
 01 14

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance

Thesis/Dissertation Agreement.
Publication Delay, and Certification/Disclaimer (Graduate School Form 32)
adheres to the provisions of 

Department 

Yi Zhang

Atomistic and Finite Element Modeling of Zirconia for Thermal Barrier Coating Applications

Master of Science in Mechanical Engineering

Jing Zhang

Hazim El-Mounaryi

Andres Tovar

Jing Zhang

Sohel Anwar 07/03/2014



ATOMISTIC AND FINITE ELEMENT MODELING OF ZIRCONIA

FOR THERMAL BARRIER COATING APPLICATIONS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Yi Zhang

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Mechanical Engineering

August 2014

Purdue University

Indianapolis, Indiana



ii

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Jing Zhang, for his guidance, encour-

agement, support, and patience during the entire course of this research and thesis

work. He is always willing to provide me help and guidance to move the research

forward.

I would also like to thank Professor Hazim El-Mounaryi and Professor Andres

Tovar for serving on my thesis committee and for their valuable comments. Also

thank Professor Yeon-Gil Jung at the Changwon National University and Dr. Li Li

at Praxair Surface Technologies for their suggestions.

I would like to extend my special thanks to Dr. Jing Zhangs research group

members, including Ph.D. candidates Linmin Wu and Xingye Guo, in the discussions

with them, many problems during my thesis research are solved. I am also in great

debt to Jiayang Liu for his help in the lab and brilliant comments on my thesis.

I would also like to thank Ms. Valerie Lim Diemer for assisting me in formatting

this thesis. I am grateful for the people from the Mechanical Engineering department,

my friends, Lujie, Weng-Hoh and many more. Without them, graduate life would have

never been the same. Finally, I express my gratitude to my parents for their support

and encouragement during my life.



iii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Reviews of Thermal Barrier Coatings . . . . . . . . . . . . . . . . . 5
1.3 Goal and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. FIRST PRINCIPLES STUDY OF THERMAL AND STRUCTURAL PROP-
ERTIES OF ZIRCONIA . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Phases of Zirconia . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 First Principles Simulation of Zirconia . . . . . . . . . . . . 11

2.2 Calculation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Thermodynamic Properties of m-ZrO2 . . . . . . . . . . . . 14
2.2.2 Phase Transition Simulation of Zirconia . . . . . . . . . . . 16

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Thermodynamic Properties . . . . . . . . . . . . . . . . . . 17
2.3.2 Pressure Dependent Phase Transitions . . . . . . . . . . . . 22

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. STUDY ON ROCKWELL INDENTATION OF YTTRIA-STABILIZED ZIR-
CONIA THERMAL BARRIER COATINGS . . . . . . . . . . . . . . . . 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Experimental Tests and Results . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 34

3.3 Validation of Microstructure Based Finite Element Simulation . . . 35
3.3.1 Analytical Modeling . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Analytical Modeling of Young’s Modulus . . . . . . . . . . . 40
3.3.3 Microstructure Based Modeling . . . . . . . . . . . . . . . . 42
3.3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 49
3.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Finite Element Modeling of Rockwell Indentation . . . . . . . . . . 54



iv

Page
3.4.1 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Material Properties . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.3 Model Description . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 59

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . 64

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



v

LIST OF TABLES

Table Page

2.1 Original and optimized lattice constants and comparison . . . . . . . . 21

2.2 Comparison of t-ZrO2 lattice parameters . . . . . . . . . . . . . . . . . 23

2.3 Comparison of calculated m-ZrO2 phase transition pressures with experi-
mental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Superficial Rockwell scales . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Material property of WC/Co composites . . . . . . . . . . . . . . . . . 38

3.3 Material properties defined in the FE simulation . . . . . . . . . . . . 57

3.4 Comparison of the indentation results . . . . . . . . . . . . . . . . . . 63



vi

LIST OF FIGURES

Figure Page

1.1 Application of thermal barrier coating on gas turbine engines [1] . . . 2

1.2 Layered structure of thermal barrier coatings . . . . . . . . . . . . . . 3

1.3 (a) Thermal conductivity versus temperature for several refractory com-
pounds. (b) Materials usually exhibiting low thermal conductivity [7] . 6

2.1 Zirconia phase diagram [16] . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Phases of zirconia at different temperature and pressure [25] . . . . . . 13

2.3 (a) Unit cell of m-ZrO2.(b) Unit cell of t-ZrO2 [20] . . . . . . . . . . . 15

2.4 Crystal structure of t-ZrO2 . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Debye temperature of m-ZrO2 from 0 to 1000K . . . . . . . . . . . . . 19

2.6 Thermodynamic properties of m-ZrO2 from 0 to 1000 K; (a) enthalpy,
entropy and free energy; (b) specific heat capacity . . . . . . . . . . . . 20

2.7 Heat capacity at constant volume of m-ZrO2 . . . . . . . . . . . . . . 20

2.8 Lattice parameter versus free energy of m-ZrO2 . . . . . . . . . . . . . 21

2.9 (a)m-ZrO2 entropy, enthalpy, free energy change according to temperature
from 0 to 1000K; (b) temperature dependence of specific heat capacity at
constant volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 Crystal volume ratio change with increasing hydrostatic pressure . . . 23

2.11 Tetragonal distortion change with increasing hydrostatic pressure . . . 24

2.12 Indirect band gap change with increasing hydrostatic pressure . . . . . 25

2.13 Crystal structure of m-ZrO2 . . . . . . . . . . . . . . . . . . . . . . . . 25

2.14 Calculated lattice parameters in the simulation cell . . . . . . . . . . . 26

3.1 Comparison of the erosion performance of air plasma sprayed, EB-PVD
and segmented plasma sprayed coatings at RT and 910oC. Data for bulk
7-YSZ is included as a reference [41] . . . . . . . . . . . . . . . . . . . 30

3.2 Principle of Rockwell indentation . . . . . . . . . . . . . . . . . . . . . 32



vii

Figure Page

3.3 Schematic microstructure of thermal spray coating, showing only a few
layers of particles [42] . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Indentation test machine (left) and the Rockwell indenter (right) . . . 35

3.5 Microscopic image of the APS YSZ coating . . . . . . . . . . . . . . . 36

3.6 Microstructure of Co-WC composite material . . . . . . . . . . . . . . 39

3.7 CTE and percentage relation of Co in composite . . . . . . . . . . . . 41

3.8 Experimental and computational results follow a similar decreasing trend
in Young’s modulus with increasing matrix Co content . . . . . . . . . 43

3.9 Sketch created in Pro/E . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.10 Area created in ANSYS according to the microstructure . . . . . . . . 47

3.11 Mesh used in the model . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.12 Boundary conditions for temperature elevation test . . . . . . . . . . . 48

3.13 Boundary conditions for uniaxial tensile test . . . . . . . . . . . . . . 48

3.14 von-Mises stress under 700K temperature increasing . . . . . . . . . . 49

3.15 Elongation along x (a) and y (b) directions . . . . . . . . . . . . . . . . 50

3.16 Simulated and calculated coefficient thermal expansion . . . . . . . . . 50

3.17 von-Mises stress of the tensile result . . . . . . . . . . . . . . . . . . . 51

3.18 Elongation along x (a) and y (b) directions . . . . . . . . . . . . . . . . 52

3.19 Analytical calculated and simulated Young’s Modulus . . . . . . . . . 53

3.20 Microscopic image of yttria-stabilized zirconia and groups defined for mod-
eling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.21 Schematic of the methods used in image processing (red holes will be
modeled in the FEM geometry, porosity caused by other holes will be
complimented by the material properties) . . . . . . . . . . . . . . . . 56

3.22 Dimensions of a standard Rockwell indenter for HR-15N hardness test. 56

3.23 Geometry and boundary conditions of the image based model . . . . . 58

3.24 Geometry and boundary conditions of the homogenous model . . . . . 58

3.25 Loadsteps of Rockwell indentation according real test . . . . . . . . . . 58

3.26 von-Mises stress distribution (homogeneous material) . . . . . . . . . . 59

3.27 von-Mises stress distribution (image based) . . . . . . . . . . . . . . . . 60



viii

Figure Page

3.28 Localized von-mises stress distribution after unloading . . . . . . . . . 60

3.29 Indentation depth versus load . . . . . . . . . . . . . . . . . . . . . . . 61

3.30 Simulated indentation mark . . . . . . . . . . . . . . . . . . . . . . . . 62

3.31 Experimental indentation mark image . . . . . . . . . . . . . . . . . . 62



ix

ABSTRACT

Zhang, Yi. M.S.M.E., Purdue University, August 2014. Atomistic and Finite Element
Modeling of Zirconia for Thermal Barrier Coating Applications. Major Professor:
Jing Zhang, School of Mechanical Engineering.

Zirconia (ZrO2) is an important ceramic material with a broad range of appli-

cations. Due to its high melting temperature, low thermal conductivity, and high-

temperature stability, zirconia based ceramics have been widely used for thermal

barrier coatings (TBCs). When TBC is exposed to thermal cycling during real appli-

cations, the TBC may fail due to several mechanisms: (1) phase transformation into

yttrium-rich and yttrium-depleted regions, When the yttrium-rich region produces

pure zirconia domains that transform between monoclinic and tetragonal phases upon

thermal cycling; and (2) cracking of the coating due to stress induced by erosion. The

mechanism of erosion involves gross plastic damage within the TBC, often leading to

ceramic loss and/or cracks down to the bond coat. The damage mechanisms are re-

lated to service parameters, including TBC material properties, temperature, velocity,

particle size, and impact angle.

The goal of this thesis is to understand the structural and mechanical properties of

the thermal barrier coating material, thus increasing the service lifetime of gas turbine

engines. To this end, it is critical to study the fundamental properties and potential

failure mechanisms of zirconia. This thesis is focused on investigating the structural

and mechanical properties of zirconia. There are mainly two parts studied in this

paper, (1) ab initio calculations of thermodynamic properties of both monoclinic and

tetragonal phase zirconia, and monoclinic-to-tetragonal phase transformation, and (2)

image-based finite element simulation of the indentation process of yttria-stabilized

zirconia.
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In the first part of this study, the structural properties, including lattice parame-

ter, band structure, density of state, as well as elastic constants for both monoclinic

and tetragonal zirconia have been computed. The pressure-dependent phase tran-

sition between tetragonal (t-ZrO2) and cubic zirconia (c-ZrO2) has been calculated

using the density function theory (DFT) method. Phase transformation is defined

by the band structure and tetragonal distortion changes. The results predict a tran-

sition from a monoclinic structure to a fluorite-type cubic structure at the pressure

of 37 GPa. Thermodynamic property calculations of monoclinic zirconia (m-ZrO2)

were also carried out. Temperature-dependent heat capacity, entropy, free energy,

Debye temperature of monoclinic zirconia, from 0 to 1000 K, were computed, and

they compared well with those reported in the literature. Moreover, the atomistic

simulations correctly predicted the phase transitions of m-ZrO2 under compressive

pressures ranging from 0 to 70 GPa. The phase transition pressures of monoclinic to

orthorhombic I (3 GPa), orthorhombic I to orthorhombic II (8 GPa), orthorhombic

II to tetragonal (37 GPa), and stable tetragonal phases (37-60 GPa) are in excellent

agreement with experimental data. In the second part of this study, the mechanical

response of yttria-stabilized zirconia under Rockwell superficial indentation was stud-

ied. The microstructure image based finite element method was used to validate the

model using a composite cermet material. Then, the finite element model of Rockwell

indentation of yttria-stabilized zirconia was developed, and the result was compared

with experimental hardness data.

Key words: zirconia; thermal barrier coating; indentation; first principles; finite

element
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1. INTRODUCTION

1.1 Background

Thermal barrier coatings (TBCs) are refractory-oxide ceramic thin films coated to

the surfaces of metal or alloy parts in the hot region of modern gas-turbine engines,

enabling the engines to operate at high gas temperatures (see Figure 1.1). Gas-

turbine engines are Carnot engines which can be used to power aircrafts and to

generate electricity. Temperature is directly related to the efficiency of the gas turbine

engines [1].

As one can see in Figure 1.2, thermal barrier coatings consist of the oxide ceramic

coating (topcoat), and the superalloy engine part beneath it (substrate), and also

two other layers in between. These two layers include a metallic layer (bond coat)

that is more oxidation-resistant than the superalloy, and a very thin, thermally grown

oxide (TGO) layer that forms between the bond coat and the top coat as a result of

bond-coat oxidation in-service. Due to the composition, the bond coat can form a

TGO made of -Al2O3, a mechanically robust, effective barrier to oxygen diffusion [1].

In current engines, the ideal power output increases with the gas temperature at the

turbine inlet, but as the gas temperature rises, so does the work required to pro-

vide the flow of cooling air needed to bring the hot section materials to within their

temperature limitations. The gap between ideal and actual power output represents

an inefficiency whose root cause is the inability of component materials to withstand

higher engine temperatures [2]. TBCs help close this gap by sustaining a temperature

gradient between the hot gas stream and the component surface, typically lowering

the maximum surface temperature of the component by 200 oC. The lower surface

temperature allows the engine designer to either reduce the cooling air to raise effi-
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Figure 1.1. Application of thermal barrier coating on gas turbine engines [1]

ciency and save fuel, increase the turbine inlet temperature and increase power, or

retain the same flow of cooling air and improve component durability.

Modern thermal barrier coatings have their origins in the 1970s. Flame-sprayed

ceramic coatings, such as alumina, zirconia-calcia, or zirconia-magnesia, were devel-

oped as an alternative to frit enamels, which were applied to aerospace applications in

the 1950s, and used in relatively undemanding roles [3,4]. Plasma spraying of materi-

als, which was developed as an offshoot of research into low thrust plasma arc engines

for spacecraft, proved to be an efficient and effective way of depositing ceramics. By
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Figure 1.2. Layered structure of thermal barrier coatings
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1970, plasma-sprayed ceramics began to be used in low risk hot-sections of aircraft

engines. As TBCs achieved more advanced applications and hotter temperatures,

around 1978, materials researchers found that 6-8% yttria-stabilized zirconia, which

is still used today, optimized the durability of coatings in typical operation [3, 5].

TBCs have advanced from use in low risk areas of the engine to the more demanding

hot-sections due to the confidence gained by advances in life prediction along with

material improvements,. Life prediction methods, initiated by NASA in the early

1980s [3, 4], have advanced significantly up to the present, but the lack of a robust

and physically-based life prediction method persists, and precludes TBCs from being

used to the fullest extent that the current materials allow.

The temperature of the hot gas in the combustor and at the turbine inlet is typi-

cally much hotter than the melting temperature of the superalloy components, which

is usually around 1300 oC. In service, the engine either cycles frequently, as in the

case of airplane engines, cooling and heating of the TBC rapidly for many cycles, or

it cycles infrequently but for long durations, as in the case of base-load power gener-

ating turbines. In these extreme environments, a TBC is susceptible to an array of

structural and material phenomena that lead to the eventual degradation and failure

of the TBC, exposing the underlying metal to dangerous gases which can accelerate

the failure of the component. Because of the apprehension about premature failure

with little warning, TBC systems in practice are not designed to their full potential,

leaving increases in efficiency and performance on the table. The reason for the ap-

prehension lies in the fact that although TBCs are over 30 years old, they are still not

well understood [6]. The high temperature interplay between mechanical and ma-

terial phenomena like thermal expansion, diffusion, oxidation, creep, microCracking,

sintering, and fatigue is difficult to untangle and leads to very complex and sensi-

tive stress states, making life prediction difficult. Thus, the study on thermal barrier

coating materials is important.
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1.2 Reviews of Thermal Barrier Coatings

TBC systems are composed of four layers (Figure 1.2): (1) a ceramic top coat,

typically yittria-stabilized zirconia (YSZ); (2) a thin layer of thermally grown oxide

(TGO) that forms during service; (3) an intermetallic bond coat (BC), typically

MCrAlY or an aluminide; and (4) the substrate, or underlying component, which

in the hot sections of an engine is usually a Ni-based superalloy. These four layers

comprise a TBC system. In discussion, however, TBC is sometimes meant to refer

only to the YSZ top coat.

The function of the top coat is to provide a temperature drop across its thickness,

insulating the substrate from the hot gas stream. Only materials with very low ther-

mal conductivities can achieve this while maintaining a minimal thickness, precluding

most metals. A high melting temperature is also required, so ceramics emerge as the

obvious choice. The thermal expansion coefficient is also very important, as the ce-

ramic must be able to somewhat keep up with the metal layers as they expand and

contract. Low stiffness is required as well, so that the ceramic can absorb any strain

imposed upon it by thermal mismatch. Other desirable material properties include

phase stability to avoid large strains due to transformation, a low density to promote

strain tolerance and reduce weight, and a high hardness to resist erosion and foreign

body impact.

The material that is most widely chosen in industry to meet these criteria is

zirconia (ZrO2) which has one of the lowest thermal conductivities of any ceramic

materials. The conductivity is further reduced during deposition, owing to the resul-

tant microstructure. Zirconia also has a preferable thermal expansion coefficient and

a low stiffness due its particular microstructure. Zirconia in its pure form, however,

undergoes a phase transformation from monoclinic tetragonal or cubic under differ-

ent temperature ranges. These transformations are accompanied by large volume

changes, which when constrained, as is the case with TBC applications, lead to very

large stresses, likely resulting in failure.
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Figure 1.3. (a) Thermal conductivity versus temperature for several
refractory compounds. (b) Materials usually exhibiting low thermal
conductivity [7]
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Stabilizing the zirconia so that it reduces the severity of these transformations

can be done by doping it with various oxides [8, 9]. Yttria has emerged as the ideal

dopant because it prohibits the zirconia from transforming from the tetragonal to

monoclinic phase, which is accompanied by a 4% volume reduction. The metastable

tetragonal (t) phase of zirconia, which is formed on rapid cool down of the coating after

doping with yttria, has the highest fracture toughness of any form of zirconia. The

metastable t phase, however, can transform to the monoclinic phase under applied

stress. Furthermore, if the zirconia is allowed to cool in a certain manner after

forming, a non-transformable tetragonal (t) phase will form, which retains the high

fracture toughness and will not transform under stress. The amount of t phase present

is maximized with about 8 weight percent yttria, so the material used most often for

deposition of the top coat in TBCs is either 7 or 8 wt. % t yttria-stabilized zirconia

(7YSZ or 8YSZ).

1.3 Goal and Objectives

When TBC is exposed to thermal cycling during real applications, the TBC

may fail due to several mechanisms: (1) phase transformation into yttrium-rich and

yttrium-depleted regions, when the yttrium-rich region produces pure zirconia do-

mains that transform between monoclinic and tetragonal phases upon thermal cycling;

and (2) cracking of the coating due to stress induced by erosion. The mechanism of

erosion involves gross plastic damage within the TBC, often leading to ceramic loss

and/or cracks down to the bond coat. The damage mechanisms are related to service

parameters, including TBC material properties, temperature, velocity, particle size,

and impact angle.

The goal of this thesis is to study the structural and mechanical properties of the

thermal barrier coating material, thus increasing the service lifetime of gas turbine

engines. To this end, it is critical to understand the fundamental properties and

potential failure mechanisms of zirconia. The specific objectives of this work are:
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(1) ab initio calculations of thermodynamic properties of both monoclinic and

tetragonal phase zirconia, and monoclinic-to-tetragonal phase transformation; and

(2) image-based finite element simulation of the indentation process of yttria-

stabilized zirconia

Achieving the above objectives will help understand the mechanical behavior of

thermal barrier coating materials, thus the failure mechanisms, and improve TBC

performances.

1.4 Thesis Outline

This thesis will develop multiscale computational models to simulate the proper-

ties of zirconia for thermal barrier coating applications. Given the objectives outlined

in Section 1.3, two types of computational models will be developed: (1) atomistic

scale simulation using the first principles method, and (2) continuum scale modeling

using the finite element method. Properties that affect the performance of thermal

barrier coatings, such as thermodynamic properties and mechanical properties, will

be studied.

In the first part of this study, the structural properties, including lattice parame-

ter, band structure, density of state, as well as elastic constants for both monoClinic

and tetragonal zirconia are computed. Pressure-dependent phase transition between

tetragonal (t-ZrO2) and cubic zirconia (c-ZrO2) are calculated using the density func-

tion theory (DFT) method. Phase transformation is defined by the band structure and

tetragonal distortion changes. Thermodynamic property calculations of monoclinic

zirconia (m-ZrO2) are also carried out. Temperature dependence of heat capacity,

entropy, free energy, Debye temperature of monoclinic zirconia, from 0 to 1000 K, are

computed and compared with those reported in literature. In the second part of this

study, the mechanical response of yttria-stabilized zirconia under Rockwell superfi-

cial indentation is studied. The microstructure image based finite element method

is used to validate the model using a composite cermet material. Then, the finite
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element model of Rockwell indentation of yttria-stabilized zirconia is developed, and

the result is compared with experimental hardness data.

The structure of the thesis is as follows. Chapter 1 provides an introduction to

thermal barrier coatings. Structures of thermal barrier coating are illustrated. Several

commonly used materials for thermal barrier coatings are mentioned and compared.

Literature related to the TBC materials are also discussed in Chapter 1. In Chapter

2, the study is mainly focused on the atomistic simulation of pure zirconia, phase

transition and thermal properties. Chapter 3 aims to develop a finite element model

for yttria-stabilized zirconia Rockwell indentation using the image based method.

The method is validated and then applied to the indentation modeling. Chapter 4

provides a summary and discussion of future work.
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2. FIRST PRINCIPLES STUDY OF THERMAL AND STRUCTURAL

PROPERTIES OF ZIRCONIA

2.1 Introduction

NiAl based aluminate was first commonly used for thermal barrier coating ma-

terial. However, it was eliminated because of short fatigue life [7]. Several improve-

ments have been made in recent years, and the state of the art commercially used

material for thermal barrier coating is now yttria-stabilized zirconia (YSZ). YSZ has

the following characteristics: high melting temperature of 2700 oC [10], low thermal

conductivity of about 2.3 W/(oC -m ) at 1000 oC [6]and chemical stability [6].

2.1.1 Phases of Zirconia

Zirconia has polymorphic crystallographic structures [11]. Based on temperature,

zirconia can exist in three phases: monoclinic, tetragonal and cubic phases [12] (See

Figure 2.1). At room temperature, the structure of zirconia is monoclinic, and this

structure will not change until 1170 oC. As temperature increases from 1170 oC to

2370 oC, the structure of zirconia changes to tetragonal, which is called the m-t phase

transition. When temperature exceeds 2370 oC, cubic phase zirconia is formed [13].

An effective way to stabilize zirconia in tetragonal and cubic phase is doping.

Commonly used dopants are oxides, such as magnesia (MgO) and yittria (Y2O3).

Over a wide temperature range, stabilization of zirconia can be done by replacing Zr4+

ions using dopant ions that have a larger atomic size. The resulting doped zirconia

materials are termed stabilized zirconia [14]. With these dopants in the structure,

zirconia can maintain a metastable t phase from room temperature to about 1200 oC.

At higher temperature, t phase YSZ changes to a composition of cubic and tetragonal

phase structure [15]. Although the most well studied and commercialized material



11

for thermal barrier coatings is yttria-stabilized zirconia, in this study, for simplicity

purpose, zirconia without any doping will be investigated and discussed.

Figure 2.1. Zirconia phase diagram [16]

2.1.2 First Principles Simulation of Zirconia

Theoretical studies of zirconia, especially phase transition and thermodynamic

properties of zirconia, have been developed for decades. For crystalline structured

materials, density functional theory (DFT) is the well-established method for such

first principles calculation. Many attempts are made to investigate the properties and

the phase transition nature of zirconia [17,18].

Study of the thermal properties of different phases of zirconia has been reported.

Temperature-based phase transition of zirconia can be derived by those properties.
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Tojo et al measured the specific heat capacity at constant volume experimentally [19].

They tested the thermal properties of pure zirconia and YSZ by adiabatic calorimetry

measurement at temperatures between 13 K and 300 K. Lou et al [20] investigated

the thermodynamic properties and temperature-based monoclinic to tetragonal phase

transition for both ZrO2 and HfO2 using the ab initio method. They presented

a method for both hafnia and zirconia, and the temperature dependency of heat

capacity of two materials was validated.

Lattice dynamics is also one of the important aspects in such studies, because it

has been suggested that soft phonon mode mechanism is the major cause of zirconia

phase transformations [21]. One of the important issues is that the density functional

theory calculation is performed in conditions where temperature is 0 K. However, at

this temperature, most phases could not be stable without any external pressure or

internal dopants. This issue increases the challenges when comparing DFT compu-

tational results with experimental results. Therefore, a study of pressure-dependent

lattice dynamic study is necessary. Ozturk and Durandurdu [22] conducted a compre-

hensively theoretical study on high pressure-based phase transition of zirconia. Vic-

tor et al [23] used CASTEP code to develop an ab initio model of tetragonal zirconia

with external pressure. They found that the lattice structure of t-ZrO2 will change

to cubic structure under the pressure of 37 GPa. Structural properties of zirconia,

such as band structure and density of state, were also investigated by DFT calcula-

tions [17, 24]. The present study also emphasizes pressure dependency of tetragonal

zirconia, and investigates the structural properties of t-ZrO2 transformation under

hydrostatic compressive pressures.

Pressure-dependent phase transition of m-ZrO2 is another aspect of interest in the

phase transition studies. Figure 2.2 shows the temperature, pressure phase diagram

[25]. Pure zirconia maintains monoclinic structure at ambient pressure. Three high

pressure phases of zirconia have been reported by experimental tests, orthorhombic I,

orthorhombic II, and a tetragonal phase which is different from the high temperature

tetragonal at ambient pressure. Monoclinic to orthorhombic phase transition happens
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Figure 2.2. Phases of zirconia at different temperature and pressure [25]

at the compressive pressure of 3 GPa at room temperature [26]. By doing nucleation

and growth processing, the orthorhombic I to orthorhombic II phase transformation

was accomplished by Ohtaka et al [27]. Arash et al reported the orthorhombic I

to tetragonal phase transition pressure of 37 GPa at room temperature [28]. This

phase maintains stablility until 60 GPa [25]. Several simulations on atomistic scale

were tried to predict the phase transition pressure for m-ZrO2: an ab initio study on

phase transition of zirconia at high pressure was reported by ztrk et al [29]. Their

simulation results, however, have much higher values for phase transition pressure

than the experimental data from other studies. In this study, the CASTEP model

was developed in order to develop a compatible ab initio model for high pressure

phase transition of m-ZrO2.

The structure of this chapter is described as follows. Section 2 describes the

calculation details. Algorithms, cutoff energy settings, k-points settings, convergence

criteria, lattice definitions are presented in this section. In section 3, computational
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results, following the order of thermal and phase transition, are presented and then

compared with the related data in literature.

2.2 Calculation Methods

2.2.1 Thermodynamic Properties of m-ZrO2

Thermal properties were calculated using the first principles methods. First prin-

ciple theory is also called ab initio theory. It calculates material behaviours without

any definition of material properties. The calculation is based on Schrödinger’s equa-

tion with appropriate assumptions. Calculations of thermal properties are conducted

using two ab initio software packages [12, 30–32].

All the calculations were based on the density functional theory (DFT) [33,34]. In

this theory, all calculations are conducted in ground state (temperature is 0 Kelvin).

The total energy of the ground state is uniquely determined by the electron density:

E = E[n(r)] (2.1)

where E: total energy of the ground state; n: electron density; r: position of elec-

trons. The main purpose of ab initio calculation is to solve the Schrdinger equation

(Eq. (2.1)). Methods used are numerous. In general, two theories are used: density

functional theory (DFT) and Hartree-Fock (HF). Comparing the algorithms of these

two methods, DFT solves the Kohn-Sham equation, whereas the HF method solves

Roothaan equations. Most calculations use either one of two methods. However,

some calculations use combined methods, which is called the hybrid functional ap-

proach. Due to the complexity of solving Eq.(2.1), Kohn-Sham equations [33] (equa-

tions (2.2) and (2.3)) are actually adopted to solve the governing equation which has

some assumptions such as local density approximation (LDA), generalized gradient

approximation (GGA) and the hybrid of these two assumptions.(
− h̄2

2m
∇2+vext (r) + vecoul (r) + vxc (r)

)
ψnk (r) = εnkψnk (r) (2.2)
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Figure 2.3. (a) Unit cell of m-ZrO2.(b) Unit cell of t-ZrO2 [20]

n (r) =

#of e∑
nk

|ψnk(r)|2 (2.3)

where r is the distance between two electrons, equation (2.2) represents the interaction

between two electrons, to solve equation (2.1), the ab initio sum up all interactions

(shown in equation (2.3)) and plug into equation (2.1), so that the total energy at

ground state can be solved.

The crystal structure of zirconia is illustrated in Fig. 2.3. Monoclinic zirconia

structure is shown in Fig. 2.3 (a), bond angles of this structure include two 90 degrees

and one 100 degrees [34]. Lattice parameters of both monoclinic and tetragonal

structures are defined according to databases [34,35] and then relaxed using ab initio

method.

Calculations were conducted at GGA+PBE with a unit cell of 2 formula units (2

Zr and 4 O) using CASTEP code in the Material Studio modelling package (MS).

The convergence criteria of the free energy with the k-points sampling and the cut-
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off energy for approximation was cautiously examined. In order to make sure that

the calculation is converged, the total energy difference was set below 10−5 eV. The

Monkhorst-Pack defined 3× 3× 1 k-points was applied for the unit cell mesh based

on Brillouin zone integration. For the plane waves, cut-off energy was set to be

800 eV. Before the thermodynamic calculation, an energy minimization study was

conducted, so that the lattice parameter and the ion positions were optimized and

the unit cell was relaxed without any pre-stress. After the optimization of structure, a

phonon calculation was performed to investigate the thermal properties of monoclinic

zirconia based on the Debye theory.

Monoclinic phased zirconia (m-ZrO2) thermodynamic property calculations were

also carried out using the Vienna ab initio Simulation Package VASP [30,32] coupled

with PHONOPY [36]. In order to reach the energy convergence of 10−6 eV, the cutoff

energy was set to 600 eV. The Brillouin zone integration was defined as Monkhorst-

Pack mesh with k points of 5× 4× 3 grid. Superposition was generated by Phonopy

after the geometry optimization. Specific heat capacity at constant volume (Cv) was

calculated using the following equation [31]:

Cv(T ) =
1

4kBT 2

∫ ∞
0

dωg(ω)
h̄2ω2

sinh2
(

h̄ω
2kBT

) (2.4)

where T is temperature, kB is the Boltzmann constant, ω is phonon frequency, h̄ is

the Planck constant.

Density of state, temperature dependence of free energy, constant volume specific

heat capacity were calculated and compared with experimental or others simulation

results [19, 20].

2.2.2 Phase Transition Simulation of Zirconia

This work investigates the structural properties of both tetragonal phase zirconia

(t-ZrO2) and monoclinic zirconia (m-ZrO2) under compressive pressures. For com-

pressed t-ZrO2, according to soft mode mechanism [37], tetragonal distortion occurs



17

when a hydrostatic compression is applied. As the tetragonal distortion increases,

t-ZrO2 will transform to a cubic structure (c-ZrO2). For m-ZrO2, when external

pressure is applied, there will be a series of phase transition with the increasing of

pressure according to experiment observations. The basic sequence is monoclinic to

orthorhombic I, orthorhombic I to orthorhombic II, and orthorhombic II to tetragonal,

and the specific transition pressure value will be determined by this calculation.

In the present calculations, the energy cutoff for expanding wave functions was

set to 750 eV. For the Brillouin zone integration, Monkhorst Pack of 8 × 8 × 6 k-

points mesh was applied. Convergence criterion was set to 1× 10−8 eV/atom. A

convergence study based on different k-point settings was conducted. Comparing k-

point of 8× 8× 6 to k-point of 5× 5× 3 was done by previous work [17,18,21,38,39].

The lattice structure of t-ZrO2 is shown in figure 7, a, b, and c is the lengh from

origin to the points illustrated in this figure. One factor that defines the structure of

tetragonal crystal is the tetragonal distortion factor, A:

A =
c

a
√

2
(2.5)

where a and c are the lattice parameters. For a prefect cubic structure, A = 1, so that

A-1 = 0. One of the objectives in this paper is to measure the tetragonal distortion

factor of the compressed t-ZrO2.

2.3 Results and Discussion

2.3.1 Thermodynamic Properties

Thermodynamic properties of zirconia were carried out by both VASP and Mate-

rial Studio simulation packages. At the beginning, in order to get accurate calculation

results, a geometry optimization was cautiously conducted. Material Studio CASTEP

module calculated the lattice parameters based on energy minimization. Debye tem-

perature, temperature dependence of entropy, enthalpy, free energy and specific heat

capacity under constant volume were also determined.
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Figure 2.4. Crystal structure of t-ZrO2
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Figure 2.5. Debye temperature of m-ZrO2 from 0 to 1000K

Debye temperature from 0 to 1000 K of m-ZrO2 was obtained (See figure 2.5).

During phonon vibration, the highest mode of vibration of crystal can be presented

by the Debye temperature. With this data, specific heat at a constant volume can be

obtained by differentiation with respect to temperature.

With the Debye temperature, the thermodynamic properties of m-ZrO2 were

achieved. Figure 2.6(a) shows the enthalpy, entropy, free energy and heat capac-

ity at temperature from 0 to 1000K. Figure 2.6(b) shows the comparison of these

results with others.

Figure 2.7 shows temperature dependence (from 0 to 350K) of specific heat ca-

pacity at constant volume of m-ZrO2 compared with both experimental [19] and

simulation [20] results, respectively. As seen in the figure, the agreement with the

experimental data is excellent.
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Figure 2.6. Thermodynamic properties of m-ZrO2 from 0 to 1000 K;
(a) enthalpy, entropy and free energy; (b) specific heat capacity

Figure 2.7. Heat capacity at constant volume of m-ZrO2

Lattice relaxation was the first step of VASP calculations. Figure 2.8 shows the

calculated free energy of different lattice parameters. VASP calculates the free energy

for a monoclinic crystal structure with a specific lattice parameter. In this figure,
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Figure 2.8. Lattice parameter versus free energy of m-ZrO2

from 5.26
0

A to 5.30
0

A, the energy curve had the lowest point of about -57.2 eV,

corresponding to the lattice parameter of 5.284
0

A. The parameter with the lowest

energy represents that crystal at this lattice parameter is the most stable, which

means that this structure has no pre-stress. In other words, it was relaxed at 5.284
0

A. After relaxation of the monoclinic zirconia unit cell, optimized lattice parameter

was achieved and compared with similar studies. The comparison of lattice parameter

is shown in Table 2.1.

Table 2.1. Original and optimized lattice constants and comparison

Lattice Before VASP Relaxed MS relaxed In literature [20]

parameter relaxation [34]

a (
0

A) 5.1496 5.1257 5.175347 5.115

b (
0

A) 5.2076 5.1723 5.241449 5.230

c (
0

A) 5.3163 5.2844 5.358938 5.260
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Based on the optimized crystal structure, 18 superpositions were generated us-

ing PHONOPY, and the thermal properties were calculated. Figure 2.9 (a) shows

the results for the monoclinic phase including entropy, enthalpy, free energy change

with temperature from 0 to 1000K, whereas Figure 2.9 (b) shows temperature depen-

dence of specific heat capacity at constant volume done by this work, as well as the

comparison with both experimental [19] and simulation [20] results. The result from

CASTEP calculation was included. As seen in Figure 2.9 (b), the comparison shows

an excellent agreement.

Figure 2.9. (a)m-ZrO2 entropy, enthalpy, free energy change accord-
ing to temperature from 0 to 1000K; (b) temperature dependence of
specific heat capacity at constant volume

2.3.2 Pressure Dependent Phase Transitions

As mentioned in section 2, increasing hydrostatic compressive pressure, the crystal

structure of tetragonal zirconia has a tendency to transform to cubic structure. When

the pressure reaches the critical value (phase transition pressure), phase transition

from tetragonal to cubic occurs. Before the hydrostatic pressure is applied, accurate

lattice parameters were calculated and compared with relative works, which are listed

in Table 2.2.
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Table 2.2. Comparison of t-ZrO2 lattice parameters

Lattice Before MS relaxed In literature [16]

parameter relaxation [35]

a (
0

A) 3.512 3.565265 3.5742

b (
0

A) 3.512 3.565265 3.5742

c (
0

A) 4.988 5.127827 5.1540

Figure 2.10. Crystal volume ratio change with increasing hydrostatic pressure

The relaxed crystal structure, volume change during the increasing of hydrostatic

pressure, band structure change and lattice constant under pressure, were calculated.

Volume ratio is the compressed volume divided by the original crystal cell volume.

As shown in figure 2.10, at the initial state, when no pressure was applied, the volume

ratio was 1, since the volume did not change. With the increasing of compressive

pressure, the volume ratio decreased gradually from 1 to 0.85, since the crystal cell

shrank under compression.
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Figure 2.11. Tetragonal distortion change with increasing hydrostatic pressure

As discussed in section 2.2, the tetragonal distortion factor A, represents the

tetragonal degree of a crystal. For example, a cell with A>1 means that this crystal

has a tetragonal structure, and cubic structures have tetragonal distortion factor

A=1. In Figure 2.11, the initial tetragonal distortion factor was about 0.017, which

means the original structure of this cell was tetragonal, since no compression was

applied. As the pressure increased, the tetragonal distortion (A-1) decreased from

0.017 at 0 GPa to 0 at about 37 GPa. This shows the intermediate states when the

tetragonal phase was converting to cubic phase, since A was getting closer to 1. After

the pressure reached 37 GPa, the tetragonal distortion factor A kept constant at 1.

This means that after 37 GPa, the cubic structure is a stable phase.

Figure 2.12 shows the indirect band gap decreased during compression, band gap

slope changed from 6.3 meV GPa−1 to 5.2 meV GPa−1 at the pressure of 37 GPa,

indicating a phase transition from tetragonal to cubic phase.

Lattice constants were studied for the pressure dependence of m-ZrO2, and the

change of length of lattice parameters a, b and c (which can be seen in figure 2.13)

were analyzed and plotted in Figure 2.14.

An ideal way to elucidate the mechanism of this phase change is to investigate

directly the pressure dependence of the simulation cell vectors. Figure 2.14 shows the
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Figure 2.12. Indirect band gap change with increasing hydrostatic pressure

Figure 2.13. Crystal structure of m-ZrO2
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Figure 2.14. Calculated lattice parameters in the simulation cell
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cell lengths and angles as functions of the applied pressure. As one can clearly see, the

ZrO2 structure exhibited a strong anisotropic compression. The c axis was found to

be more compressible than the other axes. At about 3 GPa, the length of c became

smaller than b, which indicates the monoclinic structure changed to orthorhombic

I phase. After 10 GPa, it showed a change in slope and the compression in this

direction becomes slower. That indicates the structure of ZrO2 started to change to

orthorhombic I [29]. When the pressure reached 40 GPa, the length of c and b were

equal, which means the structure of zirconia is tetragonal. Also as can be seen in

this figure, a and c kept equal until the pressure reached 60 GPa; this indicates the

tetragonal structure is no longer stable at pressure higher than 60 GPa. These phase

transition pressures agree well with the experimental phase transition pressures at 0

K in figure 2.2. The comparison of this work and the data read from figure 2.2 is

shown in table 2.3.

Table 2.3. Comparison of calculated m-ZrO2 phase transition pres-
sures with experimental data

Phase transition Experiment This work

m-orthoI 3GPa 3GPa

orthoI-orthoII 8GPa 10GPa

otrhoII-t 35GPa 37GPa

t phase 40GPa 60GPa

2.4 Summary

In this study, we present a series of atomistic simulations of zirconia, including

monoclinic and tetragonal phases, using the first principles theory. Heat capacity at

constant volume of m-ZrO2 was calculated and found to be highly compatible with

both experimental and others simulation results. Hydrostatic compression from 0 to
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50 GPa was applied to the tetragonal zirconia. The results strongly supported that the

tetragonal distortion disappeared at 37 GPa, and the structure of zirconia turns into

cubic type. The tetragonal distortion kept decreasing under compression, until phase

transition occurred. There was no further structure change after transition pressure.

Tetragonal distortion factor kept constant at 1. The atomistic simulations correctly

predicted the phase transitions of m-ZrO2 under compressive pressures ranging from

0 to 70 GPa. The phase transition pressures of monoclinic to orthorhombic I (3 GPa),

orthorhombic I to orthorhombic II (8 GPa), orthorhombic II to tetragonal (37 GPa),

and stable tetragonal phase (37-60 GPa) are in excellent agreement with experimental

data.
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3. STUDY ON ROCKWELL INDENTATION OF YTTRIA-STABILIZED

ZIRCONIA THERMAL BARRIER COATINGS

3.1 Introduction

Plasma sprayed yttria-stabilized zirconia coatings are being increasingly used as

thermal barrier coatings for gas turbines and diesel engines [40]. Effective TBCs

should exhibit low thermal conductivity, strong adherence to the substrate, and phase

stability.

As mentioned in Chapter.1, erosion of thermal barrier coatings during operation

is one of the difficulties, since it can cause failure and reduce fatigue life of TBC. As

figure figure 3.1 shows, compared with other spray methods and bulk ceramic, the

air plasma sprayed coatings have the highest erosion rate, which means that APS

coating fails more easily due to erosion than other methods shown in this figure.

One thing that highly effects erosion is hardness of the coating, which can be

measured by doing the indentation test. In a Rockwell indentation test, a diamond

conical indenter with 200µm tip is applied on the surface of the pre-treated coating,

and then the indenter moves toward the coating, which is called loading, followed

by the release of the indenter, which is called unloading. By doing this process, the

indenter mark and the indentation depth under a pre-defined load will be achieved,

so that the hardness of the sample can be calculated.

The Rockwell hardness test consists of two major categories: the Regular Rockwell

indentation test and the Rockwell Superficial indentation test. For thermal barrier

coating as thin films, the Rockwell superficial test is applied. For the superficial

Rockwell testing, all the minor loads are 3 kgf regardless of major loads. The major

load can be different, usually chosen from 15 kgf, 30 kgf, or 45 kgf. Different scales
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Figure 3.1. Comparison of the erosion performance of air plasma
sprayed, EB-PVD and segmented plasma sprayed coatings at RT and
910oC. Data for bulk 7-YSZ is included as a reference [41]
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are defined according to the combination of different major load and indenter shape

(Table 3.1). In this study, the indentation test uses 15N scale.

Table 3.1. Superficial Rockwell scales

Scale Symbol Penetrator Loda Force (kg)

15 N N Brale 15

30 N N Brale 30

45 N N Brale 45

15 T 1
16

in Ball 15

30 T 1
16

in Ball 30

45 T 1
16

in Ball 45

15 W 1
8

in Ball 15

30 W 1
8

in Ball 30

45 W 1
8

in Ball 45

15 X 1
4

in Ball 15

30 X 1
4

in Ball 30

45 X 1
4

in Ball 45

15 Y 1
2

in Ball 15

30 Y 1
2

in Ball 30

45 Y 1
2

in Ball 45

The indenter is pressed into the test sample under a minor load F0 (Fig 3.2A)

3 kgf. As the equilibrium has been reached, the indicating device that follows the

position of the indenter and so responds to changes in depth of indenter movement is

set to a datum position. With the minor force is still applied, the major load force is

applied additional to the minor load, which results the increase in penetration (Fig

3.2B). As the equilibrium has been reached again, the major load is removed while

the minor load is still kept. There is a partial recovery of the indenter depth due
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Figure 3.2. Principle of Rockwell indentation

to the spring back effect of the sample. The overall increase in depth of indenter, e,

is used to calculate the number of Rockwell Superficial hardness using the following

equation.

HR=E-e

(3.1)

where F0 is the minor load(kgf), F1 is the major load additional to the minor load

(kgf), F is total load (kgf), e is overall increase in depth of indentation due to major

load F1, measured in units of 0.001 mm, E is a constant of 100 units for diamond and

ball indenters, HR is the Rockwell hardness number D is the diameter of steel ball.

Since air plasma spray uses ionized gas plasma to melt and propel the powder, the

powders coated on the surface are in the form of small groups, the spaces between

powder groups form the pore in the microstructure. Figure 3.3 shows the concept of

the formation of pores inside the coatings. Due to the high temperature, oxides can

be formed as illustrated in the figure as well. The porosity is in the range of 5-10%,

and the oxides contents is about 1-3% of the whole volume.

One of the challenges in finite element modeling thermal barrier coating is the def-

inition of the complex microstructure as mentioned above. Basically, there are two

methods to define the structure in finite element simulation. First, make the assump-

tion that the material is homogenous, and assign the material properties correspond-
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Figure 3.3. Schematic microstructure of thermal spray coating, show-
ing only a few layers of particles [42]
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ing to a porous media. Second, maintain the material properties as fully dense, and

make the geometry similar to the real structure [43]. Yan et al [43] established both

of these two classes of finite element model for columnar structured EBPVD thermal

barrier coatings, and compared with experimental results of Rockwell indentation.

Fuller et al [44] investigated the thermal properties of thermal barrier coatings using

the object oriented finite element method, and then compared the calculated thermal

conductivity to experimental data.

The structure of this chapter falls into three parts, section 3.1 shows experimental

Rockwell indentation and some of the results. Section 3.2 shows the model validation

of microstructure based FEM using Tungsten carbide/Cobalt (WC/Co) matrix struc-

ture, starting from microscopic image, to build a finite element model for mechanical

property analysis. Section 3.3 performs the Rockwell indentation modeling for YSZ

thermal barrier coating using the validated method.

3.2 Experimental Tests and Results

3.2.1 Test Procedure

The HR-15N Rockwell Hardness text was conducted using a Wilson Rockwell

hardness testing machine with a standard dimension Brale diamond indenter, dis-

played in figure 3.4. YSZ coated specimens in addition to NiCoCrY bond coat ma-

terial were used to investigate the hardness. The specimens were cleaned by using

acetone before testing and were dried using a hot air blower. A diamond indenter

with load of 15kg was used to indent the specimens. The Rockwell hardness number

was recorded and was noted as hardness value for the corresponding specimen.

3.2.2 Results and Discussion

From the indentation test, the hardness of these samples were measured directly

by the testing equipment, the mean hardness is 78.06 HRN.
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Figure 3.4. Indentation test machine (left) and the Rockwell indenter (right)

Cross section image of APS sprayed thermal barrier coating were also taken by

using the microscopic machine; Figure 3.5 shows the layered microscopic structure

of the YSZ thermal barrier coating. The gray layer in the middle shows the yttria-

stabilized zirconia coating, and the white layer at the bottom shows the alumina bond

coat.

Figure 3.5 illustrates the cross sectional structure of YSZ thermal barrier coating.

The thickness of YSZ coating is about 500 µm, and the NiCoCrY bond coat is about

200 µm. From this image, the porous structure of coated powders are clearly shown.

The small dark regions in both layers show pores inside the sprayed powders. This is

due to the process of air plasma spray.

3.3 Validation of Microstructure Based Finite Element Simulation

Tungsten carbide/Cobalt (WC/Co), also named as cemented carbide, is a prefer-

able metal matrix composite (MMC) due to its lightweight and favorable mechanical

and thermal behaviors. WC/Co MMC was first produced in the 1920s [45], and it has
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Figure 3.5. Microscopic image of the APS YSZ coating
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been the advanced material for rock drilling insert. With the development of tech-

nology, based on the conventional cemented carbide, a new microstructure material

named DC-carbide it has been applied [46]. WC/Co DC-carbide is a hybrid highly

dense particulate metal matrix structure, filled in to a Co metal matrix. The WC/Co

particle consolidation component can resist wear in the operation of the material.

On the other hand, the ductile cobalt metal matrix leads to a preferable fracture

toughness [47,48].

DC carbides have various specific applications due to their difference in microstruc-

ture. That is because material properties may be affected by the microstructure of

DC carbides, including particle size, volume percentage of cobalt metal matrix, dis-

tribution of particle size, WC particle size and volume percentage of cobalt in the

particle. Thus, determining behavior of those materials is important.

Recently, both analytical and numerical models have been developed broadly to

investigate and study the properties of multiphase materials [49–57]. For some sim-

ple structured material, analytical models can obtain rational predictions. Extending

the domain of study, numerical analysis may provide reasonable results for relatively

complex model, however, there are also some assumptions that simplified the struc-

ture of the MMC: it does not apply for heterogeneous structured materials. The

object-oriented finite element technique (OOF) is an advanced finite element analysis

approach which conducts microstructure in finite element modeling (FEM) [58, 59].

OOF starts with the 2 dimensional microstructure of the multiphase material, in-

corporates with basic material properties, and determines mechanical or thermal be-

haviors of the composite materials. It is well known that conventional FEM builds

a unit-cell model, followed with analysis to predict the behavior of material. OOF,

however, applies real microstructure of the desired material to proceed finite element

analysis.

In this chapter, according to a photo of WC/Co microstructure, a 2D drawing

of double-cemented WC particle-reinforced Co matrix composite microstructure was

made in Pro/Engineering software, and then this drawing was used to make a finite
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element model in ANSYS. Finally, results including coefficient of thermal expansion

(CTE) and elastic modulus of this composite material were obtained from the FEM.

3.3.1 Analytical Modeling

Before building OOF models, a theoretical analysis was conducted. This analysis

can be divided into two parts: thermal expansion analysis and Young’s modulus

analysis.

Analytical Modeling of Coefficient of Thermal Expansion

Figure 3.6.shows a photo of the WC particle-reinforced Co matrix composite mi-

crostructure; the dark circles represent W/C particle and the light gray shapes are

Co matrix. As we can see in Table 3.2, because of the CTE difference between two

materials (14.2 for Co and 5.5 for WC), under temperature change, thermal residual

stress will occur on the interface.

Table 3.2. Material property of WC/Co composites

Constituent Young’s Coefficient of Poissons

Modulus (GPa) Thermal Expansion Ratio

(106 K−1)

Co 209 14.2 0.31

WC 620 5.5 0.22

A comparison between experimental and simulated coefficients of thermal expan-

sion was also conducted. Analytical bounds developed by Turner [51], Kerner [52],

and Rosen and Hashin [49] were used as comparison to the experimental data. Rosen

and Hashin [49] developed a model to determine the CTE of an isotropic two-phase

composite reinforced with spherical particles, in which the spherical reinforcement
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Figure 3.6. Microstructure of Co-WC composite material
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was wetted by a uniform layer of matrix. This model (Eq. 3.2) is based on the en-

ergy principles of thermo elasticity and on Hashins bounds for bulk modulus of the

composite:

4VmVpGp(Km −Kp)(αm − αp)

3KmKp + 4GpK
≥ α∗ − α ≥ 4VmVpGm(Km −Kp)(αm − αp)

3KmKp + 4GpK
(3.2)

K =
KpKm + (4/3)Gm(VpKp + VmKm)

VpKm + VmKp + (4/3)Gm

(3.3)

α = αmVm + αpVp (3.4)

Where V is the volume fraction, G is the shear modulus, K is the bulk modulus, α

is the CTE, Kis the bulk modulus of the composite (Eq. 3.3), and α is the rule of

mixtures CTE (Eq. 3.4). The subscripts m and p denote the matrix and reinforcing

constituent. As the case of 2D, Vm and Vp can be substituted as Am and Ap, which

means the area of matrix material (Co) and constituent (WC):

ᾱ = αmAm + αpAp (3.5)

Thus, we can determine the CTE of a composite material only if we know the

area ratio of both materials and their CTE in pure state.

3.3.2 Analytical Modeling of Young’s Modulus

In this section, we attempt to predict the anisotropy in Young’s modulus using two

well-known analytical models for predicting modulus of particle reinforced composites:

(a) The HashinShtrikman (HS) model [49] and (b) The HalpinTsai (HT) model [60] .

The HS model estimates upper and lower bounds for modulus of an isotropic spherical

aggregate based on variational principles of elasticity. In the HS model, the Young’s

modulus was calculated from the upper and lower bounds of the bulk moduli, K upper

and K lower, and shear moduli, G upper and G lower, of the composite:

Kupper = KR + (1− Vp)
[

1

KM −KR

+
3Vp

3KR + 4GR

]−1

(3.6)
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Figure 3.7. CTE and percentage relation of Co in composite
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Klower = KM + Vp

[
1

KR −KM

+
3(1− Vp)

3KM + 4GM

]−1

(3.7)

Gupper = GR + (1− Vp)
[

1

GM −GR

+
6Vp(KR + 2GR)

5GR(3KR + 4GR)

]−1

(3.8)

Glower = GM + Vp

[
1

GR −GM

+
6(1− Vp)(KM + 2GM)

5GM(3KM + 4GM)

]−1

(3.9)

where Vp is the volume fraction of the reinforcement, and M and R represent the

matrix and reinforcement, respectively. The upper and lower bounds of the Young’s

modulus for each component can then be calculated using the following relation:

E =
9K

1 + (3K/G)
(3.10)

The HT model, on the other hand, is a semi-empirical model that assumes a per-

fectly oriented discontinuous reinforcement in the composite, parallel to the applied

load. The Young’s modulus of the composite per the HalpinTsai model is given by:

Ec =
Em(1 + 2sqVp)

1− qVp
(3.11)

where Ec is the Young’s modulus of the composite, Ep the elastic modulus of the

particle, Em the modulus of the matrix, and q can be written as:

q =
(Ep/Em)− 1

(Ep/Em) + 2s
(3.12)

where s is the aspect ratio of the particle. This model assumes that all particles are

perfectly aligned with respect to the loading axis.

A comparison of the experimental data with the analytical predictions is shown in

Figure 3.8. As expected, the experimental data fall between the HS upper and lower

bounds. There is a fairly wide range between the bounds, due to the large difference

in Young’s moduli of the components of the composite.

3.3.3 Microstructure Based Modeling

The analysis above shows that in order to quantify the anisotropy in modulus,

as well as an understanding of the local stress and strain states, the microstructure
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Figure 3.8. Experimental and computational results follow a simi-
lar decreasing trend in Young’s modulus with increasing matrix Co
content
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of the composite needs to be incorporated into the model. Relatively few studies

have used multiparticle models using an FEM approach [61,62]. In these studies, the

particle shape was simplified and the aspect ratio and orientation approximated from

the microstructure. Although these models were able to qualitatively account for the

orientation and distribution of the particles, a true representation of the microstruc-

ture must capture the inherent heterogeneity and complexity of the microstructure,

particularly since the WC particles are highly angular and often distributed inho-

mogeneously. In this regard, we have incorporated the actual microstructure of the

composite, using a two-dimensional analysis, to obtain an understanding of composite

behavior and to predict the experimentally observed anisotropy in Young’s modulus.

Modeling of the deformation behavior of the composites materials was carried out

using a microstructure-based finite element modeling technique. Digital micrographs

obtained from SEM were used as input for elastic analysis using a commercial finite

element software, ANSYS. A representative area of the microstructure was sketched

manually using computer aided design software Pro/Engineer (Fig. 3.9). The seg-

mented microstructure was converted to an exchangeable drawing file, and imported

to the FEM software for analysis.

Microstructure Geometry Modeling

In order to achieve the geometry for finite element analysis, a sketch was drawn

in Pro/Engineer CAD software manually. The completed sketch can be seen in fig.

3.9.

Microstructure Geometry Validation

As mentioned above, this study analyzed both thermal expansion and elastic

modulus. The parameter that determines the result of CTE and E is the area ratio

of each material. It is important to validate the area ratio of both materials in the

microstructure CAD drawing. In this paper, the area ratio of different materials was
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Figure 3.9. Sketch created in Pro/E
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calculated as soon as it was imported into ANSYS; for the structure in Fig. 3.9 , the

area ratio of Co is 32.4% of the whole structure by the calculation of ANSYS.

On the other hand, in order to validate the CAD drawing, a paper weighting

process was conducted as well. The steps of this process included: print the mi-

crostructure photo on a paper followed by weighting the paper, and then cut off the

Co particle pieces on the paper and then weigh the particle paper pieces. By doing

the above steps, the weight of the whole structure and the weight of the Co particle

were achieved. Thus, the percentage of Co matrix in the composite material can be

calculated as below:

Copercentage =
weightmatrix

weightwhole

% =
0.90g

2.97g
% = 30.3% (3.13)

As the Co percentage results from the above two ways, the error of the microstruc-

ture geometry modeling is about 7%, which means the geometry was properly mod-

eled.

Microstructure Based Finite Element Modeling

Firstly, import the drawing from Pro/E into ANSYS as mentioned in the above

section, and modify the lines in order to complete individual areas shown in Fig. 3.10

The circular areas represent WC particles whereas the matrix area represents the Co

matrix.

Material properties used in the model are shown in Table 3.3. Both cobalt matrix

and tungsten carbide were modeled as linear elastic materials with Young’s modulus

and Poissons ratio. PLANE183 element type was applied to this model. Fig. 3.11

shows a magnified view of the highly dense mesh of the microstructure of a WC/Co

structure. The light blue area is meshed by Co material and the dark ones are

meshed by WC. One of the analyses was carried out in plane stress state and a 700K

temperature elevation from 0oC was applied to all models (Fig. 3.12). And the other

analysis was a 1.0% uniaxial tensile strain applied along the horizontal direction on

the plane (Fig. 3.13).
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Figure 3.10. Area created in ANSYS according to the microstructure

Figure 3.11. Mesh used in the model
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Figure 3.12. Boundary conditions for temperature elevation test

Figure 3.13. Boundary conditions for uniaxial tensile test
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Figure 3.14. von-Mises stress under 700K temperature increasing

3.3.4 Results and Discussion

Temperature Elevation Test

After appling 700 K increment of temperature, the thermal stress can be shown

in fig. 3.14. From this figure we can see: because of the higher elastic modulus, WC

components had lower stress than that of Co; the stress changed gradually along the

interface between the two materials; there were no sharp edges on the geometries, so

that there was not any stress concentration.

The objective of thermal expansion test is to determine the CTE by getting the

elongation of the model. The elongations along both x and y directions are shown

below: (fig.3.15)

By the definatin of CTE, one can use the elongation data and equation (3.14) to

calculate the CTE of this composite material.

α =
1

L

∆L

∆T
(3.14)
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(a) (b)

Figure 3.15. Elongation along x (a) and y (b) directions

Figure 3.16. Simulated and calculated coefficient thermal expansion

Further, by modeling photos with different percentage of Co, the result of Co

percentage versus CTE on each direction were obtained, then compared with the

result in theoretical analysis (fig. 3.16):
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Figure 3.17. von-Mises stress of the tensile result

At 0% Co, the CTE is 5.5×10−6 for both simulated and calculated results, respec-

tively; this means that the tested model is a pure WC material model. In the 100%

case, it is pure Co material and CTE is 14.2×10−6. The model results are close to the

calculated results during the change of the Co matrix ratio in the Co/WC composite

material.

Uniaxial Tensile Test Results

In the tensile test, the aim is to measure the elastic modulus (E) and Poissons

ratio (v) of the composite material. The method is to get the simulated elongation

result in x direction for E, and y for v, then calculate using the equation 3.15. Von-

Mises stress of tensile test model is shown in Fig. 3.17. Similar to the thermal

extrusion simulation, the stress changed gradually along the interface between the

two materials; there were no sharp edges on the geometries.
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E =
stress

strain
=
PL

∆L
(3.15)

Elongations on the x direction is a positive value because the tensile is along

x direction, whereas the y axis elongation is a negative value. They are shown in

fig.3.18:

(a) (b)

Figure 3.18. Elongation along x (a) and y (b) directions

Fig. 3.19 shows simulated E on x and y direction based on different percentages

of Co are processed then compared with analytical result calculated from equation

3.14.

From Fig. 3.8, At 0% Co, the elastic modulus is 618 GPa and 620 MPa for

simulated and calculated results respectively, this means that the tested model is a

pure WC material model. In the 100% case, it is pure Co material and elastic moduli

are 209GPa. The model results are close to the calculated results during the change

of the Co matrix ratio in the Co/WC composite material.

3.3.5 Summary

Object-oriented finite element analysis (OOF) can be used as an effective tool

for evaluating material behavior under thermal and/or elastic conditions, because it

incorporates the inherent microstructure of the material as an input to the model.

OOF was successfully used to predict Young’s modulus and CTE in two multiphase
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Figure 3.19. Analytical calculated and simulated Young’s Modulus
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systems. Conclusions obtained from OOF modeling are shown below: 1). In the

rise of temperature, increasing volume percentage of the Co matrix leads to a linear

growth of CTE of the DC carbide composite material. CTE of the composite material

increases from 5.5×10−6, the CTE of pure WC, to 14.2×10−6, the CTE of pure Co, as

the volume percentage of Co rises from 0 to 1002). Under tension, increasing volume

percentage of Co matrix contributes to a nonlinear rise of Young’s modulus of the

DC carbide. At 0 and 100 volume percent, E agree with the Young’s modulus of pure

WC particles and Co matrix, respectively. In the range between 0 and 100%, E fits

in the prediction of analytical analysis.

3.4 Finite Element Modeling of Rockwell Indentation

As the method of object oriented finite element analysis was validated, the air

plasma sprayed YSZ coating with bond coat as the sample of Rockwell indentation test

was simulated using object oriented FEM. Mechanical behaviors of YSZ coating under

indentation conditions, pre-loading, after loading, after unloading, were simulated and

analyzed. The microscopic image of YSZ coating was processed and imported into

Commercial FEM software ANSYS. The Rockwell indenter geometry was created and

simulated as a rigid surface in the contact pair. Large deformation were assumed in

the computational model. The calculations were based on static structural non-linear

analysis.

3.4.1 Image Processing

This simulation is based on the microscopic image in figure 3.20. Figure 3.20 shows

the three layers of the YSZ thermal barrier coating structures, including air (on the

top, no material properties will be applied in this area), YSZ (in the middle), and the

bond coat made by NiCoCrY. Obviously in this figure, there are many small holes

in the YSZ layer and the bond coat; the purpose for image processing is to convert

this image to a geometry for finite element modeling, and these holes will make the
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Figure 3.20. Microscopic image of yttria-stabilized zirconia and
groups defined for modeling

geometry very complex. Due do the computational time cost, it is impractical to

build the exactly same FEM model with the microscopic image, so modifications and

simplifications are needed. The basic simplification method can be seen in figure

3.21; there are two types of void: the bigger ones, which are compatible with FEM

modeling; and the smaller ones, which may cause problem for meshing. For the bigger

type of void, their location and area were kept for sketching, and the effect of the

smaller ones are attributed to the material properties (elastic modulus) in the model.

A simplified microscopic image was manually sketched in FEM package ANSYS.

By extruding the sketch, a three dimensional TBC coating, with the thicknesses of

0.2 mm bond coat and 0.5 YSZ top coat, was built in the FEM package as shown

in figure 3.21, then an indenter according to the tip of Rockwell HR-15N indenter

dimension [63] was created on top of the TBC layers, see figure 3.22.
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Figure 3.21. Schematic of the methods used in image processing (red
holes will be modeled in the FEM geometry, porosity caused by other
holes will be complimented by the material properties)

Figure 3.22. Dimensions of a standard Rockwell indenter for HR-15N
hardness test.
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3.4.2 Material Properties

Two types of materials were simulated in this model, yttria-stabilized zirconia

top coat and aluminum oxide bond coat. The material properties used in this model

are shown in Table 6. Both homogenous material and image based material were

simulated. For the case of the image based model, all the material properties were

defined according to the Table 3.3; for the case of the homogenous model, 10% of the

Young’s modulus was reduced due to the porosity identified in the image.

Table 3.3. Material properties defined in the FE simulation

Material Distribution E(GPa) ν σ

YSZ top coat 250 [64] 0.3 3000

NiCoCrY bond coat 190 [65] 0.3 [64] 900 [65]

diamond indenter 1140 0.07 elastic

3.4.3 Model Description

The models in this study are three dimensional solid static analyses. Both the

homogenous model and the image based model were simulated in ANSYS workbench.

For the sake of computation simplification, one fourth of the entire model was simu-

lated. Figure. 3.23 and 3.24 show the boundary conditions of the models; the bottom

faces were fixed at y direction, and the pressure of corresponding to the preloading

force of 29.4N was applied to the diamond indenter for one second, then the pressure

corresponding to the loading force of 147N was further applied on the indenter for

one second. Finally, the loading force was removed, and the indenter was balanced

at the unloaded depth. The load steps of this simulation are shown in figure 3.25
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Figure 3.23. Geometry and boundary conditions of the image based model

Figure 3.24. Geometry and boundary conditions of the homogenous model

Figure 3.25. Loadsteps of Rockwell indentation according real test
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3.4.4 Results and Discussion

von-Mises stress distribution of both simulations are shown in figures below. Fig-

ures 3.26 (a) and (b) show the homogeneous model under loading and after unloading.

Under loading, the stress was concentrated at the bottom of the indenter tip, due

to the compressive pressure provided by the indentation force; after unloading, the

highest stress region was located at the edges of the indentation mark, since the edge

materials were compressed during unloading. In figure 3.27(a) and (b), the stress dis-

tribution followed the same trend of the homogeneous ones. However, the maximum

stress was higher than the former, since the irregular shaped voids attributed to the

local stress concentration.

(a) von-Mises stress at the end of 147N

loading

(b) von-Mises stress at the end of un-

loading

Figure 3.26. von-Mises stress distribution (homogeneous material)

Figure 3.28 show more details of stress concentration in the image based model.

In figure 3.28 (a), the highest stress is located around the edge of the indentation

mark. However, in figure 3.28 (b), the highest stress is located at the top right void

which is highly deformed.

Figure 3.29 shows the indentation depth versus the load applied. Since both of

the two models are aimed to simulate the 10% porosity YSZ sample, there was not

any big difference between the two load-depth curves.
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(a) von-Mises stress at the end of 147N

loading

(b) von-Mises stress at the end of un-

loading

Figure 3.27. von-Mises stress distribution (image based)

(a) homogenous (b) image based

Figure 3.28. Localized von-mises stress distribution after unloading

The size of indentation mark visually determines the impact of the indenter on

the sample. It can briefly reveal the hardness of the sample; simulated indentation

marks and the experimental indentation mark are compared in the following figures.

From the figures below, the simulated marks are a little bigger than the experimental

mark, this means the simulated hardness may be smaller than the experimental. The

comparison of hardness will be discussed later.
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Figure 3.29. Indentation depth versus load
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(a) homogenous (b) image based

Figure 3.30. Simulated indentation mark

Figure 3.31. Experimental indentation mark image

As mentioned in the beginning of this chapter, the hardness can be calculated by

the indentation depth before loading and after unloading. The simulated Rockwell

hardness is listed in Table 3.4 and compared with the experimental result.

Based on the comparison, the model for hardness under predicted the result.

One of the possible reasons is that the material properties defined in the numerical
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Table 3.4. Comparison of the indentation results

Experimental homogeneous image based

Hardness 78.06 67.204 67.975

Deviation 0.139073 0.129195

model were not accurate enough. For ceramic materials, any microstructure difference

might cause the properties in the large scale. Another potential reason is that the

indenter used for this indentation test might have wear effect during operation, thus

the indentation depth would be under measured, as shown in Eq (3.1), and the real

hardness will be smaller than the measured value.

3.5 Summary

In this chapter, a study on Rockwell indentation of yttria-stabilized zirconia was

conducted on both experimental and computational aspects. The experimental Rock-

well superficial indentation test showed the hardness of YSZ coating was 78HRN and

the microscope image was taken for further simulation modeling. The principle of

object oriented finite element modeling was proposed and validated using tungsten

carbide composite material. Finally, using the microstructure image from the experi-

ment and the validated method, the Rockwell indentation was simulated using finite

element analysis, the simulated hardness was close to the experimental data, and

analysis was conducted on the aspects of stress distribution and load depth curve.
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4. CONCLUSION AND FUTURE WORK

Atomistic scale simulations for both tetragonal and monoclinic phase zirconia were

developed. These simulations were based on the first principles method density func-

tional theory. Using this model, thermodynamic properties of monoclinic zirconia

crystal structure were first calculated. The specific heat capacity at constant volume

kept increasing from 0 to 350 K, from 0 to about 60 J/mol-K, respectively. Compari-

son of this result with experimental data and simulated results show high agreement.

Also by using this model, the temperature dependent phase transition was studied.

A monoclinic zirconia unit cell was subjected to compressive hydrostatic pressure up

to 50 GPa. Bond gaps were calculated and analyzed. The initial bond gap kept de-

creasing until the phase transition pressure of 37 GPa; at higher pressures, the bond

gap started to increase corresponding to pressure. Lattice geometry was also studied

in this model; the tetragonal distortion factor kept decreasing, until it reached a con-

stant value which is not affected by the increasing of pressure. Both the bond gap

values and tetragonal distortion factor results indicated the pressure point for phase

transition.

Finite element simulation for yttria-stabilized zirconia mechanical properties was

conducted. The numerical model of Rockwell indentation was developed using the

image-based finite element method. Unlike the conventional finite element modeling,

where a homogenous material is defined in the simulation, the image-based FEM

started with the microscopic morphology of the TBC material. Because this study

took the microstructure of the material into consideration, more accurate results were

achieved. The experimental indentation test was performed using Rockwell HR15N

superficial indentation, and hardness of YSZ samples were measured. The concept of

image based (object oriented) finite element analysis was proposed and the method

was well validated by the study of Co/WC matrix structure. The process of validation
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included temperature elevation simulation for thermal properties validation, and the

tensile stress simulation for mechanical validation. Results show that the image based

FEM is good for both thermal and mechanical properties simulations. Finally, this

work used the validated image based FEM to simulate the mechanical behavior of

YSZ under Rockwell hardness test. The load steps according to the experimental test

was simulated and the hardness of YSZ was calculated.

In summary, the new contributions of this thesis work include:

(1) The atomistic simulations correctly predicted the phase transitions of m-ZrO2

under compressive pressures ranging from 0 to 70 GPa. The phase transition pressures

of monoclinic to orthorhombic I (3 GPa), orthorhombic I to orthorhombic II (8 GPa),

orthorhombic II to tetragonal (37 GPa), and stable tetragonal phases (37-60 GPa)

are in excellent agreement with experimental data.

(2) This work developedan image-based finite element model to simulate Rock-

well indentation of air plasma sprayed YSZ thermal barrier coating. The predicted

hardness agrees fairly well with the experimentally measured value.

Though significant results have been achieved in this work, there are still many

questions that need to be addressed. A few suggested future research directions may

include:

(1) Atomistic model of phase transformation of yittria-stabilized zirconia;

(2) Atomistic model of vacancy and defects in zirconia, and their role in affecting

material properties;

(3) Three-dimensional finite element model with realistic microstructures.
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