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ABSTRACT

Smith, Keith C. M.S.M.E., Purdue University, December 2011. Coupled Dynamic
Analysis of Flow in the Inlet Section of a Wave Rotor Constant Volume Combustor.
Major Professor: M. Razi Nalim.

A wave rotor constant volume combustor (WRCVC) was designed and built as a

collaborative work of Rolls Royce LibertyWorks, Indiana University-Purdue Univer-

sity at Indianapolis (IUPUI), and Purdue University, and ran experimental tests at

Purdue’s Zucrow Laboratories in 2009.

Instrumentation of the WRCVC rig inlet flow included temperature and pressure

transducers upstream of the venturi and at the fuel delivery plane. Other instru-

mentation included exhaust pressures and temperatures. In addition, ion sensors,

dynamic pressure sensors, and accelerometers were used to instrument the rotating

hardware. The rig hardware included inlet guide vanes directly in front of the rotating

hardware, which together with concern for damage potential, prevented use of any

pressure transducers at the entrance to the rotor. For this reason, a complete under-

standing of the conditions at the WRCVC inlet is unavailable, requiring simulations

of the WRCVC to estimate the inlet pressure at a specific operating condition based

on airflow.

The operation of a WRCVC rig test is a sequence of events over a short time span.

These events include introduction of the main air flow followed by time-sequenced

delivery of fuel, lighting of the ignition source, and the combustion sequence. The

fast changing conditions in the rig inlet hardware make necessary a time-dependent

computation of the rig inlet section in order to simulate the overall rig operation.
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The chosen method for computing inlet section temperature and pressure was a time-

dependent lumped volume model of the inlet section hardware, using a finite difference

modified Euler predictor-corrector method for computing the continuity and energy

equations. This is coupled with perfect gas prediction of venturi air and fuel flow

rates, pressure drag losses at the fuel nozzles, pressure losses by mass addition of the

fuel or nitrogen purge, friction losses at the inlet guide vanes, and a correlation of the

non-dimensional flow characteristics of the WRCVC. The flow characteristics of the

WRCVC are computed by varying the non-dimensional inlet stagnation pressure and

the WRCVC’s operational conditions, assuming constant rotational speed and inlet

stagnation temperature.

This thesis documents the creation of a computer simulation of the entire WRCVC

rig, to understand the pressure losses in the inlet system and the dynamic coupling of

the inlet section and the WRCVC, so that an accurate prediction of the WRCVC ro-

tor inlet conditions can be computed. This includes the computational development

of the WRCVC upstream rig dynamic model, the background behind supporting

computations, and results for one test sequence. The computations provide a clear

explanation of why the pressures at the rotor inlet differ so much from the upstream

measured values. The pressure losses correlate very well with the computer predic-

tions and the dynamic response tracks well with the estimation of measured airflow.

A simple Fortran language computer program listing is included, which students can

use to simulate charging or discharging of a container.
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1. INTRODUCTION

1.1 Background

A wave rotor constant volume combustor (WRCVC) was designed and built as a

collaborative work of Rolls Royce LibertyWorks, Indiana University-Purdue Univer-

sity at Indianapolis (IUPUI), and Purdue University. Initial experimental tests on

the WRCVC were carried out successfully at Purdue’s Zucrow Laboratories in 2009.

Alparslan [1] described the WRCVC design and the cycle employed by the rotating

hardware. Matsutomi [2] described the WRCVC rig hardware, focusing mostly on

the drive assembly, the air systems, the ignition source, and the data acquisition and

control systems. Elharis [3] further elaborated on the aerothermal design and pro-

vided the model validation of the rig. This WRCRV rig has also been the subject of

other papers including a detailed experimental investigation paper by Matsutomi [4]

and an analysis of the deflagrative combustion process by Elharis et al. [5].

A WRCVC differs significantly from the combustors used in popular jet aircraft

engines in its operation and in its efficiency. The combustor in a jet aircraft engine

has evolved over decades, beginning with the “can” design used in both centrifugal

compressor engines such as the Allison J33 seen in Figure 1.1 [6] and axial compressor

engines, from the early J35 through the very popular J79 engines. These combustors

had very poor combustion efficiency, as documented in Graves [7], which could be

seen as smoke from unburned fuel on takeoff in Figure 1.2 [8].

Development of more efficient combustors, including annular designs and can-

annular (hybrid) designs, began in parallel with can type combustors, with early

testing showing significantly higher combustion efficiency, as seen in Zettle [9]. It is

possible in modern combustors to achieve nearly 100 percent combustion efficiency,
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Figure 1.1. Allison J33 turbojet engine with centrifugal compressor and can combus-
tors.
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Figure 1.2. North American F86E with J47-GE-13 engine.
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meaning that the fuel is completely burned. However, a more fundamental limitation

is that all constant-pressure combustors penalize the engine cycle efficiency, because

they inherently fail to capture the full work potential of the energy released by com-

bustion of the fuel.

In contrast, a pressure gain combustor, which ideally approximates a constant

volume combustion process, the same heat addition is accompanied by a pressure

increase. The efficiency benefits of a pressure gain combustor over a constant pressure

combustor can be seen in Li [10], which showed a significant increase in overall thermal

efficiency for a gas turbine cycle, and in Nalim [11], which showed a significant specific

impulse gain at low Mach numbers for a ramjet application.

The WRCVC design mechanically produces a constant volume combustion cham-

ber, by capturing the fuel-air mixture into a flow channel and then blocking the ends

of that channel. With proper hardware design, an additional pressure increase of the

cold air charge can be seen, and is the main purpose of some wave rotor designs. This

second application of the wave rotor has been proposed for use in gas turbine topping

cycles, as seen in studies of the Wave Rotor compressor, summarized in Akbari [12].

A third possible application for the wave rotor is to transfer pressure between two

flows, such as the exhaust and inlet flows of a piston type internal combustion en-

gine. A modern example of this is the Mazda Comprex compressor as described in

Akbari [12].

Similar to the wave rotor constant volume combustor cycle is the Otto Cycle in-

ternal combustion cycle. An Otto Cycle engine uses a mechanical device, the moving

piston, to produce, in theory, a constant volume combustion process, although at high

piston speeds the combustion volume is constantly changing. By contrast, a well de-

signed WRCVC should be smaller and lighter than a traditional internal combustion

engine of the same power.
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Two possible uses for a more thermally efficient combustion process could be sta-

tionary generation or flight worthy engines. A perceived lower cost of the WRCVC

for use in a transonic ramjet missile, as opposed to the cost of a small turbojet engine,

could be an economic driver for WRCVC development.

1.2 Rolls-Royce Test Rig Description

The Rolls-Royce WRCVC test rig hardware was built to support the operation

of the WRCVC. The rig supplied the base and drive assembly to spin the WRCVC

rotor, a propane-based torch igniter to light the fuel-air mixture in the WRCVC, high

pressure air, ethylene fuel, nitrogen purge, and data acquisition systems, as described

in Matsutomi [2]. The WRCVC exhaust port was open to atmosphere without any

attempt for pressure recovery. In Figure 1.3, the venturi and high pressure inlet

airflow piping can be seen in relation to the WRCVC hardware. In Figure 1.4, the

rig air inlet, transition duct, fuel delivery area, flow straightener, and WRCVC inlet

can be seen. In Figure 1.5, a front view of the fuel delivery area showing the fuel

nozzles is shown. Table 1.1 gives detailed placement of the parts in the as-tested

configuration. In the test run studied in this thesis, there were 9 fuel delivery tubes,

three blanks, two pressure measurement tubes, and one thermocouple, for a total of

15 tubes blocking the flow.

A geometric analysis of the piping and inlet section hardware was performed for this

thesis, resulting in a computation of the total volume of the airflow path. Details of

this analysis are presented in Section 5.3 and Table 5.2. The total volume of the airflow

path downstream of the airflow measurement venturi is used in the mathematical

model of the air system. Instrumentation of the inlet section airflow consisted of

temperature and pressure measurements upstream of the venturi and at the fuel

nozzle plane, which is approximately 16 inches upstream of the WRCVC rotor inlet

plane.
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Figure 1.5. Rolls Royce WRCVC rig fuel delivery section (courtesy Rolls Royce).
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Table 1.1 Test O run 5 fuel configuration.

Passage EX184314 EX184251 EX184268 EX184315 Other
Number Filler Plug Fuel Tube Blank Tube List Part Name

A X X
B X X
1 Inlet Total Press
2 X
3 X
4 X
5 X
6 X
7 X
8 X
9 X
10 X
11 X
12 Thermocouple
13 X
14 X
15 Inlet Total Press
C X X
D X X
E X X
F X X
G X X
H X X
I X X
J X X
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Analyses of the WRCVC performance, including Elharis [3], Elharis [5], and Mat-

sutomi [4], have used measured pressures for various purposes. The first of these

analyses, Elharis [3], stated, “Boundary conditions at the rotor channel inlet and exit

ends are needed for numerical simulations; however, the pressures and temperatures

are not measured at the rotor faces, but at more distant locations. The boundary

pressures for the intake and exit sides of the channel are estimated such that the

intake mass flow rate in the simulation matches the measured mass flow supplied

through the intake port.” This paper acknowledges the difference between the pres-

sures measured at the fuel delivery plane and the pressures required to match airflow

rates by computer software models of the WRCVC. The pressures tabulated in this

paper are summarized in Table 1.2.

Table 1.2 Analysis pressures tabulated in Elharis (2010).

Reference Condition Measured Correlated
Pressure (psi) Pressure (psi)

Case A Cold 21.23 19.3
Torch 20.78 19.4
Firing 20.17 18.4

Case B Cold 21.52 19.4
Torch 21.11 19.6
Firing 20.77 18.5

Case C Cold 20.08 18.5
Failed Firing 19.76 18.4

The third of these papers, Matsutomi [4], displayed a time graph of the measured

pressure at the fuel delivery plane, labeled “Inlet total pressure measurement.” This

graph showed an increase in the measured pressure during the cold-flow fuel mass

addition time period, and a decrease in the measured pressure during the firing time

period, when the main fuel was burning. This paper stated, “The effect of fuel flow

alone can be observed around 198 seconds in the plot. At this point, the fuel flow was

activated prior to combustion to release any unwanted fuel accumulation in the fuel
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plumbing. The fuel flow rate observed during this period was approximately the same

as during the combustion test. During this period, the inlet total pressure increased

approximately 1.0 psi from the nominal pressure due to the fuel injection.” The paper

further discussed the effect of combustion on the inlet total pressure measurement.

The main purpose of this thesis is to present a time-dependent lumped volume

computer simulation of the inlet section, coupled with the WRCVC, to explain both

of these pressure observations. This computer simulation can be used in future rig

test planning, to more closely predict the operating point of the WRCVC at a specific

inlet operating pressure and temperature.

1.3 NASA Combustion Wave Rotor Computer Software

As mentioned in the previous section, analyses of the WRCVC performance have

been performed, including Elharis [3] and Elharis [5]. The software used to perform

these analyses is a derivative of software developed for generic wave rotor analysis,

and documented in Paxson [13], [14], [15], [16], [17], and Nalim [18]. The original code

developed by NASA is often referred to as the NASA quasi one-dimensional (Q1D)

wave rotor code.

In the paper Paxson [15] the model description is provided in detail. The sec-

tion regarding the Governing Equations for single passage gas dynamic modeling is

repeated verbatim here for reference. For additional detail the referenced papers

should be studied.

Governing Equations

The governing equations in the passages are assumed to be of the form

∂w

∂t
+
∂F (w)

∂x
= S(w) (1.1)
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where

w =


ρ

ρu(
p

γ(γ−1)
+ ρu2

2

)
 (1.2)

and

F =


ρu

p
γ

+ ρu2

u
(

p
(γ−1)

+ ρu2

2

)
 (1.3)

These equations have been non-dimensionalized using a reference state p∗, ρ∗, and

a∗, where a∗ is the speed of sound, and the ratio of specific heats, γ. In this form

the perfect gas law may be written as p = ρT . The distance has been scaled by

the passage length, L, and the time has been scaled using the wave transit time,

L
a∗

. For all of the results to be presented, the reference state is the wave rotor inlet

stagnation state (port 1 in Fig 1). The source vector S(w) accounts for viscous effects

(i.e. friction), heat transfer from the passage walls to the gas, and leakage from the

passages to the hollow center cavity of the rotor and to the ports. Leakage is assumed

to occur only at the ends of any passage. Thus, for the intermediate region where

there is no leakage the source vector may be written as

Sint =


0

σ2 |ρu|0.75 u

σ2
γ−1

(
Dh
2h

)
Pr−

2
3 (T − Twall) |ρu|0.75

 (1.4)

where Dh is the passage hydraulic Diameter, h is the passage height, Pr is the

Prandtl number, T is the gas static temperature, and Twall is the passage wall tem-

perature. The term σ2 is a semi-empirically derived constant based on the passage

geometry and reference conditions:

σ2 = −5.448

(
L

Dh

)1.081(
ρ∗a∗L

µ

)−0.3953

(1.5)
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The dynamic viscosity os assumed constant. The third term of the source vector in

Eqn. 4 (1.4) is derived from the Reynolds-Colburn heat transfer, skin friction analogy

with heat transfer assumed to occur only from the upper and lower surfaces of the

passage and not from the sides.

For the ends of the passage where leakage occurs, the source vector is written as

Sleak = Sint +


−CD · γ2

(
2δleak
h∆x

)√
pρ · f

(
pcav
p

)
0

−CD · γ2
(γ−1)

(
2δleak
h∆x

)
T 0√pρ · f

(
pcav
p

)
 (1.6)

where the function f
(
pcav
p

)
is the well known St. Venant’s orifice equation, pcav is

the pressure of the gas in the rotor center cavity, δleak is the gap between the rotor

and casing endwall, ∆x is the non-dimensional grid spacing used in the computational

scheme to be described below (it is assumed that the leakage gap is much smaller than

the grid spacing), γ2 =
√

2
(γ−1)

, T 0 is the gas stagnation temperature, and CD is the

seal discharge coefficient, assumed here to be 0.8. If the cavity pressure is greater

than cell pressure then the pressure ratio in Eqn. 6 (1.6) is inverted, the sign changes,

and p, ρ, and T 0 become those of the rotor center cavity.

Eqn. 1 (1.1) is integrated numerically using the following Lax-Wendroff technique

described in Ref. 1:

wn+1
i = wni −

(
fn
i+1/2

− fn
i−1/2

) ∆t

∆x
+ sni ∆t (1.7)

where the numerical flux estimate fn
i+1/2

is

fn
i+1/2

=
F n
i+1 + F n

i

2
−

ΦRoe
i+1/2

2
+

∆t

4

(
[A]ni+1 · Sni+1 + [A]ni · Sni

)
(1.8)
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and the numerical source sni is

sni =
1

2

(
3 · Sni − Sn−1

i

)
(1.9)

The term ΦRoe
i+1/2 in Eqn. 8 (1.8) refers to the flux limited dissipation based on

Roe’s approximate Riemann solver for equation 1 (1.1) without a source vector. The

matrix [A] is the Jacobian of the flux vector F . The superscript n indicates the

discrete temporal index n∆t, and the subscript i indicates the spacial index i∆x.

Unless otherwise stated all results to be presented in this report used a ratio of

∆t
∆x

= 0.3, with ∆x = 0.02. The leakage term, Eqn. 6 (1.6), is applied to the first and

the last cell in the computing domain.

Paxson’s paper also provides the method for computing the wall temperature for

each computational cell of each passage using a lumped capacitance model, as well

as a method for computing the center cavity gas state. These methods were refined

in Paxson [16], presenting the same wall temperature computation with a heat flow

schematic. Paxson’s papers provide the equations for computing endwall leakage; this

has been expanded in the current version to include computation of leakage between

channels. Also in this latter Paxson paper, the effect of a finite opening time for

the channel to the inlet flow was described, which is considered an improvement

over the assumption of an instantaneous opening and closing of the passage. The

version of SCW1D used for this thesis did not include the species computations used

in Elharis [19].

The original software for analysis of wave rotor performance consists of three For-

tran modules, encompassing the boundary condition computations, the Roe’s char-

acteristic scheme for the Euler equations, and the input/output/control software. In

the original form, the software uses a fixed input and output format, and iteration

is done by interactively specifying the normalized boundary pressures, temperatures,

and rotor speed.
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In order to increase the speed with which analyses can be performed, organizational

changes to the original Fortran program were required. Changes to the program were

made in order to increase the speed of computation, to improve the security of the

data used by the program, to allow multiple paths of program development, to include

conversion between physical properties and physical dimensions and non-dimensional

inputs and outputs, and to execute the entire program as a subroutine of a larger

control program. In addition, minor changes were made so that the program compiles

using the latest Fortran compiler. All of these changes were made to the program and

the program was validated against existing test cases. Finally, the program was put

under configuration control to document and control revision changes to all modules.

These changes are documented in Section 3.3.

Additional work on the program, performed by Dr. Razi Nalim and members of

the IUPUI wave rotor group over the past 14 years, have been incorporated into

the actual functional portions of the code, in order to improve the accuracy of the

program.

The current version of the program, with the changes mentioned, is being used

by Indiana University-Purdue University at Indianapolis (IUPUI) for analysis and

design efforts, and is referred to as the SCW1D program (Simulation of Combustion

& Waves - 1D). Other works have been performed using derivatives of this program,

including Elharis [19].
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1.4 Experimental Test Description

The experimental test runs were carefully planned with precise timings for main

air flow, nitrogen purge, ethylene fuel and propane torch igniter operation. Main air

flow is a term used by the combustion laboratories to indicate the main working gas

of the test article. Timings were chosen to allow stabilization of the main airflow, to

ensure safe operation of the WRCVC, and to gather accurate test data for a short

firing of the WRCVC. Main inlet airflow was controlled by a venturi as seen in Figure

1.3. Fuel and nitrogen purge flows were controlled by using pre-set pressures for

the delivery systems. Each test was governed by a Test Operations Request (TOR)

which detailed the rig configuration and the timings for the air, fuel, purge, and torch

systems.

The specific test run evaluated by this thesis, characterized as Test O Run 5, was

performed on Sept 30, 2009. The main airflow set point was achieved by upstream

venturi pressures of approximately 160 psia, with airflow governed primarily by the

upstream pressure and the calibrated venturi area. Testing protocol began with a

spin-up of the rotor to a constant rotor speed which was held to virtually the same

speed throughout the test. Stagnation pressures upstream of the venturi and at the

fuel plane were recorded, as well as stagnation temperatures. After the rotor had

achieved its set speed point, a sequence of mass flows were initiated at time set points

as seen in the testing data. Table 1.3 shows the timing sequence of flows and igniter

firings of Test O Run 5.

Use of a calibrated venturi for flow metering improves the certainty of the air flow

measurement. After the initial couple of seconds, the venturi is choked, which makes

the main air flow rate primarily proportional to the upstream pressure. Holding the

pressure constant keeps the airflow constant until the tank temperature starts to

drop, which is seen near the end of each test. This temperature drop is caused by the
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Table 1.3 Test O run 5 timings.

Number/Type Event Time, sec Value Condition
1D Main air isolation valve - HIGH Cold
2D Motor main switch control 1.0 HIGH Cold
3A Start spinning the motor 5.0 2100 rpm Cold
4A Start main air flow 80.0 175 psia Cold
5D Start N2 purge in main fuel 194.0 HIGH Cold
6D HF DAQ control 195.0 HIGH Cold
7D Burp torch fuel 197.0 HIGH Cold
8D Burp main fuel 197.0 HIGH Cold
9D Burp main fuel 198.5 LOW Cold
10D Burp torch fuel 202.0 LOW Cold
11D Torch air fire valve 203.0 HIGH Torch On
12D Torch spark 208.5 HIGH Torch Lit
13D Torch fuel fire valve 209.0 HIGH Torch Lit
14D Torch spark 212.5 LOW Torch Lit
15D Main fuel open 214.0 HIGH Firing
16D Gas sampling valve open 214.4 HIGH Firing
17D Main fuel close 215.0 LOW Torch Lit
18D Gas sampling valve close 215.2 LOW Torch Lit
19D Main air isolation valve 229.0 LOW Cold
20A Main air flow off 229.0 0 psia Cold
21A Stop spinning the motor 232.0 0 rpm Cold
22D HF DAQ control 233.0 LOW Cold
23D Motor main switch control 233.0 LOW Cold

transient flow pulling flow work from the tank, in much the same way as a propane

tank becomes cold when it is used.

Nitrogen purge flow is used to prevent residual presence of ethylene fuel in the fuel

nozzles when the fuel supply is turned off. Because the nitrogen purge pressure is

lower than the fuel pressure, when fuel flow is on, a check valve stops the nitrogen

flow, and when the fuel flow is stopped, the nitrogen flow resumes, clearing the fuel

nozzles of any residual fuel. During ethylene fuel operation, the check valve prevents

ethylene gas from backflowing into the nitrogen purge system.
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1.5 VOLDYN - WRCVC Rig Computer Model Description

The VOLDYN computer program, the main tool developed and used for this the-

sis, was developed to simulate the WRCVC rig inlet section volume dynamics, the

pressure losses associated with fuel injection, fuel nozzle blockage, friction losses as-

sociated with the flow straightener walls and inlet guide vanes, and to simulate the

time-dependent mass flow characteristic of the WRCVC, explained as changes in the

WRCVC “pumping effect” in Matsutomi [4] page 8. The VOLDYN program uses

a finite difference, modified Euler predictor-corrector method for time integration of

the continuity and energy equations, including the time dependent injection of mass

flows, to compute the lumped volume properties of a single volume. For this work

this single volume is the rig inlet section, starting at the venturi and ending at the

WRCVC rotor inlet, as seen in the simplified graphic in Figure 1.6. This method

of time dependent flow analysis has been used by industry to predict the dynamic

response of engine systems, including Drummond [20]. The author also has devel-

oped similar simulations, incorporating the momentum equation, for multiple volume

simulation of the GE XF120 gas generator stall simulation program (unpublished).

The VOLDYN program uses perfect gas relations to simulate pressure losses down-

stream of the flow treatment section. In order to properly simulate rig operation in

real time, the rig model computes inlet air flow, nitrogen purge flow, and ethylene

fuel flow rates based on measured stagnation pressure and stagnation temperature

of each gas. Main air, nitrogen purge, and ethylene fuel flow values are computed

using perfect gas relations, based on the time dependent measurements of upstream

pressure. The rig exit airflow rate is computed from maps generated of the WRCVC

operating at a single specified rotational speed and varying inlet pressure, yielding

polynomial equations for non-dimensional airflow value as a function of inlet pressure.

The VOLDYN program computes working fluid conditions at specified points in

the flow stream, using an industry standard technique of assigning “station” numbers

to specific flow boundaries, and computing thermodynamic processes between these
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boundaries using perfect gas relations or real gas relations. The industry standard

NPSS program uses this method for simple cycle modeling [21]. As described above,

the inlet flows are computed using steady one-dimensional flow of perfect gas equa-

tions, which can be applied to dynamically changing flows even if the backpressure is

changing rapidly, unless the flow unchokes.

Pressure loss computations are based on standard correlations of pressure drag

based on correlations found in Hoerner [22] and Incropera [23]. Losses from intro-

duction of fuel crosswise to the flow stream are based on ideal gas relations with

computations found in Zucrow & Hoffman [24]. These pressure losses are detailed in

Section 2.5.
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2. DEVELOPMENT OF THE LUMPED VOLUME DYNAMIC MODEL

2.1 Finite Difference Equations

A general description of the lumped volume model is that it is a time-dependent

solution of initial-value ordinary differential equations (ODEs), which Hoffman [25]

describes as propagation problems. Hoffman’s textbook describes many methods for

solving propagation problems. Chapter 7 in this text describes a finite difference

method, quoting, “transforming the calculus problem into an algebraic problem by

1. Discretizing the continuous physical domain

2. Approximating the exact derivatives in the ODE by algebraic finite difference

approximations (FDAs)

3. Substituting the FDAs into the ODE to obtain an algebraic finite difference

equation (FDE)”

Hoffman describes the numerical solution of initial value ODEs using the term

“marching” methods. The calculus equations used in the development of the com-

puter simulation in this thesis are the Navier-Stokes continuity and energy equations.

The sections in this chapter describe the discretization of these two equations, the

approximation used to create the FDAs, and the final FDEs used for the computer

simulation. In addition, the problem domain for the WRCVC inlet section is one

where the initial values are time dependent as well, making each time step require a

re-evaluation of the inputs.

For all unsteady solutions of fluid dynamics problems, discretization must be per-

formed in the temporal (time) and spacial (physical) dimensions. The temporal dis-

cretization of this problem is dependent on the time analysis of the inlet section as
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seen in Sections 4.1 and 4.2. Because of nature of the problem to be solved, the size

of the inlet section volume and its ability to accumulate mass and energy, the spacial

discretization can be reduced to a single volume. Use of a single, fixed control volume

reduces the spacial discretization in the equations to the overall volume measurement.

Time discretization of unsteady solutions is generally a trade-off between the time

difference required for stability (values too large will cause the computation to be

unstable) and the time difference required for reasonable run times (values too small

will cause the system to use excessive computer time).

The method employed for this thesis is the Modified Euler Predictor-Corrector

Method, as described in Section 2.2. The error term for this method is of order

ε ∝ O(∆t3) (2.1)

For this thesis, this error term is minimized by setting the ∆t value to 20 mi-

croseconds (20µs). The data acquisition system obtained data in 2 millisecond (ms)

increments. Use of a 20 microsecond time step reduces the error over use of a 2 mil-

lisecond time step by 6 orders of magnitude. An error in the computation could also

be caused by the spacial discretization and ignoring the pressure losses upstream of

the flow treatment section. Further study could be accomplished by increasing the

number of volumes, but this would require introduction of the momentum equation,

adding an additional FDE and requiring different numerical methods. Section 4.2

describes the timing of the wave rotor cycle. The WRCVC rotor period of 28.6ms is

approximately ten times the data measurement period and approximately 1000 times

the VOLDYN computation period. For this reason the VOLDYN model assumes that

the WRCVC conditions do not change during the ∆t computation period.
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2.2 Continuity Equation

The Continuity equation relates the increase of mass in a control volume based

on the introduction of mass flows into the volume, balanced by mass flows exiting

the volume. Over a specified increment of time, if the summed mass flows into the

volume exceed the mass flows exiting, mass will accumulate in the volume. The

integral equation for continuity is:

∫
V

ρtdV +

∫
A

ρV · dA = 0 (2.2)

Applying the integral form to a differential, one-dimensional control volume pro-

vides the differential form of the continuity equation:

∂ρ

∂t
+

∂

∂x
(ρ~u) = 0 (2.3)

Applying the integral form to the fixed rig volume V gives the following finite

difference approximation (FDA):

dm

dt
=
∑

ṁin −
∑

ṁout (2.4)

Accounting for the main air flow, fuel rail flow, exit flow, and making the assump-

tion of no leakage flows leads to:

V
dρ

dt
= ṁair + ṁfuel − ṁexit (2.5)

Which can be discretized as a time dependent relation of density over time:

(ρV )t+∆t = (ρV )t + (ṁair + ṁfuel − ṁexit)∆t+ (higher order terms) (2.6)

Leading to the main iteration equation representing the change of density of the

lumped volume for the next time step, a finite difference equation (FDE):
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(ρ)t+∆t = (ρ)t + (ṁair + ṁfuel − ṁexit)

(
∆t

V

)
(2.7)

With units of:

lbm
ft3

=

(
lbm
sec

)
· sec
ft3

(2.8)

Since the main air pressure and fuel rail pressures were tabulated as a function of

time, the inlet mass flows ṁair and ṁfuel could be evaluated at any value of time. The

exit mass flow, as will be shown in Section 2.6, is a function of the volume density and

pressure, shown as f(ρ, p) and must be computed for time t + ∆t. For this reason,

evaluation of the FDE derivatives were evaluated using the mass flows at time step t

and at time step t+ ∆t, and a Modified Euler Predictor-Corrector method was used

to compute the value of (ρ)t+∆t.

(g
′
)t =

(ṁair + ṁfuel − ṁexit)t
V

(2.9)

(ρ)Pt+∆t = (ρ)t + ∆t · (g′)t (2.10)

(ṁexit)t+∆t = f((ρ)Pt+∆t, (p)
P
t+∆t) (2.11)

(g
′
)t+∆t =

(ṁair + ṁfuel − ṁexit)t+∆t

V
(2.12)

(ρ)Ct+∆t = (ρ)t +
1

2
∆t
[
(g
′
)t + (g

′
)t+∆t

]
(2.13)
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2.3 Energy Equation

The Energy equation relates the increase of the internal energy in a control volume

based on the introduction of energy into the volume, balanced by energy exiting

the volume. Over a specified increment of time, if the summed energy into the

volume exceed the energy exiting, energy will accumulate in the volume. The integral

equation for energy is:

Ẇshaft+Ẇshear−Q̇+

∫
V

∂

∂t

[
ρ

(
u+

V 2

2
+ gz

)]
dV+

∫
A

(
h+

V 2

2
+ gz

)
(ρV · dA) = 0

(2.14)

Applying the integral form to a differential, one-dimensional control volume, in

the absence of heat transfer, work, and gravitational effects, provides the differential

form of the energy equation:

∂

∂t

(
ρe+

ρu2

2

)
+

∂

∂x

(
ρeu+

ρu2

2
+ up

)
= 0 (2.15)

Applying the integral form to the fixed rig volume V , in the absence of heat trans-

fer, work, and gravitational effects, gives the following finite difference approximation

(FDA):

d

dt
(mu) =

∑[
ṁ

(
h+

V 2

2

)]
in

−
∑[

ṁ

(
h+

V 2

2

)]
out

(2.16)

Summing the enthalpy and kinetic energy terms leads to:

d

dt
(mu) =

∑
(ṁH)in −

∑
(ṁH)out (2.17)

Applying the calorically perfect gas relation H = cpTt , applying the differential

equation over a fixed time frame ∆t , and accounting for the main inlet air flow, fuel

rail flow, exit flow, and assuming no leakage, the equation can be written:
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d(mu)

dt
= (ṁcpTt)air + (ṁcpTt)fuel − (ṁcpTt)exit (2.18)

The left hand relation can be reduced in the following fashion by the definition

of mass m = ρV , applying the equation of state pV = ρRTs , the definition of gas

constant R = cp − cv and of the specific heat ratio γ which is γ = cp
cv

, leading to the

relation between γ and the ratio cv
R

:

γ − 1 =
cp
cv
− cv
cv

=
R

cv
(2.19)

and its reciprocal:

cv
R

=
1

γ − 1
(2.20)

Substitution allows the value of (mu) to be related to temperature and pressure:

mu = mcvTs = ρV cvTs =
pV cv
R

=
pV

(γ − 1)
(2.21)

Leading to the following:

V

(γ − 1)

dp

dt
= (ṁcpTt)air + (ṁcpTt)fuel − (ṁcpTt)exit (2.22)

In this equation the value of pressure at a future time step ∆t can be computed as

a finite difference equation (FDE):

(p)t+∆t = (p)t+

(
(γ − 1)∆t

g2
l V

)[
(ṁcpTt)air + (ṁcpTt)fuel − (ṁcpTt)exit

]
+(higher order terms)

(2.23)

With the length constant applied, the units are reconciled as follows:
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lbf
in2

=
s

( in
2

ft2
· ft3)

·
(
lbm
sec
· ft · lbf
lbm · ◦R

· ◦R

)
(2.24)

Evaluation of the FDE derivatives were evaluated using the mass flows at time step

t and at time step t+∆t, and a Modified Euler Predictor-Corrector method was used

to compute the value of (p)t+∆t.

(h
′
)t =

(
(γ − 1)

g2
l V

)[
(ṁcpTt)air + (ṁcpTt)fuel − (ṁcpTt)exit

]
t

(2.25)

(p)Pt+∆t = (p)t + ∆t · (h′)t (2.26)

(ṁexit)t+∆t = f((ρ)Pt+∆t, (p)
P
t+∆t) (2.27)

(h
′
)t+∆t =

(
(γ − 1)

g2
l V

)[
(ṁcpTt)air + (ṁcpTt)fuel − (ṁcpTt)exit

]
t+∆t

(2.28)

(p)Ct+∆t = (p)t +
1

2
∆t
[
(h
′
)t + (h

′
)t+∆t

]
(2.29)

2.4 Inlet Air, Nitrogen, and Fuel Flows

All inlet flows, either air, nitrogen (N2) purge, or ethylene (C2H4) fuel, were

computed using the same perfect gas relationship. The driving factors for the rela-

tion were the static to stagnation pressure ratio
(
p
P

)
, the gas specific heat and gas

constant, and upstream stagnation temperature. The relation in the rig model was

bounded on the low end where if the pressure ratio is ≥ 1, the flow was set to zero,

and if the pressure ratio was ≤ critical, the Mach number was limited to 1.

From Zucrow and Hoffman [24], the equation for critical pressure ratio is:
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( p
P

)
critical

=

(
2

γ + 1

)( γ
(γ−1))

(2.30)

From this same reference, the mach number can be backed out of the pressure ratio:

M =

((
2

γ − 1

)
·

(( p
P

)( (1−γ)
γ )
− 1

)) 1
2

(2.31)

These relations lead to a direct computation of mass flow based on the pressure

ratio:

ṁ = AMP

(
γgc
RTt

) 1
2
(

1 +
γ − 1

2
M2

)( (γ+1)
(2(γ−1)))

(2.32)

With units:

in2 · 1 · lbf
in2
·
(
ft · lbm
lbf · s2

· lbm ·
◦ R

ft · lbf
· 1
◦R

)
=
lbm
s

(2.33)

The inlet mass flow relations apply to the inlet airflow, the nitrogen purge flow,

and the ethylene fuel flow computations. The volume averaged static pressure and

air tank pressures were used for the main airflow computation. The computed static

pressure at the fuel nozzles and the purge/fuel tank pressures were used to compute

the fuel nozzle flows. Supply pressures for all three flows were always high enough to

choke the inputs, so the flows were very steady for the experimental runs.

2.5 Pressure Loss Computation

Evaluation of the pressure losses was an important part of the lumped volume

model. A very detailed analysis of each portion of the inlet section could have been

done in order to predict each component of pressure loss in the system, but the

pressure losses upstream of the fuel delivery area do not affect the test operation.
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This work focused on those pressure losses that impact the integrity of the test data

and the prediction of the operation of the WRCVC.

Between the venturi and flow treatment section was a 90◦ elbow, which generated

some turning losses and also generated disturbances in the flow due to the flow turn-

ing. Well behind that elbow was the flow treatment section which contained a pair

of screens for flow smoothing. Although this apparatus introduced losses in that

section, those losses were sufficiently upstream of station 2 to be ignored as being

inconsequential to the model. If the losses from this section needed to be computed,

a multiple volume computer model would have been required, and the momentum

equation would have had to be incorporated into the computation scheme to be able

to compute the pressure difference between the volumes.

The first significant pressure loss in the system was across the fuel nozzles. The

pressure losses at the fuel delivery plane were caused by two factors. The first factor

was the momentum loss caused by cross flow mass addition. The second factor was

the pressure drag of the fuel nozzles themselves in cross flow. Downstream of the

fuel nozzles, the flow straightener walls and the inlet guide vane pack generated some

friction drag which was computed.

The VOLDYN model introduced external flows upstream of the combustor inlet

including a nitrogen purge and an ethylene fuel flow. The introduction of this cross

flow created two changes in the condition of the main airflow. The first was a momen-

tum loss due to the acceleration of the injected flow at an angle to the main flow. The

second was an effective reduction of the main flow area caused by the blockage of the

injected flow. The VOLDYN model was designed to model both effects. Zucrow and

Hoffman [24] provided the basic relations for perfect gas flow with mass addition in

Chapter 9, Section 9-3(a), Governing Equations for Flow with Simple Mass Addition.

Equation 9.22, repeated here, is:
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ds

cp
= −γ − 1

γ

(
dP

P

)
= (γ − 1)M2 (1− y)

dṁ

ṁ
(2.34)

Where M is the local mach Mach number at the point where fuel is added. The

Mach number was computed using the physical area minus the flow area blockage.

The value of y is the cosine of the angle between the added mass flow and the main

mass flow. For the WRCVC the angle between the fuel nozzle and airflow was 90, so

the value of y always has a value of zero.

Rearranging this equation and substituting the actual station values results in the

final equation:

(
∆P

P

)
mass addition

= −γ (M3)2 ṁfuel

ṁ3

(2.35)

Zucrow and Hoffman [24] also provide computational methods to determine the

pressure loss caused by the reduction of momentum of the stream due to exter-

nal forces. This was found in Chapter 9, Section 9-5(b), Generalized Steady One-

Dimensional Flow of a Perfect Gas. The fuel nozzles experience a drag force caused

by the flow of main air across them.

The incremental friction coefficient is 4fdx
Dhyd

with pressure losses due to friction being:

(
∆P

P

)
Fanno

= −γM
2

2

[
4fdx

Dhyd

]
(2.36)

In the referenced chapter, Table 9.6 showed the influence coefficients with the Driv-

ing Potentials and Change in Flow Property computations as a matrix. Removing

the friction driving potential leaves the pressure loss due to external forces. The

driving potential for external forces is 2
γM2

δD
pA

and the resulting pressure loss equation

becomes:
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(
∆P

P

)
Drag

= −γM
2

2

[
2

γM2

δD

pA

]
(2.37)

This equation reduces to an equation of:

(
∆P

P

)
Drag

= −
[
δD

p3A3

]
(2.38)

Where the pressure loss is a function of the drag force, the pressure and area of the

the affected section. In the VOLDYN model, the static pressure and area at the fuel

nozzles were used in the denominator.

Determination of the drag force was done using standard drag force on a cylinder

equations. Hoerner [22] in Section III - Pressure Drag, Figure 12, displayed the classic

drag coefficient for a cylinder in cross flow versus Reynolds number, reproduced in

Figure 2.1.
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Figure 2.1. Drag coefficient - cylinder in crossflow.
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The VOLDYN model computed the local Reynolds number, interpolated this to

find the drag coefficient, computed the dynamic pressure, and using the summed

frontal area of the fuel nozzles computed the drag force. From the drag force, the

pressure loss was computed as follows:

CD = f (ReD) (2.39)

Fdrag = CD (q ∗ Afrontal) = CD

[(
ρ~V 2

3

2

)
(Nnozzles ∗ Lexposed ∗Dnozzle)

]
(2.40)

Where Nnozzles was a count of the number of fuel nozzles used, Lexposed was the

length of the fuel nozzles as seen by the flow (the height of the fuel nozzle delivery area

channel), and Dnozzle was the diameter of the fuel nozzle. Together these multiplied

into the frontal area of the fuel nozzles.

From the computation of the drag force, the pressure loss can be computed:

(
∆P

P

)
Blockage

= −Fdrag
p3A3

(2.41)

The final pressure losses were computed from the friction drag of the flow straight-

ener walls and inlet guide vanes. For these two loss mechanisms, flat plate drag theory

was sufficient to provide an estimate of the friction force. The friction drag of a flat

plate was computed using the Chapter 7 correlation found in Incropera [23]. This

correlation is:

Cf,x = 0.0592Re−1/5
x (2.42)

Substituting in the parameters from the rig:
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Fdrag = Cf,l (q ∗ Asurface) = Cf,l

[(
ρ~V 2

4

2

)
(2 ∗Nvanes ∗ Lvane ∗Wvane)

]
(2.43)

Where Nvanes was the number of inlet guide vanes, Lvane was the height of each

guide vane, Wvane was the width of the vane, and Cf,l was the friction coefficient

computed from Reynolds Number ReL, the integration of Rex over the width of the

guide vane. In the same manner as the pressure drag force caused a pressure drop,

the friction drag similarly caused a pressure drop:

(
∆P

P

)
Friction

= −Ffriction
p4A4

(2.44)

Similar geometry data was used to compute the friction of the flow straightener

walls and its contribution to the pressure losses between stations 4 and 5.

2.6 Exit Flow Characteristic

The exit flow characteristic of the inlet section is the inlet flow characteristic of

the WRCVC, because the rig feeds the mixed air and fuel flow into the WRCVC. If

the WRCVC were missing and the rig exhausted to atmosphere directly, the average

pressure in the rig volume would naturally be very close to atmospheric. Conversely,

if the WRCVC were to be replaced with a flat plate that blocks the flow, the rig

pressure would rise to the value of the upstream tank pressure. If the WRCVC were

replaced with a calibrated nozzle, the ability of that nozzle to pass flow would be its

flow characteristic, governed by the pressure ratio between atmospheric pressure and

the pressure at the exit of the rig, and that flow characteristic causes a backpressure

in the rig. The flow characteristic of the WRCVC, similarly to a nozzle, is governed

by equations and can be computed as a function of that same pressure ratio.
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The flow characteristic is not governed only by the pressure ratio, because it is a

mechanical device. Much like a jet engine compressor’s flow characteristic changes

as its rotational speed changes, the WRCVC flow characteristic changes as the rotor

speed changes. Lightner [26] provided a set of curves for the flow characteristic of the

WRCVC as a function of rotor speed and inlet pressure.

In order to generate the flow characteristic of the WRCVC, modifications were

made to the SCW1D program described in Section 1.3 to allow running successive

cases, raising and lowering the inlet stagnation pressure while holding the rotor speed

constant and the inlet stagnation temperature constant. A more complete description

of the modifications that were made to allow generation of the exit flow characteristic

are found in Section 3.2.

2.7 Lumped Volume Dynamic Model Validation

One way to validate the lumped volume dynamic model is to compare the results

in cold flow versus the rig test data. This is done in the results section of this

thesis, but with pressure losses the comparison cannot be considered academic. A

second validation of the dynamic model, without pressure losses, can be done by

using the equations on a theoretical test case. In the Purdue ME500 Advanced

Thermodynamics curriculum, such a test case can be found in the study of Transient

Analysis as Example 5.1. The lumped volume model is applied to this test case for

validation.

Given: Insulated air rigid tank with the following initial conditions:

Vi = 0.15m3

pi = 2 bars

Ti = 300K
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Tank is charged from a large reservoir of air at 10 bars, to a final pressure pf = 4

bars, and a final temperature Tf = 360K. What is the temperature of the reservoir?

Solution:
dmCV

dt
=
∑
in

ṁin −
∑
out

ṁout

dmCV = ṁindt = dmin

Ignoring work and heat transfer,

dECV
dt

=
∑
in

ṁin

(
h+

~v2

2
+ gz

)
in

−
∑
out

ṁout

(
h+

~v2

2
+ gz

)
out

Since the tank is quiescent before and after the transfer, ignoring gravity effects,

and knowing there is no outflow, this equation becomes:

dUCV
dt

= ṁin ∗ hin

dUCV = hinṁindt = hindmin = hindmCV

Knowing the beginning and end states, solve for hin:

∫ f

i

dUCV = hin

∫ f

i

dmCV

∆UCV = mfuf −miui = hin(mf −mi)

Given the end states:

mi =
piVi
RTi

Rair = 0.287
kJ

kg K

mi =
2 · 105 N

m2 · 0.15m3

287 J
kg K

· 300K
· 1J

1N ·m
= 0.348 kg
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mf =
4 · 105 N

m2 · 0.15m3

287 J
kg K

· 360K
· 1J

1N ·m
= 0.581 kg

From air tables [27]: (values in curriculum are slightly different)

ui = uair(Ti = 300K) = 214.32
kJ

kg

uf = uair(Tf = 360K) = 257.48
kJ

kg

Recall:

mfuf −miui = hin(mf −mi)

hin =
mfuf −miui
mf −mi

hin =
0.581kg · 257.48kJ

kg
− 0.348kg · 214.32kJ

kg

0.581kg − 0.348kg
= 321.94

kJ

kg

Tin = Tair(hin) = 321.4K

To validate this result, a computer program EXAM51 was written, in FORTRAN,

using the continuity and energy equations as developed for the model. The EXAM51

program, of which a listing is given in Appendix A, starts with the same initial

conditions as Example 5.1, a tank temperature of 321.4 K, and computes the time

integrated tank density and pressure up to the final conditions. Total mass in the

volume, and temperature in the volume are also computed. Since the mass flow in the

example is constant, the Euler time integration method used could be called explicit

or implicit.

Figure 2.2 shows the results of the model validation. The identical results between

the two point computation and the time integrated computation validates the model’s

equations and also shows the stability of the Euler method.
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3. NON-DIMENSIONAL FLOW CHARACTERISTIC OF THE WRCVC

3.1 Software Modifications for Iteration

The SCW1D program is a computer program model that can be used to compute

the performance of the WRCVC. It was originally written as a standalone Fortran

program with an interactive iteration step capability, all from the console. The data

input, results output, control and solution iteration code were originally contained in

the main program, with just two other subprogram modules. This organization made

the program difficult to manipulate for other uses, such as for iteration or using the

program as a subroutine in another program. In order to perform a study of the flow

characteristic of the rig, the program needed to be modified so that the inputs could

be managed as a separate module from the iteration of the equations, to compute the

conditions in the rotor and to compute the inlet and exit flow conditions.

Figure 3.1 shows the basic logic of the SCW1D program as delivered to the author

for editing. The code portion that reads the initial conditions and input values was

removed from the main program and placed into a module named RDINPT, and addi-

tional capability was added to allow Fortran NAMELIST input to the program. This

module also has two parameter inputs, the first representing the program run mode

(0 = interactive, 1 = subroutine, or 2 = reinitialize) and the second representing

the Fortran input file unit desired.

The iteration code was removed into a second module named FTPSIM, with one

parameter input, representing the program run mode. This module contains the

iteration code which solves the case and then prompts the user for interactive input,

if running in interactive mode. In subroutine mode the interactive code is bypassed
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PROGRAM SCW1D

Read Input File
Repeated for
each of 239

fixed format inputs

Initialization
Open output files

Pilot Fuel Calculations

Increment THETA

THETA
≥

THETCY
?

CALL MIX()
Repeated for

each of 4 input
and 4 output ports

Update Cavity, Torque,
Recirculating Jet, Valve

Conditions, Flow Balance

All Errors
less than

Tolerances
?

Print and Save Results

Interactive Section

Compute Wall Temp
and Leakage

CALL ROEINT()

COUNT=0

END

yes

yes

continue

no

no

quit

Figure 3.1. High level flowchart for WRCVC cycle computation.
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and the module returns to the main program. The main program can then analyze

the results and adjust the input conditions as needed.

Program Main

CALL RDINPT(0,7)

CALL FTPSIM(2)

END

Figure 3.2. Modified flowchart for SCW1D main program.

If the iteration code module is run in reinitialize mode, the solution equations are

reset for solving the conditions as if a new set of inputs were read, but no actual input

data read operation is performed. The new SCW1D main program flowchart is seen

in Figure 3.2. The RDINPT module flowchart is seen in Figure 3.3 and the FTPSIM

flowchart is seen in Figure 3.4.

3.2 Software Modifications for Pressure Sweep

The VOLDYN dynamic rig computer program assumes a fixed design rotor speed,

and with no heat addition assumes an essentially fixed inlet total temperature. A

decision was made that generating a flow characteristic as a function of changing inlet

total pressure would be computationally more efficient than attempting to integrate
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SUBROUTINE
RDINPT(IRDMOD,IRDUNIT)

Run Mode
= 2 ? 1

yes

Read Input Filename

no

Read Input File Format0 = OriginalF ixedFormat
1 = NAMELISTFormat

Format
= 1 ? Read NAMELIST INPUT

yes

IPRCMP
= 1 ?

Read NAMELIST PRECMP

yes

CALL PREPRO

Read Fixed Input

Reads 239
Input Lines

no

Initialize Cycle Parameters1

no

RETURN

Figure 3.3. Flowchart for RDINPT input subroutine.
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SUBROUTINE FTPSIM(IRDMOD)

Run Mode
= 1 ?

Open Output Files
no

Write Ports Output

Initialize

yes

CALL FENDWL(IRDMOD)Pilot Fuel
Calculations

Increment THETA

THETA
≥

THETCY
?

CALL MIX()
Repeated for

each of 4 input
and 4 output ports

Update Cavity, Torque,
Recirculating Jet, Valve

Conditions, Flow Balance

All Errors
less than

Tolerances
?

Run Mode
= 1 ?

yes

Print and Save Results
no

Interactive Section

Compute Wall Temp
and Leakage

CALL ROEINT()

COUNT=0

no

RETURN

yes

no

Figure 3.4. Flowchart for FTPSIM solution subroutine.
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the SCW1D program into the VOLDYN rig program. Because of the changes made

to allow iteration, the SCW1D main program was capable of being modified so that

it can execute a series of similar cases at differing inlet pressures. In order to keep

the program stable, the previous case was always used as the input to the next case,

and the pressure change was kept small, only 0.05 percent per case, in order to allow

the case to adjust to the new input condition without going unstable.

In the main program, the input modifications were assembled into a loop. The

main program, showing the loop, is seen in Figure 3.5. Starting with the initial case,

the base results are computed, and then the inlet pressure is systematically lowered

or raised depending on the direction of the iteration, followed by another call to the

iteration logic.

Each computation of the WRCVC cycle results in printed output containing the

corrected flowrate, average inlet and exit conditions, and other cycle results, which

are then able to be correlated into an equation for use in the VOLDYN program.
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Program Main
Preload

Pressure Multiplier
Fraction PVFRAC

Preload
DO Loop Count

JPVAR

CALL RDINPT(0,7)

PSAV = P0(1)

IPCNTR=1

P0(1)=PSAV*(ONE+(IPCNTR-1)*PVFRAC

CALL FTPSIM(2) IPCNTR=IPCNTR+1

IPCNTR
≥

JPVAR
?

END

no

yes

Figure 3.5. Flowchart for SCW1D main program, modified for pressure sweep.
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3.3 Software Modifications for All other Purposes

In addition to changes needed so that the program can be used for iteration and also

can be used as a subroutine, other changes were made to the code so that the program

will be easier to maintain, executes faster, and so that the input preprocessing and

output postprocessing can be merged into the program.

One source of slow execution of a typical scientific program is the constant creation

and destruction of local, temporary variables. In a modern computer, when a pro-

gram submodule is encountered in the code, a copy of that code is ”loaded” and all

local, temporary variables are created and initialized. When the program submodule

completes, those local, temporary variables are released back to memory. This pro-

cess is also performed on each line of the program that uses program elements called

”literals”. A literal is a programming element that ”literally” means what it is, such

as in the equation y = 5∗x+3, the 5 and the 3 are considered literals. Using a literal

in a line of code causes creation and initialization of the local, temporary variable,

typically each time that line of code is executed, even for optimized code. Conver-

sion of literals to global constant variables eliminates the creation, initialization and

destruction processes, replacing the literal with a global address reference.

The ROEINT and BC modules are the main sections of the program that are

executed repeatedly, often thousands of times per program run. A study of the entire

SCW1D program yielded 154 lines of code using at least one literal double precision

0.0, with 42 lines in the ROEINT and BC modules. It yielded 192 lines of code

using at least one literal double precision 1.0, with 136 lines in the ROEINT and BC

modules. And it yielded 121 lines of code using at least one literal double precision

2.0, with 60 lines in the ROEINT and BC modules. These literals were replaced with

global constants, causing a significant reduction in execution time for the program.
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A second area of interest centered around the portability of the program and the

need to bring the program into a modern execution environment. The original pro-

gram was written primarily for Fortran 77, using constructs that were non-portable

to other environments. The original Fortran compiler needed for the program was the

g77 program, the original GNU project Fortran 77 compiler [28]. While the g77 pro-

gram is a classic and well supported program, it does not allow Fortran-90 constructs

such as include files and has limited platform compatibility.

The preferred compilation platform today is the gcc4 plaform [29], which combines

the latest GNU C compiler with front ends for C, C++, Objective-C, Fortran, Java,

Ada, and Go. This compiler series is globally accepted and actively maintained.

The Fortran module is Fortran-90 compliant and is available on all Linux variants,

including the RedHat Linux used on IUPUI lab equipment. It also is available on

cygwin, which is a licensed version of Linux that runs natively on a Windows machine

without use of a virtual machine. It is available on Mac OS/X platforms as well, so

it is available for the most popular platforms used by the students and faculty at

IUPUI.

Once the program was upgraded to the gcc4 version of Fortran, named gfortran,

extensive modifications were made to the COMMON block areas and DIMENSION

areas. All DIMENSION statements that are used in COMMON blocks were placed

into include files, and all COMMON block definitions were put into include files.

The DIMENSION and COMMON statements in the program modules were then

replaced with include statements, and all array sizes were specified using Fortran-

90 PARAMETER statements. The effect of this change is significant, placing the

definition of all global variables into separate files, so that a change to that file is

reflected in all of the program modules instantly. For this to take effect, the program

was also give a valid Makefile which resolves all dependencies during the build process.

In addition, all files associated with the program, including source files, include files,
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and the Makefile, were placed into an RCS software repository for revision tracking

and documentation.

As described in the RDINPT flowchart seen in Figure 3.3, the 293 separate lines of

fixed format input have been supplemented by the addition of Fortran NAMELIST

inputs. The main namelist is called INPUT, and an additional namelist PRECMP is

available for control of the preprocessor.

The preprocessor takes the physical inputs that describe the WRCVC and generate

the non-dimensional inputs required by the SCW1D program. In preprocess mode,

the specific parameters generated by the preprocessor replace those read in by the

Namelist inputs. Preprocess mode is not available with non-namelist inputs.

The postprocessor takes the non-dimensional outputs and generates the dimen-

sioned physical outputs required for some studies. Neither the preprocessor nor the

postprocessor were needed for this thesis. These modules were created by the author

for use in a study to design a WRCVC for a 16 inch diameter, Mach 2.0 ramjet

missile.

3.4 SCW1D Sweep Results

The WRCVC combustor geometry is shown in table 3.1. Initial conditions for

these four conditions are seen in table 3.2. The nominal inlet total pressure P0(1)

is the starting point for the sweep calculations, while the minimum and maximum

values are the limits to the pressure variation produced by the computer program

loop. There were four distinct rig operating conditions. The first was the cold flow

condition (cold) where the torch was off. This condition included operation where

the nitrogen purge or the ethylene fuel flow was on. It also included a short period

where the torch fuel was on without the torch air. The flow characteristic of the

WRCVC based on pressure should not be affected by the addition of fuel or purge
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flows, assuming negligible change to the specific heat ratio of the flow. The first

condition was seen during the time that the main air was brought up to the set point,

the time that the nitrogen purge flow was on, the time that the torch fuel was burped

(momentarily on with the torch air off and the spark off) and the time that the main

fuel flow was burped. The second condition (torch on) was where the torch air is on,

but the torch fuel and the spark were both off. The third condition (torch lit) was

where the torch air and fuel were on and the torch was lit. This condition was seen

immediately after the torch spark and fuel were turned on, and remained on until

the main fuel was added near the end of the testing, because the torch was needed to

cause ignition of the main fuel flow. The fourth and final (firing, aka hot) condition

was where the torch was lit and the main fuel was on, creating a properly positioned

combustion profile in the combustor. This condition lasted one second during the

referenced test sequence. The torch remained on until it was manually turned off, so

after combustion, the torch lit condition was maintained.

Table 3.1 WRCVC rig geometry parameters.

Parameter Value Units
Rotor speed 2100 rpm
Number of cycles per revolution 1
Rotor angular velocity ω 219.9 rad/sec
Number of passages 20
Passage length, L 30.95 in
Passage height, h 2.614 in
Outer passage width 2.757 in
Inner passage width 1.936 in
Mean passage width, b 2.381 in
Outer radius 9.094 in
Inner radius 6.48 in
Mean radius 7.896 in
Wall thickness, k 0.1 in
Inlet port opening angle 62.0 deg
Inlet port closing angle 166.0 deg
Exhaust port opening angle 18.0 deg
Exhaust port closing angle 137.0 deg
Torch center angle 242.14 deg
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Table 3.2 WRCVC non-dimensional input parameters.

Condition Cold Flow Torch On Torch Lit Firing
Parameter - - - -
Rotor Speed 2100 2100 2100 2100
Nominal inlet total pressure P0(1) 1.313 1.308 1.308 1.242
Sweep minimum P0(1) 1.006 1.006 1.007 1.233
Sweep maximum P0(1) 1.379 1.373 1.373 1.304
Inlet total temperature .99043 .99043 .99043 .9980
Exit static pressure 1.007 1.007 1.007 1.007
Exit static temperature 1.123 1.131 1.131 3.95
Torch total pressure No port 8.80 8.80 8.80
Torch total temperature No port 1.0 6.01 6.01
Reference pressure 14.696 psia
Reference temperature 520 R
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The nominal characteristics of the WRCVC at these four conditions are shown in

standard plots of the unrolled wave rotor temperature, log pressure, and fuel fraction

values, presented as color contour plots. These plots will be called x-t plots. The

four conditions are plotted in Figures 3.6, 3.7, 3.8, and 3.9. In the cold flow plot,

the inlet and exhaust port start and end are shown. In all of the plots these ports

are represented by a white line. In the torch lit plot, the torch igniter location is

shown. A small slice of increased temperature is shown past the igniter in this plot.

The influence of the torch air on pressure is seen in the pressure plot on this and the

torch on (but not lit) plot. In the Firing plot, the combustion zone is shown as a

large increase in temperature.

The flow characteristics were generated for the cold flow, torch on, torch lit, and

firing cases. The cold and both torch cases were capable of being iterated all the

way to ambient pressure (P0(1) ≈ 1.0) The firing case could not be iterated as far

down but exhibited a reasonable plot outside its normal operating point. The four

correlated flow characteristics are shown in Figure 3.10 (cold), Figure 3.11 (torch on),

Figure 3.12 (torch lit), and Figure 3.13 (firing).

In Figure 3.14 the four characteristics can be compared. In the comparison it is

seen that a dramatic increase in flow occurs when the WRCVC was lit, due to the

high pressure in each channel generating a large expansion wave as it passes the

exhaust port. Since the intention of the rig operation was to hold the flow as near as

constant as possible, the characteristic instead shifted to a lower pressure during the

combustion (firing) portion of the rig operation.
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Figure 3.6. WRCVC Cold flow condition temperature, density, fuel fraction for the
nominal inlet pressure. (A) Inlet opening, normalized to zero angle. (B) Inlet closing.
(C) Exhaust opening. (D) Exhaust closing. (1) Expansion fan caused by exhaust
opening. (2) Compression wave caused by inlet opening. (3) Hammer shock from
exhaust closing. (4) Reflected hammer shock from left end wall. (5) Reflected hammer
shock from right end wall.
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Figure 3.7. WRCVC Torch On condition temperature, density, fuel fraction for the
nominal inlet pressure.
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Figure 3.8. WRCVC Torch Lit condition temperature, density, fuel fraction for the
nominal inlet pressure. (1),(2) Torch location.
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Figure 3.9. WRCVC Firing condition temperature, density, fuel fraction for the
nominal inlet pressure. (1) Combustion zone.
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Figure 3.10. Cold flow sweep results - SCW1D output vs 5th order polyfit.
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Figure 3.11. Torch on sweep results - SCW1D output vs 5th order polyfit.
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Figure 3.12. Torch lit sweep results - SCW1D output vs 5th order polyfit.
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Figure 3.13. Firing condition sweep results - SCW1D output vs 2nd order polyfit.
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4. TIMING ANALYSIS OF THE INLET SECTION AND WRCVC ROTOR

4.1 Inlet Section Volume Timing Analysis

A time analysis of the inlet section at the design airflow was needed to determine if

changes in the WRCVCs operating characteristic were too fast to be reflected by the

dynamic equations used by the VOLDYN program. At a constant inlet temperature,

changes to the inlet pressure resulted in a change to the corrected airflow. This change

to the airflow propagated an expansion wave forward into the inlet section, causing

the average pressure to adjust, and the cycle continued.

The WRCVC is a mechanical device, presenting the rotating channels to the in-

let and exit ports at a frequency directly related to the rotational speed. Airflow

will adjust only as fast as these channels present to the inlet port. In this way, the

WRCVC behaved similarly to other mechanical devices, such as internal combustion

engines, which use a system of valves and pistons to direct airflow through its combus-

tion process. The internal combustion engine exhibits similar airflow versus pressure

characteristics at a constant speed.

The time scale for the inlet section was the time computed as if a single particle

were to pass through the entire volume, computed as follows:

τinletsection =
ρV

ṁg3
l

(4.1)

With units:

sec =
lbm
ft3
· in

3

· sec
lbm
· ft

3

in3
(4.2)

For the design point the inlet section time constant evaluated to be:
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τinletsection =
(0.109933)(6724.18)

(9.5025)(1728)
= 45ms (4.3)

4.2 WRCVC Rotor Timing Analysis

The WRCVC rotor presents a full set of channels to the inlet at a period of 60
N

where N is the rotor speed in RPM. For a rotor speed of 2100 RPM, the rotor period

is 28.6ms. Based on this time scale and the rig time scale, it can be determined that

the WRCVC takes almost two revolutions to clear the inlet section volume. This

time scale shows that the choice to use a flow characteristic for the WRCVC was

reasonable, because the WRCVC reacts slowly to pressure disturbances.

The integration of the WRCVC performance as a set of correlation curves was done

in lieu of a full SCW1D integration into the VOLDYN program. The assumption,

identical to the assumption made in Paxson’s transient startup performance paper

[30], is that the flow quantities, and hence the entire WRCVC balanced cycle solution,

at any instant in time, is essentially a steady state solution. Hence the entire dynamic

solution, as seen from the perspective of the WRCVC, is a series of steady state

solutions, whose inputs are the input total pressure P0(1) and the operating condition.

If the rig volume were smaller, this assumption might not be valid. If the the

WRCVC could clear the rig in less than one revolution, then a different analysis

technique might be required, possibly including modeling each channel in parallel,

with the set of twenty parallel channels being integrated into the VOLDYN model.

This condition could also be seen at slow rotor speeds, where flow changes would only

be propagated to a subset of channels.
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5. DYNAMIC MODEL CONSTRUCTION AND EXECUTION

5.1 Dynamic Model Construction

The dynamic model was implemented as a FORTRAN program constructed to

compute the mass flow rates and intrinsic flow conditions of the working fluid at the

working stations. The working stations are seen in Table 5.1 with their positions

on the rig shown in Figure 5.1 and Figure 5.2. The earlier simplified graphic of the

control volume found in Figure 1.6 shows the station layout in relation to the inlets

and outlets.

Table 5.1 Lumped volume dynamic model working stations.

Station Description
0 Upstream main air tank
1 Venturi throat
2 Flow treatment section (largest cross section area)
3 Inlet to the fuel delivery region
4 Flow straightener region before inlet guide vanes
5 Rig exit and WRCVC rotor inlet

5.2 Dynamic Model Initialization

The initialization of the dynamic model is the quiescent condition, with all of the

pressures and temperatures set to the reference condition. Since the rig actually starts

in this condition, using this condition for initialization allows a time comparison of the

rig model versus the test data for conditions all the way from zero flow to the design

test points. In addition to the pressure and temperature being set to the reference

conditions, all of the mass flow rates are initially set to zero.
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5.3 Dynamic Model Volume Computation

The inlet section volumes were computed by a geometric analysis of the hardware,

from the venturi to the rotor plane, using the best available drawings. For each part,

the upstream and downstream cross sectional areas were computed, and a trapezoidal

volume computation was computed using those areas and the measured length. For

the more complex hardware, the same technique was used, but longer lengths of

ducting were divided into smaller sections for better accuracy. There is a transition

duct which goes from a solid pipe geometry, transitions to an annular geometry, then

transitions from there to an annular section varying from 360◦ to the design angular

section. Table 5.2 shows the computation of the volume. Summation of the volumes

shows that a third of the volume is before the 10 inch diameter by 22 inch long Flow

Treatment section, a third is the Flow Treatment section and annular portion of the

inlet, and the remaining third is from the annular part of the inlet duct back to the

WRCVC rotor.
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Table 5.2 Volume computations for WRCVC rig.

- - Section Angle Section Area -
Section Description Inlet Exit Inlet Exit Volume

1 Venturi 360 360 2.545 12.566 30.22
2 Adapter 360 360 12.566 12.566 87.96
3 6x4 Reducer 360 360 12.566 28.274 107.21
4 Burst Disk 360 360 28.274 28.274 395.84
5 6x8 Reducer 360 360 28.274 50.265 206.17
6 8 inch Elbox 360 360 50.265 50.265 972.64
7 8x10 Reducer 360 360 50.265 78.540 450.82
8 Flow Treatment 360 360 78.540 78.540 1727.88
9 Inlet - Straight 360 360 78.540 78.540 116.24
10 Inlet - Nose 360 360 60.265 45.499 317.29
11 Inlet A-C 360 321.71 59.295 61.041 259.33
12 Inlet C-D 321.71 277.47 61.041 62.331 370.73
13 Inlet D-E 277.47 198.63 62.331 51.541 341.62
14 Inlet E-F 198.63 134.80 51.541 39.667 273.17
15 Inlet F-G 134.80 112.30 39.667 36.940 228.67
16 Inlet G-B 112.30 103.42 36.940 35.265 74.91
17 Fuel Inlet Adapter 103.95 103.95 35.446 35.446 140.90
18 Flow Straightener 103.95 103.95 35.500 35.500 514.75
19 Guide Vane Pack 107.0 107.0 36.425 36.425 56.46
20 Seal Plate - Inlet 100.625 100.625 34.255 34.255 51.38
- Total Volume in3 - - - 6724.18
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5.4 Dynamic Model Execution

The VOLDYN model execution was conducted in the sequence shown in Table

5.3. For each time step, the execution sequence was conducted, and the time was

incremented by the chosen time increment. The time increment was kept small enough

to allow the volume dynamic model to run in a stable manner, but large enough to

prevent any kind of underrun processing due to changes in the values being too small

to sum. In most of the execution runs, the time step was 20 microseconds, and data

was output in 0.005 to 0.1 second intervals for graphing and study, with closer spaced

output for fast changing time periods.

Table 5.3 Lumped volume dynamic model execution steps.

Step Process
1 Compute main air tank pressure and temperature, nitrogen or fuel tank

pressure and temperature based on time curves digitized from
the recorded test data.

2 Compute respective flow rates from the static and tank pressures,
temperatures, and constituent properties (air, nitrogen, or ethylene).

3 Update the volume averaged density and pressure
using the dynamic relations for the next time step.

4 Compute the volume averaged temperature
from the density and pressure, using the equation of state.

5 Estimate that the volume averaged properties exist at station 2
as the density, static pressure and static temperature.

6 Use perfect gas relations to compute pressure losses downstream of
this station, to compute the stagnation pressure and temperature
at the rotor plane.

7 Use the observed operating condition (cold flow, torch on,
firing) to determine the flow characteristic of the rotor.

8 Use the stagnation pressure at station 5 and flow characteristic
to compute the corrected mass flow of the rotor.

9 Compute the actual mass flow of the rotor
based on the corrected value and conditions.

Execution of the model required time dependent inputs. The time dependent

inputs include the air pressure and temperature measured upstream of the venturi,
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the fuel delivery line pressure and the gas supplied. Figure 5.3 shows the venturi

pressure versus time, Figure 5.4 shows the venturi temperature versus time. Because

the actual measured values had significant noise, the markers on these plots represent

an estimation of the value, input to the program as an interpolated curve as a function

of time. Using an interpolated value ensured the stability of the program as well.
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Figure 5.3. WRCVC rig venturi upstream stagnation pressure.
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Figure 5.4. WRCVC rig venturi upstream stagnation temperature.
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Figure 5.5 shows the input pressure at the fuel nozzles versus time. Again the

measured values contain variation, so the input to the VOLDYN program required

interpolated values for data. The interpolated values contain hard corner points

to signify the rapid change in the pressures. The pressure of approximately 60 psi

represents the time that the nitrogen purge is on. The pressure of approximately 180

psi represents the time that the ethylene fuel is on. These 3 inputs are essentially

the only primary inputs to the VOLDYN program. Minor inputs include the specific

heat values of the nitrogen purge and ethylene fuel. The propane torch operation

is not accounted for in the VOLDYN model because it is downstream of station 5,

except that the torch operation causes a small shift in the exit flow characteristic of

the WRCVC.
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Figure 5.5. WRCVC rig fuel rail pressure.



72

5.5 Dynamic Model Results

During VOLDYN execution, data was output at 0.1 second intervals, except dur-

ing the test transition times, where the output interval was reduced to 0.005 seconds.

This allowed the program to output the rapidly moving pressures and the WRCVC

mass flow rate. The charts shown in this section are time plots of the data generated

by the VOLDYN program, and where data was gathered for the running rig, the re-

duced test data is also plotted. While the rig test data was gathered in 0.002 second

increments, the LaTeX software cannot handle the length of that dataset, so the data

in the plots is limited to 0.1 second increments.

5.5.1 Airflow Comparison Results

The main air (venturi) mass flow computation correlated exactly with the mea-

sured values, as seen in Figure 5.6. This graph shows the VOLDYN computed versus

measured values from the start of the main air at 90 seconds, to the end of the com-

putation at 230 seconds. The correlation in large part was due to the simplicity of

the equations for computing the venturi air flow, which are the air flow calculations

shown in Section 2.4. Both the data reduction system used for the rig testing and

the VOLDYN model used these same equations, which are primarily driven by the

upstream pressure. One small difference should be noted in the plot at the very start;

the data reduction system appears to not account for the Mach number in the un-

choked region, and computes a higher mass flow at the initial values of pressure. In

Figure 5.7, the VOLDYN computed and rig test reduced values are seen in the 190

to 220 second region. In all of the graphs, the reduced data was subject to the effects

of noise in the measurements in the 208.5 to 212.5 second region, which is when the

torch’s spark igniter was switched on. The effect of noise can explain the reduced rig

air flow measurement in this time frame.
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Figure 5.6. WRCVC rig venturi flow rates.
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Figure 5.7. WRCVC rig venturi flow rates - detailed.
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One other important value to observe is the accumulation rate of mass in the control

volume. A positive value indicates a compression of the mass and a negative value

indicates an expansion of the mass. Figure 5.8 shows the computed mass imbalance

for the test run. A detailed view from 190 to 220 seconds is shown in Figure 5.9, and

a micro plot from 214.8 to 215.2 seconds is seen in Figure 5.10.
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Figure 5.8. VOLDYN Computed mass flow imbalance.
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Figure 5.9. VOLDYN Computed mass flow imbalance - detailed view.
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Figure 5.10. VOLDYN Computed mass flow imbalance - micro view.
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5.5.2 Pressure Comparison Results

The main purpose of the VOLDYN program was to predict the pressures in the

inlet section, to understand the pressure losses caused by the fuel delivery system

and by the cross flow injection. Prediction of the pressure losses caused by the flow

straightener walls and inlet guide vanes was a secondary purpose. Another secondary

purpose was to study and predict the pressure variation at the WRCVC inlet, as

well as the WRCVC airflow variation, during the condition transition times. The

VOLDYN program was executed with the rig test sequence as specified in the previous

section, computing all three pressure loss components. It will be shown in this section

that the results were very close to those measured by the instrumentation.

The overall computation solution pressures can be seen in Figure 5.11. This plot

shows the volume average pressure PS2 as well as the stagnation pressures at Stations

3, 4, and 5. This plot dramatically shows the amount of pressure loss across the fuel

nozzles, and shows the additional loss during fuel and purge flow addition. This

plot starts at the 90 second main air on time, and continues to just before the 230

second test end. Figure 5.12 shows the drag forces on the fuel nozzles, the inlet guide

vanes, and the flow straightener walls. Figure 5.13 shows the individual ∆P/P values

for all four loss mechanisms. A table of the computed values for four steady-state

points is also seen in Table 5.4. In this table, the reynolds numbers, friction and drag

coefficients, ∆P/P values can be seen.

The most important comparison to make is between the computed values at the

fuel nozzle measurement station (3) and the test data gathered during the test. This

comparison is influenced by the pressure losses and by the dynamics of the air system.

Figure 5.14 shows the direct comparison between the computed values of PT3 and

the measured rig values. In this plot, starting again at the 90 second main air on

time, and ending just before the 230 second test end, the computed value is seen

to track fairly closely with the measured values. During the startup transient, the
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Figure 5.11. VOLDYN computed volume average pressure PS2, and stations 3, 4,
and 5 stagnation pressures.
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Table 5.4 VOLDYN computed pressure loss values.

Parameter Value Value Value Value
Time 190.0 194.5 198.0 214.5

Mass imbalance 9.88E-05 3.98E-05 4.01E-05 1.46E-04

PT3 20.865 21.221 21.888 20.817

ṁf/ṁair 0.00 0.0202 0.0594 0.593

(∆P/P )massaddition 0.00 0.0152 0.0392 0.0496

ReD 1.547E+08 1.466E+08 1.346E+08 1.573E+08

CD 0.386 0.385 0.384 0.386

Fpressuredrag 21.19 20.37 19.12 21.41

(∆P/P )pressuredrag 0.0737 0.0677 0.0590 0.0752

PT4 19.327 19.462 19.739 18.219

ReL,flowstr 2.590E+09 2.584E+09 2.587E+09 2.956E+09

Cfriction 0.00389 0.00390 0.00390 0.00380

Ffrictiondrag,flowstr 1.69 1.75 1.86 1.97

(∆P/P )flowstr 0.0015 0.0016 0.0017 0.0019

ReL,igv 2.769E+08 2.762E+08 2.765E+08 3.160E+08

Cfriction 0.00609 0.00610 0.00610 0.00594

Ffrictiondrag,igv 0.39 0.40 0.43 0.45

(∆P/P )igv 0.0006 0.0006 0.0006 0.0007

PT5 19.286 19.420 19.694 18.171
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measured pressures were initially computed slightly higher than the measured values,

with the error reversing direction in the intermediate region, and becoming nearly

zero when the air flow stabilizes. This pressure error is most likely caused by the use

of the single volume spacial discretization, which ignores the pressure losses in the

flow treatment section and the elbow.
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Figure 5.14. WRCVC rig station 3 stagnation pressure.
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Figure 5.15. WRCVC rig station 3 stagnation pressure - detailed.

Figure 5.15 shows a close up comparison of the VOLDYN computed PT3 values

against the measured test data in the range of 190 seconds to 220 seconds, where

most of the test events occurred. The events causing the largest changes in this

pressure were at the 194 second and 197 second marks. The 194 second mark is the

start of the nitrogen purge, and the 197 second mark is the start of the fuel burp

segment. These two events increased the total mass flow entering the WRCVC, with

the volume average pressure increasing to accommodate the additional mass flow.

The change in pressure shifted the operation of the WRCVC to a new point on its

operating characteristic, with the accompanying higher flowrate matching the total
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flowrate when finally stabilized. At this stabilized condition, the non-dimensional

inlet pressure P0(1) = 1.3401. Figure 5.16 shows a theoretical fuel distribution at

the nominal inlet pressure, while Figure 5.17 shows the shift in the fuel distribution

at the actual operating pressure at the 198 second mark.

Figure 5.16. WRCVC Cold Flow condition temperature, density, fuel fraction for the
nominal inlet pressure, with fuel delivery on.
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Figure 5.17. WRCVC Cold Flow condition temperature, density, fuel fraction for the
actual inlet pressure during fuel burp segment.
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The computation of stagnation pressure at station 3 is very close to the measured

data in the cold flow region. This cold flow tracking of pressures during the rapid

addition of nitrogen purge and ethylene fuel indicates that the VOLDYN model is

predicting the upstream volume conditions accurately. But during and after the torch

lighting segment, the correlation diverges. At t = 208.5 seconds, the torch spark was

started, and in an earlier Figure (5.7) a dip in the measured pressure appears to be

caused by noise in the data system, so the dip in the fuel nozzle pressure in this same

region, up until t = 212.5 seconds, could be attributed to the spark noise. Another

explanation might be related to the effect of the torch on the WRCVC operation.

The actual shift in the operating line of the WRCVC could be more than predicted.

The pressure variation between computed and measured values appears to lessen just

before combustion starts, indicating the variation may most likely be due to spark

noise.

At t = 214.0 seconds, the introduction of fuel to the system causes the operating

condition to move to the firing condition. The difference between the conditions at

t = 198.0 seconds and t = 214.0 seconds is the presence of combustion, and the

change in pressure is significant. In the fuel burp segment, the pressure is a full 1

psi higher than at the nominal segment (before the nitrogen purge), but during the

firing segment, the pressure drops. This is also seen in Matsutomi’s paper [4], where

a graphic shows the pressure dropping 0.5 psi for a different test run. The operating

point for the firing condition, at the very start of the firing sequence, is seen in Figure

5.18.
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Figure 5.18. WRCVC Firing condition temperature, density, fuel fraction for the
actual operating inlet pressure.
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After combustion starts, the computed pressure and the measured pressure diverge

significantly. This is seen in the graph starting at t = 214.0 seconds. The most

likely explanation of this divergence is the drop in WRCVC rotor speed. A plot

of rotor RPM, seen in Figure 5.19, show a 40 RPM droop in speed, during the

firing portion of operation. This speed droop, which is not accounted for in the

current version of the VOLDYN program, will change the flow characteristic of the

WRCVC, and is the most likely cause of the pressure difference between computed

and measured. The effort to add a speed dependent component to this analysis is

significant. If attempted, a tradeoff study should be undertaken, between developing

a correlation method for multiple speeds and pressures, and actually integrating the

SCW1D program into the VOLDYN program. A comparison of the pressure-flow

characteristic shift between the 2100 RPM start point and a theoretical 2058 RPM

end point is shown in Figure 5.20. This assumes the fuel nozzle placement and flow

have not changed. The characteristic shift does not explain the change in pressure

during the combustion process and resulting change in rotor RPM.
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5.5.3 WRCVC Operation Results

The final purpose of this thesis is to show, in detail, the estimation of the transient

operation of the WRCVC. Refer to Section 4.2 for the explanation of the WRCVC

integration into the VOLDYN program.

The results of the analysis are presented here with limited interpretation. In Figure

5.21 the computed WRCVC inlet airflow, which is the computed exit airflow of the

inlet section, is plotted against time for the 90 to 230 second total test time frame.

A second figure is provided, from 190 seconds to 220 seconds, showing the detail in

that time frame, as described previously. This is Figure 5.22, and shows the rapid

change in flowrate during the one second combustion process. The features to note

in this plot are twofold.

The first feature is that during the torch transients, the flow increases slightly and

then returns to its previous value. This is due to the fact that the torch does not

change the upstream mass flow, but rather shifts the WRCVC’s operating line due

to it being at a different condition (torch on, torch lit). Each time the torch changes

its state, at the previous value of inlet pressure, the WRCVC briefly changes its flow

due to the shifted characteristic. In response to the flow change, a weak expansion

or compression wave is propagated into the inlet section, whose reaction is seen as

a change in the upstream volume averaged pressure. This change in pressure shifts

the operating line on the WRCVC’s pressure flow characteristic until its mass flow

matches the upstream mass flow. The entire process is finite in time, spanning a

200ms timespan.

The second feature on the plot is the equivalent increase in mass flow during the fir-

ing segment (214-215 seconds) and during the fuel burp segment (197-198.5 seconds).

This is another indication that the VOLDYN program is working properly. Since the

WRCVC mass flow is only determined by the upstream pressure and the operating
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condition (assuming constant upstream total temperature), the equivalent increase in

mass flow matching the fuel burp value shows that the VOLDYN computations are

correct.
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Figure 5.21. VOLDYN computation of WRCVC flow vs time.
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Figure 5.22. VOLDYN computation of WRCVC flow vs time - detailed.
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In the previous Figure 5.11 the PT5 pressures are seen. This data is repeated in

non-dimensional form in Figure 5.23, for the 90 to 230 second test period. Additional

detail is shown in Figure 5.24 for the 190 to 220 second detail period. In these plots

the pressure variations seen by the WRCVC are seen to be large enough to cause the

brief swing in the mass flows. One matter to study is if the pressure and flow changes

are significant enough to cause the WRCVC experience a “blowout” event or to cause

unburned fuel to be fed into the exhaust. An x-t plot of the Firing condition at the

maximum pressure achieved by the rig is seen in Figure 5.25. In this plot the fuel is

too close to the exhaust closing location, which could result in fuel spillage out of the

exhaust port, due to the finite width of each channel. To prevent fuel spillage, the

fuel should not approach the right end wall until one channel width past the end of

the exhaust closing angle.
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Figure 5.23. VOLDYN computed non-dimensional WRCVC inlet pressure vs time.
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Figure 5.24. VOLDYN computed non-dimensional WRCVC inlet pressure vs time -
detailed.
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Figure 5.25. WRCVC Firing condition temperature, density, fuel fraction for the
actual operating inlet pressure.
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In the final Figure 5.26, the airflow is plotted versus the pressure, in the same

fashion as in Figure 3.14, and the tracking of the flow along each characteristic can

be clearly seen. The two plots can be overlaid to illustrate the shifting of the flow

characteristic of the WRCVC for the entire 90-230 second test period.
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Figure 5.26. VOLDYN computation of flow vs inlet pressure.
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6. CONCLUSIONS

The overall purpose of this thesis was to present a time-dependent lumped volume

computer simulation of the WRCVC rig, in an attempt to explain the pressure loss

mechanisms seen in the inlet section, and to show the dynamic pressure variation

caused by shifting of the WRCVC pressure-flow characteristic during the combustion

sequence.

The SCW1D computer program is a computer model used for computation of wave

rotor cycles, and has been used to compute the base operating points for the WRCVC.

As part of this thesis, the program was modified to allow a sweep of the inlet pressures,

from low to high values, as needed by the user. The capability to vary inlet pressure

without stopping the program made it possible to rapidly generate pressure versus

flow characteristics for each of the WRCVC’s four main operating conditions. In

addition the SCW1D program was modified to be capable of insertion into a driver

program as a subroutine for more detailed studies.

The VOLDYN computer program is an original work of this thesis. It was devel-

oped in Fortran 90 using a lumped single volume representation of the WRCVC rig’s

upstream inlet section, modeling the main air system, the fuel delivery system, and

coupling the pressure versus flow characteristics generated by the SCW1D program.

The VOLDYN program very closely simulated both the pressure loss mechanisms in

the inlet section and accurately simulated the dynamic response of that hardware to

mass addition and changes in the WRCVC operating condition.
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The VOLDYN computed pressure losses across the fuel nozzles are significant, and

consist mostly of the pressure drag caused by the nozzles themselves blocking the

flow. An additional loss during fuel delivery was computed, caused by cross flow

mass addition. A small pressure loss was also computed based on friction drag of the

inlet guide vanes and the flow straightener walls. These losses bring the WRCVC

rotor inlet pressure down to the flow characteristic intersection at the set mass flow

rate. Comparisons were made between the computed flow and pressure values and

the measurements from the rig’s data reduction system. For the cold flow segment

of the test sequence, the differences between computed and measured values were

very small, indicating the VOLDYN computer model was accurately predicting the

pressure losses in the inlet section. These differences were higher during and after

the torch lighting sequence and during the firing sequence. For the spark lighting

sequence, all of the pressure measurements were seen to decrease, and so the data

in this time period were assumed to be inaccurate due to this electrical noise. For

the firing (combustion) sequence, the WRCVC rotor speed decreased approximately

2 percent. The related shift in the WRCVC pressure-flow characteristic was not

sufficient to explain the decrease in measured pressure at the fuel delivery station.

The combination of the VOLDYN program and the SCW1D program can be a

valuable tool for studying the WRCVC rig and for future planning of WRCVC testing

for IUPUI, the Purdue Zucrow Laboratories and Rolls Royce LibertyWorks. Since

the pressure losses across the fuel system are significant for this hardware, it will

be important to estimate those pressure losses in order to accurately determine the

expected operating condition of the WRCVC during testing. Accurate prediction of

the WRCVC performance will facilitate determination of fuel nozzle placement and

fuel fraction needed for future test cases.
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One recommendation is to modify the VOLDYN program to fully integrate the

SCW1D program into it, so that a full dynamic simulation can be run. This will be

important for any future dynamic testing, for control system studies, and for startup

transient planning. Documentation and training for use of the program will also

help transfer this technology to future IUPUI graduate students and Rolls Royce

LibertyWorks engineers.
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A. EXAM51 COMPUTER PROGRAM LISTING

PROGRAM EXAM51
IMPLICIT DOUBLE PRECISION (A−H,O−Z)
IMPLICIT INTEGER ( I−K,M−N)
IMPLICIT LOGICAL (L)
DATA ZERO,ONE/0 .0D0 , 1 . 0 D0/

C
C Example 5 .1 from ME500 curr icu lum
C

VOL=0.15
P1=2.0 ∗ 100000.0
WRITE( 6 ,∗ ) ’P1 = ’ ,P1
PFINAL = 4.0 ∗ 100000.0
TT1=300.0
WRITE( 6 ,∗ ) ’TT1 = ’ ,TT1
CV1=AIRCV(TT1)
CP1=AIRCP(TT1)
GAM1=CP1/CV1
U1=TT1∗CV1
R=287.0
TTANK=321.4
CPTANK=AIRCP(TTANK)
HTANK=TTANK∗CPTANK
AM1=(P1∗VOL)/(R∗TT1)
WRITE( 6 ,∗ ) ’AM1 = ’ ,AM1

C
C A r b i t r a r i l y choose a mass f low
C Choosing 0 .01 kg/ sec so that i t should
C take approx 23 .3 seconds to f i l l the tank
C

AMDOT1=0.01
C
C Star t the i t e r a t i o n
C

TIME=0.0
DT=0.0001
TT1=300.0
CV1=AIRCV(TT1)
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CP1=AIRCP(TT1)
HT1=TT1∗CP1
AM2=AM1
U2=U1
P2=P1
RHO2=AM2/VOL
GAM2=GAM1
AMDOTF=0.0
CPF=CP1
TTF=TT1
AMDOT5=0.0
CP5=CP1
TT5=TT1
NITER=0
DO WHILE(P2 .LT. PFINAL)

C
C Equations used in the volume dynamic model
C
C drho=(mdot1+mdotf−mdot5 )∗ ( dt/volume )
C rho2p1=rho2+drho
C

DRHO=(AMDOT1+AMDOTF−AMDOT5)∗ (DT/VOL)
RHO2=RHO2+DRHO
AM2=RHO2∗VOL

C WRITE( 6 ,∗ ) ’DRHO=’ ,DRHO
C WRITE( 6 ,∗ ) ’RHO2=’ ,RHO2
C WRITE( 6 ,∗ ) ’ M2=’ ,AM2
C GO TO 10
C
C Equations used in the volume dynamic model
C
C dp=((gam−one )/ volume )∗ ( mdot1∗cp1∗ t t0+
C 1 mdotf∗ cp f ∗ t t f u e l−mdot5∗cp2∗ t t5 )∗ dt /( g l ∗ g l )
C
C ps2p1=ps2+dp
C

DP=((GAM2−ONE)/VOL)∗ (AMDOT1∗(CPTANK∗1000 .0)∗TTANK+
1 AMDOTF∗(CPF∗1000 .0)∗TTF−AMDOT5∗(CP5∗1000 .0)∗TT5)∗DT

P2=P2+DP
C AM1=(P1∗VOL)/(R∗T1)

T2=(P2∗VOL)/(R∗AM2)
CP2=AIRCP(T2)
CV2=AIRCV(T2)
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GAM2=CP2/CV2
TIME=TIME+DT
NITER=NITER+1
IF (MOD(NITER, 1 0 0 0 ) .EQ. 1 )THEN

WRITE(6 ,100)TIME,AM2,RHO2, ( P2∗0 . 001 ) ,T2
100 FORMAT( F14 . 3 , F14 . 6 , F14 . 6 , F14 . 4 , F14 . 3 )

END IF
END DO
WRITE(6 ,100)TIME,AM2,RHO2, ( P2∗0 . 001 ) ,T2

10 STOP
END
FUNCTION AIRCP(T)
AIRCP=((5.6294298E−08∗T)−2.3548591E−05)∗T+1.0034327
RETURN
END
FUNCTION AIRCV(T)
AIRCV=((5.6013567E−08∗T)−2.3270886E−05)∗T+7.1634137E−01
RETURN
END
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B. SUMMARY OF Z. LIGHTNER REFERENCE PAPER

The following is a summary of an unpublished paper by Zach Lightner, part of an

ME491 Project, titled “Wave Rotor Review and Cold Flow Analysis”.

ABSTRACT

Conventional turbomachinery utilizing steady flow and constant pressure combustion

has dominated the propulsion and power generation industries. However, limitations

of materials to withstand higher temperatures have dramatically reduced recent im-

provements to this technology. Alternative technologies are currently being researched

by major aerospace firms, including non-steady flow devices. It has been known since

the early 19th century that unsteady flow devices are inherently more efficient ther-

modynamically than steady flow devices. With the major advancements in CFD over

the last two decades, unsteady flow can now be predicted and analyzed, providing a

real, viable option for future power generation. Examples of non-steady flow devices

are shock tubes, pulse detonation engines (PDE), and wave rotors.

EXPERIMENTAL RESULTS AND DISCUSSION

The non-dimensional inlet mass flows evaluated at each rotational speed and pressure

ratio by the Q1D code are shown in Table 7. Using the methods described above,

the values were converted into actual mass flow rates in lbm/sec., as shown in Table

8. A plot of the preceding table is shown in Figure 12.
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Table B.1 Table 7: Non-dimensional mass flow rates.

Inlet Pressure (psia)
RPM 24.5 22.6 21.0 19.6 18.4 17.3 16.3 15.5
2000 1.741 1.669 1.585 1.489 1.373 1.219 0.952 0.521
2500 1.362 1.303 1.228 1.138 1.037 0.911 0.757 0.525
3000 1.064 1.030 0.983 0.912 0.824 0.718 0.589 0.445
3500 0.822 0.781 0.728 0.669 0.601 0.500 0.365 0.216
4000 0.724 0.703 0.678 0.643 0.591 0.520 0.425 0.284
4500 0.518 0.474 0.425 0.374 0.317 0.254 0.198 0.145

Table B.2 Table 8: Actual mass flow rates in lbm/sec.

Inlet Pressure (psia)
RPM 24.5 22.6 21.0 19.6 18.4 17.3 16.3 15.5
2000 16.3106 14.4333 12.7278 11.1598 9.6473 8.0614 5.9459 3.0827
2500 15.9499 14.0852 12.3263 10.6614 9.1080 7.5307 5.9100 3.8830
3000 14.9522 13.3610 11.8405 10.2529 8.6846 7.1223 5.5181 3.9496
3500 13.4767 11.8195 10.2305 8.7746 7.3900 5.7865 3.9894 2.2366
4000 13.5657 12.1589 10.8889 9.6384 8.3052 6.8776 5.3088 3.3608
4500 10.9190 9.2230 7.6789 6.3069 5.0116 3.7794 2.7825 1.9304
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Figure B.1. Figure 12: Channel mass flow for various pressure ratios.
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