
 01 14

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance

Thesis/Dissertation Agreement.
Publication Delay, and Certification/Disclaimer (Graduate School Form 32)
adheres to the provisions of 

Department 

Ragibul Huq

DEVELOPMENT OF A NOVEL SENSOR FOR SOOT DEPOSITION MEASUREMENT IN A
DIESEL PARTICULATE FILTER USING ELECTRICAL CAPACITANCE TOMOGRAPHY

Master of Science in Mechanical Engineering

Sohel Anwar

Afshin Izadian

Andres Tovar

Sohel Anwar

Sohel Anwar 07/07/2014



i 

 

DEVELOPMENT OF A NOVEL SENSOR FOR SOOT DEPOSITION 

MEASUREMENT IN A DIESEL PARTICULATE FILTER USING ELECTRICAL 

CAPACITANCE TOMOGRAPHY 

A Thesis  

Submitted to the Faculty 

of 

Purdue University 

by 

Ragibul Huq 

In Partial Fulfillment of the 

Requirements for the Degree 

of 

Master of Science in Mechanical Engineering 

August 2014  

Purdue University 

Indianapolis, Indiana 

 

 



ii 

 

I would like to dedicate this work to my parents Ramjul Huq and Helena Huq. I thank all 

of you for your love and support.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

ACKNOWLEDGEMENTS 

This work was supported by the Mechanical Engineering Department of Indiana 

University-Purdue University Indianapolis. The author gratefully acknowledges the 

support of Mr. Rudy Earlson, and Mr. Joseph Huerkamp Laboratory Technician of 

Mechanical Engineering. The author also likes to thank Mr. Edmund Hodzen, Director 

Advanced Controls Systems Engineering, Cummins Inc. And the author is really grateful 

to his supervisor Dr. Sohel Anwar for his support throughout the years.  

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

TABLE OF CONTENTS 

Page 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

GLOSSARY……………… .............................................................................................. ix 

ABSTRACT…………………………… ........................................................................... xi 

1.        INTRODUCTION AND LITERATURE REVIEW ............................................... 1 

       1.1        Introduction……. ........................................................................................ 1 

       1.2        Literature Review ....................................................................................... 4 

2.        MODELING OF ELECTRICAL CAPACITANCE TOMOGRAPHY .................. 8 

       2.1        Permittivity Model ...................................................................................... 8 

                2.1.1        Series Permittivity Model ..........................................................10 

                2.1.2        Parallel Permittivity Model ........................................................11 

                2.1.3        Maxwell Garnett Permittivity Model .........................................12 

       2.2        Electrical Capacitance Tomography Measurement Principle ................... 12 

       2.3        Tomographic Image Formation ................................................................ 15 

3.        SIMULATION RESULT…….. ............................................................................ 20 

4.        EXPERIMENTAL SETUP .................................................................................... 25 

5.        EXPERIMENTAL RESULTS............................................................................... 32 

       5.1        Rule Based Tomographic Image Generation.. .......................................... 32 

       5.2        Linear Back Projection Based Tomographic Image Generation .............. 34 

       5.3        Rule Based Tomographic Image Using Printex U Material ..................... 42 

       5.4        Linear Back Projection Based Tomographic Image Printex U ................. 45 

       5.5        Statistical Error Calculation in Output Voltage ........................................ 50

 



v 

 

Page 

6.        CONCLUSIONS AND FUTURE WORK ............................................................ 54 

           6.1        Conclusion ................................................................................................ 54 

       6.2        Future Work .............................................................................................. 56 

LIST OF REFERENCES .................................................................................................. 58 

 

 



vi 

 

LIST OF TABLES 

Table .............................................................................................................................. Page 

3.1 Output voltages for different capacitance values  ....................................................... 22 

4.1 Number of electrodes vs number of independent measurement ................................. 27 

5.1 Experimental capacitance data set  ............................................................................. 33 

5.2 Sensitivity Map ........................................................................................................... 36 

5.3 Normalize Sensitivity Map ......................................................................................... 37 

5.4 Output voltage using Printex U................................................................................... 43 

5.5 Output voltage Vab using Dry sand ............................................................................ 50 

5.6 Standard deviation and error ....................................................................................... 51 

5.7 Output voltage Vab using Printex U ........................................................................... 51 

5.8 Standard deviation and error ....................................................................................... 52 

 

 

 



vii 

 

LIST OF FIGURES 

Figure ............................................................................................................................. Page 

1.1 Porous walls of a DPF................................................................................................... 2 

1.2 DPF diagnosis regulatory requirements. ....................................................................... 3 

2.1 Empty, completely filled and partially filled. ............................................................. 11 

2.2 Empty, completely filled and partially filled. ............................................................. 11 

2.3 Multiphase mixtures inside capacitor. ........................................................................ 12 

2.4 Electrical Capacitance Tomography systems flow chart ............................................ 14 

2.5 Capacitance measurement principles. ......................................................................... 15 

2.6 Square pixel grid ......................................................................................................... 16 

3.1 Real part of dielectric constant and soot layer thickness  ........................................... 20 

3.2 5V AC input in 60pF capacitor circuit ........................................................................ 21 

3.3 Output Voltage 1.6-1.7v for 5us ................................................................................. 21 

3.4 Relationships between output voltage and capacitance .............................................. 22 

3.5 Four capacitor plates positions in ECT and 2*2 pixel grid  ........................................ 23 

3.6 Sensitivity matrixes  .................................................................................................... 23 

3.7 Particulate deposition and Tomographic image  ......................................................... 24 

4.1 Isometric View of Setup  ............................................................................................ 28 

4.2 Voltage Change with the accumulation of sand (concentrated distribution)  ............. 29 

4.3 Voltage Change with the accumulation of sand (Uniform distribution) ..................... 29 

4.4 Variablity in experimental results ............................................................................... 30 

4.5 Experimental setup...................................................................................................... 31 

5.1 Four electrode arrangement ........................................................................................ 32 

5.2 Assigned values of Array ............................................................................................ 33

 



viii 

 

Figure ............................................................................................................................. Page 

5.3 Rule based tomographic image of DPF with zero and 25% fill ................................. 34 

5.4 Rule based tomographic image for DPF with 50% and 75% fill ................................ 34 

5.5 DPF with four capacitor plate ..................................................................................... 35 

5.6 Square pixel grid ......................................................................................................... 35 

5.7 Tomographic images for 10% Increment along circumference .................................. 38 

5.8 Tomographic images for 10% Increment Full ............................................................ 40 

5.9 Tomographic images for 20% full along circumference ............................................ 41 

5.10 Tomographic images for 20% Increment Full .......................................................... 41 

5.11 Rule based tomographic image using Printex U ....................................................... 43 

5.12 All set of Electrode Voltage differences between Printex U and dry sand ............... 45 

5.13 Tomographic image using Printex U total loadin ..................................................... 47 

5.14 Tomographic image using Printex U circumferential loading  ................................. 48 

5.15 Frequency distribution for dry sand  ......................................................................... 52 

5.16 Frequency distribution for Printex U  ....................................................................... 53 

 

...............................................................................................................................................  

 

 



ix 

 

GLOSSARY 

Symbol Quantity 

α Temperature coefficient 

Ɛ Permittivity 

Ɛr Relative permittivity 

Ɛs Effective permittivity in Series Permittivity Model 

Ɛp Effective permittivity in Parallel Permittivity Model 

Ɛm Effective permittivity in Maxwell Garnett Permittivity Model 

Ɛb Relative permittivity of a base dielectric 

Ɛi Relative permittivity of the i-th sort of inclusions 

Ɛo in vacuum, the value of  Ɛo = 8.854 ∗ 10-12 F/m 

ρT Resistivity at temperature T 

A Electrode surface area 

C Normalized electrode-pair capacitances 

Cm Overall capacitance in Maxwell Garnett Permittivity Model 

Cp Overall capacitance in Parallel Permittivity Model 

Cs Overall capacitance in Series Permittivity Model 

d Distance between two plates 

D Flux density 

 



x 

 

Symbol  Quantity 

E Electric field strength between the plates 

fi Volume fraction occupied by the inclusions of the i-th sort 

K Normalized pixel permittivity’s matrix 

Nik Depolarization factors of the i-th sort of inclusions 

Q Charge 

S Sensitivity matrix 

V Potential difference 

 
 

 

 



xi 

 

ABSTRACT 

Huq, Ragibul. M.S.M.E., Purdue University, August 2014. Development of a Novel 
Sensor for Soot Deposition Measurement in a Diesel Particulate Filter Using Electrical 
Capacitance Tomography. Major Professor: Sohel Anwar. 
 
 

This paper presents a novel approach of particulate material (soot) measurement 

in a Diesel particulate filter using Electrical Capacitance Tomography. Modern Diesel 

Engines are equipped with Diesel Particulate Filters (DPF), as well as on-board 

technologies to evaluate the status of DPF because complete knowledge of DPF soot 

loading is very critical for robust efficient operation of the engine exhaust after treatment 

system. Emission regulations imposed upon all internal combustion engines including 

Diesel engines on gaseous as well as particulates (soot) emissions by Environment 

Regulatory Agencies. In course of time, soot will be deposited inside the DPFs which 

tend to clog the filter and hence generate a back pressure in the exhaust system, 

negatively impacting the fuel efficiency. To remove the soot build-up, regeneration of the 

DPF must be done as an engine exhaust after treatment process at pre-determined time 

intervals. Passive regeneration use exhaust heat and catalyst to burn the deposited soot 

but active regeneration use external energy in such as injection of diesel into an upstream 

DOC to burn the soot. Since the regeneration process consume fuel, a robust and efficient 

operation based on accurate knowledge of the particulate matter deposit (or soot load)
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becomes essential in order to keep the fuel consumption at a minimum. In this paper, we 

propose a sensing method for a DPF that can accurately measure in-situ soot load using 

Electrical Capacitance Tomography (ECT). Simulation results show that the proposed 

method offers an effective way to accurately estimate the soot load in DPF. The proposed 

method is expected to have a profound impact in improving overall PM filtering 

efficiency (and thereby fuel efficiency), and durability of a Diesel Particulate Filter (DPF) 

through appropriate closed loop regeneration operation. 
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 INTRODUCTION AND LITERATURE REVIEW 1.

1.1 Introduction 

Particulate matter also known as particle pollution or soot is a complex mixture of 

extremely small particles and liquid droplets. Particle pollution is made up of a number of 

components, including acids (such as nitrates and sulfates), organic chemicals, metals, 

and soil or dust particles. The size of particles is directly linked to their potential for 

causing health problems. United States Environment Protection Agency (US EPA) is 

concerned about particles that are 10 micrometers in diameter or smaller because those 

are the particles that generally pass through the throat and nose and enter the lungs 

according to EPA website, and once inhaled, these particles can affect the heart and lungs 

and cause serious health effects [1].  

The issues of global climatic changes and human health hazards caused by 

different types of pollutions led environment protection agencies to identify the scopes of 

improvement and make the regulations more rigorous. With increasingly stringent 

emission regulations novel diesel engines have come a long way in the area of emission 

control technologies in the reduction of particulate matter emissions via diesel particulate 

filter or DPF. 

Diesel particulate filters were first used in the 1980 which remove the particulate 

matter/ soot from the exhaust of the Diesel engine with an efficiency level of 90-99% or 
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more. The most commonly used DPFs are porous ceramic wall-flow filters, as shown 

schematically in Figure 1.1. Refractory materials such as Silicon Carbide, Cordierite or 

Aluminum-Titanate are used for this purpose [2]. Silicon carbide filters dominate the 

market owing to the material’s mechanical strength and high thermal stability [3]. 

Alternate channels are plugged, forcing the exhaust through the porous channel walls. 

The gaseous exhaust passes through the porous walls, but Particulate Matter (PM) is 

trapped in the filter.  

 

Figure 1.1 Porous walls of a DPF [3]. 
 

However, as the PM or soot is retained by the filter, the filter passageway 

increasingly becomes more restrictive resulting in elevated back pressure in the exhaust. 

This furthers results in lower fuel efficiency for the engines since the pistons have to 

exert more pressure to purge the exhaust gas. One effective way to address this problem 

is to burn the soot load in the DPF periodically either by injecting more fuel in the engine 

or by a separate combustor upstream of the DPF with the aid of a diesel oxidation catalyst 

(DOC). The latter which is known as active regeneration of DPF is more efficient and is 

commonly used for DPF. Here a fuel doser is used to raise the exhaust gas temperature to 
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burn off the soot load in DPF. The timing and amount of fuel dosing is critical in 

ensuring optimal performance of DPF functions. Current commercially available DPF 

particulate matter detection methods are mostly based on pressure differences. This 

sensor is suitable for meeting the stricter environment requirements of Figure 1.2 but this 

particular sensor doesn’t have proper accuracy to reduce the fuel penalty [4]. 

 

Figure 1.2 DPF diagnosis regulatory requirements [5]. 
 

The performance efficiency of a DPF with active regeneration is largely 

dependent on the accuracy of soot load estimation. Current soot load estimation is based 

on differential pressure measurement across the DPF whose accuracy can vary up to ±50% 

from the true soot load [6]. As a result, fuel dosing for active regeneration may not be 

optimal. It has been shown that fuel penalty caused by regeneration (2.2% to 5.3 %) is 

more than fuel penalty due to backpressure (1.5% to 2.0 %) [7]. Accurate soot load 

knowledge is also necessary if one wants to rule out possible overheating of the DPF 

caused by exothermic soot oxidation. Because if DPF is allowed to accumulate too much 

particulate matter, the large amount of heat released upon regeneration cannot effectively 
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be dissipated, resulting filter damage such as by the formation of cracks or regions which 

may be locally melted.  

The knowledge of the tomography of DPF is a very important to minimize the 

impact of fuel consumption and avoid damaging the filter and other after treatment 

systems. In this paper we present a novel instantaneous soot load sensor based on 

electrical capacitance that can improve the soot load estimation. This sensor can be used 

in the feedback loop to improve the soot load estimation allowing for correct amount of 

fuel injection upstream of diesel oxidation catalyst (DOC) and thus potentially improving 

the overall DPF performance. For this reason we have explored the designing, building, 

and implementing a feedback control system for an actively regenerated DPF based on 

real time electrical capacitance soot load sensor feedback and presented it here for the 

first time. 

 

1.2 Literature Review 

The paper by Rose et al describes soot mass estimation using pressure drop signal 

combined with other parameters [8]. This team basically focuses on the real world 

accuracy during highly transient operation. In this study two different approaches were 

evaluated. The issues regarding pressure drop measurement is pressure drop response of 

the filter depends on several factors, which are  

1. Inlet effect and flow profile 

2. Friction along inlet 

3. Loses due to the resistance to flow through the wall 

4. Friction along outlet 
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5. Expansion at outlet. 

Only factors number 2 and 3 are affected by soot, on the other hand other factors 

do not depend on soot. DPF materials exhibit a nonlinear initial increase in pressure drop 

with PM load due to deep bed filtration. Though deep bed filtration is quite common 

phenomenon for a DPF soot deposition, in this paper this phenomenon been neglected 

and instead a typical method to minimize the deep bed filtration has been assumed. 

Nonetheless, the geometric intricacies are also going to be involved in pressure drop. If 

the DPF designed in such a way so the pressure drop gets a shallow slope then the 

detection of pressure drop will be more complex. Soot detection using pressure drop may 

be accepted for a while but it will not be sufficient to meet the newer and stricter 

regulations.  

Differential pressure detection has few limitations so researchers are pursuing 

other means for detecting the soot deposition. Husted et al in their paper “sensing 

particulate matter for on board diagnosis of particulate filters” explore the possibilities of 

soot measurement using particulate material sensor placed at the exhaust stream [5]. With 

the deposition of the soot along the surface of the sensor the electrical conductivity will 

increase and is measured as part of an electrical circuit. To use this particular method the 

sensor has to be very robust in design. Because the placement of sensor will be directly 

inside the exhaust stream, so it has to withstand the exposure of urea, water impingement, 

poison, ash, acid, and very high temperature like 900oC. Apart from these alien objects 

the sensor element must be above the dew point temperature to reduce the response delay. 

Though by using conventional contaminant protection coating on the sensor material 
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contamination problem can be eliminated but then soot have to use a torturous path to 

reach the sensor itself. 

Fischerauer et al used current microwave technology; which mostly used in 

typical phones, to measure the soot inside DPF [3]. This approach is based on the 

interaction of electromagnetic fields or waves at microwave frequencies with the DPF. 

Researchers assume that the addition of soot in a dielectric medium will influence its 

permittivity and conductivity, which should be observable via resonance frequency shift 

or via changes in the attenuation of the resonance peaks. This is basically cavity 

perturbation method. One set of microwave generator and receiver is required for the 

detection and then from the difference of frequency dependent scattering matrix soot 

deposition amount gets detected. The main concern regarding this measuring method is 

about cost and robustness. Microwave generator integrated circuit is still not very cheap 

and robustness may also be an issue with the cavity feeds. 

Sappok et al is working on another cutting edge method of filter soot sensing 

using radio frequency based sensor [4]. In this method two antennas will be installed on 

either side of a DPF filter. A pair of coaxial cable connects the pair of antennas with an 

electronic control device. The Radio Frequency signal characteristics will be influenced 

by the dielectric property of the material through it propagates. Signal amplitude and 

transmitted power is a function of the losses within the material through which the wave 

travels. With the increase of DPF soot deposition. Dielectric properties also changes 

which affect the RF signal directly. The RF sensor response is insensitive to flow 

variation unlike pressure drop. Though RF based sensors shows suitable results in both 

steady state and transient condition, it is still very hard to generate a tomographic image 
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of DPF using RF sensor. Without the tomographic image DPF axial loading condition 

will not be visible, Still more research is going on in this field. GE shared a product 

named Accusolve Diesel particulate filter soot sensor in the market. 

Strzelec et al from Oak ridge national laboratory are researching on 

nondestructive neutron computed tomography measurement of DPF to measure soot [9]. 

Past studies of soot loading have been done using transmission electron microscopy 

imaging and later nondestructive x-ray imaging. First one is destructive method and the 

former one provided images with very low contrast. On the other hand neutron imaging is 

a nondestructive method and can provide results with good resolution. Basic principle of 

this method is whenever a neutron beam is passing through matter then there will a 

attenuation of the beam caused by absorption and scattering of material. By measuring 

the intensity of the attenuated signal material properties can be detected. Using this 

method quantification of soot loading can be done but using the whole neutron beam 

setup for real time soot measurement in an automotive engine or a power generator 

engine is still very expensive. 

All the previously mentioned methods do have some limitation for soot load 

measurement. After studying through all those papers it is obvious that for soot load 

measurement sensor has to be accurate, robust, and cost effective. Authors of this work 

have conducted several studies for an ideal soot load sensor using electrical capacitance 

tomography which is shown to be more accurate, robust, and inexpensive compared to 

the existing sensors. 
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  MODELING OF ELECTRICAL CAPACITANCE TOMOGRAPHY 2.

2.1 Permittivity Model 

For this paper modelling of a complete ECT Diesel particulate filter soot 

measurement system requires three subsystems, Electrical capacitance tomography 

sensor, Diesel particulate filter model and Data acquisition system model. Designing 

these three subsystem models are a compromise between the achievability of real world 

scenarios and the possibility of obtaining such results from the least usage of resources i.e. 

the usage of computational time, usage of technical know-how of engineers as well as the 

computational power required.  

Two parallel plates of a conducting material separated by an air gap have been 

connected through a switch and a resistor to a signal generator. The instant the switch is 

closed; electrons are drawn from the upper plate through the resistor to the positive 

terminal of the signal generator. This action creates a net positive charge on the top plate. 

Electrons are being repelled by the negative terminal through the lower conductor to the 

bottom plate at the same rate they are being drawn to the positive terminal. This transfer 

of electrons continues until the potential difference across the parallel plates is exactly 

equal to the battery voltage. This element is called a capacitor.  

If a potential difference of V volts is applied across two plates separated by a 

distance of d, the electric field strength between the plates is determined by E. 
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                                                               d
VE =                                                            (1) 

The ratio of the flux density to the electric field intensity in the dielectric is called 

the permittivity of the dielectric [10]. 

                           E
D=ε                                                          (2) 

For a vacuum, the value of Ɛ (denoted by Ɛo) is 1210854.8 −×=oε  F/m. The ratio 

of the permittivity of any dielectric to that of a vacuum is called the relative permittivity, 

Ɛr. It simply compares the permittivity of the dielectric to that of air.   

 
o

r ε
εε =                                                            (3) 

 If the charge Q is large enough then flux density D can be written as 

A
QD =  

 

VA
Qd

d
V

A
Q

E
D

===ε  

 

Again V
QC =  

Therefore A
Cd=ε  

d
AC ε=  

                   Or, d
AC roεε=                                                    (4) 
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Based on the above mentioned principle and equation (4), Electrical capacitance 

tomography (ECT) system been established. The capacitance measured depends on the 

relative permittivity of the materials between the electrodes. Their relation can be linear 

or nonlinear in nature. It depends on the permittivity models used to characterize the way 

in which the contents occur. The various permittivity models used are the series model, 

parallel model, and Maxwell’s model. 

Suppose one substance of relative permittivity Ɛr and air mixed together. That 

substance occupy x of the total space between two electrodes. The effective permittivity 

of the mixture and their dependence on capacitance for various models are explained in 

the following sections. 

 

2.1.1 Series Permittivity model 

Two components with relative permittivity Ɛr and Ɛo in the pipe lie on top of one 

another, the effective capacitance can be considered as two capacitances connected in 

series. This is illustrated in Figure 2.1. In this case, the capacitance and permittivity are 

related in a nonlinear fashion. Mostly for primary experiments series permittivity model 

or parallel permittivity model has been considered in this work. The effective permittivity 

denoted by sε  and overall capacitance denoted by Cs is given respectively in equation (5) 

and equation (6) [11].  

                                              )1(1
)1(

−−
−

=
r

or
s x

xx
ε

εεε                                                    (5) 

                                      d
AC s

s
ε=                                                               (6) 
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Figure 2.1 Empty, completely filled and partially filled. 

 

2.1.2 Parallel Permittivity Model 

Two components with relative permittivity Ɛr and Ɛo in the pipe are appeared as 

discrete band and appear side by side, their effective capacitance can be considered as 

two capacitances connected in parallel. This is illustrated in Figure 2.2. In this case, the 

capacitance and permittivity are related linearly. The effective permittivity and overall 

capacitance is given respectively in equation (7) and equation (8). [11]  

     )]1(1[ −+= rop x εεε                                             (7) 

 d
AC p

p
ε

=                                                       (8) 

 

Figure 2.2 Empty, completely filled and partially filled. 

Empty Completely fill Partially fill 

Empty 
Completely fill 

Partially fill 
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2.1.3 Maxwell Garnett Permittivity Model 

The generalized Maxwell Garnett mixing formula for multiphase mixtures with 

randomly oriented ellipsoidal inclusions [12]. In this model two materials of relative 

permittivity Ɛi and Ɛb are mixed randomly like Figure 2.3, then the effective permittivity 

become Ɛm. here if is the volume fraction occupied by the inclusions of the i-th type, Nik 

are the depolarization factors of the i-th type of inclusions. 

                   
∑∑

∑∑

==

==

−+
−−

−+
−
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i
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k biikb

b
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N
f

εεε
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εεε
εεε

εε                     (9) 

                                                                d
AC s

s
ε=                                                              (10) 

 

Figure 2.3 Multiphase mixtures inside capacitor. 

 

2.2 Electrical Capacitance Tomography Measurement Principle 

Electrical capacitance tomography (ECT) is used to obtain information about the 

spatial distribution of a mixture of dielectric materials inside a vessel, by measuring the 

electrical capacitances between sets of electrodes placed around its periphery and 
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converting these measurements into an image or graph showing the distribution of 

permittivity [13]. The images are approximate and of relatively low resolution, but they 

can be generated at relatively high speeds.  

ECT can be used with any arbitrary mixture of different non-conducting dielectric 

materials such as plastics, hydrocarbons, sand or glass. However, an important 

application of ECT is viewing and measuring the spatial distribution of a mixture of two 

different dielectric materials (a two-phase mixture), as in this case, the concentration 

distribution of the two components over the cross-section of the vessel can be obtained 

from the permittivity distribution. 

An ECT system consists of a capacitance sensor, Capacitance Measurement Unit 

(CMU) and a control computer. For imaging a single vessel type with a fixed cross-

section and with a fixed electrode configuration, the measurement circuitry can be 

integrated into the sensor and the measurement circuits can be connected directly to the 

sensor electrodes. This simplifies the measurement of inter-electrode capacitances and is 

potentially a good design solution for standardized industrial sensors. 

However, most current applications for ECT are in the research sector, where it is 

preferable to have a standard capacitance measuring unit which can be used with a wide 

range of sensors. In this case, screened cables connect the sensor to the measurement 

circuitry, which must be able to measure very small inter-electrode capacitances, of the 

order of 10-15 F (1 fF), in the presence of much larger capacitances to earth of the order 

of 200,000 fF (mainly due to the screened cables)[14]. A diagram of a basic ECT system 

of this type is shown in Figure 2.4. 
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Figure 2.4 Electrical Capacitance Tomography systems flow chart. 

 

ECT system is a set of capacitor plates placed around a pipe or any other vessel. 

A source voltage is applied between one electrode (the source electrode) and ground and 

the resulting currents flow between the source electrode and the remaining (detector) 

electrodes to ground are measured. These currents are directly proportional to the 

capacitances between the source and detector electrodes. The set of capacitance 

measurements made.  

In ECT a complete set of measurement projections is made by exciting each 

electrode in turn as a source electrode and measuring the currents which flow into the 

remaining detector electrodes. So for an 8-electrode sensor, as shown in Figure 2.5 there 

will be 8 x 7 = 56 possible capacitance measurements. However, as half of these will be 

reciprocal measurements (the same capacitance should be measured by exciting electrode 

1 as a source and measuring the current into electrode 2 as is obtained by exciting 

electrode 2 as a source and measuring the current into electrode 1 etc.), there will only be 

Sine wave generator 

ECT electrode sensor 

Signal conditioning system 

Central control unit 

Digital signal 

Image reconstruction 

 



15 

 

28 unique capacitance measurements for a complete set of projections. In general for a 

sensor with E electrodes, there will be E*(E-1)/2 unique capacitance measurements. 

 

Figure 2.5 Capacitance measurement principles. 

 

The set of measured inter-electrode capacitance values and subsequently obtained 

permittivity’s are normalized to construct the permittivity images. 

Capacitance normalize .10
)()(

)(
<<

−
−

= n
ii

ii
n C

empCfullC
empCCC  

Permittivity normalize .10
)()(

)(
<<

−
−

= n
ii

ii
n K

empKfullK
empKKK  

The normalized values are then projected into a square pixel grid where the pixel 

values are similarly normalized to lie between 0 to1.  The image formed is not an exact 

solution but an approximate solution. 

 

2.3 Tomographic Image Formation  

The permittivity image or tomographic images are mapped onto a square pixel 

grid. The complete set of a measured inter-electrode capacitance values is required to 

reconstruct one permittivity distribution image. Figure 2.6 shows a 16x16 square pixel 

grid used to display the permittivity distribution image of a 4-electrode sensor having 

circular intersection of Diesel particulate filter.  
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Figure 2.6 Square pixel grid. 

 

From this (16x16) square pixel grid containing 256 pixels, only 224 are needed to 

construct the cross sectional image of the DPF and remaining pixels are not required and 

hence neglected. 

The field lines between two plates are curved and to suit the requirement these 

lines can be approximated. A proper sensitivity map, purpose of which is to aid in 

selecting the proper pixel that individually contributes to the capacitance changes, have to 

be developed for visualizing the electric field established between two electrodes when 

one of them is excited.  

A simple procedure for reconstructing an image of an unknown permittivity 

distribution inside the sensor from the capacitance measurements is the Linear Back 

Projection (LBP) algorithm [15]. Although its reconstruction accuracy is not very good, 

LBP has the advantage of being quite fast, in practice requiring only the multiplication of 

a fixed reconstruction matrix times the vector of measurements.  
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Let us consider an x-electrode sensor, from which N number of voltage data has 

been recorded, and square pixel grid pixel number is M. A grey level K(M) for each pixel 

has been calculated by the basic LBP formula. [16].  

NaNaaaaa CSCSCSCSCSCSK ×++×+×+×+×+×= ......... 55443322111     

NbNbbbbb CSCSCSCSCSCSK ×++×+×+×+×+×= ......... 55443322112  

…. 

…. 

NMNMMMMMM CSCSCSCSCSCSK ×++×+×+×+×+×= ......... 5544333311         

The relationships presented above between capacitance permittivity distributions 

can be written in a normalized form as: 
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           SCK =                                                    (11) 

C = N X 1 matrix containing the normalized electrode-pair capacitances Cm (in 

the nominal range 0 to 1).  

K = M X 1 matrix containing the normalized pixel permittivity’s (in the nominal 

range 0 to 1) N is the number of pixels representing the sensor cross-section 

S = M X N matrix containing the set of sensitivity matrices for each electrode-pair. 

This sensitivity map can be defined as 
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The sensitivity matrix describes how the measured capacitance between any 

combinations of electrodes changes when a change is made to the dielectric constant of a 

single pixel inside the sensor. Here )(empCi  is the capacitance voltage when DPF is 

completely empty and )( fullCi is the capacitance voltage when DPF is completely full. 

The properties of the capacitance sensor are measured or calculated initially to produce a 

sensor sensitivity matrix for the case when the sensor is empty. Sensitivity matrix is a 

composed of a set of sub- matrices (or maps) whose elements correspond to the 

individual pixels in a rectangular grid which is used to define the sensor cross-section. 

The sensor is normally calibrated at each end of the range of permittivity to be measured 

by filling the sensor with the lower permittivity material initially and measuring all of the 

individual inter-electrode capacitances. This operation is then repeated using the higher 

permittivity material. The data obtained during the calibration procedure is used to set up 

the measurement parameters for each measuring channel and is stored in a calibration 

data file. 

In principle, once the set of inter-electrode capacitances C has been measured, the 

permittivity distribution K can be obtained from these measurements using equation (11). 

Direct contributions of pixels to the measured capacitance between any specific 

electrode-pair is not be specified, but it can be shown from the sensitivity matrix S that 

certain pixels have more effect than others on this capacitance. Consequently, component 

values allocated to each pixel proportional to the product of the electrode-pair 

capacitance and the pixel sensitivity coefficient for this electrode-pair. Based on this 
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approximation the LBP algorithm uses the sensitivity matrix, S an approximate matrix 

which has the dimensions (M x N). 

This process is repeated for each electrode-pair capacitance in turn and the 

component values obtained for each pixel are summed for the complete range of electric 

pairs. 
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  SIMULATION RESULT 3.

Previous Studies regarding diesel soot dielectric properties has shown that in 

microwave range dielectric constant of soot has dependency on the soot layer thickness 

which is captured in Figure 3.1. 

 

Figure 3.1 Real part of dielectric constant and soot layer thickness [17]. 

 

In this model Series Permittivity Model has been chosen to calculate the effective 

permittivity of soot and air mixture. 
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In the model the length of DPF set at 6 inch, so the length of the capacitor plate 

will be 6 inch and for 4 capacitor plate ECT sensor the width of the capacitor plate will 

be 4.71 inch (approx.) and maximum distance between two plates will be 5.6 inch. So 

11
12

102649.1
)15(21

)21(10854.85 −
−

×=
−−

−×××
=sε  

                             8301.636.5
102649.172.46 11

=×××=
−

sC pF                              (12) 

A model of the soot detection system has been designed in PSpice to check the 

detection voltage in Figure 3.2 and output result has been shown in Figure 3.3. 

 

Figure 3.2 5V AC input in 60pF capacitor circuit. 

 

 

Figure 3.3 output Voltage 1.6-1.7v for 5us. 
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An Ac 5 volt 1 MHz has been supplied for 3 different types of capacitance values 

60 pF, 90 and 130pF and output voltage has been checked. Results are shown in Table 

3.1 and plot of Figure 3.3. Capacitance values are calculated from experimental electrode 

model and Equation 12. 

 

 

Figure 3.4 Relationships between output voltage and capacitance. 

 

Table 3.1 Output voltages for different capacitance values 

Input Voltage Capacitance Output Voltage 

5 VAC 60pF 1.6-1.7 

5 VAC 70pF 1.2-1.3 

5 VAC 90pF 0.9-1.0 

5 VAC 110pF 0.7-0.8 

5 VAC 130pF 0.5-0.6 

5 VAC 150pF 0.3-0.4 

 

Above simulation results showed that even a very small amount of soot deposition 

causes variation on the output voltage. Applying these capacitance values and voltage 
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values in linear back projection algorithm will help to build the tomographic information 

of a DPF.  

After data acquisition device collects all the capacitance values from capacitor 

voltage, these values needed to be normalize. Assume a 4 capacitor plate used in an ECT 

system just like Figure 3.5(a). The final tomography image will be constructed in a 2*2 

pixel as following in Figure 3.6. 

               
(a)                                                          (b) 

Figure 3.5 Four capacitor plates positions in ECT and 2*2 pixel grid. 

 

 

Figure 3.6 Sensitivity matrixes. 
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Now in a real time scenario if particulate materials accumulates inside of a DPF in 

the following manner like Figure 3.7(a) then the normalize values of ECT system outputs 

will be C = [0.6; 0.2; 1; 0; 0.2; 0.6] with the tomographic image like Figure 3.7(b). 

                     
(a)                                                          (b) 

Figure 3.7 Particulate deposition and Tomographic image. 
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 EXPERIMENTAL SETUP 4.

The experimentation of soot measuring system using ECT is going on in an 

experimental model of DPF made of Nylon 66, unreinforced, and flame retardant [18]. 

This Nylon 66 has very close dielectric properties of conventional DPF made from 

cordierite which has dielectric constant of 4.7(approx.) in 1MHz [19]. 

The DPF outer shell wall is conductive so the ECT system electrode has to be 

placed inside of the DPF wall. In that case the components of capacitance due to the 

electric field inside the sensor will always increase in proportion to the material 

permittivity when a higher permittivity material is introduced inside the sensor.  

The internal temperature of DPF will be highest when the regeneration of soot is 

taking place. Regeneration is a process of soot removal from the DPF and there are two 

different approaches existed one is active and another is passive. Active systems use extra 

fuel, whether through burning to heat the DPF, or providing extra power to the DPF's 

electrical system. This process required 600°C to burn Diesel particulate matter. This 

temperature can be reduced to somewhere in the range of 350°C to 450°C by use of a fuel 

borne catalyst [3]. There is a more effective way to burn soot at lower temperature 

brought by Johnson Matthey’s novel two-component design [3]. In this novel approach 

the catalyst is positioned before the filter to convert NO into NO2. Then The NO2 

oxidizes the soot which is collected on the filter to regenerate the filter at a much lower  
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temperature than is normally required. In fact, the CRT-continuously regenerating 

technology enables the filter to be regenerated at a temperature that is 20% lower than 

other filters on the market. By using this approach the soot burning temperature can be 

reduced up to 240°C. So whatever material we are using as ECT electrode it has to be 

able to withstand a versatile range of temperature. The properties that led us to choose 

copper as ECT electrode are [20] 

1) Melting point at 1357°K or 1084°C 

2) Do not reacted with water 

3) Resistivity = )(1068.1 8 m•Ω× −  at 20 °C 

4) Conductivity = )(1096.5 7 ms×  at 20 °C 

5) Temperature coefficient = 0.003862(K-1) 

6) Copper resists corrosion from moisture, humidity and industrial pollution 

7)  However products from other carrion like oxide, chloride and sulfide are 

conductive. 

 

Due to very low temperature coefficient of copper the change of conductivity with 

the change of temperature will be very low. If the assumption made that the temperature 

change inside of DPF is linear then relationship between resistivity and temperature will 

be 

)](1[)( oo TTT −+= αρρ  

)(10489.3)( 8 mT •Ω×= −ρ  
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Figure 4.1 shows an isometric view of the experimental setup with 8 capacitance 

electrodes and DPF model of 152mm (6 in) length with 130mm (5 in) diameter. There is 

a trade-off has to be done to choose the number of electrode. Higher number of electrode 

means complicated and expensive data acquisition hardware, smaller capacitance to be 

measured; slower data acquisition as we can see from Table 2 and currently 8-12 

numbers of electrodes are commonly used in an ECT sensor. These 8 electrodes have to 

be placed around the DPF. 

 

Table 4.1 Number of electrodes vs number of independent measurement [21] 
Number of 

electrodes 

Independent 

Measurement 

Typical speed 

6 15 400 [22] 

8 28 200 [23] 

12 66 100[24] 

16 120 50 [25] 

 

A common practice for the length of the ECT sensor is diameter has to be smaller 

than the length to avoid serious fringe effect [13]. So if the DPF diameter size is larger 

than the length then fringe effect cannot be ignored. For experimental purpose in this 

paper the filter model used with typical dimensions of 130mm (5in.) diameter and 

152mm (6in.) length [13]. For the experimental setup length of the electrode is larger 

than the diameter of ECT system. For this experimental setup fringe effect completely 

ignored. 
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Figure 4.1 Isometric View of Setup. 

 

The test bench is equipped with an automatic National instruments data 

acquisition system NI DAQ-6008 for capturing the capacitance values. Research team is 

using dry sand as a replacement of soot to verify the approach of using Electrical 

capacitance tomography to soot detection. Properties of dry sand are following [26] 

1) Density  1.60 - 1.70 g/cc  

2) Electrical Resistivity  1000 - 100000 ohm-cm  

3) Specific Heat Capacity  0.753 - 0.799 J/g-°C 

4) Thermal Conductivity  0.270 - 0.340 W/m-K 

 

Two different methods of sand distribution have been considered while 

conducting the experiments. In concentrated distribution the assumption is at first sand 

start accumulation near to one particular electrode, and later filled up the whole filter. 

Voltage applied on the RC circuit is 4v with 100 kHz frequency, approximation of 

frequency done from previous studies and experiments [27], which resulted output 
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voltage plot just as Figure 4.2. On the other hand in uniform distribution the assumption 

is the sand distributed equally through the whole filter resulted output voltage plot like 

Figure 4.3. Data acquisition hardware senses the change of sand accumulation by the 

changes of the capacitance plate voltages.  Voltage signals were processed in LABVIEW 

and Figure 4.2 and Figure 4.3 are depicting the fact that with the increase of sand 

accumulation the voltage is also changing.  

 

Figure 4.2 Voltage Change with the accumulation of sand (concentrated distribution). 

 

 

Figure 4.3 Voltage Change with the accumulation of sand (Uniform distribution). 
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 From Figure 4.2 and 4.3 it is visible that with the change of soot deposition output 

capacitor voltage also occurs in a detectable range. To clarify the result repeatability 

another graph has been implemented in Figure 4.4. This figure has depicted all the 

experimental results for Voltage VAB change vs soot deposition inside DPF from 10% to 

100%.  From Figure 4.4 the irregularities in linearity of Figure 4.2 and 4.3 are 

conceivable.  

 

  

Figure 4.4 Variability in experimental results. 
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Above figure shows the complete experimental setup to identify the relationship 

between output voltage and amount of accumulated material. 

 

Figure 4.5 Experimental setup; (a) Filter model, (b) Sand as soot replacement, (c) NI 
DAQ, (d) Data acquisition program, (e) Signal generator, (f) Data acquisition circuit, (g) 

Blower, (h) Material weighing. 
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 EXPERIMENTAL RESULTS 5.

5.1 Rule Based Tomographic Image Generation  

A completing set of experimentation has been conducted on the test bench using 

sand (density 1.6-1.9 g/cm3) as soot model, Nylon 66 as DPF model and four copper 

electrodes. Electrodes will be arranged like Figure 5.1. 

 

Figure 5.1 Four electrode arrangement. 

 

Sand has been poured into the grooves of DPF in a uniform fashion and 

simultaneously capacitance voltages between A-B VAB, A-C VAC, A-D VAD, B-C 

VBC, B-D VBD and C-D VCD has been measured using the NI DAQ-6008 device and 

LABVIEW [28]. 

Now to prepare detection image we need to consider a 2 by 2 pixel matrix. To 

assign the value of each pixel we need to normalize the capacitance voltage value. Every 

pixel will have certain normalize capacitance voltage values like Figure 5.2. 
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Table 5.1 Experimental capacitance data set 

Weight of 
sand 

Total A-B 
(VAB) 

A-C 
(VAC) 

A-D B-C B-D C-D 

0 0 3.946 3.998 3.902 3.857 3.963 3.823 
100 100 3.983 3.961 3.897 3.806 3.902 3.851 
100 200 3.972 3.957 3.889 3.904 3.894 3.802 
100 300 3.966 3.955 3.878 3.838 3.876 3.828 
100 400 3.925 3.942 3.878 3.826 3.867 3.822 
100 500 3.942 3.941 3.867 3.821 3.856 3.823 
100 600 3.929 3.91 3.856 3.866 3.87 3.813 
100 700 3.905 3.904 3.823 3.848 3.858 3.733 
100 800 3.867 3.928 3.849 3.838 3.878 3.722 
100 900 3.743 3.929 3.849 3.88 3.916 3.747 
100 1000 3.636 3.915 3.847 3.878 3.893 3.743 
100 1100 3.503 3.879 3.832 3.841 3.865 3.696 
100 1200 3.536 3.871 3.823 3.784 3.839 3.69 

 

 

Figure 5.2 Assigned values of Array. 

 

Based on the mathematical relationship portrays on Figure 5.2 each pixel values 

can be evaluated. Considering a scenario where DPF model is 25% fill means total fill is 

300 gm. According to Figure 5.2 and voltage values from Table 5.1 pixel values of [A] 

pixel is calculated below 

[A] Pixel value = VAB+VAC/4+VBD/4 = 3.9656 + (3.9549/4) + (3.87556/4) = 5.923215 

 



34 
 

 

Using this pixel values four detection images have been generated. Figure 5.3 and 

Figure 5.4 depicts some stages of soot deposition image. 

 
 (a) DPF zero fill                      (b) DPF 25% fill 

Figure 5.3 Rule based tomographic image of DPF with zero and 25% fill. 
 
 

 
(a) DPF 50% fill                       (b) DPF 75% fill 

Figure 5.4 Rule based tomographic image of DPF with 50% and 75% fill. 
 

In both Figures 5.3 and 5.4 detection image showed significant changes with the 

material deposition. 

 

5.2 Linear Back Projection Based Tomographic Image Generation  

After generating primary deposition detection image the Linear back projection 

has been used to generate tomographic image which is quite a bit complex algorithm 

compare to our previous method. To create a tomographic image using linear back 

projection method sensitivity matrix has been created [29]. The complete set of a 
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measured inter-electrode capacitance values is required to reconstruct one permittivity 

distribution image. Figure 5.6 shows a 4*4 square pixel grid used to display the 

permittivity distribution image of a 4-electrode sensor, distributed as Figure 5.5, having 

circular intersection of Diesel particulate filter. From this (4*4) square pixel grid 

containing 16 pixels, all 16 are needed to construct the cross sectional image of the DPF. 

 

 

Figure 5.5 DPF with four capacitor plate. 

 

 

Figure 5.6 square pixel grid. 
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A proper sensitivity map, purpose of which is to aid in selecting the proper pixel 

that individually contributes to the capacitance changes, has been developed in Table 5.2 

for visualizing the electric field established between two electrodes when one of them is 

excited. 

Table 5.2 Sensitivity Map  

PIXEL A-B A-C A-D B-C B-D C-D 
A 3.692 3.638 3.550 3.670 3.641 3.944 
B 3.685 3.635 3.556 3.662 3.680 3.830 
C 3.554 3.657 3.600 3.644 3.649 3.868 
D 3.537 3.578 3.669 3.637 3.671 3.487 
E 3.540 3.644 3.593 3.582 3.657 3.884 
F 3.555 3.678 3.641 3.664 3.717 3.934 
G 3.597 3.599 3.539 3.562 3.615 3.893 
H 3.528 3.645 3.642 3.643 3.687 3.971 
I 3.659 3.623 3.577 3.651 3.678 3.976 
J 3.509 3.638 3.636 3.671 3.710 3.975 

A1 3.509 3.657 3.625 3.687 3.744 3.968 
B1 3.702 3.666 3.618 3.646 3.719 3.591 
C1 3.716 3.678 3.594 3.710 3.718 3.935 
E1 3.535 3.646 3.564 3.688 3.698 3.993 
F1 3.713 3.667 3.588 3.709 3.716 3.992 
G1 3.626 3.657 3.569 3.658 3.661 3.970 

 

Sensitivity map is one of the crucial parts of a tomographic image generation in 

LBP method. Sensitivity map needed to be created only for one calibration. For both end 

of the range of soot deposition to be measured the data in zero fill and then the data in 

complete fill has been obtained. These high and low data sets have been used to calibrate 

the sensor. 
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Once the sensor has been calibrated capacitance data during various loading cycle 

has been obtained and normalize. The method of normalization took place in single step. 

As for example one set data normalize has been shown below.  

....1
)()(

)()( Mfori
empCfulliC

empCCNS
i

ii
i =

−
−

=  

Ci (empty) = 3.82V and Ci (full) = 3.25V 

From Table 5.2 a particular Ci = 3.55V 

So Si = (3.55 - 3.82) / (3.25 - 3.82) 

Si = 0.47    (0 < Si < 1) 

Based on this calculation Table 5.3 normalize sensitivity map has been generated 

using Table 5.2. 

Table 5.3 Normalize Sensitivity Map  

  A-B A-C A-D B-C B-D C-D 
A 0.928425 0.715134 0.186846 0.570407 0.348201 0.896534 
B 0.912299 0.693707 0.217141 0.542215 0.557531 0.682336 
C 0.615689 0.843042 0.445987 0.4767 0.393433 0.753609 
D 0.577745 0.308856 0.804782 0.449124 0.51081 0.040341 
E 0.584872 0.757605 0.408925 0.250021 0.435328 0.784783 
G 0.619509 0.988106 0.657259 0.548826 0.760222 0.878138 
H 0.033826 0.454527 0.131434 0.177413 0.209671 0.801636 
I 0.556456 0.760303 0.664233 0.47097 0.598349 0.947324 
J 0.37693 0.09076 0.063197 0.137947 0.101703 0.510613 

A1 0.514518 0.71374 0.63178 0.572083 0.722203 0.954597 
B1 0.514986 0.844774 0.577853 0.632677 0.90279 0.942237 
C1 0.952372 0.90748 0.542103 0.48249 0.770144 0.234994 
E1 0.983385 0.986083 0.416882 0.712909 0.764726 0.879863 
F1 0.572664 0.769117 0.261937 0.635198 0.654436 0.989346 
G1 0.975881 0.908155 0.385068 0.712414 0.753763 0.987084 
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After assembling the sensitivity map it was time to detect the change in material 

deposition inside DPF. How the soot has been distributed inside a DPF is still not been 

confirmed by any method. All diesel engine experts suggested that primarily soot 

deposited more densely near to the outer rim of the DPF because of the high speed entry 

into a DPF. Based on that approximation to measure soot deposition inside DPF two 

different approaches has been selected  

a) 10% increment in soot load and  

b) 20% increment in soot load.  

Based on these approaches model DPF has been loaded with respect to time. After 

the completion of soot deposition inside the DPF one set of capacitance value has been 

measured. This set of experimental values after normalization multiplied with previously 

found normalized sensitivity map which brings us the pixel values according to linear 

back projection. The pixel values in the permittivity images are similarly normalized 

using the high and low pixel values so they have 0 for the lower value and 10 for the 

higher value. The permittivity distribution of the soot loading along circumference inside 

a DPF with 10% increment has been shown in Figure 5.7. 

   

Figure 5.7 Tomographic images for 10% increment along circumference.  
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Figure 5.7 Continued.  

 

The permittivity distribution of the Full soot loading inside a DPF with 10% 

increment has Shown different tomographic images than the soot loading along 

circumference. New Tomographic images been shown in Figure 5.8. 
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Figure 5.8 Tomographic images for 10% increment full. 
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The permittivity distribution of the soot loading along circumference inside a DPF 

with 20% increment has been shown in Figure 5.9. 

   

   

 

Figure 5.9 Tomographic images for 20% increment full along circumference loading. 
 

 

The permittivity distribution of the Full soot loading inside a DPF with 20% 

increment has been shown in Figure 5.10. 

 

   

Figure 5.10 Tomographic images for 20% increment full loading. 
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Figure 5.10 Continued. 

From Figure 5.7 to 5.10 DPF tomographic images for different loading condition 

has been recorded. It’s evident that tomographic images are capable of capture the soot 

deposition amount change. In Figure 5.7 and 5.8 tomographic images of last few stages 

shows similar color concentration, because at those stages the total mass of soot inside 

the DPF is so high that the detection voltage do not vary significantly, from Figures 4.2 

and 4.3 plots these characteristics are evident. For more verification of the theory Printex 

U has been used for the experiment for soot replacement. Though dry sand does have 

similar dielectric properties of soot but pritex u material has more chemical similarities 

with soot. 

 

5.3 Rule Based Tomographic Image Using Printex U Material  

For experimentation of diesel emission Printex U always been used as a 

replacement of Diesel soot. After generating primary tomographic image using dry sand, 

Printex U has been used in the experimental setup to prove the theory in case of soot. For 

dry sand experiment results the changes in pixel density with the change is soot 
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deposition is quite high. In Table 5.4 the output voltages in ECT electrodes were shown 

using Printex U.  

Table 5.4 Output voltage using Printex U  

Weight 
gm 

A-B A-C A-D B-C B-D C-D 

0 3.6294 3.7088 3.6825 3.7547 3.7865 3.6789 
18.7 3.5779 3.6219 3.5363 3.6439 3.6878 3.5933 
18.7 3.3428 3.4265 3.3828 3.5889 3.6612 3.5668 
18.9 3.2675 3.3525 3.3658 3.4256 3.5254 3.4864 
19 3.2675 3.3665 3.1920 3.3738 3.3451 3.2780 

18.8 3.1747 3.3279 3.1137 3.1090 2.9336 3.1940 
19.4 2.7117 3.2547 3.0503 2.8826 2.8642 3.1044 
19.9 2.2951 3.0660 2.9979 2.8242 2.8516 3.0916 
20.3 2.2853 3.0369 2.9934 2.8196 2.8501 3.0782 
19.4 2.2708 3.0202 2.9763 2.7988 2.8430 3.0775 
18.9 2.2238 2.8842 2.8527 2.6458 2.7083 2.9343 
20 2.2192 2.5984 2.4190 2.5135 2.5438 2.6997 

 

   

   

Figure 5.11 Rule based tomographic image using Printex U. 
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Figure 5.11 Continued. 

 

From Figure 5.11 tomographic images its evident that presence of soot inside a 

DPF can be detected using rule based method but location of soot deposition are not 

conclusive, because instead of uniform soot deposition tomographic image shows high 

concentration of soot deposition in one particular quadrant which is quite unlikely. So it’s 

evident that to detect soot location with soot detection a more robust method has to be 

implemented, at that point again LBP method comes in. LBP helps to create tomographic 

images of DPF with the help of sensitivity pixels so location of soot deposition is also 

possible. Though previously in this work LBP method has been used to prepare 

tomographic image for dry sand, it will be visible that for Printex U material the 

tomographic image will be more vivid.  
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5.4 Linear Back Projection Based Tomographic Image Using Printex U  

Though dry sand is not very close of original soot but for experimentation use of 

dry sand increase the flexibility. Eventually when Printex U has been used as a soot 

replacement then more vivid voltage difference is visible compare to dry sand. Following 

Figure 5.12 all electrode voltage differences between soot and dry sand has been 

displayed. 

 

 

Figure 5.12 All set of n of Electrode Voltage differences between Printex U and dry sand 
(represents by a to f). 
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Figure 5.12 Continued. 
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Figure 5.12 Continued. 

 

From Figure 5.12 all voltage output comparison it is visible that voltage changes 

due to Printex U deposition inside the DPF is more vivid than dry sand deposition. 

Usually dry sand addition causes voltage change range from 3.95V to 3.75 V. On the 

other hand Printex U deposition causes voltage change range to shift to 3.7V to 2.2V, 

though with the increase of the range linearity of the output voltage diminishes. This 

Increase of voltage range cause better data acquisition and more versatile range of soot 

deposition can be recorded. 

   

Figure 5.13 Tomographic image using Printex U full loading. 
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Figure 5.13 Continued. 

   

Figure 5.14 Tomographic image using Printex U circumferential loading. 
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Figure 5.14 Continued. 

 

Comparing between Figure 5.7-5.10 (dry sand tomographic image) and Figure 

5.13-5.14 (Printex U tomographic image) shows that due to bigger voltage output range 

Printex U deposition can give much better image contrast during tomographic image 
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generation. Again comparing Figure 5.13 and 5.14 with Figure 5.11 (rule based image 

formation), contrast between pixels shows that LBP method is more accurate method.  

 

5.5 Statistical Error Calculation in Output Voltage 

In order to verify the accuracy in the result or to check the repeatability, statistical 

analysis has been conducted on the experimental results. Primarily for dry sand and 10-90% 

soot loading condition, all the experimental voltage results of capacitance VAB has given 

at Table 5.5 and Table 5.6 has presented the mean, standard deviation and standard error 

for same voltage results. 

 

Table 5.5 Output voltage Vab using dry sand  

Material 
Deposition 

% 

D 
A 
T 
A 
(a) 

D 
A 
T 
A 

 (b) 

D 
A 
T 
A 

 (c) 

D 
A 
T 
A 

 (d) 

D 
A 
T 
A 

 (e) 

D 
A 
T 
A 

 (f) 

D 
A 
T 
A 

 (g) 

D 
A 
T 
A 

 (h) 

D 
A 
T 
A 
 (i) 

10 3.599 3.601 3.578 3.543 3.588 3.529 3.590 3.530 3.591 

20 3.599 3.572 3.568 3.512 3.588 3.525 3.568 3.514 3.500 

30 3.593 3.558 3.545 3.508 3.564 3.510 3.558 3.490 3.483 

40 3.502 3.526 3.501 3.478 3.533 3.506 3.465 3.484 3.476 

50 3.491 3.501 3.496 3.453 3.525 3.486 3.458 3.480 3.463 

60 3.482 3.495 3.475 3.390 3.484 3.471 3.446 3.472 3.452 

70 3.465 3.466 3.471 3.387 3.469 3.436 3.413 3.381 3.401 

80 3.452 3.422 3.459 3.384 3.465 3.409 3.409 3.374 3.393 

90 3.430 3.415 3.386 3.384 3.419 3.388 3.391 3.366 3.385 
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Table 5.6 Standard deviation and error  

 

 

 Table 5.5 has represented the fact that experimental shows pretty high 

repeatability with a very low standard error. Following same steps Output voltage Vab 

using Printex u, standard deviation and error has been recorded in Table 5.7 and Table 

5.8. 

Table 5.7 Output voltage VAB using Printex U  

Material 
Deposition  

% 

D 
A 
T 
A 
 1 

D 
A 
T 
A 
2 

D 
A 
T 
A 
3 

D 
A 
T 
A 
4 

D 
A 
T 
A 
5 

D 
A 
T 
A 
6 

D 
A 
T 
A 
7 

D 
A 
T 
A 
8 

D 
A 
T 
A 
9 

9 3.628 3.454 3.549 3.542 3.471 3.525 3.460 3.565 3.513 

18 2.839 3.339 3.381 3.481 3.218 3.389 3.374 3.506 3.049 

27 2.807 3.335 3.378 3.449 3.019 3.266 3.269 3.374 2.907 

36 2.647 3.248 3.334 3.153 3.019 3.070 3.170 3.313 2.851 

45 2.479 3.041 3.155 3.070 2.778 3.062 3.067 3.139 2.806 

54 2.429 2.938 3.122 2.844 2.705 3.062 3.044 3.102 2.806 

63 2.409 2.832 2.968 2.772 2.649 2.754 2.889 3.088 2.779 

72 2.390 2.726 2.893 2.653 2.560 2.664 2.859 2.726 2.614 

81 2.318 2.426 2.677 2.584 2.523 2.243 2.573 2.698 2.571 
 

Material Deposition 
% Mean SD Standard error 
10 3.572 0.028 0.009 
20 3.550 0.035 0.012 
30 3.535 0.036 0.012 
40 3.499 0.023 0.008 
50 3.485 0.022 0.007 
60 3.465 0.030 0.010 
70 3.434 0.036 0.012 
80 3.417 0.032 0.011 
90 3.393 0.021 0.007 
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Table 5.8 Standard deviation and error  

Material Deposition % Mean SD 
Standard 

Error 
9 3.514 0.057 0.018 

18 3.265 0.204 0.065 
27 3.182 0.213 0.067 
36 3.075 0.206 0.065 
45 2.952 0.200 0.063 
54 2.854 0.237 0.075 
63 2.751 0.215 0.068 
72 2.642 0.170 0.054 
81 2.493 0.150 0.047 
90 2.356 0.136 0.043 

 

 Table 5.8 represents the facts that during the experiments the standard errors are 

pretty less, and the errors ranges from 0.018 to 0.067.  Another method to check the 

repeatability is to check the frequency of a certain result range. Again for dry sand 

voltage output result frequency has been plotted in Figure 5.15. 

 

5.15 Frequency distribution for dry sand. 
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And for Printex U voltage output result frequency has been plotted in Figure 5.16. 

 

5.16 Frequency distribution for Printex U. 

 

Figure 5.15 and Figure 5.16 shows very small irregularities in the result of Vab. 

Frequency of the voltage values varies, and that variation causes the irregularities in 

voltage vs deposition curve like Figure 4.2 and 4.3 or in the tomographic images. 
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 CONCLUSION AND FUTURE WORK 6.

6.1 Conclusion 

Diesel particulate filter is a very important inclusion in a diesel engine to maintain 

the emission level per standard. Though there are several types of DPF technologies are 

available in the market this paper focuses on the model closest to cordierite diesel filter. 

Most of the DPF currently available in the market can reduce PM emission almost 99%. 

But only soot deposition is not the only purpose of DPF, after few cycles the soot has to 

burn down completely to eliminate the Pm from DPF. That require very high temperature 

which can cause cracks inside the DPF surfaces and excessive fuel use can cause fuel 

penalty. To maintain an optimized amount of fuel for PM burning accurate knowledge of 

deposited soot in necessary. For both maintain DPF structural integrity and maintain 

emission regulation it is very important to know the exact amount soot deposited inside a 

DPF. There are several technologies available to detect and measure the soot status inside 

a DPF like pressure drop sensor, particulate emission sensor, microwave sensor, radio 

frequency sensor etc. In this paper we discussed about a novel soot sensing sensor based 

on electrical capacitance tomography. Previously ECT system has been used in various 

purposes like two flow concentration measurements in oil industries but in this paper 

ECT has been implemented on DPF soot measurement system where any soot or 

Particulate Matter deposition inside DPF will cause a change in total dielectric properties   
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inside the DPF. This of dielectric property will cause a change in the capacitance. 

Electrodes of ECT system are going to act a set of capacitor surrounded the DPF. 

Whenever there is a change of dielectric property inside a DPF the changes will be 

captured via capacitors surrounded it. A set of capacitor will capture a combination of 

capacitance data and voltage data. After applying either rule based method or linear back 

projection method a tomographic image of a particular state can be captured.  

For this paper primarily, as soot replacement Printex U has been used because it 

has the closest dielectric property of original soot, and this material is available in market. 

After running the simulation and primary capacitance experiment it is evident that change 

in the deposition material can change the capacitance. After getting the proof of this 

theory ECT system in a model DPF, made of Nylon 66), has been implement with a dry 

sand distribution and captured results. After finishing the experiment using dry sand a 

different type of material has been used for experimentation. Printex U has closest 

chemical properties of soot originally generated from an engine. After using Printex U 

primary data showed more dynamic result compare to dry sand results.  Whole 

experiment has been repeated using Printex U and this time we have received more 

vibrant tomographic images with more contrast.      

The simulation results demonstrated the general relationship between the amount 

of soot deposited and the output voltage of ECT system and experimental results shows 

that ECT systems are responsive with the change of material accumulation thickness. To 

be more specific, from previous papers and experimental results its evident that deposited 

soot thickness inside DPF will cause varying dielectric constant which will impact the 

capacitance of ECT system and output voltage. And the final tomographic images of both 
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from dry sand and Printex U material showed that detection of soot deposition inside a 

DPF is possible using this ECT technology. 

 

6.2 Future Work 

The experimental works related with this paper solely has the proof of the theory. 

Electrical Capacitance tomography is a very comprehensive method which can be 

implemented in any multiphase flow concentration measurement. Some future works has 

been mentioned below 

1. Transient analysis 

All the experiments involved in this paper are conducted in a steady state mode. 

To take this study further a transient analysis of soot deposition measurement using ECT 

system has to be conducted. Transient analysis should be involved with various types of 

driving cycles. For conducting the experiments in a transient form a complete setup of 

engine and engine after treatment system will be prepared. 

2. Finite Element Analysis (FEA) Analysis 

A numerical technique like Finite Element Analysis can be implemented to 

measure the soot deposition amount changes inside a diesel particulate filter. Using FEA 

a bigger sensitivity matrix can be generated which will generate tomographic images with 

higher contrast. 

3. Hardware In loop (HIL) Simulation 

Using HIL simulation an interface between the plant simulation and embedded 

system can be created. This embedded system can be used to test the real complex 

systems.  
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4. Analyze external impact 

Outside temperature pressure and humidity does have some impact on the overall 

engine performance and including engine emission, so external factors have some 

impacts on the ECT system output results. Environmental impact has to be tested on DPF 

soot measurement system 

5. Error calculation 

After developing an original engine setup and original DPF in a test bed a neutron 

based or TEOM based nondestructive tests can be implemented to measure the exact 

error percentage of soot deposition result inside a DPF. 

6. Model based fault detection 

A model based fault detection method can be implemented to detect any crack 

and internal flaws of a DPF. A simplified model development will be the work for next 

stage then comparing results from model with experimental data can lead to a very robust 

DPF fault diagnosis method. 
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