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ABSTRACT 

Vaezi, Masoud. M.S.M.E., Purdue University, August 2014. Modeling and Control of 
Hydraulic Wind Power Transfer Systems. Major Professors: Afshin Izadian and Sohel 
Anwar. 
 

Hydraulic wind power transfer systems deliver the captured energy by the blades 

to the generators differently. In the conventional systems this task is carried out by a 

gearbox or an intermediate medium. New generation of wind power systems transfer the 

captured energy by means of high-pressure hydraulic fluids. A hydraulic pump is 

connected to the blades shaft at a high distance from the ground, in nacelle, to pressurize 

a hydraulic flow down to ground level equipment through hoses. Multiple wind turbines 

can also pressurize a flow sending to a single hose toward the generator. The pressurized 

flow carries a large amount of energy which will be transferred to the mechanical energy 

by a hydraulic motor. Finally, a generator is connected to the hydraulic motor to generate 

electrical power. This hydraulic system runs under two main disturbances, wind speed 

fluctuations and load variations. Intermittent nature of the wind applies a fluctuating 

torque on the hydraulic pump shaft. Also, variations of the consumed electrical power by 

the grid cause a considerable load disturbance on the system.  

This thesis studies the hydraulic wind power transfer systems. To get a better 

understanding, a mathematical model of the system is developed and studied utilizing the 

governing equations for every single hydraulic component in the system. The 
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mathematical model embodies nonlinearities which are inherited from the hydraulic 

components such as check valves, proportional valves, pressure relief valves, etc. 

An experimental prototype of the hydraulic wind power transfer systems is 

designed and implemented to study the dynamic behavior and operation of the system. 

The provided nonlinear mathematical model is then validated by experimental result from 

the prototype.  

Moreover, this thesis develops a control system for the hydraulic wind power 

transfer systems. To maintain a fixed frequency electrical voltage by the system, the 

generator should remain at a constant rotational speed. The fluctuating wind speed from 

the upstream, and the load variations from the downstream apply considerable 

disturbances on the system. A controller is designed and implemented to regulate the 

flow in the proportional valve and as a consequence the generator maintains its constant 

speed compensating for load and wind turbine disturbances.  The control system is 

applied to the mathematical model as well as the experimental prototype by utilizing 

MATLAB/Simulink and dSPACE 1104 fast prototyping hardware and the results are 

compared. 
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1. INTRODUCTION 

 Problem Statement 1.1

Renewable energies have recently received a great attention as an alternative to 

fossil fuels. Environmental issues, such as the excess amount of hydrocarbon in the air 

caused by fossil fuels, have compelled the researchers and engineers to look for new 

types of renewable energies as well as new ways to increase the efficiency of current 

renewable energy systems.  

Wind power, as one of the most known and most considerable renewable energies, 

is the conversion of wind energy into a useful form of energy, such as using wind 

turbines to produce electrical power, windmills for mechanical power, wind pumps for 

water pumping or drainage, or sails to propel ships. 

Large wind farms consist of hundreds of individual wind turbines which are 

connected to an electric power transmission network. For new constructions, onshore 

wind is an inexpensive source of electricity, competitive with or in many places cheaper 

than fossil fuel plants [1]. Offshore wind is steadier and stronger than on land. Offshore 

farms have less visual impact, but their construction and maintenance costs are 

considerably higher. Small onshore wind farms can feed some energy into the grid or 

provide electricity to isolated off-grid locations [2]. 



2 

 

Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely 

distributed, clean, produces no greenhouse gas emissions during operation and uses little 

land [3]. The effects on the environment are generally less problematic than those from 

other power sources. 

Wind energy generation systems have been improved over the last decade, but the 

high capital investments and low capacity factors have not been resolved to decrease the 

cost of the energy [4]. Strong foundations are required to hold the forces applied by the 

weight of the turbine, the gearbox, and the generator and the forces applied by the wind. 

The typical expected lifetime of a utility wind turbine is 20 years. However, gearboxes 

require an overhaul in 5 to 7 years of operation, and a gearbox replacement could cost 

approximately 10 percent of the entire turbine [5], [6]. Conventional wind farms consist 

of hundreds of wind towers, each of which is equipped with a gearbox and a generator 

located in a nacelle on top of the tower. Recent developments in hydraulic wind power 

transfer technology offer several advantages over conventional wind energy transfer 

technologies [7]-[10]. 

Hydraulic Wind Power Transfer (HWPT) systems introduce several advantages 

over the conventional systems. First, HWPT systems replace the bulky gearbox, power 

electronics and the generator in the nacelle with a single pump. This replacement will 

reduce a great amount of implementation and maintenance cost. Moreover, the design of 

the hydraulic circuit in HWPT system allows for generation of fixed frequency electricity 

power without utilizing power electronics. This benefit will considerably shrink the 

capital costs and operation costs. Figure  1.1 illustrates the schematic of HWPT systems. 
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Figure  1.1 Schematic of hydraulic wind power system  

Finally, the flexibility of hydraulic circuits will offer a new configuration for wind 

farms. In this new configuration, a single generator can be utilized for multiple wind 

turbines rather than implementing one generator for one wind turbine in conventional 

wind farms. In Addition, the generator used in HWPT systems can be located on the 

ground which is of high importance to decrease the capital and operation cost. Figure  1.2 

shows the schematic of multi-turbine HWPT systems. 
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Figure  1.2 Schematic of multi-turbine HWPT systems 

 Previous Work 1.2

Transferring the energy via a hydraulic circuit has been considerably studied 

throughout recent decades. Engineering fields such as hybrid vehicles, heavy duty 

machines, automation, manufacturing, power systems and etc. are utilizing hydraulic 

circuits as mean to transfer the energy [11]. 

Hydraulic Transmission System (HTS) is widely spreading because of its 

functionality and benefits.  Quick response time, decouple dynamic, easy implementation, 

durability are some of the advantages for these type of systems [12]. Different 

applications of hydraulic transmission systems include: earth moving equipment and 

machinery [13], oil industry [14], hydrostatic transmission systems [15], servo 

applications [16], and other actuation purposes [17]. 
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 Objectives 1.3

Hydraulic wind power transfer systems as a new generation of wind turbines 

require a great amount effort and study to be completely understood and implemented. 

This thesis studies modeling and control of hydraulic wind power systems in order to 

contribute to the ongoing research on these systems for their development and 

improvement. 

The main objective of this project is to understand the dynamic behavior of 

hydraulic wind power transfer systems in order to design a control system for a better 

operation. The first step is to study the hydraulic components of these systems as well as 

their design and operation. This goal is carried out by studying dynamic principles of the 

hydraulic components such as hydraulic pumps, hydraulic motors, check valves, 

proportional valves, pressure relief valves, hoses and etc. Using these governing 

equations, the mathematical model of the system for different configurations is derived. 

Nonlinearities in the components result in a nonlinear mathematical model which needs 

to be well-understood and studied. 

To validate the derived model by the governing equations, an experimental setup 

is designed and implemented as a test-bed for further research.  This experimental system 

includes various hydraulic components and sensors. A fast prototyping hardware 

dSPACE 1104 is utilized to acquire the speed, flow rate, and pressure data from hydraulic 

system. This device also enables application of desired commands to the actuators. The 

implemented setup helps a better understanding of hydraulic wind power transfer systems 

in order to improve the design and operation. 



6 

 

Another objective of this thesis is to design a flawless control system to improve 

the operation. The intermittent nature of wind speed as well as grid load disturbances 

greatly affect the desired outputs. Therefore,  this is essential to  study the system 

dynamic in order to compensate for disturbances through an accurately designed 

controller. Moreover, nonlinearities such as hysteresis in the proportional valve make the 

design of the control loop more challenging. Thus, the designed controller is required to 

address this behavior.  

 About This Thesis 1.4

This thesis is organized as follows: Chapter 2 introduces the concept of hydraulic 

wind power transfer systems. Operation of these systems is explained and in the last 

section, the experimental prototype of the hydraulic system is described. System 

components as well as data acquisition approach are also introduce in this chapter. 

Chapter 3 initially studies the governing equations of the hydraulic components. 

Hydraulic pumps and motors, check valve, proportional valve, and etc. are some of the 

components which are mathematically studied. Using the dynamic principles, next 

section introduces mathematical nonlinear models for both load-controlled system and 

valve-controlled system. In the load-controlled system, the flow is split between the 

primary and auxiliary motor based on the load torque on the hydraulic motors as inputs to 

the system. Utilizing a proportional valve in the way of flow to the generator, the system 

can be controlled by a command to the valve. Valve-controlled system splits the flow in 

respect to position of the valve spool. Derived nonlinear mathematical models are then 

verified by the experimental results from the prototype.  
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Chapter 4 makes a successful attempt to identify the valve-controlled system by 

running it over in different operating points. Recording and studying a large amount of 

experimental inputs and their correspondent outputs, the prototype as black box is 

identified and modeled by a bank of linear models. The existing hysteresis in the 

proportional valve is compensated by a new approach. Finally, the bank of model is 

validated by the experimental results from the prototype running in various conditions.  

Chapter 5 studies the derived mathematical model for better controller design. 

utilizing the existing theories of linear systems, the nonlinear system is linearized by a 

novel algorithm. One of the challenges to linearize nonlinear systems with a wide range 

operating points is to find the best number of operating points as well as their 

effectiveness in modeling. This section proposes a new approach to come up with the 

optimum linearization of these systems. In the last section, the linearized models are 

studied by standard stability theories developed for linear systems.  

Finally, Chapter 6 utilizes the linear bank of model to design an observer for the 

system in order to estimate some of the distorted state variables.  In addition, a well-

structured control system, multiple-model adaptive control, is designed and simulated for 

the bank of model to run the system in desired conditions. Moreover, a control system is 

designed and implemented for the experimental prototype to maintain the constant speed 

for primary motor.  
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2. HYDRAULIC WIND POWER TRANSFER SYSTEMS 

 Introduction to the Hydraulic System 2.1

Hydraulic wind power transfer technology provides a platform for lightweight 

wind power generation and transfer systems [8]. Figure  2.1 illustrates the hydraulic wind 

power transfer technology where a pump coupled with the wind turbine is used to 

generate high-pressure hydraulic fluid to transfer the power. The pressurized fluid, 

generated by the hydraulic pumps, is directed to run the generators on the ground level 

[18]. 

 

Figure  2.1 Schematic of the high-pressure hydraulic power transfer system. The 
hydraulic pump is a distance from the central generation unit 
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By distributing the flow between the hydraulic motor-generators, the energy 

transfer system performance can be controlled [19]. Figure  2.1 illustrates the hydraulic 

circuitry of a single-turbine wind power transfer system. Nonlinearities in such systems 

result from nonlinear components such as check valves, directional valves, and 

proportional valves. These nonlinearities are functions of operating conditions and cause 

behavioral changes and variations in the system as the wind speed varies. The 

intermittent nature of the wind affects the prime mover characteristics by causing 

fluctuations in fluid circulation, system pressure, and the generated power [20]. To 

control the characteristics of the generated power (e.g. the generated power and 

frequency) at high wind speed, different control techniques can be applied [21], [22]. At 

high wind speeds, the amount of generated power exceeds the system losses and is 

enough to maintain the fixed speed of the main generator. The auxiliary generator is used 

to absorb the excess power. Thus, the rated speed of the generators and the high pressure 

of the system keep the damping coefficients and viscous losses of the hydraulic wind 

energy transfer system constant. As the wind speed drops, the auxiliary motor is used to 

control the speed and the generated power by maintaining the fluid rate and the pressure 

at the main generator. As the storage connected to the auxiliary generator is exhausted, 

the system can no longer maintain the power to the main generator. Thus, the main 

generator is shut down, and the auxiliary generator is used to capture the energy of the 

low-speed wind. If the wind turbine’s cut-in speed is decreased, the system operation at 

low rpms suggests a boost in the capacity factor of the power plant. However, in low 

wind speed, the pump shaft speed drops such that the viscosity losses and damping 

coefficients become dependent on the rotational speeds. 
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 Operation of the Hydraulic System 2.2

The Hydraulic Wind Power Transfer System (HWPTS) is based on converting 

wind power to fluid power and then converting to electricity at the generator. HWPTS 

consists of a hydraulic pump, a proportional valve and hydraulic motors connected to the 

generator. Wind turbine harvest wind energy is the form of aerodynamical torque. This 

torque derives the pump and the pump provides flow to the fluid carriers, pipes, tubes or 

hoses [23]. The flow enters the proportional valve and is split between to branches. One 

branch is directed to the main hydraulic motor and the other one connects to the auxiliary 

motor. Safety component like pressure relief valve and check valves protect the hydraulic 

circuit against over pressure and undesired flow direction. Both motors and the pump 

have fixed displacement pump which means that certain amount of fluid is passed across 

them per revolution. The feature of fixed displacement makes the system economical. 

Since the wind turbine generates a large amount of torque at a relatively low angular 

velocity, a large displacement hydraulic pump is required to flow a large volume of the 

high-pressure hydraulics to transfer the power to the generators. The pump may also be 

equipped with a fixed internal speed-up mechanism. Flexible high-pressure pipes/hoses 

connect the pump to the piping toward the central generation unit. 

  The proportional valve is a flow control mechanism in hydraulic circuits. The 

valve splits the inlet flow between two outlets at a ratio determined by the command from 

the valve controller.  A schematic diagram of a wind energy hydraulic transmission 

system is illustrated in Figure  2.1.  

As the figure demonstrates, a fixed displacement pump is mechanically coupled 

with the wind turbine. The hydraulic motors are coupled with electric generators to 
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produce electric power in a central power generation unit.  Electromagnetic torque of the 

generator imposes mechanical torque on hydraulic motor shaft which causes the pressure 

in the pipes or hoses to increase. The pump supplies flow under the pressure.  The pump 

and the motors are positive displacement which means they can supply hydraulic fluid 

under any working pressure without remarkable flow reduction. 

In this configuration, pressure relief valves are considered to protect the system 

components from the destructive impact of localized high-pressure fluids. In addition, 

check valves force the hydraulic flow to be unidirectional. Finally, the proportional valve 

distributes a controlled amount of flow to each hydraulic motor to be converted to the 

electrical power by the generators. The next section introduces the experimental 

prototype of the hydraulic system. 

 Experimental Prototype of The Hydraulic System 2.3

In order to study and analyze the hydraulic wind power transfer systems, an 

experimental prototype is designed and implemented. This experimental setup can 

operate under wide range of operating conditions to illustrate the performance of the 

system. Moreover, the dynamic response of the derived nonlinear mathematical model is 

validated utilizing the results from this experimental setup. Figure  2.2 shows the 

schematic diagram of the hydraulic wind power transfer system from which the setup is 

designed and created.  Figure  2.3 depicts the overlay of the experimental hydraulic circuit.  



12 

 

 

Figure  2.2 Hydraulic circuit schematic of the experimental setup 

 

Figure  2.3 The experimental setup of the hydraulic wind power transfer system 

In this experimental setup, a DC motor and a 3-phase AC motor are simulating 

the wind turbine blades. The generated torque by the wind on the wind turbine shaft is 

simulated by two drivers and a belt and pulley mechanism. This belt and pulley 
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mechanism is used to reduce the speed of the drivers in order to increase for a higher 

torque on the pump shaft. The hydraulic pump pressurizes a fluid to the circuit through 

hoses. The pressurized flow first passes through a 2-way manual valve which switches 

between open hydraulic circuit and closed hydraulic circuit. In open hydraulic circuit, 

there is an oil tank added to the system which ejects the trapped air by pushing additional 

fluid. On the other hand, when the 2-way manual valve is closed, the circuit bypasses the 

oil tank and presents a closed hydraulic circuit. The flow coming out of 2-way manual 

valve is sent to the hydraulic motors which are coupled with generators. These generators 

are connected to a load board which simulates the consumed electrical power by the grid. 

To monitor the conditions of the system, several sensors are implemented such as 

speed sensors, flow sensors, and pressure sensors. The data recorded by these sensors are 

transmitted to an electrical board which is connected to real-time platform. dSPACE 

1104 is a real-time fast prototyping hardware which exchanges the data between the 

computer and the experimental prototype. The controller is designed and implemented in 

MATLAB/Simulink which is connected to dSPACE to send the control inputs. In 

addition, data measured by the sensors are available to be displayed and recorded by 

utilizing the control desk, additional software of dSPACE. Finally, hydraulic components 

of the system and the information about their operation are flawlessly represented in [12].  

The experimental setup is designed to run under two different configurations: 1) 

load-controlled configuration, and 2) valve-controlled configuration.  
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    Load-controlled Configuration 2.3.1

The control input to the load-controlled configuration is a load on the generators. 

In this configuration, the pressurized flow coming out of the hydraulic pumps is split 

between hydraulic motors, proportional to their current resistive load. The more load is 

applied to a hydraulic motor; the less flow passes through it. By applying a load profile as 

a control input, one can regulate the system for a constant speed on the primary motor. 

Figure  2.4 illustrates the schematic diagram of load-controlled hydraulic circuit.  

     

Figure  2.4 Schematic diagram of load-controlled hydraulic circuit  

 Valve-controlled Configuration 2.3.2

In this configuration, the pressurized flow coming out of the hydraulic pumps 

passes through a 3-way proportional valve. The position of the valve spool in this 

configuration determines the amount of flow going to each hydraulic motor. Therefore, 

the control input to this system is a voltage profile to the proportional. The higher voltage 

is applied, the less flow passes through the primary motor.   A well-designed controller 
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can actuate the proportional valve to maintain the primary motor speed under 

disturbances. Figure  2.5 illustrates the schematic diagram of valve-controlled hydraulic 

circuit. 

 

Figure  2.5 Schematic diagram of valve-controlled hydraulic circuit. 
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3. WHITE BOX MODELING 

In this chapter mathematical model of the hydraulic wind power transfer systems 

is derived by utilizing the governing equations of the hydraulic components in the 

prototype. The introduced governing equations are put together to build the ordinary 

differential equations of the closed loop system. Finally, the last section validates the 

derived ODE model with the experimental results from prototype. 

 Governing Equations 3.1

To derive the state space representation of the system, the integrated configuration 

of the hydraulic components must be considered. This section introduces the governing 

equations of the hydraulic components to obtain the dynamic model of the hydraulic 

system. To come up with the closed loop system model, flows and torques are calculated 

by the governing equations of the hydraulic components. 

 Fixed Displacement Pump 3.1.1

Hydraulic pumps deliver a constant flow [24], [25] determined by: 

,
Sp P

p P P p
p

C D
Q D P


               ( 3.1) 
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where, ܳ௣is the actual delivered flow, and ܦ௣, ߱௣ , and ௣ܲ are the pump displacement, 

the angular velocity, and the differential pressure, respectively. ܥௌ௣  and ߤ௣ are the 

slippage coefficient and absolute viscosity. As shown in equation (3.1), the actual flow is 

less than the theoretical flow because of the flow slip in the pump’s moving parts. The 

slippage coefficient is determined by the architecture of the pump and has a great 

correlation with the clearance of the moving parts. The coefficient is obtained 

experimentally and is a cubed function of the moving parts’ clearance [26]. Therefore, 

hydraulic manufacturers design the internal mechanism of pumps and motors with 

minimum clearance of the moving parts and suggest certain operating regions e.g. high 

rotational speeds. The torque delivered from a pump can be calculated as [24]: 

             ( 3.2) 

where ߟ௠௘௖௛,௉ is the pump mechanical efficiency expressed as a function of volumetric 

 :௧௢௧௔௟,௉ isߟ ௩௢௟,௉and the total efficiencyߟ

            ( 3.3) 

 Fixed Displacement Motor 3.1.2

The flow and torque equations are derived for the hydraulic motor using the 

motor governing equations. The hydraulic flow supplied to the hydraulic motor can be 

obtained by [24]: 

,Sm m
m m m m

m

C D
Q D P


             ( 3.4) 

,p p p mech pT D P 

, , ,mech p total p vol p  



18 

 

where ܦ௠, ௌ௠ܥ  and ߤ௠ are the motor displacement, the slippage coefficient, and the 

absolute viscosity.	ܳ௠ , ߱௠ , and ௠ܲ  are the actual flow passing the motor, the motor 

velocity, and the differential pressure across the motor terminals. 

             ( 3.5) 

where ߟ௠௘௖௛,௠ is the mechanical efficiency of the motor and is expressed as: 

            ( 3.6) 

The total torque produced in the hydraulic motor is expressed as the sum of the 

torques from the motor loads and is given as [24]: 

,m
m m mv m m m f m b L

d
I D P C D C D P T T

dt

                 ( 3.7) 

where, ௅ܶ and ௕ܶ are the net load torque and the breakaway torque and ܥ௠௩,  ௠௙ are theܥ

viscous drag coefficient and the mechanical friction (coulomb friction) coefficients. In 

equation (3.7) all possible retarding torques are considered. ܥ௠௩, ,௠௙ܥ ௕ܶ are the related 

coefficients to these retarding torques, which are calculated experimentally. Specifically, 

௠௩ܥ  is a function of the inverse of the clearance between moving parts [26]. For 

simplicity, the retarding torque elements are lumped into one element represented as a 

function of motor speed. Hence, equation (3.7) can be re-written as: 

,m
m m m m L m

d
D P B T I

dt

  
           ( 3.8) 

where ܤ௠ is the lumped coefficient that includes all retarding torque coefficients. 

,m m m mech mT D P

, , ,mech m total m vol m  
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 Hose Dynamics 3.1.3

The dynamics of a hydraulic hose is related to the existing compression through it. 

The governing equation of the flexible hose is derived from the principles of mass 

conservation and also bulk modulus and fluid compressibility regarding the system limits. 

The fluid compressibility model can be expressed as follows [24]: 

             ( 3.9) 

where V is the fluid volume subjected to the pressure effect, β is the fixed fluid bulk 

modulus, P is the system pressure, and ܳ௖ is the flow rate of the fluid compressibility 

expressed: 

,c e bQ Q Q             ( 3.10) 

where ܳ௕ and ܳ௘ are the flow rates at the beginning and the end of the hose, respectively. 

Thus, we can combine the two equations as follows: 

 e b

dP
Q Q

dt V


             ( 3.11) 

 Pressure Relief Valve 3.1.4

The pressure relief valve is a type of valve used to control or limit the pressure in 

a system or vessel which can build up by a process upset, instrument or equipment failure, 

or fire. The pressure is relieved by allowing the pressurized fluid to flow from an 

auxiliary passage out of the system. The relief valve is designed or set to open at a 

predetermined set pressure to protect pressure vessels and other equipment from being 

( )( ) ,cQ V dP dt
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subjected to pressures that exceed their design limits. Reference [24] represents a simple 

model for pressure relief valve in opening and closing states: 

          ( 3.12) 

where ܭ௩ is the valve slope coefficient, P is the system pressure, and ௩ܲ is the valve’s 

preset opening pressure. 

 Check Valve 3.1.5

A check valve, clack valve, non-return valve or one-way valve is a valve that 

normally allows fluid (liquid or gas) to flow through it in only one direction. Check 

valves are two-port valves, meaning they have two openings in the body, one for fluid to 

enter and the other for fluid to leave. There are various types of check valves used in a 

wide variety of applications. For a spring preload check valve [27], the flow rate passing 

through the check valve can be obtained by:  

         ( 3.13) 

where ܳ௖௩ is the flow rate through the check valve, C is the flow coefficient, ݈௕ is the 

hydraulic perimeter of the valve disc, P is the system pressure, ௩ܲ is the valve opening 

pressure, ܣௗ௜௦௖ is the area in which the fluid acts on the valve disc, and ܭ௦ is the stiffness 

of the spring. The dynamics of the pressure relief valves and check valves are not 

included in the model, as their effects are negligible. 

,( )
,
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 Proportional Valve 3.1.6

Proportional valve is designated to regulate the outlet flow from the pump. These 

valves impose resistance against the entering flow and thus the flow rate changes at the 

outlet. When the power is taken from a wind turbine to run an electric generator, the 

speed needs to be maintained regardless of the load and input power fluctuations. 

Therefore, a proportional valve is placed between the pump and the motors to control the 

flow of the primary motor. In a conventional hydraulic system using a proportional valve 

when inlet flow exceeds the rated flow to the controlled outlet the upstream pressure 

increases and the surpass flow is bypassed to the tank through a pressure relief valve. To 

avoid from such energy wasting, a proportional valve with two outlets can be used so that 

the excess energy is directed to an auxiliary motor. This motor runs to charge a battery or 

store the energy in a hydraulic accumulator. 

Flow from a proportional valve is controlled by its orifice area. Since the valve 

splits the flow between two outlets, the orifice areas of the outlets are complementary. It 

means that when one area opens the other one closes. The flow out of an orifice in a 

proportional valve is calculated using [25]: 

2
 D

P
Q C A





              ( 3.14) 

where A is the orifice area and P  is the pressure differential across the orifice. ܥ஽ and ߩ 

are discharge coefficient and fluid density. Since the area of the orifice for each outlet is 

proportional to the valve spool position, the area of each outlet orifice can be expressed 

as a linear function of the spool displacement, thus an equation can be obtained for the 
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control flow to the primary motor (motor A) and the excess flow to the auxiliary 

motor(motor B): 

max

max

max
max

max

2
( )

2
( ) ( )

pvA D i p mA

pvB D i p mB

A
Q C h P P

h

A
Q C h h P P

h





 

  
        ( 3.15) 

where ܳ௉௩஺ is the flow out of the proportional valve to primary motor and ܳ௉௩஻ is the 

flow to the auxiliary motor, ܣெ௔௫ is the maximum area of the outlet port of the valve and 

has the same value for both ports, ݄௜ is the spool displacement and ݄ெ௔௫  is maximum 

spool displacement [28]. 

 Load-Controlled Hydraulic System 3.2

As mentioned earlier, load-controlled hydraulic system is one of the possible 

configurations of the hydraulic wind power transfer systems which is controlled by the 

external loads on the hydraulic motors. This section introduces the mathematical 

modeling of this configuration using the governing equations of the hydraulic 

components from the previous section.  

 Mathematical Modeling 3.2.1

Consider a simplified hydraulic power transfer system where the pump flow is 

distributed between two hydraulic motors based on the natural characteristics and 

geometry of the hydraulic circuit, namely the natural flow split [29]. In this configuration, 

the resistance of each hydraulic motor determines the incoming flow. The more load is 



23 

 

applied to the motor; the less flow passes through it. Utilizing this characteristic, one can 

maintain a desired speed for each motor. Figure  3.1 illustrates the load-controlled 

configuration.  

 

Figure  3.1 Schematic of load-controlled configuration 

According to the dynamic equations from the previous section, the flow of the 

hydraulic pump and motors is as follows: 

,

,

,

p p p L p p

mA mA mA L mA mA

mB mB mB L mB mB

Q D k P

Q D k P

Q D k P







 

 

 
          ( 3.16) 

The subscript ݉஺  and ݉஻  correspond to hydraulic motor A and hydraulic motor B, 

respectively. Also, properties of the pump is represented by the subscript p.  

Based on the compressibility of the flow in hoses, we have: 

           ( 3.17) 
( )( ) ,cQ V dP dt
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c p mA mBQ Q Q Q  
           ( 3.18) 

Therefore: 

( )( )p p mA mB pdP dt Q Q Q V  
         ( 3.19) 

Replacing the equation (3.16) into equation (3.19): 

, , ,( ( ) ( ))( )p p p L p p mA mA L mA mA mB mB L mB mB pdP dt D k P D k P D k P V          

              ( 3.20) 

Pressures of the hydraulic motors, ௠ܲ஺ and ௠ܲ஻ are identical to the pressure of 

the pump, ௣ܲ, if there is no loss in the hoses and hydraulic components such as check 

valves and solenoid valve. This pressure drop through the hydraulic circuit is 

proportional to the squared of upstream flow: 

  2* pP L Q             ( 3.21) 

Thus, 

2*mA p mA pP P L Q             ( 3.22) 

2*mB p mB pP P L Q             ( 3.23) 

where ܮ௠஺ and ܮ௠஻ are the loss coefficients for motor A and motor B hydraulic lines, 

respectively.  

Based on the equation (3.7), we have four different types of torques on the 

hydraulic motor shaft. Prime mover torque, ܲܦ, external load torque, ௅ܶ, and loss torques 

( frictions and breakaway torque, ௕ܶ: 

friction mv m m m f m bT C D C D P T            ( 3.24) 
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According to [24], one can consider the loss torque as a second degree polynomial 

of the shaft speed: 

2
1 2friction m m bT C C T              ( 3.25) 

Rephrasing the (3.7): 

2
1 2( )m

m m m m b L

d
I D P C C T T

dt

               ( 3.26) 

Thus, for both primary and auxiliary motors: 

2
1 2[ ( ) ]/ ,mA

mA mA A mA A mA bmA LmA mA

d
D P C C T T I

dt

             ( 3.27) 

2
1 2[ ( ) ]/mB

mB mB B mB B mB bmB LmB mB

d
D P C C T T I

dt

              ( 3.28) 

Consequently, equation (3.20), equation (3.27) and equation (3.28) represent the 

nonlinear state space model. The system and output functions of the nonlinear system can 

be obtained from the general nonlinear model as   

( ) ( )

( )

x f x g x U

y h x

 



           ( 3.29) 

where x is the state vector, y is the output vector, U is the input vector, f(x), g(x), and h(x) 

are the system function, input function, and output function, respectively. These functions 

are dependent on hydraulic pump angular velocity߱௣ and ௅ܶ௠஺, ௅ܶ௠஻ the external load 

torques on the motors. The state variable x includes the pump pressure, the primary motor 

angular velocity, and the auxiliary motor angular velocity. The system functions and 

variables are illustrated as follows: 
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Therefore, the nonlinear model of the load-controlled system is as follows: 

, , ,
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              ( 3.30) 
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          ( 3.32) 

In this section the load-controlled system configuration was modeled. This system 

is controlled by the loads on the hydraulic motors. Next section validates the model 

structure with the experimental results.  

 Model Verification with Experimental Data 3.2.2

In this section the nonlinear mathematical model of the load-controlled system 

configuration is verified with experimental setup. First, the mathematical model is 
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implemented in MATLAB/Simulink using the same parameters as the experimental setup 

listed in Table  3.1.  

Parameters such as pump and motors displacements, pump and motors leakage 

coefficients, hydraulic motors friction loss coefficients, loss coefficients of the hydraulic 

lines, and etc. are experimentally estimated through numbers of experiments on the 

prototype. 

Table  3.1 List of Prototype Parameters Used in Simulation 

Symbol Quantity Value Unit 
Dp Pump Displacement 0.7178 in3/rev 

DmA Primary Motor Displacement 0.258 in3/rev 
DmB Auxiliary Motor Displacement 0.5343 in3/rev 

Kp Pump Leakage 0.0017  

KmA Primary Motor Leakage 0.0057  

KmB Auxiliary Motor Leakage 0.0050  

ImA Primary Motor Inertia 32 lb.in2 
ImB Auxiliary Motor Inertia 21 lb.in2 

LmA Primary Motor Line Loss 13.2  

LmB Auxiliary Motor Line Loss 7.5  

TbmA Primary Motor breakaway 11.8 lb.in 
TbmB Auxiliary Motor breakaway 14.3 lb.in 

  Absolute viscosity 71 .8 5 1 0    

β Fluid Bulk Modulus 183695 psi 
ρ Fluid Density 0.0305 lb/in3 

υ Fluid Viscosity 15.9869 cSt 

 

A prototype with the parameters listed in Table  3.1 is used to implement the 

hydraulic wind power transfer technology. The mathematical model developed for load-

controlled operation of the prototype and the experimental data are compared in this 

section to evaluate the accuracy of the model. An electric motor was used to drive the 

hydraulic pump through the pulley and belt to reduce the pump shaft speed. The system 
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operating conditions, such as angular velocity and pressures, were precisely measured by 

fast prototyping in dSPACE 1104 hardware. 

For the purpose of validation, a same arbitrary pump shaft speed profile (wind 

speed input on the system) is applied to both the mathematical model in 

MATLAB/Simulink and to the experimental setup. No external load is considered to be 

applied on the hydraulic motors for the simplicity of measurement.  

Figure  3.2 attempts to simulate the fluctuation of the wind and as a result, 

fluctuation of the incoming flow to the hydraulic motors in order to challenge the 

performance of the parameter estimation and modeling. With this flow fluctuation, 

pressures of the hydraulic motors and pump as well as hydraulic motors shaft speeds are 

subject to considerably vary. Figure  3.3 to Figure  3.7 represents the comparison of the 

results between the derived mathematical model and experimental data measured by the 

sensors.  
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Figure  3.2 Pump shaft speed profile applied to the system and mathematical model 

 

Figure  3.3 Comparison between the pump pressure of the model and experimental 
results in load-controlled system 
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Figure  3.4 Comparison between the motor A pressure of the model and experimental 
results in load-controlled system 

 

Figure  3.5 Comparison between the motor B pressure of the model and experimental 
results in load-controlled system 
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Figure  3.6 Comparison between the motor A speed of the model and experimental 
results in load-controlled system 

 

Figure  3.7 Comparison between the motor B speed of the model and experimental 
results in load-controlled system 
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This section utilized the mathematical model structure along with the estimated 

parameters to represent the model of a load-controlled system configuration. Results from 

the figures show a reasonable match between the model and the real setup. However, the 

unmolded nonlinearities always cause some discrepancies in the result which is 

negligible. 

 Valve-Controlled Hydraulic System 3.3

The main characteristic of the valve-controlled system configuration is the 

proportional valve used in it. By utilizing a proportional valve in the way of upcoming 

flow from the pump, the system can be controlled differently. 3-way proportional valve 

splits the inlet flow into two outlets, primary motor and auxiliary motor, by moving its 

spool.  

 Mathematical Modeling 3.3.1

The control system applies a voltage to the valve to move the spool as well as 

changing the flow rate ratio between the outlets. In this configuration, one can maintain a 

constant speed for primary motor by actuating the proportional valve other than exerting 

loads on the hydraulic motors. Figure  3.8 illustrates the schematic of valve-controlled 

system. 
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Figure  3.8 Schematic of valve-controlled configuration 

The previous section considered the governing equations of the hydraulic 

components to derive the nonlinear state space representation. The key advantages of the 

state space representation comprise of a detailed mathematical demonstration of the 

system that incorporates the initial conditions into the solution. 

In load-controlled system the variation of the pressure in the circuit was 

considered to be the same for the whole system. Pressure of the pump was a state. 

However, pressures of the hydraulic motors were a combination of states as the final 

output. Utilizing a proportional valve in the system causes independent pressure 

variations in each line. Therefore, in this configuration, there would be 5 states including 

pressure of the hydraulic motors.  
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The pressure in each section of the high-pressure line is separated, and the stored 

energy variation is studied. Considering the high-pressure line shown Figure  3.8, three 

compressibility equations can be written to demonstrate the energy stored in the line 

between the pump and the input port of the valve and the energy stored in each of the 

valve outlets and the hydraulic motors. Considering the individual speed variation of each 

hydraulic motor, the total state space equations reach five and are described as follows.  

The flow in each section of the high pressure line can be extracted from equation (3.1), 

equation (3.4) and equation (3.15). In addition, the mass conservation principle reveals 

the flow rate difference in each branch of the high pressure line (Figure  3.8) as follows:   

pC p pvPQ Q Q 
           ( 3.33) 

mAC pvA mAQ Q Q 
           ( 3.34) 

mBC pvB mBQ Q Q 
           ( 3.35) 

where ܳ௖೛, ܳ௖೘ಲ
, and ܳ௖೘ಳ

 are the flow rate differences  between the inlet and the outlet 

of the high pressure lines which are pumped to the proportional valve, the proportional 

valve to motor A, and the proportional valve to motor B. Also, pvP mA mBQ Q Q   

represents the summation of outlet flows. Accordingly, the pressure variation in each 

section of the high pressure line can be obtained as follows: 

( )( )p p pvP pdP dt Q Q V 
         ( 3.36) 

( )( )mA pvA mA mAdP dt Q Q V 
         ( 3.37) 

( )( )mB pvB mB mBdP dt Q Q V 
         ( 3.38) 

Replacing the equations for the flows: 
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max max
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C D A A
dP dt D P C h P P C h h P P V

h h
 

  
        

              ( 3.39) 

max

max

2
(( ( ) ) ( ))( )mS mA

mA d i p mA mA mA mA mA

A C D
dP dt C h P P D P V

h
 

 
   

 

              ( 3.40) 

max
max

max

2
(( ( ) ( )) ( ))( ).mBS mB

mB d i p mB mB mB mB mB

A C D
dP dt C h h P P D P V

h
 

 
    

 

              ( 3.41) 

The hydraulic motor speed states are the same as load-controlled modeling. 

Consequently, equation (3.39), equation (3.40), equation (3.41), equation (3.27) 

and equation (3.28) represent the nonlinear state space model. The system and output 

functions of the nonlinear system can be obtained from the general nonlinear model as: 

( ) ( )

( )

x f x g x U

y h x

 




           ( 3.42) 

where x is the state vector, y is the output vector, U is the input vector, f(x), g(x), and h(x) 

are the system function, input function, and output function, respectively. These functions 

are dependent on hydraulic pump angular velocity ߱௣, the proportional valve position ݄௜, 

and ௅ܶ௠஺, ௅ܶ௠஻ the load torques on the motors. The state variable x includes the pressures, 

the primary motor angular velocity, and the auxiliary motor angular velocity. The system 

functions and variables are illustrated as follows: 
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Therefore, the nonlinear state space model of valve-controlled system 

configuration will be as [30]: 
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              ( 3.44) 

   
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         
  

      
  
  

              ( 3.45) 

This section represented the nonlinear model valve-controlled system based on 

the governing equations of hydraulic components. 
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 Model Verification with Experimental Data 3.3.2

Similarly to the load-controlled system validation, the nonlinear model of the 

system is implemented in MATLAB/Simulink and the same inputs are sent to both 

mathematical model and experimental prototype to compare the outputs. 

The schematic diagram of the hydraulic wind power transfer and the circuit 

configuration are shown in Figure  3.8. A proportional valve controls the amount of flow 

directed to each hydraulic motor through a pulse width modulated (PWM) command.  

For the first experiment, a PWM signal of 100 Hz with 90% duty cycle was used 

to control the proportional valve and to direct the flow toward the primary motor. The 

step response of the system was generated by applying step voltage to the DC motor to 

accelerate the hydraulic pump from zero to 450 rpm. After reaching the steady state, a 

second step was applied to speed up the system from 450 to 550 rpm, followed by a step-

down to 450 rpm to analyze the undershoots. The experimental recorded pump speed 

profile that was also used in system simulations is shown in Figure  3.9. The pump speed 

variation resulted in a change in the output of the primary motors. Figure  3.10 to 

Figure  3.12 represent the comparison of the results between the derived mathematical 

model and experimental data measured by the sensors for the first experiment. 
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Figure  3.9 Hydraulic pump shaft speed profile in valve-controlled system for the first 
experiment 

 

Figure  3.10 Comparison between the pump pressure of the model and the experimental 
results in valve-controlled system for the first experiment 

0 5 10 15
0

100

200

300

400

500

Time [s]

P
u

m
p

 S
h

af
t 

S
p

ee
d

 [
rp

m
]

 

 

Exp

0 5 10 15
0

100

200

300

400

500

600

700

Time [s]

P
u

m
p

 P
re

ss
u

re
 [

p
si

]

 

 

Exp

Model



39 

 

 

Figure  3.11 Comparison between the motor A pressure of the model and the experimental 
results in valve-controlled system for the first experiment 

 

Figure  3.12 Comparison between the motor A speed of the model and the experimental 
results in valve-controlled system for the first experiment 
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Figure  3.12 shows the angular velocity of the primary motor obtained from the 

mathematical model and the experimental setup. As the figure demonstrates, the 

theoretical and actual velocities are in good agreement when the damping coefficient of 

the system is considered a speed-dependent variable. A slight difference between the 

theoretical and actual values was the result of geometry differences in the prototype and 

the mathematical model. 

In the second experiment, a PWM signal of 100 Hz with 1% duty cycle was used 

to control the proportional valve to direct the flow toward the auxiliary motor. The same 

procedure was considered for the pump by applying step voltage to the DC motor to 

accelerate the hydraulic pump from zero to 400 rpm. After reaching the steady state, a 

second step was applied to speed up the system from 400 to 500 rpm, followed by a step-

down back to 400 rpm to analyze the undershoots. The velocities were slightly lower than 

the one used in the main motor experiment to prevent the auxiliary motor excessive 

acceleration. The velocity profile shown in Figure  3.13 was recorded from the 

experimental setup and was used in the mathematical modeling. Figure  3.14 to 

Figure  3.16 represent the comparison of the results between the derived mathematical 

model and experimental data measured by the sensors for the first experiment. 

In this section, the pressure and angular velocity dynamics demonstrated a close 

agreement in both the transient and the steady state. Results of the mathematical model 

were verified with those obtained from the prototype experimental setup [30], [31]. 
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Figure  3.13 Hydraulic pump shaft speed profile in valve-controlled system for the second 
experiment 

 

Figure  3.14 Comparison between the pump pressure of the model and the experimental 
results in valve-controlled system for the second experiment 
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Figure  3.15 Comparison between the motor B pressure of the model and the experimental 
results in valve-controlled system for the second experiment 

 

Figure  3.16 Comparison between the motor B speed of the model and the experimental 
results in valve-controlled system for the second experiment 
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4. BLACK BOX MODELING 

Hydraulic wind power transfer systems exhibit a highly nonlinear dynamic 

influenced by system actuator hysteresis and disturbances from wind speed and load 

torque. This chapter presents a system identification approach to approximate such a 

nonlinear dynamic. 

To reach desired operating objectives from a hydraulic transmission system, the 

system needs to be controlled appropriately. The speed control of hydraulic wind power 

systems is challenging, since it is a nonlinear system under random disturbances such as 

wind speed [19] and load torque. The nonlinearities in such system are originated from 

nonlinear behavior of components such as check valves, directional valves and more 

importantly the proportional valve. These nonlinearities will cause behavioral changes 

and variations in the system. Therefore, the speed control of the system would require an 

in-depth modeling. The controller’s structure and performance depends on the accuracy 

of state variable approximation while the system is influenced by large input variations in 

a wide operating range. Proper controllers can be designed using the linear models [32].  

Implementing a flawless control loop for nonlinear systems with wide range of 

operating points requires sufficient knowledge about the system dynamic by either a 

mathematical modeling or system identification as well as information about all states. 

As the mathematical modeling was carried out in previous section, another promising 
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way to address those needs is to approximate the nonlinear system with piecewise affine 

system (PWA). This method provides a bank of linear models each of which describe the 

nonlinear system in specific operating region or cluster. A comprehensive model can be 

obtained utilizing a switching rule among the linearized models [33]-[36]. 

The precision of piecewise linear models selected in the bank of models directly 

influences the approximation, estimation and control performances [37]-[38]. The model 

bank can be obtained by: 1) piecewise affine system identification [39], 2) piecewise 

linearization of nonlinear mathematical models [40] which will be studied in the next 

chapter. In the previous chapter, the governing equations of valve-controlled hydraulic 

transmission systems were obtained. In these models, hydraulic parameters of pumps, 

motors and valves were considered to develop a comprehensive nonlinear mathematical 

model of the system.  In this chapter, the nonlinear model which is operating on a wide 

range is identified to construct the linear model bank. This enables an accurate estimation 

of a highly nonlinear system for more effective modeling and control techniques. 

Experimental results are used to verify the modeling performance and validate the 

simulation results.  

 Piecewise Affine System Identification 4.1

For the purpose of system analysis or a desired state control, a well-developed 

piecewise affine model can be obtained and utilized. However, this requires that the 

linearized system represent the nonlinear behavior of the system with a limited error on a 

large domain [41]. These types of nonlinear systems with wide range of operating points 

are usually represented using multiple linear models for the whole system. 
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The technique used in this chapter is to identify a local linear model for desired 

operating points. Piecewise affine system is therefore developed to cover the entire 

operating conditions. Each model should satisfactorily describe the plant in a specific 

domain. Each linear model will have an effective range, in which the system generates 

minimum deviation from the original plant. Out of this domain, the model’s performance 

is reduced hence a new plant with shifted operating conditions is required. Number of 

models in piecewise affine systems highly affects the stability of the modeling and 

control as well as the amount of computations. This variable is often determined by the 

range of disturbances on the system. 

Piecewise affine (PWA) systems are those whose state and input space is 

partitioned into a finite number of non-overlapping convex polyhedral regions, and 

whose individual subsystem in the different regions is linear or affine [42], [43]. If the 

subsystem in each region displays an ARX (Auto Regressive systems with eXogenous 

inputs) type of input output characteristics, then the system is called Piecewise affine 

ARX (PWARX) system [44]. A growing interest in the study of PWA systems has been 

witnessed over the past decades because they are equivalent to several classes of hybrid 

models [45]. Thus, they can be used to obtain hybrid models from data. Typical examples 

of hybrid systems include manufacturing systems, telecommunication networks, traffic 

control systems, digital circuits, and logistic systems. Another advantage of PWA models 

is that they can be used to approximate nonlinear dynamical systems by switching among 

several linear/affine models, depending on the operating regions [42], [44] and [46]. 

Therefore, they can be used for a simpler controller design of nonlinear system – linear 

controllers for the linear subsystems can be first designed according to any of the well-
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known linear control synthesis methods. Then, based on the operating region of the 

nonlinear system, the controllers would switch from one to another. 

A switching system in regression form can be described [47] as follows: 

( )k k ky  
              ( 4.1) 

where d
k R  is the regression vector and . denotes for transpose, ky R is the output, 

( ) {1, , }k s   is the discrete mode, and s is the number of subsystems. , 1, ,d
i R i s    , are 

the parameter vectors defining each subsystem. 

The regression vector k  could, for instance, be any function of past inputs and 

outputs. In the following, the focus will be on systems in equation (4.1) where k  is 

formed as follows: 

1 1[ 1]
a bk k k n k k ny y u u        

           ( 4.2) 

and p
ku R is the input to the system. Such systems represent a subclass of the piecewise 

affine systems in state space form, and can be easily transformed into that form by 

defining the state vector as: 

1 1[ ]
a bk k k n k k nx y y u u                   ( 4.3) 

The last entry of k  is set equal to 1 in order to allow for a constant term in 

equation (4.1)  If the constant 1 is omitted in equation (4.2),  k  coincides with kx , and the 

system becomes piecewise linear. In the following, the vector kx  will be referred to as the 

standard regression vector, and k  will be called the extended regression vector, since it 

can be written as [ 1]k kx   . As for the systems in state space form, the evolution of the 

discrete mode k  can be described in a variety of ways. In PieceWise affine 
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AutoRegressive eXogenous (PWARX) systems, the switching mechanism is determined 

by a polyhedral partition of the set nR  where equation (4.1) is valid. The discrete 

mode ( )k  can be defined as : 

( ) if , 1, ,k ik i x i s                ( 4.4) 

where 1{ }s
i i   is a complete partition of the regressor set  , and each region i  is a convex 

polyhedron represented as follows: 

{ 0}n
ii ix R H x g                 ( 4.5) 

with iq n
iH R   and , 1, ,iq

ig R i s   . By letting [ ], 1, ,ii iH H g i s   , and by introducing the 

piecewise affine map, :f R   can be written as: 

1 1if 0

( ) , [ 1]

if 0

k

k s s

H

f x x

H

  


  

 
   
  

            ( 4.6) 

Equation (4.1) can be alternatively rewritten as follows: 

( )k ky f x               ( 4.7) 

PWARX systems defined by equation (4.3), equation (4.6) and equation (4.7), can 

be considered as a collection of ARX systems connected by switches that are determined 

by a polyhedral partition of the regressor set. 

PWA system identification concerns obtaining a piecewise affine model of a 

system from experimental data. PWA models represent an attractive model structure for 

identification purposes, since they are the “simplest” extension of linear models but can 

nevertheless describe nonlinear processes with arbitrary accuracy. PWA models are also 

capable of handling hybrid phenomena. Given the equivalence between PWA systems 
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and several classes of hybrid, PWA identification techniques can be used to obtain hybrid 

models. 

PWARX models are suitable for input-output data analysis, since they provide an 

input-output description of PWA systems. Consider a collection D data points out of N 

data points from the real system, as follows: 

{( , ), 1, , },k kD y x k N               ( 4.8) 

where ky R  is the measured output of the system, and n
kx R  is the regression vector in 

equation (4.3) for fixed orders an  and bn . A PWARX model is defined as follows: 

( ) ,k k ky f x                ( 4.9) 

where k R   is an error term, and f is the PWA map in equation (4.6). 

The considered identification problem consists in finding the PWARX model that 

best matches the given data according to a specified fitting criterion. It involves the 

estimation of [47]: 

 Segmentation:  

 The number of discrete modes s. 

 The coefficients 1, ,iH s  , of the hyperplanes defining the 

partition of the regressor set. 

 Regression: 

 The order of submodels, an  and bn . 

 The parameters 1, ,i s   , of the affine submodels. 

This issue also underlies a classification problem such that each data point is 

associated to one region, and to the corresponding submodel. The simultaneous optimal 
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estimation of all the quantities mentioned above is hard, and a computationally 

intractable problem. To the best of our knowledge, no satisfactory formulation in the 

form of a single optimization problem has been provided. One of the main difficulties is 

the choice of the number of discrete modes s. For instance, if a perfect fit is attained by s 

= N, it means one submodel is required per data point, which is clearly an inadequate 

solution. Constraints on s must hence be introduced to keep the number of submodels 

minimal and to avoid over-fit. Heuristic and suboptimal approaches that are applicable, or 

at least related to the identification of PWARX models, have been proposed in the 

literature. Most of these approaches either assume a fixed s, or adjust s iteratively (e.g., 

by adding one submodel at a time) in order to improve the fit [47]. 

 Hydraulic Wind Power System Identification 4.2

Considering  various disturbances in the nonlinear model of hydraulic wind power 

system, operating point regions of such a system is remarkably wide. Therefore, 

describing the whole system linearly, requires multiple linear models. As mentioned 

earlier, one can linearize the nonlinear mathematical model in different operating points 

to obtain the linear models. However, this method requires enough knowledge about the 

best operating points of the model which is really challenging for wide range operating 

systems such as hydraulic wind power systems [48]. Another promising method, in 

control system applications, is piecewise affine system identification. This approach 

searches for the best linear regions as well as estimation of model parameters which 

advances the linear modeling of hydraulic wind power system. 
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  Considering the sensitivity of the system to the parameters and inputs, it is seen 

that the valve position and the wind speed disturbance have a great influence on the 

behavior of the system. Thus, the piecewise affine system identification of such nonlinear 

system with different operating points must be performed. These models are specified by 

different control input (valve position) and disturbance input (wind speed). In our 

experimental setup, wind speed as one of the factors to determine the operating points 

varies from 200 rpm to 1000 rpm. The other input, valve position, is directly related to 

the applied voltage which ranges from 1.2 V to 3.8 V. Each combination of these values 

would result in a different operating point. However, a partial group of these operating 

points can be included in the domain of a single linear model. 

For the simplicity of system identification, the most important state, motor A 

(main) speed, is considered as the desired output to be controlled. Therefore, the problem 

of a piecewise affine system identification for a 5-state 2-input hydraulic wind power 

system reduces to a multi input-single-output (MISO) system identification, which is also 

graphically representable. 

 Hysteresis Compensation on Data Recording 4.2.1

As mentioned earlier, the proportional valve consists of one inlet and two outlet 

orifices and a spool which changes the flow passage area of the outlet orifices. Governing 

equation of flow rate for each outlet is obtained in equation (3.14) which relates the 

pressure differential across an orifice and the passage area to the flow rate.  

In the proportional valve, the hysteresis band is the widest separation observed on 

the spool displacement when the coil current is uniformly increasing from when it is 
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uniformly decreasing. Another words, hysteresis is the difference between the valve 

position on the upstroke and its position on the down stroke at any given input signal. To 

analyze this nonlinearity, steady state response of the system in all operating point is 

experimentally derived for both increasing valve voltage and decreasing valve voltage. 

Figure  4.1 depicts the behavior of the system in each case. Also, the normalized 

difference between surfaces in Figure  4.1 is shown in Figure  4.2. 

In order to compensate for this multi-valued nonlinearity, an averaging method 

can be utilized. An average of those two surfaces (shown in Figure  4.1) can provide more 

reliable data for system identification. This averaged surface is illustrated in Figure  4.3. 

 

Figure  4.1 Experimental steady state system response in all operating point for 
increasing valve voltage and decreasing valve voltage, (2187 datapoints) 
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Figure  4.2 Normalized difference between increasing valve system response and 
decreasing valve system response 

 

Figure  4.3 Averaged steady state response of the system in all operating points 
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 Segmentation 4.2.2

In a practical sense, finding a balance between the number of model partitions and 

the overall accuracy of the estimation is of interest. To explore this relationship, different 

methods of partitioning are introduced such as “average” [49], “z-score” [50], and “k-

means” [51]. The average method considers all observed data in one region, and thus 

identifies one affine model for the entire system. This approach is the base for a 

dynamical system. The z-score method divides the observations into two partitions based 

on the empirical likelihood of the observation. Finally, k-means clustering aims to 

partition n observations into k clusters in which each observation belongs to the cluster 

with the nearest mean value. Also, some advanced methods optimize the segmentation 

stage simultaneously with other system identification stages such as regressors estimation 

[39]. 

For convenience, heuristic approach is employed in this thesis based on system’s 

steady state response surface. By careful consideration of the averaged surface in 

Figure  4.3, it can be concluded that three linear submodels can reasonably approximate 

the nonlinear system. This observation determines the number of discrete modes s = 3. 

Figure  4.4 shows these submodels. 
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Figure  4.4 All three submodels of the system derived from steady state response 
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           ( 4.10) 

Projection of this space line on the x-y plane results in iH  coefficients which is 

used for partitioning of submodels described as follows: 

= -486.41  +1755.2p ih
          ( 4.11) 
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Figure  4.5 depicts the fitted space line and its projection on the x-y plane. In 

addition, the valve voltages higher than 3.5 V specify the third cluster which is shown in 

red solid line. 

 

Figure  4.5 Fitted space line and its projection on xy-plane. All three clusters of the 
operating points 

 Regression 4.2.3

Studying the nonlinear mathematical model of the proposed hydraulic wind power 

system specifies the order of the submodels. This system contains 5 poles and 3 zeros 

which determines 5an   and 4bn  . 

Once the data (operating points) are segmented, the dynamics of each region of 

the observed data is estimated using least square technique. Here, the aim is to classify 

the data points into clusters and to estimate an affine submodel for each cluster. 
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Assuming that N data points ( , )k ky x  are given, with ky R  and , 1, ,n
kx R k N   , for a 

fixed s, the considered problem can be formulated as follows [47]: 

2

1 1

1
, 1, , , , ,

0

1
min ( )

i

k i
ki

N s

k k i ki
k i

if x
k N i s

otherwise

y
N




  
 


  




 

       ( 4.12) 

Solving the equation (4.12) for i s will result in submodels as follows: 
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 Model Verification with Experimental Data 4.3

Obtaining submodels of the nonlinear system in equation (4.13) and their region 

of operation, a piecewise affine system with switching rule can be implemented. To 

verify the performance of the identified model, several experiments have been carried out 
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using different input profiles at the experimental prototype. Then the experimentally 

recorded input profiles were applied to the piecewise affine system and the results were 

compared. Figure  4.6 to Figure  4.9 illustrate the comparison of the results. As the system 

had two input variables, four cases were considered. In case one, a fixed valve voltage 

was applied. In case two a step valve voltage was considered. In case three, a triangle 

valve voltage was applied, and in case four a sinusoidal valve voltage and pump speed 

variation was applied to mimic the practical wind speed and valve voltage. 

In Figure  4.6.a valve position is fixed and a step pump speed disturbance is 

applied to the system. Figure  4.6.b shows the experimental and the model output. As it 

can be seen, piecewise linear model matched the experimental results accurately. 
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Figure  4.6 (a) inputs to the setup and model (constant valve voltage, step pump speed)  
(b) comparison of setup output and model 

For the second experiment, Figure  4.7, a step valve position profile is applied to 

the system which ranges from fully open to fully closed. As the system load changed, the 

speed droop caused a slight speed drop at the pump. As it can be demonstrated from the 

figure, the proposed model output matched the experiment at 92% accuracy. 
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Figure  4.7 (a) inputs to the setup and model (step valve voltage, step pump speed)  (b) 
comparison of setup output and model 

To evaluate the effect of model averaging and analyze the performance of the 

proposed modeling, a triangle valve voltage was applied to the valve. The voltage 
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Figure  4.8 shows the valve input excitation voltage. In this case, the valve experienced an 

operation cycle as a gradual closing from fully open to fully closed and to fully open 

position. As a result (shown in Figure  4.8) the pump speed dropped from 600 rpm to 
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pattern and decreased from 1000 rpm to 200 rpm and then increased to 1000 rpm. 

Simulations results closely follow the experimental results and validate the approach 

taken to model the surfaces and the switching logic. A 93% match was observed from 

mathematical modeling and experimental results. A slight deviation in the model output 

was observed when the valve started moving from fully closed position towards fully 

open. 

 

Figure  4.8 (a) inputs to the setup and model (ramp valve voltage, ramp pump speed)  (b) 
comparison of setup output and model 
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Finally, in case four, both input variables were strongly varying.  Figure  4.9 

illustrates each of the applied inputs. A sinusoidal voltage variation for valve voltage 

command and step speed variations for wind turbine were considered. Output comparison 

of the experiment and the simulation shows a close match with an accuracy of 91%. 

Discrepancies occurred in transients were the result of non-ideal affine parameter 

estimation. 

 

Figure  4.9 (a) inputs to the setup and model (sinusoidal valve voltage, step pump speed)  
(b) comparison of setup output and model 
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It can be seen that the piecewise affine system described a highly nonlinear 

dynamic of a hydraulic wind power transfer. Experimental results on different operating 

points and transients verified the mathematical modeling approach proposed through 

piecewise affine systems. Figure  4.6 to Figure  4.9 illustrated the accuracy of the model 

which was above 91% match. 

Piecewise affine system identification of a hydraulic wind power system was 

presented in this chapter. Hysteresis in the proportional valve was compensated by using 

averaging method on the response of the system on different operating point. A graphical 

approach of nonlinear system modeling was presented and found to be an effective 

modeling tool and finally, experimentally derived submodels described the nonlinear 

systems [52]. 
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5. LINEARIZATION AND ANALYSIS 

To analyze the system behavior or to control the original nonlinear system, a well-

developed linear model can be used through the linearization of nonlinear system. This 

provides an approximation of the system’s dynamical behavior within a neighborhood 

vicinity of variables and operating conditions.  

 Piecewise Linearization 5.1

 Literature and Problem Statement 5.1.1

Linearization of nonlinear systems allows for the use of established linear system 

analysis and control techniques such as Laplace transform, Fourier transform, and 

superposition principles [53]. General approach in linearization of a nonlinear system can 

be categorized into two major groups of exact linearization and approximate linearization. 

This category and some of their existing approaches are listed in Figure  5.1. 
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Figure  5.1 Various linearization techniques for exact and approximate results. 

 Exact linearization [54] can be obtained using feedback linearization [55], state 

space linearization [56], optimal linearization [57] and fuzzy linearization [58]. The 

approach is to algebraically transform nonlinear system dynamics into (fully or partly) 

linear models. The zero dynamics of these systems must be stable. The main drawbacks 

are the need for an accurate system model, as well as the need to solve potentially 

difficult nonlinear partial differential equations.  

Linear approximations, on the other hand, can approximate nonlinear models in a 

certain region within a given tolerance [59]. The extent of these intervals depends on the 

nonlinearity of the original model. To obtain a linear approximation of a nonlinear model 

with a wide range of operating points, piecewise linearization can be employed. This 

approach captures nonlinearities around equilibrium points [60]. Various methods of 

piecewise linearization have been proposed in the literature [61]. Approximation of 

strongly nonlinear systems around multiple operating points using Taylor expansion also 
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leads to the piecewise linearization [62]. The resulting linear models have lower 

complexity, fit into well-established tools for linear systems and are capable of 

representing arbitrary nonlinear mappings. Examples include, complexity reduction for 

finding the inverse of nonlinear functions [63],  distortion mitigation techniques such as 

predistorters for power amplifier linearization [64], approximation of nonlinear vector 

fields obtained from state equations [65],  obtainment of approximate solutions in 

simulations with complex nonlinear systems [66] such as Mixed-Integer Linear 

Programming (MILP) models [67], search for canonical piecewise linear representations 

in one and multiple dimensions [68] with different goals such as black box system 

identification, approximation or model reduction [66]. 

Hydraulic wind power systems operate under wide range of conditions due to 

various disturbances such as wind speed, valve position and load on the generators. From 

the equation (3.14), it can be inferred that the pressure differential variation disturbs the 

flow through valve’s orifices. Thus, for maintaining the flow rate, specifically through 

the main motor, the proportional valve’s spool displacement must be adjusted to 

compensate for this disturbance. Intermittent wind speed imposes variable pump speed 

and consequently varies the flow rate in the valve’s inlet.  

Even if the valve maintains the main motor’s flow rate constant, the speed can 

deviates from synchronous speed due to pressure variations and load torques. The 

governing equation for motor flow and delivered toque to the load are: 

m
m m m v m m L

d
I D P C D T

dt


  

           ( 5.1) 

ms mm m m K PQ D                ( 5.2) 
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This type of nonlinear systems with wide range of operating points can be 

linearized using multiple linear models to represent the entire system dynamics. The 

linearization technique used in this chapter is to utilize a local linear model for each of 

the different plant’s operating conditions. 

For a wide range of operation, piecewise linearization technique can be used to 

cover the entire possible operating conditions. Each model should satisfactorily describe 

the plant in a region around a specific operating point. This linearized plant will have an 

effective range of linearization, in which the system generates limited deviation from the 

original plant. Operating points out of this range result in reduced performance as the 

output deviates from the nonlinear model. Hence, a new plant with shifted operating 

conditions is required. A 2-D or higher order inputs impose larger selection regions and 

consequently the linearized models may show overlap in some areas and no coverage on 

others. One solution might be the introduction of a new model for un-covered areas. This 

will increase the number of linearized models, and might consequently increase the 

overlapped areas. Hence, selection of operating points and effective consideration of 

overlapped areas in pricewise linearization becomes critical. 

Satisfactory performance of piecewise linearization algorithms depends on 1) the 

number of linear models required to represent a nonlinear model, and 2) the location of 

operating points to obtain maximum coverage and continuity.   

Some methods [69] and [70] suggest equal partition of the operating points and 

selection of fixed number of models which has generated sub-optimal results. A simple 

and common linearization strategy consists of building a linear interpolation between 

samples of the nonlinear function over a uniform partition of its domain. A tradeoff 
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between increasing the approximation accuracy and simplifying the approximation by the 

minimum number of linearized sectors can be obtained using Genetic Algorithms [71]. 

Simplified models may be obtained using descent methods [72], dynamic programming 

[73] or heuristics such as genetic [71] as means to optimize target approximation errors. 

Next section proposes a novel adaptive piecewise linearization algorithm to 

optimize the location of operating points, preserve continuity of nonlinear system, and 

determine the number of piecewise linear models such that the maximum number of 

operating points are covered with minimal error. The algorithm is formulated for the 

hydraulic wind power system. 

 Adaptive Optimum Piecewise Linearization 5.1.2

Wide operating range of hydraulic wind power requires several linearized models. 

An effective model selection is required to cover entire operating points of the system 

with best matching on overlapped areas. An algorithm is proposed to optimally locate the 

operating points of the system and determine the number of piecewise linearized models. 

The optimization algorithm is as follows: 

Step 1: In the first step, entire range of operating conditions can be divided into 

individual nodes with proper dimensions that is determined according to the number of 

inputs and desired outputs. The maximum dimension of nodes can be obtained as: 

# #input outputN  
             ( 5.3) 

Step 2: Each operating point (node) potentially forms a linearized model. This 

model can be used for other neighboring nodes if the error is less than a desired threshold. 
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The domain of each model is determined by examining the operating points and 

obtaining the error between the original model and that of the linearized model. For 

instance, the nodes Ni 1 or Nj 1  form domains miD or mjD in which the error is less than 

(shown in Figure  5.2). Domain of a general node x can be expressed as: 

    1mx ND x f x f x    
           ( 5.4) 

where  xf is the nonlinear function and  xf is the piecewise linearized function around 

node x. 

 

Figure  5.2 Overlap between two model domains. Shared nodes in overlap area can be 
modeled by both models 

Step 3: Each operating point x is weighed by x according to the number of models, 

n, that include this node in their domain mnD as follows:   





mnDxn

x n
|


              ( 5.5) 
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A node with more weigh is less valuable as it can be expressed with more possible 

piecewise linearized models. The weight for each node is scaled to generate proper 

resolution for distinct recognition as follows: 




x
x

1


              ( 5.6) 

where parameters   and   are control parameters and are selected to create the desired 

weight resolution.   

Step 4: Model weighing. Each model is weighed according to the summation of 

the node weights x  in its domain: 

ni
mx

i
Dx

xf ,...2,1,  
             ( 5.7) 

Step 5: The models are ranked according to their weights. The maximum 

weighted-model is selected as one of the piecewise linearized models as follows:  

 sup , 1, 2,...,
i

i ff i n  
            ( 5.8) 

Step 6: The nodes associated with this model are nullified (weighed zero) and the 

models will be re-ranked: 

 0,  xmxDx              ( 5.9) 

Step 7: Domain index criterion. Repeat step 6. Model selection stops if the 

number of added operating points per added model is less than the domain index . 

The scaling factor generates a convex weighting profile to select the optimal 

number of models. When the scaling function is saturated, the function weight variation 



70 

 

becomes saturated resulting low value added to the number of model increase. The model 

selection will exit condition is as follows: 

1
1

1,2,...,( 1)

i
i

n
n i

D
if f

D




 

 
 
    
 
 
 


         ( 5.10) 

Depending upon the criterion determined in step 6, there might be nodes that do 

not belong to any of the piecewise linearized models’ domains. There is also the 

possibility that some nodes belong to more than one piecewise linearized model. 

 Piecewise Linearization of Hydraulic System Nonlinear Model 5.1.3

Hydraulic wind power transfer system is largely sensitive to valve position and 

the wind speed disturbances. The system operation due to the existence of the 

proportional valve is highly nonlinear. The system pressure variations due to valve 

position and the wind speed is shown in Figure  5.3. The surface shows a nonlinear 

response of the system while the load is constant. As the load changes, the system 

response also changes and consequently affects the rotational speed of wind turbine. This 

indicates that the system requires to be linearized around multi-dimensional operating 

points. Total number of possible operating points can be unlimited as the surface may 

contain viable nodes with domains that involve a large group of operating points. Finding 

suitable nodes with large domain is of interest as this optimizes the number of piecewise 

linearized models. 
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As mentioned in the model selection section, the criteria to include a possible 

node to a particular domain is the error and its weight which is inversely proportional to 

the number of system domains claiming the node in their domain, i.e. as a particular node 

belongs to more domains it loses its value.  

In small signal model of a linearized system, the system behavior and its 

linearized counterpart behave similar, generating little deviation in their response in small 

enough distance from neighboring nodes. A piecewise linearized model of the nonlinear 

system (Figure  5.3) is shown in Figure  5.4. The linearized system has many operating 

points that may also be influenced by disturbances in form of measurement and system 

noise. In this case, the linearized model’s output deviates more from the nonlinear model 

behavior. This discrepancy between linearized model and the nonlinear model increases 

when the operating point moves further away from the linearized model. 
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Figure  5.3 Nonlinear model of hydraulic wind power transfer system for a fixed load 

 

Figure  5.4 Linearized model of hydraulic wind power system around all possible 
operating points 
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Considering an acceptable deviation range between the linearized and nonlinear 

model determines the domain of each piecewise linearized model.  

A count on the number of models that share a particular node determines the 

weight of the node. Among all possible nodes to be considered as operating point, an 

optimum number with optimum location must be selected to minimize the number of 

piecewise linearized models and maximize the matching and coverage. 

The range of variables in the input of hydraulic wind power system is 200 to 600 

rpm for shaft speed (in some systems between 10-30 rpm), and valve position from 0 to 

0.5 inches. The piecewise linear modeling is formulated for hydraulic wind power in two 

major steps as: 1) selection of optimum model number, 2) selection of operating points.  

In the first step to optimally select the models, node values must be calculated. 

The node values are the likelihood of the node to belong to nearby model domains. The 

more models cover a node the less worthy the node becomes. Figure  5.5 shows the value 

of each node based on the number of models that cover it. Scaling factor was used to 

select the optimum nodes. Two factors from equation (5.6) result in various values. 

Table  5.1 illustrates the effect of various choices for  and  . Through a trial and error, 

values of 100 and 1 can be selected for  and   respectively. These values result in 

enough resolution to select models. Models are valued based on the weight of nodes in 

their domains. Model with the highest rank covers an optimum number of nodes. 

Therefore, the model with highest rank is selected as a candidate for piecewise linearized 

model. 
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Figure  5.5 Number of models that cover a node. For instance a 9 shows that the node 
belongs to 9 piecewise linearized models 

Table  5.1 Scaling Factor Selection 

Scaling 
Variables 
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Ranks 

Scaling 
Factor 

α = 1 
β = 1 

1 1.249 
2 0.7357 
3 0.7581 
4 0.3527 

α = 1 
β = 3 

1 0.0387 
2 0.0155 
3 0.0053 
4 0.0040 

α = 100 
β = 1 

1 124.9603 
2 73.5714 
3 75.8166 
4 35.2784 

α = 100 
β = 3 

1 3.8782 
2 1.5511 
3 0.5318 
4 0.4073 
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The nodes that configure the domain of all selected models are eliminated from 

weighing process and models are continued to be optimized, ranked and selected as 

candidates in piecewise linearization process. As each model is optimized to contain the 

highest node weights, the model selection is inherently optimized.  The model ranking 

and iteration process is illustrated in Table  5.2. As the table demonstrates, the first four 

models are ranked in each iteration and the model associated to the highest rank was 

selected. As the nodes were eliminated from the domains, the weight of other iterations 

decreased such that the ratio of weight to number of nodes (domain index) an added 

model covered became a small value. At some point adding a model did not add enough 

domain to the overall coverage of the system. Table  5.3 illustrates the decreasing number 

of nodes added to overall coverage in each iteration. 

Therefore, 5 iterations were sufficient for this system and 6 models fulfill the 

system requirements. Table  5.3 shows the number of added over total covered nodes in 

each iteration, the domain index. 
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Table  5.2 Model Ranking in Each Iteration 

 Model 
Rank 

Model 
Weight 

Initial weigh 

1 147.42 
2 145.99 
3 145.62 
4 145.30 

Iteration 1 

1 145.62 
2 130.35 
3 130.35 
4 124.96 

Iteration 2 

1 124.96 
2 124.96 
3 121.14 
4 119.96 

Iteration 3 

1 121.14 
2 114.66 
3 114.66 
4 113.46 

Iteration 4 

1 105.55 
2 105.55 
3 105.55 
4 105.55 

Iteration 5 

1 97.39 
2 94.42 
3 94.42 
4 91.51 

Iteration 6 

1 88.65 
2 83.63 
3 81.82 
4 81.64 

 

Table  5.3 Number of Added Covered Nodes in each Iteration, Domain Index 

Iteration 
# of Covered 

Nodes per 
Model 

Cumulative 
# of Nodes 

Domain Index 
(Added/Cumulative) 

1 93 93 93/93=1 
2 22 115 22/115=0.191 
3 17 132 0.128 
4 26 158 0.164 
5 12 170 0.070 
6 7 178 0.039<0.04Stop 
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Based on the Table  5.3 and the considered criteria, it seems that the first 6 

selected models can describe the nonlinear system reasonably. Those 6 models are 

presented in appendix A and utilized for further analysis and simulations.  

 Results and Discussion 5.1.4

For better comparison, the proposed piecewise linear modeling is compared with 

an arbitrary model selection. 

 Arbitrary Model Selection 5.1.4.1

For the first step, the value of operating points was determined through an even 

distribution on the node domains. Selecting 6 models, a limited error with maximum 

deviation was achieved. Figure  5.6 illustrates all the nodes that are associated to each 

model. Piecewise linearized models and their operating points are also listed on the figure. 

The figure also illustrates the domain each model contains. Clearly, overlapping and no 

coverage node are shown with double, triple or no signs. Figure  5.7 demonstrates the 

arbitrary piecewise linearization model errors and their deviation from the nonlinear 

model. Dark areas illustrate higher errors and white areas demonstrate nodes out of the 

linearization domain and coverage [48]. 
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Figure  5.6 The domain associated to each piecewise linearized model 

 

Figure  5.7 Acceptable domain for each of the piecewise linearized models 
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Two inputs as proportional valve position and the hydraulic motors’ shaft 

rotational speed were used to determine the piecewise linearized models. Limiting the 

maximum modeling error to 7%, combination of linear models improved the node 

coverage to 80.75% of all nodes. Figure  5.8 illustrates the smooth coverage of the nodes. 

 

Figure  5.8 Effect of model mixing on overall model estimation and error. Red areas 
contain nodes with higher error 

 Adaptive Model Selection 5.1.4.2

The selected optimum piecewise linearized models are shown in Figure  5.9. 

These models cover 86.2 % of the entire domain and generate errors less than 7%. 

Considering the combination system to optimize the coverage and minimize the overall 

error, Figure  5.10 is obtained. 
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Figure  5.9 Acceptable domain for each of piecewise linearized models selected through 
the proposed algorithm 

 

Figure  5.10 Model mixing increased the entire area coverage and reduced the overall 
error in modeling of non-covered nodes 
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As it can be seen by selected models from the proposed algorithm, the overall 

accuracy has been increased by 5.45%. Also by comparing the colors of Figure  5.8 and 

Figure  5.10, it can be concluded that besides the increase in overall coverage of the node 

domains, the error between nonlinear system and the multiple model adaptive estimation 

was optimized. These improvements are observed in the accuracy increase of the state 

variable estimation as an important measure in linearization.  

This section introduced an automatic algorithm to select optimum operating point 

for piecewise linearization of n-D systems. Combination of models was effectively used 

to increase the coverage of each linearized model and estimate linear combination of all 

models for overlapped nodes. The proposed technique was successfully implemented for 

hydraulic wind power transfer system. The proposed method resulted in better selection 

of operating points and adaptive piecewise linearization process [74]. 

 Linear Model Analysis 5.2

In control engineering, a state space representation is a mathematical model of a 

physical system as a set of input, output and state variables related by first-order 

differential equations. To abstract from the number of inputs, outputs and states, the 

variables are expressed as vectors. Additionally, if the dynamical system is linear and 

time invariant, the differential and algebraic equations may be written in matrix form. 

The state space representation (also known as the "time-domain approach") provides a 

convenient and compact way to model and analyze systems with multiple inputs and 

outputs. 
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This section studies the stability of the 6 optimally-selected linear models from 

previous section. Stability analysis of linear models is less challenging than the nonlinear 

models. Therefore, in previous sections, an attempt was made to linearize the nonlinear 

mathematical model. This approach considerably facilitates the study of the system 

dynamics.  

The state space representation of a linear dynamic system is as follows: 

x Ax BU

y Cx DU

 
 



            ( 5.11) 

The state space representation of the system could be transformed into transfer function 

representation by: 

1( ) ( )H z C sI A B D             ( 5.12) 

where s is the Laplace operator, and I is an identity matrix with the same dimension as A. 

For a SISO system with transfer function H(z) = N(z)/D(z) the poles and zeros are 

straightforward to define: 

• Poles are the roots of D(z) 

• Zeros are the roots of N(z) 

Poles of a system are the frequencies of the eigensolutions not driven by U but 

still appearing in y, i.e., they are generated by the system. In a state space model

x Ax BU  , these are the solutions of the standard eigenvalue problem A  . 

One of the first things to do is to analyze whether the open-loop system (without 

any control) is stable. The eigenvalues of the system matrix, A, (equivalent to the poles of 

the transfer function) determine the stability. The eigenvalues of the A matrix are the 

values of s where det( ) 0sI A  . 
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Poles of the 6 derived discrete linear models indexed in Appendix are listed in 

Table  5.4. 

Table  5.4 List of Discrete Linear Models Poles 

Model Poles 

Model 1 

0.0088           
   0.9246           

   0.9947 + 0.0079i 
   0.9947 - 0.0079i 

   0.9975 

Model 2 

0.0059           
   0.7430           

   0.9952 + 0.0077i 
   0.9952 - 0.0077i 

   0.9990 

Model 3 

0.0766           
   0.4850           

   0.9949 + 0.0078i 
   0.9949 - 0.0078i 

   0.9985 

Model 4 

0.0349           
   0.8595           

   0.9944 + 0.0078i 
   0.9944 - 0.0078i 

   0.9975 

Model 5 

0.0886           
   0.8194           

   0.9951 + 0.0077i 
   0.9951 - 0.0077i 

   0.9986 

Model 6 

0.2220           
   0.6758           

   0.9953 + 0.0076i 
   0.9953 - 0.0076i 

   0.9991 

 

Theorem: A discrete-time linear time-invariant system is asymptotically stable if 

and only if all eigenvalues are strictly inside the unit circle. As it shown in Table  5.4, all 

the poles of linear models are in the unit circle which determines the stability of the linear 

models. 
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6. OBSERVATION AND CONTROL 

This chapter utilizes the mathematical models from previous chapters as well as 

linearized models and their stability analysis to observe the states of the system and also 

design a controller. The main function of the designed controller is to maintain a constant 

speed for primary motor under the load and wind disturbances.  

In the first section, an observer and an adaptive control system is designed and 

simulated for the proposed linear models. In the second section a control system is 

designed and implemented for the experimental setup to validate the mathematical 

models and analysis.  

 Mathematical Model 6.1

 Multiple-Model Adaptive Estimation 6.1.1

Nonlinear model of a hydraulic wind power system operates on a wide spectrum 

of operating points such as random wind speed disturbances and applied control 

commands. Thus, one way to linearize this model is to use multiple linear models 

representing the whole range of operating points. This section utilizes the linearized 

models derived by piecewise linearization in a multiple model adaptive estimation 
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(MMAE) framework to reduce the state estimation error. System parameters such as 

pressures of the pump and motors can be estimated while the overall error in entire 

operating points is reduced. The algorithm is composed of a bank of Kalman filters, each 

of which is modeled to match particular real world operating condition. Simulation 

results demonstrate that the adaptive approach can optimally estimate the state variables 

in a wide range of operating points. 

 Introduction and Literature Survey 6.1.1.1

Hydraulic wind power systems are new type for the wind power harvesting which 

offers several advantages over geared power transfer system counterparts. In this method, 

the gearbox is replaced with a hydraulic pump, which is coupled with the wind turbine to 

generate high-pressure hydraulic fluid in the system. This flow can be used to drive a 

number of generators. When controlled, the hydraulic flow is distributed between two 

hydraulic motors coupled with electric generators to supply electric power to the grid. 

The intermittent nature of wind speed results in the fluctuation on the wind turbine 

generator angular velocity [75], [76] and the power generation. To mitigate the effect of 

the output power fluctuations, an advanced control technique must be considered for the 

speed regulation of the generation units.  

Nevertheless, the speed control of hydraulic wind power systems is challenging, 

since it is a nonlinear system under random disturbance inputs i.e. wind speed. The 

Nonlinearities in such systems are originated from nonlinear behavior of components 

such as check valves, directional valves and more importantly the proportional valve. 

These nonlinearities will cause behavioral changes and variations in the system. 
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Therefore, the speed control of the system would require an in-depth modeling. The 

controller’s performance depends on states variables while the system is influenced by 

large input variations in a wide operating range. 

The design of a single state observer for a given plant requires exact knowledge of 

the plant parameters and the disturbances on the system for superior performance. In 

practice, parameter uncertainty and disturbances will impact the performance and 

robustness of the observer. In fact, incorrect modeling in the observer design may lead to 

large estimation errors or even error divergence.  

To mitigate this problem, adaptive estimation algorithms (where the adaptation is 

with respect to the disturbances and uncertainty in the plant parameters) have been 

proposed in the literature such as Newton-type adaptive estimation algorithms [77], and 

least squares adaptive algorithms [78]. Among these, the Multiple-Model Adaptive 

Estimation (MMAE) algorithm has received particular attention because of its 

functionality to deal with uncertainties and wide operating regimes systems [79], [80]. 

However, the use of multiple models for adaptive estimation goes back to the 1960s and 

1970s when several authors studied Kalman filter based estimators as Kalman filter offers 

some advantageous such as its convenience form for online real time processing, Easy to 

formulate and implement given a basic understanding, Good results in practice due to 

optimality and structure, etc. [81] 

Throughout past decade, a number of papers have made efforts to describe the use 

of multiple- model architectures for adaptive estimation and control, e.g. [82], [83], and 

[84].  While some have employed deterministic continuous-time methodologies [85], 

others utilized a discrete-time probabilistic approach [86]. All of these papers utilize 
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multiple-model architecture for the identification system. Multiple-model adaptive 

estimation (MMAE) was first proposed by Magill [87] and has been used in several 

papers obtaining numerous results on its properties such as state observers [88]. 

In the stochastic version of the MMAE [89], a separate discrete-time Kalman 

filter (KF) is developed for each selected model defined by a hypothesized parameter and 

disturbance vector in a wide range of system operating points. The resulting set of KFs 

forms a “bank” where each local KF generates its own state estimate and an output error 

(residual). The bank of KFs runs in parallel and at each sampling instant, the MMAE uses 

the measurement residuals to compute the conditional probability p. The higher 

probability will correspond the plant to a true plant model. The state estimation is a 

probabilistically weighted combination of all KF estimates. The rationale is that the 

highest probability should be assigned to the state estimation provided by the most 

accurate KF, and lower probabilities assigned to the remaining KFs [81], [90].   

In this section, MMAE is utilized for state estimation of a nonlinear hydraulic 

wind power transfer system. The system is subject to multiple operating regimes which 

are initiated by external factors such as changes in control command or persistent plant 

disturbances (e.g., variations in wind speed).  
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 Theory Overview 6.1.1.2

6.1.1.2.1 Kalman Filter 

Kalman filters are used to estimate the states of linear systems. However, if 

inaccurate model parameters are used to construct the filter, the state estimate accuracy 

will degrade and may even diverge [91]. Consider a Kalman filter model associated with 

a particular hypothesized status of the hydraulic wind power transfer, which is denoted 

with the subscript k. Thus, the kth model can be represented by [92]: 

1 1 1( ) ( ) ( ) ( )

( ) ( ) ( ),
k i k k i k i k k i

k i k k i k i

x t x t B u t G t

z t H x t t




     

            ( 6.1) 

where kx is the Kalman filter model state vector, k is the state transition matrix, kB is 

the control input matrix, u is the system input vector, kG is the system noise matrix, kz is 

the measurement noise, kH is the output matrix, k is an additive white discrete-time 

system noise with zero mean value and covariance kQ as follows: 

,
{ ( ) ( )}

0,
k i jT

k i k i
i j

Q t t
E t t

t t
 


             ( 6.2) 

and k is an additive white measurement noise that is used in the Kalman filter model. 

This noise is independent from k , with  zero mean value and covariance kR as follows: 

,
{ ( ) ( )}

0,
k i jT

k i k i
i j

R t t
E t t

t t
 


             ( 6.3) 

In the hydraulic wind power system, the noise parameters Q and R are not 

accurately known, and can also change over time depending on operating conditions. To 
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derive these noise covariance matrices, the algorithm in [93] has been used and 

implemented in the Kalman filter. 

The Kalman filter algorithm utilizes a discrete linearized model follows: 

1 1ˆ ˆ( ) ( ) ( )

ˆˆ ( ) ( ),

k i k k i k i

k i k k i

x t x t B u t

z t H x t

 
 

 

  

            ( 6.4) 

where ݔො௞	is state estimation vector, ̂ݖ௞ሺݐ௜
ିሻis the output estimation  at time	ݐ௜

ିof the i th 

time sample, ݐ௜ିଵ
ା is the time after the measurement update at the (i-1)th time sample, and 

the state estimation covariance matrix propagation is: 

1( ) ( ) T T
k i k k i k k k kP t P t G Q G 

               ( 6.5) 

The state estimation will be updated using: 

ˆ ˆ( ) ( ) ( ) ( ),k i k i k i k ix t x t K t r t              ( 6.6) 

where the Kalman gain is:  

1( ) ( ) ( ) ,T
k i k i k k iK t P t H A t              ( 6.7) 

and the Kalman filter-computed residual covariance matrix kA is: 

( ) ( ) .T
k i k k i k kA t H P t H R              ( 6.8) 

The Kalman filter residual vector, shown in equation (6.6), is defined as: 

ˆ ˆ( ) ( ) ( ) ( ) ( )k i i k k i T i k k ir t z t H x t z t H x t              ( 6.9) 

The covariance matrix is updated using as follows 

( ) ( ) ( ) ( )k i k i k i k k iP t P t K t H P t    ,         ( 6.10) 

1 1ˆ ˆ( ) ( ) ( ).k i k k i k ix t x t B u t 
            ( 6.11) 

Therefore, the steady state Kalman filter can be represented as  



90 

 

ˆ ˆ( ) ( ) ( ).k i k i k k ix t x t K r t             ( 6.12) 

6.1.1.2.2 MMAE Structure 

A block diagram of the MMAE scheme is shown in Figure  6.1. The input and 

output data of a plant with wide range of operating point is collected and passed to a bank 

of Kalman filters. The Kalman bank contains many parallel filters, called hypothesis 

filters where each is constructed using a model representing a different operating 

condition. The output of each filter is compared with that of the hydraulic wind power 

plant. The filter with the lowest residual represents the most accurate models.  

The MMAE generates a weighted average of all Kalman estimated values. The 

weights are obtained by the a posteriori probability of the residual signals considering a 

history of input-output variations [94]. These weights can be calculated using: 

1

1

1 1( ) , ( )

1 1( ) , ( )1

( , ). ( )
( ) ,

( , ). ( )
i i

i i

i k i k iz t h z t

k i K

i k i j iz t h z tj

f z h Z p t
p t

f z h Z p t




 

 


         ( 6.13) 

where 

1 1( ) , ( )

1
1/2/2

( , )

1 1
exp([ ( ) ( ) ( )]).

2(2 ) ( )

i i i k iz t h z t

T
k i k i k im

k i

f z h Z

r t A t r t
A t

 






    ( 6.14) 

In these equations, 
1 1( ) , ( ) ( , )

i i i k iz t h z tf z h Z
 

 is the probability density function of the current 

measurement Z(ti) conditioned on the hypothesized status and measurement history Z(ti-1), 

based on residual signal rk and Ak. When actual residuals are inconsonance with filter-
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computed covariance Ak, the exponential term in equation (6.14) is approximately [-m/2], 

where m is the measurement dimension.  

The output of this block is a vector of probabilities which can be used to weight 

the state estimates as also shown in Figure  6.1. The output of the algorithm is a 

probability weighted state estimate [94], [95]. 

 

Figure  6.1 The MMAE filter block diagram 

 Main Results and Simulations 6.1.1.3

As mentioned earlier in modeling section of nonlinear hydraulic wind power 

system, it can be concluded that the system has 5 states which account for pressure of the 

pump and motors and speed of the motors. Reading the data from motors speed sensor, 
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they can be sent to the Kalman filters as a measurement for estimating the 3 other noisy 

pressures in different operating regimes. 

Kalman filters and MMAE block diagram has been implemented using 

MATLAB/Simulink. The estimation of MMAE for the pressures is compared with the 

exact values from the nonlinear model of system in all possible operating points specified 

by control and disturbance input (valve position and wind speed respectively) to study the 

accuracy of implemented structure. 

A comparison between MMAE and the nonlinear model is done by applying a 

arbitrary profile for wind speed as a disturbance input shown in Figure  6.2 to both 

systems with valve position of 0.35 inch. Figure  6.3 to Figure  6.5 depict the performance 

of state estimation of pressures comparing with the exact values from the nonlinear 

model.  
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Figure  6.2 Wind speed profile applied to both systems 

 

Figure  6.3 Pump pressure estimation, nonlinear system vs MMAE 
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Figure  6.4 Motor A Pressure estimation, Nonlinear system vs MMAE 

 

Figure  6.5 Motor B Pressure estimation, Nonlinear system vs MMAE 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

800

900

Time (s)

M
o

to
 A

 P
re

ss
u

re
 (

p
si

)

 

 
Nonlinear System

MMAE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

800

900

Time (s)

M
o

to
r 

B
 P

re
ss

u
re

 (
p

si
)

 

 
Nonlinear system

MMAE



95 

 

Figure  6.3 to Figure  6.5 confirm a close agreement between implemented MMAE 

and nonlinear system. It can be seen that the state estimation benefits from a good 

performance even in transients. As the MMAE estimation performance highly dependent 

on the Q and R noise covariance matrices, their precise estimation reduced their effects of 

disturbance analysis. In addition, precise operating point selection was essential in 

linearization and overall modeling performance improvement.  

MMAE was applied to adaptively estimate states of a nonlinear hydraulic wind 

power system in wide operating conditions. This estimation technique uses a bank of 

Kalman filters, each of which represent a linear model for a specific range of operating 

point. In this section, MATLAB/Simulink was utilized for implementation of the MMAE 

structure. Accuracy of state estimation using MMAE was also verified by comparison 

with the nonlinear system [96]. 

 Multiple-Model Adaptive Control 6.1.2

In this section a multiple model adaptive control (MMAC) strategy is used to 

mitigate the undesired effect of output power fluctuations in hydraulic wind power 

systems.  This control structure is based on linear Kalman filters, probability block and 

PID controllers and aims to regulate the speed of generation unit. Nonlinearities and 

disturbances such as wind speed and valve position make the system work over a wide 

range of operating point which degrades the performance of the control loop. MMAC as 

an approach for these types of systems implemented and simulated to consider the control 

performance over the whole operating regimes.  
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 Introduction and Literature Review 6.1.2.1

Adaptive control is a promising approach to estimate and control dynamic 

systems [97]. The study of multiple model adaptive control (MMAC) appeared around 

1960’sto 1970’s, where multiple Kalman filter-based models were studied to improve the 

accuracy of the state estimate in estimation and control problems [98], [99]. Soon after 

applications of MMAC were introduced [100]-[102]. 

Various approaches for the multiple model adaptive control have been established 

since the 90’s. Balakrishnan’s and Narenda’s proposed several stability and robustness 

methods using classical switching and tuning algorithms. Later on, the perfection of the 

multi-model control concept was proved by further research. Magill and Lainiotis 

introduced the model representation through Kalman filters. Petridis’, Kehagias’ and 

Toscano’s work focused on nonlinear systems with time variable. Landau and Karimi 

used several particular parameter adaptation procedures, Closed Loop Output Error, in 

MMAC. Additionally, Narenda utilized neural network to improve his multi-model 

control version. Finally, Dubois, Dieulot and Borne apply fuzzy procedures for switching 

and sliding mode control. 

Progress in performance and stability of multiple models adaptive control soon 

made this approach applicable to various  control problems where operating regimes 

cannot be determined a priori such as robotics, flight control, aerospace applications, and 

process control. Numerous results based on these methods can be found for example in 

Fekri et al. [103], Schiller and Maybeck [104], and Hespanha et al. [105]. Common to all 

these methods is the use of information obtained online to decide on appropriate control 

actions. 
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Multiple-model adaptive control is a promising approach to control complex, 

nonlinear, and time-variant systems with a wide range of operating points. In multiple 

model adaptive control, a bank of candidate models is designed to be used by the control 

structure. Then a supervisory controller selects the most appropriate model for the current 

conditions. For each model, a suitable controller can be designed off-line. The online 

controller switching is based on the performance evaluation of the bank of models. 

Control problems involving transitions between known operating regimes are readily 

handled by a multiple model approach [106]. This kind of multiple model adaptive 

control is always produced as the probability-weighted average of elemental controller 

outputs. As theoretical progress of MMAC, some convergence results on the probabilistic 

weighting algorithm have been obtained under suitable assumptions [107]-[110]. 

It is obvious that model bank significantly affects control performance. Thus, it is 

critical to have a model bank that considers all possible operating points. Since all 

possible operating points are not known a priori, increasing the number of model bank 

members may be a solution [111]. 

This section proposes a multiple models adaptive control structure for a hydraulic 

wind power system in order to maintain high performance over a wide range of operating 

points. These hydraulic systems run under fluctuating disturbances i.e. wind speed profile 

and valve position which influence on system operating regimes. Thus, there would be a 

crucial need for an advance control structure to eliminate negative effects of disturbance 

inputs. 
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 Theory Overview 6.1.2.2

The nonlinear state space shown in equation (3.29) can be linearized around 

operating points. The linear model can be used for developing proper controller. However 

a linear model is valid for certain neighborhood of the operating points. If actual states of 

the system become far away from the points used for linearization, the behavior of the 

system would be totally different from the linearized. To cover all possible scenarios of 

the system operation, linearization of the model is needed at several set of operating 

points. As operation of the proportional valve descried in the modeling section, the valve 

plays a major role of nonlinearity in the system. The valve spool position can be varied 

from fully open to full closed and its performance at different operating points would 

differ to great extent. So that to derive multi linearized model, different valve spool 

positions are considered. Another input to the system that affects the system behavior is 

the pump speed.  The pump speed is directly affected by wind speed. Wind speed varies 

widely. Therefore different pump speeds are used for deriving linearized models. The 

combination of the valve spool position and pump speed gives us multiple models and 

hence an appropriate controller should be design for each of them. Each of these 

controllers regulates the valve spool displacement to reach the desired primary motor 

speed. 

Using multiple models is necessary because of physical uncertainties and 

disturbances in the hydraulic wind power system which causes a wide range of operating 

points. These variations and disturbances are well beyond the robustness of a single 

Kalman filter and correspondent controller [112]. MMAC is an adaptive technique that 

can overcome the robustness problems of a single filter/controller. In this method a 
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separate Kalman filter/PID controller is developed based on each different operating 

point [96]. 

Consider a Kalman filter model associated with a particular hypothesized status of 

the system, which was represented by equation (6.1) to equation (6.12). This set of 

Kalman filters forms a “bank,” each filter based on a different system model and each 

outputting a residual as shown in Figure  6.6. 

 

Figure  6.6 Multiple Model Adaptive Control (MMAC) structure 

For each Kalman filter a PID controller is designed based on different tuning 

approaches in order to satisfy performance indices for that specific Kalman filter having 

the form of: 
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        ( 6.15) 

where ݇௣, ݇௜, and ݇ௗ are proportional, integral and derivative gains, respectively and ݁ሺݐሻ 

is the error between desired output and system output. 

The controller output based on the assumed operating point closest to the true 

operating point should be the most correct. The magnitude of the residual for this filter 

should be relatively small compared with the magnitudes of the residuals from the other 

filters. The residuals are used to compute conditional probabilities that each filter (and 

associated controller gain) is the one based on the correct operating point, and a 

weighting factor is determined for the corresponding controller output. The conditional 

probability is the probability that the parameter used in the system model for that filter is 

closest to the true operating point, conditioned on the entire measurement history 

observed up to that time. Thus, the highest probability should be assigned to the most 

correct filter, and lower probabilities assigned to other filters [113]. These probabilities 

can be calculated using equation (6.13) and equation (6.14). Each control input is then 

multiplied by its corresponding conditional probability to form a probabilistic weighted 

average final control input. 

  Control Structure Test 6.1.2.3

Going through the multiple model linearization approaches in chapter 5, it was 

concluded that 6 models can cover the whole range of operating regimes and constitute 

the model bank. The more precise a model bank represents the plant, the better the 
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control system performs. To come up with the Kalman filters, all linearized models 

(appendix A) are discretized and related ܳ and ܴ covariance matrices are designed. Then, 

these Kalman filters are implemented in MATLAB/Simulink and used to feed the 

probability block with the residuals. 

In this simulation, for each Kalman filter, a PI controller is designed using IMC 

tuning method to meet the performance indices such as overshoot and settling time. The 

input to the controllers is the error between desired output and the system output i.e. 

motor A speed. 

Working on different operating points caused by control input and disturbance on 

the system, it is of high importance to create smooth transition among Kalman filters, 

eliminate parameter uncertainty effects, and minimize the tracking error in entire 

operating condition. As mentioned earlier, poor transition may lead to long periods of 

transient operation, usually accompanied by loss of information and instability [96].  The 

probability block is implemented in Simulink control loop to fulfill these expectations. 

First, to simulate the bank of models, a sequence of events concerning the 

operating points is used as operation scenario. Then, to investigate the capability of the 

Kalman filters, identical operation points to what previously considered for linearizing 

the nonlinear model are included in the operation scenario. The operation scenarios are 

assumed to be as the following: 

1. Pump speed 300 rpm and valve position 0.05 inch 

2. Pump speed 300 rpm and valve position 0.125 inch 

3. Pump speed 300 rpm and valve position 0.375 inch 

4. Pump speed 300 rpm and valve position 0.45 inch 
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5. Pump speed 500 rpm and valve position 0.125 inch 

6. Pump speed 500 rpm and valve position 0.375 inch  

These series of events occur consecutively and cover common types of variations 

that the hydraulic wind system might undergo during their operation. Figure  6.7 depicts 

the conditional probability densities which are going to be multiplied by each controller 

output accordingly.  

 

Figure  6.7 Conditional probability density function outputs over different cases of the 
operation scenario. Higher output values show the validity of the case and as a result the 

diagnosis of the change in operation. Numbers 1–6 show different steps of operation 
scenario 
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Applying probability density functions on operation scenario designates a weight 

between 0 and 1 to each system’s output in each time instant. Higher probability numbers 

indicate validity of that particular system in that sample. Figure  6.7 shows the weight 

allocation computed by probability density functions in evaluation of the residual signal. 

As Figure  6.7 shows, the highest weight is allocated to a proper model (numbered 

according to the operation scenario) which accurately follows the scenario. Also, a quick 

transition is observed among steps. The control structure accurately identifies the change 

in operation points as designed in the scenario. 

To clarify the overall performance of MMAC in speed tracking of nonlinear 

model of hydraulic wind power system, two different type of simulations are done by 

applying an arbitrary profile for wind speed (pump Speed) as a disturbance input. 

 Primary Motor Speed Regulation  6.1.2.4

In this simulation two different constant speeds are considered for motor A as a 

reference to evaluate the performance of the control system to generate fixed frequency 

power under variation of the wind speed as a disturbance. 

6.1.2.4.1 2-Pole Generator 

To generate 60 Hz electrical power by a 2 pole generator, the reference speed 

(motor A speed) needs to be 1800 rpm. Control system’s goal is to maintain this 

reference under variation of the pump speed shown in Figure  6.8. 
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Figure  6.8 Applied pump speed variation as a disturbence on the system 

 

Figure  6.9 Regulation response of multiple models adaptive control with a 2 pole 
generator 
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Figure  6.9 shows the speed regulation of power generating achieved by MMAC. 

It can be seen that motor A speed remains constant under applied disturbances.  

As it is depicted in Figure  6.10, control structure is selecting the best controllers 

by applying weights to their outputs according to instantaneous pump speed and valve 

position. It should be mentioned that control structure smooth transition between 

controllers has not affected control response. 

 

Figure  6.10 Weights of controllers output calculated by probability block 
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same disturbance profile shown in Figure  6.8, MMAC regulates the speed with a 

reasonable discrepancy, illustrated in Figure  6.11. 

 

Figure  6.11 Regulation response of multiple models adaptive control with a 4 pole 
generator 

Figure  6.12 shows the probability weights generated by MMAE unit to the 
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Figure  6.12 Weights of controllers output calculated by probability block 

 Primary Motor Speed Tracking 6.1.2.5

Challenging the utilized control approach, a fluctuating desired motor A speed is 

considered in order to run the system in different possible operating points. Figure  6.13 

depicts the applied pump speed to the control system. Also, Figure  6.14 illustrates the 

desired output as well as tracking response of the MMAC.  

 

0 5 10 15 20 25
0

0.5
1

P
1

0 5 10 15 20 25
0

0.5
1

P
2

0 5 10 15 20 25
0

0.5
1

P
3

0 5 10 15 20 25
0

0.2
0.4

P
4

0 5 10 15 20 25
0

0.5
1

P
5

0 5 10 15 20 25
0

0.5
1

Time (s)

P
6



108 

 

 

Figure  6.13 Applied pump speed variation as a disturbance on the system 

 

Figure  6.14 Tracking response of multiple models adaptive control 
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It can be seen that throughout all operating regimes, MMAC is working 

acceptable. Some discrepancies in the tracking response refer to the transition between 

Kalman filters which causes low overshoots to the system. 

The control command (valve position), which is a summation of weighted 

controllers output, is shown in Figure  6.15. Smooth variation of valve position in this 

figure indicates the stability of the designed control structure. 

 

Figure  6.15 Control command of MMAC during simulation 
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Figure  6.16 Weights of controllers output calculated by probability block 

As shown above, each weight calculated by probability block varies from 0 to 1. 

Variation of these weights demonstrates model selection of probability block in each 

different operating point. Some models cover more operating points rather than the others. 

Therefore, their correspondent weights for the controller outputs are continuously high 

throughout the simulation.  
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Figure  6.17 Residuals of the system calculated by Kalman filters 
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 Experimental System 6.2

It can be observed from equation (3.4) that even at constant flow the motor speed 

varies if the pressure fluctuates. As described, the differential pressure variation, inlet 

flow fluctuation and motor pressure variation are source of disturbances on motor speed, 

so that an appropriate controller is required for the valve to compensate for these 

disturbances. 

This section represents a control system for the experimental hydraulic wind 

power transfer system. the primary goal of the control system is to maintain a constant 

speed for primary motor under the various disturbances such as pump shaft speed 

variations (wind fluctuation) and load variations (grid load fluctuation). The controller is 

challenged through different control experiments. First, the controller performance is 

shown in primary motor speed regulation under wind disturbance and load disturbance 

separately. Then, the control system runs to track a reference speed for primary motor. In 

each experiment, the response of the system is illustrated as well as all other states 

behavior during the run. 

Addressing the primary goal of the design makes the control system single-input 

and single output (SISO). The control input to the system is a voltage profile to the 

proportional valve sent by the designed controller in MATLAB/Simulink. The more 

voltage is applied by the controller; the more flow deviates to the auxiliary motor. Also, 

the primary output of the system is the speed of primary motor. Finally, pump shaft speed 

and load on the motors are the disturbance inputs.  

A PI controller is designed based on Ziegler–Nichols method in order to satisfy 

performance indices considered for the system having the form of: 
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0

( ) ( ) ( )
t

p iu t K e t K e t dt  
             ( 6.16) 

where ݇௣  and ݇௜  are proportional and integral gain, respectively and ݁ሺݐሻ is the error 

between desired output and system output. Figure  6.18 shows the step response of the 

system. Also, Figure  6.19 illustrates the circle area of the Figure  6.18 for better 

observation of step response. In Ziegler–Nichols method, studying the dynamic behavior 

of the system under the step input will result in PI gains. Table  6.1 provides the 

characteristic parameters of the systems. 

Table  6.1 List of Characteristic Parameters of the System 

Parameter value 

Final Speed 2482.57 

Maximum 
Speed 

2555.23 

Overshoot 
Percentage 

2.92 

Natural 
Frequency 

11.12 rad/s 

Damping 
Frequency 

7.39 rad/s 

Damping 
ratio 

0.7471 

Time 
Constant 

0.15s 

Delay Time 0.63s 

Setteling 
Time 

1.73s 
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Figure  6.18 Step response of the experimental hydraulic wind power transfer system 

 

Figure  6.19 Zoomed circle area of step response of the experimental hydraulic wind 
power transfer system 
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Utilizing the step response characteristic parameters of the system in Ziegler–Nichols 

method, PI gains are listed in Table  6.2. 

Table  6.2 List of PI Gains 

Gain value 

Proportional 0.00013 

Integral 0.0021 

 

The gains in Table  6.2 are implemented in the PI controller in MATLAB/Simulink for 

further experiments in next sections. 

 Primary Motor Speed Regulation 6.2.1

 Control under Wind Disturbances 6.2.1.1

In this section, the controller performance is tested under pump speed fluctuations. 

The system starts in closed loop and during the experiment a step variation for pump 

speed is applied to the system. The controller actuates the proportional valve properly to 

compensate for applied wind disturbance. Figure  6.20 depicts the pump speed 

fluctuations exerted to the control system. Regulation response of the system is shown in 

Figure  6.21 and Figure  6.22. Finally, Figure  6.23 illustrates the control command applied 

to the proportional valve by the controller. As it can be seen, the controller works 

flawlessly under wind speed disturbance.  
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Figure  6.20 Pump speed variations applied to regulation under wind disturbance 

 

Figure  6.21 Regulation response of the system under wind disturbance 
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Figure  6.22 Motor A pressure in regulation under wind disturbance 

 

Figure  6.23 Controller command to the proportional valve in regulation under wind 
disturbance 
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 Control under Load Disturbances 6.2.1.2

In this section, the controller performance is tested under load fluctuations. For 

this experiment, a load board is designed and implemented which includes capacitors and 

100 Watt bulbs. Also, in this experiment, pump shaft is running at constant speed of 1600 

rpm. The system starts in closed loop and during the experiment several step variations 

for the load are applied to the hydraulic motors. The controller actuates the proportional 

valve properly to compensate for applied load on the motor A. Figure  6.24 depicts the 

load fluctuations exerted to the control system. Regulation response of the system is 

shown in Figure  6.25 and Figure  6.26. Finally, Figure  6.27 illustrates the control 

command applied to the proportional valve by the controller. Reponses of this experiment 

shows a reasonable performance for the control system.  

 

Figure  6.24 Load variations applied to the motor A in regulation under the load 
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Figure  6.25 Regulation response of the system under load disturbance 

 

Figure  6.26 Motor A pressure in regulation under load disturbance 
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Figure  6.27 Controller command to the proportional valve in regulation under load 
disturbance 

 Primary Motor Speed Tracking 6.2.2

Finally, in this section, the controller performance is challenged by changing the 

speed reference. The system starts in closed loop and during the experiment speed 

reference of considered for motor A varies. In this experiment pump shaft is rotating at a 

constant speed of 600 rpm and the external load on the hydraulic motor A is negligible. 

The controller actuates the proportional valve properly to track the speed reference 

instantaneously. Regulation response of the system is shown in Figure  6.28 and 

Figure  6.29. Finally, Figure  6.30 illustrates the control command applied to the 

proportional valve by the controller. Reponses of this experiment shows a reasonable 

performance for the control system. 
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Figure  6.28 Tracking response of the system under constant load and wind speed  

 

Figure  6.29 Motor A pressure in tracking system under constant load and wind speed 
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Figure  6.30 Controller command to the proportional valve in tracking system under 
constant load and wind speed 

According to the results from the experimental responses of the hydraulic wind 

power transfer system, it can be concluded that the control system is working perfectly 

under load and wind speed fluctuations. However, increasing the number of the hydraulic 
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7. CONCLUSIONS AND FUTURE APPLICATIONS 

This thesis studied the hydraulic wind power transfer systems. To get a better 

understanding, a mathematical model of the system was developed and studied utilizing 

the governing equations for all hydraulic components. The mathematical model embodies 

nonlinearities which are inherited from the hydraulic components such as check valves, 

proportional valves, pressure relief valves, etc. 

An experimental prototype of the hydraulic wind power transfer systems was 

designed and implemented to study the system’s dynamical behavior and operations. The 

provided nonlinear mathematical model was then validated by experimental result 

recorded from the prototype.  

Moreover, this thesis developed a control system for the hydraulic wind power 

transfer systems. To maintain a fixed frequency of electrical voltage, the generator should 

remain at a constant rotational speed. The fluctuating wind speed from the upstream of 

the hydraulic pump, and the load variations from the downstream apply considerable 

disturbances on the generator coupled hydraulic pump. A controller was designed and 

implemented to regulate the flow in the proportional valve flowing towards the main 

pump to compensate load and wind turbine disturbances and consequently maintain the 

system frequency. The control system was applied to the mathematical model as well as 
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the experimental prototype by utilizing MATLAB/Simulink and dSPACE 1104 fast 

prototyping hardware and the results were compared. 

Future applications of the hydraulic wind power transfer systems are very 

promising and require a great attention in engineering research. The hydraulic 

configuration in this generation of wind turbines allows for capturing the energy of 

multiple wind turbines into a single generator. Utilizing multiple wind turbines with one 

generation unit and attempting the transfer of energy of each wind turbine by a single 

closed loop hydraulic circuit. This will need a flawless hydraulic circuit design and 

implementation as well as the optimal number and allocation of wind turbines in wind 

farms. Also, adding the second and third wind turbines to the system will make the 

control system design much more challenging.  

In addition, as mentioned earlier in the hydraulic systems description, in high 

wind speed operation of the wind turbines, the proportional valve is subject to send the 

excess flow to the auxiliary motor to maintain the reference speed for primary motor. The 

energy of the excess flow passing through the auxiliary motor can be captured by means 

of an energy storage system. This area can draw a great attention to study for the most 

efficient way to address this requirement. As a suggestion, a battery can collect the excess 

flow energy and send it back to the system in low wind speed operation. Thus, there 

would be a need to design a control system to manage the low wind speed and high wind 

speed operations. 

Finally, the concept of transferring energy by means of a hydraulic circuit can be 

applied to various number of engineering fields. These hydraulic transmission systems 

offer the benefit of a continuously Variable Transmission (CVT), which is the infinite 
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effective gear ratio. These infinite shifting ratios of the power transmission system allow 

less energy losses and better fuel efficiency in vehicles. By improving the efficiency and 

design of hydraulic transfer systems, related engineering systems can utilize this novel 

idea. For instance, the regenerative hybrid vehicle system and gearless hydraulic 

transmission system are integrated to address both energy requirements of a hybrid 

vehicle and friction energy losses in the mechanical transmission system. A regenerative 

gearless HEV driveline can be introduced through a hydraulically connected power 

transmission system [12]. 
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APPENDIX LIST OF LINEAR MODELS 

Here all 6 models are shown by their state space matrices. A and B matrices 

represent the dynamics of the system.  

 

ଵܣ ൌ

ۏ
ێ
ێ
ێ
ۍ
0.6503 0.0187 0.0187 െ0.0003 	െ0.0047
0.0374 0.9398 0.0135 െ0.0261 െ0.0001
0.6449 0.0135 0.3329 െ0.0002 െ0.0085
0.0001 0.0057 0.0000 0.9984 െ0.0000
0.0041 0.0000 0.0037 െ0.0000 0.9989 ے

ۑ
ۑ
ۑ
ې

 

ଶܣ ൌ

ۏ
ێ
ێ
ێ
ۍ
0.6142 0.0677 0.3095 െ0.0010 െ0.0046
0.1355 0.8043 0.0511 െ0.0241 െ0.0004
0.6189 0.0511 0.3212 െ0.0006 െ0.0082
0.0004 0.0053 0.0001 0.9992 െ0.0000
0.0041 0.0002 0.0036 െ0.0000 0.9994 ے

ۑ
ۑ
ۑ
ې

 

ଷܣ ൌ

ۏ
ێ
ێ
ێ
ۍ
0.5758 0.2660 0.1496 െ0.0051 െ0.0016
0.5320 0.3721 0.0870 െ0.0155 െ0.0007
0.2992 0.0870 0.6048 െ0.0010 െ0.0140
0.0023 0.0034 0.0002 0.9994 െ0.0000
0.0014 0.0003 0.0062 െ0.0000 0.9977 ے

ۑ
ۑ
ۑ
ې

 

ସܣ ൌ

ۏ
ێ
ێ
ێ
ۍ
0.6445 0.3092 0.0377 െ0.0062 െ0.0004
0.6185 0.3489 0.0238 െ0.0141 െ0.0002
0.0755 0.0238 0.8915 െ0.0003 െ0.0170
0.0027 0.0031 0.0001 0.9995 െ0.0000
0.0003 0.0001 0.0075 െ0.0000 0.9963 ے

ۑ
ۑ
ۑ
ې

 

ହܣ ൌ

ۏ
ێ
ێ
ێ
ۍ
0.6515 0.0511 0.2889 െ0.0008 െ0.0036
0.1023 0.8612 0.0274 െ0.0250 െ0.0002
0.5778 0.0274 0.3860 െ0.0003 െ0.0105
0.0003 0.0055 0.0001 0.9995 െ0.0000
0.0032 0.0001 0.004 െ0.0000 0.9987 ے

ۑ
ۑ
ۑ
ې
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଺ܣ ൌ

ۏ
ێ
ێ
ێ
ۍ
0.6565 0.2338 0.1012 െ0.0040 െ0.0010
0.4677 0.4835 0.0398 െ0.0184 െ0.0003
0.2023 0.0398 0.7487 െ0.0004 െ0.0156
0.0018 0.0041 0.0001 0.9995 െ0.0000
0.0009 0.0001 0.0069 െ0.0000 0.9963 ے

ۑ
ۑ
ۑ
ې

 

ଵܤ ൌ

ۏ
ێ
ێ
ێ
ۍ
െ102.5000 0.0520 0.0000 0.0000
291.8000 0.0014 0.0000 0.0000
െ86.9500 0.0372 0.0000 0.0000
0.8762 0.0000 െ0.0001 0.0000
െ0.3226 0.0001 0.0000 െ0.0002ے

ۑ
ۑ
ۑ
ې

 

ଶܤ ൌ

ۏ
ێ
ێ
ێ
ۍ
െ54.7100 	0.0502 0.0000 0.0000
160.2000 0.0054 0.0000 0.0000
െ50.8700 0.0370 0.0000 0.0000
0.4987 0.0000 െ0.0001 0.0000
െ0.1991 0.0001 0.0000 െ0.0002ے

ۑ
ۑ
ۑ
ې

 

ଷܤ ൌ

ۏ
ێ
ێ
ێ
ۍ
6.6090 0.0511 0.0000 0.0000
39.9800 0.0274 0.0000 0.0000
െ53.1900 0.0130 0.0000 0.0000
0.1436 0.0001 െ0.0001 0.0000
െ0.2340 0.0000 0.0000 െ0.0002ے

ۑ
ۑ
ۑ
ې

 

ସܤ ൌ

ۏ
ێ
ێ
ێ
ۍ
43.4700 0.0533 0.0000 0.0000
52.4100 0.0332 0.0000 0.0000

െ139.3000 0.0030 0.0000 0.0000
0.1645 0.0001 െ0.0001 0.0000
െ0.5667 0.0000 0.0000 െ0.0002ے

ۑ
ۑ
ۑ
ې

 

ହܤ ൌ

ۏ
ێ
ێ
ێ
ۍ
െ85.5300 0.0549 0.0000 0.0000
253.3000 0.0040 0.0000 0.0000
െ82.3400 0.0288 0.0000 0.0000
0.7762 0.0000 0.0001 0.0000
െ0.3254 0.0001 0.0000 െ0.0002ے

ۑ
ۑ
ۑ
ې

 

଺ܤ ൌ

ۏ
ێ
ێ
ێ
ۍ
13.9200 0.0566 0.0000 0.0000
86.2700 0.0212 0.0000 0.0000

െ114.1000 0.0082 0.0000 0.0000
0.2892 0.0000 െ0.0001 0.0000
െ0.4795 0.0000 0.0000 െ0.0002ے

ۑ
ۑ
ۑ
ې

 


	GSETDForm9Revised022014_Print
	Masoud_Vaezi_Thesis_Final

