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ABSTRACT

Gannavaram, Spandana. M.S.M.E, Purdue University, December 2013. Modeling
and Design Optimization of a Microfluidic Chip for Isolation of Rare Cells. Major
Professor: Likun Zhu.

Cancer is still among those diseases that prominently contribute to the numerous

deaths that are caused each year. But as technology and research is reaching new

zeniths in the present times, cure or early detection of cancer is possible. The de-

tection of rare cells can help understand the origin of many diseases. The current

study deals with one such technology that is used for the capture or effective sep-

aration of these rare cells called Lab-on-a-chip microchip technology. The isolation

and capture of rare cells is a problem uniquely suited to microfluidic devices, in which

geometries on the cellular length scale can be engineered and a wide range of chemical

functionalizations can be implemented. The performance of such devices is primarily

affected by the chemical interaction between the cell and the capture surface and

the mechanics of cell-surface collision and adhesion. This study focuses on the fun-

damental adhesion and transport mechanisms in rare cell-capture microdevices, and

explores modern device design strategies in a transport context. The biorheology and

engineering parameters of cell adhesion are defined; chip geometries are reviewed.

Transport at the microscale, cell-wall interactions that result in cell motion across

streamlines, is discussed.

We have concentrated majorly on the fluid dynamics design of the chip. A simpli-

fied description of the device would be to say that the chip is at micro scale. There

are posts arranged on the chip such that the arrangement will lead to a higher capture

of rare cells. Blood consisting of rare cells will be passed through the chip and the

posts will pose as an obstruction so that the interception and capture efficiency of the

rare cells increases. The captured cells can be observed by fluorescence microscopy.
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As compared to previous studies of using solid microposts, we will be incorporating

a new concept of cylindrical shell micropost. This type of micropost consists of a

solid inner core and the annulus area is covered with a forest of silicon nanopillars.

Utilization of such a design helps in increasing the interception and capture efficiency

and reducing the hydrodynamic resistance between the cells and the posts.

Computational analysis is done for different designs of the posts. Drag on the

microposts due to fluid flow has a great significance on the capture efficiency of the

chip. Also, the arrangement of the posts is important to contributing to the increase

in the interception efficiency. The effects of these parameters on the efficiency in

junction with other factors have been studied and quantified. The study is concluded

by discussing design strategies with a focus on leveraging the underlying transport

phenomena to maximize device performance.
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1. INTRODUCTION

1.1 Rare Cells: Circulating Tumor Cells

Cancer is a leading cause of death worldwide and accounts for millions of deaths

every year. For many years now the origin of cancer has been a question that is yet

to be completely answered and ways to treat this disease have produced few good

solutions. A hundred years ago, with the discovery of radioactivity, people saw an

association between cancer and exposure to X-rays or radioactive elements. More

recently, some scientists proposed that cancer was caused by viruses. Others said

that cancer arose from inborn genetic flaws. Until recently, there was no unifying

theory to tie together these observations. And no matter what the cause, for most

of history there was very little that doctors could do to treat cancer effectively. In

the last century there have been moderate improvements in treating cancer, and in

the last decade or two researchers have come to a unifying overview of how cancers

arise. This unified view assumes that the growth of tissues and the reproduction

of cells in our bodies are carefully regulated through the action of key sets of DNA

instructions. When those DNA sequences are disrupted–whether through viruses,

environmental causes like radiation or toxins, mutations transcription errors or inborn

genetic flaws, cell reproduction becomes less well regulated. Eventually, those changes

can produce the rapidly reproducing, self-protective and opportunistic cells that typify

cancer [1, 2, 5, 6].

Metastasis is a complex process that involves the spread of a tumor or cancer to

distant parts of the body from its original site. However, this is a difficult process.

To successfully colonize a distant area in the body a cancer cell must complete a

series of steps before it becomes a clinically detectable lesion. Metastasis is one of

three hallmarks of malignancy or cancer as opposed to a benign tumor. Most tumors
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and other neoplasms can metastasize. The degree of ability to spread, however,

varies between different types of tumors. Some organs are more prone than others to

metastasis of primary tumors. The theory for metastasis states that cancer cells find

survival outside their primary suites difficult. To spread they need to find a location

with similar characteristics [5].

Rare cells in cancer research can comprise of stem cells and circulating tumor

cells (CTCs). Stem cells are cells that reproduce themselves and give rise to other

kinds of cells. Most cells in our bodies are not stem cells. Some, like blood precursor

cells, can give rise to various kinds of blood cells, but cannot reproduce themselves.

Research has shown that cancer cells are not all the same. Within a malignant tumor

or among the circulating cancerous cells of leukemia, there can be a variety of types

of cells. The stem cell theory of cancer proposes that among all cancerous cells, a

few acts as stem cells that reproduce themselves and sustain the cancer, much like

normal stem cells normally renew and sustain our organs and tissues. In this view,

cancer cells that are not stem cells can cause problems, but they cannot sustain an

attack on our bodies over the long term. The idea that cancer is primarily driven by a

smaller population of stem cells has important implications [8,9]. For instance, many

new anti-cancer therapies are evaluated based on their ability to shrink tumors, but

if the therapies are not killing the cancer stem cells, the tumor will soon grow back

(often with a vexing resistance to the previously used therapy). An analogy would be

a weeding technique that is evaluated based on how low it can chop the weed stalks;

but no matter how low the weeks are cut, if the roots arent taken out, the weeds will

just grow back. Another important implication is that it is the cancer stem cells that

give rise to metastases i.e. when cancer travels from one part of the body to another

and can also act as a reservoir of cancer cells that may cause a relapse after surgery,

radiation or chemotherapy has eliminated all observable signs of a cancer [7].

For a promising treatment of cancer, early diagnosis is important. This is done so

by detecting the rare cells such as circulating tumor cells (CTCs) in patient blood.

CTCs are cells detached from a primary tumor and circulated in the bloodstream
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that can serve as important cancer biomarkers. However, they are rare, comprising

only 1 out of 109 haematologic cells in 1 mL blood sample. Methods that can sen-

sitively and accurately detect CTCs are, therefore, in great demand. Among all the

tools developed till now, microfluidic chips with high-affinity ligands have provided

an easy and inexpensive way to capture and detect CTCs. Circulating tumor cells

have been identified in peripheral blood from cancer patients and are probably the

origin of inflexible metastatic disease. Although extremely rare, CTCs represent a

potential alternative to invasive surgeries as a source of tumor tissue for the detection,

characterization and monitoring of non-haematologic cancers. The ability to identify,

isolate, propagate and molecularly characterize CTC subpopulations could further

the discovery of cancer stem cell biomarkers and expand the understanding of the

biology of metastasis. Current strategies for isolating CTCs are limited to complex

analytic approaches that generate very low yield and purity [4].

Recent lab-on-a-chip technologies include the development of a silicon microchip

for capturing CTCs using antibodies as capturing ligands. Various research groups

have employed microfluidic device with different structures to increase the capture

efficiency of CTCs. This work aims to design, fabricate, and characterize a micro scale

design that will be integrated into microfluidic devices to enhance particle and rare

cell capture efficiency. Despite the significant progress achieved in development of cell

capture techniques, the enhancement in capture efficiency is still limited and often

accompanied with drawbacks such as low throughput, low selectivity, pre-diluting

requirement, and cell viability issues [10].

We have studied effects of fluid flow and its influence on the capture efficiency

for two different configurations of microposts. They are a) solid micropost and b)

solid core with permeable shell micropost. The novelty of this particular field of

cancer research is the incorporation of the solid core with permeable shell micropost

design. With the support of computational analysis and simulations, the efficiency

of this design will be quantified and the study will be directed towards reducing the

problems of low throughput, selectivity and increasing binding and capture efficiency.
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This work will include the various fabrication processes of the devices and then each

of the designs will then be compared for the respective efficiencies of the capture of

rare cells [21].

1.2 Literature Review

1.2.1 Microfluidics and Lab-on-a-chip Technology for Cell Separation

Diminishment of macroscale laboratory operations can expand the scope and func-

tionalization of existing bioassays, separation technologies and chemical synthesis

techniques. Although a reduction in size to the micrometer scale will usually not

change the nature of molecular reactions, laws of scale for surface per volume, molec-

ular diffusion and heat transport enable dramatic increases in throughput. Microflu-

idic chips have been widely used to provide small volumes and fluid connections and

could eventually outperform conventionally used robotic fluid handling. Moreover,

completely novel applications without a macroscopic equivalent have recently been

developed [19,21,23].

Microfluidic chips deals with the behavior, precise control and manipulation of

fluids that are geometrically constrained to a small, typically sub-millimeter scale.

The volume of fluid that can be handled by these chips can be as small as Pico liters.

The size of the channels is in the range of a few micrometers and therefore facilitates

the handling of such low volumes of fluid. Microfluidic devices require only a small

amount of sample and reagents for processing and possesses large surface to volume

ratios. In addition, fast reaction times and ease of automation make microfluidic

devices ideal for application in biomedical engineering scenarios [12].

The Reynolds number, Re, for most microfluidic applications is less than 1 and

simplified forms of the Navier-Stokes equation are substantiated; Stokes flow con-

ditions are often satisfied. The characteristics of the strictly laminar flow regime

alter the design process for microfluidic components, in particular micro-reactors and

micro-mixers. Scaling down the size creates a surface force dominating environment.
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Surface forces, such as capillary and electrostatic forces, scale to the first or second

order of the characteristic length while body forces, gravity and magnetic forces, scale

to the third power. According to the same principle, diffusion time and velocity time

scale to the second power and first power of the length, respectively. The Peclet

number,Pe scales approximately to the first power; however, it isnt uncommon for a

wide range of Pe values to be encountered in microfluidics, making generalizations

about the relative advection and diffusion properties difficult [8].

Four principal methods are used for generating flow in microfluidic systems: 1.

pressure force, 2.electroosmotic force, 3. centrifugal force, and 4. capillary force.

Pressure driven flow is very common; the flow characteristics are well reported and

predictable in the laminar regime. The fluid pumping is accomplished by external

high-precision syringe pumps or by on-chip peristaltic or micro-pneumatic pump-

ing techniques. Centrifugal force is rarely incorporated as the primary microfluidic

flow technique due to the requirement for high-speed rotation. The Gyrolab micro-

laboratory developed by Gyros is an example of a device using this mechanism for

the analysis of proteins. Capillary forces become very significant at the microscale

and can rapidly propel fluids through networks with appropriate hydrophilic surface

conditions. Passive valves have been developed by patterning hydrophobic sections

in an otherwise hydrophilic network, but capillary action is difficult to harness for

continuous flow operation [24,25].

Microfluidics has been widely used in the development of lab-on-chip devices,

particularly for drug screening in the pharmaceutical industry and in the development

of micro-arrays. The technology is rapidly maturing following vigorous research effort

over the last 20 years. In the near future, we will see a growing trend towards the

production of tailored microfluidic devices which satisfy particular needs, which may

be clinical, pharmaceutical, or biotechnological [37–39].

One of the most promising applications of microfluidics in biomedical engineering

is in point-of-care diagnosis. In the important sample preparation stage, targeted bio-

logical cells need to be separated from other substances in the sample. Conventionally,



6

cells can be separated in a fluidic suspension, based on size, density, electrical charge,

light-scattering properties, and antigenic surface properties. Separating cells accord-

ing to these metrics can require complex technologies and specialist equipment. Such

techniques include centrifuging, fluorescence activated cell sorting, electrophoresis,

chromatography, affinity separation and magnetic separation. Microfluidic solutions

have been successfully engineered to either integrate into the above techniques, or to

function as a standalone device to execute sample preparation tasks [44].

Information about a given cell population can be gained using a variety of cell

control, detection, and analysis methods. Furthermore, distinct characteristics of

subpopulations can be gathered by analyzing each individual cell from a population,

as opposed to averaging the parameters of an entire population. Characterization

of the individual cells and intracellular contents is useful for the study of many pro-

cesses where details of cell behavior and function provide understanding of biological

practices and assist in optimization. This function enables far more flexibility in cell

diagnostics. For example, the detection and analysis of a particular cell is used in

oncology for the diagnosis of chromosomal defects and cancers, such as leukemia, lym-

phoma, and breast cancer. Pharmacology, drug discovery, and the effects of drugs on

bioparticles can be investigated using cellular analysis. Rapid detection of bacteria,

such as E. coli, in food or water sources has importance as food transported illnesses

and outbreaks are seemingly common. Also, genetics research, environmental mon-

itoring, and immunology, such as the analysis of blood samples and bone marrow

samples, benefit from the ability to characterize subpopulations from a larger cellular

matrix [13].

In the recent past, this technique of lab-on-a-chip has been extensively applied

to the cancer research field. With cancer being one of the most prominent health

concerns, the development of new technologies for cancer diagnostics and therapy

monitoring is of enormous interest. While traditional therapeutic approaches target

primary tumor characteristics, tumor cell dissemination is the most critical aspect

in respect of prognosis. To reflect the molecular characteristics of tumor cells, in-
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cluding their potential for metastasis development, tumor recurrence, and prognosis,

circulating tumor cells (CTCs) in peripheral blood are discussed as relevant markers.

CTCs are cells that disseminate from the tumor and may lead to the formation of

metastase. Detection of circulating tumor cell analysis in peripheral blood resembles

a promising alternative in the progress towards curing cancer [8].

In the literature of the research, many mechanisms have been developed and put

into practice for the separation of cells, more specifically CTCs. One such mechanism

is the immunomagnetic separation based on capture agent- labeled magnetic beads.

An immunomagnetic cell separator, the MagSweeper, gently enriches target cells and

eliminates cells that are not bound to magnetic particles. The isolated cells are easily

accessible and can be extracted individually based on their physical characteristics to

deplete any cells nonspecifically bound to beads. Fundamentally, cell capture occurs

when the magnetic force exerted on a labeled cell, Fm, is sufficient to draw the cell

to the surface of the magnet. The magnetic force is opposed by a viscous drag force

that results from the cells motion relative to that of the surrounding fluid. As the

magnet sweeping speed is increased, the region of cell capture around the magnet

(i.e., the cross-sectional capture area) will shrink. The details of cell capture in the

MagSweeper system are complex, featuring orbital magnet motion, circular fluid flow,

nonuniform magnetic field gradients, and variable particle susceptibility.

Figure 1.1. The schematic representation of the process of cell capture
in the MagSweeper system [12].
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The diluted blood samples, which are prelabeled with magnetic particles, are

loaded into the capture wells. The magnetic rods covered with plastic sheaths are

swept through the well in concentric circular loops at a level 1.5 mm above the bottom

of the wells. After sweeping through the whole area of the capture wells, the sheathed

magnets are washed in a circular loop to remove loosely bound contaminating cells.

The rods are then immersed into a new buffer solution and disengage from the plastic

covers. The external magnets located under the wells facilitate release of labeled cells

and excess magnetic particles. Another round of capture-wash-release is performed

to eliminate the majority of remaining contaminant cells entrapped within excess

magnetic particles [9].

A major development in this field was brought about by S. Nagrath and group.

They had introduced and developed a circulating tumor cell chip (CTC-chip)which

is shown in Fig. 1.2. As stated earlier, microfluidic lab-on-a-chip devices provide

unique opportunities for cell sorting and rare-cell detection. They have been suc-

cessfully used for microfluidic flow cytometry, continuous size-based separation and

chromatographic separation. The research group made use of this concept to develop

the CTC-chip. In their study, they have discussed the development and applica-

tion of a microfluidic device that can efficiently and reproducibly isolate CTCs from

the blood of patients with common epithelial tumors. The CTC-chip consists of

an array of microposts that are made chemically functional with anti-epithelial-cell-

adhesion-molecule (EpCAM) antibodies. Anti-EpCAM provides the specificity for

CTC capture from unfractionated blood because EpCAM is frequently overexpressed

by carcinomas of lung, colorectal, breast, prostate, head and neck, and hepatic origin,

and is absent from haematologic cells [8].

3D-nanostructured substrate coated with cancer-cell capture agents (i.e. epithelial

cell adhesion molecule antibody, anti-EpCAM) exhibits significantly improved cell-

capture efficiency owing to its enhanced local topographic interactions between the

silicon nanopillar (SiNP) substrates and nanoscale cellular surface components (e.g.,

microvilli and filopodia). Such a high-affinity cell assay can be employed to recover
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Figure 1.2. One-step process for point-of-care isolation of CTCs from
peripheral blood [4].

cancer cells from spiked whole-blood samples, in a stationary device setting, with cell-

capture efficiency ranging from 40 to 70%. On the basis of this stationary cell-capture

assay, it was anticipated that further improvement of cell-capture performance can

be achieved by increasing cellsubstrate contact frequency. By integrating a simple

but powerful fluidic handling system, namely a chaotic mixing channel,shown in Fig.

1.3 with a patterned nanostructured substrate, highly efficient CTC capture can be

realized by the synergistic effects of enhanced cellsubstrate contact frequency as well

as affinity. Although there are several microfluidic platforms capable of achieving

improved CTC-capture efficiency, the micropillar based CTC-capture technologies

suffer from depth of field issues thus requiring multiple cross-sectional imaging scans

to avoid out-of-focus or superimposed images of device immobilized CTCs because

of to the vertical depth of the device features [16]. The microfluidic device with an

integrated conductivity sensor provides the significant advantage of label-free CTC

detection. However, whether the lack of cellular morphology influences pathologic

characterization remains to be determined.

The device is composed of two functional components, a patterned silicon nanopil-

lar (SiNP) substrate (1) with anti-EpCAM-coating exhibiting vastly enhanced CTC-
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Figure 1.3. (1) Patterned Silicon Nanopillar substrates (2) The
chaotic mixing chip that facilitates the cell-post contact [1].

capture affinity, and an overlaid microfluidic chaotic mixing chip (2) capable of pro-

moting cellsubstrate contact frequency.

To efficiently isolate rare cells from complex mixtures, an electrokinetic sorting

methodology was developed that exploits dielectrophoresis (DEP) in microfluidic

channels. In this approach, the dielectrophoretic amplitude response of rare target

cells is modulated by labeling cells with particles that differ in polarization response.

Cell mixtures were interrogated in the DEP-activated cell sorter in a continuous-flow

manner, wherein the electric fields were engineered to achieve efficient separation

between the dielectrophoretically labeled and unlabeled cells. To demonstrate the

efficiency of marker-specific cell separation, DEP-activated cell sorting (DACS) was

applied for affinity-based enrichment of rare bacteria expressing a specific surface

marker from an excess of non-target bacteria that do not express this marker. Rare

target cells were enriched by >200-fold in a single round of sorting at a single-channel

throughput of 10,000 cells per second. DACS offers the potential for automated,

surface marker-specific cell sorting in a disposable format that is capable of simulta-

neously achieving high throughput, purity, and rare cell recovery [17].

The DACS device was designed and constructed to exploit the differences in di-

electrophoretic response between unlabeled and bead-labeled cells. A schematic view

of the device design is shown in Fig. 1.4 where the matching electrodes on the top

and bottom walls of the microchannel establish an electric field with the highest field
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gradient occurring close to the electrodes. The electrodes were fabricated at an angle

of 150 to the direction of the fluid flow to reduce the nDEP force required for the

deflection. As the mixture enters this region, the dielectrophoretically labeled cells

are selectively deflected by nDEP. As a result, target cells can be electrokinetically

funneled into the collection channel while the unlabeled cells are rejected into the

waste channel.

Figure 1.4. The DACS system that is used for specific cell sorting [5].

B.J. Kirby et.al introduced a new technique that demonstrated high-efficiency and

high-purity capture of Prostate cancer circulating tumor cells (PCTCs) from periph-

eral blood samples of castrate-resistant prostate cancer patients using an antibody

for prostate-specific membrane antigen (PSMA), a highly prostate specific cell-surface

antigen. The approach they have followed is the use of staggered obstacle arrays to

create size dependent particle trajectories that maximize PCTCobstacle wall inter-

actions while minimizing the interactions of other blood cells. This technique was

termed as geometrically enhanced differential immunocapture (GEDI). The GEDI

device geometry was designed to maximize streamline distortion and thus bring de-

sired cells in contact with the immunocoated obstacle walls for capture. Blood is a

dense heterogeneous cell suspension consisting of cells of various sizes ranging from

approximately 4 to 18 mm in size. PCTCs, in contrast, are larger and range from 15 to

25 mm in diameter. Relative obstacle alignment was chosen so that the displacement

caused by cell impact with obstacles increases the likelihood of future cell impacts

for large cells more than for small cells. Thus when cell-obstacle impact does not
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lead to capture, larger cells are displaced onto streamlines that impinge onto the next

obstacle, while smaller cells are displaced onto streamlines that do not impinge [8].

M. Toner et al developed a new concept which included the integration of vertically

aligned carbon nanotubes (VACNTs) on the obstacle wall. To enhance the efficiency,

they arranged the micro-post arrays perpendicular to the flow, spanning across the

height of the channel. This improves cell-surface interactions by increasing the overall

surface area, as well as by bringing capture surfaces closer to cells passing through the

center of the channel. The micro-post array design is used in some of the most efficient

microfluidic devices for rare cell isolation. Isolation efficiency is a function of the

interception efficiency and the binding efficiency. They have studied the interception

efficiency in the flow regime of a typical microfluidic system, and shown that the

interception efficiency can greatly be improved by using nanoporous posts instead of

solid posts [10].

1.2.2 Study of Fluid Flow on Cylinders

The computational predictions of the relevant hydrodynamical parameters of the

flow of a viscous incompressible fluid past a swarm of porous particles at nanoscale are

of considerable practical and theoretical interest of many physical, engineering, and

medical problems. Deo et al have discussed an aggregate of porous nanocylindrical

particles is considered as a hydro-dynamically equivalent to a solid cylindrical core

with concentric porous cylindrical shell. The Brinkman equation inside the porous

cylindrical shell and the Stokes equation outside the porous cylindrical shell in their

stream function formulations were used. Explicit expressions for the stream functions

in both regions were investigated. The drag force acting at each nanoporous cylin-

drical particle in a cell was evaluated. Also, they solved the same problem by using

Happel boundary condition on the hypothetical cell. In certain limiting cases, drag

force converges to pre-existing analytical results, such as the drag on a porous circular

cylinder and the drag on a solid cylinder in Kuwabaras cell or Happels cell [22].
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Srivastava discussed the uniform flow of an incompressible viscous fluid at small

Reynolds number past a porous sphere of a radius with a solid concentric spherical

core of a specific radius had been discussed. The region of the porous shell is called

zone I which is fully saturated with the viscous fluid, and the flow in this zone is

governed by the Brinkman equation. The space outside the shell where clear fluid

flows is divided into two zones (II and III). In these zones the flow is discussed

following Proudman and Pearsons method of expanding Stokes stream function in

powers of Reynolds number and then matching Stokes solution with Oseens solution.

The stream function of zone II is matched with that of zone I at the surface of the

shell by the condition suggested by Ochoa Tapia and Whitaker [14].

Figure 1.5. Fluid with velocity U that flows perpendicular to the
axis of the cylinder. The cylinder is a composite cylinder that has
a solid central core and a porous sheath covering. The Brinkman
equation is solved in the porous region and the Navier-stokes in the
fluid region [20].

Taamneh and Bataineh investigated axisymmetric viscous, two-dimensional steady

and incompressible fluid flow past a solid sphere with porous shell at moderate

Reynolds numbers. They have studied the Reynolds number based on the free stream

fluid velocity and the diameter of the solid core, and the ratio of the porous shell thick-

ness to the square root of its permeability. The flow in the free fluid region outside

the shell is governed by the NavierStokes equation. The flow within the porous an-

nulus region of the shell is governed by a Darcy model. In their study, parametric
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equation relating the drag coefficient and separation point with the Reynolds number

and porosity parameter were obtained by multiple linear regressions. In the limit of

very high permeability, the computed drag coefficient as well as the separation angle

approaches that for a solid sphere of radius a, as expected. In the limit of very low

permeability, the computed total drag coefficient approaches that for a solid sphere

of radius b, as expected. It was found that the total drag coefficient around the solid

sphere as well as the separation angle is strongly governed by the porous shell per-

meability as well as the Reynolds number. The separation point shifts toward the

rear stagnation point as the shell permeability is increased. Separation angle and

drag coefficient for the special case of a solid sphere of radius r = a was found to

be in good agreement with previous experimental results and with the standard drag

curve [13].

Noymer et al, speaks about the drag on a permeable cylinder in steady flow at

moderate Reynolds numbers. There are two dimensionless parameters in their study

are the Reynolds number based on the free-stream fluid velocity and the diameter

of the cylinder, and the ratio of the permeability of the cylinder to the square of

the cylinder diameter. In the limit of very low permeability, the computed drag

coefficient approaches that for a solid cylinder, as expected. In the limit of very

high permeability, the computed drag coefficient asymptotically approaches zero, a

phenomenon that can be predicted using Darcy’s Law. Between these extremes in

permeability, a distinct dependence of the behavior of the computed drag coefficient

on Reynolds number was observed. For higher Reynolds numbers, an increase in

drag of up to 50% over that for a solid cylinder has been computed, while for lower

Reynolds numbers, very little change in drag was observed. In the inner region, mass

conservation and Darcy’s law for flow in a permeable body are applied in order to

solve for the pressure and velocity fields [20].
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The mass conservation equation for two-dimensional, incompressible flow is given

by the following expression

5.~V = 0 (1.1)

and the conservation of momentum is expressed in Darcy’s Law:

5P = 0 (1.2)

A modification to Darcy’s law established by Brinkman is a more general state-

ment of momentum conservation. However, an order-of-magnitude analysis shows

that Brinkman’s formulation reduces to Eq.1.2 when the ratio of permeability and

the square of the system length scale is less than unity. In subsequent sections, we

define this ratio as the permeability ratio and in this study; the permeability ratios

considered are generally orders of magnitude smaller than unity, or approaching unity

in some cases. As a result, we believe that Eqs.1.1 and 1.2 adequately describe the

flow field within the porous cylinder [18].

In the outer region, the mass conservation expression of Eq.1.1 is applied, while

the steady-state, two dimensional, incompressible form of the Navier-Stokes equation

is used to solve for the momentum of the fluid flow:

ρ~V .5 ~V = −5 P + µ52 ~V (1.3)

The solutions for the pressure and mass flow are matched at the interface of the

two regions, and the boundary conditions that are specified are the pressure on the

exterior of the domain and the velocity on the exterior of the domain to the windward

side of the cylindrical body [20]. Matching the mass flow of the outer region to that

of the inner region at the interface of the two regions provides the second boundary

condition for velocity required by Eq.1.3.

Grosan and Pop have carried out an analytical investigation for a two-dimensional

steady, viscous, and incompressible flow past a permeable sphere embedded in another

porous medium using the Brinkman model, assuming a uniform shear flow far away

from the sphere. Semi-analytical solutions of the problem were derived and relevant
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Figure 1.6. Cylinder consisting of a solid inner cylinder that is im-
mersed in another porous medium [20].

quantities such as velocities and shearing stresses on the surface of the sphere are

obtained. The streamlines inside and outside the sphere and the radial velocity are

shown in several graphs for different values of the porous parameters. It was shown

that the dimensionless shearing stress on the sphere is periodic in nature and its

absolute value increases with an increase of both porous parameters [7].

1.3 Objectives of Present Research

The development of microchips for the separation of rare cells has been very

impressive over the past few years. Table 1.1 summarizes the type of separation that

has been used in previous studies and the principle of separation underlying it. It

also includes the design that is contributed by the present work.

However, some drawbacks still exist. Few of the major shortcomings that lead to

reduction in efficiency of the chip are low throughput and selectivity, lower cell capture

efficiency, high shear stress at the walls of the posts, low interception efficiency etc.
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Nagrath et al, utilized solid microposts for capturing CTCs. Though an effi-

cient model, the use of solid microposts brought about some challenges such as high

hydrodynamic resistance between the posts and the cells, thereby decreasing the in-

terception efficiency. The widely used definition of interception efficiency is given by

η = b
dc

, where b is the span of particles upstream that are ultimately intercepted by

the collector, and dc is the collector diameter [4, 10].

Figure 1.7. Deduction of efficiency of cell capture. b is the span of
particles upstream. Higher b leads to higher capture efficiency [10].

The present research is directed towards five main objectives. The achieving of

these goals would help us in increasing the capture efficiency.

The first objective is to achieve lower shear force on the cylindrical microposts by

the fluid. By ensuring lower shear stress, the cells are more likely to come in contact

with the posts and remain in contact with the post, thereby increasing the capture

efficiency.

Secondly, from the definition of efficiency shown above, efficiency increases with

the increase in the parameter b which is the span of particles upstream that are

ultimately intercepted. The post diameter dc is taken to be constant throughout the

study and hence the increase in bandwidth or span of the particles ultimately results

in the increase in capture efficiency.

In order to achieve higher capture efficiency, the alternate design approach we

proposed was to use a porous cylindrical shell with a solid impermeable core. The
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study of this design and the parameters that would influence this flow would be our

third objective.

A major influence on the capture efficiency is the arrangement of posts. Initially

the study is carried out on an equilateral triangle arrangement and then with few

modifications in the arrangement, it shown how the capture efficiency is enhanced.

This will form the fourth objective of the study.

The fifth objective is to chemically coat the posts with nucleic acid aptamers.

The advantages of coating the posts with these aptamers are that they increase the

binding affinity and binding selectivity and also are relatively less toxic. Also they

are small in size, easy to synthesize and are tolerant to harsh conditions. The surface

of the posts is decorated with Silicon Nanopillars which serve as a binding or trapping

medium of the rare cells. This is because of the Microvilli and Filopodia present on

the cell surface. They play an important role in epithelial cell-cell contact. Due to

coating of the surfaces with nucleic acid aptamers that are specific to the binding of

this Microvilli and Filopodia via the silicon nanopillars on the post surface, a high

cell capture efficiency can be recorded [15].
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Table 1.1. Summary of devices used indicating their advantages and disadvantages.

S.No Name of Device Principle Advantages/Disadvantages

1. Geometrically

Enhanced

Differential Im-

munocapture (GEDI)

This is justified and

may go to second line

as well, neatly induce

a size-dependent col-

lision frequency and

streamline distortion.

[8]

Efficiency of 65%-70%.

2. MagSweeper Device Based on immuno-

magnetic separa-

tion [5].

Low purity and low yield

3. Circulating Tumor

Cell (CTC) Chip

Array of microposts

that are made chemi-

cally functional [4].

Due to presence of solid

microposts, efficiency is

greatly reduced.

4. Nanoporous micro-

posts with forest of

VACNT

Porous microp-

osts that are made

up of Vertically

Aligned Carbon

Nanotubes [10].

High capture efficiency but

device reusability is low.

VACNT cannot withstand

high shear forces and may

break off.

5. Chaotic Micromixing

Device

Local topographic

interactions between

the silicon nanopil-

lar (SiNP) and cell

surface [1].

Presence of SiNP helps

withstand high shear force.

Contact efficiency between

forest and cell wall is low.

6. Present work Forest of SiNP coated

with Nucleic acid

grown on the microp-

ost surface [15].

Can withstand high shear

force, hence increases

throughput and efficiency.
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2. THEORETICAL BACKGROUND

2.1 Navier Stokes Equations

The Navier-Stokes equations are the fundamental partial differentials equations

that describe the flow of incompressible fluids. The conservation of mass is given by

∂ρ

∂t
+5.(ρ~V ) = 0 (2.1)

~V = u~i+ v~j (2.2)

Because our primary unknowns are the flow properties (u, v, ρ, r, T ) there is a need

to link the stresses t with these physical variables. In solid mechanics (Hooke’s law)

stress is set proportional to strain. This works for solids because a solid undergoes

only a finite amount of deformation when a force or stress is applied to it. In fluid

mechanics, this approach does not work because fluid continuously deforms when

a shear stress is applied. It is this characteristic that distinguishes a fluid from a

solid [20].

Figure 2.1. : Fluid that is contained between two parallel plates.

Newton came up with the idea of requiring the stress τ to be linearly proportional

to the time rate at which strain occurs. Specifically he studied the following problem.
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There are two flat plates separated by a distance ′h′. The top plate is moved at

a velocity ′V ′, while the bottom plate is held fixed. Newton postulated (since then

experimentally verified) that the shear force or shear stress needed to deform the fluid

was linearly proportional to the velocity gradient:

τ =
V

h
(2.3)

The proportionality factor turned out to be a constant at moderate temperatures,

and was called the coefficient of viscosity, µ. Furthermore, for this particular case,

the velocity profile is linear, giving V/h = ∂u/∂y. Therefore, Newton postulated:

τ = µ
∂u

∂y
(2.4)

Stokes Hypothesis:

Stokes extended Newton’s idea from simple 1-D flows (where only one compo-

nent of velocity is present) to multidimensional flows. Here, the fluid element may

experience a strain rate both due to gradients such as ∂u/∂y as well as ∂v/∂x. He

developed the following relations, collectively known as Stokes relations.

τxx = 2µ
∂u

∂x
+ λ(

∂u

∂x
+
∂v

∂y
+
∂w

∂z
) (2.5)

τyy = 2µ
∂v

∂y
+ λ(

∂u

∂x
+
∂v

∂y
+
∂w

∂z
) (2.6)

τzz = 2µ
∂w

∂z
+ λ(

∂u

∂x
+
∂v

∂y
+
∂w

∂z
) (2.7)

τxy = τyx = µ(
∂u

∂y
+
∂v

∂x
) (2.8)

τyz = τzy = µ(
∂w

∂y
+
∂v

∂z
) (2.9)



22

τxz = τzx = µ(
∂u

∂z
+
∂w

∂x
) (2.10)

For 2-D flows, somewhat simpler expressions are obtained if we set w, the z-

component of velocity, to zero, and if we set all derivatives with respect to z to be

zero.

The conservation of momentum in the x-direction is given by

∂(ρu)

∂t
+
∂(ρu2 + p)

∂x
+
∂(ρuv)

∂y
=
∂τxx
∂x

+
∂τxy
∂y

(2.11)

And in the y-direction is given by

∂(ρv)

∂t
+
∂(ρv2 + p)

∂y
+
∂(ρuv)

∂x
=
∂τyy
∂y

+
∂τxy
∂x

(2.12)

2.2 Darcy’s Law: Porosity and Permeability

The fluid storage capacity of porous media is mainly determined by its porosity,

whereas the absorption and spreading rate is determined by the permeability. The

permeability coefficient may be calculated by Darcy’s Equation [18].

Permeability is the most important physical property of a porous medium, while

the porosity is its most important geometrical property. The permeability describes

the conductivity of a porous medium with respect to fluid flow, whereas the porosity

is a measure of the fluid storage capacity of a porous material. Permeability describes

how easily a fluid is able to move through the porous material. It is calculated using

a formula known as Darcy’s Law.

Current equations describing fluid transport in porous media are based on semi-

empirical equations derived in the 19th century by Darcy for single-phase flow and in

the 20th century for multiphase flow. These equations describe the average behavior

of a mixture of a porous medium and one or more fluids. Darcy’s law describes the

kinetics of fluid flow through porous media in terms of the driving force and the per-

meability of the medium.
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Darcy’s law is defined by

Q =
K

η

∆P

∆L
A (2.13)

Q =Flow rate (m3/s)

K =Permeability coefficient (m2)

∆P =Pressure drop or difference

L =Flow length or thickness of test sample (m)

A =Area of cross-section (m2)

η =Fluid viscosity (Pa.s)

The permeability coefficient K depends on the combination of fluid and porous

material used. The greater the value of K, the higher will be the rate of flow of a

fluid through material.

2.3 Brinkman Equations for Flow Past Porous Cylinders

When a unidirectional flow encounters a porous cylinder, a complex field develops

partially through and partially around the cylinder. The prediction of the flow rate

passing through and flowing around the cylinder is not straight forward and depends

on many factors such as the physical properties of the medium in question. The

present section focuses on the problem of flow and concentration distribution around

and through a porous cylinder for low and moderate Reynolds number range for non-

potential flows [11,14,18].

Regions with the smaller pores are treated as a permeable medium and flow

is described by Darcy’s law. The two boundary conditions to be satisfied at the

pore/permeable medium interface are continuity of the fluid velocity and the shear

stress. Darcy’s law alone is not sufficient to satisfy these boundary conditions. The

Brinkman equation is a generalization of Darcy’s law that facilitates the matching
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of boundary conditions at an interface between the larger pores and the permeable

medium.

Brinkman’s equation is

5P = − µ
K
~V + µe52 ~V (2.14)

We consider a long cylinder of radius a placed in a uniform flow (from left to right)

with velocity U . A two-dimensional, laminar, incompressible and steady flow of a fluid

with constant properties is considered. We take the characteristic length as a and

characteristic velocity U with center of the cylinder as origin in polar co-ordinates

(r,θ) and the initial line along the direction of the uniform stream. The single set of

equations in non-dimensional form is presented. The radial coordinate r is measured

from the center of the cylinder while the angular coordinate (θ) is measured from the

forward stagnation point of the cylinder.

Figure 2.2. Representation of the flow of fluid perpendicular to the
axis of the cylinder in polar coordinates.
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The dimensionless continuity equation in terms of Darcy velocities are

∂

∂r
(ru) +

v

θ
= 0 (2.15)

The continuity and Brinkman equations, with inertial terms omitted are given by

5.~V = 0 (2.16)

5P = − µ
K
~V + µe52 ~V (2.17)

The dimensionless momentum equations based on the Brinkman model are

−∂p
∂r

= u− σ2(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
− u

r2
− 2

r2
∂v

∂θ
) (2.18)

−1

r

∂p

∂θ
= v − σ2(

∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2
∂2v

∂θ2
− v

r2
+

2

r2
∂v

∂θ
) (2.19)

where

p =
µp?

aKu?∞
(2.20)

The permeability K is related to the porosity ϕ by

K =
d2ϕ3

A(1− ϕ)2
(2.21)

where A is the Ergun constant and d is the particle diameter. This is known as

the Kozeny Carman equation. The quantity σ is a small dimensionless parameter

defined as

σ =
1

a

√
K

ϕ
(2.22)

Introducing the stream function ψ such that

u = −1

r

∂ψ

∂θ
(2.23)
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v =
∂ψ

∂r
(2.24)

so that the continuity equation is satisfied. Eliminating p from equations, the

dimensionless momentum equations reduce to

σ2∇4ψ −∇2ψ = 0 (2.25)

∇2 =
∂2

∂2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
(2.26)

The boundary conditions on the wall of the cylinder are such that there is no

velocity slip, therefore,

ψ(r, θ) =
∂ψ

∂r
(r, θ) = 0

at

r = 1 (2.27)

2.4 Darcy-Brinkman Equation for Flow through an Array of Cylinders

In most of those studies, the flow field inside the, porous bodies is described by

the Darcy equation and the NavierStokes equations are used usually under creep-

ing flow conditions to model the flow outside the body. This approach requires an

appropriate boundary condition at the interface of the porous body. However, in

many applications non-Darcian effects including shear and non-linear effects within

the porous matrix and the viscous effects at the interface become significant under

various conditions. Hence, for the extension of the Darcy equation, the Brinkman

equation is used. The Darcy-Brinkman equation is a governing equation for flow

through a porous medium with an extra Laplacian (viscous) term (Brinkman term)

added to the classical Darcy equation. The equation has been used widely to analyze

high-porosity porous media. The dynamic viscosity, µe, associated with the Brinkman
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term is referred to as the effective viscosity. Studies in the past yielded varying results

for the magnitude of the viscosity ratio µ̂ between slightly less than unity to as high

as < ∼ 10 for high porosity porous media [26,27].

It is given by

µ̂ =
µ

µe
(2.28)

In the present section our subject of interest is flow over regular arrays of circular

cylinders. The analysis which solves the Navier- Stokes equations rather than the

Darcy equation, yields a relation between the permeability of the regular array struc-

ture and the porosity (volume fraction occupied by the flow), confirming that the

Darcy equation is valid for flow through regular structures over the whole spectrum

of the porosity. Therefore, quantitative relations between the wall effects and the

Darcy-Brinkman equation may be examined in a more focused manner. The Darcy-

Brinkman equation in recent years is employed in biomedical hydrodynamic studies,

including its use in modeling a thin fibrous surface layer coating blood vessels (en-

dothelial surface layer) as it is a highly permeable, high porosity porous medium. A

better understanding of the characteristics of the Darcy-Brinkman equation, there-

fore, is an important part of more practical problems.

Figure 2.3. (a) Flow between two parallel plates filled with regular
square arrays of circular cylinders,(b) Regular square arrays of circular
cylinders.

As shown in the Fig. 2.3, we consider a steady, incompressible, fully-developed,

and very slow (Re → 0, Creeping flow ) flow across regular square arrays of circular
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cylinders, bounded by parallel plates. Governing equations based on the Darcy-

Brinkman equation for porous media and the boundary conditions are,

dp

dx
= − µ

K
us + µe

d2u

dy2
, u(y = H) = 0,

du

dy
(y = 0) = 0 (2.29)

In terms of non-dimensional variables defined as, ỹ = y
H

, ũ = u
um

,um = q/2H

H2

µeum
(−dp
dx

) =
1

m̂u

H2

K
ũ− d2ũ

dỹ2
, ũ(ỹ = 1) = 0,

dũ

dỹ
(ỹ = 0) = 0 (2.30)

The formulation and its solution become,

ũ =
K

µum
(−dp
dx

)[1−
cosh(Da. ỹ√

µ̂
)

cosh(Da
µ̂

)
(2.31)

where, µ̂ = µ
µe

, Da = H/
√
K

Upon an integration of the governing equation, over the channel half-depth, H,∫ 1

0
ũdỹ = 1 =

∫ H
0
udy/H we obtain the following equation for the pressure gradi-

ent:
H2

µeum
(−dp
dx

) =
Da2

1−
tanh(Da√

µ̂
)

Da/
√
û

(2.32)

Since limx→0 tanhx ≈ x− x3

3
the viscous flow limit is reached as K →∞, Da→ 0,

H2

µeum
(−dp
dx

)
V iscousLimit

= 3µ̂ (2.33)

The viscous flow limit corresponds to the case of µ̂ = 1 in the equation above.

The Darcian limit of flow through a porous medium is recovered as K → 0, Da→∞

H2

µeum
(−dp
dx

)
DarcianLimit

=
H2

K
= Da2 (2.34)

For the case of our interest, the porous medium consisting of regular square arrays

of cylinders, the permeability, K , may be expressed as

K =
(2l)2

f(C)
⇒ Da =

√
f(C).(

H

2l
(2.35)
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Figure 2.4. The porous medium consisting of regular square arrays of cylinders

where C(solid fraction) = 1− ϕ, ϕ = porosity, 2l = side length of a single square

unit.

Referring to the Fig. 2.3, governing equations and boundary conditions are

∇.~V = 0, 0 = −∇p+ µ∇2~V

with

~V = u~i+ v~j (2.36)

u = v = 0at(x, y) = (−l ≤ x ≤ l, y = H) (2.37)

and on cylinder surface

∂u

∂x
= 0at(x, y) = (±l, 0 ≤ y ≤ H), (2.38)

∂u

∂y
= v = 0at(x, y) = (−l ≤ x ≤ l, y = 0) (2.39)
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2.5 Capture and Interception Efficiency

A number of theoretical and experimental studies exist on particle interception

across scientific disciplines ranging from aerosol science to marine ecology. The widely

used definition of interception efficiency is given by η = b
dc

, where b is the span of

particles upstream that are ultimately intercepted by the collector, and dc is the

collector diameter [10].

There are four classical mechanisms for interception: direct interception, diffusion,

inertial compaction, and gravitational sedimentation. Contribution from each mech-

anism is additive to the overall efficiency. Direct interception occurs when a particle

of a finite size travels along a streamline that approaches a collector by a distance

less than the particle radius. The particle is brought directly into contact with the

collector by the fluid streamline.

For creeping flows, the interception efficiency due to direct interception has been

analytically solved as

η = AF (
dp
dc

)
2

(2.40)

where dp denotes particle diameter and

AF = (2− ln
2dcU

ν
)
−1

(2.41)

where U denotes average flow velocity and ν denotes the kinematic viscosity for

isolated cylinders, and

AF = (− lnα− 3

2
+ 2α− α2

2
)
−1

(2.42)

for cylinder arrays with volume fraction α.

Brownian diffusion of small particles in a fluid can cause them to randomly cross

streamlines, increasing their probability of getting intercepted by the collector. This

probability is greatly enhanced as their diffusive activity increases, due to increases in

temperature, small particle size, or long residence time in proximity to the collector.
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The contribution of Brownian diffusion as a mechanism of interception is additive

with the effect due to direct interception, and is derived for a cylindrical collector as

ηdiff =
3.64AF
Pe2/3

(2.43)

where Pe is the Peclet number (convection/diffusion) given by LU/D, where L is

the characteristic length, U is the average velocity, and D = kT/6pµap is the diffusion

coefficient.
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3. OPTIMIZATION OF DESIGN PARAMETERS

Blood is dominated numerically and volumetrically by erythrocytes, thrombocytes,

and leukocytes. Table 3.1 lists the sizes of the cells. Although blood cell populations

have reasonably tight size distributions, rare cells often have widely variable and dy-

namic sizes, such as progenitor cells, fetal cells, and circulating tumor cells (CTCs).

Size alone is insufficient to identify rare cells, but provides a distinguishing charac-

teristic that allows for an increased interception between the cell and the micropost.

Table 3.1. Sizes of different types of cells that constitute the blood.

Cell type Size (diameter)

Erythrocytes 6-9 µm

Thrombocytes 2-3 µm

Leukocytes 8-14 µm

Rare cells (CTCs) 15-25 µm

Several parameters assist in controlling the fluid flow through the chip. The

dependence and optimization of such parameters will be the focus in this present

chapter. Previously proved models will be discussed and additional new approach

to this technology will be presented. The design parameters for this new model will

be emphasized and optimizing these parameters to improve the capture efficiency,

throughput and purity and thus will form the motive of the research.

The flow was considered as a steady flow and the full Navier-Stokes equation

was used to carry out all the simulations and find solutions. This is to account for

any inertial forces that may exist due to the presence of the Reynolds number term

that is associated with the convective term in the Navier-Stokes equation. However,
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after preliminary test simulations, the full Navier-Stokes equations and the simplified

stokes equations were applied, it was observed that there was no difference in the

overall capture efficiency and computational time. Thereby we could conclude that

indeed Re� 1 holds true.

COMSOL Multiphysics v4.2a was used to simulate results for optimizing various

flow parameters. The contribution to this field of research is the introduction of the

solid cylinder with a porous shell. A comprehensive study is carried out to optimize

the design parameters such that the capture efficiency and throughput is increased.

A comparison is made between solid microposts and porous posts. Near a straight,

nonpermeable wall, flow is parallel to the wall and motion along a streamline does not

carry a cell to the wall. To bring cells in contact to a wall, we must either (i) depend

on a diffusive process to cause cells to randomly move transverse to streamlines, (ii)

apply a body force to move the cells transverse to streamlines, (iii) create geometries

in the flow so that flow is accelerated, streamlines are compressed and the cells are

effectively brought in proximity to the wall by motion along a streamline, or (iv)

make the wall permeable and allow the streamlines to cross the interface. The major

contributions to the flow specifically for the solid core with porous shell design is effect

of Darcy number, reduction in drag and shear force, inlet velocity and arrangement

of posts.

There have been results quantifying the same effects for solid and porous posts.

These results will be used as a standard to compare the results produced in this study.

A specific design for the number of posts and chip size is set. This set standard is

derived from previous studies. The procedure to formulate results is by keeping some

parameters constant and varying the others to see the effect of variation. The standard

procedure would be to design a chip with dimensions of 1450× 600µm consisting of

36 microposts. The design that is initially used is derived from previous studies. The

cylindrical posts have a constant diameter of 100 µm. The posts are arranged such

that they are at a distance of 50 µm from each other and form an equilateral triangle.

Fig. 3.1 illustrates the initial design setup.
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A constant inlet velocity of 500 µm/s will be set except for when observing the

effect of velocity. As seen from Table 3.1, we can safely assume the particle or cell size

to be 18 µm. If the particle size is bigger, there is a better susceptibility of capturing

it. To prove the ability of the chip to reach higher efficiency, we have chosen a particle

or cell size that not only lies within the size range of rare cells but also is closer to the

lower range of cell size. Therefore if the chip is optimized to have a high efficiency

for a smaller cell size, then we can imply that the chip will render higher efficiency

for larger cell sizes. To reduce the complexity of the flow, we are assuming the blood

to be behaving as a Newtonian fluid. The properties of the fluid will be comparable

to that of water with density being 1000 kg/m3 and dynamic viscosity of 0.001 Pa.s.

This similarity can be used by assuming that the blood is much diluted.

Figure 3.1. The equilateral triangle arrangement; all the posts are at
an equal distance of 50 µm from each other.

3.1 Dependency of Capture Efficiency on Core to Shell Ratio

Cell transport toward solid boundaries is inherently limited by the no-penetration

velocity condition at the boundarys surface; streamlines near the boundary run par-

allel to it. One simple solution to enhance motion normal to the surface is to use
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porous walls combined with a transverse pressure gradient. This results in target

particles being pulled toward the wall as the carrier fluid flows out of the channel.

Unlike porous filter-based microdevices, particles are not trapped, but adhesion can

be enhanced by direct contact and a pressure-induced normal force.

The design of the post is studied and adjusted according to the solid core radius

to the constant post diameter of 100 µm. This means that the thickness of the porous

shell surrounding the solid core is varied. The porous annulus region is varied from

zero thickness to full post diameter. When the porous shell thickness is zero, then

the posts are fully solid and when the shell thickness is maximum i.e. equal to the

diameter of the post, the posts are fully porous. A study is carried out by varying

this thickness and keeping the fabrication limitations in mind an appropriate ratio is

chosen.

Figure 3.2. The number of particles captured for completely porous
posts i.e. the solid core is absent (a = 0)
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Figure 3.3. The number of particles captured for posts that have a
core radius of 10 µm (a = 10 µm)

Figure 3.4. The number of particles captured for posts that have a
core radius of 20 µm (a = 20 µm)



37

Figure 3.5. The number of particles captured for posts that have a
core radius of 30 µm (a = 30 µm)

Figure 3.6. The number of particles captured for posts that have a
core radius of 40 µm (a = 40 µm)



38

Figure 3.7. The number of particles captured for posts that are
completely solid and have no porous sheath covering i.e. have a core
radius of 50 µm (a = 50 µm)

Figure 3.8. The change in capture efficiency with the increase in
thickness of the porous layer around the cylinder.
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From Fig. 3.8 it can be seen that the capture efficiency is highest for fully porous

posts as expected because more amount of fluid can be passed through such posts.

The curve for capture efficiency gradually decreases with the increase in solid core

diameter. As the posts become fully solid i.e. a = 0, the capture efficiency is the least

due to higher hydrodynamic resistance and higher shear forces. Therefore in order to

achieve decent capture efficiency an optimum solid core diameter is chosen. Taking

into account the fabrication limitations of designing a small core cylinder, a viable

solid core diameter of 60 m is chosen for the study. Hence from here on, a constant

b/a ratio of 1.67 is utilized. b is the post diameter which remains constant of 100 µm

and a is the diameter of the solid core as shown in Fig. 3.9.

Figure 3.9. The change in capture efficiency with the increase in
thickness of the porous layer around the cylinder.

3.2 Effect of Darcy Number on Capture Efficiency

Previous models have shown that the degree of fluid accessibility inside a porous

post is related to its Darcy number, defined as Da = K/dc
2, where K is the per-

meability of the porous material, and dc is the characteristic length, or the post

diameter. The post diameter is kept constant to 100 µm in our study. Hence to vary

the Darcy number, we varied the permeability and kept a constant porosity of 70%.



40

As the permeability (K) is decreased i.e. decreasing the Darcy number (Da) the

overall capture efficiency decreases as less amount of fluid is allowed to pass through

the porous shell and hence the susceptibility of the cells to come in contact with the

posts is decreased. We have varied the Darcy number from 102 to 10−5.

K = 1× 10−6m2, Da = 102

Figure 3.10. The number of particles captured when Da = 102. It is
noticed that almost all the cells are captured. This is because of the
high permeability K.

K = 1.08× 10−9m2, Da = 0.108

Figure 3.11. The number of particles captured when Da = 0.108.
Due to the reduction in permeability K, fewer particles as compared
to the previous case are captured.
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K = 1× 10−11m2, Da = 0.001

Figure 3.12. The number of particles captured when Da = 0.001.
Due to the reduction in permeability K, fewer particles as compared
to the previous case are captured.

K = 5.1× 10−12m2, Da = 0.00051

Figure 3.13. The number of particles captured when Da = 0.00051.
Due to the reduction in permeability K, fewer particles as compared
to the previous case are captured.
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K = 1× 10−13m2, Da = 10−5

Figure 3.14. The number of particles captured when Da = 10−5.
Due to the reduction in permeability K, fewer particles as compared
to the previous case are captured.

Figure 3.15. Behavior of capture efficiency when the Darcy number is varied.

This section shows the variation of the capture efficiency with the Darcy number.

As the Darcy number is dependent on the permeability K, reduction in permeability
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will lead to lower Darcy number and hence lower capture efficiency. The permeability

is dependent on the density of the silicon nanowires that are present on the surface of

the micro posts. Therefore, from previously accepted experimental observations, the

permeability K we have chosen for the entire study henceforth is 1× 10−11m2. This

is an acceptable value as the capture efficiency is around 65% and we will later show

that even with this value of permeability, we can achieve higher capture efficiency by

modifying other parameters.

3.3 Variation of Capture Efficiency due to Drag and Shear stress

The Brinkman equation has the advantage that it contains the stress tensor, thus

the boundary condition is the continuity assumption of momentum and viscous stress

along the poroussolid interface boundary. Nazar et al. studied the boundary layer flow

past a circular cylinder in a porous medium through the Brinkman model. Khanafer

et al. employed the extended BrinkmanDarcy law to describe the flow motion inside

the porous sleeve.

The local shear stress in a microfluidic device is a function of the device geometry,

flow rate, and fluid properties. Both the maximum shear stress and the shear stress

gradient can significantly impact viability as a cell traverses the device. Shear induced

damage to cells simultaneously diminishes the population to be sampled and also

contaminates any immunocoated surfaces with cell fragments. Therefore, the shear

field and the geometry of surfaces with which target cells interact must be considered

and assessed.

The drag experienced by a bluff structure is composed of two parts: frictional

drag and pressure drag. The skin friction along the fluidporous interface is much

reduced compared with the solidfluid interface as the vorticity strength is lower in

the former case. Besides, the pressure drop along the fluidporous interface is also

lower compared with a solidfluid interface at a fixed Reynolds number. Thus, the

total drag experienced by a porous-wrapped solid cylinder will be lower than a solid
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cylinder of equal radius. The order of drag reduction must vary with the permeability

of the porous material. By varying Da, we found that the increase in permeability of

the porous layer produces reduction in drag coefficient.

Here we have varied the porous layer thickness up to four times the radius of

the solid cylinder. Drag increases with the increase in surface area and reduces with

the increase in Re. However, it is evident from Figure that Cd of a porous-wrapped

cylinder is lower when compared with a solid cylinder of equal radius.

We have also varied the permeability of the porous medium, i.e. Da = 102to105.

A significant drag reduction through the inclusion of porous wrapper is evident from

this result. As the porous layer becomes more permeable, resistance experienced by

the fluid in passing through the porous layer is less and thus the drag experienced by

the porous-wrapped cylinder is lower.

The graph provides a guideline for optimal value of the porous layer thickness to

construct a structure composed of inner solid body of radius a and a porous sheath of

thickness (b−a) so as to have a drag reduction of desired order. We find that increase

in porous layer thickness produces a substantial drag reduction at a fixed value of the

permeability. The drag on the composite structure can be reduced also by increasing

the permeability. With the decrease in permeability the resistance to fluid flow in the

porous zone increases; this gives rise to an increment in drag coefficient.

3.4 Effect of Velocity on Capture Efficiency

The inlet velocity plays an important role in the flow through the chip. The present

chapter is directed towards the effects of varying the inlet velocity and studying its

influence on the capture efficiency of the microfluidic chip. The impact of change in

inlet velocity affects two primary parameters. Firstly, it determines the duration of

contact of particles viz. rare cells with the cylindrical posts. Higher inlet velocity

would lead to lesser duration of contact between the fluid and the posts. As this
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contact time reduces, the susceptibility of the cells being captured reduces as will be

demonstrated through simulations for varying inlet velocities.

Secondly, a high inlet velocity would increase the maximum velocity in the flow.

This would in turn lead to an increase in shearing forces. As the shearing forces

increases, a particle that would normally be captured on the surface of the cylindrical

post would be sheared off and displaced. There is a high chance that this displaced

particle may not come in contact with the subsequent columns of cylindrical micro

posts thereby reducing the overall capture efficiency of the chip. Also a high shear

force is undesirable as it reduces the maximum cell-micropost attachment.

For the purpose of the study, the range of Reynolds number lies from 0.01 ≤ Re ≤

0.15 for a range of velocity lying between 100 ≤ Vin ≤ 1500 µm/s. For creeping flow

condition of Re � 1, the chosen range of Reynolds number is in total fulfillment

of this condition. This can be supported by the initial test simulations where the

applicability of the full Navier-Stokes equation and simplified Stokes equation were

tested. For Re = 0.15, the overall capture efficiency were the same for both the

aforementioned cases. Hence Re = 0.15 satisfies the creeping flow condition.

Inlet velocity = 100 µm/s

Figure 3.16. Variation of inlet velocity. The simulation result is for
an initial release of 30 particles.
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Inlet velocity = 300 µm/s

Figure 3.17. Variation of capture efficiency with an inlet velocity = 300 µm/s.

Inlet velocity = 500 µm/s

Figure 3.18. Variation of capture efficiency with an inlet velocity = 500 µm/s.
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Inlet velocity = 700 µm/s

Figure 3.19. Variation of capture efficiency with an inlet velocity = 700 µm/s.

Inlet velocity = 900 µm/s

Figure 3.20. Variation of capture efficiency with an inlet velocity = 900 µm/s.
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Inlet velocity = 1200 µm/s

Figure 3.21. Variation of capture efficiency with an inlet velocity = 1200 µm/s.

Inlet velocity = 1500 µm/s

Figure 3.22. Variation of capture efficiency with an inlet velocity = 1500 µm/s.
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Figure 3.23. The variation of capture efficiency with the inlet velocity.
With the increase in inlet velocity the capture efficiency is gradually
decreased.

The following simulation results are for completely solid posts under similar con-

ditions as that of the composite posts. The two designs will be compared and it will

be shown how the composite posts have higher capture efficiency.

Inlet velocity = 100 µm/s

Figure 3.24. Variation of capture efficiency with an inlet velocity = 100 µm/s.
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Inlet velocity = 300 µm/s

Figure 3.25. Variation of capture efficiency with an inlet velocity = 300 µm/s.

Inlet velocity = 500 µm/s

Figure 3.26. Variation of capture efficiency with an inlet velocity = 500 µm/s.
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Inlet velocity = 700 µm/s

Figure 3.27. Variation of capture efficiency with an inlet velocity = 700 µm/s.

Inlet velocity = 900 µm/s

Figure 3.28. Variation of capture efficiency with an inlet velocity = 900 µm/s.
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Inlet velocity = 1200 µm/s

Figure 3.29. Variation of capture efficiency with an inlet velocity = 1200 µm/s.

Inlet velocity = 1500 µm/s

Figure 3.30. Variation of capture efficiency with an inlet velocity = 1500 µm/s.
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Figure 3.31. The variation of capture efficiency with the inlet velocity.
As similar to the composite posts, with the increase in inlet velocity
the capture efficiency is gradually decreased.

The initial velocity was varied for the initial chip design that was chosen. As

expected, as the velocity increases due to the reduction in cell-micropost attachment

and duration of cell-micropost contact, the capture efficiency gradually decreases.

These results are compared to a chip design consisting of completely solid microposts.

It is seen that for a similar arrangement of solid microposts, the capture efficiency is

greatly declining with the increase in velocity as the shearing forces increases. Due

to the presence of the porous sheath covering in the initial chip design of solid core

cylinder and porous shell, the shearing forces are reduced and the duration of contact

between the post and cells is higher. Therefore, this introduced technique of solid

core cylinder with porous shell covering is a more efficient way of capturing rare cells

compared to the previously used models of incorporating only solid microposts.

3.5 Effect of Arrangement of Posts on Capture Efficiency

Deformable cells or particles traveling along surfaces experience a force away from

the surface; this force works against rare cell-capture devices. Although this force
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Figure 3.32. The comparison in capture efficiency of the design that
utilizes a solid post with a porous sheath and the design that uses
only solid posts. It can be observed that the first design, i.e. the
composite posts design has a higher capture efficiency than that of
only the solid posts under similar conditions.

is important in many applications, rare cell-capture micro-devices are typically de-

signed to specifically avoid or overwhelm this force, and a detailed description of this

effect rarely plays a central role in describing device performance. In contrast, the

displacement associated with cell-wall collisions and the downstream effect of these

collisions is often a central factor.

As a particle travels along a streamline that approaches a solid boundary, the

finite size of the particle prevents its center from moving closer than one particle

radius (for a rigid spherical particle) to the boundary; more generally, deformable

and non-spherical particles in general have a geometry and rigidity-specific approach

distance. Regardless of the details, the result is that the center of rare cells has

a minimum distance from the surface; if the streamline on which a cell is traveling

approaches the surface more closely than this distance, the resulting collision displaces

the cell from the initial streamline and the cell pathline deviates from that streamline.
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The initial arrangement of posts consisted of an equilateral triangle arrangement.

In this type of arrangement has yielded decent results both in the present study as

well as in previous literature pertaining to this field. The focus of the present chapter

will be to modify this initial arrangement of posts such that the capture efficiency of

the rare cells is enhanced. To begin, we start with the assumption that the particle

has a radius which is about 9 µm. If the particles are not captured by the first column

of microposts, one may think that the minimum distance by which the next column

of posts might be displaced is by a distance at least equal to that of the particle

radius. The outcome of this new geometry is to maximize the streamline distortion

such that the desired rare cells are brought in contact with the microposts. Since

blood is a dense viscous liquid consisting of cells of various sizes, the rare cells are

usually larger than that of the normal blood cells and this feature of the rare cells

is utilized to improve the capture efficiency. The relative microposts alignment was

chosen so that the displacement caused by the cell impact with the posts increases

the likelihood of future cell impacts for larger cells. Thus when the cell-post impact

does not lead to capture, the larger cells are displaced onto streamlines that impinge

on the next column of posts.

The new improvement in the design was to shift the column of cylindrical posts.

Every 4nth row will have an upward shift and every 4n+2th row will have a downward

shift. n refers to the column number. The columns are shifted to bring about a change

in the path of the particles and this may increase the collision efficiency between the

particles and the posts thereby increasing the overall capture efficiency. Fig. 3.33

depicts the new arrangement and shows the shift the in the columns of posts.

The minimum distance by which the columns of posts are shifted is 9 µm consid-

ering that it is the cell radius. To find the optimum displacement that leads to higher

capture efficiency, the shifts in the columns was increased from 9 µm to 15 µm.

A shift in the horizontal displacement of the columns was not considered as that

would just obstruct the flow and would not serve the purpose of distorting the stream-

lines which is the main aim of this arrangement. Once the optimum shift is found
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Figure 3.33. The change from the initial design. The first two rows
are in an equilateral arrangement from the initial design. The incor-
poration of the shifts in the 4nth and 4n+ 2th row is shown. The shift
is shown for 15 µm.

the design is applied for completely solid cylindrical posts. It will be noticed that

even though solid cylindrical posts are used, due to the column shifting there is an

increasing in the capture efficiency when compared to the design without the shift in

the microposts. With the help of simulations, the capture efficiency of the new design

will be compared to that of the initial design for both solid cylindrical posts as well

as for solid cylinder with porous shell covered posts. It is interesting to note that a

mere shift in the posts can lead to increased capture efficiencies.
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Displacement = 20 µm

Figure 3.34. The number of particles being captured for a shift of 20 µm.

Displacement = 15 µm

Figure 3.35. The number of particles being captured for a shift of 15 µm.
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Displacement = 12 µm

Figure 3.36. The number of particles being captured for a shift of 12 µm.

Displacement = 10 µm

Figure 3.37. The number of particles being captured for a shift of 10 µm.
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Displacement = 9 µm

Figure 3.38. The number of particles being captured for a shift of 9 µm.

Displacement = 8 µm

Figure 3.39. The number of particles being captured for a shift of 8 µm.
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Displacement = 5 µm

Figure 3.40. The number of particles being captured for a shift of 5 µm.

Figure 3.41. The behavior of capture efficiency with the increase in
shift in the columns of microposts.

It is noted that as the shift increases the capture efficiency increases. We started

the shift with 5 µm and went on to 20 µm. As we had an initial assumption that

the column shift must be at least 9 µm, we found the capture efficiency at that value

of shift. It rendered an efficiency of 87%. As we increased the shift to 15 µm, the
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capture efficiency jumped to 96.77%. Though the capture efficiency for 15 µm and

20 µm shift are the same, an optimized shift of 15 µm is accepted as the maximum

velocity in the flow is lesser than that of the 20 µm shift. This design is the new

optimized model of the microfluidic chip for rare cell isolation.

3.6 Optimized Design for Higher Yield

The goal of optimizing a microfluidic chip for rare cell isolation is to improve the

capture efficiency. Another important factor is the yield of the device. A desirable

yield is achieved when the duration for the completion of the process is not high. One

way to achieve higher yield is to increase the inlet velocity. As the inlet velocity is

increased, since the flow becomes faster, the process is completed in a lesser duration

of time. But as the inlet velocity increases, the cell-post attachment is reduced and

a decrease in the capture efficiency can be expected. However, we will show with the

support of simulations how the new optimized design has relatively higher capture

efficiency even with the increase in inlet velocity. The maximum velocity in the flow

is obviously increased but is comparatively lower than the initial design used. For

lower inlet velocities the capture efficiency is the highest but the yield is low and the

frequency of usability of the chip is reduced. With the help of simulations, the change

in inlet velocity and its effect on capture efficiency will be shown.
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Inlet Velocity = 300 µm/s

Figure 3.42. The cells being captured for an inlet velocity = 300
µm/s for the optimized design.

Inlet Velocity = 500 µm/s

Figure 3.43. The cells being captured for an inlet velocity = 500
µm/s for the optimized design.
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Inlet Velocity = 700 µm/s

Figure 3.44. The cells being captured for an inlet velocity = 700
µm/s for the optimized design.

Inlet Velocity = 900 µm/s

Figure 3.45. The cells being captured for an inlet velocity = 900
µm/s for the optimized design.
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Inlet Velocity = 1200 µm/s

Figure 3.46. The cells being captured for an inlet velocity = 1200
µm/s for the optimized design.

Inlet Velocity = 1500 µm/s

Figure 3.47. The cells being captured for an inlet velocity = 1500
µm/s for the optimized design.
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Inlet Velocity = 2000 µm/s

Figure 3.48. The cells being captured for an inlet velocity = 2000
µm/s for the optimized design.

The simulations show the change in inlet velocity as compared to the capture

efficiency. They show for an approximate of thirty particles that are allowed into

the flow. However, the capture efficiency that will be shown in the graph will be for

about hundred particles that are allowed to enter the flow.

Fig. 3.49 shows how the capture efficiency decreases with the increase in inlet

velocity. As expected, the capture efficiency is gradually decreasing with the increase

in velocity. But it can also be noticed that though the inlet velocity is as high as

2000 µm the capture efficiency is approximately 94% which is quite a commendable

efficiency. Such high efficiencies are achieved due to the arrangement of the posts and

the porous sheath covering around the solid core cylinder. The maximum velocity in

the flow is very high and there is a high chance that the particles that are captured

also may shear off from the posts. But due to the arrangement of posts to increase

the collision efficiency the particles that are sheared off come in contact with the

succeeding columns of microposts thereby still retaining high capture efficiencies.
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Figure 3.49. The behavior of capture efficiency for increasing velocity.
Even for a high inlet velocity, the capture efficiency is a little more
than 94% which testifies the optimized design. Also this proves that
the throughput of the chip is high.

If the same optimized design is applied to the chip with completely solid posts,

the efficiency is greatly increased. Below is the comparison of the solid posts design

before being optimized and after being optimized.

Inlet Velocity = 300 µm/s

Figure 3.50. The optimized design being applied to the solid posts
with an inlet velocity = 300 µm/s.
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Inlet Velocity = 500 µm/s

Figure 3.51. The optimized design being applied to the solid posts
with an inlet velocity = 500 µm/s.

Inlet Velocity = 700 µm/s

Figure 3.52. The optimized design being applied to the solid posts
with an inlet velocity = 700 µm/s.
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Inlet Velocity = 900 µm/s

Figure 3.53. The optimized design being applied to the solid posts
with an inlet velocity = 900 µm/s.

Inlet Velocity = 1200 µm/s

Figure 3.54. The optimized design being applied to the solid posts
with an inlet velocity = 1200 µm/s.
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Inlet Velocity = 1500 µm/s

Figure 3.55. The optimized design being applied to the solid posts
with an inlet velocity = 1500 µm/s.

Inlet Velocity = 2000 µm/s

Figure 3.56. The optimized design being applied to the solid posts
with an inlet velocity = 2000 µm/s.
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Figure 3.57. The comparison between the capture efficiency for a
composite post design and a solid posts design. The composite posts
have a higher capture efficiency and therefore prove to be a better
design.

Figure 3.58. The comparison in capture efficiency for the design
utilizing only completely solid microposts before being optimized and
after being optimized.
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The optimization process is thus finalized by proving how the capture efficiency

of a design that uses composite microposts is higher than that of the design that uses

only completely solid microposts. It is also shown that the optimized design stands

good for a chip design that uses solid microposts by illustrating how the capture

efficiency increases from 60% to 76% for the deduced optimized design.
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4. FABRICATION PROCESS

In this research, we present the use of novel multiscale 3-dimensional structures coated

with nucleic acid aptamers generated by in vitro cell-SELEX in a microfluidic platform

for rare cell isolation applications, which can help to solve the challenges of low

throughput, low capture efficiency, high hydrodynamic resistance and the high shear

stress [15].

As shown in Fig. 4.1 a micro post array with core/shell structures is fabricated

in a microchannel. The microstructure includes a solid core and a porous shell dec-

orated with a silicon nanopillar (SiNP) forest. The microfluidic system with posts

generates optimal flow characteristics and can increase the contact frequency and

duration of interaction between rare cells and capturing elements. Nano-structures

allow for enhanced local topographic interactions with nanoscale components of the

cellular surface that are of comparable length scale as nanopillars. The interactions

could result in improved cell-capture affinity when compared to unstructured (i.e.,

flat silicon surface) substrates and the smooth red blood cell surface. Compared to

the flat surface, the nanopillar forest on the surface of micro posts would allow for

reduced hydrodynamic resistance. Nucleic acid aptamers are conjugated to the sur-

faces of micro posts for improved cell capture. These aptamers have numerous merits

for biological and biomedical applications, by virtue of their high binding affinity,

specificity and robustness. Furthermore, their small size, tunable binding kinetics,

ease of synthesis and little immunogenicity or toxicity are advantageous for providing

capture functionality.
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Figure 4.1. (a) Schematic of CTC isolation in a microchannel with
micro post arrays. The micro post includes a solid core and a nanopil-
lar forest shell. (b) A SEM image showing the micro post array with
core/shell structure in a microchannel. (c) A SEM image showing the
nanopillars on the surface of a micro post [15].

The microchannel and the micro posts were defined on a <100> silicon wafer

with 1 µm thick low stress silicon nitride using a two-step deep reactive ion etching

(DRIE) process. Aluminum was used as an additional DRIE protective mask. The

fabrication process is depicted sequentially as follows.

Step 1: Isotropic SF6 plasma was used to transfer pattern to the silicon nitride,

with minimal undercut into the underlying silicon substrate and is shown in Fig.

4.2(A).

Step 2: The Bosch process was used to create the micro posts. The Bosch process,

also known as pulsed or time-multiplexed etching alternates repeatedly between two

modes to achieve nearly vertical structures. First a standard, nearly isotropic plasma

etch is used. The plasma contains some ions, which attack the wafer from a nearly

vertical direction. Sulfur hexafluoride SF6 is often used for silicon. Second is the

deposition of a chemically inert passivation layer.

Each phase lasts for several seconds. The passivation layer protects the entire

substrate from further chemical attack and prevents further etching. However, dur-
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Figure 4.2. Schematic of steps involved in the fabrication process [15].

ing the etching phase, the directional ions that bombard the substrate attack the

passivation layer at the bottom of the trench (but not along the sides). They collide

with it and sputter it off, exposing the substrate to the chemical etchant.
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These etch/deposit steps are repeated many times over resulting in a large number

of very small isotropic etch steps taking place only at the bottom of the etched pits.

To etch through a 0.5 mm silicon wafer, for example, 1001000 etch/deposit steps are

needed. The two-phase process causes the sidewalls to undulate with an amplitude

of about 100500 nm. The cycle time can be adjusted: short cycles yield smoother

walls, and long cycles yield a higher etch rate. This step is depicted in Fig. 4.2(B).

Step 3: This is shown in Fig. 4.2(C). Prior to growing nanostructures on the

surface of micro posts, the photoresist and aluminum were removed, and polymer

residues from the DRIE process were subjected to Piranha cleaning and ashing in

oxygen plasma.

Piranha solution, also known as piranha etch, is a mixture of sulfuric acid (H2SO4)

and hydrogen peroxide (H2O2), used to clean organic residues off substrates. Because

the mixture is a strong oxidizing agent, it will remove most organic matter, and it

will also hydroxylate most surfaces, making them highly hydrophilic.

Many different mixture ratios are commonly used, and all are called piranha. A

typical mixture is 3:1 concentrated sulfuric acid to 30% hydrogen peroxide solution;

other protocols may use a 4:1 or even 7:1 mixture. A closely related mixture, some-

times called “base piranha”, is a 3:1 mixture of ammonium hydroxide (NH4OH) with

hydrogen peroxide.

Piranha solution must be prepared with great care. It is highly corrosive and

an extremely powerful oxidizer. Surfaces must be reasonably clean, and completely

free of organic solvents from previous wash steps, before coming into contact with

piranha solution. Piranha solution cleans by dissolving organic contaminants, and

a large amount of contaminant will cause violent bubbling and a release of gas that

can cause an explosion. Piranha solution may be prepared by adding the peroxide to

the acid. Mixing the solution is exothermic. The resultant heat can bring solution

temperatures up to 120◦C. It must be allowed to cool reasonably before applying any

heat. The sudden increase in temperature can also lead to violent boiling, or even

splashing of the extremely acidic solution. Also, explosions may occur if the peroxide
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solution concentration is more than 50%. Once the mixture has stabilized, it can be

further heated to sustain its reactivity. The hot (often bubbling) solution will clean

organic compounds off substrates, and oxidize or hydroxylate most metal surfaces.

Cleaning usually requires about 10 to 40 minutes, after which time the substrates can

be removed from the solution.

The solution may be mixed before application or directly applied to the ma-

terial, applying the sulfuric acid first, followed by the peroxide. Due to the self-

decomposition of hydrogen peroxide, piranha solution should be used freshly pre-

pared.

Step 4: Surface quality being critical for nanopillar synthesis, a short oxidation

step in a tube furnace at 1100◦C was employed in order to treat the scallop sidewall

roughness on micro posts. This is shown in Fig. 4.2(D).

Step 5: Subsequently, the oxide was etched, and the silicon nitride was to serve as

a protective mask for the top surfaces during nanopillar fabrication as shown in Fig.

4.2(E)

Step 6: Silicon Nanopillars were synthesized on the surface of the micro posts

and microchannel walls by an aqueous electroless metal assisted chemical etching

(MACEtch) method using Ag+/HF solutions as depicted in Fig. 4.2(F).

Step 7: The surface of the micro posts in the microchannel was functionalized

with aptamers and capped for experiments as shown in Fig. 4.2(G).

Step 8: Aptamer binding on silicon dioxide surface was carried out by a well-known

click chemistry, as shown in the schematic in Fig. 4.3.

The traditional process of drug discovery based on natural secondary metabolites

has often been slow, costly, and labor-intensive. Even with the advent of combinato-

rial chemistry and high-throughput screening in the past two decades, the generation

of leads is dependent on the reliability of the individual reactions to construct the

new molecular framework.

Click chemistry is a newer approach to the synthesis of drug-like molecules that can

accelerate the drug discovery process by utilizing a few practical and reliable reactions.
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Figure 4.3. Schematic of the click chemistry process for functional-
izing surfaces with aptamers [15].

Sharpless and coworkers defined what makes a click reaction as one that is wide in

scope and easy to perform, uses only readily available reagents, and is insensitive to

oxygen and water. In fact, in several instances water is the ideal reaction solvent,

providing the best yields and highest rates. Reaction work-up and purification uses

benign solvents and avoids chromatography.

Previously, MACEtching has been demonstrated using a variety of oxidizers and

etchants for flat substrates. In this work, a new development is the technique of etch-

ing Silicon Nanopillars into the sidewalls of DRIE patterned surfaces, which facilitates

the development of truly hierarchical micro/nanostructures and nanoscale patterning

along preferred crystal directions. Fig. shows Silicon Nanopillars that have been

etched into the sidewalls of test structures comprised of circular micro posts that are

50 m deep. In both cases, the micro posts demonstrate complete Silicon Nanopillars

coverage and the evolution of the nanopillars is along the <100> crystal direction as

seen by the tangential planes to the circular post.

Advantage of Silicon Nanopillars: The present work incorporates the use of a

Silicon Nanopillar forest that is grown on the solid micropost giving rise to a structure

that contains a solid core with a kind of porous sheath covering. As we have seen in the

literature of this field, one particular design used vertically aligned carbon nanotubes

(VACNT). Though this device did tend to give high capture efficiency, the device

reusability was questionable. This is because, when compared to Silicon Nanopillars,
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Figure 4.4. SEM images of MAC Etched Silicon Nano Pillars fabri-
cated on sidewall surfaces of (A–D) circular micro posts along <100>
planes [15].

VACNT are relatively longer and therefore provide a high susceptibility of being

sheared or broken off when the sample flows through it at high velocity (microscale

based). This particular setback results in low throughput and limited reusability of

the device. Silicon Nanopillars accounts for this draw back and therefore increases

the yield of the device.
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5. CONCLUSIONS

5.1 Design Optimization

The microfluidic device has been studied and optimized to produce higher capture

efficiency of the rare cells. The performance of rare cell-capture devices, as measured

by capture efficiency and sample purity, is primarily affected by two phenomena:

the chemical interaction between the cell and the capture surface and the transport

of cells to (and their collision dynamics with) the capture surface. Modern rare

cell immunocapture devices use both chemical and fluid-dynamic optimization to

maximize the efficiency and purity of capture.

As noted from previous studies, the use of solid cylinders as microposts not only

increased the hydrodynamic resistance between the cell and the post wall but also

led to lower capture efficiency. To overcome this limitation we incorporated a porous

shell around the solid cylinder. The porous shell has contributed to a lot of factors

in optimizing the design of the microfluidic chip. Due to the porous shell, the hy-

drodynamic resistance between the cell and post wall has reduced significantly. The

shear stress in flow field has reduced and there is a much noticeable drop in the drag

coefficient when compared to the design that uses only solid cylinders.

The permeability of the shell plays an important role in affecting the above men-

tioned parameters. High permeability leads to more allowance of fluid through the

porous shell and thereby increasing the contact efficiency between the cell and wall.

The shear stress around the post is also greatly reduced.

The posts arrangement is one of the most important aspects and contributions to

the increase in capture efficiency. We started off with an initial equilateral triangle

arrangement and then later made modifications to it by shifting some columns of mi-

croposts. Obstacle arrays have several properties that lend themselves to microfluidic
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cell transport applications. The rational array geometry, lends itself to paramet-

ric engineering design studies, and can be optimized to control particle motion and

particle–obstacle collision dynamics. The large number of posts in the array results

in a system that is robust to local flow disruptions caused by fabrication errors and

inlet and outlet conditions.

Flow near surfaces induces few cell-wall collisions when the no-penetration condi-

tion is satisfied; this boundary condition limits collision frequency but provides op-

portunities to optimize performance by using the fluid mechanics to enhance purity

based on mechanical properties of the cells. Porous surfaces with finite penetration

tend to maximize capture efficiency but do not add a fluid-specific purification.

Mechanical property variation, most importantly size differences between target

and nontarget cells, can be leveraged to create size-dependent transport and collision

dynamics. Because steric interactions with surfaces are often the dominant source of

cell motion across streamlines, bluff-body obstacles are simultaneously the simplest

way to induce collision and generate size-dependent transport across streamlines. In

some systems, size-dependent transport can be used to increase purity and therefore

enhance overall device capture efficiency.

It is desirable to have a higher yield for such devices. After optimizing the mi-

crofluidic chip, we have obtained a design that tends to three main requirements viz.

higher capture efficiency, higher yield and lower shear stress in the flow as compared

to devices using only solid cylinders as microposts. The optimized design allowed

for retaining high capture efficiencies even with an increase in inlet velocity. This

particular aspect of the chip will help reduce the functioning time when applied for

practical purposes.

5.2 Future Work

The field of microfluidic has a promising future and finds tremendous potential

in many applications. One such field is the study that has been presented in this
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research work. A device used for rare cell separation and its study is a topic of

immense interest and is attracting more researchers and users alike.

The future work of this study would be the inclusion of some parameters that

have been kept aside for a more simplistic approach of the work. We have assumed

throughout the study that the working fluid, blood, is a Newtonian fluid and takes

on the properties of water. We have done so to ignore the complexities that may arise

due to the nonlinear relationship between the shear stress and strain rates. During

the later works of this study, the Non Newtonian behavior of blood can be taken into

consideration.

The molecular interaction between the cell surface and the post wall can be studied

more extensively. The cancer cell surface consists of Microvilli and Filopodia and the

post wall has nanowires grown on them. The interaction between the cell surface and

post surface and the molecular dynamics involved can be more extensively studied.

Also, the fluid is assumed as a continuum. The interaction between the particles

of the fluid is left for more complex studies as it would involve inter particle collision

dynamics and an entire new study can be designed only to observe these effects. In

the study presented in this work the particle velocity is the same as the fluid velocity

and therefore avoiding the expense of accounting for different particle velocities.

This work consists of a theoretical approach and is supported by CFD simulations.

A commendable continuation to this present study would be to have experimental

validation and compare the results obtained from them with the results achieved by

the simulations.
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