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ABSTRACT

Rahman, Md Ashiqur. M.S.M.E., Purdue University, August 2015. Electrochemical 
Model Based Fault Diagnosis of Lithium Ion Battery. Major Professor: Sohel Anwar.

A gradient free function optimization technique, namely particle swarm optimiza-

tion (PSO) algorithm, is utilized in parameter identification of the electrochemical

model of a Lithium-Ion battery having a LiCoO2 chemistry. Battery electrochemical

model parameters are subject to change under severe or abusive operating conditions

resulting in, for example, Navy over-discharged battery, 24-hr over-discharged battery

and over-charged battery. It is important for a battery management system to have

these parameters changes fully captured in a bank of battery models that can be

used to monitor battery conditions in real time. In this work, PSO methodology has

been used to identify four electrochemical model parameters that exhibit significant

variations under severe operating conditions. The identified battery models were val-

idated by comparing the model output voltage with the experimental output voltage

for the stated operating conditions. These identified conditions of the battery were

then used to monitor condition of the battery that can aid the battery management

system (BMS) in improving overall performance. An adaptive estimation technique,

namely multiple model adaptive estimation (MMAE) method, was implemented for

this purpose. In this estimation algorithm, all the identified models were simulated for

a battery current input profile extracted from the hybrid pulse power characterization

(HPPC) cycle simulation of a hybrid electric vehicle (HEV). A partial differential al-

gebraic equation (PDAE) observer was utilized to obtain the estimated voltage which

was used to generate the residuals. Analysis of these residuals through MMAE pro-

vided the probability of matching the current battery operating condition to that of

one of the identified models. Simulation results show that, the proposed model based



xv

method offered an accurate and effective fault diagnosis of the battery conditions.

This type of fault diagnosis which is based on the models capturing true physics of

the battery electrochemistry, can lead to a more accurate and robust battery fault

diagnosis and help BMS take appropriate steps to prevent battery operation in any

of the stated severe or abusive conditions.



1

1. INTRODUCTION

1.1 Thesis Overview

Among all the secondary (alternative) energy sources available for electric vehicle

(EV), hybrid electric vehicle (HEV) and for the direct energy source for the portable

electronic devices such as smartphone and laptops, lithium-ion (Li-ion) battery is

most promising. Compared to other alternative options for energy sources, lithium-

ion batteries have some unique advantages [1] [2], e.g. these batteries have higher

specific energy, have minimum memory effect, provide best energy-to-weight ratio

and also have low self-discharge when idle [3]. Based on these stated advantages it

is clear that, Li-ion battery is the leading candidate for the upcoming generation of

aerospace and automotive applications.

Nowadays, people are relying more and more on PHEV, EV and HEV for the

sake of emission and efficiency point of view. Performances of these transportation

options are significantly dependent on the secondary energy sources e.g. installed

battery module integrated with the vehicle power-train. With the availability of Li-Ion

battery in different configurations, their application as a power source is widespread

and extensive. Depending on the user driving nature and the road conditions, battery

undergoes through different operating conditions as the battery load demand changes.

Always the safe operation of the entire battery module is expected, as this is a vital

component of the stated vehicle configurations. But in reality, it is impossible to

maintain safe and healthy operation conditions of the battery system for different

reasons. Battery can be overcharged in time, it can be over-discharged as well as

battery aging is another potential situation due to long time cycling of the battery

etc. Therefore, sometimes the battery suffers from some situation outside of the safe

operating zone. Electrochemistry governs those situations. Parameter changes in
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operations which governs those significant situations. An innovative technique for

identifying those parameters, particle swarm optimization (PSO) algorithm for the

electrochemical model of the battery system is illustrated in this thesis work. Using

those identified operating conditions, an adaptive estimation scheme, multiple model

adaptive estimation (MMAE) is described for fault diagnosis of Li-Ion battery.

Several critical operating conditions of Li-Ion battery is considered in this thesis

work. The battery models dictated by those operating conditions will be implemented

in the adaptive estimation based fault diagnosis (MMAE) and also in parameter

identification of those different battery model operations using different real time

operating cycle of EV, HEV. This proposed thesis work can provide the BMS an

effective way of fault diagnosis which will be more reliable and realistic in nature.

1.2 Construction of the Battery

A battery is a device, which converts the stored chemical energy into electrical

form of energy by electrochemical reactions. All sorts of the battery consist of cathode,

the positive electrode, anode, the negative electrode and the separator between them.

Batteries can be categorized into two major groups, i.e. primary and secondary

battery. Primary batteries are mostly designed for discharge application and they

are not advised to charge for reuse. That is why these batteries are referred also as

disposable battery. In contrary, secondary batteries can be recharged after discharging

and it can be done for number of cycles.

Li-Ion battery falls under the second category, which has four major constituents,

i.e. cathode, anode, separator and the electrolyte. There are numerous forms of

chemistries are available for each of the electrode depending on the application of the

battery.

While the lithiated graphite, i.e. LiC6 is the mostly used material for the anode

along with some materials like hard carbon, Si and Ge, there are huge variations

available for the cathode material. Instead of using only one active material in the
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positive side, battery manufacturers use the blend of active materials. Some of the

used active materials for cathode are: LiCoO2, LiFePO4, LiMn2O4 and LiNiO2

etc.

The electrolyte used in Lithium-ion battery can be of solid and liquid phase.

The liquid electrolyte mostly contain the salts of Lithium like, LiPF6, LiBF4 and

LiClO4 along with some organic solvents like diethyl carbonate, ethylene carbonate

and dimethyl carbonate etc.

The general construction of a Li-Ion battery is provided in Figure 1.1.

Figure 1.1. General construction of a Li-Ion battery cell [4]



4

1.3 Li-Ion Battery Chemistry

In both of the electrodes of this battery, there is provision of moving in and out

of their interiors. During the insertion (intercalation) of ions, the ion moves into the

electrodes and during the extraction / de-intercalation, the ions are moves out of the

electrodes. Lithium Ion batteries rely with porous electrodes, which facilitate the

electrochemical reactions by providing increased amount of active area between the

solid electrodes and the electrolyte [5] [6] [7] [8] [9].

The governing electrochemical reactions of this rechargeable battery is provided

in Figure 1.2.

Figure 1.2. Electrochemical reactions of a Li-Ion cell [10]
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In this figure,The cathode / positive cell half reaction:

LiMO2 ⇀↽ Li(1−x)MO2 + xLi+ + xe−

The anode / negative cell half reaction:

C + xLi+ + xe− ⇀↽ LixC

The overall cell reaction:

LiMO2 + C ⇀↽ Li(1−x)MO2 + LixC

In the previous reactions, the right directions of the double sided arrow indi-

cates charging process while the left direction of the double sided arrow indicates

the discharging process. Moreover, the letter ”M” stands for the metallic part of the

compound like, Co, Mn etc.

1.4 Contribution of This Thesis Work

An estimation algorithm, multiple model adaptive estimation (MMAE), is devel-

oped for the electrochemical model of lithium-ion battery, which provides an accurate

technique of condition monitoring. Another major contribution is the development of

a gradient free optimization technique, i.e. particle swarm optimization (PSO) algo-

rithm for electrochemical battery model parameter identification. Using the identified

parameters, separate models (conditions) are built. These conditions are validated

with experimental results obtained by using CADEX battery tester from CADEX

Inc.

1.5 Orientation of This Thesis

After providing the literature survey in Chapter 2, electrochemical modeling of

Li-ion battery is provided in Chapter 3. PDAE observer equations are provided in

Chapter 4. Electrochemical model response validation by comparing with the the-

oretical response of a Li-ion battery is also presented at Chapter 4. MMAE imple-

mentation with UDDS cycle simulated current profile is provided in Chapter 5 of this
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thesis. A comprehensive description of parameter identification technique, i.e. PSO

is provided in Chapter 6. In Chapter 7, the identified battery model validation is

provided by comparing with the experimental voltage responses of different operating

conditions. MMAE was again implemented using the identified battery models and

for HPPC cycle simulated current profile, which is provided in Chapter 8 and finally

conclusion and recommendations are provided in Chapter 9.
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2. LITERATURE SURVEY

2.1 Fault Diagnosis

Based on the usage of the battery and type of the operations involved, several

methods aiming with fault detection and diagnosis are available. All available tech-

niques can be classified under two major groups: equivalent circuit based model

(ECM) [11] [12] [13] and true physics based models. In ECM, the battery is modeled

by assuming that the true behavior of the battery is attainable using a combination of

voltage source, capacitors, resistors and Warburg impedances. Experimental values

are being used as the values of the stated components, in which the insight of the real

physics of the battery is ignored. This approach does not deal with the real dynamics

of the battery chemistry.

On the other hand, the real physics based model [14] [15] [16] [17] [18], which

is given by Doyle, Fuller, and Newman [15] [19], is primarily based on partial dif-

ferential equations which contains all the required information regarding the true

battery chemistry. This electrochemical model is based on the concentrated solution

theory [14]. However this electrochemical model is too complex to use in real time

application. For this reason model reduction is an option to overcome that issue. The

works presented in this thesis work, are based on the reduced order partial differential

equation [20].

Works aiming with fault detection and diagnosis have been performed before.

Adaptive estimation technique was used in [21], which was based on ECM model.

Extended Kalman filter (EKF) was used in this work for the non-linear application.

EKF is based on an approximation of Taylor series, which cannot deal with a highly

non-linear system. An adaptive recurrent neural network (ARNN) for prediction of

remaining useful life (RUL) was used in [22], which is also modeled based on ECM.
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Synthesized design of Luenberger observer (LO) was adopted in [23], along with ECM

model for fault isolation and estimation. The used observer works well with minimum

or no measurement noise in the system. But this methodology will face difficulty from

the performance point of view when significant measurement noise is present in the

system.

Other major studies related to state of health (SOH) and remaining useful life

(RUL) of Li-Ion battery is based on data-driven methods. In [24], the data-driven

method is presented for providing diagnosis and prognosis of health of the battery

in alternative power-train. For estimation purpose, the authors used a well-known

machine learning technique, i.e. support vector machine (SVM). In addition with

the similar methodology, in [25], the authors adopted a conditional three-parameter

capacity degradation model. In [26], battery parameter identification, estimation

and prognosis methodology was presented using several techniques, e.g. neural net-

work (NN), auto regressive moving average (ARMA), fuzzy logic (FL) and impedance

spectroscopy (IS) etc. The data-driven method is actually based on the relationship

between input and output, the real physics of the battery model is ignored in this

approach as in ECM, therefore there may arise some issues with the use of this kind

of diagnosis and prognosis method.

Multiple model adaptive estimation (MMAE) is used in this work to identify

and detects the faults of Li-Ion battery. This adaptive estimation method requires

representation of different fault scenarios, generate the residual signals and then to

isolate the faults of different kinds using the algorithm. The generation of residuals

and evaluation of them plays a vital role on the performance of the diagnosis [27]. In

this work, the used residuals are generated by comparing the simulated outputs of

the fault models with the simulated output of the true plant model.

The work presented here aims at detecting several faults, i.e. aging, over-discharge

(OD) and over-charge (OC) along with the detection of original model. Among the

stated fault scenarios of LI-Ion battery, OD and OC are critical for the health of

the battery. While over-charge can lead to overheating and thus vaporization of
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active material and hence explosion, over-discharge can short circuit the battery

cell [12]. However, these stated faults can be detected quickly according to the de-

scribed methodology and steps can be taken to solve the issues before the faults can

go to their extreme conditions.

Most of the available works on Fault diagnosis are based on equivalent circuit

based modeling of the battery, which heavily depends on several assumptions which

deny the crucial battery dynamics during application. This work is based on the true

physics based complex PDE model of Li-Ion battery, which captures all the dynamics

of battery. Moreover, the fault diagnosis include several possible critical operating

conditions of the battery, which provides a reliable and comprehensive fault diagnosis.

MMAE including the electrochemical model of Lithium-Ion battery is rarely available

in literature, which this work is providing as an innovative and trustworthy way of

fault diagnosis.

2.2 Parameter Identification

An accurate Identification of the critical parameters of the battery can lead to a

better BMS, which eventually can lead to a better condition monitoring of the battery.

Particle swarm optimization is a widely used optimization technique developed by

Kennedy and Eberhart in 1995 [28] [29] [30].

Parameter identification for Li-Ion battery model was performed before, but al-

most all of these works are based on genetic algorithm (GA) [31] [32] [33] [34], which is

also a population based search technique. A recursive least squares (RLS) algorithm

is implemented for Li-Ion battery parameter identification in [35], but the authors

adopted the equivalent circuit methodology (ECM) for modeling the battery dynam-

ics. However, in contrast with GA, PSO has some notable advantages. PSO does not

involve the mutation and crossover function. In addition to that, PSO is much easier

to implement for identification of the desired parameters.
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Particle swarm optimization algorithm implementation for the electrochemical

model of Li-Ion battery is rarely available. Electrochemical model given by Doyle,

Fuller, and Newman is the true physics based model for this battery system, which

contains all the required information regarding the true battery chemistry and hence

more trustworthy than the other available modeling approach. Therefore, the in-

corporation of a better parameter search technique with this model can provide a

comprehensive insight to the parameters of the battery which are responsible for

different operating conditions in real time application.

In this work, identification of the parameters and the validation of the reduced

order electrochemical model was performed by comparing the model output voltage

and the experimental measured voltage. The stated experimental was carried out on

Panasonic NCR18650B 3.7 V Li-Ion battery by a powerful battery tester provided

by CADEX Inc. The battery was conditioned for different cases it might operate

in, e.g. Navy Over-discharge cycle [35] [36], over-charge etc. along with the normal

operating condition of the battery. And the parameters responsible for those cases

are identified by PSO algorithm.

Development of this algorithm for electrochemical model of Li-Ion battery is the

major contribution as this work is unique. The advantages of PSO encouraged to

incorporate this method with the proposed battery model, which will be a tremendous

work to be done. As other available techniques are computationally costly, PSO has

its advantages here by being computationally cheaper.
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3. ELECTROCHEMICAL MODEL OF LI-ION BATTERY

3.1 Intercalation Based Chemistry

Intercalation is defined as the process of moving ions in and out of an interstitial

sites in a lattice. Usually found Li-ion cell is based of intercalation, i.e. both electrodes

have lattice sites that can store lithium. Discharging and charging of the cell causes

the Li+ to enter into the lattice site of positive electrode and to leave the lattice site

of the negative electrode respectively. The geometry of the lithium ion battery being

studied, is based on intercalation mechanism of Li-ion.

Figure 3.1. Li-Ion battery geometry [37]

The general configuration of a lithium ion battery cell is provided in Figure 3.1.

As clearly visible in the figure, it consists of the following four major components:

1. porous negative electrode or anode, 2. porous positive electrode or cathode, 3.

separator region and 4. electrolyte.

Anode is connected with the negative terminal of the battery and this is composed

of materials which are named as negative electrode active materials. In practice,
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for improved performance of lithium ion battery, manufacturers use blend of active

materials. But in this battery geometry, for the sake of modeling and simulation

time, only one active material was considered in negative end of the battery, which

is actually graphite.

Cathode is connected with the positive terminal of the battery. While anode

is composed of graphite, the positive end or the cathode properties are different in

material selection point of view. Cathode has variable chemistries. Usually, it is a

metal oxide or a solution of cation doped oxides such as LixMn2O4 and LixCoO2.

Separator is the thin and porous medium which separates the above stated two

ends of the battery. This region only allows ions to pass through it.

The remaining constituent, electrolyte, allows only ions/charges to pass based on

the potential difference in the cell. Electricity cannot pass through the electrolyte.

In most cases the electrolyte is liquid medium. But sometime the electrolyte can be

a solid or solid polymer too. Whatever the phases of the electrolyte, it is the heart

where negative electrode, positive electrode and the separators are immersed in.

In addition to the described major components, electrodes contain some filler

agents in both sides. These fillers are non-intercalating in nature but they provide

the electrode the physical stability and also improve the electronic conductivity of

both of the electrodes. There are current collectors in both sides of the cell.

3.2 Open Circuit Potential

Open circuit potential (OCP) is defined as the potential of positive and nega-

tive electrode without any load in the battery circuit. In another word, in case of

Li-ion battery, it is the stored free energy of lithium in both of the electrodes. Neg-

ative electrode possesses more free energy of lithium. Moreover negative electrode

is designed in such a way that, it has the lower potential as compared to positive

electrode. Another important term from the electrochemical point of view is ”utiliza-

tion” of the electrodes which refers to the maximum possible lithium concentration
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in the electrodes. Thus the open circuit potential can be expressed in terms of the

utilization of the electrode materials. Difference between the OCP of positive and

negative electrode is the cell potential.

If U− is the potential of the negative electrode and U+ is the potential of the

positive electrode, then their difference is termed as the complete cell voltage.

3.3 Modeling of Battery Dynamics

There are several modeling approaches available for Li-Ion battery dynamics rep-

resentation. One of them is empirical approach of modeling which adopts the past

data of experiments to predict the future behavior of the battery. This approach of

modeling provides a quick evaluation technique of range of vehicle based on battery

capacity or energy density. In this modeling approach, there is no consideration of

physical principles. Usually logarithmic, polynomial and exponential functions are

used in this purpose. These functions are considered only to reduce the computa-

tional complexity. As there is no insight on real physics of the battery, this modeling

cannot be considered for wide range of applications (for different battery chemistries).

Moreover the predication on battery performance based on this modeling approach

can be poor from practical application point of view.

Equivalent circuit based method is another approach for modeling Li-Ion battery.

This is one of the most used technique for modeling battery dynamics. This modeling

approach uses lumped parameters that make them suitable for integration with larger

simulation models. A combination of circuit elements such as resistors, capacitors and

inductors along with dependent sources are used in this battery model to represent

the functional behavior of the electrochemical cells. The model parameters are ob-

tained via experimental data. Although this is one of the most adopted technique for

modeling, this cannot be considered as the true model, because this also ignores the

real physics of the battery which is significant for providing more accurate prediction

of battery performances. On the other hand, the most realistic approach for battery
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modeling is the electrochemistry based modeling. In this case all of the parameters

are considered during modeling. All of the works presented in this thesis are based

on the electrochemical approach.

3.3.1 Electrochemical Modeling Approach

Figure 3.2. Detail of the geometry of Li-Ion battery [37]

Figure 3.2 represents the geometry of the battery cell model considered in elec-

trochemical based modeling. This dynamic modeling considers the dynamics only in

the horizontal direction, i.e. X-direction. This model is basically a 1-D spatial model

where the dynamics in Y and Z direction is not considered [14] [15] [16] [17] [18] [38].

Another assumption here is that, lithium-ion particles are considered as composed of

spherical particles of radius R everywhere along X- axis [37].

As mentioned earlier, there are three domains in the considered geometry, namely,

the negative electrode which starts from 0− to L−, separator which starts from 0sep

to Lsep and the positive electrode whose range is from L+ to 0+.
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Considered state variables for describing the 1-D spatial domains at any instan-

taneous time t and position x are the current in the solid electrode, is(x, t), current

in the solid electrolyte, ie(x, t), potential of the solid electrode, Φs(x, t), potential of

the electrolyte phase, Φe(x, t), molar flux of lithium at the surface of the spherical

lithium particle, Jn(x, t), concentration of lithium at solid electrode phase, Cs(x, r, t)

and concentration at electrolyte phase, Ce(x, t). The superscripts, i.e. +, − and

sep imply that the defined variables are related to the positive electrode, negative

electrode and the separator respectively.

3.3.2 Input and Output of the Electrochemical Model

The input to the electrochemical model is the external current and the cell voltage

is the output. One significant point which worth mentioning here is that, the current

is actually the current density, i.e. the amperage value is divided with the cross-

sectional area of the specific electrode of the battery geometry.

3.4 Governing Equations

The overall view of the battery geometry along with the corresponding equations

and the boundary and initial conditions can be presented in Figure 3.3.

Figure 3.3. Overall view of battery model [20]
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The governing equations of the electrochemical model are [19] [20] [37] [39]:

εe
∂ce(x, t)

∂t
=

∂

∂x
(εeDe

∂ce(x, t)

∂x
) +

1− t◦c
F

ie(x, t) (3.1)

∂cs,i(x, r, t)

∂t
=

1

r2

∂

∂r
(Ds,ir

2∂cs,i(x, r, t)

∂r
) (3.2)

∂Φe(x, t)

∂t
= −ie(x, t)

κ
+

2RT

F
(1− t◦c)× (1 +

dlnf c
a

dlnce(x, t)
)
∂lnce(x, t)

∂x
(3.3)

∂Φs(x, t)

∂x
=
ie(x, t)− I(t)

σ
(3.4)

∂ie(x, t)

∂x
=

n∑
i=1

3εs,i
Rp,i

FJn,i(x, t) (3.5)

Jn,i(x, t) =
i0,i(x, t)

F
(e

αaFηi(x,t)

RT − e
−αcFηi(x,t)

RT ) (3.6)

Here, i0,i(x, t) is the current density of reaction, the expression of which is given

by:

i0,i(x, t) = reff,ice(x, t)
αa(cmaxs,i − css,i(x, t))αccss,i(x, t)αc (3.7)

And ηi(x, t) is the cell over-potential of reaction, the expression of which is given by:

ηi(x, t) = Φs(x, t)− Φe(x, t)− U(css,i(x, t))− FRf,iJn,i(x, t) (3.8)

In the above expressions, css,i(x, t) is the ith solid phase concentration, cmaxs,i is the

maximum concentration (concentration at the surface) of the ith active material and

U(css,i(x, t)) is the open circuit potential of the ith active material in the solid elec-

trode phase. Moreover, there are some parameters which varies depending on the

temperature distribution, e.g. Rf,i, reff,i and Ds,i. Their dependency on temperature

can be expressed by the Arrhenius equations given by [40]:

θ(T ) = θT0e
Aθ

(T (t)− T0)

T0T (t)
(3.9)
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Here, T (t) is the instantaneous temperature, T0 is a standard or reference temperature

and Aθ is a constant. If the equation of the solid phase concentration at any time t

is observed, it is clear that, it depends on a radial variable, which brings complexity

while the overall model is under simulation or under trial for solving. To eradicate

this solution complexity, this r dependency is solved in [41]. The equations adopted

from [41] are provided below:

∂

∂t
c̄±s,i(x, t) = − 3

R±i
J±n,i(x, t) (3.10)

∂

∂t
q̄±s,i(x, t) = − 30

(R±i )2
q̄±s,i(x, t)−

45

2(R±i )2
J±n,i(x, t) (3.11)

c±ss,i(x, t) = c̄±s,i(x, t) +
8R±i
35

q̄±s,i(x, t)−
R±i

35D±s,i
J±n,i(x, t) (3.12)

In these equations, + and − sign denotes the positive terminal (cathode) and negative

terminal (anode) of the cell. In Addition to these notations, c̄±s,i(x, t) is the volume

averaged concentration, q̄±s,i(x, t) is the averaged concentration flux and c±ss,i(x, t) is

the concentration at the particle surface.

Among all the parameters involved in the previous equations, some parameters

are constant and some are dependent on temperature and the concentration. εe,

t0c , εs, αa, αc, σ, F , R and R±i are the constant parameters. The constant nature

of these parameters is maintained throughout the overall battery geometry. On the

other hand, κ, De and f c
a

are the functions of temperature and the concentration.

Considering the approximation for complexity reduction purpose, the overall equa-

tions for the positive side (cathode) of the battery is presented by the followings, where

the range of x is L+ to 0+.

∂

∂t
c̄+
s,i(x, t) = − 3

R+
i

J+
n,i(x, t)

∂

∂t
q̄+
s,i(x, t) = − 30

(R+
i )2

q̄+
s,i(x, t)−

45

2(R+
i )2

J+
n,i(x, t)

c+
ss,i(x, t) = c̄+

s,i(x, t) +
8R+

i

35
q̄+
s,i(x, t)−

R+
i

35D+
s,i

J+
n,i(x, t)
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F
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(x,t)

RT − e
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Moreover, the equations for negative side (anode) using the same conditions and

assumptions are the followings, where the range of x is 0− to L−.

∂

∂t
c̄−s,i(x, t) = − 3

R−i
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∂

∂t
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Output equation of this electrochemical model is, V (t) = Φs(0
+, t) - Φs(0

−, t)

3.5 Temperature Equation of the Battery Model

The internal average temperature distribution in this electrochemical model of

Li-Ion battery is a lumped one, which is given by:

ρavgcp
dT (t)

dt
= hcell(Tamb − T (t)) + I(t)V (t)−

n∑
i=1

[

∫ 0+

0−

3εs,i
Rp,i

FJn,i(x, t)∆Ui(x, t)dx]

(3.13)
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Here, hcell is a constant and Tamb(t) is the ambient temperature.

In the temperature equation,

∆Ui(x, t)
∆
= Ui(c̄s,i(x, t)− T (t)

∂Ui(c̄s,i(x, t))

∂T
)

c̄s,i(x, t) is the Volume averaged concentration of a single particle, which is again

defined as :

c̄s,i(x, t)
∆
=

3

R3
i

∫ Ri

0

r2cs,i(x, r, t)dr

3.6 Equations of OCP

There are two empirical equations which are adopted to calculate the individual

electrode potentials. For the positive terminal (LiCoO2) of the battery, the following

equation is adopted [42]:

Up =
−4.656 + 88.669θ2

p − 401.119θ4
p + 342.909θ6

p − 462.471θ8
p + 433.434θ10

p

−1 + 18.933θ2
p − 79.532θ4

p + 37.311θ6
p − 73.083θ8

p + 95.96θ10
p

Here, θp =
cs,p at r=Rp

cs,p,max
, a dimensionless number which in turn can be regarded as the

State of charge in cathode. The profile for Up with respect to θp is given in Figure

3.4.

Figure 3.4. Up profile [43]
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For anode (LiC6), the empirical equation is given by [42]:

Un = 0.7222+0.1387θn+0.029θ0.5
n −

0.0172

θn
+

0.0019

θ1.5
n

+0.2808e(0.90−15θn)−0.7984e(0.4465θn−0.4108)

Here, θn =
cs,n at r=Rn

cs,n,max
, a dimensionless number which in turn can be regarded as the

State of charge in anode. The distribution of Un with respect to θn is provided in

Figure 3.5.

Figure 3.5. Un profile [43]

In Figure 3.4 and Figure 3.5, the square points refer the original empirical equation

plot while the solid line represents the simplified curve fitted plot of the individual

potential equations at positive and negative electrode respectively [42].

3.7 Model Simplification

The above described electrochemical model of Li-Ion battery is based on few

assumptions. Even after using the assumptions the model is still too complex to solve.

For this point of view, a model simplification is performed. The model simplification

was done in a manner that, the reduced model will be simple enough to use this in

control purpose but at the same time, the reduced model should capture the main

dynamic behavior of the battery [20]. Keeping these requirements in mind a key

assumption was considered which gives the desired reduced model to work with.
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The adopted assumption for the model reduction purpose is a constant electrolyte

concentration [20], i.e. ce(x, t) = ce, where, ce is a constant which reduces the model

significantly.

After using the above assumption based reduction, the model is reduced signifi-

cantly which is computationally inexpensive. The reduced model is given below [20]:

For the cathode terminal, i.e. xε[L+, 0+], the reduced model equations are [20]:

∂

∂t
c̄+
s,i(x, t) = − 3

R+
i

J+
n,i(x, t)

∂

∂t
q̄+
s,i(x, t) = − 30

(R+
i )2

q̄+
s,i(x, t)−

45

2(R+
i )2

J+
n,i(x, t)

c+
ss,i(x, t) = c̄+

s,i(x, t) +
8R+

i

35
q̄+
s,i(x, t)−

R+
i

35D+
s,i

J+
n,i(x, t)

∂Φ+
e (x, t)

∂t
= −i

+
e (x, t)

κ+

∂Φ+
s (x, t)

∂x
=
i+e (x, t)− I(t)

σ+

∂i+e (x, t)

∂x
=

n∑
i=1

3ε+
s,i

R,i+
FJ+

n,i(x, t)

J+
n,i(x, t) =

i+0,i(x, t)

F
(e

αaFη
+
i

(x,t)

RT − e
−αcFη+i (x,t)

RT )

Following the similar fashion for the anode, i.e. xε[0−, L−], the reduced model equa-

tions are [20]:
∂

∂t
c̄−s,i(x, t) = − 3

R−i
J−n,i(x, t)

∂

∂t
q̄−s,i(x, t) = − 30

(R−i )2
q̄−s,i(x, t)−

45

2(R−i )2
J−n,i(x, t)

c−ss,i(x, t) = c̄−s,i(x, t) +
8R−i
35

q̄−s,i(x, t)−
R−i

35D−s,i
J−n,i(x, t)

∂Φ−e (x, t)

∂t
= −i

−
e (x, t)

κ−

∂Φ−s (x, t)

∂x
=
i−e (x, t)− I(t)

σ−

∂i−e (x, t)

∂x
=

n∑
i=1

3ε−s,i
R,i−

FJ−n,i(x, t)
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J−n,i(x, t) =
i−0,i(x, t)

F
(e

αaFη
−
i

(x,t)

RT − e
−αcFη−i (x,t)

RT )

The temperature model equation for the reduced model remains same as the previous

one which is given below by indicating the regional notations in the equation:

ρavgcp
dT (t)

dt
= hcell(Tamb − T (t)) + I(t)V (t)−

n∑
i=1

[

∫ L−

0−

3εs,i
Rp,i

FJn,i(x, t)∆Ui(x, t)dx]

−
n∑
i=1

[

∫ 0+

L+

3εs,i
Rp,i

FJn,i(x, t)∆Ui(x, t)dx]

The output equation remains same as the previous one, which is:

V (t) = Φs(0
+, t)− Φs(0

−, t)

3.8 Initial and Boundary Conditions of the Model

The initial conditions for the described PDE equation based system are given as:

c̄±s,i(x, 0) = c̄±s,i,0(x)

q̄±s,i(x, 0) = q̄±s,i,0(x)

T (0) = T0

The boundary conditions are as followings:

Φ+
e (0+, t) = 0

Φ−e (L−, t) = Φ+
e (L+, t)− I(t)Lsep

κsep

i±e (0±, t) = 0

i±e (L±, t) = ±I(t)
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3.9 Verification of Model Response

The reduced order model was first validated using the standard current data.

The model ran for 1C, 2C and 0.5C rate and the responses was compared with the

theoretical responses.

First the model ran in 1C rate, i.e. 30A/m2 and the response is provided in Figure

3.6.
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Figure 3.6. Reduced order model response for 1C rate

From the above plot, it is clear that, the battery is discharged at almost 1hr (nearly

at 3600s), which is in accord with the theoretical response of the Li-Ion battery.

For further assurance, the model ran in 2C rate, where the battery should be

discharged at 30 minutes. Here, the battery ran under 60A/m2 and the battery

model response to this input current is provided in Figure 3.7.

In 2C rate, the whole battery is discharged at nearly 30 minutes, which is again

in accord with the theoretical response.

Furthermore, the model ran in slower discharge rate, in 0.5C rate, where theoreti-

cally, the whole battery should be discharged at 2hrs. In this case, the battery model

ran under 15A/m2 and the response was recorded which is provided in Figure 3.8.
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Figure 3.7. Reduced order model response for 2C rate
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Figure 3.8. Reduced order model response for 0.5C rate

This response also keeps consistency with the theory of battery discharge. After

getting these kind of responses from the model, a decision was taken, which is, this

reduced electrochemical model can be used for any kind of input current profile for

the estimation and control purpose.
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4. PDAE OBSERVER EQUATIONS

As the main objective of this thesis work is to have a fault diagnosis, residual is

an important factor here. The residuals of the measured signal (voltage, current or

SOC) can be obtained by comparing the simulated model response with the response

from another source. This reference source is the observer. That means, to have the

faults diagnosed, an observer is crucial. For this reduced electrochemical model of

the battery, a partial differential algebraic equation (PDAE) based observer was used.

During the design of the observer. In this adopted model of observer, the difference

between the model predicted voltage and the calculated voltage is injected via multi-

plication of a linear corrective term, i.e. gain, in the volume averaged concentration

equation as well as the average internal temperature equation in the reduced order

model equations [20].

The PDAE observer equations are adopted from [20] which are as followings:

For the cathode terminal, i.e. xε[L+, 0+]:

∂

∂t
ˆ̄c+
s,i(x, t) = − 3

R+
i

Ĵ+
n,i(x, t) + γ+

i (V (t)− V̂ (t))

∂

∂t
ˆ̄q+
s,i(x, t) = − 30

(R+
i )2

ˆ̄q+
s,i(x, t)−

45

2(R+
i )2

Ĵ+
n,i(x, t)

ĉ+
ss,i(x, t) =ˆ̄c+

s,i(x, t) +
8R+

i

35
ˆ̄q+
s,i(x, t)−

R+
i

35D+
s,i

Ĵ+
n,i(x, t)

∂Φ̂+
e (x, t)

∂t
= − î

+
e (x, t)

κ+

∂Φ̂+
s (x, t)

∂x
=
î+e (x, t)− I(t)

σ+

∂î+e (x, t)

∂x
=

n∑
i=1

3ε+
s,i

R,i+
F Ĵ+

n,i(x, t)

Ĵ+
n,i(x, t) =

î+0,i(x, t)

F
(e

αaF η̂
+
i

(x,t)

RT − e
−αcF η̂+i (x,t)

RT )
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Similarly for the anode, i.e. xε[0−, L−], the observer equations are as the followings:

∂

∂t
ˆ̄c−s,i(x, t) = − 3

R−i
Ĵ−n,i(x, t) + γ−i (V (t)− V̂ (t))

∂

∂t
ˆ̄q−s,i(x, t) = − 30

(R−i )2
ˆ̄q−s,i(x, t)−

45

2(R−i )2
Ĵ−n,i(x, t)

ĉ−ss,i(x, t) =ˆ̄c−s,i(x, t) +
8R−i
35

ˆ̄q−s,i(x, t)−
R−i

35D−s,i
Ĵ−n,i(x, t)

∂Φ̂−e (x, t)

∂t
= − î

−
e (x, t)

κ−

∂Φ̂−s (x, t)

∂x
=
î−e (x, t)− I(t)

σ−

∂î−e (x, t)

∂x
=

n∑
i=1

3ε−s,i
R,i−

F Ĵ−n,i(x, t)

Ĵ−n,i(x, t) =
î−0,i(x, t)

F
(e

αaF η̂
−
i

(x,t)

RT − e
−αcF η̂−i (x,t)

RT )

The observer equation for the internal average temperature is given [20] below:

ρavgcp
dT̂ (t)

dt
= hcell(Tamb − T̂ (t)) + I(t)V̂ (t)−

n∑
i=1

[

∫ L−

0−

3εs,i
Rp,i

FJn,i(x, t)∆Ui(x, t)dx]

−
n∑
i=1

[

∫ 0+

L+

3εs,i
Rp,i

FJn,i(x, t)∆Ui(x, t)dx] + γ±T (V (t)− V̂ (t))

The output equation of the observer is:

V̂ (t) = Φ̂s(0
+, t)− Φ̂s(0

−, t)

In the above observer equations, the hat sign indicates the observed variables and the

observer gain was denoted by γ. When the value of γ changes, depending on this the

corresponding gain in particular electrode side also changes. The gain value for the

particular electrodes are calculated using the mass conservation principles in each of

the electrodes [20]. The observer gain values are expressed as [20]:

γ−i
γ+
i

 = γ ×

 1
n−ε−s,iL

−

1
n+ε+s,iL

+

 (4.1)
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Depending on the γ value, the observer gain for the individual electrode changes

following the equation provided for the observer. This deterministic γ value is de-

termined by trial and error method. One important point to be noted here is that,

although the observer gain for the temperature equation is provided in this thesis

work, the observer gain for temperature is considered as zero, because during this

electrochemical modeling, temperature was assumed to be constant at room temper-

ature, i.e. 298.15K.

4.1 Initial Conditions of the Observer

The initial condition for the observer are given as:

ˆ̄c±s,i(x, 0) =ˆ̄c±s,i,0(x)

ˆ̄q±s,i(x, 0) =ˆ̄q±s,i,0(x)

T̂ (0) = T̂0

4.2 Tuning of Observer Gain

As mentioned earlier, the observer gain value was determined by trial and error

method keeping the aim to achieve the minimum error value between the model

output voltage and the observer output voltage. This γ value was tuned to get an

optimum value which gives the minimum difference between the stated two variables.

After several trials, the approximate of the desired value of γ was obtained. For

example for 1C rate of the battery, for γ = 1 × 10−3, the voltage plot is as Figure

4.1.

In naked eye, there is no difference seen. But, if this plot is observed carefully,

it is evident that, there are significant amount of error exists between the voltage

profiles.

The zoomed portion for time between 3300 to 3350 sec, is provided in Figure 4.2.
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Figure 4.1. Model and observer voltage for γ = 1× 10−3
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Figure 4.2. Zoomed view of the Model and observer voltage response
for γ = 1× 10−3
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The similar profiles were evaluated for the gain value, γ = 53 × 10−3, which is

provided in Figure 4.3.
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Figure 4.3. Model and observer voltage for γ = 53× 10−3

A zoomed view of Figure 4.3 is provided in Figure 4.4, as the previous zoomed

view for a better look at the differences of the voltage responses for changing value

of γ.

In this comparison, a negligible amount of error is present, which is the optimum

for the error value. For reference of this error value, the mean error value between

these two profiles are provided in Table 4.1, for both of the γ values. Here, mean

error is defined as the average difference of the voltage responses from the model and

the observer, i.e. mean error = (model voltage - observer voltage)/number of sample

data.
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Figure 4.4. Zoomed view of the Model and observer voltage response
for γ = 53× 10−3

Table 4.1. Tuned γ value and associated mean error value

Reference γ value Associated mean error value

1× 10−3 7.0148× 10−5

53× 10−3 9.3306× 10−6

If the value of γ is taken beyond the stated maximum referred value in Table 4.1,

there is an increase in mean error value. Therefore, the estimation and diagnosis

works are performed based on this gain value, i.e. γ = 53× 10−3.
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5. MULTIPLE MODEL ADAPTIVE ESTIMATION

This adaptive estimation scheme is a unique type of observer based condition moni-

toring / fault diagnosis technique [44] [45] [46] [47] [48]. This incorporates observer

bank of n observer, among which only one of the corresponding models represents

the normal or the Healthy condition of the battery plant model being monitored and

the remaining (n− 1) observers represent the faulty conditions or the unhealthy sce-

narios [21] [49] [50]. MMAE [50] [51] [52] [53] [54] provides an excellent scope of fault

diagnosis, i.e. the decision can be made based on multiple possible scenarios instead

of based on only one model. The major distinguishing feature of MMAE is that, this

provides a probabilistic approach of condition monitoring. Figure 5.1 represents a

skeleton of MMAE algorithm.

The conditional probability evaluator adopts the information of the residuals to

assign the probability of exactness weighting to each of all of the observer output.The

summation of all of the output probability vale from the conditional probability eval-

uator scheme is one, i.e.

p1 + p2 + p3 + .....+ pn = 1

The expressions of the above probability values for nth model at time sample k is

given by [49] [52] [55]:

pn,k =
fz(k)|a,z(k−1)(zk|an, zk−1)pn(k − 1)∑n
j=1 fz(k)|a,z(k−1)(zk|aj, zk−1)pj(k − 1)

where, fz(k)|a,z(k−1)(zk|an, zk−1)pn(k−1) is the conditional probability density function

of the nth model considering the history of the measurement.

The conditional probability function is given by [55]:

fz(k)|a,z(k−1)(zk|an, zk−1) = βn exp(◦)
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Figure 5.1. MMAE algorithm skeleton

where,

βn =
1

(2π)l/2|ψn(k)|1/2

l is the measurement dimension and in this work l is equal to 1 (because, only the

cell voltage is being measured) and

(◦) =
1

2
rTn,kψ

−1
n,krn,k

Where, r(n,k) is the residual signal for the nth model at time sample k. ψn,k is the

covariance of the residual signal evaluated at each sample and is given by [51] [52] [54]:

ψn,k = Cn,kPn,k|kC
T
n,k +R
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Where, Cn,k is the output vector for nth system at any time sample k. P and R are

the process and measurement noise covariance matrices respectively.

5.1 MMAE Implementation for UDDS Current Profile

In this work, the MMAE algorithm implemented for UDDS cycle current profile.

UDDS stands for Urban Dynamometer Driving Schedule [56], which is authorized

by the United States environmental protection agency (EPA) for light duty vehicles.

The velocity (speed) profile of a hybrid electric vehicle under the standard of UDDS

is provided in Figure 5.2.

Figure 5.2. Speed profile of UDDS [57]

A Hybrid electric vehicle (HEV) model was simulated having the objective to get

an optimum fuel efficiency and better energy management algorithm of the vehicle.

For the simulation purpose, AUTONOMIE [58], a vehicle simulator developed by

Argonne National Laboratory was adopted.

For fault diagnosis purpose, a small portion of the UDDS cycle simulated current

profile of the battery is adopted, which is provided in Figure 5.3.

This current profile was later used in the adaptive estimation purpose for different

possible operating conditions of the Li-Ion battery.
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Figure 5.3. A portion of battery load current from a HEV simulation
for UDDS cycle

The general parameters for the battery geometry is provided in Table 5.1, which

are assumed to be common to all of the possible battery conditions.

Four possible conditions of the battery were considered to work with, i.e. Healthy

or normal condition, degraded or aged condition, over-charged condition and over-

discharged condition. There are some condition specific parameters which governs

those particular conditions. Those model specific parameters for the Li-Ion battery

are the diffusion coefficient in cathode and anode and the diffusional conductivity or

intercalation / de-intercalation reaction rate constant in cathode and anode. These

values are listed in Table 5.2.
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Table 5.1. General parameters of electrochemical model [42]

Symbol Unit Positive electrode Separator Negative separator

σi S/m 100 100

εf,i 0.025 0.0326

εi 0.385 0.724 0.485

cs,i,max mol/m3 51554 30555

cs,i0 mol/m3 0.4955× 51554 0.8551× 30555

c0 mol/m3 1000

Rp m 2× 10−6 2× 10−6

Li m 80× 10−6 25× 10−6 88× 10−6

RSEI Ωm2 0.0 0.0 0.0

F C/mol 96487

R J/molK 8.314

T JK 298.15

Table 5.2. Model specific parameters [59]

Parameter Healthy Aged OD OC

Dn 3.9× 10−14 4.875× 10−15 7.8× 10−15 6.5× 10−15

Dp 1.0× 10−14 1.5× 10−14 5.0× 10−15 5.0× 10−15

kn 5.0307× 10−11 6.2884× 10−12 1.0061× 10−11 8.38× 10−12

kp 2.334× 10−11 2.33× 10−11 1.17× 10−11 1.17× 10−11
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5.2 Model and PDAE Observer Responses to the UDDS Current Profile

The reduced order model was simulated with the input current profile from UDDS

cycle simulation on a HEV. For four different models as stated earlier, their responses

were investigated. After simulating the electrochemical model of the battery, the

battery voltage was observed using the stated PDAE observer. Here, both the model

and observer voltage responses are provided. The response of the reduced order model

and the PDAE observer for the Healthy condition of the battery is provided in Figure

5.4.

Figure 5.4. Healthy battery model and observer voltage responses

Similarly, the reduced order model was simulated and observed for the degraded

situation of the battery and the voltage responses are provided in Figure 5.5.



37

Figure 5.5. Aged battery model and observer voltage responses

In addition to previous two, voltage comparison of the model and the observer for

the over-charged battery is provided in Figure 5.6.

Figure 5.6. OC battery model and observer voltage responses
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Finally, the model output voltage and the observer output voltage responses for

the remaining model, i.e. the over-discharged model is investigated as Figure 5.7.

Figure 5.7. OD battery model and observer voltage responses

5.3 Voltage Response Difference Between the Model and Observer

After evaluating the reduced order model response and the response of the ob-

server, the difference between the voltage outputs are calculated. The voltage re-

sponse differences or the residuals are defined as, Voltage residual = Individual model

voltage response - the individual battery observer voltage response. The mean value

of the differences or residuals is almost zero.

For the Healthy battery condition, the difference between the responses is nearly

zero and the difference profile is provided in Figure 5.8.
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Figure 5.8. Model and observer response difference of Healthy battery

Similarly, the voltage difference between the model and the observer model for

aged battery is provided in Figure 5.9, which is also nearly of zero valued.

Figure 5.9. Model and observer response difference of an aged battery
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For the OC battery, the voltage difference profile is as provided in Figure 5.10.

Figure 5.10. Model and observer response difference of over-charged battery

And the voltage difference profile for OD battery is given in Figure 5.11.

Figure 5.11. Model and observer response difference of over-discharged battery



41

5.4 Plant Model Build-up for Estimation Purpose

As described in the MMAE section of this thesis, the probability will be generated

based on the residuals of different models. For this purpose, a reference plant model

is required with which all of the possible scenarios will be compared and consequently

the voltage residuals will be generated. The plant model voltage profile is constructed

by the following way:

The total length of data samples is divided into the possible scenarios. Then those

segmented time periods are assigned the voltage value from the considered scenarios

one after another and they are added together to build up the plant model voltage.

For example, 50K data samples were considered among which very first 10K and

very last 5K samples are assigned as Healthy battery condition. After first 10K

samples, next 15K samples are assigned for the aged battery condition. Next 10K

samples are allocated for over-discharged battery and the remaining next 10K samples

are provided for the over-charged battery condition.

By following the previously stated way of voltage data allocation, the built plant

model voltage profile is as the Figure 5.12.

Figure 5.12. Built plant model voltage profile
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To generate the residuals for different models, the observed model voltage response

of the respective condition is deducted from the reference voltage profile, i.e. the plant

model voltage profile. After following the procedure, the obtained residual profile for

Healthy battery condition is provided in Figure 5.13.

Figure 5.13. Healthy model residual

Similarly, the residual voltage profile for the aged battery condition is provided in

Figure 5.14.

Figure 5.14. Aged model residual
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Residual voltage for the OD battery condition is given in Figure 5.15.

Figure 5.15. OD model residual

And the voltage residual profile for OC battery model is given in Figure 5.16.

Figure 5.16. OC model residual
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5.5 Fault Diagnosis

To have the state-space model of the corresponding battery condition, the system

identification toolbox provided by MATLAB was used. The time domain data of

the input current and the respective model output voltages were used to generate

the state space models. While generating the state space models the discrete time

analysis was performed and the sample time was taken as 0.001s.

After having the discrete state space model of the respective battery models, the

state covariance matrices, i.e. P was evaluated using the Kalman-gain generation

loop. To do this, for each model, the P matrices was initialized with an identity

matrix of order two, i.e.

P1 = P2 = P3 = P4 =

1 0

0 1


Here, P1 denotes the state covariance matrix for Healthy battery, P2 denotes the

state covariance matrix for aged battery, P3 denotes the state covariance matrix for

OD battery and P4 denotes the state covariance matrix for OC battery.

After evaluating the Kalman-gain generation loop, the updated P matrices are

provided below:

P1 =

 6.85738472847× 10−13 −3.7634736427549454× 10−10

−4.74545734342× 10−10 1.9233546034343435× 10−11



P2 =

3.272637236726353× 10−15 −9.23323083485× 10−12

−7.81213343535646× 10−12 8.924838573761× 10−10



P3 =

7.93545768743434× 10−13 −2.354576861212× 10−10

−2.3435687873232× 10−10 1.5788096454232× 10−11



P4 =

6.34455668900676× 10−13 −3.3445576670× 10−10

−2.2446687542323× 10−10 5.93435687889× 10−10


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These updated state covariance matrices were used in simulating the conditional

probability densities for all of the models. The probability distribution was evaluated

for different values of R, the measurement noise covariance matrix.

If the residuals are observed, which are obtained after comparing the individual

battery condition observer voltage response with the plant model voltage response, it

is clear that, the maximum amount of residual, i.e. noise present is order of 10−4. So,

the measurement covariance can not exceed the system noise present among all four

of the battery conditions. Therefore, the conditional probabilities were evaluated at

different values of R, which are lower than the actual system noise or the residual

voltage signal.

Using the above described reasoning, for the four stated conditions of the battery,

for R = 1× 10−5, evaluated probabilities are provided in Figure 5.17.

Figure 5.17. Probability distribution for R = 1× 10−5
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If the above plot of probabilities are analyzed, this can be said that, the prediction

is too poor. Then the value of R was changed and the probability distribution was

observed.

For R = 1× 10−6, evaluated probabilities are provided in Figure 5.18.

Figure 5.18. Probability distribution for R = 1× 10−6

This prediction is better than the previous one, but not the desired one. Then

again, the R value was further changed and for R = 1× 10−7, evaluated probabilities

are provided in Figure 5.19.
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Figure 5.19. Probability distribution for R = 1× 10−7

This prediction is exactly as the desired one for the fault diagnosis using the

MMAE algorithm.
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6. PARAMETER IDENTIFICATION

6.1 Particle Swarm Optimization

For HEV, the onboard battery management system (BMS) is responsible for man-

aging the rechargeable battery system by monitoring its state of operation, protecting

the battery from unsafe operating zone and reporting the diagnostic data to the op-

erator while managing the battery operation. An accurate monitoring is possible if

the significant battery parameters can be reliably identified which consequently can

lead to a better BMS. With this objective, identification of the crucial battery pa-

rameters is developed in this thesis work. An accurate identification of the critical

model parameters of the battery can lead to a better battery management system

through better condition monitoring and fault diagnosis of the battery. PSO is an

optimization technique.This is developed by Kennedy and Eberhart in 1995 using the

inspiration from flocking behavior of birds or the schooling of fish [60]. In another

word, this technique is a population based optimization technique [60].

This technique has some accord with other heuristic search techniques, i.e. ge-

netic algorithm (GA) [28]. Like GA, PSO is also initialized with some population

of random candidates [28] [61] [62] [63] [64] [65] [66] [67] and then it looks for the

global minimum for the defined objective function by updating the generations from

iteration to iterations. But there are clear differences between GA and PSO. There

is no such term like mutation and crossover as these are the part of GA [60]. Rather

in PSO, like the bird swarm, the particles or the potential candidate solutions move

randomly through the problem space and look for the global optimum value [68].

In PSO, each of the particles keeps the record of the particular best location

(coordinate in the problem space) which gives the best value of the fitness function

with respect to that particular particle. This position / location value is denoted
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by particle best value or pbest [66]. After gathering the informations of pbest, the

algorithm uses these values to find the global optimal solution which is denoted by

gbest [66].

In each iterations of PSO, particle velocity is updated which is associated with

some random numbers. And according to the velocity update, particle position is

also updated [68]. This updated position and the velocity values are used to find the

optimal solution.

In past several years, PSO has been successfully applied in many research and

application areas. It is demonstrated that PSO gets better results in a faster, cheaper

way compared with other methods [60].

PSO technique is widely used in research and application areas. There are some

significant advantages of PSO while comparing with some similar techniques avail-

able. PSO can give the optimal solution in a quick time and with less computational

expenses. Another advantage of PSO is that, it has a few parameters to work with or

to update. The equations with which the velocity and the positions of the particles

are updated, are given by [66]:

vk+1
i = wvki + c1r

k
i (p

k
i − xki ) + c2s

k
i (g

k
i − xki ) (6.1)

xk+1
i = xki + vk+1

i (6.2)

r and s are random numbers.

In this algorithm, w is referred as the inertia constant and the recommended

value for this constant is slightly less than 1, usually from 0.7 to 0.8. c1 and c2 are

the constants, which determine how much the particles are directed towards the good

position. One of them is termed as cognitive component and the other is termed as

social component. The significance of these two constants is that, they determine how

much the particle best position and the global best position value affect the particles

movement. Recommended value for these two constant is approximately 2. For each

of the target parameters, this thesis work was carried out with 3 particles.
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A schematic of PSO algorithm is provided in Figure 6.1.

Figure 6.1. PSO algorithm flow chart [69]
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6.2 Experimental Parameter Identification

6.2.1 Experimental Setup

For parameter identification purpose, the battery was tested at different operating

conditions with different rates of discharging and charging. These experiments were

carried out with a powerful battery tester from CADEX Inc. (Model CADEX C8000).

Out of four channels of this tester, the battery was connected with one of the those

with the alligator clips provided by the battery tester manufacturer. Experimental

results were monitored using a software named Battery Lab Analyzer provided by

CADEX Inc. A clear view of the experimental during a battery testing is provided

in Figure 6.2.

Figure 6.2. Experimental setup for battery testing

Although the electrochemical model of Li-Ion battery is a reduced one owing to

the issue of complexity in case of solution, this model still depends on a significant

number of parameters which are vital for system identification procedure. Among all

of these insinuated parameters, some are dependent on the geometry of the battery,
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which in turn can be regarded as the physical parameters and some other parameters

are dependent on the chemistry of the battery. In battery modeling, value of the

some parameters are adopted from the literature and some other values are collected

from the battery providers.

In the parameter identification works, four parameters were considered to be iden-

tified, which are significant and can lead to different conditions of battery due to their

variation. The mentioned four parameters to identify in this work are solid phase dif-

fusion coefficient at positive electrode (cathode), DsP , solid phase diffusion coefficient

at the negative electrode (anode), DsN , intercalation/de-intercalation reaction rate

constant at cathode, kP and intercalation/de-intercalation reaction rate constant at

anode, kN .

The target parameters were identified for the following operating conditions of the

battery:

1. Nominal (1C) discharge and nominal (1C) charge of the battery, which is

designated as Healthy battery.

2. 25% over-discharge (1.25C) followed by nominal (1C) charge of the battery,

which is denoted as Navy over-discharged battery.

3. 20% over-discharge (1.2C) followed by nominal (1C) charge of the battery,

which is denoted as 24-hr over-discharged battery.

4. Nominal (1C) discharge followed by 25% over-charge (1.25C) of the battery,

which is denoted as over-charged battery.

The initialized value of the parameters to identify were taken from some well

guessed values based on published literatures [32] [59] and provided in Table 6.1.
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Table 6.1. Initialized value of the parameters to be identified using PSO

Name of the parameter Initial value

DsP 1× 10−15

kP 2× 10−16

DsN 3× 10−14

kN 5× 10−16

All of these values were adopted while initializing the particle swarm optimiza-

tion (PSO) algorithm. The objective function/fitness function for this parameter

optimization technique is the following [32]:

∫ tf

t0

(Vm,i − Ve)2dt (6.3)

Where, t0 = 0 and tf = n×∆t (n denotes the number of iterations and ∆t is the

value of time step during integration, which was taken as 1 sec ), Vm,i is the model

predicated voltage for ith sample data, corresponding to an input current signal, Ve is

measured experimental voltage corresponding to the same input current signal. The

integral of the objective function was carried out for different time scales which differ

in case of all of the battery operating conditions. In simple term, the integration time

scale was the length of the relevant current signal during parameter identification

algorithm, which in turn is equal to the total number of iterations in each case.

There was a preset limit of the fitness function under which the fitness function

can be regarded as the optimal one and the corresponding parameter values are the

optimized value for that particular condition of the battery. The limit was set as

0.5V in this parameter identification works. The optimization algorithm runs until

the fitness function is optimized.
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6.2.2 Parameter Identification Based on Healthy Battery Operation

By the word Healthy as a battery condition, it is meant that, the battery is

discharged at 1C rate and also the charging region was also for 1C rate. The battery

was cycled for twenty (20) times. Here also, the initial values of the parameters are

taken as provided in Table 6.1. Healthy battery parameters were identified for both

discharging and charging operation of the battery.

Parameter Identification for the Discharge Region

As mentioned earlier, the capacity of the battery under test is 3.4Ah. Hence, the

discharge operation of the battery was conducted at 3.4A current and the parameter

was identified using this current as the input to the battery model. The input current

for the discharge operation is provided in Figure 6.3.

Figure 6.3. Input current during discharging of Healthy battery

The particle trajectories for all of the target parameters were observed throughout

the iterations, which are provided next.
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Figure 6.4. DsP update
history for Healthy bat-
tery discharge

Figure 6.5. kP update
history for Healthy bat-
tery discharge

Figure 6.6. DsN update
history for Healthy bat-
tery discharge

Figure 6.7. kN update
history for Healthy bat-
tery discharge

The obtained fitness function profile is provided in Figure 6.8.
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Figure 6.8. Fitness function trajectory for discharging of Healthy battery

The identified items for this type of battery operation is provided in Table 6.2.

Table 6.2. Identified parameters for discharging of Healthy battery

Name of the parameter Identified value by PSO

DsP 4.0264× 10−16

kP 6.0555× 10−14

DsN 4.3196× 10−14

kN 3.5484× 10−15

Optimized fitness 0.4633
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Parameter Identification for the Charge Region

The charging operation was carried out also at 3.4A as the battery is defined as

Healthy. The input current for the identification process is provided in Figure 6.9.

Figure 6.9. Input current during charging of Healthy battery

Using this input current and the defined, particle swarm optimization algorithm

was adopted to optimize the objective function by defining four parameters to identify.

The trajectories of the particle parameters are monitored to check the convergence of

those and the particles trajectories are provided here.
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Figure 6.10. DsP up-
date history for Healthy
battery charge

Figure 6.11. kP update
history for Healthy bat-
tery charge

Figure 6.12. DsN up-
date history for Healthy
battery charge

Figure 6.13. kN update
history for Healthy bat-
tery charge
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The fitness function was monitored from iteration to iteration and provided in

Figure 6.14.

Figure 6.14. Fitness function trajectory for charging of Healthy battery

The identified value of the parameters and the optimized value of the fitness

function is provided in Table 6.3.

Table 6.3. Identified parameters for charging of Healthy battery

Name of the parameter Identified value by PSO

DsP 1.7507× 10−15

kP 7.7358× 10−14

DsN 4.6174× 10−15

kN 1.0532× 10−14

Optimized fitness 0.46458
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6.2.3 Parameter Identification Based on Navy Over-Discharge Battery

Operation

The 2nd condition of the battery, which was identified using particle swarm op-

timization (PSO) algorithm, is Navy over-discharged battery. As mentioned in the

earlier section, in case of Navy over-discharged [36] [35] battery, the battery was dis-

charged at a rate of 1.25C, i.e. 25% over-discharge (approximately 4.25A current

discharge) and the charge period was run at normal condition, i.e. 1C rate (3.4A

charge). This pattern of battery operations ran for twenty (20) cycles.

Parameter Identification for the Discharge Region

The parameters were identified for both the discharge and the charge region of the

battery experiment. For the discharge region of the Navy over-discharged battery, as

mentioned earlier, the current was 4.25A throughout and the parameters were con-

tinuously observed while the optimum value of the defined fitness function is reached.

The input current for this region of operation of the battery is provided in Figure

6.15.

Figure 6.15. Input current during discharge of Navy OD battery
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The particle update histories are observed from iteration to iteration while they

yield the optimum value of the fitness function. The particles’s trajectory for all of

the parameters are provided next.

Figure 6.16. DsP up-
date history for Navy OD
battery discharge

Figure 6.17. kP update
history for Navy OD bat-
tery discharge

Figure 6.18. DsN up-
date history for Navy OD
battery discharge

Figure 6.19. kN update
history for Navy OD bat-
tery discharge
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If the particles position update trend is observed, it is clear that, all the particles

are converged into a single location starting from their individual locations which are

different form each other. At the same time, the fitness function is reached into a

converged value and the update history of the fitness function is provided in Figure

6.20.

Figure 6.20. Fitness function trajectory for discharging of Navy-OD battery

The identified parameter values along with the optimized fitness function value is

provided in Table 6.4.

Table 6.4. Identified parameters for discharging of Navy-OD battery

Name of the parameter Identified value by PSO

DsP 6.5481× 10−16

kP 7.3194× 10−13

DsN 3.35× 10−15

kN 1.1129× 10−15

Optimized fitness 0.4444
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Parameter Identification for the Charge Region

Following the similar way, the parameters were identified using PSO algorithm

for the charging region of Navy OD battery operation. For the charging operation

of the battery, the experimental current, which was taken as the input for parameter

identification, is provided in Figure 6.21.

Figure 6.21. Input current during charging of Navy OD battery

The parameters changing by every iterations and at the end of the iterations all

the parameters converged to a single location which is the vital point for PSO. The

trajectories of all of the particles were tracked with iterations and the parameter

particle convergence histories are provided next.
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Figure 6.22. DsP up-
date history for Navy OD
battery charge

Figure 6.23. kP update
history for Navy OD bat-
tery charge

Figure 6.24. DsN up-
date history for Navy OD
battery charge

Figure 6.25. kN update
history for Navy OD bat-
tery charge
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After analyzing all the parameter particles trajectory, the convergence is confirmed

for the charging operation of the battery. Obtained update history of the fitness

function is provided in Figure 6.26.

Figure 6.26. Fitness function trajectory for charging of Navy-OD battery

For the charge operation of the battery, the identified values of the parameters

and also the value of the optimized fitness function is provided in Table 6.5.

Table 6.5. Identified parameters for charging of Navy-OD battery

Name of the parameter Identified value by PSO

DsP 2.0828× 10−15

kP 5.4301× 10−14

DsN 9.3458× 10−16

kN 8.4599× 10−15

Optimized fitness 0.4577
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6.2.4 Parameter Identification Based on 24-hr Over Discharge Battery

Operation

The 3rd model that was identified using experimental and model voltages is ”24-hr

over discharged battery condition”. This condition of the battery is constructed as

a cycle of discharge and charge for multiple number of cycles. In this condition, the

battery ran in 20% over-discharge, i.e. 1.2C discharge followed by nominal charge

regime, i.e. 1C charge and this cycle was repeated for 20 times and the voltage

and current data was recorded. Likewise the previous one, the initial values of the

parameters to be identified are taken as mentioned in Table 6.1.

Parameter Identification for the Discharge Region

Likewise the previous condition, this battery condition was also identified for both

discharge and charge operation of the battery. The discharge operation was carried

out for a constant current of 4.08A. This current profile is provided in Figure 6.27.

Figure 6.27. Input current during discharging of 24-hr OD battery
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For this input current, the particles of the parameters were observed and the

converging history of the particles are provided next.

Figure 6.28. DsP up-
date history for 24-hr OD
battery discharge

Figure 6.29. kP update
history for 24-hr OD bat-
tery discharge

Figure 6.30. DsN up-
date history for 24-hr OD
battery discharge

Figure 6.31. kN update
history for 24-hr OD bat-
tery discharge
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The fitness function profile was also observed and this is provided in Figure 6.32.

Figure 6.32. Fitness function trajectory for discharging of 24-hr OD battery

The identified values of the parameters and the optimized value of the fitness

function is provided in Table 6.6.

Table 6.6. Identified parameters for discharging of 24-hr OD battery

Name of the parameter Identified value by PSO

DsP 4.0995× 10−16

kP 2.1611× 10−13

DsN 3.6899× 10−15

kN 1.0775× 10−15

Optimized fitness 0.18081
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Parameter Identification for the Charge Region

For the mentioned operating condition of the battery, the input current measured

from the CADEX battery tester is given in Figure 6.33.

Figure 6.33. Input current during charging of 24-hr OD battery

For the Identification procedure, for all of the four parameters, three (3) particles

were selected in PSO algorithm and the locations of the particles are provided next.
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Figure 6.34. DsP up-
date history for 24-hr OD
battery charge

Figure 6.35. kP update
history for 24-hr OD bat-
tery discharge

Figure 6.36. DsN up-
date history for 24-hr OD
battery charge

Figure 6.37. kN update
history for 24-hr OD bat-
tery charge
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While the parameters are changing their locations and converged to a particular

value by following the PSO algorithm, the fitness function is optimized and provided

in Figure 6.38.

Figure 6.38. Fitness function trajectory for charging of 24-hr OD battery

With the time being, the identified value of the target parameters along with the

optimized value of the fitness function is obtained as provided in Table 6.7.

Table 6.7. Identified parameters for charging of 24-hr OD battery

Name of the parameter Identified value by PSO

DsP 1.8848× 10−15

kP 5.0345× 10−14

DsN 9.5869× 10−15

kN 3.3563× 10−15

Optimized fitness 0.17409
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6.2.5 Parameter Identification Based on an Over-Charged Battery Op-

eration

The final model of the battery used for parameter identification purpose, is an

Over-charged battery. The battery was tested with a nominal (1C) discharge region

followed by 25% over-charge (1.25C − charge) region. The same initial parameter

values were adopted for the identification procedure. This battery parameters were

identified for both discharge and charge operation as for the previous conditions.

Parameter Identification for the Discharge Region

As this battery is an over-charged one, the discharge operation was carried out

at 1C rate, i.e. 3.4A, while the charge was at 25% over, i.e. 1.25C. The discharge

operation of the battery is carried out for a constant current of 3.4A. This discharge

current profile is provided in Figure 6.39.

Figure 6.39. Input current during discharging of an OC battery
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The trajectories of the parameter particles, which are converged to a single location

are provided next.

Figure 6.40. DsP up-
date history for OC bat-
tery discharge

Figure 6.41. kP update
history for OC battery
discharge

Figure 6.42. DsN up-
date history for OC bat-
tery discharge

Figure 6.43. kN up-
date history for OC bat-
tery discharge
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The fitness function was observed and the profile is provided in Figure 6.44.

Figure 6.44. Fitness function trajectory for discharging of an OC battery

The identified items are provided in Table 6.8.

Table 6.8. Identified parameters for discharging of an OC battery

Name of the parameter Identified value by PSO

DsP 1.2884× 10−16

kP 3.3685× 10−13

DsN 9.7622× 10−15

kN 1.9175× 10−15

Optimized fitness 0.23166
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Parameter Identification for the Charge Region

The battery was operated at 4.25A current. This input current runs through the

battery in this identification step is given in Figure 6.45.

Figure 6.45. Input current during charging of an OC battery

The updated location history of the particles of the target parameters are provided

next.
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Figure 6.46. DsP up-
date history for OC bat-
tery charge

Figure 6.47. kP update
history for OC battery
charge

Figure 6.48. DsN up-
date history for OC bat-
tery charge

Figure 6.49. kN up-
date history for OC bat-
tery charge
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The histogram of the fitness function is provided in Figure 6.50.

Figure 6.50. Fitness function trajectory for charging of an OC battery

Finally, the identified value of the parameters and the optimized value of the

fitness function is provided in Table 6.9.

Table 6.9. Identified parameters for charging of an OC battery

Name of the parameter Identified value by PSO

DsP 2.0986× 10−15

kP 3.3064× 10−14

DsN 1.9827× 10−14

kN 2.4734× 10−15

Optimized fitness 0.23364
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6.2.6 Analysis of the Identified Models

In case of Healthy battery identified parameters for discharging and charging re-

gion, if the obtained values are analyzed, it is clear that, parameter values are different

in case of two operating conditions. Value of DsP increases when the operating con-

dition switches from discharge to charge. Similar pattern of changes in values is

noticed in case of kP and kN . But, the value of DsN decreases when the operating

condition changes from discharge to charge. Despite this discrepancies in parameter

values, the fitness function value keeps consistency in both cases of battery operation

with a negligible variation in optimized values, 0.27% (0.4633 to 0.46458) changes in

optimized value of the fitness function.

Meanwhile in case of Navy over-discharged battery operation, when the operating

condition switches from discharge to charge, there are noticeable changes in parameter

values. While there is an increase in values of DsP and kN , when the operating

condition changes from discharge to charge, there is decrease in the value of kP and

DsN . Objective function changes about 3% (0.4444 to 0.4577), from discharge to

charge region of operation of the battery.

In case of another over-discharged battery, i.e. 24-hr OD battery, there is an

increase in value of DsP , DsN and kN while there is a decrease in the value of kP ,

when the operating condition switches from discharge to charge mode. There is

around 3.7% (0.18081 to 0.17409) change in the value of fitness function when the

operating condition changes from discharge to charge during the experiments.

Moreover, in case of over-charged battery, when the operating condition switches

from discharge to charge, there is an increase in the value of DsP , DsN and kN , while

there is a clear decrease in the value of kP . And in this case, there is a 0.85% (0.23166

to 0.23364) change in fitness function during the switching of operating conditions.

Now, if a single parameter is compared with changing different operating condi-

tions keeping the operating mode same, the analysis will be more interesting. For

example, for DsP in discharge region is compared like the following:
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From Healthy battery condition DsP value, it increases while the operating mode

changes form Healthy to 24-hr OD and then to Navy OD, but there is a decrease in

DsP value when the operating mode shifts to over-charged condition.

In case of DsP for charging scenarios, the identified value changes among the

operating conditions like: Healthy → 24-hr OD → over-charged → Navy OD.

In case of kP for discharging scenarios, the identified value changes among the

operating conditions like: Healthy → 24-hr OD → over-charged → Navy OD.

Similarly, in case of kP for charging scenarios, the identified value changes among

the operating conditions like: over-charged ← 24-hr OD ← Navy OD ← Healthy.

Moreover, in case of DsN for discharging scenarios, the identified value changes

among the operating conditions like: Navy OD ← 24-hr OD ← over-charged ←

Healthy.

Similarly, in case of DsN for charging scenarios, the identified value changes among

the operating conditions like: Navy OD ← Healthy → 24-hr OD → over-charged.

In addition to those, in case of kN for discharging scenarios, the identified value

changes among the operating conditions like: 24-hr OD←Navy OD← over-charged←

Healthy.

Finally, in case of kN for charging scenarios, the identified value changes among

the operating conditions like: over-charged ← 24-hr OD ← Navy OD ← Healthy.

For the easiness of understanding, Healthy battery model was taken as the refer-

ence while comparing the identified parameter values for both of the operating modes.

Right arrow and left arrow indicates the pattern of changing direction. Right arrow

indicates an increase in parameter value while the left arrow indicates a decrease in

parameter value.

Moreover, for every single cycle of discharge and charge for all four battery operat-

ing conditions, parameters were identified using PSO, which are provided in Appendix

of this thesis work.
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7. ELECTROCHEMICAL MODEL VALIDATION

To validate the reduced order electrochemical model of the Li-Ion battery, experi-

mental voltage response was compared with the model predicted voltage response,

which is governed by the identified electrochemical battery parameters by PSO algo-

rithm. In this section, the voltage comparison for different operating conditions of

the battery is provided. To validate the electrochemical model for identified param-

eters for Healthy battery, the previously mentioned conditioned battery was taken

under test again and was cycled only once and the discharge (1C) and charge (1C)

current data was used as the input to the battery model to compare with the relevant

experimental voltage response. As both discharge and charge of the Healthy battery

is significant equally, the model validation was performed for both of the states of

operation. The experimental discharge current which was used as an input to the

battery electrochemical model, is provided in Figure 7.1.

Figure 7.1. Input current to Healthy battery discharge model
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For discharge at constant 3.4A current, the model voltage response and the ex-

perimental voltage is compared and provided in Figure 7.2. If the discharge voltage

Figure 7.2. Voltage comparison for Healthy battery discharge operation

pattern is observed, it is clear that, the battery did not start to discharge from it’s

rated voltage, i.e. 3.7 V, rather from near 3.3 V. The reason behind this discrepancy

can be correlated to the SOC variation during battery discharge, which is provided

in Figure 7.3 for reference.

Figure 7.3. SOC variation during Healthy battery discharge
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From the SOC plot, it is clearly seen that, the battery did not start discharging

from 100% capacity, rather form 87%. For this reason, the battery voltage was lower

while the discharge starts. The reason behind lower SOC at initial phase of discharge

is the long time cycling (20 times) of the battery during experiments.

As stated earlier, the Healthy battery model was also validated for charging op-

eration. The experimental charging current, which was later used as an input to the

battery model, is provided in Figure 7.4.

Figure 7.4. Input current to Healthy battery charge model

For the charge input current to the battery model, the compared voltage responses

between the model and the experiment is provided in Figure 7.5.
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Figure 7.5. Voltage comparison for Healthy battery discharge operation

From the provided comparison of voltages for both discharge and charge operation

of the battery, it is clear that, the identified battery parameters by PSO, provides

an accurate validation of the considered reduced electrochemical model of Li-Ion

battery.

To validate the Navy over-discharged battery electrochemical model using the PSO

identified parameters, the conditioned battery was again considered for test in similar

manner but at different rate of over-discharge. For parameter identification purpose,

the battery was 25% over-discharged (1.25C discharge). But for model validation

purpose, the battery was 15% over-discharged (1.15C discharge) while the charge of

the battery was carried out at normal rate (1C) and this cycle was performed for

once.

As the discharge operation of this battery is more crucial as compared to the

charge operation, the model validation was carried out for the discharge operation.

The input current to the discharge operation of the Navy OD battery, is provided in

Figure 7.6.
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Figure 7.6. Input current to Navy OD battery discharge model

The voltage comparison for model validation purpose of this battery operation, is

provided in Figure 7.7.

Figure 7.7. Voltage comparison for Navy OD battery discharge operation
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From the voltage comparison plot provided for the discharge operation of the Navy

OD battery, it can be said that, the PSO identified battery parameters are providing

a well accurate battery model.

Although, the electrochemical battery model is accurate one, if the discharge

pattern is observed closely, it is clear that, here also like the Healthy battery discharge

operation, the voltage didn’t start discharging from it’s rated voltage rather from

3.5V. The reason for this can be explained from Figure 7.8.

Figure 7.8. SOC variation during Navy OD battery discharge

The initial SOC of this battery was near 90%, which is not as the expected starting

point of discharge and the reason behind is also the long time cycling of the battery

(20 times).

For 24-hr over discharged battery model validation, previously conditioned bat-

tery at 1.2C discharge (20% over-discharged), was taken under test for one cycle

at different rate of over-discharge. For validation purpose, the battery was 10%

over-discharged (1.1C), while the charging operation was maintained at nominal rate

(1C).

Here also, as the discharge operation of this battery is more crucial as compared to

the charge operation, the model validation was carried out for the discharge operation.
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The input current to the discharge operation of the 24-hr OD battery, is provided in

Figure 7.9.

Figure 7.9. Input current to 24-hr OD battery discharge model

For this current input, the battery model parameters were identified again. Using

those parameters, the built electrochemical model of this 24-hr OD battery, was

simulated for this current signal and the voltage responses were compared with the

relevant voltage response of the experiment. The voltage comparison of this battery

operating condition, is provided in Figure 7.10.
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Figure 7.10. Voltage comparison for 24-hr OD battery discharge operation

From this voltage comparison provided, this is clear that, the PSO identified

parameters of the electrochemical model of 24-hr over discharged battery is well ac-

curate.

The discrepancy of the starting voltage of discharge with the rated voltage can be

explained form Figure 7.11.

Figure 7.11. SOC variation during 24-hr OD battery discharge
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Here also, the SOC at battery initial phase of discharge is near 90% and this is

also because of long time cycling of the battery (20 times). That’s why, the battery

starts to discharge from 3.5 V instead of 3.7 V, which is it’s rated voltage.

Moreover, for model validation of the over-charged battery, the previously condi-

tioned battery at 25% over-charge (1.25C) operation, was taken under test for one

cycle at 15% over-charge (1.15C), while the discharge operation was carried out at

1C rate as previously.

As, charging operation of this battery is crucial, the model was validated only for

the charging operation of the battery. The input current to the battery model for

charging operation of this over-charged battery, is provided in Figure 7.12.

Figure 7.12. Input current to OC battery charge model

The compared voltage responses for this input current, is provided in Figure 7.13.
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Figure 7.13. Voltage comparison for OC battery charge operation

From the voltage comparison of the over-charged battery model, it is clear that,

the battery model of the over-charged battery using the PSO identified parameters is

a precise one.

If all of the voltage comparisons are analyzed provided in this section, it can

be said that, the battery electrochemical model is a validated one. This validation

provided the way to proceed with the adaptive estimation approach of fault diagnosis,

which is provided in a later section of this thesis works.

7.1 Temperature Variation During Experiments

In the reduced electrochemical model of Li-Ion battery, the temperature was as-

sumed to be constant at room temperature, namely 298.15K. To check the validity

of the assumption on temperature variation, the temperature during the experiments

was measured. The temperature was measured during every cycle of operation and

are providing the temperature profile all operating conditions of the battery. For

Healthy battery operation, i.e. both discharge and charge, the temperature variation

during experiments is provided in Figure 7.14.
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Figure 7.14. Temperature variation for Healthy battery operation

Temperature variation during Navy OD battery operation (1.25C discharge) is

provided in Figure 7.15.

Figure 7.15. Temperature variation for Navy OD battery operation

For 24-hr OD battery, the temperature variation is provided in Figure 7.16.
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Figure 7.16. Temperature variation for 24-hr OD battery operation

Temperature variation was also observed for the over-charge operation of the bat-

tery (25% over), which is provided in Figure 7.17.

Figure 7.17. Temperature variation for OC battery charge operation
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Provided temperature profiles are for four critical operations of the battery. For

the Navy OD battery, temperature changes is limited within 24◦C to 25◦C, only

one degree centigrade variation during the overall operation time of the battery. On

the other hand, for the OC battery, temperature changes from 23◦C to 24◦C, here

also only one degree centigrade variation during the overall operation period of the

battery. Moreover for Healthy operation and also for 24-hr OD battery operation,

the temperature variation is also only one degree Centigrade, which is consistent

with other two operating situations stated earlier. From these observations, it can

said that, the assumption adopted for temperature variation in the electrochemical

model, is a reasonable one.
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8. FAULT DIAGNOSIS USING THE IDENTIFIED MODELS

Having the identified battery models, adaptive estimation algorithm was implemented

to have a more realistic fault diagnosis scheme. Four operating conditions of the

battery will be used in fault diagnosis, i.e. Healthy battery, Navy over discharged

battery, 24-hr over discharged battery and over-charged battery. For fault diagnosis

purpose, the identified battery models were simulated for an input current for hybrid

pulse power characterization (HPPC) cycle vehicle operation. Hybrid pulse power

characterization is vital in HEV, EV or PHEV, because of its’ applicability in de-

termining the dynamic power capability over the usable charge and voltage range of

the concerned vehicle or the device, where both discharge and regenerative pulses are

considered in the test profile current signal [70]. Therefore, fault diagnosis based on

the battery current output form a HPPC cycle simulation of a HEV can be an im-

portant step in fault diagnosis of Li-Ion battery. This adaptive estimation following

the similar techniques described in one of the previous chapters of this thesis.

8.1 Battery Model Selection

As described earlier, all of the battery models were identified for both discharge

and charge operation at different rates. Different battery models were defined with

the identified significant parameters using the particle swarm optimization (PSO)

algorithm. For the adaptive estimation purpose, for Healthy battery, the model

for charging operation was selected, because charging operation is significant for a

Healthy battery. For Navy over-discharged battery, as the discharge is dominant here

(as the battery is over-discharged), the battery model for discharge operation of the

battery was selected. For the similar kind of reason, for 24-hr over discharged battery,

the battery model for discharge operation is selected and for over-charged battery,
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the model was selected for charging operation as the charge is dominant here. All of

these defined models were selected for fault diagnosis with MMAE approach.

8.2 Identified Battery Model and PDAE Observer Responses

Same procedure was followed here as the previously described fault diagnosis tech-

nique except the input current profile. The reduced order electrochemical model was

used and also the PDAE based observer was used in estimation works. The current

profile with which the faults are identified is provided in Figure 8.1 [59].

Figure 8.1. HPPC cycle simulated current



95

For this current input, all the models were simulated and observed. The identified

Healthy battery model and the PDAE observer response for this current input is

provided in Figure 8.2.

Figure 8.2. Identified Healthy battery model and observer response
for HPPC cycle simulated current

Similarly, for the identified battery model for Navy over-discharge is simulated

and observed and the responses are provided in Figure 8.3.
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Figure 8.3. Identified Navy OD battery model and observer response
for HPPC cycle simulated current

Identified battery model response along with the PDAE observer response for

24-hr overdischarged battery is provided in Figure 8.4.
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Figure 8.4. Identified 24-hr OD battery model and observer response
for HPPC cycle simulated current

And the response of the 25% over-charged battery for HPPC current input is

provided in Figure 8.5.
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Figure 8.5. Identified 25% OC battery model and observer response
for HPPC cycle simulated current

8.3 Differences Between the Identified Model and Observer Responses

The voltage response differences or the residuals are defined as, Voltage residual =

Individual model voltage response - the individual battery observer voltage response.

The mean value of the differences or residuals is almost zero.
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Figure 8.6. Voltage
residuals for Healthy bat-
tery

Figure 8.7. Voltage
residuals for Navy OD
battery

Figure 8.8. Voltage
residuals for 24-hr OD
battery

Figure 8.9. Voltage
residuals for OC battery
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8.4 Plant Model Build-up for Fault Diagnosis

To have the plant model, the following scenario is created. HPPC cycle was for

13140 sec. Within this total length of time, first 2628 sec is for Healthy battery

model, next 1314 sec is from Navy OD battery model, next 2628 sec is from 24-hr

OD battery, next 1314 sec is again from Healthy battery, next 2628 sec is from OC

battery and last 2628 sec is again coming from Healthy operation of the battery.

Following these order of battery operation, the built battery plant voltage profile is

provided in Figure 8.10.

Figure 8.10. Reference plant model voltage response
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8.5 Fault Diagnosis Using the Identified Battery Models

PDAE observer responses for all of the battery operating conditions as mentioned

previously are deducted from the plant voltage response and the residual are generated

for particular battery model. The voltage residuals are provided in Figure 8.11.

Figure 8.11. Voltage residuals for different operating conditions

Using the system identification toolbox as previously, the state covariance matrices

are generated for different battery operating conditions. Using these state covariance
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matrices and the voltage residuals, the conditional probability densities are generated

for different values of measurement noise covariance matrix, R. If the voltage residual

present in this fault diagnosis scheme is analyzed, it is clear that, the maximum

value of system residual or the noise signal is in the range of 10−4. Therefore, the

measurement noise covariance matrix should be lower than the maximum system

noise signal. Conditional probabilities were obtained using different measurement

covariances, which is obviously lower than the maximum system noise.

For R = 1 × 10−5, the obtained probability distribution is provided in Figure

8.12. The obtained probability distribution is not exactly what MMAE should have

Figure 8.12. Probability distribution for different operating condi-
tions for R = 1× 10−5
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detected. Therefore, the value of R was changed and the probability for different

value of the measurement noise covariance matrix was plotted.

For R = 1×10−6, the obtained probability distribution is provided in Figure 8.13.

Figure 8.13. Probability distribution for different operating condi-
tions for R = 1× 10−6

This distribution is better than the previous one but not accurate enough for fault

diagnosis.
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For R = 1×10−7, the obtained probability distribution is provided in Figure 8.14.

Figure 8.14. Probability distribution for different operating condi-
tions for R = 1× 10−7

Still, this is not perfect one, so the value of R was changed to 1 × 10−8, and the

probability distribution is obtained as provided in Figure 8.15.
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Figure 8.15. Probability distribution for different operating condi-
tions for R = 1× 10−8

If the last probability distribution is observed, it is clear that, the scenarios of

battery operations which was created, was accurately detected with well accuracy.

And as the considered models were identified by PSO algorithm, this detection of

operating conditions or this fault diagnosis is more reliable and realistic.



106

9. CONCLUSION AND FUTURE WORKS

9.1 Conclusion

Various battery operating conditions were diagnosed using multiple model adap-

tive estimation methodology that used the electrochemical model of Li-Ion battery.

First, MMAE was successfully designed for UDDS cycle simulated current profile

as an input to the electrochemical battery model. Simulation results showed that

the proposed methodology was able to successfully identify four different operating

conditions, namely, Healthy, aged, over-discharged and over-charged condition. That

provided the foundation for next works of this thesis endeavor. A direct optimization

methodology, namely particle swarm optimization, was developed for electrochemi-

cal model parameter identification. Four significant parameters were considered for

identification using PSO. This was successfully completed with good accuracy for a

number of operating conditions of the battery, namely, Healthy battery, Navy over-

discharged battery, 24-hr over discharged battery and an over-charged battery. To

implement the parameter identification process, experiments were carried out on a 3.7

V Panasonic NCR18650B Lithium-Ion battery using a versatile battery tester from

CADEX Inc. Electrochemical model of the battery was validated for different sets of

test data rather than using the initial test data. Model validations were performed

with reasonable accuracy. Temperature measurements throughout the experiments

validated the assumption of constant temperature in battery modeling. Finally, all

the identified models were used in another set of MMAE based fault diagnosis. This

time, HPPC cycle simulated current data was the input to the battery models and

PDAE observers. The resulting conditional probability revealed that, the battery

conditions were correctly identified for the PSO identified parameter-based models.
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The proposed fault diagnosis methodology can have significant impact on the battery

management system (BMS) due to its accuracy of fault diagnosis.

9.2 Future Works

In this work, it was assumed that, the temperature distribution was constant

throughout the operations. This may not be the case for all operating conditions.

The present work can be extended with the assumption of variable temperature dis-

tribution in modeling. Also, the electrochemical model was 1-D, where the variation

of dynamics in Y and Z directions was not considered. The 1-D model can be up-

dated by adopting the variation in dynamics in other directions. Another potential

future work can be the integration of the proposed fault diagnosis technique with the

battery management system in real time applications. Moreover, all other battery

parameters can be taken as the target parameters to identify using particle swarm

optimization algorithm, which will provide more confidence in battery model identifi-

cation. Mathematical analysis of the PDAE observer integration with MMAE based

fault diagnosis can be another great prospective area to work with. In addition to the

above, temperature residuals can be considered in fault diagnosis of Li-Ion battery.



REFERENCES



108

REFERENCES

[1] Jingliang Zhang and Jay Lee. A review on prognostics and health monitoring of
li-ion battery. Journal of Power Sources, 196(15):6007–6014, 2011.

[2] Kai Goebel, Bhaskar Saha, Abhinav Saxena, Jose R Celaya, and Jon P Christo-
phersen. Prognostics in battery health management. IEEE instrumentation &
measurement magazine, 11(4):33, 2008.

[3] Nalin A Chaturvedi, Reinhardt Klein, Jake Christensen, Jasim Ahmed, and
Aleksandar Kojic. Modeling, estimation, and control challenges for lithium-
ion batteries. In American Control Conference (ACC), 2010, pages 1997–2002.
IEEE, 2010.

[4] It direction. http://www.itdirection.net/images/lthcll-may-13.png. Last
accessed May 2015.

[5] Domenico Di Domenico, Giovanni Fiengo, and Anna Stefanopoulou. Lithium-ion
battery state of charge estimation with a kalman filter based on a electrochemical
model. In Control Applications, 2008. CCA 2008. International Conference on,
pages 702–707. Ieee, 2008.

[6] Osvaldo Barbarisi, Francesco Vasca, and Luigi Glielmo. State of charge
kalman filter estimator for automotive batteries. Control Engineering Practice,
14(3):267–275, 2006.

[7] JA Prins-Jansen, Joseph D Fehribach, Kas Hemmes, and JHW De Wit. A three-
phase homogeneous model for porous electrodes in molten-carbonate fuel cells.
Journal of The Electrochemical Society, 143(5):1617–1628, 1996.

[8] Kandler Smith and Chao-Yang Wang. Solid-state diffusion limitations on pulse
operation of a lithium ion cell for hybrid electric vehicles. Journal of Power
Sources, 161(1):628–639, 2006.

[9] Mark W Verbrugge and Brian J Koch. Electrochemical analysis of lithiated
graphite anodes. Journal of The Electrochemical Society, 150(3):A374–A384,
2003.

[10] Nova battery systems. http://www.novabatterysystems.com/lithium-ion.
php. Last accessed July 2015.

[11] Thomas Stuart, Fang Fang, Xiaopeng Wang, Cyrus Ashtiani, and Ahmad Pe-
saran. A modular battery management system for hevs. Technical report, SAE
Technical Paper, 2002.

[12] Yuang-Shung Lee and Ming-Wang Cheng. Intelligent control battery equalization
for series connected lithium-ion battery strings. Industrial Electronics, IEEE
Transactions on, 52(5):1297–1307, 2005.



109

[13] Mark W Verbrugge and Ping Liu. Electrochemical characterization of high-power
lithium ion batteries using triangular voltage and current excitation sources.
Journal of Power Sources, 174(1):2–8, 2007.

[14] John Newman and William Tiedemann. Porous-electrode theory with battery
applications. AIChE Journal, 21(1):25–41, 1975.

[15] Thomas F Fuller, Marc Doyle, and John Newman. Simulation and optimization
of the dual lithium ion insertion cell. Journal of the Electrochemical Society,
141(1):1–10, 1994.

[16] Karen E Thomas, John Newman, and Robert M Darling. Mathematical mod-
eling of lithium batteries. In Advances in lithium-ion batteries, pages 345–392.
Springer, 2002.

[17] Irene J Ong and John Newman. Double-layer capacitance in a dual lithium ion
insertion cell. Journal of The Electrochemical Society, 146(12):4360–4365, 1999.

[18] John Newman and Karen E Thomas-Alyea. Electrochemical systems. John Wiley
& Sons, 2012.

[19] Marc Doyle, Thomas F Fuller, and John Newman. Modeling of galvanostatic
charge and discharge of the lithium/polymer/insertion cell. Journal of the Elec-
trochemical Society, 140(6):1526–1533, 1993.

[20] Reinhardt Klein, Nalin A Chaturvedi, Jake Christensen, Jasim Ahmed, Rolf
Findeisen, and Aleksandar Kojic. Electrochemical model based observer design
for a lithium-ion battery. Control Systems Technology, IEEE Transactions on,
21(2):289–301, 2013.

[21] Amardeep Singh, Afshin Izadian, and Sohel Anwar. Fault diagnosis of li-ion
batteries using multiple-model adaptive estimation. In Industrial Electronics
Society, IECON 2013-39th Annual Conference, pages 3524–3529. IEEE, 2013.

[22] Jie Liu, Abhinav Saxena, Kai Goebel, Bhaskar Saha, and Wilson Wang. An
adaptive recurrent neural network for remaining useful life prediction of lithium-
ion batteries. Technical report, DTIC Document, 2010.

[23] Wen Chen, Wei-Tian Chen, Mehrdad Saif, Meng-Feng Li, and Hai Wu. Simul-
taneous fault isolation and estimation of lithium-ion batteries via synthesized
design of luenberger and learning observers. IEEE Transactions on Control Sys-
tems Technology, 22(1):290–298, 2014.

[24] Adnan Nuhic, Tarik Terzimehic, Thomas Soczka-Guth, Michael Buchholz, and
Klaus Dietmayer. Health diagnosis and remaining useful life prognostics of
lithium-ion batteries using data-driven methods. Journal of Power Sources,
239:680–688, 2013.

[25] Dong Wang, Qiang Miao, and Michael Pecht. Prognostics of lithium-ion batteries
based on relevance vectors and a conditional three-parameter capacity degrada-
tion model. Journal of Power Sources, 239:253–264, 2013.

[26] James D Kozlowski. Electrochemical cell prognostics using online impedance
measurements and model-based data fusion techniques. In Aerospace Conference,
2003. Proceedings, volume 7, pages 3257–3270. IEEE, 2003.



110

[27] Steven X Ding. Model-based fault diagnosis techniques: design schemes, algo-
rithms, and tools. Springer Science & Business Media, 2008.

[28] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm optimization.
Swarm intelligence, 1(1):33–57, 2007.

[29] Maurice Clerc and James Kennedy. The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. Evolutionary Computation,
IEEE Transactions on, 6(1):58–73, 2002.

[30] James Kennedy. Particle swarm optimization. In Encyclopedia of Machine Learn-
ing, pages 760–766. Springer, 2010.

[31] Rizwan Ahmed, Mohammed El Sayed, Ienkaran Arasaratnam, Jimi Tjong, and
Saeid Habibi. Reduced-order electrochemical model parameters identification
and soc estimation for healthy and aged li-ion batteries part i: Parameterization
model development for healthy batteries. Emerging and Selected Topics in Power
Electronics, IEEE Journal of, 2(3):659–677, 2014.

[32] Carmelo Speltino, DD Domenico, Giovanni Fiengo, and AG Stefanopoulou. Ex-
perimental identification and validation of an electrochemical model of a lithium-
ion battery. In Proceedings of the American Control Conference, 2009.

[33] Joel C Forman, Scott J Moura, Jeffrey L Stein, and Hosam K Fathy. Genetic
identification and fisher identifiability analysis of the doyle–fuller–newman model
from experimental cycling of a lifepo 4 cell. Journal of Power Sources, 210:263–
275, 2012.

[34] Joel Forman, Scott Moura, Jeffrey Stein, and Hosam Fathy. Genetic parameter
identification of the doyle-fuller-newman model from experimental cycling of a
lifepo 4 battery. In American Control Conference (ACC), 2011, pages 362–369.
IEEE, 2011.

[35] Amardeep Singh, Afshin Izadian, and Sohel Anwar. Model based condition mon-
itoring in lithium-ion batteries. Journal of Power Sources, 268:459–468, 2014.

[36] DOT NAVY. Technical manual for batteries. Navy Lithium Safety Program
Responsibilities And Procedures, 2004.

[37] Nalin A Chaturvedi, Reinhardt Klein, Jake Christensen, Jasim Ahmed, and Alek-
sandar Kojic. Algorithms for advanced battery-management systems. Control
Systems, IEEE, 30(3):49–68, 2010.

[38] Allen J Bard and Larry R Faulkner. Electrochemical methods: fundamentals and
applications, volume 2. Wiley New York, 1980.

[39] Paul Albertus, Jake Christensen, and John Newman. Experiments on and model-
ing of positive electrodes with multiple active materials for lithium-ion batteries.
Journal of the Electrochemical Society, 156(7):A606–A618, 2009.

[40] WB Gu and CY Wang. Thermal-electrochemical modeling of battery systems.
Journal of The Electrochemical Society, 147(8):2910–2922, 2000.

[41] Venkat R Subramanian, Vinten D Diwakar, and Deepak Tapriyal. Efficient
macro-micro scale coupled modeling of batteries. Journal of The Electrochemical
Society, 152(10):A2002–A2008, 2005.



111

[42] Venkat R Subramanian, Vijayasekaran Boovaragavan, Venkatasailanathan Ra-
madesigan, and Mounika Arabandi. Mathematical model reformulation for
lithium-ion battery simulations: Galvanostatic boundary conditions. Journal
of The Electrochemical Society, 156(4):A260–A271, 2009.

[43] Thanh-Son Dao, Chandrika P Vyasarayani, and John McPhee. Simplification
and order reduction of lithium-ion battery model based on porous-electrode the-
ory. Journal of Power Sources, 198:329–337, 2012.

[44] Timothy E Menke and Peter S Maybeck. Sensor/actuator failure detection in
the vista f-16 by multiple model adaptive estimation. Aerospace and Electronic
Systems, IEEE Transactions on, 31(4):1218–1229, 1995.

[45] Peter S Maybeck. Multiple model adaptive algorithms for detecting and com-
pensating sensor and actuator/surface failures in aircraft flight control systems.
International Journal of Robust and Nonlinear Control, 9(14):1051–1070, 1999.

[46] Peter S Maybeck and Richard D Stevens. Reconfigurable flight control via mul-
tiple model adaptive control methods. Aerospace and Electronic Systems, IEEE
Transactions on, 27(3):470–480, 1991.

[47] Timothy E Menke and Peter S Maybeck. Multiple model adaptive estimation
applied to the vista f-16 flight control system with actuator and sensor failures.
In Aerospace and Electronics Conference, 1992. NAECON 1992., Proceedings of
1992 National, pages 441–448. IEEE, 1992.

[48] Michael Athans, David Castanon, K-P Dunn, C Greene, Wing Lee, N Sandell Jr,
and Alan S Willsky. The stochastic control of the f-8c aircraft using a multiple
model adaptive control (mmac) method–part i: Equilibrium flight. Automatic
Control, IEEE Transactions on, 22(5):768–780, 1977.

[49] Afshin Izadian. Self-tuning fault diagnosis of mems. Mechatronics, 23(8):1094–
1099, 2013.

[50] Afshin Izadian, Pardis Khayyer, and Parviz Famouri. Fault diagnosis of time-
varying parameter systems with application in mems lcrs. Industrial Electronics,
IEEE Transactions on, 56(4):973–978, 2009.

[51] Afshin Izadian and Parviz Famouri. Fault diagnosis of mems lateral comb res-
onators using multiple-model adaptive estimators. Control Systems Technology,
IEEE Transactions on, 18(5):1233–1240, 2010.

[52] Peter D Hanlon and Peter S Maybeck. Multiple-model adaptive estimation using
a residual correlation kalman filter bank. Aerospace and Electronic Systems,
IEEE Transactions on, 36(2):393–406, 2000.

[53] P Eide and P Maybeck. Implementation and demonstration of a multiple model
adaptive estimation failure detection system for the f-16. In Decision and Control,
1995., Proceedings of the 34th Conference on, volume 2, pages 1873–1878. IEEE,
1995.

[54] Peter Eide and Maybeck. An mmae failure detection system for the f-16.
Aerospace and Electronic Systems, IEEE Transactions on, 32(3):1125–1136,
1996.



112

[55] Peter S Maybeck and Peter D Hanlon. Performance enhancement of a multiple
model adaptive estimator. Aerospace and Electronic Systems, IEEE Transactions
on, 31(4):1240–1254, 1995.

[56] Ronald E Kruse and Thomas A Huls. Development of the federal urban driving
schedule. Technical report, SAE Technical Paper, 1973.

[57] Protodrive,rapid protyping platfrom for electric vehicle powertrain. http://
mlab.seas.upenn.edu/protodrive/index.html. Last accessed June 2015.

[58] Namwook Kim, Aymeric Rousseau, and Eric Rask. Autonomie model validation
with test data for 2010 toyota prius. Technical report, SAE Technical Paper,
2012.

[59] Vinay KS Muddappa and Sohel Anwar. Electrochemical model based fault diag-
nosis of li-ion battery using fuzzy logic. In ASME 2014 International Mechani-
cal Engineering Congress and Exposition, pages V04BT04A048–V04BT04A048.
American Society of Mechanical Engineers, 2014.

[60] Particle swarm optimization. http://www.swarmintelligence.org/index.
php. Last accessed May 2015.

[61] NM Kwok, QP Ha, TH Nguyen, Jianchun Li, and Bijan Samali. A novel hys-
teretic model for magnetorheological fluid dampers and parameter identifica-
tion using particle swarm optimization. Sensors and Actuators A: Physical,
132(2):441–451, 2006.

[62] Jakob Vesterstrom and Rene Thomsen. A comparative study of differential evo-
lution, particle swarm optimization, and evolutionary algorithms on numerical
benchmark problems. In Evolutionary Computation, 2004. CEC2004. Congress
on, volume 2, pages 1980–1987. IEEE, 2004.

[63] Qie He, Ling Wang, and Bo Liu. Parameter estimation for chaotic systems by
particle swarm optimization. Chaos, Solitons & Fractals, 34(2):654–661, 2007.

[64] Hamidreza Modares, Alireza Alfi, and Mohammad-Mehdi Fateh. Parameter iden-
tification of chaotic dynamic systems through an improved particle swarm opti-
mization. Expert Systems with Applications, 37(5):3714–3720, 2010.

[65] Chao-Ming Huang, Chi-Jen Huang, and Ming-Li Wang. A particle swarm opti-
mization to identifying the armax model for short-term load forecasting. Power
Systems, IEEE Transactions on, 20(2):1126–1133, 2005.

[66] Russell C Eberhart and Yuhui Shi. Particle swarm optimization: developments,
applications and resources. In Evolutionary Computation, 2001. Proceedings of
the 2001 Congress on, volume 1, pages 81–86. IEEE, 2001.

[67] Konstantinos E Parsopoulos and Michael N. Vrahatis. Recent approaches to
global optimization problems through particle swarm optimization. Natural com-
puting, 1(2-3):235–306, 2002.

[68] Russ C Eberhart and James Kennedy. A new optimizer using particle swarm
theory. In Proceedings of the sixth international symposium on micro machine
and human science, volume 1, pages 39–43. New York, NY, 1995.



113

[69] Harpreetsingh Banvait, Xiao Lin, Sohel Anwar, and Yaobin Chen. Plug-in hybrid
electric vehicle energy management system using particle swarm optimization.
World Electric Vehicle Association Journal, 3, 2009.

[70] Gary Hunt and C Motloch. Freedom car battery test manual for power-assist
hybrid electric vehicles. INEEL, Idaho Falls, 2003.



APPENDICES



114

A. DETAILS OF DIFFERENT EXPERIMENTS ON BATTERY

For references of the experimental works, the details regarding the experimental

methodology using CADEX battery tester is provided here in graphical manner.

A.1 Experiments on Halthy Battery

To run a test on the battery, depending on the battery specifications, first step is

to define a function called C-code. The C-code for the Healthy battery operation is

provided in Figure A.1.

Figure A.1. Defined C-code for Healthy battery experiments
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After defining the C-code, the operating steps and their respective step details,

namely, the sequence of operation and the rate of respective steps (charge and dis-

charge) need to be declared. The defied custom program for Healthy battery is

provided for both discharge and charge. The custom program for Healthy battery

discharge is provided in Figure A.2.

Figure A.2. Custom program for Healthy battery discharge
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The custom program for Healthy battery charging step is provided in Figure A.3.

Figure A.3. Custom program for Healthy battery charge
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The results of the experiments after combining the C-code and the custom pro-

grams Healthy battery showing voltage, current and temperature etc. is provided in

Figure A.4.

Figure A.4. Result window for Healthy battery experiments
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A.2 Experiments on Navy-OD Battery

Similar plots for the experiments on Navy OD battery is provided in this section.

Figure A.5. Defined C-code for Navy OD experiments
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Figure A.6. Custom program for Navy OD discharge

Figure A.7. Custom program for Navy OD battery charge
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Figure A.8. Result window for Navy OD battery experiments
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A.3 Experiments on 24-hr OD Battery

Moreover, similar plots for the experiments on 24-hr OD battery is provided in

this section.

Figure A.9. Defined C-code for 24-hr OD battery experiments
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Figure A.10. Custom program for 24-hr OD battery discharge

Figure A.11. Custom program for 24-hr OD battery charge
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Figure A.12. Result window for 24-hr OD battery experiments
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A.4 Experiments on OC Battery

Finally, similar plots for the experiments on OC battery is provided in this section.

Figure A.13. Defined C-code for OC battery experiments
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Figure A.14. Custom program for OC battery discharge

Figure A.15. Custom program for OC battery charge
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Figure A.16. Result window for OC battery experiments
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B. OVERALL IDENTIFIED PARAMETERS USING PSO

Although the parameter identification works using particle swarm optimization algo-

rithm presented at Chapter 6 was based on the last parts (discharge and charge) of

the overall experiments of 20 cycles, four target parameters were identified for every

single sequence of operation. In this part of the thesis works, these identified param-

eters are provided in tabular form, which can give a better comprehensive idea about

the proposed technique of parameter identification and these results might be helpful

for future works in this area of Li-Ion battery research.
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B.1 Overall Identified Parameters for Experiments on Healthy Battery

Table B.1. Identified Parameters for Healthy battery overall dis-
charge operations only

Parameter→ DsP kP DsN kN

Discharge-1 5.068× 10−16 1.5099× 10−15 2.2158× 10−14 3.1874× 10−15

Discharge-2 3.09× 10−16 1.1633× 10−14 3.7537× 10−14 4.7034× 10−15

Discharge-3 4.7938× 10−16 1.3235× 10−14 1.4592× 10−14 3.3326× 10−16

Discharge-4 8.7754× 10−16 1.2878× 10−14 3.5238× 10−15 8.2089× 10−16

Discharge-5 4.0972× 10−16 1.2645× 10−14 9.1447× 10−15 2.6208× 10−15

Discharge-6 3.3951× 10−16 1.337× 10−14 2.0548× 10−14 2.7683× 10−15

Discharge-7 6.3677× 10−16 1.3599× 10−14 1.0901× 10−14 8.9762× 10−16

Discharge-8 1.5675× 10−15 1.2138× 10−14 1.1072× 10−15 9.1139× 10−16

Discharge-9 4.7139× 10−16 1.2561× 10−14 1.737× 10−14 2.0325× 10−15

Discharge-10 9.9669× 10−16 1.3484× 10−14 4.5005× 10−15 2.3358× 10−15

Discharge-11 5.475× 10−16 1.3905× 10−14 6.8182× 10−15 1.7206× 10−15

Discharge-12 2.0772× 10−16 1.5069× 10−14 1.6559× 10−15 1.7434× 10−15

Discharge-13 4.3511× 10−17 1.3006× 10−14 7.2771× 10−16 4.2864× 10−16

Discharge-14 4.0707× 10−16 1.3115× 10−14 7.5833× 10−15 2.4966× 10−15

Discharge-15 3.3414× 10−16 1.3636× 10−14 1.483× 10−15 5.0135× 10−16

Discharge-16 3.0545× 10−16 1.3873× 10−14 1.0215× 10−14 6.7886× 10−15

Discharge-17 4.567× 10−16 1.4448× 10−14 1.4743× 10−14 1.2515× 10−15

Discharge-18 1.475× 10−16 1.3209× 10−14 1.0086× 10−14 3.9276× 10−15

Discharge-19 4.4617× 10−16 1.2902× 10−14 1.0351× 10−14 1.1045× 10−15

Discharge-20 4.03× 10−16 6.0556× 10−14 4.32× 10−14 3.5484× 10−15
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Table B.2. Identified Parameters for Healthy battery overall charge operations only

Parameter→ DsP kP DsN kN

Charge-1 1.7458× 10−15 6.4392× 10−14 5.2755× 10−14 9.7765× 10−15

Charge-2 1.6094× 10−15 6.1088× 10−14 2.9822× 10−14 1.0871× 10−14

Charge-3 1.9904× 10−15 9.7494× 10−14 1.1304× 10−14 1.0583× 10−14

Charge-4 2.5663× 10−15 5.9313× 10−14 6.2859× 10−14 2.211× 10−15

Charge-5 1.8753× 10−15 8.2967× 10−14 2.3778× 10−14 2.4636× 10−15

Charge-6 5.589× 10−16 5.7573× 10−14 3.2486× 10−14 6.362× 10−15

Charge-7 1.38× 10−15 8.3722× 10−14 3.4494× 10−14 4.7176× 10−15

Charge-8 9.9876× 10−16 6.5404× 10−14 8.9354× 10−15 9.4332× 10−15

Charge-9 7.3487× 10−16 6.1882× 10−14 1.9374× 10−14 6.3741× 10−15

Charge-10 1.3446× 10−15 5.695× 10−14 3.2146× 10−14 1.925× 10−16

Charge-11 1.107× 10−15 5.7407× 10−14 8.8342× 10−15 1.1744× 10−14

Charge-12 1.0393× 10−16 7.7282× 10−14 1.897× 10−15 1.9061× 10−15

Charge-13 1.5249× 10−15 7.1806× 10−14 2.8375× 10−14 3.8407× 10−15

Charge-14 7.2995× 10−16 6.5732× 10−14 4.6362× 10−14 9.387× 10−15

Charge-15 7.4974× 10−16 4.9376× 10−14 5.1328× 10−14 1.1701× 10−14

Charge-16 8.5518× 10−16 7.3861× 10−14 1.0017× 10−14 4.1246× 10−15

Charge-17 2.3808× 10−15 4.3418× 10−14 3.5982× 10−14 9.6652× 10−15

Charge-18 8.6069× 10−16 6.0218× 10−14 2.0327× 10−14 6.9401× 10−15

Charge-19 1.8523× 10−15 4.9156× 10−14 3.5722× 10−14 7.4707× 10−15

Charge-20 1.75× 10−15 7.73589× 10−14 4.61743× 10−15 1.05318× 10−14
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B.2 Overall Identified Parameters for Experiments on Navy-OD Battery

Table B.3. Identified Parameters for Navy-OD battery overall dis-
charge operations only

Parameter→ DsP kP DsN kN

Discharge-1 1.3839× 10−15 1.1678× 10−14 9.8609× 10−15 3.3702× 10−16

Discharge-2 5.3913× 10−16 1.6845× 10−14 9.2637× 10−15 3.8546× 10−15

Discharge-3 5.4951× 10−16 1.3741× 10−14 2.0048× 10−15 3.1009× 10−15

Discharge-4 4.6127× 10−16 1.017× 10−14 5.4924× 10−15 9.0324× 10−16

Discharge-5 2.1777× 10−16 3.93× 10−14 2.5285× 10−14 3.8347× 10−16

Discharge-6 1.418× 10−16 3.8427× 10−14 1.9286× 10−14 5.4634× 10−15

Discharge-7 3.2792× 10−16 3.1065× 10−14 2.0664× 10−14 1.973× 10−15

Discharge-8 4.1475× 10−16 3.0801× 10−14 1.3698× 10−14 7.2409× 10−16

Discharge-9 5.7524× 10−16 4.5321× 10−14 4.6261× 10−15 2.5178× 10−16

Discharge-10 2.661× 10−16 3.5827× 10−14 1.3584× 10−14 3.3358× 10−16

Discharge-11 2.9111× 10−16 4.5107× 10−14 8.9852× 10−15 2.2553× 10−15

Discharge-12 6.5434× 10−16 5.8587× 10−14 1.3638× 10−14 6.8052× 10−16

Discharge-13 5.1403× 10−16 3.3332× 10−14 1.6825× 10−14 1.6092× 10−15

Discharge-14 3.7749× 10−16 4.1476× 10−14 1.4179× 10−14 3.8085× 10−15

Discharge-15 5.3117× 10−16 4.0574× 10−14 2.4536× 10−15 2.1379× 10−15

Discharge-16 5.5112× 10−16 4.6301× 10−14 1.2483× 10−14 2.883× 10−15

Discharge-17 9.3196× 10−16 4.862× 10−14 2.1711× 10−16 5.9389× 10−17

Discharge-18 5.8813× 10−16 4.2352× 10−14 2.0615× 10−15 2.7761× 10−15

Discharge-19 5.0652× 10−16 4.1221× 10−14 1.9433× 10−14 7.6539× 10−16

Discharge-20 6.55× 10−16 7.3194× 10−13 3.35× 10−15 1.129× 10−15
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Table B.4. Identified Parameters for Navy-OD battery overall charge
operations only

Parameter→ DsP kP DsN kN

Charge-1 8.3185× 10−16 6.2414× 10−14 9.6919× 10−15 2.9736× 10−15

Charge-2 8.8983× 10−16 6.9636× 10−14 2.1385× 10−14 6.0174× 10−15

Charge-3 1.9245× 10−16 7.161× 10−14 1.5873× 10−14 5.4272× 10−15

Charge-4 2.1629× 10−15 9.4049× 10−14 5.0066× 10−14 1.2666× 10−15

Charge-5 5.3024× 10−16 6.0269× 10−14 2.137× 10−14 2.7408× 10−15

Charge-6 1.4999× 10−15 9.9209× 10−14 1.2409× 10−14 8.2224× 10−15

Charge-7 1.1434× 10−15 6.1796× 10−14 7.0899× 10−15 5.8282× 10−15

Charge-8 1.8538× 10−15 8.3978× 10−14 3.3779× 10−14 6.4244× 10−15

Charge-9 9.6847× 10−16 5.6472× 10−14 9.01× 10−16 6.2152× 10−15

Charge-10 4.7708× 10−16 3.5183× 10−14 2.126× 10−14 3.2781× 10−15

Charge-11 2.8955× 10−15 5.2067× 10−14 4.1271× 10−15 7.478× 10−15

Charge-12 2.1685× 10−15 2.0712× 10−14 2.6981× 10−14 8.0202× 10−15

Charge-13 2.3855× 10−15 4.727× 10−14 6.4567× 10−15 5.9403× 10−15

Charge-14 3.7238× 10−16 6.465× 10−14 2.4397× 10−14 3.0284× 10−15

Charge-15 2.0551× 10−16 1.5279× 10−14 1.303× 10−14 1.5295× 10−15

Charge-16 1.7342× 10−15 3.7894× 10−14 2.487× 10−14 8.1925× 10−15

Charge-17 1.0986× 10−16 8.8587× 10−14 2.8155× 10−14 3.8× 10−15

Charge-18 2.0983× 10−15 5.8279× 10−14 1.0371× 10−14 1.2534× 10−14

Charge-19 8.0145× 10−16 8.7052× 10−14 2.1425× 10−15 2.2624× 10−15

Charge-20 2.08× 10−15 5.4301× 10−14 9.35× 10−16 8.4599× 10−15
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B.3 Overall Identified Parameters for Experiments on 24-hr OD Battery

Table B.5. Identified Parameters for 24-hr OD battery overall dis-
charge operations only

Parameter→ DsP kP DsN kN

Discharge-1 1.3641× 10−15 7.1516× 10−14 1.1438× 10−14 1.2581× 10−15

Discharge-2 9.4944× 10−16 9.1704× 10−14 1.2729× 10−14 1.1961× 10−15

Discharge-3 8.5828× 10−16 6.8718× 10−14 9.5388× 10−15 1.7374× 10−15

Discharge-4 1.0275× 10−15 7.2731× 10−14 7.0636× 10−15 1.5572× 10−15

Discharge-5 6.8239× 10−16 8.4943× 10−14 7.7931× 10−15 1.2682× 10−15

Discharge-6 1.4701× 10−15 8.9377× 10−14 1.2856× 10−14 1.6084× 10−15

Discharge-7 8.4052× 10−16 9.104× 10−14 1.3262× 10−14 1.1452× 10−15

Discharge-8 9.3468× 10−16 9.0133× 10−14 1.1587× 10−14 1.4729× 10−15

Discharge-9 6.6563× 10−16 1.0624× 10−13 1.5532× 10−14 9.9683× 10−16

Discharge-10 1.1811× 10−15 8.071× 10−14 1.2348× 10−14 7.5182× 10−16

Discharge-11 8.8987× 10−16 1.1451× 10−13 2.8316× 10−14 2.1026× 10−15

Discharge-12 9.7468× 10−16 1.9977× 10−13 8.7809× 10−15 1.6015× 10−15

Discharge-13 5.7137× 10−16 1.8837× 10−13 2.1768× 10−14 2.6394× 10−15

Discharge-14 8.588× 10−16 1.7682× 10−13 9.4359× 10−15 8.128× 10−16

Discharge-15 1.3594× 10−15 1.6855× 10−13 2.259× 10−14 1.2328× 10−15

Discharge-16 1.7676× 10−15 8.801× 10−14 1.597× 10−14 2.1461× 10−15

Discharge-17 3.0323× 10−15 1.7416× 10−13 1.2885× 10−14 1.7765× 10−15

Discharge-18 8.9286× 10−16 1.7796× 10−13 1.0922× 10−14 1.4666× 10−15

Discharge-19 6.5025× 10−16 1.5069× 10−14 6.9731× 10−15 1.7833× 10−15

Discharge-20 4.10× 10−16 2.1611× 10−13 3.6899× 10−15 1.0775× 10−15
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Table B.6. Identified Parameters for 24-hr OD battery overall charge
operations only

Parameter→ DsP kP DsN kN

Charge-1 9.6183× 10−16 6.4015× 10−14 1.465× 10−14 7.0137× 10−15

Charge-2 1.6071× 10−15 8.8533× 10−14 1.684× 10−14 2.183× 10−15

Charge-3 9.657× 10−16 7.7912× 10−14 1.1126× 10−14 6.7975× 10−15

Charge-4 4.6922× 10−16 4.3413× 10−14 2.8483× 10−14 5.7736× 10−15

Charge-5 1.3287× 10−15 7.3049× 10−14 1.5408× 10−14 2.8278× 10−15

Charge-6 1.8981× 10−15 8.9299× 10−14 8.1269× 10−15 7.3966× 10−15

Charge-7 5.2839× 10−16 2.9757× 10−14 2.6948× 10−14 5.5065× 10−16

Charge-8 2.0157× 10−15 7.3598× 10−14 1.3369× 10−14 9.3578× 10−15

Charge-9 9.3336× 10−16 8.5108× 10−14 2.225× 10−14 2.8022× 10−15

Charge-10 9.7341× 10−16 6.6843× 10−14 4.5378× 10−15 1.0583× 10−14

Charge-11 2.0673× 10−15 6.2894× 10−14 1.7334× 10−14 7.7703× 10−16

Charge-12 9.8538× 10−16 4.468× 10−14 2.0863× 10−14 6.5176× 10−15

Charge-13 1.8238× 10−15 3.9131× 10−14 3.5075× 10−14 1.2252× 10−15

Charge-14 1.4689× 10−15 5.5749× 10−14 2.7727× 10−14 7.4505× 10−15

Charge-15 5.3553× 10−16 5.3997× 10−14 1.548× 10−14 7.6122× 10−15

Charge-16 5.7501× 10−16 6.5276× 10−14 2.571× 10−14 3.402× 10−15

Charge-17 2.3985× 10−15 5.0238× 10−14 2.6225× 10−14 9.1083× 10−15

Charge-18 6.9537× 10−16 7.3659× 10−14 1.6162× 10−14 2.3761× 10−15

Charge-19 7.9637× 10−16 9.0571× 10−14 3.1154× 10−14 1.019× 10−14

Charge-20 1.8848× 10−15 5.0345× 10−14 9.5869× 10−15 3.3563× 10−15
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B.4 Overall Identified Parameters for Experiments on an OC Battery

Table B.7. Identified Parameters for OC battery overall discharge operations only

Parameter→ DsP kP DsN kN

Discharge-1 2.1479× 10−16 9.3194× 10−14 7.1353× 10−15 2.422× 10−15

Discharge-2 5.0458× 10−16 1.3793× 10−13 1.9084× 10−15 2.6448× 10−16

Discharge-3 7.9799× 10−16 1.6309× 10−14 6.0309× 10−16 7.8994× 10−15

Discharge-4 6.8691× 10−16 1.4398× 10−14 6.9432× 10−16 1.451× 10−15

Discharge-5 1.22624× 10−16 1.5189× 10−14 8.4484× 10−15 3.4025× 10−15

Discharge-6 8.9039× 10−16 1.2636× 10−13 1.1021× 10−15 1.3438× 10−16

Discharge-7 7.3174× 10−16 1.7632× 10−13 9.1888× 10−15 9.9159× 10−16

Discharge-8 8.1948× 10−16 2.3973× 10−14 2.282× 10−14 2.9036× 10−16

Discharge-9 4.5223× 10−16 2.8255× 10−14 1.2616× 10−14 3.7212× 10−15

Discharge-10 3.3434× 10−16 3.1055× 10−13 1.1358× 10−14 3.9127× 10−16

Discharge-11 3.5774× 10−16 3.3769× 10−14 2.4377× 10−16 6.0374× 10−15

Discharge-12 8.5553× 10−17 4.0223× 10−14 2.4119× 10−16 9.9784× 10−16

Discharge-13 1.6308× 10−16 3.8003× 10−13 1.4623× 10−14 2.4149× 10−15

Discharge-14 4.382× 10−16 4.1243× 10−14 3.1239× 10−15 4.0671× 10−15

Discharge-15 3.291× 10−16 3.8081× 10−14 3.9996× 10−15 4.6473× 10−15

Discharge-16 5.5084× 10−16 3.8377× 10−14 1.7864× 10−14 2.6408× 10−15

Discharge-17 3.0736× 10−16 4.2971× 10−14 3.7055× 10−16 1.5165× 10−15

Discharge-18 7.2642× 10−17 1.3458× 10−13 1.6051× 10−14 2.2223× 10−15

Discharge-19 8.169× 10−16 4.2695× 10−14 1.4232× 10−14 2.5666× 10−15

Discharge-20 1.29× 10−16 3.3685× 10−13 9.7622× 10−15 1.9175× 10−15
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Table B.8. Identified Parameters for OC battery overall charge operations only

Parameter→ DsP kP DsN kN

Charge-1 6.2167× 10−16 9.1658× 10−14 1.0579× 10−14 3.2479× 10−15

Charge-2 2.4764× 10−15 7.0083× 10−14 3.0076× 10−14 8.7865× 10−15

Charge-3 1.3905× 10−15 4.6936× 10−14 2.416× 10−15 3.1402× 10−15

Charge-4 1.7493× 10−15 5.7965× 10−14 8.714× 10−15 3.404× 10−15

Charge-5 3.8262× 10−16 5.1545× 10−14 5.833× 10−15 1.8065× 10−15

Charge-6 1.5199× 10−15 9.2365× 10−14 1.3317× 10−14 9.1295× 10−15

Charge-7 1.2957× 10−15 7.1602× 10−14 2.1071× 10−14 7.6773× 10−16

Charge-8 7.0318× 10−16 6.5964× 10−14 3.196× 10−14 3.5026× 10−15

Charge-9 3.2958× 10−15 3.6137× 10−14 3.1027× 10−14 8.0549× 10−16

Charge-10 7.3042× 10−16 9.9035× 10−14 4.3673× 10−15 7.0384× 10−15

Charge-11 1.6011× 10−15 7.421× 10−14 3.1651× 10−14 8.7629× 10−15

Charge-12 1.9203× 10−15 1.0633× 10−13 1.7819× 10−14 1.0701× 10−14

Charge-13 1.7181× 10−15 6.1435× 10−14 3.6137× 10−14 8.1202× 10−15

Charge-14 7.1731× 10−16 5.892× 10−14 1.8727× 10−14 5.2105× 10−15

Charge-15 6.4365× 10−16 7.4556× 10−14 2.9287× 10−14 7.7945× 10−15

Charge-16 1.247× 10−15 5.6433× 10−14 1.1767× 10−15 5.064× 10−15

Charge-17 1.1162× 10−15 7.3772× 10−14 2.7835× 10−14 1.2958× 10−15

Charge-18 1.3636× 10−15 4.939× 10−14 4.8185× 10−15 2.8314× 10−15

Charge-19 2.3307× 10−16 7.835× 10−14 1.0177× 10−15 6.5076× 10−15

Charge-20 2.0986× 10−15 3.3064× 10−14 1.9827× 10−14 2.4734× 10−15


