenesis 27 
Inositol phosphate metabolism 14 
Ox-Phos-ATPsyn 64 
Pentose phosphate pathway 6 
Purine & Pyrimidine metabolism 9 
Pyruvate metabolism 2 
Signaling 10 
Starch and sucrose metabolism 2 
Sterol biosynthesis 8 
Synthesis and degrad. of ketone bodies 4 
Tetrachloroethene degradation 3 
Secondary 27 
TOTAL METABOLIC GENES 329 
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Table 2.2   Concentrations of Cy3 and Cy5 dye labeled RNA used for hybridization. 
 
 50X 10X 5X 1X .1X 

Cy 3 700 pmol 140 pmol 70 pmol 14 pmol 1.4 pmol 

Cy 5 583.3 pmol 116.6 pmol 58.3 pmol 11.6 pmol 1.2 pmol 
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Table 2.3.  Number of genes and corresponding R2 for various ranges of RNA 
concentrations.  
 
 
R2 0.1 -50X 0.1-10X 1.0-50X 
>0.9 176 199 178 
<0.8 18 3 19 
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Figure 2.1  Linear relationship of RNA concentration to relative fluorescence.  Graphs 
show linear relationship between concentrations of RNA (0.1-50X, A-C, and 0.1-10X, D-
F) and relative fluorescence.  Relative fluorescence is a normalized measure of 
fluorescence divided by the gene specific mean.  1X RNA is equal to 0.9 pmol µl-1.  
Shown are the RNA concentrations versus fluorescence for 0.1 to 50X (A-C) and for 
0.1X to 10X (D-F); for all genes (A and D), for the 78 genes with the highest R2 values 
(B and E), and for the 18 with lowest R2 values (C and F).   
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-3.00
-2.00
-1.00
0.00
1.00
2.00
3.00

P           Number < p
0.001       3   (1.2%)
0.01         6   (2.4%)
0.05       23   (9.1%)
0.1         38  (15.1%)

Replicate IsolationReplicate Isolation 
  P    1    2    3    4 

log2 fold changes
and

-log10 pvalues

 
 
 
Figure 2.2  Gene expression for single blood isolate.  Heat map for single blood isolate 
that was divided into four.  RNA was purified, labeled and hybridized separately for each 
sample.  Red is greater and green is less than the average gene specific fluorescence.  
First column (P) is the p-value from a one-way ANOVA.  Only 6 genes (2.3%) out of 
252 are significant at a critical p-value of 0.01.  P-values (-log10) shown in the heat map 
are from an ANOVA for significant differences among samples using the 8 replicates for 
each separate RNA isolation.  Color bar gives fold difference for log2 gene expression 
(e.g., 2=4x) and negative log10 p-value (e.g., 2 = p-value 0.01). 
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00    7 (2%)  15 (5%)
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12    3 (1%)    5 (2%)

TimeTime 
  P    0    2    4    6 

log2 fold changes
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Figure 2.3  Individuals sampled over time.  Heat map for one individual (00) that was 
sampled 4 times over a total of 6 weeks.  Numbers above the heat map are time points (0, 
2, 4 and 6 weeks) and the “P” is for p-value (-log10).  P-values are from the ANOVA that 
tested for differences among separate blood isolations within an individual (4 isolations 
and 8 replicates per isolation).  For gene expression, red is greater and green is lower 
expression than the mean expression for each gene.  Table provides number of significant 
genes and percent (rounded up) out of the total of 304.  Color bar gives fold difference 
for log2 gene expression (e.g., 2=4x) and negative log10 p-value (e.g., 2 = p-value 0.01). 



CHAPTER 3:  THE EFFECT OF GENETIC AND ENVIRONMENTAL 
VARIATION ON GENE EXPRESSION 
 
Background 
 
 Variation in mRNA expression is a function of genetic and environmental 

variation.  The quantification of variance due to the additive effects of genes is important 

as natural selection acts on this genetic component of variance (Falconer, Mackay, 1996).  

In outbred populations of the teleost fish Fundulus heteroclitus there is substantial 

variation in mRNA expression within and between groups of individuals (Crawford, 

Oleksiak, 2007; Oleksiak et al., 2002; Oleksiak et al., 2005; Whitehead, Crawford, 

2006a).  Although much of this variation appears to be due to random neutral 

evolutionary processes, a significant fraction of variation in expression is best explained 

by evolution by natural selection (Whitehead, Crawford, 2006a).  These apparent 

adaptive patterns suggest that the variation in mRNA expression is biologically important 

because it is the result of natural selection (Whitehead, Crawford, 2006a).  Investigation 

into the functional importance of natural variation in mRNA expression revealed that 

variation in mRNA expression explains differential use of metabolic substrates among 

groups of individuals providing additional evidence for the biological significance for 

otherwise seemingly chaotic patterns of expression (Oleksiak et al., 2005).  While these 

studies assume that variation in mRNA expression among individuals is genetically based 

due to the rearing of fish in a common environment, no studies have been performed to 

test this hypothesis.   

 To provide data to test this hypothesis, we examine the variation in mRNA 

expression among groups that have different levels of genetic and environmental 

variation.  If mRNA expression is heritable and genotypic effects dominate the variation 

40 
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in expression among individuals, then more genetically similar individuals should have 

less variation and fewer significant differences in mRNA expression than among 

unrelated individuals.  We demonstrate that variation in mRNA expression is 

significantly lower among closely related individuals compared to outbred fish raised in 

similar environments.  Surprisingly, increased environmental heterogeneity in 

unacclimated individuals sampled from the field did not increase the variation in mRNA 

expression among these outbred samples.  These observations suggest that the normal 

environmental variation associated with tidal fluxes in estuarine environments does not 

substantially add to the differences in mRNA expression in F. heteroclitus.  

Methods and Materials 
 
Organism 
 
 Fundulus heteroclitus were caught from wild populations in Beaufort, North 

Carolina, USA (34º43’34’’N, 76º40’62’’S) by baiting commercially available minnow 

traps with dry dog food.  Upon capture in the field, five males and five females were 

killed by cervical dislocation, their hearts removed and stored in 1 ml of RNA later at -

20ºC (Ambion, Inc.).  The remaining fish were acclimated to 20ºC and 15 ppt of artificial 

seawater in laboratory aquaria at the University of Miami for approximately 6 months 

(Instant Ocean, Inc.).  These fish were compared to fish trapped at the same location, and 

raised at 20ºC and 15 ppt of artificial seawater and allowed to interbreed for ten 

successive generations (G10) at the Aquatic Biotechnology and Environmental 

Laboratory at the University of Georgia.  For the purposes of this experiment, 5 males 

and 5 females from each of the following groups were used: field caught (field), field 
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caught then acclimated for 6 months at the University of Miami (acclimated) and fish 

raised for ten generations (G10).    

Genetic Diversity 
 
 The G10 fish were started from a group of approximately 16 adults and were 

allowed to freely interbreed for 10 generations.  In order to characterize levels of genetic 

diversity and pair wise relatedness within and between the G10 and field caught (field) 

individuals, we genotyped 49 G10 and 109 field individuals (including individuals used 

in the microarray experiments) at 10 microsatellite loci for F. heteroclitus (Adams et al., 

2005).  Briefly, microsatellite primers were constructed by using F. heteroclitus genomic 

fragments (350-700 bp long) that were ligated into a pUC19 plasmid and electroporated 

into Escherichia coli (Adams et al., 2005).  DNA sequencing was performed on inserts 

which were PCR amplified resulting in unique microsatellite-containing sequences from 

which primer sets were specifically optimized for 17 loci (Adams et al., 2005). 

 DNA was extracted from dried fin clips.  The tissue was placed in 300 µL lysis 

buffer (75 mM NaCl, 25mM EDTA, 1%SDS) and incubated with 0.1 mg Proteinase K at 

55ºC for 2 hours.  Proteins were precipitated by adding a half volume of 7.5 M 

ammonium acetate and centrifugation for 10 minutes at 16,000 g at room temperature.  

DNA was precipitated from the supernatant by adding 0.7 volumes of isopropanol and 

centrifugation for 15 minutes at 15,000 g at room temperature.  The DNA pellet was 

washed with 70% ethanol then allowed to air dry for 30 minutes followed by re-

suspension in 50 µL 10 mM Tris-HCl pH 8.5. 

 Microsatellite loci were amplified in four fluorescently labeled multiplex primer 

groups containing the following final concentrations: A – (0.15 μM CA-1, 0.07 μM CA-
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A3, 0.20 μM C-1), B – (0.10 μM ATG-18, 0.10 μM ATG-B4), C – (0.07 μM ATG-25, 

0.07 μM ATG-6), D – (0.07 μM ATG-B128, 0.15 μM CA-21) (Adams et al., 2005).  

Locus ATG-20 was amplified alone at a final concentration of 0.5 μM.  The 10 µL 

reactions contained 2.5 mM MgCl2, 1X PCR buffer (500mM Tris-HCl, pH 9.2, 160mM 

(NH4)2SO4, 22.5 mM MgCl2, 20% (v/v) DMSO, 1% (v/v) Tween T 20, water to 10 ml

volume), 0.2 mM dNTPs, 0.4 units Taq DNA polymerase (Promega), 70 ng DNA, and 

one of the five primer combinations (see above for concentrations).  The PCR thermal 

cycling profile consisted of 94ºC for 2 minutes, followed by 31 cycles of 94ºC for 15 

seconds, 55ºC (A, C, ATG-20) or 55ºC (B and D) for 15 seconds, and 72ºC for 30 

seconds, ending with a 5 minute extension step at 72ºC.  Following PCR amplification, 

the products from A, C, and D were co-loaded, as were ATG-20 and B, before being 

subject to electrophoresis on an ABI 3730XL Genetic Analyzer (Applied Biosystems).  

GENEMAPPER v4.0 (Applied Biosystems) was used to score the genotypes.  All 

genotypes were checked by two members of our laboratory to ensure the proper scoring 

of genotypes. 

 

RNA isolation, labeling and hybridization 
 
 Total RNA was isolated from using 4.5 M guanidinium thiocyanate, 2% N-

lauroylsarcosine, 50 mM EDTA, 25 mM Tris-HCl, 0.1 M β-Mercaptoethanol and 0.2% 

Antifoam A (Sigma).  The extracted RNA was further purified using a Qiagen RNeasy 

Mini kit in accordance with the manufacturer’s protocols.  The quantity and quality of the 

RNA was determined using a spectrophotometer (Nanodrop, ND-1000 V3.2.1) and by 

capillary electrophoresis with the use of a bioanalyzer (Agilent 2100).  RNA was then 

converted into amino allyl labeled RNA (aRNA) using the Ambion Amino Allyl 
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MessageAmp II aRNA Amplification kit.  This method converts poly-A RNA into cDNA 

with a T7 RNA polymerase binding site and T7 is used to synthesize many new strands 

of RNA (in vitro transcription) (Eberwine, 1996).  During this in vitro transcription of 

aRNA, an amino allyl UTP (aaUTP) is incorporated into the elongating strand.  aaUTP 

incorporation allows for the coupling of Cy3 or Cy5 dyes (GE biosciences) onto aRNA 

for microarray hybridization. 

 Dye labeled aRNA aliquots for each hybridization (30 pmol each of Cy3 and 

Cy5) were vacuum dried together and resuspended in 15 μl hybridization buffer (final 

concentration of each labeled sample = 2 pmol μl-1).  Hybridization buffer consisted of 

5X SSPE, 1% SDS, 50% formamide, 1mg ml-1 polyA, 1 mg ml-1 sheared herring sperm 

carrier DNA, and 1mg ml-1 BSA (Botwell, Sambrook, 2003).  Slides were washed in 

sodium borohydride solution in order to reduce autofluorescence.  Following rinsing, 

slides were boiled for 2 minutes and spin-dried in a centrifuge at 14 g for 3 minutes at 

room temperature.  Samples (15 μl) were heated to 90ºC for 2 minutes, quick cooled to 

42ºC, applied to the slide (hybridization zone area was 350 mm2), and covered with a 

cover slip.  Slides were placed in an airtight chamber humidified with paper soaked in 5X 

SSPE and incubated 24-48 hours at 42ºC.  

Microarrays 
 
 The amount of gene specific mRNA expression was measured using microarrays 

with four spatially separated replicates per gene on each array.  Microarrays were printed 

using 384 Fundulus heteroclitus cDNAs that included 329 cDNAs that encode essential 

proteins for cellular metabolism (Table 3.1, (Paschall et al., 2004)).  Average lengths of 

cDNAs were 1.5 Kb with a majority including the N-terminal methionine.  Table 3.1 
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provides a summary of the ESTs used for printing where the most meaningful gene 

ontology (GO) term is used to categorized the annotation (Paschall et al., 2004). These 

cDNAs were amplified with amine-linked primers and printed on 3-D Link Activated 

slides (Surmodics Inc., Eden Prairie, MN) at the University of Miami core microarray 

facility (http://www.rsmas.miami.edu/groups/ohh/genomics/genomics_core.htm). 

 The microarray slides were scanned using ScanArray Express.  The raw TIFF-

image data was quantified using Imagene (v5).  If a gene had a fluorescent signal that 

was too low or too high, then it was eliminated from the analysis for all individuals.  

Fluorescent signals were considered too low if the average across all samples were within 

2 standard deviations of the average signal from the Ctenophore negative controls.  

Fluorescent signals were considered too high if the average signal plus two standard 

deviations exceeded 55,000.  This procedure is based on empirical analyses of data and 

removes fluorescent signals that saturate the photomultiplier tube (maximum signal is 

65,565) (Scott et al., 2009).  Using these criteria 100 genes were eliminated from all 

individuals leaving a total of 284 genes.  

Statistics 
 

 Microsatellite loci were tested for deviation from Hardy-Weinberg equilibrium 

and for linkage disequilibrium using GENEPOP version 3.3 (Raymond, Rousset, 1995).  

The number of alleles (NA), observed heterozygosity (HO), and expected heterozygosity 

(HE) were calculated using GENALEX 6 (Peakall, Smouse, 2006).  Allelic richness (AR) 

for each group (G10 and field) was calculated with FSTAT version 2.9.3 (Goudet, 1995) 

with a sample size adjustment of n = 49 individuals (the smallest sample size).  We 

compared average measures of genetic diversity calculated across loci between G10 and 
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field individuals by randomizing locus specific values between groups and recalculating 

the difference in mean values 5,000 times to generate a random distribution of mean 

values.  The location of the observed mean difference within this random distribution was 

used to determine the probability that it was significantly different from the random 

distribution.   

 Genetic similarity between individuals within groups was estimated by the 

relatedness coefficient R of Queller and Goodnight using RELATEDNESS 5.0 (Queller, 

Goodnight, 1989).  The allele frequencies used to calculate relatedness coefficients came 

from the entire sample of G10 and field individuals.  Standard errors of the estimates 

were obtained by jackknifing over loci (Sokal, Rohlf, 1995).  We compared the average 

relatedness of G10 and field individuals by jackknifing over the unpaired R difference 

using RELATEDNESS.  We also estimated genetic similarity by the proportion of shared 

alleles (Bowcock et al., 1994).  Significance was determined by permuting individuals 

between the groups and recalculating the mean proportion of alleles shared between 

individuals 1,000 times to construct the 95% CI around the random expectation.  Ninety-

five percent confidence intervals were also calculated around each mean by bootstrapping 

values within each group 1,000 times. 

 Statistical analyses of the mRNA expression data were carried out using JMP 

genomics (SAS JMP Genomics v.7.0.2).  All analyses used fluorescent microarray 

measures that were log2 transformed and loess normalized (Quackenbush, 2002).  These 

normalized fluorescent measures showed nearly identical distributions among all 

individuals.  Standardization of data (mean signal with an average intensity equal to zero) 

or further normalization using ANOVA or mixed model did not substantially affect the 
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distribution of fluorescence nor did it affect the relative frequency of genes with 

significant differences in expression among individuals.  Thus, the simpler of the two 

normalization methods (log2-loess) was used for parsimony and clarity of results.  

 To test for the significant differences in gene expression among individuals within 

each group we used a linear mixed model ANOVA (Kerr, Churchill, 2001; Patterson et 

al., 2006; Wolfinger et al., 2001; Yu et al., 2004):  

yijk=µ + Ai + Dj + Ik+εijk        (1) 

where yijk represents the fluorescence intensities on a log scale and µ is a constant.  The 

fixed effect is Ik for the kth individual (for one of the nine individuals per group), the 

random effects are Dj for the jth dye of the two Cy dyes and Ai is the ith array (for one of 

the 27 different arrays) and ε ijk is a random residual term.  With nine individuals per 

group (acclimated, field or G10) and eight replicates (four replicates per array and two 

dyes) there are 8 and 52 degrees of freedom.  To determine if the number of genes 

significantly different expression among individual in each group was statistically 

different, a mixed model analysis was performed using equation (1) on all 126 possible 

combinations of 5 out of nine individuals for each group.  From these 126 ANOVAs, the 

confidence intervals and the average number of genes that were significantly different 

among individuals were calculated. 

with 

 For all other analyses, the linear mixed model was used to define the least square 

means, providing a single measure of expression for each gene for each individual.  This 

model is identical to the model described above but all individuals were modeled without 

regard to group (26 and 161 degrees of freedom).  The PROC MIX statement used in the 
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SAS analysis was: class Dye Sex Treatment Array indiv; model response= indiv; random 

Dye Array; lsmeans Indiv;. 

 To find significant differences in mRNA expression between groups or sex, we 

performed an ANOVA with the least square means for each individual.  Notice that when 

using the least square means there are no dye or array effects (only one measure per gene 

results from the mixed model), thus, these factors are not included in the model.  For the 

ANOVA with sex as a fixed effect there were 1 and 25 degrees of freedom.  For the 

ANOVA with group as fixed effect there were 2 and 24 degrees of freedom.   

Results 
 
 The genetic variation and expression of mRNA was measured in three groups:  

Fundulus caught in the field and immediately sacrificed (Field), Fundulus caught in the 

field and acclimated for six months to common laboratory conditions (Acclimated) and 

Fundulus bred for ten successive generations (G10) in a common laboratory 

environment.  All fish originated from the same location in Beaufort, North Carolina.  

Genetic Diversity and Relatedness 
 
 The microsatellite loci in the field and acclimated samples (outbred groups) were 

highly polymorphic and in Hardy-Weinberg (p = 0.70) and genotypic linkage equilibrium 

(p > 0.20 in all cases).  The G10 individuals had significantly lower mean genetic 

diversity values than the field caught individuals for three of our four measures (AR p = 

0.001; HO p = 0.001; HE p = 0.001; FIS p = 0.11) (Table 3.2).  The G10 fish were also in 

Hardy Weinberg equilibrium (p = 0.14), but 13 of the 45 pair-wise comparisons between 

loci had significant linkage disequilibrium after a Bonferroni's correction for multiple 

comparisons.  Relatedness among individuals was significantly higher than zero and 
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close to the level of full siblings for the G10 individuals (R = 0.43; 95% CI 0.33 – 0.53).  

This contrasts with the relatedness of field individual that were not significantly different 

from zero (R = 0.03; 95% CI -0.004 – 0.066).  The proportion of shared alleles between 

individuals revealed a similar pattern; individuals within the G10 group shared more 

alleles (mean = 0.545; 95% CI 0.536 – 0.553) than individuals within the field group 

(mean = 0.315; 95% CI 0.312 - 0.317). 

 We also compared the proportion of shared alleles between the individuals that 

were used only in the microarray experiment (Fig. 3.1).  The G10 individuals used in the 

microarray experiment shared a significantly higher proportion of their alleles (0.46, 95% 

CI 0.42 – 0.51) than either the acclimated (0.36, 95% CI 0.34 – 0.38) or the field (0.30, 

95% CI 0.28 – 0.33).  Although the acclimated group had a slightly higher level of shared 

alleles than the field group, both fell within the 95% CI expected for random pairings of 

individuals (Fig 3.1). 

Significant Differences between sexes in mRNA expression 
 
 Gene expression was measured in a total of 12 males and 15 females using two 

separate hybridization loops.  Yet only three genes have significant differences (p < 0.01) 

in mRNA expression between males and females.  None are significant with Bonferroni’s 

correction for multiple comparisons (p < 3.5 * 10-5).  With so few differences in gene 

expression between the sexes, males and females were analyzed together.  

Significant Differences within Groups in mRNA expression  
 
 One measure of variation in mRNA expression is the number of genes that differ 

among individuals within each group (Fig. 3.2).  A mixed-model ANOVA was used to 

test if there are significant differences in mRNA expression among individuals within 
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each group (p < 0.01, Table 3.3).  G10 individuals had approximately two-thirds the 

number of significantly different genes (66 or 23% p <0.01, 23 significant with 

Bonferroni’s corrected p < 3.5 * 10-5) as did acclimated individuals (107 or 38% p < 0.01, 

46 with Bonferroni’s corrected p < 3.5 * 10-5) even though they were raised in similar 

laboratory conditions.  Surprisingly, field individuals had an intermediate number of 

significant genes (97 or 34% p< 0.01, 29 with Bonferroni’s corrected p < 3.5 *  10-5).  

Examples of the magnitude and associated p-values with these differences are shown in 

the volcano plots (Fig. 3.3).  Although only three of the possible 36 paired comparisons 

in each group are shown in figure three, these differences are representative samples and 

suggest that the difference among acclimated individuals tends to be larger (x-axis, log2 

differences in the least square mean) and they have more significant (y-axis, negative 

log10) p-values.   

 To test if the number of genes with significant differences in expression were 

meaningful, all 126 possible combinations of five out nine individuals were examined 

(Table 3.3).  Among these combinations, the average numbers of genes with a significant 

difference in expression share the same pattern as the analysis of all nine individuals:  

acclimated > field > G10 for the number of genes with significant differences in mRNA 

expression.  For each group, the mean number of genes with significant differences in 

expression among these 126 combinations has confidence intervals that do not overlap 

(Table 3.3) and are statistically different (Kruskal-Wallis non-parametric test p < 0.001).  

Thus, there is statistical support that there are a greater number of genes with significant 

differences in expression in acclimated versus field or G10, and field versus G10. 
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Variance in mRNA expression Across Genes  
 

 Another test of how the variation in mRNA differs among groups is to examine 

the mean variation among individuals for all genes.  That is, rather than testing for the 

quantitative differences in mRNA expression, we tested the variation in mRNA 

expression among individuals for each group across all 284 genes.  Because the variance 

is a function of the magnitude of the mean, the measures of expression of all 284 genes 

was normalized so that the average expression for each gene was equal to one:  

lsmeanij/(Avgj) where the lsmeanj is the least square mean for the ith individual and the 

jth gene.  These measures are divided by Avgj, the average least square mean for the jth 

gene.  The variance from these normalized values among the nine individuals within each 

group was calculated.  The variance across all 284 genes is significantly different 

(Kruskal-Wallis test, p < 0.001) with a mean variance of 0.575 (stdev = 0.346), 0.423 

(stdev = 0.256) and 0.386 (stdev = 0.132) for acclimated, field and G10, respective

is interesting that the standard deviation of the variance is greatest in the acclimated 

group, suggesting greater differences in the variation among individuals in this g

ly.  It 

roup.  

Homogeneity of Variance 
 
 A third test of how the variation among individuals for mRNA expression differs 

among the three groups is to examine the similarity of the variance for each gene.  We 

tested the similarity for each gene by applying the Barlett’s test for homogeneity of 

variance among groups using the least square means for each individual (Table 3.4) 

(Snedecor, Cochran, 1991).  Of the 284 measures of mRNA expression used in this 

experiment, 22 (7%), had an unequal variance among groups (p < 0.01).  Among these 22 

genes with significant differences in the individual variation in mRNA expression, 
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acclimated individuals had larger variation than G10 individuals 77% of the time.  This 

bias of larger variance in mRNA expression in the acclimated group versus G10 is 

unlikely to occur by chance (χ2 p < 0.01).  For the acclimated versus field, or field versus 

G10 there are the same (50%) or nearly the same (59%) number of genes with greater 

variance in mRNA expression (Table 3.4).  

Significant differences between groups in mRNA expression  
 
 We expect a difference in the variance in mRNA expression between groups, but 

this will not necessarily be associated with a difference in the mean of mRNA expression.  

Using a p-value of 0.01, 7 genes (2.5%) have a significant difference in mRNA 

expression among groups (Fig. 3.4).  None of these are significant with a Bonferroni’s 

corrected p-value of 3.5 * 10-5).  Using a t-test between the 3 pairs of comparisons 

(Acclimated vs. Field, Acclimated vs. G10 and Field vs. G10), there are no significant 

differences between the acclimated and the field groups (Fig. 3.4A).  Significant 

differences in mRNA expression are only between either the acclimated or field versus 

G10 group (Fig. 3.4B).  

Discussion 
 
 The genetic basis for the variation in mRNA expression among natural 

populations, including F. heteroclitus, is not well understood.  In other species, our 

understanding of the genetics of mRNA expression has relied on the study of inbred 

strains (Gibson, Weir, 2005; Schadt et al., 2003; Wayne et al., 2004) or cell culture 

(Monks et al., 2004).  Using these systems, the variation in mRNA expression measured 

by microarrays appears to be genetically based: it differs between inbred lines, is 

associated with QTLs and has narrow sense heritability (h2) greater than 30% (Cheung et 
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al., 2003b; Fu et al., 2009; Gibson, Weir, 2005; Rockman, Kruglyak, 2006; Sharma et al., 

2005; Tan et al., 2005).  Heritability of mRNA expression has been measured in a variety 

of organisms.  For example, in ten lines of Drosophila, 663 of 7886 measured genes (8%) 

had significant genetic variation with a medium h2 = 0.47 (quartile range 0.39-0.60) 

(Wayne et al., 2004).  Among 112 Sacchoromyces cerevisiae segregants, 3,546 out of 

5,727 measured genes (62%) had a h2 > 0.69 (Brem, Kruglyak, 2005).  Using 

lymphoblast human cell lines, among 15 families, 762 out of 2,430 (31%) of 

differentially expressed genes had a significant h2 with median of 0.34 (Monks et al., 

2004; Williams et al., 2007).  Thus, it appears that much of the variation in gene 

expression has a substantial genetic component. 

 These studies on inbred lines or cell culture are informative and they provide the 

foundation for understanding mRNA expression in outbred species.  For humans, twin-

studies (Sharma et al., 2005; Tan et al., 2005) and replicate measures of the same 

individuals over time (Cobb et al., 2005; Eady et al., 2005; Radich et al., 2004; Whitney 

et al., 2003) suggest a strong genetic component to the natural variation in mRNA 

expression.  For natural populations of Fundulus heteroclitus, it is unclear if differences 

within and among populations (Crawford, Oleksiak, 2007; Oleksiak et al., 2002; 

Oleksiak et al., 2005; Whitehead, Crawford, 2006a) are a function of genetic variation or 

other less evolutionarily important parameters.  The data presented here supports the 

hypothesis that much of the variation in mRNA expression is a function of genetic 

variation.   

 The genetic variation based on microsatellite markers in F. heteroclitus from a 

single North Carolina population is greater in the outbred groups (acclimated and field) 
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than in the G10 individuals (Fig. 3.1).  Among G10 individuals they have half the allelic 

richness and 75% of the heterozygosity of the outbred group.  Additionally, the 

relatedness among G10 individuals is nearly equal to full sibs (R = 0.43) but among 

outbred individuals the relatedness is not different from zero.  The reduced genetic 

variation is expected in the G10 individuals because they originated from fewer than 16 

individuals and were interbred for ten generations; whereas the field caught individuals 

have effective population sizes that exceed 105 (Adams et al., 2006).  The only measure 

of genetic variation that is not different for G10 is FIS where FIS is the fixation index 

relative to individuals within a subpopulation or group.  The lack of a difference in FIS is 

reasonable because each generation of siblings of the G10 group was allowed to breed 

randomly which allowed for the re-establishment of Hardy-Weinburg equilibrium (Table 

3.2). 

 Among G10 individuals there is also a lower variation in mRNA expression 

relative to acclimated individuals: fewer genes have significant differences in mRNA 

expression among individuals (Table 3.3, Fig. 3.2 and 3.3), and the mean variance across 

all genes is significantly less.  Additionally when examining the gene specific variation in 

mRNA expression, 22 genes have significant difference in the variation between 

individuals (within a group) and for 77% of these genes the variations in mRNA 

expression are lower in G10 than in acclimated individuals.  These differences are found 

among individuals raised or acclimated to laboratory environment with constant food, 

salinity, temperature, oxygen and lack of predators.  These data support the supposition 

that outbred, acclimated individuals have greater variation in mRNA expression than the 

inbred G10 individuals even though both groups share a common, stable environment.   
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  Among outbred individuals (Acclimated and Field) there are also differences in 

the variation in mRNA expression: acclimated individuals had more genes with 

significant differences in mRNA expression (107 vs. 97) and greater variation in mRNA 

expression across all 284 genes.  However, for genes with a significant difference in the 

variation in expression, 50% are larger in acclimated individuals and thus for these 22 

genes there is no significant difference between the field and acclimated groups in the 

frequency of genes with significant variation in mRNA expression.  These data indicate 

that acclimated individuals have greater or nearly equal variation as field individuals.  

Thus, these data support a surprising conclusion: the environmental variation in the field 

(tidal changes, spatial and temporal changes in salinity, food availability, oxygen, etc.  

(Marshall, 2003; Marshall et al., 2005) does not appear to have a major affect on the 

variation in gene expression in this particular investigation.   

 Among the three groups (Acclimated, Field and G10) there are few statistically 

significant differences in expression: seven genes with a critical p-value of 1% (no genes 

with Bonferroni’s corrected p-value).  For all differences that do exist, these differences 

in expression are only significant between G10 and the two outbred groups (Fig. 3.4).  

We could not resolve what environmental factors might be held in common between the 

field and acclimated groups that could explain this observation.  Alternatively, if much of 

the variation in mRNA expression is genetically based, as suggested by the correlation 

between genetic variation and the variation in expression, then one would speculate that 

the G10 individuals have different or less frequent genotypes that affect the expression of 

these seven mRNAs.  This difference is most parsimoniously explained by random 

genetic drift due to a recent bottleneck caused by the successive breeding of the G10 
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individuals over ten generations.  These patterns of variation in mRNA expression in 

acclimated, field and G10 individuals are consistent with the hypothesis that much of the 

variation among individuals is due to genetic variation.  Specifically, there are fewer 

differences among G10 individuals that share 43% of their alleles versus completely 

outbred individuals (acclimated) even though both were subjected to similar laboratory 

conditions for at least six months.    

 We found little support for environmental affects on mRNA expression: 

acclimated individuals versus field individuals, that suffer the daily inundation of 

environmental variation associated with estuarine environments, have equal or more 

variation in mRNA expression.  Added to these observations is the fact that there is little 

significant variation in mRNA expression when the same individual is repetitively 

measured over a six-week period (i.e. mRNA expression from blood sample every 2 

weeks over six-week period; (Scott et al., 2009).  Together, these data strongly support 

the hypothesis that the large inter-individual variation in gene expression measured here 

and elsewhere (Crawford, Oleksiak, 2007; Oleksiak et al., 2002; Oleksiak, Crawford, 

2006; Oleksiak et al., 2005; Whitehead, Crawford, 2005; Whitehead, Crawford, 2006a) is 

unlikely to reflect large environmental differences and is more reasonably assigned to 

genetic variation. 

 One of the assumptions in this work is that acclimation removes most, if not all, 

of the physiological differences among individuals.  Clearly, acclimation to a common 

environment can remove many physiological differences especially differences in 

enzyme expression (Crawford, Powers, 1989; Hochachka, Somero, 1984; Pierce, 

Crawford, 1997; Prosser, 1986; Schmidt-Neilsen, 1990; Segal, Crawford, 1994).  
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However, these observations do not refute that other non-heritable mechanisms can effect 

mRNA expression.  For example in clones of sea anemones, metabolic rates are not 

affected by acclimation to a common temperature.  Instead metabolisms among 

genetically identical individuals reflect an individual’s developmental temperature.  

Similarly, the maximum expression of heat shock proteins in sea urchins 

(Strongylocentrotus purpuratus) was unaffected by acclimation temperatures, but 

appeared to be influenced by irreversible acclimation at early life stages (Osovitz, 

Hofmann, 2005).  Additionally, an individual’s phenotype can be influenced by maternal 

and other epigenetic effects.  Thus, one could suggest that the G10 individuals whose 

parents all experienced the same environment, affected mRNA expression differently 

than acclimated individuals whose parents experience a wide range of environments.  

However, there are few differences in expression among G10, acclimated or field 

individuals.  Thus, epigenetic effects causing a difference in gene expression are not 

supported.   

 Alternatively, one could suggest that the variation in mRNA expression (but not a 

difference in the mean expression) is related to the environmental variation experienced 

by the parents or the developing embryo.  That is, the more variable the paternal or 

developmental environment, the greater variation there is in mRNA expression.  To test 

the hypothesis that variation in gene expression is related to the environmental variance 

experienced by the parent or developing embryo, gene expression could be measured at 

various time points during the growth of embryos.  However, to explain most of the data, 

the hypothesis that the variation in expression is a function of parental or developmental 

environmental variation would require that greater environmental variation produce many 
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different adult phenotypes and thus have a greater variation in mRNA expression.  This 

hypothesis is unlike any currently available data, and cannot be readily rejected.  Other 

genes may not adhere to this conclusion, however, it seems more prudent to suggest that 

the larger inter-individual variation in mRNA expression is related to genetic variation, 

rather than a novel epigenetic mechanism that does not affect the mean mRNA 

expression but instead creates greater individual variation.    

 To summarize: our data support the hypothesis that variation in mRNA 

expression is primarily related to the genetic variation among individuals.  For G10 

individuals, high amounts of relatedness and low levels of allelic richness are associated 

with less variation in mRNA expression.  Surprisingly, the variation in mRNA expression 

is either greater or at the very least similar among field and acclimated individuals.  

These data indicate that for the genes examined in this analysis, much of the variation in 

mRNA expression is related to genetic variation and less of the variation is in response to 

environmental change. 
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Table 3.1  384 Microarray Metabolic Pathways 
 
 
Amino acid metabolism 28 
ATP synthesis 27 
Blood group glycolipid biosynthesis 3 
Channel 3 
Citrate cycle (TCA cycle) 24 
Fatty acid metabolism/transport 36 
Fructose and mannose metabolism 4 
Galactose metabolism 2 
Glutamate metabolism 7 
Glutathione metabolism 10 
Glycerolipid metabolism 7 
Glycolysis / Gluconeogenesis 27 
Inositol phosphate metabolism 14 
Ox-Phos-ATPsyn 64 
Pentose phosphate pathway 6 
Purine & Pyrimidine metabolism 9 
Pyruvate metabolism 2 
Signaling 10 
Starch and sucrose metabolism 2 
Sterol biosynthesis 8 
Synthesis and degrad. of ketone bodies 4 
Tetrachloroethene degradation 3 
Secondary 27 
TOTAL METABOLIC GENES 329 
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t.  

10 10 0 

 
 
 
 
 
 
 
 
 
Table 3.2.  Genetic diversity values for laboratory bred (G10) individuals (n = 49) and 
field caught individuals (F) (n = 109).  AR - allelic richness corrected for a sample size of 
49 individuals, HO - observed heterozygosity, HE – expected heterozygosity, and FIS – 
the inbreeding coefficien
 

Locus AR G AR F 
HO 
G10 HO F HE G HE F FIS G1 FIS F 

ATG-18 3.98 6.73 0.24 0.55 0.24 0.53 -0.02 -0.03 
ATG-20 3.00 8.89 0.63 0.73 0.62 0.72 -0.02 -0.03 
ATG-25 5.00 9.95 0.76 0.83 0.74 0.83 -0.02 0.00 
ATG-6 2.98 5.29 0.55 0.64 0.44 0.64 -0.25 0.00 
ATG-B4 5.00 19.79 0.57 0.88 0.53 0.91 -0.08 0.03 
ATG-B128 3.00 7.79 0.59 0.69 0.51 0.75 -0.17 0.09 
ATG-C1 4.96 11.38 0.47 0.83 0.57 0.78 0.17 -0.06 
CA-1 6.96 12.91 0.90 0.78 0.78 0.77 -0.15 -0.01 
CA-21 4.00 22.18 0.46 0.93 0.48 0.93 0.04 0.01 
CA-A3 6.00 30.36 0.76 0.97 0.72 0.96 -0.05 -0.01 
Average ±  

0.43 
 ± 

2.55 
 

0.06 
 

0.04 
 

0.05 
 

0.04 
± 

0.04 
 

0.01 SE 
4.49 ± 13.53 0.59 ± 0.78 ± 0.56 ± 0.78 ± -0.06 0.00 ±
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Table 3.3  Number of Genes with Significantly Different mRNA Expression. 
Significantly different number of genes among all individuals without regard to group 
(All) and for acclimated (Acc), Field (Fld), and G10 groups.  Average number of 
significant genes and 95% confidence intervals for all possible 126 combinations of 5 out 
of 9 individuals. 

 
 

 
Number of Significant Genes for each 

Group 
 Across All Acc Fld G10 

p <0.01 281 107 97 66 
Avg. # for 5 out of 9 

combinations  88 81 41 
95% CI  90-86 87-75 45-37 
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Table 3.4.  Homogeneity of Variance. Number of genes with unequal variances 
(Bartlett’s test for homogeneity of variance). 
 
 

 Total Acc > G10 Fld> G10 Acc>Fld 
Acc & Fld > 

G10 
Number of 

Genes 284 210 154 184 131 
Number 

Significant 
Genes 22 17 13 11 11 
% of 

Significant 
Genes 100.0% 77.3% 59.1% 50.0% 50.0% 
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Figure 3.1.  Average proportion of shared alleles within groups.  Proportion of shared alleles 
is shown for inbred (G10), outbred acclimated (Acclimated), and outbred field (Field) 
groups.  Numbers in parentheses are the number of pairwise comparisons in each group.  
Vertical lines with ellipses are 95% bootstrapped confidence intervals around each 
calculated mean value.  Striped horizontal lines are the 95% confidence intervals around the 
random expectation calculated by permuting individuals between groups.  G10 differ 
significantly at p=0.001.  
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Figure 3.2.  Heat maps of individual gene expression.  Clustering is based on the 
correlations of least square means relative to the gene specific means.  A. Relative 
expression among all individuals ignoring groups. B.  Relative expression within each 
group. 
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Figure 3.3  Volcano plots among three individuals within each group. Negative log10 p-
values (e.g. p-value of 0.01 = 2) versus the difference of log2 expression values (difference of 
1 = two-fold). Three of the possible 36 possible comparisons within each treatment are 
displayed. The differences among three representative individuals are displayed for 
acclimated, field and G10 groups (1-2, 2-3 & 1-3). Notice the axes are different for each 
different comparison. 
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Figure 3.4.  Differences Among Groups.  Among any pair of groups there are ten 
genes that are significantly different (p-value < 0.01). A. Volcano plots of log2 
differences in expression versus the negative log10 of p-value (2 = 0.01).   B.  Heat 
map of patterns of gene expression.  Acc = acclimated, Fld = field and G10 = inbred 
population.  

 



CHAPTER 4: THE HERITABILITY OF THE VARIATION IN GENE 
EXPRESSION IN FUNDULUS HETEROCLITUS  
 
Background 
 
 Understanding the genetic basis of mRNA expression is important for 

understanding health and disease and the role of evolutionary adaptation in shaping 

patterns of gene expression.  Though environmental contributions to gene expression may 

be important, it is the genetic component of the variation in gene expression that helps 

address questions pertaining to natural selection and evolution.  Variation in the 

expression of genes is environmentally influenced, genetically determined or a 

combination of both.  The ability to partition this variance is of interest as differential 

mRNA expression can discern the heritable components of variance and with further 

study, uncover whether the determinants of heritable variation are cis or trans acting 

(Petretto et al., 2006; Schadt et al., 2003; Yvert et al., 2003).   By treating each cDNA on 

a microarray as an independent quantitative trait, heritability in a variety of organisms 

including yeast, humans, mice and Drosophila has been estimated (Brem et al., 2002; 

Cheung et al., 2003a; Schadt et al., 2003). 

 Heritability (h2 or H2) is the ratio of additive genetic variance to phenotypic 

variance (VA/VP) or the amount of phenotypic variation that is attributed to genetic 

differences.  The concept was first put forth by two evolutionary theorists with competing 

views on the estimation of heritability.  Sewall Wright (1917) used correlation and 

regression of parents on offspring to estimate heritability while R.A. Fisher (1918) used 

analysis of variance (ANOVA) to partition the components of variance (Dempster, 

Lerner, 1950).  Since then, estimates of heritability using both methods have been used to 

understand stature in man, milk-yield in cows, litter size in pigs, egg production in 

67 
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poultry, body weight in mice, abdominal bristle number in Drosophila melanogaster, 

immune response to diphtheria-tetanus vaccine in blue tits and radiosensitivity of human 

lymphocytes which are used to determine cancer susceptibility (Barker, Robertson, 1966; 

Clayton et al., 1957; Emsley et al., 1977; Falconer, Mackay, 1996; Finnon et al., 2008; 

Raberg et al., 2003; Roberts et al., 1978; Rutledge et al., 1973; Strang, Smith, 1979).  

Just as the ability to compartmentalize genetic variance has helped breeders and farmers 

select for the most productive individuals via estimates of heritability, so too has the 

ability to use thousands of cDNAs as independent traits enabled scientists to understand 

differential gene expression and its genetic components (Cheung et al., 2003a; Schadt et 

al., 2003; Schena et al., 1995).  Rather than measuring heritability for only a single 

quantitative trait, such as fur coat or quality in silver foxes, microarrays provide 

thousands of readily observable quantitative traits on a single glass slide (Wierzbicki et 

al., 2004).  In other words, gene expression can be used as a quantitative trait.  

Microarrays have therefore greatly broadened the concept of heritability by using each 

gene as a quantitative trait to estimate heritability. 

 The heritability of quantitative traits, such as cDNA microarray measures, has 

been documented in studies using yeast, drosophila and humans (Brem et al., 2002; 

Monks et al., 2004; Wayne et al., 2004).  In human lymphoblast cell lines, 31% of 2,430 

differentially expressed genes among 15 families had a significant heritability with a 

median estimate of 0.34 (Monks et al., 2004).   In yeast, 3,546 out of 5,727 (62%) 

differentially expressed genes measured among 112 Sacchoromyces cerevisiae 

segregants, had h2 > 0.69 (Wayne et al., 2004).  Furthermore, a study looking at the 

heritability of gene expression in ten lines of Drosophila simulans found that 8% (663 / 
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7886) of differentially expressed genes had a median heritability of 0.34 (Brem et al., 

2002).  These studies provide important information regarding the genetic basis of gene 

expression.  It is evident that genetic estimates of gene expression greatly vary depending 

on the size of the study and the environment in which heritability is estimated.  An 

estimate of heritability is only applicable for a particular population, in a specific 

environment and at a certain point in time.  However, estimating heritability remains a 

worthwhile endeavor as it provides a foundation for understanding evolved differences in 

gene expression among individuals.    

 In Fundulus heteroclitus, approximately 18% (161/907 genes) of gene expression 

has been shown to be statistically different between individuals from the same population 

(Oleksiak et al., 2002).  A later study found that 94% (112/119 genes) of cardiac 

metabolic gene expression is significantly different among individuals within a 

population (Oleksiak et al., 2005).  This is a large amount of variation, however it is 

unknown whether the observed differences between individuals are genetic or if they are 

caused by environmental factors.  Determination of the evolutionary significance of this 

large variation in gene expression requires an understanding of whether this variation is 

primarily due to genetic or environmental factors.   

 The goal of this chapter is to estimate the heritability of gene expression in F. 

heteroclitus.  Estimation of heritability uses two methods; 1) regression analysis and 2) 

components of variance analysis.  This study provides the first known estimates of 

heritability in metabolic gene expression for F. heteroclitus.    
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Methods and Materials 
 
Organism 
 
Fundulus heteroclitus were caught from wild populations in Stone Harbor, New Jersey, 

USA (39° 3' 3" N, 74° 45' 29" W) by baiting commercially available minnow traps with 

dry dog food in May, 2007.  Upon capture in the field, males and females were sorted 

into separate bins for ease in the pairing of males and females for breeding.  Gravid 

females and males exhibiting mating color (bright yellow) were paired together for a total 

of sixty breeding pairs.  Eggs were physically expelled from females and placed onto 

moist paper towels in Petri dishes.  The male from each breeding pair was then milted 

and the sperm was dispersed over the eggs of the respective female.   The sixty 

breeding pairs and fertilized eggs were transported to the University of Miami’s 

Rosenstiel School of Marine and Atmospheric Science (RSMAS). The adult breeding 

pairs were acclimated to 20ºC and 15 ppt artificial seawater in laboratory aquaria at 

RSMAS for approximately 2 months (Instant Ocean, Inc.).  Adult pairs were sacrificed 

for their hearts which were then stored in 1 ml RNAlater (Ambion, Inc.) for future use in 

microarray experiments.  Fertilized eggs were hatched approximately two weeks after 

fertilization by submersing the eggs in 15 ppt artificial seawater and applying a flow of 

air bubbles for approximately 5 minutes.  The fish larvae from each breeding pair were 

placed in separate aquaria and allowed to grow for approximately 5 months.  The 

juveniles were then moved to a re-circulating aquarium system where all individuals 

shared a common aqueous environment for approximately 6 months.  F1 individuals from 

each breeding pair were sacrificed for their hearts which were placed in 1 ml RNAlater 
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(Ambion, Inc.) for use in microarray experiments.  Thirteen  of the sixty breeding pairs 

and their offspring were used for heritability studies.  

 

Genotyping-Confirmation of Unique Families 

 To confirm the relationship of siblings to parents, all F1 individuals from each of 

the 13 breeding pairs were genotyped at 4 microsatellite loci for F. heteroclitus (Adams 

et al., 2005).  DNA was extracted from dried fin clips for all adults and all F1 individuals.  

The tissue was placed in 300 µL lysis buffer (75 mM NaCl, 25mM EDTA, 1%SDS) and 

incubated with 0.1 mg Proteinase K at 55ºC for 2 hours.  Proteins were precipitated by 

adding a half volume of 7.5 M ammonium acetate and centrifugation at 16,000 g for 10 

minutes at room temperature.  DNA was precipitated from the supernatant by adding 0.7 

volumes of isopropanol and centrifugation at 16,000 g for 15 minutes at room 

temperature.  The DNA pellet was washed with 70% ethanol then allowed to air dry for 

30 minutes followed by re-suspension in 50 µL 10 mM Tris-HCl pH 8.5. 

 Microsatellite loci were amplified using fluorescently labeled primers containing 

the following final concentrations: 1- 0.10 μM ATG-B4, 2- 0.50 μM ATG-20, 3- 0.07 μM 

ATG-25, 4- 0.07 μM ATG-6 (Adams et al., 2005).  The 10 µL PCR reactions contained 

2.5 mM MgCl2, 1X PCR buffer (500mM Tris-HCl, pH 9.2, 160mM (NH4)2SO4, 22.5 

mM MgCl2, 20% (v/v) DMSO, 1% (v/v) Tween T 20, water to 10 ml volume), 0.2 

dNTPs, 0.4 units Taq DNA polymerase (Promega), 50 ng DNA, and one of the four 

primers (see above for concentrations).  The PCR thermal cycling profile consisted of 

94ºC for 2 minutes, followed by 31 cycles of 94ºC for 15 seconds, 55ºC (ATG-25, ATG-

20, ATG-6) or 50ºC (ATG-B4) for 15 seconds, and 72ºC for 30 seconds, ending with a 5 

mM 
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minute extension step at 72ºC.  Following PCR amplification, the products from reactions 

1 and 3, and the products from reactions 2 and 4 were diluted with 50 µl and 20µl of 

distilled water, respectively.  Products from reactions 1 and 2 and products from reactions 

3 and 4 were then co-loaded before electrophoresis on an ABI 3730XL Genetic Analyzer 

(Applied Biosystems).  GENEMAPPER v4.0 (Applied Biosystems) was used to score the 

genotypes. 

RNA isolation, labeling and hybridization 

 Total RNA was isolated from adult breeding pairs and F1 offspring using 4.5M 

guanidinium thiocyanate, 2% N-lauroylsarcosine, 50 mM EDTA, 25 mM Tris-HCl, 0.1M 

β-Mercaptoethanol and 0.2% Antifoam A (Sigma).  The extracted RNA was further 

purified using RNAClean in accordance with the manufacturer’s protocols (Agencourt).  

The quantity and quality of the RNA was determined using a spectrophotometer 

(Nanodrop, ND-1000 V3.2.1) and a bioanalyzer (Agilent 2100).  RNA was then 

converted into amino allyl labeled RNA (aRNA) using the Ambion Amino Allyl 

MessageAmp II aRNA Amplification kit.  This method converts poly-A RNA into cDNA 

with a T7 RNA polymerase binding site, and T7 is used to synthesize many new strands 

of RNA (in vitro transcription) (Eberwine, 1996).  During this in vitro transcription of 

aRNA, an amino allyl UTP (aaUTP) is incorporated into the elongating strand.  aaUTP 

incorporation allows for the coupling of Cy3 or Cy5 dyes (GE biosciences) onto aRNA 

for microarray hybridization. 

 Dye labeled aRNA aliquots for each hybridization (30 pmol each of Cy3 and 

Cy5) were ethanol precipitated in the presence of 10µg µl-1 of herring sperm and -20ºC 

overnight.  After centrifugation at 16,000 g at 4ºC, the pellets were re-suspended in 10 μl 
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of hybridization buffer (final concentration of each labeled sample = 2 pmol μl-1).  

Hybridization buffer consisted of 5X SSPE, 1% SDS, 50% formamide, 1mg ml-1 polyA, 

1mg ml-1 sheared herring sperm carrier DNA, and 1mg ml-1 BSA.  Microarray slides 

were first blocked with 5% ethanolamine, 100mM Tris pH 7.8 and 0.1% SDS for 30 

minutes at room temperature.  After blocking, slides were washed with 4X SSC and 0.1% 

SDS at 50ºC for 60 minutes.  Following rinsing, slides were boiled for 2 minutes and 

spin-dried in a centrifuge at 14 g for 3 minutes at room temperature.  Samples (10 μl) 

were heated to 90ºC for 2 minutes, quick cooled to 42ºC, applied to the slide 

(hybridization zone area was 10 mm x 20 mm), and covered with a cover slip.  

Microarray slides were placed in an airtight chamber humidified with paper soaked in 5X 

SSPE and incubated for 48 hours at 42ºC.  

Microarrays 

 The amount of gene specific mRNA expression was measured using Fundulus 

heteroclitus microarrays (Paschall, et al.; Oleksiak 2002, 2005, Crawford & Oleksiak, 

2007).  Microarrays were printed using 384 cDNAs which encode essential proteins for 

cellular metabolism and include 12 controls (genomic DNA and cDNA from a 

Ctenophore library with no known similarity to any vertebrate gene).  All ESTs with 

enzyme commission numbers or associated with central metabolic pathways from a F. 

heteroclitus EST collection of over 42,000 expressed sequences were included on the 

array (Paschall et al., 2004).  The approximate average length for the printed cDNAs is 

1.5 Kb.  These cDNAs were amplified with amine-linked primers and printed on epoxide 

slides (Corning) at the University of Miami core microarray facility using inkjet 

technology (ArrayJet printer).  Each glass slide had six separate hybridization zones (six 
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arrays) and each array had three spatially separated replicates per gene.  The experimental 

design used a loop pattern for hybridization of samples to the microarray (as opposed to 

reference design, (Kerr, Churchill, 2001)).   

 Dye coupled aRNA from adult breeding pairs were hybridized to slides using a 

single loop; the adult breeding pair loop includes 19 individuals as follows; 5M 7F 

53M 2F 39M 55F 9M 37F 5F 39F 45F 2M  4F 23M 3F 

7M 32F 3M 9M 5M.  Each arrow represents a single hybridization between the 

individual labeled with Cy5 at the head of the arrow and the individual labeled with Cy3 

at the tail of the arrow. The number represents the family and the letter represents either 

male (M) or female (F).  Note that due to the loss of several adults prior to sacrificing the 

fish for the extraction of hearts, only 19 of the 26 individuals from the breeding pairs 

were hybridized.  

 The F1 individuals from each breeding pair (128 individuals) were hybridized to a 

total of 20 slides encompassing 118 microarrays.  Due to the loss of some cy3 samples 

and some cy5 samples, one large loop was used along with pairings of individuals with 

only cy3 or cy5 samples (118 individuals); 53-12 5-3 37-6 45-3 7-5 55-18 

53-17 9-8 55-4 53-22 9-24 7-1 2-14 53-2 55-19 37-9 2-9 32-2 

 39-10 37-1 2-1 5-5 4-4 45-15 53-21 55-5 4-2 7-6 55-21 2-

8 45-11 4-6 2-2 53-15 45-1 9-22 55-3 4-13 23-10 37-11 45-

12 55-10 7-4 32-3 4-10 45-4 2-7 37-8 5-6  9-7 55-9 3-1 7-

16 55-11 45-2 53-14 5-4 39-9 5-9 7-19 53-24 55-15 5-8 9-

23 7-7 3-14 53-3 2-4 7-15 45-8 9-9 4-15  45-5 53-13 37-10 

4-3 32-19 39-6 5-11 3-5 7-14 45-7 39-5, 53-4 32-1  3-8  53-10 
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5-10 53-11 45-17 55-6  53-16 3-2 5-14 55-17 7-17 32-14  37-7 

45-14 7-3 32-18 45-10 53-5  4-11 7-8 23-4 9-21 32-20 53-12, 2-

15 3-3, 23-3 9-2, 5-2 23-12, 55-20 4-5, 7-18 39-12, 9-1 2-10, 9-1037-15,  

9-20 2-3, 9-4 23-5, 9-5 32-10.  Each arrow represents a single hybridization 

between the individual labeled with Cy3 at the head of the arrow and the individual 

labeled with Cy5 at the tail of the arrow.  The first number represents the family 

(breeding pair number) and the second number is the F1 individual’s number.  The 

microarray slides were scanned using ScanArray Express.  The raw TIFF-image data was 

quantified using Imagene (v5).  Control genes (Ctenophore negative controls) were 

eliminated from the analysis.  Of the 384 genes printed on each microarray, 363 genes 

were included in the analysis for each individual for both the breeding pairs and F1 

individuals.  

Statistics 

 Statistical analyses of the mRNA expression data were carried out using SAS 

JMP genomics (SAS JMP Genomics v.7.02).  Gene expression data for parents and 

offspring were first log2 transformed and then subject to loess normalization (Figure 1).  

The log2, loessed data were fit to a gene-by-gene mixed model ANOVA;  

yijk= µ +Ai+Dj+Ik+(AD)ij+ ε ijk               (2) 

where yijk represents the fluorescence intensities on a log scale pertaining to the kth 

biological sample hybridized to the ith array and labeled with jth dye and µ is a constant 

(Wolfinger et al., 2001).  The term Ik is a fixed effect where I is treatment or individual 

effect.  The terms Dj, Ai, (AD)ij, and ε ijk are random effects where A represents array

effects, D represents dye effect, (AD)

 

 represents array by dye interactions and εijk are 
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random residual terms.  The PROC Mixed statement was as follows: class Array Dye 

Individual Slide Family; model response= Individual; random Dye Array Dye*Array; 

lsmeans Individual.  All analyses used the least squares means (LSmeans) from a mixed 

model analysis with Individuals (ignoring Family) as fixed effect and Array, Dye and 

Array*Dye as random effects.  Two sets of analyses were performed to determine the 

heritability of gene expression.  One set of analyses used regression based methods to 

determine heritability and the second set of analyses used analysis of variance to 

determine heritability, based on the calculation of the components of variance.  

 An ANOVA was used to determine the statistical significance of the variance 

among families.  The LSmeans from the gene-by-gene mixed model were then used in a 

one-way ANOVA, where variance among families and F1s were the numerator and 

denominator, respectively to calculate the F-statistic.  The following model, ym= µ + Fm+ 

εm where ym represents the fluorescence intensities on a log scale pertaining to the mth 

biological sample and µ is a constant.  The term Fm is a fixed effect where F represents 

families and the term ε represents random residual terms.  The LSmeans family-based 

partitioning of variances provides broad (H2) estimates of the genetic variation (VG/VT) 

for gene expression among all siblings. 

 The variance for each gene from the ANOVA model was used as an estimate of 

the heritable variation for gene expression among all siblings.  The calculation for 

heritability is the family variance divided by the total calculated variance (VG/VT) 

(Falconer, Mackay, 1996).  To estimate heritability, the mean square values for each gene 

from the one-way ANOVA were calculated.  The following equations were used to 

calculate each component of variance:  σF
2 = (MSF-MSI)/(K1), σI

2
 = MSI,  σT

2 = σF
2 + 
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σI
2 = (MSF-MSI)/(K1) + MSI, where σF

2 represents the family component of variance 

(variance among families), MSF represents the mean squares for the families, σI
2 

represents the component of variance for all F1 individuals (siblings), MSI represents the 

mean squares for the siblings, σT
2 represents the total component of variance and K1 is a 

coefficient.  Mean squares were calculated by dividing the sums of squares for families 

by the degrees of freedom for families and by dividing the sums of squares for siblings by 

the degrees of freedom for siblings.  The coefficient, K1, was calculated as follows for 

families with an unequal number of individuals per family: K1= 1/(S-1) * [N-(Σni
2/N)], 

where S represents the total number of families, N represents the total number of 

individuals and Σni
2 is the sum of all of the squares for the number of individuals per 

family (Shuster, 2006).  For the sibling analysis, a total of 13 families (13 groups of F1 

individuals each with different parents) were used with numbers of individuals per family

ranging in size; family 2 (9), family 3 (6), family 4 (9), family 5 (7), family 7 (13), family

9 (8), family 23 (4), family 32 (7), family 37 (7), family 39 (4), family 45 (16), family 5

(15), family 55 (13); the number in parentheses are the number of individuals belonging 

to the family.  A total of 118 individuals were used in the analysis and the value o

8.944.   Finally, heritability was calculated by dividing the family variance compon

the total variance component and multiplying by 2; h

 

 

3 

f K1 is 

ent by 

h2 is the 2 = 2*( σF
2 )/( σT

2 ), where 

heritability of gene expression among all siblings. 

 The LSmeans for each gene for siblings and parents were used for the regression 

analysis to estimate heritability.  For all midparent-offspring regression analyses, the 

slope of the regression was recorded as the value for heritability (Falconer, Mackay, 

1996).  In addition to midparent-offspring regression analyses, the LSmeans of the female 
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parents from 11 families and the male parents from 8 families were regressed against 

their respective offspring’s LSmeans expression values.  For female-offspring and male-

offspring regression analyses, the slope of the line was multiplied by 2 to obtain the value 

for the heritability of gene expression.  Multiplication of the slope by two is necessary 

because siblings have half of the genetic information from each parent.  For offspring 

regressed to a single parent, b=1/2 h2 where b is the slope of the line or regression and h2 

is the narrow-sense heritability (Falconer, Mackay, 1996). 

Additional Analyses 

 In addition to estimating broad and narrow sense heritability, the variation in gene 

expression among parents (19 individuals) was examined using ANOVA.  Furthermore, 

to determine whether differences in age cause significant differences between 

individuals, variation in gene expression was examined between two groups; parents (P) 

and offspring (S). 

Results 
 

 The expression of mRNA and genetic variation were measured for all parents and 

offspring.  Heritability was measured using two separate analyses: 1- Components of 

variance analysis and 2- Parent-offspring regression analyses. 

Components of Variance Analysis 

 Among all F1, 158 genes had significant variation in mRNA expression among 

individuals.  Of these 158 genes, there was a significant broad sense heritability (H2) 

determined for 14 genes (8.9%) (p ≤ 0.05).  The H2 values, based on full-sibs, ranged 

from .19 to .43 (Table 4.1).  The median heritability for the 14 genes is 0.25.  Figure 4.2 

provides a summary of the proportion of genes per estimate of H2 for the 158 
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differentially expressed genes.  The majority of these heritability estimates, 77.8% 

(122/158 genes), were less than or equal to 0.1 and only 1.3% (2/158 genes) of genes had 

heritability estimates greater than or equal to 0.4 (Figure 4.2).   

 Hierarchical clustering of the 13 families comprising all siblings revealed a 

correlation among families 2, 5, 23, 9, 3 and 39 and among families 4, 32, 7, 53, 37, 45 

and 55 (Figure 4.3).  The families that make up these two groups share patterns of mRNA 

expression for the 14 genes with significant heritability (Figure 4.3).  The hierarchical 

clustering of all individuals among the 13 families for the set of 158 differentially 

expressed genes showed that genes with shared patterns of expression can be grouped 

according to individuals in families that group together as seen in Figure 3 (Figure 4.4).   

Parent-Offspring Regression Analysis 

 Narrow sense heritability (h2) estimates were obtained by executing the following 

regressions: 1) mid-parent (average of the two parent’s LSmeans gene expression values) 

on offspring (6 families, 47 offspring), 2) male parent on offspring (8 families, 66 

offspring), and 3) female parent on offspring (11 families, 98 offspring).  Out of a total of 

363 genes, 200, 187 and 196 had positive slopes for the mid-parent on offspring, female 

parent on offspring and male parent on offspring regressions, respectively (Table 4.2).   

Of these genes with detectable heritability, 13 (6.5%), 5 (2.7%) and 12 (6.1%) genes had 

significant h2 at p ≤ 0.05 for the mid-parent, female and male regressions, respectively 

(Table 4.2). 

 The power to detect heritability at 0.4 for the three parent-offspring regressions 

are: 28.9% (mid-parent- offspring regression), 22.9% (male-offspring regression) and 

37.4% (female-offspring regression).  The mid-parent- offspring regression analysis had 
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the largest number of genes with significant heritability (13 genes) followed by the male-

offspring analysis (12 genes) and lastly, the female-offspring analysis (5 genes) (Table 

4.3).  For the set of genes with significant heritability, the median heritability estimates 

were quite high; .861 (mid-parent analysis), .729 (male parent analysis) and .875 (female 

parent analysis) (Table 4.3).  The gene, NADH-ubiquinone oxidoreductase chain 2, was 

the only gene found to have significant heritability in all three analyses (Table 4.3, Figure 

4.5).  Acetyl Co-A carboxylase 1, Heterogeneous nuclear ribonucleoprotein A/B, NADH-

ubiquinone oxidoreductase chain 2 and Nuclear factor erythroid 2 related factor, were 

found to have significant heritability in both the mid-parent- offspring and male-offspring 

regression analyses (Table 4.3, Figure 4.5).  Three genes were found to have a shared, 

significant heritability in both the female-offspring and mid-parent offspring analyses; 

Glutathione S-transferase, NADH-ubiquinone oxidoreductase chain 2 and NADH-

ubiquinone oxidoreductase chain 4 (Table 4.3, Figure 4.5).  There are no shared genes 

between the male-parent and female-parent on offspring regressions.  Figure 6 provides 

each of the significant regressions at p ≤ 0.05 for mid-parent (13), male (12) and female 

(5) versus offspring.  The parent LSmeans gene expression is represented on the x-axis 

and the offspring LSmeans gene expression is on the y-axis.  Confidence interval shading 

at 95% is in pink.  The standard errors for each gene are located in Table 4.3.  

 Although the regression analysis and the components of variance analysis use two 

very different approaches, the expectation is that those genes with highly significant, high 

heritability would overlap between the two approaches.  However, very few of the genes 

were found to overlap between the regression analysis and the components of variance 

analyses.  Only three genes overlapped between the two analyses; Heterogeneous nuclear 
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ribonucleoprotein A/B, Hypoxia-inducible factor 1 alpha and NADH-ubiquinone 

oxidoreductase chain 2 (Table 4.1 and Table 4.3).  These 3 genes were found to have 

rather low heritability in the components of variance analysis; Heterogeneous nuclear 

ribonucleoprotein A/B (H2=0.25), Hypoxia-inducible factor 1 alpha (H2=0.22) and 

NADH-ubiquinone oxidoreductase chain 2 (H2=0.21) (Table 4.1).  However, NADH-

ubiquinone oxidoreductase chain 2 had h2 of 0.92, 0.95 and 0.92 in the mid-parent, male 

parent and female parent versus offspring regression analysis, respectively (Table 4.3).  

Heterogeneous nuclear ribonucleoprotein A/B had h2 of 0.9 and 0.72 for the mid-parent 

and male parent versus offspring regressions, respectively (Table 4.3).  Finally, Hypoxia-

inducible factor 1 alpha, was found to have a significant heritability in the male-offspring 

regression analysis of 4.84 (standard error 0.95) (Table 4.3).  This is an extremely high 

estimate of heritability and is also beyond the normal values for heritability which range 

from 0.0-1.0. 

Additional Analyses 

 In addition to estimating broad and narrow sense heritability, the variation in gene 

expression among parents (19 individuals) was examined.  Statistically significant 

differences in expression between adults (parents) for 38% of 363 genes were observed at 

p ≤ 0.05.  To determine whether differences in age cause significant differences between 

individuals, variation in gene expression was examined between two groups; parents (P) 

and offspring (S).  The 19 parents were compared to the 118 offspring using age and of 

363 genes 167 (46%) were differentially expressed. 
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Discussion 
 
 The majority of our understanding of the genetics of mRNA expression has relied 

on the study of inbred strains (Gibson, Weir, 2005; Schadt et al., 2003; Wayne et al., 

2004) or cell culture (Monks et al., 2004).  Though heritability has been measured in a 

variety of organisms, the genetic basis for the variation in mRNA expression among 

natural populations, including F. heteroclitus, is not well understood.  Estimates of 

heritability using inbred strains or cell culture are often criticized for being inflated in 

comparison to heritability estimated from natural populations due to differences in 

environmental heterogeneity (Astles et al., 2006; Hoffmann, Merila, 1999; Weigensberg, 

Roff, 1996).  Therefore, studies of heritability using natural populations are preferred to 

those carried out in the laboratory.  Care should be taken when estimating heritability as 

the methods used to measure genetic correlations (components of variance analysis using 

ANOVA or regression of gene expression means of parents on offspring) each have 

inherent weaknesses.  These weaknesses include, but are not limited to, the power to 

detect heritability and the possibility of obtaining negative estimates or zero values for 

components of variance (Windig, 1997).  These factors can influence the heritability 

estimation, thereby decreasing the significance of the findings for natural populations 

(Hoffmann, Merila, 1999; Windig, 1997).  However, with appropriate experimental 

design, heritability estimates can be successfully measured.  Despite these problems, 

estimates of heritability were successfully obtained for F. heteroclitus. 

 The data presented here suggest that there is a significant heritability for variation 

in mRNA expression in Fundulus heteroclitus.  Heritability as estimated from parent on 

offspring regressions and components of variance analysis provide similar percentages of 
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genes with significant heritability.  The relatedness of individuals from the same family 

in the full-sib components of variance analysis was assumed to add a significant amount 

to the genetic component of gene expression.  However, of the 158 differentially 

expressed genes from this analysis, 8.9% are heritable with a median H2 value of 0.25 

when p ≤ 0.05 (Table 4.1).  Broad sense heritability is the genetic variance divided by the 

phenotypic variance (VG /VP).  VG includes one-half additive genetic variance (VA) for

full siblings plus some epistatic effects (epistatic effects are assumed to be small, if any).  

However, dominance variance (V

 

D) and maternal effects were not measured and 

therefore were not included as variance components because this confounds the true 

value of VG.  Therefore, broad sense rather than narrow sense heritability is estimated for 

the full-sibling analysis. 

 In contrast, narrow-sense heritability estimates from the regression analyses found 

that of the genes detected to have a positive slope, 6.5%, 2.7% and 6.1% were heritable 

for the mid-parent, female and male on offspring regressions, respectively (Table 4.2).  

The mid-parent- offspring regression estimates of heritability had the greatest percentage 

of genes (6.5%) with significant heritability where the median h2 = 0.86 ± 0.19 (Table 

4.3).  This is similar to results found in Drosophila where 8.4% of differentially 

expressed genes had a median h2 of 0.47 (Wayne et al., 2004).  Of the three regression 

analyses, the mid-parent on offspring analysis is the most powerful as the expression 

values for both parents are represented in the regression.   

 Understanding the inherent difficulties of using a particular method with a 

particular experimental design can help to evaluate any introduced bias (Hoffmann, 

Merila, 1999; Windig, 1997).  Regression of mid-parent lsmeans expression on offspring 

 



 84

lsmeans expression gives better precision than just a single parent under most 

circumstances (Falconer, Mackay, 1996).  In terms of variance, estimating heritability 

using full-sib analyses are twice as precise as those estimated from half-sib analyses 

(Falconer, Mackay, 1996).  Though many studies prefer to use one method over the other, 

both methods can provide precise estimates of heritability as long as the most optimal 

experimental design is constructed (i.e. large sample size, power, distribution of data) 

(Astles et al., 2006; Falconer, Mackay, 1996; Windig, 1997).   

 Of the methods used to estimate h2, the mid-parent on offspring regression 

analysis heritability estimates are more precise because the relationship between mid-

parent and offspring is least likely to be influenced by the environment or dominance.  

Thus, the mid-parent analysis is a more appropriate method for estimating heritability.  In 

addition, the mid-parent offspring relationship uses the variance in gene expression from 

both parents thereby providing a more precise estimate of heritability than either parent 

on offspring (Falconer, Mackay, 1996).  

 The ability to obtain estimates of heritability is important because the choice of 

the environment in which heritability is measured can affect the reliability of these 

estimates.  Interestingly, we have seen, as described in Chapter 3, that the variance in 

individuals acclimated to laboratory conditions is greater in comparison to the variance of 

those individuals captured in the field therefore suggesting that environmental variation 

in the field (tidal changes, spatial and temporal changes in salinity, food availability, 

oxygen, etc.), does not have a major affect on the variation in gene expression (Marshall, 

2003; Marshall et al., 2005).  This is opposite to the assumption that the environment 

increases variation in gene expression.    
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 Heritability is dependent upon the environment in which it is measured.  Even for 

traits where the variation is fully under genetic control, there can be little or no h2 

because the environment suppresses the expression of the phenotypic variation.  For 

example, human height and thorax length in Drosophila melanogaster are heritable traits 

affected by nutrition (Bubliy et al., 2001).  In both the offpring-parent regression and 

estimates of genetic variation analyses, the inbred, mixed population and mixed 

population F1 individuals that experienced limited-food conditions had decreased thorax 

length, but no significant differences in the heritability between the two environments 

were found (Bubliy et al., 2001).  

 The full sib analysis measured heritability for individuals raised in a common 

environment.  While only one environment was used in this study, small differences in 

environmental conditions between aquaria cannot be ruled out.  By controlling for only 

one environment, one that perhaps is more conducive to growth and survival, the genetic 

variance may have been unknowingly lowered, thereby influencing the true value of H2.  

This may explain why the heritability estimates from the full-sib components of variance 

analysis were much lower in comparison to the regression analyses.  The same F1 

individuals that were used in the components of variance analysis were also used in the 

regression analyses.  All F1 individuals were reared in laboratory aquaria in a common 

environment; however, the parents were caught in the field and were only acclimated to 

laboratory conditions for approximately 2 months.  As mentioned above, the added 

environmental influence due to the difference in acclimation time between parents and 

offspring may explain the high estimates of heritability for the parent-offspring 

regression analyses.   
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 Though the heritability estimates from the regression analyses were high and were 

also found to have high error margins, they are most likely more reliable than the full-sib 

analysis which suffers from potential decreases in variance estimates and potentially 

large amounts of dominance variance which was not measured (Tables 4.1 and 4.3).  

Narrow-sense heritability estimates are indeed much stronger estimates than broad-sense 

estimates because the numerator for narrow-sense heritability has only additive genetic 

effects whereas broad-sense heritability has both additive and non-additive effects in the 

numerator (Devlin et al., 1997).  Therefore, broad sense heritability should be larger than 

narrow-sense heritability.  The data here shows otherwise, but can be explained by the 

observation of low measures of variance due to individuals raised in a common 

environment. Despite these problems, the estimates of heritability that were measured 

using both methods, components of variance and regression analysis, are significant as no 

study has attempted to measure the heritability of gene expression in Fundulus 

heteroclitus.  It is important to note, however, that studies of heritability using non-

standard techniques, such as protein level comparisons between parents, F1, F2 and F3 

generations in F. heteroclitus have been performed (Meyer et al., 2002). 

 Though the estimate of heritability for the components of variance analysis is 

lower (median H2 = 0.25), is not unlike other studies of heritability.  For example, in ten 

lines of Drosophila, 663 out of 7886 measured genes (8.4%) had significant genetic 

variation with a median h2 of 0.47 (Wayne et al., 2004).  In studies where sample sizes 

are much larger, the percentage of genes with detectable heritability greatly increases.  

For example, among 112 Sacchoromyces cerevisiae segregants, 3,546 out of 5,727 

measured genes (62%) had h2 > 0.69 (Brem, Kruglyak, 2005).  It is evident that with an 
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increase in sample size, there is also greater power to detect h2.  Reasons for the low 

percentages of genes detected to have significant heritability in this study can be 

attributed to sample size and power.   

 The power to detect heritability at 0.4 was only 28.9% for the mid-parent on 

offspring regression whereas the power to detect heritability at 0.4 using 13 full-sib 

families and an average sample size of 9 individuals per family was 46%.  Our null 

hypothesis is that there is no heritability of gene expression; therefore, we will reject the 

null hypothesis approximately 46% of the time which leaves us unable to detect 

heritability for 54% of the genes.  Thus, many more genes may have significant, heritable 

variation, but due to small sample sizes, we lacked the power to detect these genes.  The 

number of genes detected with significant heritability between the two analyses was 

almost equivalent (14 genes-full-sib, 13 genes mid-parent on offspring regression), but 

the actual heritability estimates were quite different (Tables 4.1 and 4.3).  Again, effects 

of dominance and environment could have influenced the actual broad-sense estimates. 

Interestingly, the male on offspring regression estimates of heritability are stronger than 

the female on offspring estimates.  This can be explained by the influence of maternal 

effects which are not present in the male on offspring estimates. 

 The 14 genes with significant heritability found in the full-sib analysis have 2 

genes that are encoded by the mitochondria: Cytochrome c oxidase polypeptide II and 

NADH-ubiquinone oxidoreductase chain 2 (Table 4.1).  These 2 genes encode proteins 

that form the many subunits of Complex I and Complex IV of the electron transport 

chain.  These genes play an important role in the transfer of electrons in cellular 

respiration.  The remaining 11 of the 14 genes with significant heritability produce 
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proteins that are involved in many facets of metabolism, most importantly, ATP 

synthesis.  

 In all three parent on offspring regression analyses and in the full-sib analysis, 

NADH-ubiquinone oxidoreductase chain 2, was found to have significant heritability 

(Tables 4.1 and 4.3).  Additionally, NADH-ubiquinone oxidoreductase chain 4 was found 

to have significant heritability in the mid-parent and female on offspring regression 

analyses (Table 4.3).  Finally, NADH-ubiquinone oxidoreductase chain 3 was found to 

have significant heritability in the mid-parent-offspring regression analysis (Table 4.3).  

These findings are significant because NADH-ubiquinone oxidoreductase (Complex I), 

the largest of the membrane bound respiratory chain enzymes, is responsible for 

catalyzing the first step in the electron transport chain (Saraste, 1999).  Analysis of 

Complex I isolated from bovine hearts revealed that it is comprised of 46 different 

subunits of which 7 are encoded by the mitochondrial DNA (Carroll et al., 2002).  

Immunopurification of human NADH dehydrogenase (Complex I) confirmed the 

presence of 42 of the 46 NADH subunits found in bovine hearts (Murray et al., 2003).  

Therefore, the finding that these Complex I genes have significant heritability is of 

importance since this enzyme is a critical step in the electron transport chain.  

Deficiencies or mutations in this enzyme are known to cause Mitochondrial 

Encephalopathy (MELAS Syndrome), myopathy and fatal infantile multisystem disorder 

(Ravn et al., 2001).  It is unknown how many NADH subunits comprise complex I in fish 

mitochondria or whether deficiencies in this complex cause similar diseases. 

 Another gene worth examining that has significant heritability in both the mid-

parent-offspring and female-offspring regressions is Glutathione-S transferase.  This gene 
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is involved in the metabolism of xenobiotics.  Fundulus heteroclitus live in estuarine 

areas along the eastern seaboard of the United States.  Due to the proximity of this habitat 

to human influences, such as dumping and contamination, upregulation of Glutathione-S 

transferase is important when fish are in contact with chemicals such as polycyclic 

aromatic hydrocarbons (PAHs)(Escartin, Porte, 1999).   

 Cluster diagrams of the 190 differentially expressed genes and the 14 genes with 

significant heritability share a similar pattern (Figures 4.2 and 4.3).  The cluster diagram 

for genes with significant differences among individuals has four rather distinct quadrants 

of gene expression (Figure 4.3).  Upon closer examination, the individuals that cluster 

together to form these quadrants are the same individuals from the families that cluster 

together to create the pattern seen in Figure 4.2.  Though not all the individuals from each 

of the families that grouped together in Figure 4.2 clustered together in Figure 4.3, it is 

important to note that many of those individuals did cluster and that the pattern of 

expression for all individuals is a function of differences between families. 

 The present study is limited by sample size, however, the data presented here are 

the first to formally estimate the genetic component of gene expression in F. heteroclitus.  

Using the most reliable analysis of the heritability of gene expression, mid-parent- 

offspring regression, 6.5% of genes have significant heritability with a median h2 of 0.86.  

Though this represents only a small proportion of genes included in the analysis, it is a 

significant finding.  Improvements to the design of this study would include larger 

sample sizes and perhaps performing the study on F2 and possibly F3 generation fish.  In 

addition, controlling for environmental differences between parents and offspring should 

be addressed.  Gene expression is determined by both genetic and environmental factors.  
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Estimates of heritability in this study indicate that the environment has more of a 

contribution to gene expression than do genetics.  F. heteroclitus are exposed to variable 

environments day to day and even hour to hour.  This requires the ability of a genotype to 

produce different phenotypes when exposed to different environments (Gibson, 2008).  

Therefore, it is interesting that in this study, some of the genes that are heritable are those 

that are involved in the response to hypoxia and xenobiotics: Glutathione-S transferase, 

Hypoxia-inducible factor 1-alpha.   

 The genetic basis for differences in the variation of gene expression varies from 

organism to organism and is dependent upon the environment in which gene expression 

is measured.  Perhaps with greater sample sizes, the ability to partition the genetic 

component of variance would be stronger thereby allowing for a more robust estimate of 

heritability.  Nevertheless, our findings are similar to those reported in studies using 

inbred strains.  This study is the first to estimate the heritability of gene expression for 

Fundulus heteroclitus.  More importantly, this study provides the foundation for 

understanding the genetic contribution of differential gene expression.  Natural, heritable, 

variation in gene expression is important for understanding the evolution of the genes that 

control gene expression.  Heritable variation is the raw material for evolutionary 

processes and thus, measures of heritability are critical for understanding how differences 

in mRNA expression evolve. 
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Table 4.2.  The percentage of genes from the regression analyses with significant h2.  The 
percentage was calculated by dividing the number of genes with significant h2 by the 
number of genes with positive slopes. 
 

 

  
No. genes with  
positive slopes/h2 

No. genes with 
significant h2 

% genes with  
significant h2 

Midparent 200 13 6.5 

Female 187 5 2.7 

Male 196 12 6.1 
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Table 4.3.  Genes with significant heritability for each of the three regression analyses.  
Midparent-offspring and male-offspring regression analyses had four genes with 
significant heritability in common.  Midparent-offspring and female-offspring analyses 
had three genes with significant heritability in common.  Female-offspring and male-
offspring regression analyses had only one gene in common.
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 Genes with significant heritability Slope h2 p≤0.05 Std Error 95% Confidence 

Midparent Acetyl-CoA carboxylase 1 0.77 0.77 0.01 0.30 0.59 

  ADP-ribosylation factor  0.91 0.91 0.02 0.38 0.74 

  AMBP protein precursor [Contains: Alpha-1-microglobulin; Inter-alpha-trypsin inhibitor light chain] 1.00 1.00 0.04 0.47 0.92 

  Cold-inducible RNA-binding protein  1.90 1.90 0.01 0.67 1.32 

  Glutathione S-transferase 0.72 0.72 0.02 0.29 0.57 

  Heterogeneous nuclear ribonucleoprotein A/B 0.90 0.90 0.04 0.43 0.84 

  NADH-ubiquinone oxidoreductase chain 2 0.92 0.92 0.03 0.40 0.79 

  NADH-ubiquinone oxidoreductase chain 3 0.80 0.80 0.01 0.29 0.57 

  NADH-ubiquinone oxidoreductase chain 4 1.10 1.10 0.03 0.49 0.95 

  Nuclear factor erythroid 2 related factor  0.86 0.86 <0.001 0.19 0.37 

  Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein 0.82 0.82 0.02 0.35 0.68 

  Phosphoglycerate kinase 1 0.66 0.66 0.01 0.25 0.49 

  Phosphomannomutase 0.77 0.77 0.02 0.33 0.64 

Male Acetyl-CoA carboxylase 1 0.24 0.48 0.03 0.11 0.21 

  Alcohol dehydrogenase 0.50 0.99 0.05 0.25 0.49 

  Betaine--homocysteine S-methyltransferase 0.26 0.52 0.003 0.09 0.17 

  Calmodulin 0.40 0.80 0.01 0.15 0.30 

  Heterogeneous nuclear ribonucleoprotein A/B 0.36 0.72 0.01 0.14 0.27 

  Hypoxia-inducible factor 1 alpha 2.42 4.84 0.01 0.95 1.86 

  NADH-ubiquinone oxidoreductase chain 2 0.48 0.95 0.04 0.23 0.45 

  Nuclear factor erythroid 2 related factor  0.29 0.58 0.01 0.10 0.20 

  O-methyltransferase 0.95 1.90 0.02 0.40 0.78 

  StAR-related lipid transfer protein 13 0.29 0.58 0.02 0.12 0.24 

  Telomerase-binding protein p23 0.10 0.19 0.04 0.05 0.09 

  Vacuolar ATP synthase subunit C 0.37 0.74 0.03 0.17 0.33 

Female Glutathione S-transferase 0.27 0.53 0.05 0.13 0.26 

  NADH-ubiquinone oxidoreductase 20 kDa subunit, mitochondrial precursor 0.44 0.87 0.03 0.20 0.40 

  NADH-ubiquinone oxidoreductase B17 subunit 0.28 0.57 0.04 0.14 0.27 

  NADH-ubiquinone oxidoreductase chain 2 0.46 0.92 0.02 0.20 0.38 

  NADH-ubiquinone oxidoreductase chain 4 0.55 1.11 0.01 0.20 0.40 

Table 4.3 (cont.) 
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Figure 4.3.  Genes with significant differences among families.  Cluster diagram of 13 
families and the 14 genes that are both differentially expressed and significantly heritable 
at p ≤ 0.05.  
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Figure 4.4.  Hierarchical clustering of standardized LSmeans with significant differences 
among individuals.  Cluster diagram of all individuals for 13 families and the 158 genes 
that differ significantly at p ≤ 0.05. 
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Figure 4.5.  Venn diagram showing the number of significantly heritable genes 
for each of the three regression analyses (mid-parent on offspring, male parent  
on offspring and female-parent on offspring; numbers in blue) and the number of those  
genes that are shared between each analysis (numbers in black). 
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Figure 4.6.  Mid-parent, female parent or male parent and offspring regressions for genes 
with significant heritability at p≤0.05.  Graph shows regression patterns for significantly 
heritable genes.  Reading left to right, the first 13 graphs are mid-parent-offspring 
regressions.  The following 10 graphs are male-offspring regressions.  The last 5 graphs 
are female-offspring regressions.  The y-axis is the gene name as listed in Table 4.3.
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Figure 4.6. (contd.) 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 
 
 The focus of this dissertation was to determine the importance of heritable factors 

which explain the differentially expressed genes among F. heteroclitus individuals.  The 

information discussed in the preceding chapters provides a foundation for understanding 

the genetic basis of gene expression in Fundulus heteroclitus.  The second chapter 

discussed in detail the technical variation of cDNA microarrays.  To measure the random 

biological variation found among individuals, we used F. heteroclitus cDNA 

microarrays.  The use of these arrays to quantify mRNA expression is relatively precise 

and has a large dynamic range. There is a linear relationship between fluorescence of 

RNA samples and RNA concentrations ranging from 0.1X to 10X for the majority of 

genes (88%).  Examination of the technical variation in gene expression between the four 

RNA samples isolated from a single blood sample found that the CV (standard 

deviation/mean) among eight replicates was 4% and, only three genes had a CV > 10%.  

Therefore, when quantifying gene expression in the same individuals there are few 

differences in mRNA expression, suggesting that adult mRNA expression is stable. 

 In chapter 3, there was an explicit test of the importance of genetic and 

environmental variation on mRNA expression.  Three groups of individuals from the 

same population were compared:  individuals inbred for ten generations (G10) with 

significantly less genetic variation than outbred individuals; outbred individuals 

acclimated (Acclimated) to the same environment as the inbred individuals and outbred 

individuals sampled directly in the field (Field).  The analyses of these data indicate that 

there is little difference in the magnitude of individual variation among field and 

acclimated individuals.  In contrast, G10 individuals had significantly less variation in 
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mRNA expression.  These data indicate that much of the variation in mRNA expression 

is related to genetic variation and less of the variation is in response to environmental 

variation.  The most important finding for the study conditions in chapter 3 was that 

environmental factors do not necessarily add to differences in the variance found in gene 

expression between groups.   

To provide quantitative support for the experimental observation made in chapter 

3, the heritability of mRNA expression was measured.  Two approaches were used to 

estimate heritability 1) parent-offspring regression and 2) components of variance 

analyses.  The parent-offspring regressions and the components of variance analyses had 

similar percentages of genes with significant heritability, 6.5% and 8.9% for mid-parent 

on offspring and components of variance analyses, respectively.  However, the median 

heritability estimate for the mid-parent on offspring regression was 0.86 and the median 

for the components of variance analysis was 0.25.  The difference in the two estimates is 

not cause for alarm as two separate methods were used, each with their own sets of 

strengths and weaknesses as discussed in chapter 4. 

Overall, three major conclusions can be drawn from the work presented in this 

dissertation: 1)  There is little technical variation between F. heteroclitus microarray 

measures 2)  Influences from the environment (including but not limited to: tidal changes, 

spatial and temporal changes in salinity, food and oxygen availability) account for few 

differences in the variation in gene expression and 3) There is some but not a lot of 

significant genetic variation based on the quantitative estimates of heritability. 
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Future directions 

 Our studies are limited by sample size.  Increased sample sizes would allow for a 

greater power to detect heritability and therefore increase our understanding of the 

genetic components of variance.  Our studies were also limited to a laboratory 

environment.  Although it appears that the natural environment does not have a large 

affect on the variation of differential gene expression, it would be worthwhile to subject 

F1 individuals and their parents to natural environments and repeat the heritability 

estimates.  Again, heritability is only relevant to the environment in which it is measured.  

Obtaining estimates of heritability from both natural environments and laboratory 

environments can provide a more cohesive understanding of the genetic basis of gene 

expression across environments.  

Fish from Maine and Georgia have evolved differences in gene expression 

patterns due to exposure to different thermal regimes.  Since heritability estimates are 

dependent upon the environment in which they are measured, estimates of heritability 

would be expected to vary depending on whether fish are exposed to cold or warm 

temperatures.  Measuring the heritability of gene expression in fish from Maine and 

Georgia would be worthwhile as differences in the estimates of heritability could help to 

explain evolutionary adaptation. 

 

Conclusions 

 The research presented in this dissertation confirms that there is a genetic 

component to the variation in gene expression.  However, it is evident that the 

environment in which these genetic differences are found is an important factor in 
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determining the extent to which significantly heritable genes can be detected.  

Differential gene expression varies greatly between individuals from populations of 

Fundulus heteroclitus.  The quantification of the variation in gene expression between 

individuals is important for understanding how much of this variation in expression is 

explained by evolution by natural selection.  More importantly, estimates of the genetic 

component of the variation in gene expression allows for more specific detection of 

deficiencies or mutations in particular regions of a genome.  Studies using natural 

populations of Fundulus heteroclitus remain important to the overall understanding of 

genetic variation and its biological importance. 
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