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ABSTRACT 

Karimi, Abdullah. M.S.M.E., Purdue University, December 2014. Numerical Study of 

Hot Jet Ignition of Hydrocarbon-Air Mixtures in a Constant-Volume Combustor. Major 
Professor: Mohamed Razi Nalim. 

 

Ignition of a combustible mixture by a transient jet of hot reactive gas is important for 

safety of mines, pre-chamber ignition in IC engines, detonation initiation, and in novel 

constant-volume combustors. The present work is a numerical study of the hot-jet ignit ion 

process in a long constant-volume combustor (CVC) that represents a wave-rotor channel. 

The mixing of hot jet with cold mixture in the main chamber is first studied using non-

reacting simulations. The stationary and traversing hot jets of combustion products from a 

pre-chamber is injected through a converging nozzle into the main CVC chamber 

containing a premixed fuel-air mixture. Combustion in a two-dimensional analogue of the 

CVC chamber is modeled using global reaction mechanisms, skeletal mechanisms, and 

detailed reaction mechanisms for four hydrocarbon fuels: methane, propane, ethylene, and 

hydrogen. The jet and ignition behavior are compared with high-speed video images from 

a prior experiment. Hybrid turbulent-kinetic schemes using some skeletal reaction 

mechanisms and detailed mechanisms are good predictors of the experimental data. Shock-

flame interaction is seen to significantly increase the overall reaction rate due to baroclinic 

vorticity generation, flame area increase, stirring of non-uniform density regions, the 

resulting mixing, and shock compression. The less easily ignitable methane mixture is 

found to show higher ignition delay time compared to slower initial reaction and greater 

dependence on shock interaction than propane and ethylene.  

 

The confined jet is observed to behave initially as a wall jet and later as a wall-

impinging jet. The jet evolution, vortex structure and mixing behavior are significantly 
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different for traversing jets, stationary centered jets, and near-wall jets. Production of 

unstable intermediate species like C2H4 and CH3 appears to depend significantly on the 

initial jet location while relatively stable species like OH are less sensitive. Inclusion of 

minor radical species in the hot-jet is observed to reduce the ignition delay by 0.2 ms for 

methane mixture in the main chamber. Reaction pathways analysis shows that ignit ion 

delay and combustion progress process are entirely different for hybrid turbulent-kine t ic 

scheme and kinetics-only scheme.     
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1. INTRODUCTION 

1.1 Background 

Intentional hot jet ignition of premixed combustible mixture finds application in 

internal combustion engines [1-2], pulsed detonation engines [3] and wave rotor 

combustors [4-6]. Such ignition is of particular interest for wave rotor combustors [5, 7-8]. 

Chemically active radicals and fast turbulent mixing in the jets create an explosion that is 

more energetic than a spark [3], allowing rapid ignition of lean mixtures. Further, the 

penetrating and distributed nature of ignition can overcome mixture non-uniformity. By 

enabling lean stratified mixtures, heat losses to the walls and pollutant emissions can be 

mitigated.  

 

Hot-jet ignition involves complex flow phenomena such as vortex evolution, fluid 

mixing, and turbulence generation. The presence of reactive species in the jet complicates 

the chemical kinetics of fuel combustion. A high-speed compressible transient jet is usually 

accompanied by shock formation in a confined volume, leading to subsequent reshaping 

of flame fronts by shock waves and expansion waves. Chemically active hot jet created 

from spark ignition of combustible mixture in the pre-chamber is used to ignite the main 

constant volume combustor (CVC) mixture. The schematic of the experimental CVC rig is 

shown in Figure 1.1. This hot jet ignition rig is currently being investigated at Purdue 

School of Engineering and Technology, IUPUI for fundamental flow physics and chemical 

kinetics. This study helps in designing the hot/torch jet ignition system based wave rotor 

combustor (Figure 1.2) for gas turbine and power generation applications.  
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In the case of hot jet ignition studies, ignition delay time is an important parameter 

that controls the ignition characteristics of a fuel. The ignition delay time for a jet-ignited 

constant volume combustor may be defined as the time from jet initiation to the occurrence 

of rapid, visible, and pressure-generating heat release in the CVC chamber [5]. There are 

many definitions of ignition delay time used in the literature. Auto-ignition delay in shock-

tube and rapid compression experiments reflect purely chemical processes, while jet 

ignition and spark ignition also include physical processes. Ignition delay in hot jet ignit ion 

includes time for transient jet vortex development, jet mixing with the gas in the CVC 

chamber, and chemical evolution. In addition, in the present study of hot jet ignit ion, 

reflecting shock and expansion waves generated due to confined geometry also affect the 

ignition process. 

 

Figure 1.1 Constant Volume Combustor (CVC) Hot-Jet Ignition Rig 

 
A combustible mixture can be ignited by an inert gas jet or reactive gas from another 

combustion source. Prior experiments mainly addressed mine safety using a steady non-

reactive hot gas jet injecting into unconfined well-mixed stationary or quiescent 

 

                                                                         

  

 

 
 

Camera 
Main chamber Pre-chamber 
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combustible mixture. Toulsan et al. [9] made a review of turbulent jet ignition systems for 

pre-chamber spark ignition engines (Figure 1.3). The pre-chamber mixture is more 

controlled and reliably spark-ignited and produces a hot jet that acts as a distributed ignit ion 

source, allowing reliable combustion of the main CVC charge over a broader range of air-

fuel ratios, shorter flame travel distances, and more rapid combustion in traditionally slow-

burning lean mixtures. Chemically reactive radicals (eg. H and OH) and jet-induced 

turbulence was estimated to be equivalent to two orders of magnitude higher energy than 

spark ignition [10]. Wolfhard [11] observed that nitrogen and carbon dioxide have similar 

ignition temperatures, while argon and helium have higher ignition temperatures. The 

ignition temperature was defined as the temperature at which the combustible gas mixtures 

can be ignited by laminar hot jets. Fink and Vanpée [12] developed an overall rate 

expression for ignition of methane and ethane-air mixtures by low-velocity hot inert gas 

jets. Cato and Kuchta [13] conducted experiments using laminar hot air jets and concluded 

that ignition depend on jet base temperature, jet dimensions, composition of the 

combustible mixture, and jet velocity. In contrast to the hot jet ignition reported here for 

confined constant-volume combustion, mine-safety experiments were typically without 

turbulence and at low velocities.  

 

Tarzhanov et al. [14] investigated using hot detonation products to detonate stagnant 

propane-air mixtures and found that detonation initiation depends on the initial volume 

concentrations of the mixture, mass fraction of hot detonation products, and the energy 

deposited from the detonation products. Mayinger et al. [15] derived correlations between 

the induction time (ignition delay time), the mixing time of the jet, and the adiabatic auto-

ignition time for the fuel-air mixtures. The experimental facilities in their work consist of 

two chambers separated by a partition with a single circular orifice.  

 

Bilgin [16] developed a constant-volume combustor with long aspect ratio and square 

cross-section, representing a wave rotor channel. The CVC is ignited by a jet of hot 

combustion products from a separately fueled pre-chamber that could be spun to cause the 

jet to traverse one end of the CVC [17]. 
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(a)                                                                             (b) 

Figure 1.2 (a) Schematic Diagram of Wave Rotor with 20 cells [4] (b) Flow Features in a 
Wave Rotor Cell [25] 

 

The relative motion reproduces the action of a wave rotor channel, and pre-chamber 

may be representative of a previously combusted channel supplying hot gas. Bilgin 

proposed a correlation between the Damköhler number and ignition of a fuel-air mixture 

in the CVC. For the same geometry, Baronia et al. [18] performed numerical simulat ions 

for the stationary (non-traversing) torch jet case using global reaction mechanisms (one-

step and four-step) for propane-air mixture. Bilgin’s measurements were not well matched 

by Baronia’s simulations, possibly due to lack of detailed chemistry and not accounting for 

more active chemical species in the jet. Perera [8] carried out experiments on the same 

CVC test rig for three hydrocarbon fuels (methane, ethylene, and propane) under varying 

equivalence ratios in the pre-chamber and the CVC chamber. The ignition delay time 

Inlet 

(air + fuel)

Residual Gas

Rotation

Air + Fuel

Burned Gas

Ignition

B

A

(2)
(3)

C

(1) (4)

Compressor Turbine
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variation for each fuel under constant experimental conditions and the ignitability limits, 

both lean and rich, for all three fuels in the CVC chamber were investigated. The variation 

of ignition delay time for fuels with different pre-chamber equivalence ratios and nozzle 

geometry were also observed.  

 

The hot jet ignition system for internal combustion engines have been investigated 

for long time due to a number of advantages it provides. One of the first applications of 

such a system was in 2-stroke Ricardo Dolphin engine [19]. Torch cell engine designs used 

same concept in which the pre-chamber cavity is filled with the fresh main chamber charge 

during compression. Such torch cell designs were developed by Toyota, Ford, Volkswagen 

and others. 

 

 

Figure 1.3 Pre-chamber Ignition in a 4-valve Pent Roof Combustion System [10] 
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Honda successfully developed a divided chamber stratified charge engine called 

Compound Vortex Controlled Combustion (CVCC) system with large pre-chamber [20]. 

The CVCC engine could comply the emissions standard in 1975 without a catalytic 

converter. The jet ignition, which uses smaller pre-chamber compared to divided chamber 

stratified charge concept, which was introduced by Nikolai Semenov in late 1950’s. Gussak 

developed the first jet ignition engine under the name of LAG (Lavinia Aktivatisia Gorenia 

or Avalanche Activated Combustion). Gussak’s extensive study established the importance 

of active radicals in such ignition processes. During 1990’s Watson et al. developed 

hydrogen assisted jet ignition (HAJI) at the University of Melbourne. HAJI is an advanced 

pre-chamber ignition process that involves the use of a chemically active, turbulent jet to 

initiate combustion of ultra-lean mixtures in an otherwise standard gasoline fuelled engine.  

 

The hydrogen assisted jet ignition (HAJI) system was first developed by Kyaw and 

Watson [21] and further explored by Hamori [22], Pouria [23] and Toulson et al. [9]. Active 

research on such a system called ‘Turbulent Jet Ignition’ is currently being carried out at 

MAHLE powertrain. The ongoing research efforts on jet ignition at University of 

Melbourne and Michigan State University are also noteworthy.  

 

The detailed three-dimensional modeling of combustion coupled with fluid dynamics 

and detailed chemical kinetics was computationally prohibitive till few years back. 

Recently, this important field of continued research for the realistic modeling of turbulence 

chemistry interaction has drawn research attention because of practical application in 

combustion devices. The well stirred reactor assumption of individual cells that decouples 

fluid dynamics from chemistry has some flaws for modeling practical turbulent flows. 

Eddy break model (EBU) extended to include chemical kinetics (called hybrid EBU) is one 

of the models which can be suitably used to take into account the effects of both mixing 

and chemistry. The hot jet ignition for IC engine applications have been investigated by 

Mehrani et al [24], Toulson [9] and Hamori [22]. These studies carried out experiments on 

Cooperative fuel research (CFR) engine and compared results with spark ignited engines. 

Toulson [9] and Mehrani [24] also carried out preliminary CFD simulations. These works 
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did not consider the effect of mixing on the combustion and well-stirred reactor assumption 

for individual computational cells were made. The computational mesh was also not 

refined enough to capture quantitative details of the combustion progress and reaction 

pathways. The well-stirred reactor assumption for computational cells could give 

inaccurate combustion and heat release rate information. 

 

1.2 Current State of Art 

Modeling turbulent combustion is one of the most challenging problems in 

computational fluid dynamics. Full resolution of all turbulence scales coupled with 

sufficiently detailed chemistry treatment is still far from reach for the present 

computational power. In other words, direct numerical simulations (DNS) using detailed 

reaction mechanisms in a practical turbulent combustor for commercially used fuels are 

still beyond the computational power. In such a situation, judicious choice of practical 

modeling approaches with reasonable computational expense and still being able to capture 

the main features of flow physics becomes crucial. However, choosing the best possible 

approach constrained by computational resources is as important as interpreting the results. 

Significant differences can be obtained if different approaches are used and the best 

approach would be decided based on the experimental validation of results as well as the 

right intuition of the user. 

 

In turbulent combustion modeling, there are two important factors; resolving 

turbulence and modeling combustion chemistry. In addition, the turbulence-chemis try 

interaction also play crucial role in numerical modeling of turbulent combustion. In past 

two decades, significant progress has been made in the computational power making it 

possible to carry out DNS of selected practical flows and large eddy simulation (LES) of a 

wide range of practical turbulent flows. DNS is very important for two reasons; first it 

resolves all the turbulence scales and with the increase in computational power it would be 

the coveted approach and second reason is that it is needed for the validation of Reynolds 

Averaged Navier Stokes (RANS) turbulence models. It should also be noted that with the 

current rate of progress in computational power, the full DNS of large scale problems 
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would still be impossible at practical time frame in near future. Keeping this in mind, LES 

has drawn great research efforts in recent years as it resolves the large scales making it 

better choice compared to RANS when details of flow is of importance. 

 

Great progress has also been made in the detailed chemical treatment of combustion 

chemistry. Today there are reaction mechanisms available which involve thousands of 

reaction in hundreds of species for hydrocarbon combustion. However, the application of 

such large reaction mechanisms is beyond today’s computational power for practical flow 

simulation. Coupling such detailed reaction mechanisms with DNS for practical 

combustors does not look possible in near future. Thus, efforts are also directed at 

developing reduced reaction mechanisms which can be applied for practical combustor 

flow simulation. A detailed review of the chemical reactions mechanisms, the development 

of reduced reaction mechanism techniques and their coupling with flow dynamics is 

discussed in Chapter 3 of the present thesis.  

 

1.3 Scope of the Present Research 

As seen above, the combustion modeling of practical turbulent flows is one of the most 

difficult problems to be resolved fully. The present work is an attempt on modeling 

turbulent combustion in a practical combustor using different modeling approaches. The 

constant volume combustor used in the present work has been experimentally investigated 

for hot jet ignition for practical application in wave rotor combustor. The turbulence is 

modeled using two-equation RANS turbulence model. A preliminary validation study of 

different RANS turbulence models and combustion models have also been carried out. The 

chemical kinetics is modeled using detailed reaction mechanisms for different fuels. This 

is one of the major contributions of the present work. No previous work has been found 

that model combustion using detailed reaction mechanisms for such an application. Some 

of the conclusions of the present work would also be important for modeling turbulent 

combustion in many other practical combustors (for example; hot jet ignition for otherwise 

spark ignited engines, HCCI engines and detonative combustion). Thus, present work 
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would be an important contribution in the literature for detailed combustion modeling of 

practical combustors.  

 

1.4 Chapter Contents 

The present thesis starts with the introduction and scope of the work in the present 

chapter. Chapter 2 presents a discussion on computational methods, and grids employed in 

the present work including grid sensitivity. The detailed description and validation of 

different turbulence and combustion models are described in Chapter 3. The non-reacting 

study of mixing in the constant-volume combustor is investigated in Chapter 4. This 

chapter also compares the jet penetration from numerical simulations with experimenta l 

results of high speed video images. In Chapter 5, a detailed study of combustion modeling 

for different types of fuel (methane, ethylene, propane, hydrogen, and hydrogen blended 

mixtures) is carried out. The effect of jet motion and lean and rich limits of different fuel-

mixtures are also analyzed in this chapter. In Chapter 6, the combustion modeling results 

from different combustion models using detailed reaction mechanisms are investigated for 

constant volume combustor. This chapter also includes a study of the pre-chamber jet 

composition effect on the main chamber combustion. The conclusions, future scope of the 

work and the recommendations are described in the last Chapter. 
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2. COMPUTATIONAL METHODOLOGY 

2.1 Introduction 

A brief overview of computational methods used and the available computationa l 

resources are described in this chapter. The grid generation process and solver used are 

also discussed. The computational methods with a brief discussion of RANS turbulence 

modeling and combustion modeling are covered in this chapter. The chapter ends with a 

description of the methodology for grid and time-step independence. 

 

2.2 Computational Methods 

Commercial CFD code STAR-CCM+ was used primarily for most of the current research. 

The code uses a finite volume formulation of the Navier-Stokes equations. A second-order 

accurate spatial differencing scheme was used for the momentum, energy, turbulence, and 

species transport equations, while an implicit temporal discretization was used for transient 

computations. The code has two options of solver; segregated solver (pressure based) and 

coupled solver (density based). Since the flow in the current analysis is highly compressible 

and sometimes supersonic as well, coupled solver has been used for all the simulations. 

Furthermore, it has been observed that segregated solver is not good at capturing shock 

waves unless grid is highly refined. The computations were run on two dedicated 8-

processor Dell Precision 690 machines (64 bit architecture, 2.66 GHz processor and 24 Gig 

RAM) as well as one 12-processor machine. Turbulence is modeled using two-equation 

SST k-ω model, except in Chapter 3. In Chapter 3, a study has been carried out for the 

validation of different RANS turbulence models for supersonic flow over backward facing 

step flow.
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The combustion model primarily used in the present research is hybrid eddy break 

up model which takes into account both mixing and chemical kinetics. A detailed 

description of combustion models and a validation study is presented in Chapter 3. The 

chemical kinetics is modeled using different detailed reaction mechanisms for various fuel-

air mixtures. 

 

2.3 Computational Grids 

Computational grids used in the present study are generated by using two methods; 

Proam, a grid generation tool which comes with StarCD suite, and automatic mesh 

generation from solid model in STAR-CCM+. The geometry is created in solid modeling 

tool Pro/E and then imported into STAR-CCM+ for automatic volumetric mesh generation. 

For complicated geometries, it becomes cumbersome to create grid using Proam; therefore, 

automatic grid generation available in STAR-CCM+ is employed.  

 

Grid and time-step independence of results are carried out and discussed for different 

types of problems of the present research in relevant sections. For grid independence 

various parameters are analyzed. For example, grid sensitivity study is carried out for 

turbulence validation in Chapter 3 using three different grid sizes consisting of 57000, 

123600 and 228000 cells. The static profile across the flow domain at 10 mm downstream 

of the backward facing step for a Mach number of 2 is presented for different grid sizes 

predicted using SST (Menter) k-ω turbulence model. Moreover, the normalized 

reattachment lengths for the three grid sizes are found to be 3.23, 3.50 and 3.56 respectively 

for 3 different grid sizes considered in the study. Therefore, the grid size with total number 

of cells 228000 is used for validating the turbulence model presented in Chapter 3. 

Similarly, grid independence is carried out for combustion modeling of constant volume 

combustor using global and detailed reaction mechanisms. Fuel consumption rates and 

mass fraction levels are compared to show the sensitivity of grid in predicted results. 
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3. TURBULENCE AND COMBUSTION MODELS 

3.1 Introduction 

Modeling turbulent flow using RANS approach needs the right choice of turbulence 

models. Several variants of two-equation models, one-equation model (Spalart Allmaras 

model) and Reynolds stress turbulence model (RSM) are most commonly employed. 

However, certain models are good for particular flow situations of interest and therefore a 

detailed validation of turbulence model that needs to be employed is crucial for more 

accurate turbulence modeling. For modeling turbulent combustion, the choice of 

turbulence-chemistry interaction models play important role as well. Therefore, in this 

chapter two test cases for validation of turbulence models and turbulence-chemis try 

interaction models are investigated. The results are validated with the published 

experimental data and important inferences are discussed. 

 

3.2 Turbulence Model Validation 

The flow over backward facing step (BFS) is a standard benchmark problem used to study 

separated flows. This flow geometry is preferred to evaluate turbulence models due to its 

simplicity [26]. There have been numerous studies on such a flow, both experimentally as 

well as numerically.  Lately, the interest has been stimulated due to its application in 

hypersonic propulsive systems as flame-holder. The present chapter analyzes compressible 

supersonic flow over a BFS, computationally. The backward facing step compressible flow 

regime includes flow separation, reattachment and viscous-inviscid fluid interactions 

(Figure 3.1), who’s appropriate and accurate representation requires careful and expensive 

computational modeling. In the present work, supersonic viscous turbulent flow over a BFS 

has been numerically investigated with special focus on understanding the effect of 

numerical modeling parameters such as RANS turbulence models, turbulence parameters 
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and wall boundary conditions on flow characteristics like pressure distribution, 

reattachment length in recirculation region.  

 

 

Figure 3.1 Supersonic Flow over a Backward Facing Step [27] 

 

The geometry used in the present study is same as the one investigated 

experimentally by Hartfield [28], which is presented in Figure 3.2. Dimensions for the 

geometry and the number of computational grid points used are given in Table 3.1. 

Stagnation pressure and temperature are used as boundary conditions at the inlet; while, 

static pressure is specified at the exit boundary. When the flow becomes supersonic, 

downstream boundary conditions do not govern the flow due to flow velocities exceeding 

the speed of sound. Hence, the specification of outlet pressure boundary condition becomes 

obsolete, and the flow quantities at outlet are extrapolated from inside the computationa l 

domain. The walls are modeled as no-slip and adiabatic. The boundary conditions and 

values are listed in Table 3.2. 
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Figure 3.2 Computational Geometry Considered for the Study 

 

Table 3.1 Geometric Dimensions 

Step height (h, mm) Other Dimensions (mm) No. of cells 

3.18 L1 = 4.06h, L2 = 9.05h, H = 9.08h 228000 

 

Table 3.2 Boundary Conditions 

Inlet (Supersonic 

Boundary) 

Outlet (Static Pressure) Walls 

p = 34800 Pa, P = 273000 

Pa, T = 301 K 

p = constant No slip and adiabatic 

 

One of the objectives of this study is to investigate the effect of different RANS 

turbulence models on the flow behavior in a supersonic flow over BFS, especially in shear 

layer and reattachment regimes. The turbulence models used in this work are: Reynolds 

Stress Model [29], Standard k-ε model [30-31], Realizable k-ε model [32], Standard 

Spalart-Allmaras model [33], SST (Menter) k-ω model [34] and k-ε model with two-layer 

wall treatment. The governing flow equations were solved using a finite-volume method, 

with implicit time integration, velocity-pressure coupled equations, and second-order-

accurate discretization, implemented in the STAR-CCM+ code. 
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Grid sensitivity study is carried out using three different grid sizes consisting of 

57000, 123600 and 228000 cells respectively. The static pressure profile across the flow 

domain at 10 mm downstream of the step is presented in Figure. 3.3 for different grid sizes 

using SST (Menter) k-ω turbulence model. It is observed that the error in predictions from 

two finer meshes is very small. The normalized reattachment lengths for the three grid sizes 

are 3.23, 3.50 and 3.56 respectively. Therefore, the grid size with total number of cells 

228000 is used for the further detailed investigation. 

 

For the validation of present numerical predictions, comparisons have been done 

with the experimental work of Hartfield et al. [28] and previous numerical works [27, 35] 

in Figure 3.4 and Figure 3.5. The effect of different turbulence models on static pressure 

across the flow domain at 10 mm downstream of the step is presented in Figure 3.6 It can 

be seen in Figure 3.3 that the RSM model predictions agree well with the experimenta l 

PLIF measurements, than other models considered in this study. Moreover, the prediction 

from standard k    model is almost as good as that from RSM. The Realizab le k   

model prediction is poor inside the shear layer and its spreading region. As can be seen in 

Figure 3.6, the current predictions using RSM and SST (Menter) k   turbulence models 

were able to capture the experimentally found pressure variation near the step wall 

accurately. Predictions from previous two works [27, 35] (which used high Reynolds 

number k   and Spallart-Allmaras models respectively) cited in Figure 3.6, failed to 

capture this near wall pressure accurately. This is mainly because of the limitations of the 

turbulence models used in previous works.  
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Figure 3.3 Static Pressure Profile at 10 mm Downstream of the Step for Different Grid 

Sizes 

 

The static pressure contours predicted from the present numerical simulation using 

RSM turbulence model and published PLIF data are presented in Figure 3.4. A good 

agreement is noticed between the two sets of data.  The static temperature contours 

compared in Figure 3.5 also shows good agreement with measured data. 

 

Reattachment length is the distance from the step wall to the point at which wall 

shear stress zero (dU/dz = 0). Its value depends on various parameters, such as Reynolds 

number based on the step height (Reh), state of the flow at the separation, the ratio of 

boundary layer thickness to step height at the edge of the step, turbulence intensity in the 

free stream, and expansion ratio. The reattachment length is shorter for higher free stream 

Mach numbers. Table 3.3 lists the reattachment length normalized by the step height for 

different turbulence models. The reattachment length is normalized by step height, to make 

comparisons of the predictions for different step heights. The experimentally measured [36] 

normalized reattachment length is 3.60 for a flow Mach number of 2 and for a step height 

of 6 mm; while, Halupovich et al. [27] predicts (using high Reynolds number k-ε turbulence 

model) this quantity to be 2.92, for a flow Mach number of 2 and a step height of 10 mm.  
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Figure 3.4 Static Pressure Contour in a Backward-Facing Step with Supersonic Flow 

Comparison with Experimental Data [28] 
 

Table 3.3 shows that current predictions using standard k-ε model predicts this 

value to be 2.92, which is same as the predictions by Halupovich et al. [27]. The value of 

normalized reattachment length predicted by RSM model, SST (Menter) k-ω model, and 2 

layer k-ε are higher are closer to the experimental value of Roshko and Thomke (although 

the step heights are different). 
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Figure 3.5 Static Temperature Contour in a Backward-Facing Step with Supersonic Flow 

Comparison with Experimental Data [28] 
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Figure 3.6 Static Pressure at 10 mm Downstream of the Step for Different Turbulence 

Models 

 

Table 3.3 Normalized Reattachment Length (XR/h) 

High Re k-ε 2.92 

Standard Spalart Allmaras 3.19 

RSM 3.25 

High Re Spalart Allmaras 2.68 

SST (Menter) k-ω 3.56 

2 layer k-ε 3.27 

 

 

 

A more detailed study of other aspects of supersonic flow over backward facing 

step has been carried out in the published work of the author and co-workers [37]. 
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3.3 Combustion Models 

The objective of this section can be summarized as the investigation of different 

combustion models and the effect of reaction mechanism for predicting the temperature, 

velocity, and species distribution in non-premixed steady-flow cylindrical combustor that 

has been used as a test case in prior research. In this study, the comparison of different 

combustion models is carried out and the important inference obtained from the study are 

discussed. The global and quasi global reaction mechanisms are used because of 

computational expense. Flow is investigated within the cylindrical combustor and is 

assumed to be steady state and turbulent. The computational domain (Figure 3.7), 

considered in the present study, is the same as reported in Garreton and Simonin [38] and 

the numerical work of Silva et al. [39]. Computational mesh used in the present simula t ion 

is finer than that used in previous numerical works [39, 40]. The continuity, momentum, 

energy and k-ε equations along with chemical species transport equations are solved using 

different combustion models. The Eddy-Break up (EBU) model as incorporated in CFD 

code STAR-CCM+ presented by Spalding [41] and later developed by Magnussen and 

Hjertager [42], has been employed. To add the effect of finite rate chemistry by chemical 

kinetics, the reaction rate is obtained using modified Arrhenius form using single step [43], 

two-step [39], four-step [44] and 22-step quasi global reaction mechanism [43]. The fuel 

is injected in to the chamber through a cylindrical duct of diameter 6 cm, while air enters 

the chamber through a centered annular duct having a spacing of 2 cm. For such mass flow 

rates, the fuel and air velocities are 7.76 and 36.29 m/s, respectively. The Reynolds number 

at the entrance of the duct (Re ~ 18000) indicates that the inlet flow is fully turbulent. The 

inlet air is composed of oxygen (23% in mass fraction), nitrogen (76%) and water vapor 

(1%), while the fuel is composed of 90% methane and 10% nitrogen. The burner power is 

about 600 kW. 
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Figure 3.7 Computational Domain Considered for the Simulation 

 

Initially, the standard EBU model has been employed to study the reacting flow 

inside the cylindrical combustor and followed by the finite rate chemistry using single-step 

global reaction. Later, the standard EBU model with four-step quasi global mechanisms 

[44] and the Presumed Probability Distribution Function (PPDF) approach have been 

investigated. 

 

The axial variation of static temperature predicted by the standard EBU and PPDF 

models have been compared with the published numerical results [40] and experimenta l 

data [38] in Figure 3.8. It appears that there is relatively good agreement among the 

predictions using standard EBU in the present work and in prior numerical simulation work 

[40] but the predictions are poor when compared with measured data. Hence, it is clear that 

the ‘mixed-is-burned’ approach of EBU does not give good results in this problem. The 

poor prediction of the ‘mixed-is-burned’ approach is further shown by adiabatic 

equilibrium PPDF solution (which does not model finite rate chemistry) as presented in 

Figure 3.8.  

 

The predictions corresponding to four-step standard EBU model indicates that 

several reactions will proceed at the same rate when combining the EBU model with a 

multi-step reaction mechanism. The reason for the above fact is that the reaction 

mechanism is controlled by the mixing rate of a species present at low concentration. If 
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this species is taking part in several reactions, the rates of these reactions are all the same; 

although it is probably more reasonable that the fastest reaction consumes the most [40]. 

The temperature variation predicted by the four-step Standard EBU and multi-spec ies 

adiabatic equilibrium PPDF (which includes the species used in 4-step mechanism) are 

compared in Figure 3.8. It can be observed that the temperature prediction in reaction zone 

is improved as compared to single step reaction mechanism discussed earlier. Moreover, 

the axial variation plot indicates that the results predicted by the four-step EBU and mult i 

species adiabatic equilibrium PPDF predictions are almost identical. The temperature 

profile for different reaction mechanisms is presented in Figure 3.9 and compared with 

published experimental [38] and predicted detailed kinetics modeling [45] data. The static 

temperature contours predicted using different combustion models are presented in Figure 

3.10. 

 

The Damkohler number (Da), defined as the ratio of characteristic turbulence time 

scale to characteristic chemical time scale, is used to understand the dominating effect 

between finite rate chemistry and turbulence mixing. When the Damkohler number is very 

large, the reaction rate is controlled by the turbulent mixing that brings reactants together 

at the molecular scale. When the Damkohler number is of order 1, finite rate kinetics must 

be considered. From Figure 3.11, it can be clearly observed that for Da < 1, chemical 

reaction rate is the limiting factor for combustion in the cold regime along the centerline in 

the core of the cylindrical combustor. As a result the combustion modeling without finite 

rate chemistry performs poorly in the region of low Damkohler number which has been 

observed from the previous plots of temperature as well.  

 

It should be kept in mind that the Damkohler number can be defined in several ways 

depending on the situation under study. In the present study, the chemical time scale can 

be adequately understood by expressing it as the inverse of reaction rate multiplied by fuel 

molar concentration. Furthermore, the single-step global mechanism predicts well which 

also validates the worth of this global mechanism of methane for problems where the 
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detailed chemistry in terms of elementary reactions may not be worth the computationa l 

expense it would require. 

 

  

 
Figure 3.8 Temperature Comparison from Standard EBU and Adiabatic Equilibrium 

PPDF Combustion Models along the Centerline of the Furnace 
  

 
 
 

 
 

 
 

 
(a) 

                                                                                      
(b) 
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Figure 3.9 Temperature Comparison with Measured Data along the Centerline of the 

Furnace Using Hybrid EBU and Detailed Kinetics for Different Reaction Mechanisms 
 

 

 

Figure 3.10 Temperature Distribution for Different Combustion Models 

 
One Step Standard EBU  

 
One step Hybrid EBU 

 
4-step Standard EBU 

 
22-Step Hybrid EBU 
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Figure 3.11 Logarithmic Damkohler Number Profile for Different Reaction Mechanisms 

used in Hybrid EBU Combustion Model

 

 
                                                   1-Step Hybrid EBU 

 
                                                   2-step Hybrid EBU 

 
22-step Hybrid EBU 
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4. HOT JET MIXING AND PENETRATION 

4.1 Introduction 

The mixing of the hot jet with cold combustible mixture in a constant volume 

combustor plays an important role in ignition and combustion process. Similar turbulent 

transient jets have other applications as well including for example, in prechamber type IC 

engines, direct-injected internal combustion engines, fans, mixers, various spraying 

devices [46]. The fluid dynamics becomes more complex when the prechamber is spinning 

leading to traverse of the jet through the nozzle connected to the CVC chamber. Different 

prechamber spin speeds means different traverse speeds of the jet and the fluid mixing 

process is affected accordingly.   

 

The two oft-studied turbulent jet types are wall jets and impinging jets. Wall jets 

occur in many industrial applications such as solid smoothing, inlet devices in ventila t ion 

and optimization of the film cooling of gas turbine blades. A turbulent wall jet is obtained 

by injecting a fluid at a high velocity tangentially to a flat plate boundary [47]. The wall-

impinging jet has also wide engineering applications. In many practical applications of wall 

jets, the jet is injected at an angle to the solid boundary [48].
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Horne [49] experimentally studied the laminar planar wall jet investigating unforced 

periodic velocity fluctuations in the shear layer. The jet velocity and wall length was varied 

in that work. Fujimoto et al. [50] studied the transient free and impinging jets for diesel 

engine application using high speed photography and particle image velocimetry. For the 

transient impinging jet the authors reported that the jet momentum in the main jet region 

decreases owing to impingement and the tip vortex is broken by the wall. The details of 

flow structure in various regimes like free jet region, impingement region, vortex region 

were investigated. Bruneaux [51] studied the flame structure and combustion process of 

the igniting diesel jet impingement on a perpendicular wall using simultaneous PLIF 

techniques. It was found that the central core of the jet is not significantly affected by the 

jet impingement. It is also concluded that the effect of jet impingement on wall on the 

structure of the OH and formaldehyde regions is consistent with its effect on the mixture 

structure since it has been shown [52] that mixing is enhanced at the jet tip by the jet–wall 

vortex. This higher mixing rate therefore creates leaner regions at the tip. Yu et al. [53] 

experimentally investigated, using PLIF, the jet structure and mixture formation process of 

wall-impinging gas jet injected by a low pressure gas injector in a constant volume chamber 

at room conditions. Experimental results showed that vortex structure with large scale is 

one of the important characteristics for wall-impinging jet, and the interaction among jet 

flow, impingement wall, and surrounding air plays a dominant role in the mixture 

formation. In the average image, the concentration field displays smooth decay from the 

jet center to the border, and the highest concentration regions are at the jet center and the 

jet impingement regions. It also reveals that the good mixture formation region is in the tip 

vortex regions. 

 

For application in wave rotor constant volume combustor (WRCVC) the study of the 

jet mixing (stationary or traversing jets) are important to understand the jet mixing level 

and penetration characteristics. The understanding of such jet behavior is needed for 

efficient design of injector as well as prediction of ignition time delay for combustion in 

the confined volume. The traversing jet behaves like a jet parallel to the wall at the start 

and end of a channel traverse. One peculiar behavior in three dimensional wall jets widely 
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reported is that the spreading rates of a jet discharged parallel to a wall are considerably 

different from the rates observed for free jets [54]. In past research [55-58] it has been 

observed that the growth rates are larger (5-9 times) parallel to the planar wall compared 

to rates normal to it. Some [56] attributed the fact that this difference to the enhanced 

turbulent diffusion parallel to it while others [54, 58] concluded that this anisotropic growth 

rates are due to a resulting secondary flow causing substantial lateral outflow parallel to 

the wall with a strong entrainment velocity being induced normal to it. Launder & Rodi 

[59] attribute these anisotropic growth rates of the shear boundary to vortex-line bending. 

Craft et al., [54] use several turbulent models and found that the large lateral spreading 

rates are caused by anisotropic Reynolds stresses. Thus, employing linear eddy/turbulent 

viscosity RANS models to model the turbulence in the traversing jet situation would not 

be very accurate in its initial and later parts of the travel across a channel, which can be 

approximated by parallel wall jets. On the other hand using non-linear eddy/turbulent 

viscosity models or Reynolds stress model (RSM) which does not assume a linear relation 

between the Reynolds stresses and the mean strain tensor would be more accurate in this 

case as these can capture anisotropic turbulence and streamline curvature effects better. 

However, the addition of another set of equations to solve for Reynolds stresses in RSM, 

increases computational time and cost. Song and Abraham [60] explored in detail the 

transient round, radial wall jets. Modeling these types of jet phenomena requires different 

turbulence modeling strategies and is a great challenge with limited computationa l 

resources in modeling transient translating and confined jets which are currently analyzed. 

 

In a configuration like wave rotor constant volume combustor, the injection of the 

jet into the confined volume produces complex flow features which are not found in 

standard wall jet and wall impinging jets. Moreover, the injector is moving across the 

combustion chamber opening; hence, the behavior of jet is also affected by the relative 

motion between the jet injector and the confined volume (channel/main chamber). To the 

best of the authors’ knowledge, a comprehensive study of flow behavior of hot turbulent 

jet in such a traversing confined configuration has not been reported in published literature. 

Hence, the objective of the present chapter is to study the behavior of wall-jet, impinging 
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jet and their interactions in confined volume. The three-dimensional and two-dimensiona l 

traversing jets for various speeds of the injector nozzle relative to main CVC chamber are 

analyzed and compared with stationary jet. The planar wall jet and wall-impinging jet 

behaviors are seen for 2D simulations. Jet penetration from three-dimensional simulat ions 

is also compared with high speed video images from experiments [8]. 

 

4.2 Numerical Methodology 

Bilgin [16] developed a constant-volume combustor with long aspect ratio and 

square cross-section, representing a wave rotor channel. The CVC chamber is ignited by a 

jet of hot combustion products from a separately fueled pre-chamber that could be spun to 

cause the jet to traverse one end of the CVC. The relative motion reproduces the action of 

a wave rotor channel, and pre-chamber may be representative of a previously combusted 

channel supplying hot gas. Bilgin [16] proposed a correlation between the Damköhler 

number and ignition of a fuel-air mixture in the CVC. For the same geometry, Baronia et 

al. [18] performed numerical simulations for the stationary (non-traversing) torch jet case 

using global reaction mechanisms (one-step and four-step) for propane-air mixture. 

Bilgin’s measurements were not well matched by Baronia’s simulations, possibly due to 

lack of detailed chemistry and not accounting for active chemical species in the jet. Perera 

[8] carried out experiments on the same CVC test rig for three fuels – methane, ethylene, 

and propane – under varying equivalence ratios in the pre-chamber and the CVC chamber. 

The ignition delay time variation for each fuel under constant experimental conditions and 

the ignitability limits, both lean and rich, for all three fuels in the CVC chamber were 

investigated. The variation of ignition delay time for fuels with different pre-chamber 

equivalence ratios and nozzle geometry were also observed. Chinnathambi [61] carried out 

experiments for different prechamber speeds (150, 750, 1000 and 1500 rpm) resulting in 

different traversing speeds of the jet.  

 

The main CVC chamber has a square cross-section of side 39.878 mm (1.57 inches) 

and is 406.4 mm (16.0 inches) long. The pre-chamber internal cavity is of cylindr ica l 

design, 165.61 mm (6.52 inches) in diameter and width 39.1 mm (1.54 inches), forming an 
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internal volume of approximately 8.3574×10-4m3 (51 cubic inches). The exit diameter of 

the converging nozzle that connects the pre-chamber with the CVC chamber is 5.99 mm 

(0.236 inches). The small gap between the pre-chamber and CVC chamber is not modeled, 

as it is assumed that the gas outflow is negligible at low pressure before ignition occurs in 

the CVC chamber. 

 

The transient simulations are carried out for turbulent, non-reacting, compressible 

flow using velocity-pressure coupled second order implicit scheme in commercial CFD 

code STAR-CCM+. Turbulence is modeled using widely employed Reynolds Averaged 

Navier Stokes SST (Menter) k-ω model and turbulence parameters are specified in terms 

of turbulence intensity and turbulence length scale. The flow is driven by the init ia l 

pressure difference between pre-chamber and main CVC chamber similar to shock tube 

problem. Table 4.l lists the initial conditions used in the pre-chamber and main chamber. 

The computational domain is discretized using polyhedral meshes and different mesh 

densities are used in pre-chamber, nozzle and main chamber (Table 4.2). Grid is refined in 

the initial region of main chamber near nozzle exit and grid sensitivity analysis is done to 

make sure that the results are grid independent. Three different grids are used and error 

between coarse and fine grids is compared.   

 

A two-dimensional (2D) model of the combustor and jet is also used to simulate 

the transient, turbulent, reacting and compressible flow at reasonable computational cost. 

For the 2D simulation, the height and length of the CVC chamber and nozzle are the same 

as those in the test rig. The varying vertical width of the nozzle is taken equal to the 

corresponding diameter. While this does not preserve the area ratio, it does retain the 

relative height ratio of the confined jet. However, the volume ratio of the pre-chamber to 

the test channel is preserved, neglecting the small volume of the nozzle. This allows the 

same volume flow rate between the experiment and 2D numerical calculations, preserving 

mass and energy realism and the nominal pressure history. The simulation uses the 

velocity-pressure coupled, second-order implicit scheme available in the computationa l 

code used for this work [62].  
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Table 4.1 Initial Conditions 

 

Pre-chamber Initial 
Pressure (Pa) 

Main Chamber 
Initial Pressure 

(Pa) 

Pre-chamber 
Initial 

Temperature (K) 

Main-chamber 
Initial 

Temperature (K) 

649000.00 101325 2200 298 

 

 

Table 4.2 Computational Cells  
 

Mesh density No of cells in 

Pre-chamber 

No of cells in 

Nozzle 

No of Cells in 

CVC chamber 

Total number 

of cells 

Coarse Mesh 61463 16446 308349 386258 

Fine Mesh  61463 16446 484373 562282 

Fine Mesh 2 61463 16446 7176309 795548 

 
 

4.3 Stationary Jet: Penetration and Mixedness 

The simulations are carried out for the flow conditions described in Table 4.1. Grid 

sensitivity analysis is carried out and the fine Mesh 2 is found to show little difference in 

results as compared with the fine Mesh listed in Table 4.2 and therefore Fine 2 Mesh is 

used for the rest of the three-dimensional simulations. 

 

The jet penetration is estimated by plotting injected gas mass fraction iso-surface in 

the main chamber. Injected mass fraction from present simulation, and high speed video 

images from experiments are presented in Figure 4.1 [8]. In Figure 4.2, jet penetration in 

the main chamber is compared with present simulation and measured data from high speed 

video images. Velocity vector profile at mid-plane in the initial region of the main chamber 

at time t = 0.7 ms for case 1 is presented in Figure 4.3. It indicates that two vortices are 

formed besides the hot jet. Jet penetration structure is presented in Figure 4.4 at time 0.7 

ms. Mass flow history through the nozzle exit and the area averaged Mach number history 

at the nozzle exit are plotted in Figures 4.5 and 4.6, respectively. It is seen in Figure 4.6 
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that after 0.4 ms the mass flow rate appears to be constant until 1.0 ms for which simula t ion 

has been carried out, which ensures that the steady state condition has been established.  

 

 
 

Figure 4.1 Jet Penetration Comparison from Simulations and Experimental Visualization 

[5] 
 

 
Figure 4.2 Jet Penetration Comparison for Simulations with Measured Data at Different 

Times 
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Figure 4.3 Velocity Vector Profile at Mid-section Plane for the Initial Region of Main 
Chamber at Time t = 0.7 ms 

 

 

 
 

Figure 4.4 Three-dimensional View of the Jet Entering the Channel at time t = 0.7 ms. 
Contours Shown are the 0.01 Iso-surface of Injected Mass Fraction  
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Figure 4.5 Mass Flow Rate History at Nozzle Exit Injected Into the Main Chamber 

 

 

Figure 4.6 Area Averaged Mach Number History at the Nozzle Exit 
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4.3.1 High Temperature Mixedness (HTM) 

The study of mixing hot jet with a cold combustible mixture in the CVC chamber 

is important in understanding the ignition probability at various time levels. The injection 

of hot jet into the main CVC chamber changes the local equivalence ratio; hence, a quantity 

needs to be defined which would provide better insight on ignitability with the passage of 

time. For this purpose, a quantity called High Temperature Mixedness (HTM) is defined 

which is the ratio of ‘hot gas’ mass within a certain mass fraction range and above a ‘critical 

temperature’ in the main chamber to the total injected hot jet mass. Mathematically it can 

be defined as follows: 

 

                                    
,

HGLL Y UL cell critical

HG Total

m forT T
HTM

m

  
                                      (4.1) 

 

A similar approach of this mixedness analysis has been used by several researchers 

in the past to quantify the mixing process as well as to utilize it in multi-zone combustion 

modeling [63]. Total injected mass history in the main chamber is plotted in Figure 4.7. 

Figure 4.8 presents the HTM for different mass fraction ranges at critical temperature of 

500 K. It can be seen that there is significant increase in HTM when the lower level of hot 

jet mass fraction is decreased keeping the upper level at the same value of 0.9. Figure 4.9 

shows the HTM varying the upper level of mass fraction for same critical temperature of 

500 K indicating small variations implying that most of the hot jet during mixing is present 

in low mass fraction range in the main chamber. It can also be observed from Figure 4.9 

that by the time t = 1.0 ms, approximately 70 % of the hot injected gas in the mass fraction 

range of 0.1 to 0.8 is above the temperature of 500 K. Moreover, approximately the same 

percentage of the hot jet with a lower mass fraction range in the main chamber is also above 

the critical temperature 500 K.  
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Figure 4.7 High Temperature Mixedness for Different Mass Fraction Ranges of Hot Jet 

(Tcritical = 500K) 
 

 

Figure 4.8 High Temperature Mixedness for Different Mass Fraction Ranges of Hot Jet 
(Tcritical = 500K) 
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Figure 4.9 High Temperature Mixedness for Different Mass Fraction Ranges of Hot-Jet 

(Tcritical = 500K) 
 

The variations of HTM for various hot jet mass fraction lower and upper limits are 

plotted in Figure 4.10. The HTM is high for low hot jet mass fraction upper limit as seen 

for 0.1 < Y < 0.4 and 0.0 < Y < 0.3. The ignition of cold combustible mixture in the main 

chamber is dependent on the mixing and subsequent rise of temperature in the main 

chamber. To estimate the hot jet mass in the main chamber at higher temperatures, the HTM 

plots for the critical temperature of 700 K is shown in Figure 4.11, which illustrates  that 

at time t = 1ms less than 50 percent of the injected gas of the mass fraction range 0.1-0.9 

is above the temperature of 700 K. Moreover, the HTM for mass fraction range 0.5-0.9 is 

very low for the critical temperature of 700 K. HTM for three different critical temperatures 

of 500 K, 700 K, and 1000 K is shown in Figure 4.12for different mass fraction ranges.  
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Figure 4.10 High Temperature Mixedness for Different Mass Fraction Ranges of Hot Jet 

(Tcritical = 500K) 

 

 

 
Figure 4.11 High Temperature Mixedness for Different Mass Fraction Ranges of Hot Jet 

(Tcritical = 700K) 

 
 



39 
 

 

3
9

 

 

Figure 4.12 High temperature Mixedness for Different Three Different Critical 

Temperatures (Tcritical = 500, 700, 1000 K) at 0.1 < Y < 0.9 
 

The HTM for three different critical temperatures and the hot jet mass fraction 

range of 0.5 < Y < 0.9 is plotted in Figure 4.13.For mass fraction range of 0.5 < Y < 0.9, 

all the hot jet are at temperature greater than 1000K. For example, the hot jet in the mass 

fraction range of 0.5 < Y < 0.9 is above temperature 1000 K;  hence, HTM using 500 K 

and 700 K as critical temperatures gives the same value. This is further verified from Figure 

4.14 where it is seen that the HTM is nearly equal for critical temperatures 500 K and 700 

K but it is lower for critical temperature 1000 K. This can be attributed to the lower value 

of hot jet mass fraction lower limit than that in Figure 4.13. 

 

The hot jet penetration contours (using mass fraction of injected gas) above critical 

temperatures of 500K and 700K are shown in Figure 4.15 and 4.16 while Figure 4.17 

presents the hot jet mass fraction contour in the range of 〈𝑚0.2≤𝑌𝐻𝐺≤0.8
〉 and above critical 

temperature of 700 K. It can be seen that the core of the jet is at higher temperature as well 

as high injected gas mass fraction. It can be inferred that the ignition would be expected to 

initiate in the core jet region surrounded by fuel mixture in the main chamber.  
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Figure 4.13 High Temperature Mixedness for Different Three Different Critical 

Temperatures and 0.5 < Y < 0.9 (Tcritical = 500, 700, 1000 K) 
 

 

Figure 4.14 High Temperature Mixedness for Different Three Different Critical 
Temperatures and 0.3 < Y < 0.8 (Tcritical = 500, 700, 1000 K) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1 1.2

H
ig

h
 T

e
m

p
e
r
a
tu

r
e
 

M
ix

e
d
n

e
s
s

Time, ms

500

700

1000



41 
 

 

4
1

 

 

 
Figure 4.15 Injected Gas Mass Fraction in the Main Chamber above Critical Temperature 

of 500K 
 

 
Figure 4.16 Injected Gas Mass Fraction in the Main Chamber above Critical Temperature 

of 700 K 
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Figure 4.17 Injected Gas for 〈𝑚0.2≤𝑌𝐻𝐺≤0.8
〉 above Critical Temperature of 700 K in the 

Main Chamber 
 

4.4 Traversing Jet: Penetration and Flow Behavior 

Figure 4.18 presents the jet penetration for the prechamber speed of 150 RPM from 

three-dimensional simulations as well as the high speed video images from representative 

test cases. The initial conditions for the simulation are same as listed in Table 4.1.   

 

The two-dimensional simulation for studying behavior for traversing jet has also 

been carried out. Mass fraction of the injected gas at different time instants is shown in 

Figure 4.19 for jet traverse speed of 0.98 m/s which corresponds to 150RPM prechamber 

spin. The jet after entering the CVC chamber remains attached to the wall and then 

impinges on the lower wall. The formation of counter-rotating vortices can be seen after 

0.35 ms.   

 

The jet core appears to impinge second time at around 0.6 ms. A more detailed 

analysis of the effect of jet traverse and fluid dynamics on the ignition and combustion 

process is presented in Chapter 5 and 6 of this thesis. 
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Figure 4.18 Jet Penetration Comparison of Three-dimensional Simulations with High 
Speed Video Images of the Experiments [64] for the Prechamber Speed of 150RPM 
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Figure 4.19 Injected Gas Mass Fraction at Different Times of Transient Two-dimensional 
Simulation for Jet Traverse Speed of 0.98 m/s (150RMP)
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5. COMBUSTION MODELING OF DIFFERENT FUEL-AIR MIXTURES 

5.1 Introduction 

The ignition of combustible mixture using hot inert jet or combusted products has 

been rarely studied numerically using global reaction mechanisms, and no studies are 

known that use detailed or skeletal reaction mechanisms. The Present thesis work seeks to 

use detailed numerical simulations to investigate the ignition by a hot jet and ensuing 

combustion of different hydrocarbon fuels (methane, propane, ethylene) and hydrogen-

hydrocarbon mixtures with varying percentage of hydrogen. Chemical kinetics is modeled 

using several detailed reaction mechanisms after verifying the inadequacy of a four-step 

global reaction mechanism for propane. The hot jet is modeled as the equilibrium products 

of rich ethylene combustion in the pre-chamber. The role of shock-flame interaction on 

ignition in the CVC chamber is also investigated. The reaction pathways are discussed for 

the detailed methane mechanism. The predicted ignition delay times have been compared 

with the published experimental data [5]. 

 

5.2 Model Description 

The constant-volume combustor (Fig. 5.1) is an evolution of the rig initially used by 

Bilgin [16] and later for ignition delay studies by Perera et al. [5]. The main CVC chamber 

has a square cross-section of side 39.88 mm (1.57 inches) and is 406.4 mm (16.0 inches) 

long. The pre-chamber internal cavity is of cylindrical design, 165.6 mm (6.52 inches) in 

diameter and width 39.1 mm (1.54 inches), forming an internal volume of approximate ly 

8.36×10-4 m3 (51 cubic inches). The exit diameter of the converging nozzle that connects 

the pre-chamber with the CVC chamber is 5.99 mm (0.236 inches). The small gap between 

the pre-chamber and CVC chamber is not modeled, as it is assumed that the gas outflow is 

negligible at low pressure before ignition occurs in the CVC chamber. 
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Figure 5.1 Constant-volume Combustor Rig 

 

A two-dimensional (2D) numerical model of the combustor and jet are used to 

simulate the transient, turbulent, reacting and compressible flow at reasonable 

computational cost. The simulation uses the velocity-pressure coupled, second-order 

implicit scheme available in a general-purpose computational fluid dynamics (CFD) 

program [62]. The computational domain is discretized using polyhedral meshes with 

varying mesh density in the pre-chamber, nozzle, and CVC chamber (Figure 5.2). For 2D 

calculations, the height and length of the channel and nozzle are the same as those in the 

test rig. The varying vertical width of the nozzle is taken equal to the corresponding 

diameter. While this does not preserve the area ratio, it does retain the relative height ratio 

of the confined jet. Moreover, the volume ratio of the pre-chamber to the test channel is 

preserved, neglecting the small volume of the nozzle. This allows the same volume flow 

rate between the experiment and numerical calculations, preserving mass and energy 

realism and the nominal pressure history. Turbulence is modeled using the shear-stress-

transport (SST) two-equation k-ω model [34]. The flow is driven by the initial pressure 

difference between pre-chamber and CVC chamber when an intervening diaphragm is 

 

                                                                         

  

 

 
 

Camera 
Main chamber Pre-chamber 
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suddenly splayed away, similar to a shock tube. The initial pressure in the pre-chamber is 

specified as the pressure at diaphragm rupture measured from experiments [5]. The init ia l 

temperature and composition of the pre-chamber is obtained by chemical-equilibr ium 

calculation for combustion of ethylene-air mixture at an equivalence ratio of 1.1 using the 

program developed by Depcik [65], which correlates well with NASA’s equilibr ium 

program [66]. The initial conditions for the pre-chamber and CVC chamber are listed in 

Table 1 and are the same for all the simulations in the present work. No slip and adiabatic 

boundary conditions are used for all walls.  

 

 
 (a) Geometry used for the analysis                                     (b) Enlarged view of Region A 

polyhedral mesh, 
 

Figure 5.2 Geometry used for Simulation 

 

Combustion is modeled using a hybrid eddy-break-up model that considers the roles of 

both turbulent mixing and finite-rate chemistry. The eddy-break-up (EBU) model was 

presented by Spalding [41] and later developed by Magnussen and Hjertager [42]. The 

underlying principle behind the ‘mixed-is-burnt’ EBU model is that the chemistry is fast 

compared to mixing and the combustion is controlled by turbulent mixing. In the simple 

EBU model, reaction rates are calculated as functions of the mean species concentrations, 

turbulent mixing timescale, and, depending on the specific model used, temperature. In the 

present hybrid EBU model, each individual chemical reaction rate is limited by a maximum 

rate based on the local turbulent vorticity timescale. Species are transported according to 

individual advection-diffusion transport equations for species, with diffusive fluxes 

   

Region A 
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accounting for both molecular and turbulent diffusion. It is intended to identify the rate-

limiting process as either turbulent mixing or chemical kinetics. 

 

In the hybrid EBU model, the reaction rate of each species is computed as the minimum 

of a turbulent-mixing-controlled reaction rate and chemical kinetic reaction rate. For 

illustration, a global fuel-oxidation reaction is considered, of the form: 

 

v
F
F + v

O
O® v

P1
P

1
+ v

P2
P

2
+ ......+ v

Pj
P
j
 
                                                                          

(5.1) 

 

The molar rate of fuel depletion RF,mix based on the turbulent micromixing process 

depends on the mass fractions of reactant and product species, and the turbulent mixing 

rate, which is taken to be the turbulent specific dissipation,  : 

 

1 2
,

1 2

min , , ....
PjO P P

F mix EBU F EBU

F O P P Pj

YY Y Y
R A Y B

M s s s s




  
     

    

moles/m3-s                              (5.2) 

 

 

Eq. (5.2) provides that the overall reaction requires both reactants and products to 

be present in proportion to their stoichiometric coefficients, but with different weighting. 

In this work, the values of AEBU and BEBU are kept at the nominal values of 4.0 and 0.5 

respectively for all the reactions [42].  

 

In the above equation: 

 

O O
O

F F

v M
s

v M


,  

Pi O
Pi

F F

v M
s

v M
                                                             (5.3) 
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When a detailed mechanism or any multi-step reaction mechanism is used, the EBU 

model is applied to each of the multiple reactions. For each reaction rate, a turbulence-

limited reaction rate Rj,mix is calculated based on its own reactants and products.  

 

The molar reaction rate for reaction j predicted from finite-rate chemistry is 

obtained using modified Arrhenius form, using the detailed chemical mechanism selected 

for a particular fuel: 

 

                                     ,

all reactants

ij
aj

j

p
E

i RT
i kin j

i

Y
R A T e

M

   
   

 
                                                    (5.4) 

 

 

In the species transport equations, the reaction source term for each species is: 

 

1

Rn

i i ij j

j

S M v R


                                                                              (5.5) 

 

where the actual reaction rate is the minimum of the reaction rates from the Arrehnius 

kinetic rate of Eq. 5.4 and the turbulence-mixing rate of Eq. 5.2. This can be expressed as: 

 

     
 , ,min ,j j kin j mixR R R 

                                                                         
(5.6) 

 

 

One-step global reaction mechanisms validated for a particular flame propagation 

phenomenon, such as a laminar flame, are generally not applicable to ignition phenomena. 

The hot jet ignition process in the CVC is a complex transient reaction-mixing-diffus ion 

problem that requires detailed modeling of chemistry. Nevertheless, some multi-step 

reaction mechanisms, skeletal mechanisms, and reduced mechanisms may be adequate for 

estimating ignition delay, and justifiable relative to the computational cost of a detailed 
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mechanism. Reduced mechanisms include algebraic equations for minor species 

concentrations assumed to be in steady-state, which must then be added to the main time-

integration computation 

 

5.3 Grid Independence 

A grid-sensitivity study is presented considering methane-air mixture in the CVC 

chamber and using a 21-species reaction mechanism, DRM19 within the hybrid approach 

described above. Two different grid sizes were used for the CVC chamber with minimum 

cell sizes of 1.0 mm (20,834 total cells), and 0.5 mm (63,728 total cells). The solutions for 

the two finer grids were found to differ slightly, as presented in Figures 5.3-5.4 for the 

cumulative formation of carbon dioxide and the rate of fuel consumption. In Figure 5.5, it 

is seen further how the details of the jet and flame propagation with the two grids also have 

jet-structure visible differences, but similar history of jet penetration and flame position. 

The critical feature of ignition delay time as characterized by the rapid acceleration of fuel 

consumption rate beginning at about 1.2 ms from the start is not significantly different 

between the two grids. Therefore, it is deemed that the variations are acceptable relative to 

the variability observed in experiments. Therefore, the grid with minimum cell size of 1.0 

mm in the CVC chamber is used for the detailed simulations. It should be noted that the 

present study is not intended to resolve the flame thickness or for estimating flame speed 

after ignition. The mesh used here is intended to predict the ignition delay time influenced 

by mixing in relatively large-scale jet vortex structures, but may not be adequate for 

predicting subsequent flame propagation controlled by relatively smaller turbulence scales.  
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Figure 5.3 Molar Concentration History of CO2 Integrated over the CVC Chamber for the 

two Grids for Methane Mixture using DRM19 Reaction Mechanism 

 

 

 
Figure 5.4 Fuel Consumption Rate Integrated over the CVC Chamber for the two Grids 

for Methane Mixture using DRM19 Reaction Mechanism 
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Figure 5.5 Methane Mass Fraction Levels for two Different Grids for Methane Mixture in 

the CVC Chamber using DRM19 Reaction Mechanism 

 

5.4 Ignition Delay Predictions 

The prediction of ignition behavior using appropriate chemical kinetic mechanisms 

is a limited goal of this work. It is intended to elucidate the major determinants of ignit ion 

and combustion acceleration, as a first step towards a definition and measurement of 

ignition delay time for a transient jet. 

 

5.4.1 Reaction Mechanisms 

Single-step mechanisms, few-step global reaction mechanisms, and quasi-globa l 

mechanisms that oversimplify key initiation steps are generally not validated for ignit ion 

delay prediction, and their application for hot jet ignition study will be of limited usefulness. 

With this caution in mind, a 4-step global reaction mechanism for propane that is reported 

to be validated for ignition delay in flow reactors and shock tubes [67] was evaluated early 

in the present study. Using the modeling approach for the CVC hot-jet ignition system 

described above, the reactive flow in the combustion chamber was simulated using the 

 

20834 cells 

63728 cells 
t = 1.0ms 

20834 cells 

63728 cells 
t = 1.2ms 
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four-step reaction mechanism and a detailed propane combustion mechanism [68]. The 

history of total reaction rate of fuel in the CVC chamber predicted by the two mechanisms 

(Figure 5.6) differs significantly qualitatively and quantitatively. Single-step and few-step 

global mechanisms have implied representations of flame species diffusion and 

intermediate species chemistry that generally do not apply to jet ignition. Moreover, auto-

ignition effects during shock-flame interaction require detailed representation of initia t ion 

reactions. Henceforth, detailed or skeletal reaction kinetic mechanisms are used for the 

further detailed investigation presented here. 

 

5.4.2 Ignition Chemistry for Methane 

The detailed reaction mechanism used in the present work for methane is GRI Mech 

3.0 [69]. Incorporating the well-studied and unusual reaction pathways and autoignit ion 

timescale of methane, it involves 53 species among 325 elementary reactions. For lower 

computational expense, a skeletal mechanism of 21 species, DRM19 [70], derived from 

GRI-Mech 3.0 is also used. A review of DRM19 is given by Amir et al. [71]. The average 

fuel consumption rate in the CVC chamber predicted by GRI-Mech 3.0 and DRM19 is 

presented in Figure 5.7(a). It is noted that for methane, the reaction rates are relative ly 

small until the shock-flame interaction at about t = 1.2 ms. These two mechanisms are in 

good agreement on the peak value of fuel consumption rate, but show important differences. 

Figure 5.7(b) presents the total concentration of CH3, which is an important intermed iate 

species, in the CVC chamber. It is observed that DRM19 over-predicts the CH3 molar 

concentration beyond time t = 1.3 ms. The timing of peak CH3 corresponds closely with 

peak fuel consumption with either mechanism. Considering the computation cost savings 

and typical variations observed in experiments [8], predictions using DRM19 are deemed 

adequate and are the basis on discussion henceforth. 

 

A comparison of ignition behavior, for methane mixture in the CVC chamber, with 

the high-speed video images of the experiments [8] is presented in Figure 5.8. Although 

the comparison is qualitative, there is a good match between the regions of high flame (soot) 
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luminosity and predicted flame temperatures over about 2000 K. The early stages of the jet 

and its penetration into the colder gas in the CVC chamber are also approximately matched. 

 

Figure 5.6 CVC Chamber-Integrated Fuel Consumption Rate for Propane-air 
Mixture, Predicted using 4-step Global Reaction Mechanism and Detailed 

Reaction Mechanism 
  

The fuel mass fraction over time is presented in Figure 5.9(a), indicating that 

despite jet penetration and mixing, significant reaction of methane did not occur until the 

first reflected shock or compression wave arrives at t = 1.2 ms. This is supported by the 

plot of overall fuel consumption rate in Figure 5.10(a). This observation must be interpreted 

carefully, considering the spatial distribution of methane over time, and the expected 

kinetics of methane oxidation at the mixture that is initially at room temperature. First, the 

rapid disappearance of methane after the shock arrival is observed to occur over a 

distributed region of mixed gas that includes chamber and jet gases. Thus the increase in 

reaction rate is primarily associated with the bulk temperature and concentration changes 

of the partially mixed gas region, apparently due to bulk stirring driven by density gradients 

in the region. The shock interaction with the density gradient at the boundary of this region 

is probably secondary. The shock does enhance mixing both within the region and at the 
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boundary of the region, but the boundary has not yet become a ‘flame’. Second, there is 

some compression by the shock throughout the jet mixing region, which may elevate 

temperatures to a level where methane reactions are significantly accelerated. 

 

 
(a) Fuel consumption rate 

 
 

 
(b) Molar concentration of CH3 

Figure 5.7 CVC-Chamber-Integrated Reaction Rate for Methane-air Mixture, Predicted 

using GRI Mech 3.0 and DRM19 
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5.4.3 Kinetics for Ethylene and Propane 

The skeletal reaction mechanism used for ethylene involves 32 species in 206 

reversible elementary reactions [72] and is derived from the USC Mech-II detailed 

mechanism [73]. For propane the detailed reaction mechanism from the University of 

California, San Diego is used, which involves 40 species [68]. The reaction rates for 

different fuels are compared and discussed further in later sections. 

 
 

 
 

Figure 5.8 Comparison of the Combustion Progress for Stoichiometric Methane Mixture 

in the CVC Chamber (A) Temperature Levels from Simulations (B) Flame Luminosity in 
High-Speed Video Images from a Corresponding Test [8] 
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Figure 5.9 Fuel Mass Fraction (a) Methane-Air Combustion Predicted using DRM19 (21 

species) Reaction Mechanism (b) Ethylene-Air Combustion Predicted using Detailed 
Reaction Mechanism (32 species) 
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(a) CVC-chamber-integrated Fuel consumption rate  

 

 
(b)  CVC-chamber-integrated Oxygen consumption rate 

 
Figure 5.10 Comparison of Fuel and Oxygen Reaction Rates in the CVC Chamber for 

Different Fuel Mixtures, Integrated Over the Chamber Volume 

 

 

 

 



59 
 

 

5
9

 

5.4.4 Ignition Delay 

While there are many definitions of ignition delay time for different modes of 

ignition, the estimation of ignition delay time generally requires interpretation of the 

evidence for accelerating reaction. For shock-initiated ignition of premixed gas, Davidson 

and Hanson [74] reported that pressure is a good indicator of ignition at high fuel 

concentrations. They also found that the CH* and OH (and intermediate species C3H6) 

mole fraction histories show clear evidence of a change owing to ignition. In hot jet ignit ion, 

where the chemically active hot gas mixes with the cold combustible mixture, the definit ion 

of ignition delay must ideally consider all steps from the mixing process to the release of 

substantial fuel energy. With this caveat, the ignition event could reasonably be defined as 

occurring either at the time of maximum rate of change or at the time when the peak value 

of some species or variable such as [OH], [CH], or pressure is reached. Alternatively, it 

could be based on an extrapolation of the maximum slope to the zero signal level. 

 

The computed fuel consumption rates for methane, ethylene, and propane are 

presented in Figure 5.10. In Figure 5.10(a) the consumption rate of fuel mass over time 

confirms the slower kinetics of methane relative to other fuels. For the same init ia l 

temperatures, significant consumption of fuel starts as early as 0.8 ms for ethylene, before 

the effect of reflected shock compression. For methane, consumption accelerates rapidly 

after shock arrival at the reacting region at 1.2 ms. The increase in fuel consumption rate 

at about 1.2 ms is attributed to the temperature increase by compression of the interior bulk 

of this region and possible smaller-scale mixing and homogenization due to baroclinic 

vorticity deposition in this region. For ethylene and propane, the fuel consumption occurs 

rather steadily from the time the hot jet enters the CVC chamber (t = 0.2 ms), and no sharp 

increase is seen upon shock compression. The boundary of the mixing region is observed 

to be distorted by shock interaction. As flame propagation may be occurring at this 

interface it may be aided by shock interaction. Oxygen consumption rate in the CVC 

chamber (Figure 5.10 (b)) undergoes rapid increase at shock compression for all three fuels. 

This reflects oxidation of intermediate hydrocarbon species that had already been created 

from ethylene and propane, while for methane if is primarily the initial oxidation of the 
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fuel. Thus the shock does have an impact in the reaction rates for all three fuels, even for 

ethylene and propane, but it is decisive in initiating reaction for methane at low init ia l 

temperature. Difference in ignition delay observed in the experiments of the hot-jet ignit ion 

[5] are consistent with these predictions. It is reported based on the interpretation of high-

speed video images that the lowest recorded ethylene ignition delay time is 1.6 ms and for 

methane it is observed to be 2.9 ms [8], both for stoichiometric mixtures in the CVC 

chamber.  

 

The chamber-integrated histories of several intermediate species are shown for 

methane, propane and ethylene fuels as shown in Figures 5.11, 5.12 and 5.13, respectively. 

Comparing the history of intermediate species concentration in the CVC chamber for 

different fuels, it is interesting that while the C1 and C2 intermediate species history exhibits 

the slower ignition activity for methane when compared with ethylene and propane. The 

history of OH, H, and HO2 show similar trends for all three fuels. In the next section, we 

use detailed maps of the distribution of various species to attempt to understand the reason 

for the above trends from the reaction pathways for conversion of a fuel mixture into final 

products CO2 and H2O.  

 

Examining methane combustion is more detail, the history of molar concentration 

of important intermediate species in the CVC chamber is presented in Figures 5.11(a) and 

5.11(b). CH3 concentration appears to be a useful indicator for ignition delay time 

quantification; it is seen in Figure 5.11(a) that a rapid increase of CH3 occurs between t = 

1.2 ms and t = 1.5 ms. Observing the molar concentration histories of OH, H, and HO2 

(Figure. 11 (b)), it appears that the production of these species peak near 2.5-3 ms, which 

is about a millisecond later than when the hydrocarbon intermediate with one or two carbon 

atoms (C1 and C2) species show peaks. To understand these trends better, the distribution 

of representative species is examined. In Figure 5.14 it is observed that the small 

hydrocarbon species (C1 and C2) are concentrated in the ‘flame’ at the boundary between 

the jet mixing region and the unburned region, while CO persists in the jet mixing region 

for a brief time and is always present in the flame. In contrast, OH and H are formed and 
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persist for a relatively longer period throughout the jet mixing region; thus the quantit ies 

of H and OH are overall is greater than the minor C species. 

 

These observations point to the need for studying the chemical activity in the mixed 

region and in the boundary region separately, as both can be important for ignition and 

combustion activity in the chamber. In particular, it is clear that the arrival of the shock 

wave kicks off the formation of H, OH, and HO2 in the bulk of the mixing region for all 

considered fuels. Thus, even in the case of ethylene and propane, where there is quicker 

initial reaction of the fuel molecule within the mixing region, shock compression increases 

the fuel consumption. 
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Figure 5.11 CVC Chamber-Averaged Molar Concentrations of Intermediate Species for 

Methane-Air Combustion 
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Figure 5.12 CVC Chamber-Averaged Molar Concentrations of Intermediate Species for 

Propane-Air Combustion 
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Figure 5.13 CVC Chamber-Averaged Molar Concentrations of Intermediate Species 
for Ethylene-Air Combustion 
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5.5 Reaction Pathways 

In this section, reaction pathways have been discussed in detail for methane, ethylene 

and propane combustion. Ignition in the CVC chamber occurs when the mixture of injected 

gas and chamber gas is sufficiently hot and the concentrations of fuel and oxygen are 

sufficiently high. For methane fuel, the temperature reached in the CVC chamber mixed 

region, before ignition occurs at about 1.2 ms, is found to be in the range of 1600-1800 K. 

The reaction pathways for the combustion of methane are dependent on the init ia l 

composition and temperature. The ignition jet entrains reactants and creates vortices that 

may be treated as stirred reactors, as products of combustion are stirred in with reactants. 

In well-stirred reactors at high temperature (>2000 K), the main pathway for CH4 

combustion is [75, 76]: 

 

     CH
4
®CH

3
®CH

2
O®HCO®CO®CO

2
                                                                      (5.7) 

  

At low temperature (<1500 K), one important addition found in the reaction pathway of 

methane combustion in well-stirred reactor is the following [75]: 

 

2 6 2 5 2 4 2 3 2 2 2C H C H C H C H C H CO,CH                                                                     (5.8) 

  

The reaction mechanism used in this work for methane, DRM19, does not include 

the species C2H3 and C2H2. It does include the species C2H6, C2H5 and C2H4, and these 

may be used to infer the importance of the low-temperature pathway. From Figures 5.11(a) 

and 5.11(b), it is observed that the start of rapid fuel consumption at about 1.2 ms to the 

oxidation into CO2 at 3.0 ms, much of the methane is consumed over a period of about 1.8 

ms. The CH2, CH3, CH2O and other higher hydrocarbons attains their maximum molar 

concentration between 1.5 ms to 1.7 ms; then decreasing through the oxidation of these 

species into CO. It is noted that there is again a slight increase in CH2O and HCO around 

2.6-3.0 ms. While this is consistent with the above mechanisms, the distribution of some 

of these species needs more attention, as given below. The molar concentration of H, OH, 

and HO2 is observed to increase from about 1.2 ms until about 2.9 ms.  
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The appearance of hydrocarbon molecules larger than the initial reactant 

hydrocarbon is a feature of low-temperature oxidation processes [75]. The relative levels 

of C2H4 and other C¬2 species (Figure 5.11) indicates that the low-temperature reactions 

pathways may be active in the CVC jet ignition.  It can be thus inferred that the two reaction 

pathways described above are probably both important. More detailed insight on reaction 

pathways through intermediate C2/C1 species would require more detailed and 

comprehensive mechanisms such as GRI Mech 3.0.  

 

The level plots of various species in Figures 5.14-5.19 allow a more detailed 

examination of the processes in the mixed region near the jet and the boundary between 

the mixed region and. The distribution of CH3 in Figure 5.14 shows concentrations in the 

mixing region initially, with rapid formation in several localized areas when the first shock 

compresses the mixed region at 1.2-1.3 ms. After about 2 ms CH3 is concentrated at the 

boundary flame between the mixed and unburned regions. The CH3 concentration within 

the flame is observed to increase again when the next shock reflection arrives from the 

unburned region at about 2.6 ms. This is expected as the freshly burning fuel produces CH3 

and it is quickly consumed; the enhanced mixing and compression heating by the shock 

increases the rate of fuel consumption locally, producing CH3. 

 

The subsequent intermediates of methane oxidation, CH2O and HCO, are also 

highly concentrated (Figures 5.15 - 5.16) near the boundary region. The history and 

distribution of these intermediates parallels that of CH3 with initial formation in the mixing 

region, and later concentration in the boundary region with even more pronounced peaks 

upon the arrival of a shock wave, especially at the 2.6 ms mark. 

 

In contrast with the minor hydrocarbon intermediates, the distribution of OH and 

CO is more uniform and persistent throughout the jet mixing region. The OH concentration 

(Figure 5.17 and Figure 5.11) grows slowly within the mixing region, intensifying with the 

multiple shock passages, throughout the simulation period until 3.0 ms. The CO 

concentration (Figure 5.18) also grows throughout the mixing region, reaching highest 
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levels around 1.6-1.8 ms, and then falling. Correspondingly, the CO2 concentration (Figure 

5.19) grows rapidly after 1.8 ms as CO oxidizes. 

 

These observations point to the need for carefully modeling the ignition process by 

considering the mixing and chemical kinetic processes in the jet mixing region. For 

methane mixture that is initially at room temperature, the heat-releasing chemical processes 

that involve CO and OH appear to be relatively slow compared to the mixing processes. 

The relatively mixed region undergoes chemical changes that are sensitive to shock heating 

in the experienced temperature range. These shock events are important in the success of 

ignition in this region.  

 

The chemistry at the boundary between the mixed region and the unburned region 

must be considered separately to understand the formation of a propagating flame. The 

flame behavior is also influenced by shock interaction and by pre-existing and generated 

turbulence. This shock-driven flame acceleration is a separate phenomenon [77, 78] 

 

For propane combustion (Figure 5.12), the chamber-integrated trends for C1/C2 

species are seen to be rather different from that for methane, but the trends for OH/H/HO2 

are quite similar. A consequence of the propane reaction pathways is the high production 

of ethane, C2H6 with peaks corresponding to the two major shock-flame interactions, while 

other C1/C2 species are seen to be consumed. C2H6 is generated and remains as a stable 

species for some time in the combustion of propane. For brevity, the details of the 

distribution of species is not shown for propane or ethylene. 

 

For ethylene combustion, Westbrook et al. [79] reported that H-atom abstraction 

from ethylene by OH attack dominated fuel consumption based on well-stirred reactor 

experiments operating at atmospheric pressure and temperature in the range 1003 to 1253 

K. The initial reaction during the combustion of higher alkane and alkene compounds are 

dominated by the -scission process [80], which leads to the production of ethylene. While 

a substantial amount of ethylene is oxidized to C1 species and formaldehyde, acetylene 
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may form as a result of pyrolytic reactions of ethylene. For stoichiometric to fuel rich 

flames, acetylene is the dominate intermediate. It can be observed from Figure 5.13 that 

the C1/C2 intermediate species C2H4 continuously increase from the time the hot jet 

entering the CVC chamber. This behavior is very different from methane combustion.  

 

The comparison with ethylene and propane combustion is intended to highlight the 

relatively different kinetics of methane at low initial temperature. The importance of 

specific fuels such as natural gas and jet fuel for applications of wave-rotor pressure-gain 

combustion would indicate the importance of applying detailed kinetic models to hot-jet 

ignition over a range of initial temperatures corresponding to engine operating range. These 

are topics of ongoing and future investigations.  

 

5.6 Shock-Flame Interaction 

The ignition delay in the combustion of mixture in the CVC chamber is dependent 

on the delay time due to chemical kinetics as well as the delay time due to mixing and jet 

penetration. The internal gas dynamics of a long closed chamber typically gives rise to a 

shock wave that reflects and returns to the region of ignition. The chemical ignition delay 

time may be shortened by shock compression and further flame propagation may be 

enhanced by shock-flame interaction (SFI). This is observed in the case of methane 

mixtures initially at room temperature.  

 

In addition, baroclinic vorticity production in the flame appears to be the main driver 

of the interface deformation produced at different scales [81]. Richtmyer-Meshkov 

instability (RMI) is caused by the positive and negative vorticity deposition along the 

interface that results in a mushroom-like interface deformation. Analytical studies, 

experiments and numerical simulations of RMI have been reviewed by Rupert [82], 

Zabusky [83] and Brouillette [84] respectively. Recently, a detailed study [77, 78, 81, 85] 

on shock-flame interactions, expansion wave-flame interaction and the contribution of area 

increase and kinetic amplification of fuel reaction rate for wave rotor like applications have 

been reported. The deformation of flame caused by the reflecting shock can be seen in 



69 
 

 

6
9

 

Figure 5.9 for methane and ethylene mixtures respectively. For both the fuels, the flame 

deformation is observed at time t = 1.6ms, indicating that the fluid dynamics of SFI 

following shock arrival are not coupled with chemical reactions.  

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 



70 
 

 

7
0

 

 

 

0.2ms 

0.6ms 

1.0ms 

1.2ms 

1.4ms 

1.6ms 

1.8ms 

2.0ms 

2.2ms 

2.4ms 

2.6ms 

2.8ms 

3.0ms 
 

 
 

 Figure 5.14 CH3 Mass Fraction during Methane-Air Combustion Predicted using 

DRM19 Reaction Mechanism 
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Figure 5.15 CH2O Mass Fraction during Methane-Air Combustion Predicted using 

DRM19 Reaction Mechanism 
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Figure 5.16 HCO Mass Fraction during Methane-Air Combustion Predicted using 

DRM19 Reaction Mechanism 
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Figure 5.17 OH Mass Fraction during Methane-Air Combustion Predicted using DRM19 

Reaction Mechanism 
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Figure 5.18 CO Mass Fraction during Methane-Air Combustion Predicted using DRM19 
Reaction mechanism 
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Figure 5.19 CO2 Mass Fraction during Methane-Air Combustion Predicted using DRM19 

Reaction Mechanism 
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In order to verify that the timing of shock arrival controlled the timing of significant 

chemical reaction, the length of the CVC chamber was increased to 20 inches from origina l 

16 inches, which would delay the reflecting shock return. This case is simulated for the 

combustion of methane using DRM19, and results are compared with the original geometry. 

The gas density history for the original geometry and extended length CVC chamber are 

shown in Figures 5.20 and 5.21, respectively. Shock wave reflection for the extended 

length CVC chamber is seen at time t = 1.0 ms, later than for the original geometry (t = 0.8 

ms). Similarly, the deformation of the flame front is seen at about t = 1.8 ms for extended 

length CVC chamber, later than t = 1.4 ms for original geometry. The fuel consumption 

rate and oxygen consumption rates for two cases are presented in Figure 5.22. The longer 

CVC chamber causes a delay of approximately 0.2 ms in the sudden rise of fuel and oxygen 

consumption rates. This is a significant finding for wave rotor constant volume combustors 

(WRCVC) of different lengths compared to the rig considered in the present work. 

Although the timing of methane ignition is clearly linked to the shock arrival, the actual 

mechanism for the role of SFI and shock compression can be further investigated. SFI 

causes a significant increase in the flame surface and thus in micro-scale mixing. The shock 

wave also increases temperature by compression and thus accelerates many kinetic rates. 

In the future work, it would also be important to study the effect of the shock wave on 

ignition for other fuel mixtures.  
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Figure 5.20 Shock-Flame Interaction during Methane-Air Combustion in Original Length 

(16 inches) CVC chamber, Shown by Gas Density History 
 

 
 

Figure 5.21 Shock-Flame Interaction during Methane-Air Combustion in Extended 

Length (20 inches) CVC Chamber, Shown by Gas Density History 
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(a) Fuel (methane) consumption rate 

 
 

 
(b) Oxygen consumption rate 

 

Figure 5.22 Effect of Shock-Flame Interaction Timing in Different Length CVC 

Chambers, Evidenced by Methane Fuel and Oxygen Consumption Rate History 
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5.7 Traversing Jets 

The reaction mechanism used for ethylene involves 32 species in 206 reversible 

elementary reactions [72]. For methane, a detailed reaction mechanism DRM19 is used, 

which involves 21 species in 84 reversible reactions. 

 

The initial pressure in the pre-chamber is specified as the pressure at diaphragm 

rupture measured from experiments [5]. The initial temperature and composition of the 

pre-chamber is obtained by chemical equilibrium calculation of major product species for 

combustion of ethylene-air with the equivalence ratio of 1.1. The calculation used the 

program developed by Depcik, which correlates well with the NASA equilibrium code. 

The initial conditions for the pre-chamber and CVC chamber are listed in Table 1. 

 

Table 5.1. Initial Conditions for the Simulations 

Thermodynamic Properties 

and Mass Fractions 

 

Pre-chamber 

CVC Chamber 

Methane Ethylene 

Pressure (kPa) 649.0 101.325 101.325 

Temperature (K) 2770 298 298 

O2 0.0069176 0.219231 0.217271 

N2 0.719410 0.725824 0.719240 

CO2 0.142050 0 0 

CO 0.050400 0 0 

H2 0.000739 0 0 

H2O 0.080490 0 0 

CH4 0 0.054945 0 

C2H4 0 0 0.063488 

 

5.7.1 Ignition Delay and Jet Speed 

There are many definitions of ignition delay time used in the literature, most of 

which refer to auto ignition by rapid or shock compression of a fuel-oxidant mixture with 

no trace of other highly reactive species initially present. Hot jet ignition and auto ignit ion 

have common and different challenges in defining the ignition delay time. Ignition could 

reasonably be defined as occurring either at the time of maximum rate of change or at the 
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time when the peak value of some species or variable such as [OH], [CH], or pressure is 

reached, or could be based on an extrapolation of the maximum slope to the zero signal 

level. Davidson and Hanson [74] reported that, in general, pressure rise is a good indicator 

of ignition at high fuel concentrations. They also found that the CH* (formed by the reaction, 

C2H + O → CH* + CO, where CH* represents the excited state) and OH (and intermed iate 

species C3H6) mole fraction histories show clear evidence of a change owing to ignit ion 

for the cases investigated. Hot jet ignition also involves a physical delay for mixing with 

the cold combustible gas. The active radical species introduced may influence reaction 

initiation of the fresh fuel, but may also be quenched during entrainment of cold mixture, 

depending on the entrainment ratio and mixing rate. Examination of fuel consumption rate 

or production rates of some of the intermediate species may not adequately define ignit ion 

delay. 

 

High-speed video images taken through a transparent window of the experimenta l 

CVC with traversing hot-jet ignition are presented in Figure 5.23, for methane mixture in 

the CVC chamber, with optically obscured volume indicated in green. The camera spectral 

response is 400-1000 nm, capturing visible and near-infrared luminosity of hydrocarbon 

combustion, which comes from soot radiation. In Figure 5.23(a), ignition of a 

stoichiometric methane-air mixture by a centered stationary jet is observed. In Figure. 

5.23(b), ignition of a lean methane-air mixture is observed, with pre-chamber spin rate of 

150 rpm, which corresponds to a jet traverse speed of 0.983 m/s and a traverse time of 40.5 

ms. At this speed jet barely moves away from the side wall before ignition is completed. 

Thus the jet structure, penetration, and entrainment for the near-wall position, rather than 

the traversing motion, is likely to be its distinguishing characteristic. Therefore, this slowly 

traversing case will be referred to as the ‘near-wall’ jet. It can be seen that the jet initia l ly 

travels along the wall and later impinges on the bottom wall. Rapid onset of combustion 

can be seen to start at around 1.4 ms after the impingement of the jet and progresses towards 

both ends of the CVC chamber.  
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Experimental data has not been published for faster traversing jets; this work is 

intended to anticipate that data with numerical simulations. More advanced optical 

diagnostic tools often seek to measure excited species such as OH, but it is not obvious 

what measurements would provide a reliable indication of ignition and ignition delay time.  

The pre-chamber spin rates and the corresponding jet traverse speeds and the traverse times 

for the numerical simulations reported are listed in Table 5.2. It is expected that numerica l 

simulations will capture the jet behavior and ignition trends similar to the experiments, and 

provide a deeper understanding of the interplay between physical and chemical processes. 

However, it is not expected that the jet impingement time and ignition delay time from 

simulations would match quantitatively with experimental data due to lack of realism of 

the two-dimensional approximation in the simulations. The forthcoming discussion is 

based entirely on computer simulations, motivated and anchored by the currently limited 

experimental data, and to provide guidance for future experiments. In Figure. 5.24, the 

mass fraction levels of the combustion of stoichiometric ethylene/air and methane/a ir 

mixtures in the CVC chamber are presented for the near-wall jet. The traversing jet is seen 

to impinge on the CVC chamber bottom wall at 0.4 ms forming counter-rotating vortices 

that entrain the CVC mixture. It is also observed that the ‘flame surface’ boundary between 

unburned ethylene air mixture and the entrained and consumed region retreats towards the 

injection end of the channel at about 1.2 ms, and immediately afterwards the flame surface 

becomes more highly convoluted. This is due to a shock wave that is generated by the jet 

initiation and initial heat release, and travels away from the flame. Upon reflection at the 

opposite end, the shock wave returns to reverse the general direction of gas motion (giving 

the appearance of flame retreating) and more importantly, deposits significant baroclinic 

vorticity on the non-planar flame surface, significantly increasing in flame area. The shock 

wave also increases gas temperatures in the combusting region, thus accelerating kinetic 

rates. Thus in all cases, a significant increase in fuel consumption is observed at this time. 

Although the overall vortex dynamics and entrainment flows are very similar, it can be 

seen within the mixed regions that ethylene reacts significantly faster than methane. As 

methane is less reactive than ethylene, its greater sensitivity to jet mixing patterns and rates 

may be understood with deeper examination of the chemical kinetics of reaction. In the 
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temperature level plots presented in Figure. 5.255 for the near-wall jet, higher temperature 

rise in the CVC chamber can be observed for ethylene/air mixture compared to methane/a ir 

mixture. The constant-volume combustion adiabatic flame temperature for methane and 

ethylene are found to be 2821 K and 3116 K respectively for atmospheric initial conditions 

assuming single step reaction. 

  

Table 5.2. Jet Traverse Speed and Traverse Time 

Spin Rate 
(rpm)  

Traverse 
Speed (m/s) 

Traverse 
Time (ms) 

150 0.983 40.5 

750 4.917 8.1 

2000 13.112 3.1 

 

 

  
 

(a)                                                                                (b)  

             

Figure 5.23 High-Speed Video Images of Ignition of (A)  = 1 Methane Mixture in the 

Main CVC Chamber, for Centered Stationary Jet [7] (b) = 0.8 Methane Mixture in the 
Main CVC Chamber for Near-Wall Jet 
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 Figure 5.24 History of Fuel Mass Fraction for Ethylene (Left) and Methane (Right) in 

Stoichiometric Mixtures for Near-Wall Jet 
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Figure 5.25 History of Temperature Levels for Ethylene (Left) and Methane (Right) in 

Stoichiometric Mixtures for Near-Wall Jet 
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To analyze the effect of traversing jet speed, the averaged fuel consumption history 

in the CVC chamber for the ethylene mixture at different jet traversing speeds is compared 

with the centered stationary case in Figure 5.26. The trends in ethylene fuel consumption 

are similar for the traversing jet at different speeds and for the centered stationary jet, with 

rapid combustion rates after about 1.2 ms after start of injection, but with some differences. 

Because of the low autoignition temperature of ethylene, higher combustion temperature, 

and fast reaction rates, the Damkohler Number (Da, ratio of reaction rate to mixing rate of 

vortices) is large, and ignition occurs early and relatively independent of variations in jet 

and entrainment behavior. For all traverse cases, the arrival of the reflected shock at about 

1.2 ms does accelerate the reaction rate moderately. 

 

The fuel consumption histories in the CVC chamber for methane mixture predicted 

from simulations are presented in Figure 5.27 for the centered stationary jet and different 

traversing jet speeds. In case of methane mixture in the CVC chamber, reaction is initia l ly 

relatively slow, more so for the centered stationary jet. It is seen that the fuel consumption 

rate sharply increased between 1.2 ms to 1.5 ms, consistent with the returning shock 

compression and flame distortion during this period, but with significantly more effect for 

the centered stationary jet than the near-wall slowly traversing jet. For the near-wall jet, 

the peak fuel consumption rate is relatively lowest. The relatively slow kinetics and high 

autoignition temperature of methane results in a greater role for jet and entrainment 

behavior in determining local Damkohler number and the ignition delay time. This faster -

traversing hot jets move through positions from near-wall towards and past the centerline 

position, thus having more complex vortex generation and entrainment dynamics.  
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For a better understanding of methane combustion progress and heat release 

with varying jet behavior, the CVC temperature levels are plotted in Figure 5.28. One 

noticeable difference is that the temperature rise is lower in case of centered stationary jet 

when compared to all the traversing jet cases. For example, at 2.0 ms, temperature is higher 

for the jets traversing at the three speeds compared to the centered stationary jet. Moreover, 

earlier temperature rise is seen in case of near-wall jet speed case compared to other cases. 

It appears that the initial jet position and traverse speeds can significantly affect the time 

of the combustion and its progress. Closer observation of the gas distribution and 

temperature field at about 1.0 ms, before the shock-flame interaction, shows that the 

centered jet has significantly more penetration and thus entrains more fuel-air mixture, but 

has lower overall temperature, probably due to the lower concentrations of injected hot gas 

as a result. Consumption of fuel is also lower at 1.0 ms for this jet (Figure 5.27). Thus for 

the centered jet, more fuel is mixed with hot gas creating a leaner mixture with more 

unreacted fuel, which is then rapidly consumed when the shock interacts. It is further seen 

that the heat release and temperature rise occur later for the centered jet, and the overall 

consumption rate plummets when the mixed region expands by about 2.0 ms. 

 
 

Figure 5.26 CVC Chamber-Averaged Fuel Consumption Rate for Traversing Jets and 

Centered Stationary Jet, for Stoichiometric Ethylene-Air Mixture 
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To analyze the combustion progress and reaction pathways, the production and 

consumption behavior of several significant intermediate species is presented below. 

 

5.7.2 Reaction Pathways and Combustion Progress 

The significantly different consumption rate of fuel in the CVC chamber for 

methane mixture for the near-wall and centered stationary jets could be explained by 

looking at the prominent intermediate species. An important C2 intermediate species in the 

combustion of methane is ethylene, C2H4, which was earlier studied as a fuel itself. Figure  

5.29 is a comparison of the mass fraction of ethylene for the centered stationary case and 

different traversing jet cases of methane combustion. It can be seen that there is very high 

production of ethylene from 1.4 ms to 1.8 ms for the centered stationary case with highest 

mass fraction at 1.6 ms. Interestingly, such high ethylene production is not seen for the 

near-wall jet case. This sudden production of ethylene is also less prominent for the faster 

traversing jet cases when compared to the centered jet case. This may be explained by the 

enhanced mixing with lower entrainment for the near-wall jet, due to jet impingement 

producing counter-rotating vortices. To gain further insight, the mass fraction of 

 

 
Figure 5.27 CVC Chamber-Averaged Fuel Consumption Rate for Traversing Jets and 

Centered Stationary Jet, for Stoichiometric Methane-Air Mixture 
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intermediate species OH is compared in Figure 5.30. It shows that the high production of 

OH starts as early as 1.6 ms for near-wall jet case while for the centered jet case the same 

level of OH production is seen much later at around 2.4 ms. It can also be observed that 

the production of OH is seen to occur in the enhanced mixing zone where the counter -

rotating vortices evolve after the jet impinges on the wall. It can be concluded that for the 

near-wall jet case the enhanced mixing in a smaller volume causes the faster completion of 

reaction. 

 

Further insight may be obtained by examining the globally averaged histories of 

two important C1 and C2 hydrocarbon intermediate species, CH3 and C2H4, shown in 

Figure 5.31. These species are relatively unstable and exist more in newly reacting regions 

such as the propagating flame front and slower mixing regions. It can be seen for the 

centered stationary jet that CH3 and C2H4 are present in significant amounts and then 

consumed. On the other hand, for the near-wall and traversing jets, the presence of CH3 

and C2H4 is lower, indicating that production is more closely followed by consumption. In 

contrast to C1 and C2 species, OH and H are key radical species that are generated during 

continuing chain-propagation reactions of the combustion process. The presence of OH 

and H is seen (Figure 5.32) to increase dramatically between 1.6 ms to 2.6 ms for all the 

cases, but with higher levels for the near-wall jet compared to the centered stationary and 

faster traverse cases. This supports the hypothesis that a jet with reduced entrainment and 

enhanced mixing can lead to faster progress of combustion. Based on OH and H, the 

ignition delay would appear to about 2 ms, but based on fuel consumption, and earlier time 

is indicated. This highlights the importance of not relying on a single or indirect measure 

of ignition activity.  
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 Figure 5.28 Temperature Levels for Methane Mixture for (a) 8.1 ms Traverse (b) 

3.1 ms Traverse (c) Near-Wall (d) Centered Stationary 
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 Figure 5.29 C2H4 Mass Fraction Contours for Methane Mixture at (a) 8.1 ms 
Traverse Jet (b) 3.1 ms Traverse Jet (c) Near-Wall Jet and (d) Centered Stationary Jet 
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Figure 5.30 OH Mass Fraction Contours for Methane Mixture in (a) Near-Wall Jet and (b) 
Centered Stationary Jet 
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               (b) 

Figure 5.31 CVC Chamber-Averaged Molar Concentration Histories of (a) CH3 and 
(b) C2H4 Intermediate Species in the CVC Chamber for Stoichiometric Methane 

Mixture 
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(a)  

 
 

 
(b) 

Figure 5.32 CVC Chamber-Averaged Molar Concentration Histories of OH And H 

Intermediate Species in the CVC Chamber for Stoichiometric Methane Mixture 
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6. EFFECT OF JET CHEMICAL ACTIVITY AND COMBUSTION 
MODELS 

6.1 Introduction 

A jet of hot gas can serve as an ignition source in combustion devices, such as 

automotive engines, pulsed detonation engines and wave rotor combustors. Hot-jet ignit ion 

involves complex flow phenomena such as vortex evolution, fluid mixing, and turbulence 

generation. Further, the penetrating and distributed nature of ignition can be affected by 

mixture non-uniformity and can be advantageous for ignition success, thermal 

management, and emissions control. The jet itself may be inert or chemically reactive. In 

a hot jet produced by partial or recent combustion of an adjacent mixture, active radicals 

present may significantly affect the ignition process of the premixed mixture to be ignited, 

usually in a constant volume combustor (CVC). In a wave rotor constant volume combustor, 

rapid ignition and combustion also involves complex interactions of pressure waves with 

flames in the transient jet. In the present chapter, detailed numerical simulations are carried 

out to understand the effect of jet composition present in a turbulent hot jet on the ignit ion 

in an experimental constant-volume combustor. A transient but physically immobile hot 

jet is modeled in three ways: as an inert jet (nitrogen and argon), relatively inert and as a 

chemically active hot jet. Combustion is modeled in the main constant-volume chamber 

for methane, hydrogen and blended methane-hydrogen mixtures. The composition of the 

chemically active jet is determined from chemical equilibrium for rich ethylene mixture in 

a pre-chamber supplying the jet. Combustion is modeled in the main constant-volume 

chamber for stoichiometric methane mixture.  
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6.2 Inert Jet and Stable-Species Jet 

Three different compositions are considered: a) products of combustion of rich 

combustion of ethylene and air, at equivalence ratio of 1.1, considering the major stable 

species as listed in Table 5.1, b) pure nitrogen, which is the major component of a typical 

jet, but is inert with respect to the major species considered; and c) pure argon. 

 

The simulations with argon are intended to provide a sense of the variability of 

ignition processes when no active radicals are present in the jet. The argon and nitrogen 

jets differ due to thermal rather than chemical properties of the jet, and the jet behavior is 

affected by different gas density and different energy content due to variation in specific 

heats. The difference between argon and nitrogen jets at the same temperature then 

provides a point of reference to compare the difference between inert nitrogen and 

combustion-product jet composition due to chemical rather than thermal differences. The 

combustion products jet contains H2 and O2 which react to form small amounts of 

intermediate species H and OH. The presence of OH in the jet can significantly affect the 

combustion process as many of the reactions are started by OH attack [75]. For more 

detailed investigation of the effect of the small intermediate species present in the hot jet 

on the CVC chamber ignition, the small intermediate species need to be considered in the 

future works.  

 

In Figure 6.1 the mass fraction levels for different hot jet composition for 

stoichiometric methane mixture in the CVC is presented for the three different jet 

compositions. Significant fuel consumption is seen only after 2.8 ms in case of inert argon 

jet while inert nitrogen jet shows this as early as 1.6 ms. It should also be noted that while 

shock-flame interaction causing the sudden compression plays decisive role in the ignit ion 

of the methane mixture as observed in earlier works [86], this shock compression is not 

sufficient to cause ignition in the case of argon jet. Careful examination of the frames in 

Figure 1 at 1.2 ms and 1.6 ms reveals backward movement and large distortion of the flame 

front, indicating a shock wave interaction with the flame. More detailed insight is possible 

from the fuel consumption rate averaged in the CVC chamber as presented in Figure. 6.2 
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for three different jets.  For the sake of standardized presentation, the fuel consumption rate 

is averaged over the entire CVC chamber, although it is recognized that the fuel 

consumption activity is spatially localized. The fuel consumption trends for nitrogen jet 

and combustion products jet are similar with a relative delay of about 0.2 ms for the 

nitrogen jet. The low heat capacity of argon compared to nitrogen is attributed to lower 

ignition delay time in shock tube studies with argon as diluent. The chemistry heat release 

rate averaged in the main chamber presented in Figure. 6.3 indicates that the combustion 

is much faster in case of nitrogen inert jet. 

 
Figure 6.1 Fuel Mass Fraction Levels for Stoichiometric Mixture of Methane for 

Different Hot Jet Composition 

 

For the analysis of combustion characteristics after ignition, the temperature levels 

for three different jet composition cases are presented in Figure 6.4. There appear to be 

large differences in the flame temperatures of combusting gases, between the case of the 

nitrogen jet and combusted gas jet, even though the ignition-delay difference (defined by 

rapid increase in fuel consumption) was relatively small. At some locations the difference 

between the two cases is as much as 700 K. The intermediate species 

production/consumption as well as reaction pathways for the combustion are thus 

important to analyze for this understanding this difference.  As expected for the lower 

energy content of the argon jet, the temperatures are relatively lower. 

 

0.2ms 

0.6ms 

0.8ms 

1.2ms 

1.6ms 
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2.8ms 

3.0ms 

(a) argon                                         (b) nitrogen                          (c) combustion products 
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The molar concentration histories in the CVC chamber are presented for important 

single-carbon (C1) and two-carbon (C2) species (respectively, CH3 and C2H4), in Figures 

6.5 and 6.6 respectively for different hot jets considered. Similar to previous line plots, the 

concentrations are averaged over the entire CVC chamber for standardization, but should 

be interpreted carefully, considering spatial localization. It is observed that that there is 

higher but relatively slower production of C1 and C2 species after ignition in case of 

nitrogen jet compared to combustion products jet. The molar concentration histories for the 

more stable species like OH, CO and H are also analyzed in order to understand the 

combustion completion leading to final products. The molar concentration history of CO 

averaged in the CVC chamber is presented in Figure. 6.7. It is observed from the figure 

that a large amount of CO is supplied from the pre-chamber in case of the combustion 

products jet and therefore the total amount of CO in the CVC chamber is significantly 

higher for this case. However, the production trend of CO in the CVC chamber for nitrogen 

hot jet and combustion products hot jet is similar. The molar concentration histories of H 

and OH in the CVC chamber are presented in Figures 6.8 and 6.9 respectively. 

Significantly larger amount of these two species are seen to be produced in case of 

combustion products hot jet as compared to the nitrogen inert hot jet case. This implies that 

while the fuel consumption is not significantly delayed in case of nitrogen hot jet compared 

to combustion products hot jet, but the combustion progress is still significantly delayed. 

The faster production of C1 and C2 species in when the hot jet contains even stable 

combustion products is apparently due to the ready disassociation of the jet species 

compared to the need for hot nitrogen to transfer enough thermal energy to break bonds in 

fuel and oxidant species before chemical reactions can begin. Thus temperature rise and 

the higher production of other reactive species, H and OH, are seen with the combustion 

products jet.  
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Figure 6.2 Fuel Consumption Rate Averaged in CVC Chamber for Hot Jets of Different 

Composition 

 
 

 
Figure 6.3 Chemistry Heat Release Rate Averaged in CVC Chamber for Argon and 

Nitrogen jets 
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Figure 6.4 Temperature Levels for Stoichiometric Mixture of Methane for Different Hot 

Jet Composition  
 

 

 
Figure 6.5 Molar Concentration of CH3 Averaged in CVC Chamber for Hot Jets of 

Different Composition 
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Figure 6.6 Molar Concentration of C2H4 Averaged in CVC Chamber for Hot Jets of 

Different Composition 

 

 

 

  
Figure 6.7 Molar Concentration of CO Averaged in CVC Chamber for Hot Jets of 

Different Composition 
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Figure 6.8 Molar Concentration of H averaged in CVC chamber for hot jets of different 

composition 

 
 

 
Figure 6.9 Molar Concentration of OH averaged in CVC chamber for hot jets of different 

composition 
 

6.3 Effect of Minor Species 

The effect of radical species in the jet is examined here, with the expectation that the 

radicals will have an impact in regions where the reaction rate is kinetically controlled. 

Fuel mass fraction contours for stoichiometric methane mixture in the main chamber at 
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different time levels for stable-species hot jet and radical-inclusive hot jet cases are 

presented in Figure 6.10. The total fuel consumption rate for the two cases is presented in 

Figure 6.11. When minor radical species of the detailed mechanism are included in the hot 

jet composition, the fuel is consumed more rapidly compared to the hot jet with only stable 

species. For methane, the inclusion of radical species present in very small amount appears  

to affect both the initial reaction rate in the CVC chamber, and the pace of cumula t ive 

reaction progress. The peak fuel consumption rate is seen about 0.2 ms earlier for the 

radical-inclusive hot jet. For methane fuel, the peak rate is controlled by the arrival of a 

reflected shock at essentially the same time (about 1.2 ms) for both cases; however, the 

radicals appear to sensitize the mixture such that the response to the shock compression is 

much quicker. 

 

 
Figure 6.10 Fuel Mass Fraction for Stoichiometric Methane Mixture (a) Stable-species 

Hot Jet (b) Radical-Inclusive Hot Jet 

 

 

 
 

 

 

0.2ms 

0.4ms 

0.6ms 

1.0ms 

1.2ms 

1.4ms 

1.6ms 

2.0ms 
           (a)                                                                          (b) 

 



103 
 

 

1
0
3

 

 
Figure 6.11 CVC Chamber Averaged Fuel Consumption Rate for Stoichiometric 

Methane Mixture for the Hot-Jet with Only Major Stable-species and including Radical 

Species of the Detailed Mechanism 
 

6.4 Experimental Observations 

For a qualitative comparison of the ignition characteristics and the combustion 

progress, high-speed video images of flame luminosity in ignition experiments are 

presented in Figure. 6.12. The main chamber mixture is stoichiometric methane. Two sets 

of images for two experiments with identical geometry and intended initial conditions are 

presented. There are noticeable differences in the observed pattern of luminosity of the jet 

ignition process. Quantitative comparison of ignition of the planar two-dimensiona l 

simulation with experiments is not intended. Nevertheless, the jet penetration, vortex 

structure, and distributed reaction zones in the simulation and experiment have similar 

features. The hot jet penetrates and mixes with the main chamber mixture for some time 

before a sudden increase in luminosity is seen around 2 ms in the experiment. Prediction 

of soot formation and radiation is not included in the current simulations. 
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Figure 6.12 High-speed Video Images of Ignition of a Stoichiometric Methane-Air 

Mixture in the Main CVC Chamber, for two tests with the same Conditions [5] 
 

6.5 Fuel Composition and Blending 

Three different fuel compositions are examined by numerical simulation: pure 

methane, pure hydrogen and a methane-hydrogen blend. The blend used as fuel for the 
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present simulation is 60% CH4 and 40% H2 by volume. It is noted that the one mole of CH4 

requires two moles of O2 for combustion, whereas one mole of H2 requires 0.5 moles of 

O2. This implies that the total oxygen consumption for this blended fuel is shared by 

methane and hydrogen in the ratio of 12:2, or 86% by methane.  

 

Simulations have been conducted using the hot jet of stable combustion products for 

stoichiometric mixture with air for three fuels, with otherwise identical conditions and the 

same numerical grid and methods. The overall reaction progress can be best tracked by 

monitoring oxygen consumption Methane combustion generates hydrogen, making the 

tracing of fuel consumption problematic for the blend fuel. A comparison of oxygen 

consumption for pure hydrogen, pure methane and blend mixture is presented in Figure 

6.13. It is evident that the reaction rate for hydrogen is significantly higher than for methane, 

both initially and throughout the ignition process. It can also be noticed that the reflecting 

shock is implicated in the high reaction rates in all the three cases. The pure hydrogen case 

shows much greater chemical sensitivity through faster response to the shock arrival. 

However, the blending of a small amount of hydrogen (as measured by oxygen demand) 

does not significantly help the ignition of methane, within the limits of the chemical 

kinetics considered. It should also be noted that the reaction mechanism used for blend 

mixture combustion is same as used for pure methane (DRM19). This reduced mechanism 

does not have all the detailed elementary reactions of hydrogen combustion and therefore 

a more detailed reaction mechanism would be necessitated for better understanding of 

combustion in blend mixture case. Thus it is premature to make stronger conclusions. 

 

The concentration of H and H2 present in the reacted zone depends upon various 

factors such as, H2 mass fraction in the mixture, H2 injected from pre-chamber, production 

of H2 from decomposition of CH4 and consumption of H2 as the reaction progresses. As 

the combustion progress the hydrogen production is seen to shift towards the nozzle end 

of the channel and the flame. At high temperature, the increase in concentration of H 

radicals due to presence of H2 is expected to induce a fast procession of H + CH4 → CH3 

+ H2. 
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Comparison of H concentration in the plot in Figure. 6.14 indicates production of 

excess H radicals in the blended mixture compared to pure methane as CH4 consumption 

rate starts to increase around 1.1ms until it reaches the maximum value.  Then there is 

significant scavenging of H radicals as consumption rate of CH4 starts to die down from 

1.3ms. This trend is not noticeable for pure methane mixture where H radicals continue to 

increase steadily signaling change in reaction chemistry during the ignition event. A similar 

trend is observed for OH radical concentration. This indicates the active progression 

O+H2<=>H+OH mechanism during the main ignition event.  

 
Figure 6.13 CVC Chamber Averaged Consumption Rate of Oxygen for Different 

Stoichiometric Mixtures 

 

 



107 
 

 

1
0
7

 

 
Figure 6.14 CVC Chamber Molar Concentration of H for Methane-Hydrogen Blend and 

Pure Methane in Main Chamber 

 

 
6.6 Effect of Combustion Models       

The eddy-break up model relates the rate of reaction to the dissipation rate of 

turbulent eddies containing products and reactants. The dissipation rate of turbulent eddies 

is assumed to be proportional to the ratio of the turbulent kinetic dissipation and turbulent 

kinetic energy, ε/k [41]. When being mixing controlled the finite-rate chemistry version of 

the EBU model would be expected to behave identically to the standard model [40]. 

 

A peculiar situation that may occur when combining the EBU model with a multis tep 

reaction mechanism is that several reactions will proceed at the same rate. The reason for 

this is that the mixing rate of a species that is only present at low concentration is likely to 

be the limiting factor. If this species is taking part in several reactions, the rates of these 

reactions are all the same and are given by the mixing rate of this particular species; 

although it is probably more reasonable that the fastest reaction consumes the most [40].  
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Kong and Reitz [87] employed combined approach of turbulent mixing and chemica l 

kinetics for HCCI engine and concluded that the effects of turbulent mixing on the reaction 

rates needed to be considered to correctly simulate the combustion and heat release rates.  

 

In the present work, simulations are carried out using hybrid eddy break mode (which 

includes both mixing time scale and kinetics time scale) and kinetics only model to 

understand the effect of these two approaches on combustion modeling.   

 

The fuel mass fraction levels are shown for hybrid EBU model and kinetics only 

model in Figure 6.15. It can be observed that the fuel consumption in case of kinetics only 

model is continuous and uniform from the time hot jet enters the main chamber. On the 

other hand for the hybrid EBU model there seems to be a lag in significant consumption of 

fuel. These observations can be seen in Figure 6.16 which shows the averaged fuel 

consumption rate in the main chamber. The fuel consumption for hybrid EBU is seen to 

significantly increase after 1.2 ms when there is sudden consumption of fuel in the main 

chamber. To understand process of the decomposition of fuel and eventual conversion into 

final products, the intermediate species formation are analyzed. In Figure 6.17, the mass 

levels of an important intermediate species CH3 is presented at different points of time for 

the two combustion models. It is seen that in case of hybrid EBU the production of CH3 is 

significantly larger and more distributed while in case of kinetics only mode it is produced 

only on interface between burnt and unburnt region, that is, flame. Looking at OH mass 

fraction in Figure 6.18 it is observed that there is significantly higher and early production 

of OH in case of kinetics only model. It can be inferred from this that the combustion 

completion is faster and more in case of kinetics only model. This can be further observed 

from the temperature levels at different point of time during combustion in the main 

chamber presented in Figure 6.19.  
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Figure 6.15 Fuel Mass fraction contours for methane using DRM19 (21 species) 

reaction mechanism (a) Kinetics Only Model (b) Hybrid Eddy Break Model 
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Figure 6.16 Averaged Fuel Reaction Rate in Main Chamber for Stoichiometric 

Methane Mixture for Kinetics Only and Hybrid EBU Combustion Models 
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Figure 6.17 CH3 Mass Fraction at Different Time Levels for Methane using 
DRM19 (21 species) Reaction Mechanism (a) Kinetics Only Model (b) 

Hybrid Eddy Break Up Model 
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Figure 6.18 OH Mass Fraction at Different Time Levels for Methane Using DRM19 
(21 Species) Reaction Mechanism (a) Kinetics Only Model (b) Hybrid Eddy Break 

Up Model 
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Figure 6.19 Temperature at Different Time Levels for Methane Using DRM19 (21 

Species) Reaction Mechanism (A) Kinetics Only Model (B) Hybrid Eddy Break 
Model 
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7. CONCLUSION AND RECOMMENDATIONS 

7.1 Conclusions     

The hot jet ignition process for hydrocarbon-air mixtures was analyzed using 

numerical simulations of non-reacting and reacting processes in a constant-volume 

combustor. Detailed study was carried out for jet mixing and behavior, ignition delay, 

reaction pathways, and shock-flame interaction. Simulations were conducted using 

hybrid turbulence-kinetic schemes and kinetics-only schemes using detailed, skeletal 

and global reaction mechanisms.  

 

The mixing of hot jet with cold mixture in the main chamber is compared with 

high speed video images from experiments, with the qualification that predictions from 

two-dimensional simulations cannot be quantitatively matched with the measurements 

in the actual three-dimensional experimental geometry. The ignition delay time and jet 

behavior are also compared with experimental data. The amount of mixing and 

temperature level are analyzed using High Temperature Mixedness (HTM). Traversing 

jet at different speeds shows different jet behavior in the main chamber compared to 

stationary centered jet. Near-wall jet shows enhanced mixing due to counter-rotating 

vortices as the jet impinges on wall.  

 

The reacting simulations show the inadequacy of global reaction mechanisms for 

studying ignition delay and combustion progress. Detailed and skeletal reaction 

mechanisms are able to give more insight on ignition process both quantitatively and 

qualitatively. The ignition delay is found to be higher for methane mixture compared 

to ethylene and propane mixtures for both stationary and traversing jet cases. The 

traversing hot jet in the near-wall jet case has lower ignition delay than the stationary 

jet for methane mixture.  
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Shock-flame interaction is found to play significant role in the ignition and 

combustion processes, particularly for the case of the relatively less reactive methane 

at the given initial temperature. The ignition for methane mixtures happens after shock 

returns and causes compression of the non-combusted mixture leading to sudden fuel 

consumption. Delaying the shock return from main chamber end wall also delays the 

ignition for methane mixture.  

 

Reaction pathways for combustion of methane mixture in the main chamber is 

mainly via disintegration into C1/C2 species and then their subsequent consumption 

for hybrid turbulence-kinetics scheme. The reaction pathways for kinetics-only scheme 

shows the continuous consumption of fuel from beginning and production of C1/C2 

species mainly in the flame region. Traversing jets combustion shows different reaction 

pathways compared to stationary jet. For methane mixture the near wall jet shows less 

production of C1/C2 species and more production of relatively stable species like OH.  

 

The choice of combustion modeling schemes; hybrid and kinetics-only has 

significant impact on ignition delay predictions, reaction pathways, and combustion 

progress. The kinetics-only scheme does not take into account turbulent mixing and 

hence less suited for the hot jet ignition process in the present investigation. 
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7.2 Recommendations for Future Work 

The present work carried out detailed numerical investigation of combustion in hot 

jet ignition process using a constant-volume combustor. The following 

recommendations are made for future work based on the current work: 

 

1. Detailed numerical simulations should be carried out using three-dimensiona l 

geometry configuration for better quantitative comparison of numerical results 

with experimental data.  

2. The effect of shock-compression and shock-flame interaction on ignition and 

flame propagation in constant-volume combustor should be analyzed in detail. 

The effect of shock-flame interaction should be separated from the jet traverse 

for understanding its effect on ignition. 

3. Design of experiments study can be carried out from the information obtained 

from CFD to reduce the number of tests needed in future. 

4. In the present work, the hybrid and kinetics-only schemes were compared for 

only methane mixture in the main chamber. The effect of turbulence-chemis try 

interaction can be studied in more detail for different fuel mixtures and 

equivalence ratio.  

5. Heat transfer was not modeled in the present work. More realistic heat transfer 

modeling should be included in the future work. 

6. The leakage between the prechamber and main chamber was not modeled in 

the present work. It would be good to consider leakage in future works. 

7. The modeling of hot-jet ignition should be extended to a range of initial mixture 

temperature that is high enough to be representative of typical combustor 

operation. Many of the conclusions of this work may be qualified by the 

significantly higher chemical reaction rates at higher temperatures, relative to 

jet mixing rates and fluid dynamic processes of shock-flame interaction.   
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