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Unmanned aerial vehicles (UAVs) frequently operate in partially or entirely

unknown environments. As the vehicle traverses the environment and detects new

obstacles, rapid path replanning is essential to avoid collisions. This thesis presents

a new algorithm called Hierarchical D* Lite (HD*), which combines the incremen-

tal algorithm D* Lite with a novel hierarchical path planning approach to replan

paths sufficiently fast for real-time operation. Unlike current hierarchical planning

algorithms, HD* does not require map corrections before planning a new path.

Directional cost scale factors, path smoothing, and Catmull-Rom splines are used

to ensure the resulting paths are feasible. HD* sacrifices optimality for real-time

performance. Its computation time and path quality are dependent on the map

size, obstacle density, sensor range, and any restrictions on planning time. For the

most complex scenarios tested, HD* found paths within 10% of optimal in under 35

milliseconds.
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Chapter 1: Introduction

Flight paths for unmanned aerial vehicles (UAVs) often consist of traveling

from their current location to one or more given goal locations without complete

knowledge of the surrounding environment. Because the domain is not entirely

known, sensors on the UAV continuously detect new obstacles as the vehicle travels

towards the goal, and the original path that was being followed may no longer be

valid. In these situations, the UAV must plan a new path sufficiently fast in real-time

to avoid collisions with these obstacles.

Real-time replanning is also necessary when chasing a moving target. The path

may frequently become invalidated as the target moves, so fast replanning is again

needed to ensure the vehicle does not stray too far from the optimal path. In this

thesis, a new path planning algorithm is presented that is capable of handling both

of these challenges by computing new paths fast enough to operate in real-time. Re-

planning within 60 milliseconds provides real-time performance for vehicles traveling

at moderate speeds [3], and the presented algorithm consistently finds paths even

faster. Finding the true shortest path is sacrificed for performance improvements,

but the worst case resulting path lengths are within 10% of the optimal path.

1



1.1 Motivation

Path planning in known, 2D terrain is a well-studied problem [4], and various

solutions to find the shortest path exist. Potential field methods guide the vehicle

by simulating attractive forces around the goal location and repulsive forces around

obstacles. Visibility graphs create edges between the vertices of obstacles, and a

2D implementation guarantees the shortest path will be found [5]. Heuristic based

planners, such as the widely used A* algorithm, utilize a user-supplied cost esti-

mate between two states on a map to guide the search from start to goal and are

guaranteed to find the shortest path [6].

There are three main problems with existing solutions that make them un-

suitable for real-time 3D path planning. Some of these algorithms were designed for

off-line operation in known environments, so their primary function is to find the

true shortest path, with minimal focus on reducing run-time. Additionally, they are

generally designed for 2D environments and do not necessarily carry over well to 3D

environments. Visibility graphs, for example, are guaranteed to find the shortest

path in 2D, but are frequently unable to find the shortest path in 3D [5] as shown

in Section 2.2.2. Lastly, many are not designed to update paths to accommodate

unexpected changes in terrain. When a path needs to be recalculated, none of the

previously used information gets reused to speed up the current search.

Real-time path planning in unknown terrain has not been studied as exten-

sively, and fewer solutions exist. Because the entire path is frequently not needed

immediately, most on-line planners such as Real-Time A* (RTA*) [7] obtain real-
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time performance by restricting the lookahead of each search. Instead of finding

the complete path, they find a prefix of the path and begin to move along it. This

approach allows the vehicle to begin moving within a constant amount of time,

regardless of the map size used to represent the environment. However, because

the complete path is not found, this prefix being followed is often a low-quality,

suboptimal path [7–9].

Heuristic based incremental planners, such as D* Lite [4], expand the A*

algorithm to reuse previous information to reduce the computation time for the

current search. This category of planners attempts to combine the performance of

on-line algorithms with the solution quality of heuristic-based algorithms. While this

class of planners is promising for smaller environments, it is currently not suitable

for real-time operation in its current state; the performance of such a planner is

sufficient for some scenarios [9], but it does not perform well for large 3D maps. On

a small 2D map represented by a grid, there are no more than eight possible nodes

to move to from any given node. However, a 3D cubic map has 26 possible successor

nodes. This exponential increase in grid size significantly slows down the search,

as does computing the entire path to the goal each time the environment changes.

This process can be significantly sped up by initially planning a coarse path and

later refining it, as demonstrated by Botea and Müller [2]. This algorithm, known

as Hierarchical Path-Finding A* (HPA*) is designed for a 2D implementation, and

needs to be expanded to 3D for real-time UAV path planning.
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1.2 Thesis Contributions

This thesis presents an algorithm written in Python called Hierarchical D*

Lite, or HD*. It combines and modifies D* Lite and HPA*, resulting in a heuristic-

based algorithm suitable for real-time use. D* Lite is first used on coarse levels to

find a rough path. Next, it is refined into a high-resolution path and then smoothed.

This path is followed until either a scheduled replan is called for, the target moves,

or new obstacles are discovered that invalidate the path. A new coarse path is then

computed, and the process repeats until the goal is reached.

The performance of HD* will be compared to that of 3D Field D* [3], which

is an extension of the D* Lite algorithm designed for real-time use. Performance is

measured with respect to the number of nodes searched, path computation time, and

past cost. We show that HD* reduces the number of node expansions by an order

of magnitude to rapidly find paths. This speed comes with a worst-case increase

in path cost of less than 10%. The performance of HD* will also be looked at on

many randomly generated maps while varying multiple parameters, to see how it

performs in different environments. The modifications necessary to obtain real-time

performance while providing realistic paths are as follows:

1. An improvement to the approach used by HPA* to create coarse levels. In its

current form, the map representation may need to be repaired when new ob-

stacles are detected. Because we are considering completely unknown environ-

ments, this can happen often and degrade performance. Instead, an improved
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method of defining the high-level search space is presented. The proposed

method works for any environment and removes the overhead of repeatedly

correcting the map.

2. The coarse paths found in HPA* neglect to consider the known obstacles of

the map. This improves performance, but can result in paths that are more

suboptimal than necessary, and leaves more work for the refinement stage.

HD* utilizes line-of-sight checks to ensure the validity of the computed coarse

paths. These checks are performed using Bresenham’s Line Algorithm [10].

3. The implementation of user-defined directional cost parameters that can be

tailored to the particular situation. Vertical travel is often more costly than

planar travel, and sometimes even impossible. This addition allows HD* to

handle both of these situations.

4. Path-finding algorithms typically call for path replanning when new obstacles

are detected, regardless of their location. This leads to unnecessary replanning.

HD* improves upon this by only computing a new path when the detected

obstacle blocks the current path.

5. Path smoothing and Catmull-Rom splines are used to reduce path length

and provide more realistic looking paths. Path smoothing is only applied in

directions of uniform cost to ensure smoothing cannot result in more costly

paths.

5



1.3 Thesis Overview

In Chapter 2, an in-depth overview of the problem is presented along with cur-

rent existing solutions. Chapter 3 provides a review of the algorithms that compose

the foundation of HD*. Chapter 4 discusses the issues that arise when attempting

to use these algorithms in unknown 3D environments, and presents the implemented

solutions. Chapter 5 explains the various methods used to obtain near-optimal and

realistic looking paths, and Chapter 6 presents the methods employed to ensure

computation time is sufficiently fast for real-time performance. Chapter 7 compares

HD* with 3D Field D* and explores how the performance of HD* varies in a wide

range of possible operating configurations. Suggested improvements are presented

in Chapter 8.
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Chapter 2: Background

2.1 Problem Description

Path planning is the process of determining a series of movements that direct

a vehicle, known as the agent, from its current position to the desired goal location,

referred to as the target. The path followed should be that with the lowest possible

traversal cost, which in this case is the distance traveled, but could also be metrics

such as fuel usage, travel time, etc. We start with a completely unknown 3D envi-

ronment. As the UAV follows a computed path, it uses onboard sensors to detect

the surrounding environment and update its knowledge of the terrain. Note that

the sensor problem is not addressed in this thesis, and we start with the assumption

that the vehicle has adequate sensor data to generate a map of the environment.

When obstacles are detected, they may invalidate the current path, and the UAV

must plan a new route to the target. Depending on how many obstacles are present,

it is possible that replanning may need to occur after nearly every movement made.

Thus, it is essential that the replanning step can be executed sufficiently fast. To

ensure this, the desired timescale for replanning is on the order of milliseconds.

It may be the case that the target is the location of another UAV or some other

moving target. In this case, the goal state is continually changing, and the path
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may need to be constantly recalculated to ensure the agent remains on the optimal

path. Furthermore, the particular UAV dynamics can vary, so the algorithm should

be able to handle basic constraints such as scaling the cost of altitude changes and

preventing vertical movement. Finally, the generated paths should also be realistic,

meaning they should avoid frequent heading changes and sharp turns.

2.2 Map Representations

There are many different approaches to representing maps, and the approach

used can have a noticeable impact on performance. The representations presented

here use a set of nodes, S, where each node s ∈ S represents a possible state of

the agent. A node may either be open or blocked. Open nodes can be occupied by

the agent, whereas blocked states contain obstacles and cannot be occupied. The

start and goal nodes are given by sstart and sgoal respectively. Any given node s is

connected via an edge to its neighbor s′ ∈ succ(s), where succ(s) defines the set of

all successor nodes. The set of successors is dependent on the selected map represen-

tation. The cost to travel from s to s′ is given by c(s, s′), and the travel cost to an

occupied node is infinity. A brief overview of commonly used map representations

is provided below.

2.2.1 Grids

A common and intuitive representation is a grid, which discretizes the envi-

ronment into many individual nodes. In a 2D environment, these nodes can be

8



(a) 2D grid of squares (b) 2D grid of hexagons

Figure 2.1: Examples of grid representations. For a node s shown in blue, its
successors s′ are shown in red.

squares, hexagons, or triangles, with hexagons and squares being more common for

path planning [11]. Sample square and hexagonal grids are shown in Figure 2.1.

A node is considered occupied if any area within the node contains an obstacle,

which is wasteful when only a tiny portion of the node is blocked [12]. An attractive

property of hexagonal grids is that they have six equidistant successors [11]. Unlike

hexagons, the successors on square grids are not equidistant, as diagonal successors

are separated by a distance of
√

2 instead of one. For 3D representations, cubic

nodes are common as they are straightforward to implement, with each node having

26 successor nodes.

Movement on grids is limited to transitions between node centers, thus heading

angles become artificially constrained to increments of 45◦ for square grids and 60◦

for hexagonal grids. Smoothing the path after it has been found can partially remedy

this constraint, but grid based algorithms such as Theta* [13] and Field D* [14] are

necessary to allow for true any-angle path planning.
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2.2.2 Polygons

Instead of placing nodes at fixed locations, a polygonal map places nodes at the

vertices of obstacles [5,11]. Successor nodes are determined with line-of-sight checks,

where the function LineOfSight(s, s′) returns true if line-of-sight exists between the

two nodes. This is used to create a visibility graph, which defines succ(s) as each

node s′ for which LineOfSight(s, s′) returns true.

In a 2D scenario, the optimal path will always be formed by the edges of

the visibility graph, as demonstrated in Figure 2.2(a). This is no longer true when

generalized to 3D maps [5], as shown by the map in Figure 2.2(b). The nodes for

the visibility graph would be located on the vertices of the polygon, but the shortest

path does not include these vertices.

There are a few additional problems to consider. Line-of-sight checks can be

time-consuming, especially when the vertices are far apart. This can hinder per-

formance as the map may be frequently updated. Additionally, crowded environ-

ments lead to a large number of successor nodes, and more successor nodes leads to

slower path-finding. Lastly, determining where to place vertices for round obstacles

presents a challenge, and often does not lead to ideal solutions [2, 16].

2.2.3 Navigation Meshes

Navigation meshes can be thought of as a variant of polygonal representations.

Instead of representing the obstacles with polygons, the traversable areas are repre-

sented with polygons. This representation provides the option of placing nodes in

10



(a) 2D Visibility graphs are guaranteed to find the
shortest path [13].

(b) The optimal path in 3D does not always include the
vertices of obstacles [15].

Figure 2.2: Examples of Visibility Graphs

the center of the polygons, along the edges, on the vertices, or using a combination

of these three. Having many node locations allows for high-quality paths that do not

have to depend on the obstacle shapes. Navigation meshes can reduce the size of the

path planning space, which simplifies computation, and are useful for video games

where the environment may already be represented by sets of polygons. However,

they do suffer from many of the some problems as the polygonal representation,

including costly visibility checks and frequent updates to the map structure [11,16].

2.3 Review of Existing Solutions

Here, various path planning solutions are presented, and the advantages and

disadvantages of each are discussed.
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2.3.1 Potential Field Methods

Potential field methods [17, 18] can be used to avoid obstacles in real-time

by simulating a potential field. By simulating an attractive force around the goal

location and repulsive forces around obstacles, the vehicle can follow the field to the

goal. This method is simple, easy to implement, and was originality developed for

real-time use in unknown environments, making it an attractive candidate. [18]

However, potential field methods have a tendency to generate local minima

that trap the vehicle and prevent it from reaching the goal [17–19]. The local

minima may be removed by the injection of random noise, but this results in jagged

paths that may be infeasible to follow [19]. An alternative resolution is to include

a separate planner to provide information on map connectivity, but this increases

computation time and the planner is not guaranteed to be suitable for real-time

operation. Even if the global planner is sufficiently fast, the resulting paths from

this approach are likely to be suboptimal [17, 20].

2.3.2 Heuristic Planners

Heuristic based planners, such as the A* algorithm, utilize a user-supplied

heuristic to guide the vehicle to the goal. The A* algorithm was introduced in 1968

by P. Hart, N.Nilsson, and B. Raphael, [6], and it is a very popular search algo-

rithm in applications such as robotics and video games [13]. It is a complete and

optimal algorithm, meaning it will always find the optimal solution if one exists.

Heuristic-based planners can be used on a variety of map representations, includ-

12



ing grids, polygonal graphs, and navigation meshes. It is important to note that

heuristic planners were designed as off-line algorithms, and therefore are not capable

of handling map changes. When used in these circumstances, they cannot use any

previously obtained information to plan the new path. Instead, the entire path must

be replanned from the beginning, which is highly inefficient.

2.3.3 Incremental Planners

Incremental planners, such as D* and D* Lite [4, 21], are extensions of the

A* algorithm that can reuse information from previous searches to speed up the

current search. The name D* derives from that fact that they are dynamic versions

of A* [21]. When a change in the environment is detected, this family of algorithms

updates the information obtained from the previous search, essentially transforming

the outdated information into accurate information, reducing the time needed to

recompute the shortest path.

Rapidly Exploring Random Trees (RRTs) are another type of incremental

algorithm. They randomly pick samples from the map to generate short paths

organized into a tree [22]. Trees are expanded from the start and goal states, and

for each sampled state the planner tries to connect the state to the closest point on

each tree. If the state can connect both trees, a path has been found [20]. RRTs

tend to prioritize areas of the map that have not been explored, and will gradually

improve the resolution of the tree as necessary. They avoid the rapid growth in the

number of states that arises when using large grids. RRTs can also reuse information
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from previous searches and are comparable to D* Lite in regards to planning time.

However, they may also suffer from the local minima problem, generally do not find

optimal solutions, and are not very reactive to changing environments [20,23].

While incremental planners are not real-time planners by their nature, a suffi-

ciently fast implementation can act as one [9,24]. For smaller 2D implementations,

they may be fast enough to serve as a real-time planner, but performance begins to

suffer as the environment grows larger and more complex. Even though they can

reuse information from previous searches, planning the entire path to the goal still

can be quite time-consuming.

2.3.4 Real-Time Planners

Instead of planning the entire path to the goal, real-time algorithms such

as Real-Time A* (RTA*) and Learning Real-Time A* (LRTA*) [7, 8] only plan a

prefix of the path and begin to follow it. The agent searches a local region, finds

the optimal path within that region, and begins to follow it. A new partial path is

computed when the current path becomes blocked, or the agent leaves the previously

defined search space. The size of the local search space can be varied to guarantee

planning is completed within a set time requirement. The full path is generally

not needed immediately, so this approach allows the agent to begin moving within

a fixed amount of time, regardless of environmental complexity or distance to the

target [24].

For each encountered node, a value is stored which estimates the distance from
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that node to the target. These values are continuously updated as the vehicle travels

and learns more about its surroundings [7,8]. However, memory requirements scale

with the number of nodes and can become demanding on large maps [24], especially

considering solutions are often suboptimal [7]. Although real-time planners are not

optimal algorithms, they are complete algorithms so are guaranteed to find a solution

if one exists.

2.3.5 Hierarchical Planners

Hierarchical planners can be used to reduce map complexity and simplify the

path-finding process. The idea is that the number of nodes used to represent the

environment directly correlates to the time spent finding a path, as more nodes

means more states need to be searched. Furthermore, regular grids are not very

efficient for representing vast amounts of open space, as many cells are used to

represent a large open area [1]. The goal of hierarchical planning is to fix these two

problems to reduce the number of nodes, thereby reducing both the search space

and computation time [2]. This is achieved by representing large regions of space

using a single node. The procedure is analogous to planning a cross-country road

trip by car. Searching all types of roads creates an enormous search space and makes

it difficult to find the best path. Instead, the search space is greatly simplified by

using hierarchical planning. First, a route to the highway is found using local roads.

Next, the highways are used to cross the country, and lastly another local path from

the highway to the goal is found. Hierarchical planners cannot act as a standalone
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(a) Quadtree Path (b) Framed Quadtree Path

Figure 2.3: Paths Generated by Quadtrees [1]

planner, and still rely on another algorithm such as A* to compute paths.

2.3.5.1 Quadtrees and Octrees

Quadtrees and octrees [25] are based on the recursive decomposition of a grid

into smaller grids. Quadtrees and octrees refer to the 2D and 3D implementation

of this concept, respectively. This approach initially splits the map into four evenly

sized squares or eight evenly sized cubes. If any of the blocks are occupied, it is

further divided in the same manner, and the process is repeated until the highest

allowed resolution is reached, or every node is either fully blocked or fully unblocked.

The benefit of this approach is that large regions of open space are represented

by one cell, which significantly simplifies path-finding. As is typical with a grid

representation, the node centers are used for path planning. This can produce

suboptimal paths, particularly when crossing the larger cells [1, 2].

Framed quadtrees [1] have been proposed as a method to provide shorter and

more realistic paths by adding a perimeter composed of the highest resolution cells
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around each block. This allows for smoother and shorter paths to be planned. A

comparison of the paths generated by quadtrees and framed quadtrees is shown in

Figure 2.3. Note that the small gray squares around the border of Figure 2.3(b) rep-

resent the added border of framed quadtrees. Due to having many additional higher

resolution cells, framed quadtrees require more memory, especially in crowded en-

vironments. The benefits gained via framed quadtrees diminish as the environment

becomes more cluttered [1].

The biggest problem with quadtrees and framed quadtrees is that when the

environment is unknown, the additional step of updating the map representation is

required before the path is replanned. It has been shown in [1] that this results in

a longer replanning time than that of a standard grid representation.

2.3.5.2 Hierarchical Path-Finding A*

Another method to simplify the search space is Hierarchical Path-Finding A*

(HPA*) [2]. Instead of recursively dividing the map like quadtrees, HPA* takes

the opposite approach and starts with the original full-sized map. The nodes that

compose the original map are the highest resolution that is used to represent the

environment. The algorithm abstracts this existing map representation into multiple

coarse levels, with each level composed of many of the original high-resolution nodes.

Level 0 represents the full, high-resolution map, and each subsequent level is more

coarse than the one beneath it. HPA* was designed for 2D maps, and uses sets

of level 0 nodes to define transitions between adjacent clusters. These transitions
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represent the nodes and their successors for the abstract levels. Transitions are

defined by regions of adjacent nodes that are unblocked in each of the neighboring

clusters. If there is a stretch of open nodes, only one or two of them are selected to

be used as transitions to reduce the search space.

The coarse planning does not consider the details of the map, allowing a rough

path to be rapidly computed. The agent then plans the level 0 paths between

the cluster transitions as needed, and these paths can be found quickly over short

distances. If obstacles are detected along the current path, a new abstract path is

computed. This approach considerably improves performance because the coarse

planner has a greatly simplified search space, and the highest resolution planner

only needs to plan over small distances. While this method results in suboptimal

paths, it can decrease planning time by an order of magnitude. Additionally, path

smoothing on both the coarse and fine levels can bring path lengths to within just

1% of the optimal path length when the environment is known [2].

2.4 Chosen Approach

The preceding review of map representations and planning algorithms shows

that no approach is ideal for every situation, and a trade-off between path opti-

mality and performance is necessary. Potential field methods are first eliminated

from consideration due to their downsides. Using artificial potential fields to guide

the search means the local minima problem must be solved, and this brings either

increased computation time or low-quality paths. We can also eliminate RRTs as
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they have been shown to be slower than hierarchical planners and do not always

find near-optimal paths [20]. A hierarchical approach can be combined with an in-

cremental planner, but not with real-time planners since by nature these only plan

on a local level. That leaves a combination approach or a real-time planner as the

remaining two choices.

D* Lite was compared with the real-time algorithm LRTA* by Sven Koenig

in [26], and found some interesting results. Koenig compares the algorithms in two

types of environments. The first map is a maze, which detracts from the accuracy

of the heuristic values, and the second map contains random obstacles, resulting

in a fairly accurate heuristic. It is found that the performance of LRTA* is highly

dependent on the environment, whereas the performance of D* Lite seems to be more

consistent. D* Lite often outperforms LRTA* in the maze, because the misleading

heuristic confuses LRTA* due to the fact it only plans partial paths. On the other

hand, LRTA* consistently outperforms D* Lite in the random environment.

In the real-world, the terrain will likely fall between these two extremes. The

real-time planner has the benefit of ensuring any limitations on planning time are

met, but it is shown in [26] that the performance of LRTA* can vary significantly de-

pending on the specific implementation details. When the environment is unknown,

LRTA* poses the risk of taking long and undesirable paths, and therefore cannot

guarantee consistent and predictable performance. Incremental planners, however,

will be more consistent in finding near-optimal path lengths for a variety of envi-

ronments. Although the incremental planner requires more planning time as the

map size increases, this can be compensated for with the inclusion of a hierarchical
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approach. For these reasons, a hybrid algorithm combining a heuristic based incre-

mental planner with a hierarchical planner will be used. This choice naturally leads

a cubic grid representation, as this is the simplest way to define the hierarchy of

levels. With this approach, it is essential that paths are smoothed to obtain realistic

and high-quality solutions.

D* Lite will be the foundation for the planner, as it is an improvement over

both A* and D* in terms of performance [4]. The approach of HPA* will be the

foundation of the hierarchical planner, due to the increase in on-line planning time

experienced by quadtrees. This new algorithm will be known as Hierarchical D*

Lite, or HD*.
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Chapter 3: Overview of Implemented Algorithms

Before discussing how HD* works, it is essential to understand the foundation

it is built on. The heuristic based A* algorithm will first be described, followed by

an explanation of the incremental planner D* Lite. Lastly, the principles behind

HPA* are covered. Modifications have been made to these algorithms to make

them suitable for unknown 3D environments, and those changes will be presented

in Chapter 4.

3.1 A*

Until the development of A*, there was no central theory used to guide the

search of a minimum cost path [6]. Methods used to find shortest paths did not con-

sider computational practicality and required every node of the map to be searched.

The methods that did consider performance used domain specific knowledge to re-

duce the number of nodes searched, but were unable to find the shortest path. A*

combines these two approaches, resulting in a complete and optimal algorithm that

does not need to search the entire map.
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Algorithm 1 A* Algorithm
The functions used to manage the priority queue are: U.Insert(s, k) inserts node s
with key k into priority queue U . U.Top() deletes and returns the node with the
smallest priority in U . U.remove(s) removes s from U .

1: function UpdateVertex(s, s′)
2: gold = g(s′)
3: ComputeCost(s, s′)
4: if g(s′) < gold then
5: if s′ ∈ U then
6: U.remove(s′)
7: U.Insert(s′, f(s′))
8: function ComputeCost(s, s′)
9: if g(s) + c(s, s′) < g(s′) then . Found new shortest path from sstart to s′

10: bptr(s′) = s
11: g(s′) = g(s) + c(s, s′)
12: function BuildPath( )
13: path = sgoal
14: while s 6= sstart do
15: s = bptr(s)
16: path = path ∪ s
17: return path

18: function Main( )
19: U = closed = ∅
20: g(sstart) = 0
21: bptr(sstart) = NULL
22: U.Insert(sstart, f(sstart))
23: while U 6= ∅ do
24: s = U.Top()
25: if s = sgoal then
26: path = BuildPath()
27: return path

28: closed = closed ∪ {s}
29: for all s′ ∈ succ(s) do
30: if s′ /∈ closed then
31: if s′ /∈ U then
32: g(s′) =∞ . Initialize nodes when first encountered
33: bptr(s′) = NULL

34: UpdateVertex(s, s′)
35: return no path exists

A* works by keeping track of four different values for every node s ∈ S. These
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values are:

1. The g-value, g(s), which is an estimate of the cost from the start node to node

s. This cost is denoted c(sstart, s). The g-values are initialized to infinity.

2. The heuristic, h(s, sgoal), is an estimate of c(s, sgoal) provided by the user. The

heuristic must be admissible, meaning it never overestimates the true cost. It

must also be consistent, which is true if and only if it obeys the triangle

inequality h(s, s′′) ≤ h(s, s′) + h(s′, s′′). An admissible heuristic is required to

guarantee the shortest path is found. The Euclidean distance is a commonly

used heuristic when the agent can move in any direction.

3. The f-value, which is an estimate of the smallest cost of moving from s to the

goal state, and is defined as f(s) = g(s) + h(s, sgoal)

4. The backpointer of a node, given by bptr(s) ∈ succ(s), points to the parent

node of s. Recall that succ(s) represents all the successors of a given node. The

backpointer is used to extract the shortest path once the search is complete. It

is initialized to NULL when s is first encountered, and is computed using (3.1).

bptr(s) =


NULL if s = sgoal

argmins′∈succ(s)(g(s′) + c(s′, s)) otherwise
(3.1)

The open set U is a priority queue sorted by f-values, and the node with the

minimum f-value is expanded next. Initially, it only contains sstart. Expansion

of a node s occurs when each successor of s is operated on in order to determine
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their f-values. This begins in line 29 of Algorithm 1, which provides a complete

implementation of the A* algorithm. A* also maintains a closed list, which is a list

of all nodes that have already been expanded. The algorithm operates by removing

the state with the smallest f-value from U , moving it to the closed list, and expanding

that state. It terminates when the goal state is expanded, indicating the shortest

path was found and can be extracted. It may also terminate when U becomes empty,

in which case no path exists.

3.2 D* Lite

D* Lite is an extension of A* that is fundamentally the same with the benefit

of faster replanning. Whereas A* searches from start to goal, D* Lite [4] searches

from goal to start. This is because D* Lite requires the root node to remain the

same for each subsequent search in order to speed up replanning [26]. The start

node continually changes as the agent moves towards the goal. On the other hand,

the goal node is often a fixed location, making it an ideal candidate for the root

node. The restriction arises from the fact that obstacle detection occurs near the

vehicle within the range of its sensors. Planning from start to goal would require the

detected changes to be propagated throughout the entire path, but planning from

goal to start reduces the impact of these changes [27]. Because of this requirement

D* Lite cannot find only a prefix of the path, as the prefix would begin at the

goal node and therefore be useless to the vehicle. This restriction on the root node

prevents incremental search algorithms from being combined with real-time search
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algorithms.

D* Lite makes no assumptions about how the map costs change, and allows for

costs to either increase or decrease. All traversal costs are one for open nodes and

infinity for blocked nodes. Nodes of unknown status are assumed to be open. Be-

cause the search direction is reversed from A*, the g-values now represent estimates

of distances to the goal.

The g-values, f-values, and backpointers are computed for each node the same

way as they are in A*, with the addition of a new variable, known as the right-hand

side value. Often referred to as the rhs-value, this value is based on the g-values of

succ(s) and must always satisfy the relationship in 3.2. Its value is dependent on the

neighbors of a node, making it more informed than the g-value because it looks one

step ahead. This introduces the concept of consistency, where a node is considered

consistent if g(s) = rhs(s). When g(s) 6= rhs(s) the node is called inconsistent, and

can be categorized as overconsistent when g(s) > rhs(s), and underconsistent when

g(s) < rhs(s). Note that if rhs(s) = ∞, no node will point to s as its minimum

cost successor, and therefore bptr(s) = NULL.

rhs(s) =


0 if s = sgoal

mins′∈succ(s)(g(s′) + c(s′, s)) otherwise
(3.2)

The concept of consistency results in a modification to the operation of the

priority queue. It now contains only the inconsistent nodes whose g-values need to

be made consistent. The queue is lexicographically sorted by the key values k(s) of

each node, which are defined in 3.3.
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k(s) =

 k1(s)

k2(s)

 =

 min(g(s), rhs(s)) + h(s, sstart)

min(g(s), rhs(s))

 (3.3)

D* Lite finds the shortest path by executing the Main() function of Algo-

rithm 2. This first initializes the problem using the steps in lines 3-8. All g-values

and rhs-values are set to infinity, except for rhs(sgoal), which is initialized to 0. This

makes sgoal the only inconsistent vertex and therefore it gets inserted into U . For

large maps, it is not practical to initialize these values to infinity for all nodes, as

this may require significant amounts of memory. Instead, nodes can be initialized

when they are encountered for the first time. Next, the algorithm finds the shortest

path between the start and goal locations. This step is equivalent to running a

reversed version of A* and therefore is a complete and optimal algorithm. Thus,

if the execution of ComputeShortestPath() results in g(sstart) = ∞, then the cost

estimate from the start position to the goal is infinity, indicating that no path exists.

If a path does exist, line 27 is executed and the vehicle moves from its current

location to the successor node which lies on the optimal path. The environment is

then scanned for changes, and if new obstacles are detected UpdateVertex() is called

for each changed node. This ensures 3.2 remains satisfied for each node and adjusts

their status in U as needed. The key values of each node in U are then updated,

transforming the outdated queue into a current one. ComputeShortestPath() is

executed again, and the process is repeated until the target is reached or a path no

longer exists. There are a few optimizations that can be made to D* Lite, which

are discussed in detail in [4].
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Algorithm 2 D* Lite Algorithm
In addition to the functions used in A*, D* Lite also uses additional functions to
manage U . U.Pop() removes and returns the node number of the element with
smallest priority in U , and U.TopKey() refers to the key values of the node returned
from U.Pop().

1: function CalcKey(s)
2: return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s))]
3: function Initialize( )
4: U = ∅
5: for all s ∈ S do rhs(s) = g(s) =∞
6: rhs(sgoal) = 0
7: U.Insert(sgoal, CalcKey(sgoal))
8: function UpdateVertex(u)
9: if u 6= sgoal then rhs(u) = mins′∈succ(u)(c(u, s′) + g(s′))

10: if u ∈ U then U.Remove(u)
11: if g(u) 6= rhs(u) then U.Insert(u,CalcKey(u))
12: function ComputeShortestPath( )
13: while U.TopKey() < CalcKey(sstart) or rhs(sstart) 6= g(sstart) do
14: u = U.Pop()
15: if g(u) > rhs(u) then
16: g(u) = rhs(u)
17: for all s ∈ succ(u) do UpdateVertex(s)
18: else
19: g(u) =∞
20: for all s ∈ succ(u) ∪ {u} do UpdateVertex(s)
21: function Main( )
22: Initialize()
23: ComputeShortestPath()
24: while sstart 6= sgoal do
25: if g(sstart) =∞ then
26: return no path exists
27: sstart = argmins′∈succ(sstart)(c(sstart, s′) + g(s′))
28: Move to sstart
29: Scan environment for new obstacles
30: if new obstacles exist then
31: for all edges (u, v) with changed costs do
32: Update traversal cost c(u, v)
33: UpdateVertex(u)
34: for all s ∈ U do
35: U.Update(s,CalcKey(s))
36: ComputeShortestPath()
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A 2D example of D* Lite is now stepped through in Figure 3.1 to show how

paths are computed. The top image of Figure 3.1 shows the initial state of the map.

The heuristic used is the maximum absolute value of the difference between the x-

and y-coordinates of sstart and s, with sstart = B1 and sgoal = E3. A bold border

around a node indicates it will be the next node expanded. The vehicle is aware

of the two obstacles at B2 and C2. During the initialization step, the g-values and

rhs-values are set to infinity for each node. The rhs-value of the goal is then set to 0

and added to U with a key of k(sgoal) = [3; 0]. In Step 1, ComputeShortestPath()

is called. This call to ComputeShortestPath() is identical to a reversed A* search.

This step pops sstart from U , and the key values of its successors are computed and

inserted into U . Notice that cells D2 and D3 are tied for the minimum priority, so

D2 is arbitrarily selected to be expanded next. Step 2 shows the results after D2 is

expanded, and the key values of its successors are computed and inserted into U . D3

now has the minimum priority, but all of its successors are also shared by D2. Thus,

in Step 3 we see no changes to the node priorities. Node C1 is expanded in Step

4, which results in sstart being the next node expanded. Expansion of sstart results

in the start node becoming consistent, as shown in Step 5, which terminates the

ComputeShortestPath() function. The path can now be extracted by following the

nodes that results in the minimum cost of c(sstart, s′) + g(s′). The cost to transition

to any successor node, including diagonals, is 1 in this example, as indicated by the

heuristic definition. This results in a path of B1 → C1 → D2 → E3, which the

robot will begin to follow.
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Figure 3.1: D* Lite operation: finding the initial path [4]
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3.3 Hierarchical Path-Finding A*

As discussed in Section 2.3.5, HPA* [2] creates abstract levels to simplify the

search space. These abstract levels are composed of clusters of the high-resolution

nodes that represent the original map. Level 0 represents the highest map resolution,

with each successive level being coarser than the one below it. The number of levels

can be configured to increase with map size to help minimize search times. A

coarse abstract path is planned first, which is then refined using the finer abstract

levels. Level 0 nodes are then used to compute the short paths between the abstract

clusters.

To plan the coarse path, sets of entrances are defined between neighboring

clusters using the adjacent level 0 nodes. Consider the 2D case of two neighboring

clusters c1 and c2. The clusters share adjacent lines of nodes l1 and l2, where each

line is in one cluster. For a node s ∈ l1∪ l2, symm(s) defines the symmetric node of

s with respect to the border of the two clusters. The nodes s and symm(s) therefore

represent adjacent nodes that are not in the same cluster. With this definition an

entrance e can be defined as a set of nodes meeting the following conditions:

1. The border limitation condition states that an entrance e is defined only along

l1 and l2 and cannot extend beyond these bounds.

2. The symmetry condition states that ∀ s ∈ l1 ∪ l2 : s ∈ e⇔ symm(s) ∈ e.

3. The obstacle free condition states that an entrance cannot contain any blocked

nodes.
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4. The maximality condition states that an entrance is extended as far as possible

in both directions until one of the previous conditions is broken.

HPA* defines transitions within each entrance and A* is run on these transition

nodes to find the coarse path. For entrances with a length greater than a defined

threshold, two transitions are defined at the ends of the entrance. Below this length,

one transition is placed at the center. Figure 3.2 shows the transitions for a map

split into 10×10 clusters with a length threshold of 6 nodes. Black squares represent

obstacles, gray squares represent the transitions, and gray lines represent traversable

edges. The curved intra-cluster edges shown in the top-right of this figure do not

represent an exact path, but are intended to show that those nodes are successors

of one another.

Figure 3.2: Defining transitions on an abstract level. For simplicity, the intra-cluster
edges are only shown in the top-right cluster [2].
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The shortest coarse path is first computed using the transition nodes, neglect-

ing the details of the individual nodes composing the clusters. This path can be

refined to lower levels if desired, and is then computed at the highest resolution as

needed. This approach reduces the computational effort required. It is much easier

to find a path between small segments of the coarse path than through the entire

high-resolution map. When a path becomes invalid, HPA* discards it and computes

a new coarse path. In unknown environments, new entrances and transitions will

likely need to be found if obstacles occupy the current transitions [2].
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Chapter 4: Expansion to 3D

The most straightforward way to implement hierarchical levels in 3D is through

a grid composed of cubic nodes, which is the map representation used by HD*. This

allows for D* Lite to easily be expanded to 3D with each node represented as a tuple

of its coordinates, given by (x, y, z). The successors of a node simply become the 26

nodes that surround it. On the other hand, extending HPA* to 3D introduces some

challenges, which are explained and resolved below.

4.1 HPA* Problems

As detailed in Section 3.3, HPA* defines transition nodes between adjacent

clusters which are then used to run A* and find a coarse path [2]. However, this

approach is not ideal for 3D maps or unknown environments. For 3D maps, there

are many more node pairs that must be checked to define entrances between clus-

ters, which increases the time needed to complete this step. For example, a 2D

implementation with 8 × 8 clusters only has eight pairs of nodes shared by neigh-

boring clusters. Neighboring clusters in a 3D version with 8×8×8 clusters share 64

pairs. Compounded over every pair of adjacent clusters, this significantly impacts

the time required to identify transitions. This is not a problem when the environ-
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ment is completely known, as the entrances would only need to be identified once,

but for unknown environments this method will not suffice.

When the environment is unknown, the UAV has no initial knowledge of which

nodes are open. Once a set of transition points are defined, the UAV will likely

discover that some of these transitions are blocked. If the current path uses any of

these blocked nodes, it becomes invalid and needs to be recomputed. Without a new

set of entrances, the new path may be much longer than the previous one. Another

possibility is that every transition of a cluster is blocked and now a path cannot be

found. To resolve these problems the transition nodes must be redefined, but this

is a costly process. As seen with quadtrees in [1], devoting time to repairing the

map representation can significantly degrade performance. Instead, a new method

of determining coarse paths is needed for real-time hierarchical planning.

Another issue with HPA* is the lack of consideration for known obstacles. If

the obstacles are small and only span one or two nodes this would be an acceptable

approach. The level 0 planner would simply route the path around these obstacles.

When the domain includes large obstacles, such as buildings, this becomes problem-

atic. The coarse path may pass through a large obstacle, with one transition node

on either side of it. Planning a high resolution path between these points may result

in a very suboptimal path. Computation time increases with path length, so even

if longer paths are acceptable, the high resolution planning may take longer than

desired.
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4.2 Hierarchical Modifications

2 4 6 8 10 12 14

5

10

15

20
Start Node
Successors for 3x3 clusters
Successors for 6x6 clusters

Figure 4.1: Improved method for determining hierarchical successors in 2D environ-
ments.

Instead of continually redefining entrances between clusters, HD* does not

need the cluster borders and instead only uses the dimensions of the clusters to

identify successors. The abstract successor nodes of s are the 26 nodes that form

a cube around s at a distance equal to the cluster dimension. To clarify, a simple

2D example will be used. Consider the map of Figure 4.1, which has two levels

of clusters. The most coarse clusters are 6 × 6, and the finer clusters are 3 × 3.

The start location is (8, 8). When searching for a coarse path, the highest level is

used first. Therefore, the successors of the start location are all the nodes forming

a square a distance of 6 nodes away, given by the red nodes. Upon refinement, the
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3× 3 level is used, and the successors for this level are shown by the green nodes.

Successor nodes can now be rapidly computed from any node and planning is

no longer limited to sets of entrances. With this successor definition, a new coarse

path can be planned immediately when the current path becomes invalid, without

necessitating a map correction. It has the added benefit of requiring less storage, as

we do not need to maintain the list of valid transition nodes and their successors.

Instead, HD* only stores the dimensions of the clusters at each level.

There is one problem with this approach that fortunately has a simple solution.

When planning the path from goal to start, it is unlikely that the start node ends up

as a hierarchical successor. To resolve this, each time successor nodes are computed

we check the distance between the start node and the node being expanded. If it is

within a distance of twice the cluster size, it is considered a successor. This distance

was chosen in order to prevent the need for a final short transition to reach the

start node. This also helps reduce the number of nodes expanded. An example of

this is shown in Figure 4.2, which uses 3 × 3 clusters. The black squares represent

obstacles. The path between scurrent and sstart will not pass through node s1, as

there is not line-of-sight between s1 and sstart. Therefore, the path would normally

have to pass through s2. Instead, since sstart is nearby and has line-of-sight with

scurrent, we allow the coarse planner to jump directly between the two.

The downside to this approach is that D* Lite may not always be able to reuse

information to speed up the replanning of coarse paths. A new path may be needed

at anytime, and because the successors are dependent on the UAV’s location it is

likely that a different set of successors will be used. If information from previous
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Figure 4.2: During hierarchical planning, HD* can jump directly from scurrent to
sstart when the two nodes are nearby and have line-of-sight.

searches cannot be reused, it seems as if A* would be sufficient. However, when the

goal location is nearby, hierarchical planning provides little to no benefit, and these

situations see performance improvements when using D* Lite over A*. Furthermore,

the first call to ComputeShortestPath() is identical to a reversed A* search, so it is

acceptable to use D* Lite when A* is sufficient.

This new approach makes it necessary to consider obstacles when computing

coarse paths, which increases computation time but helps produce improved routes.

Without this, successor nodes may be within or blocked by obstacles, which can

result in low quality or impossible coarse paths. As a result, HD* first checks line-

of-sight using Bresenham’s Line Algorithm [10]. This 2D algorithm was expanded

to 3D, and the implemented version is presented in Algorithm 3.
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Algorithm 3 3D Version of Bresenham’s Line Algorithm
1: function LineOfSight((x1, y1, z1), (x2, y2, z2))
2: dx = x2 − x1; dy = y2 − y1; dz = z2 − z1
3: ax = 2|dx|; ay = 2|dy|; az = 2|dz|
4: sx = sgn(x); sy = sgn(y); sz = sgn(z)
5: if ax ≥ max(ay, az) then . change in x is the greatest
6: yd = ay − ax/2
7: zd = az − ax/2
8: while x1 6= x2 do
9: if yd ≥ 0 then y1 += sy; yd−= ax . move in y-direction

10: if zd ≥ 0 then z1 += sz; zd−= ax . move in z-direction
11: x1 += sx . move in x-direction
12: yd += ay; zd += az;
13: Check status of node at s = (x1, y1, z1)
14: if s contains an obstacle then
15: return false
16: else if ay ≥ max(ax, az) then
17: xd = ax − ay/2
18: zd = az − ay/2
19: while y1 6= y2 do
20: if xd ≥ 0 then x1 += sx; xd−= ay
21: if zd ≥ 0 then z1 += sz; zd−= ay
22: y1 += sy
23: xd += ax; zd += az;
24: Check status of node at s = (x1, y1, z1)
25: if s contains an obstacle then
26: return false
27: else if az ≥ max(ax, ay) then
28: xd = ax − az/2
29: yd = ay − az/2
30: while z1 6= z2 do
31: if xd ≥ 0 then x1 += sx; xd−= az
32: if yd ≥ 0 then y1 += sy; yd−= az
33: z1 += sz
34: xd += ax; yd += ay;
35: Check status of node at s = (x1, y1, z1)
36: if s contains an obstacle then
37: return false
38: return true

If the two nodes do not have line-of-sight, the traversal cost is said to be

infinity and the nodes are not considered successors of one another. While it is
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possible that a small obstacle between them is easy to navigate around, it is simpler

to assume such a path is blocked. In the case where this assumption is wrong, it

will later be mostly or completely corrected by path smoothing, and therefore is a

safe simplifying assumption to make.

This check is only performed for the highest level of path-finding, as it is al-

ready known whether or not line-of-sight exists when paths are refined to lower

levels. These line-of-sight checks can be costly, especially as the distance between

the nodes increases at coarser levels. To counter this, the checks are only performed

when at least one of the nodes is within the search radius of the UAV. The en-

vironment may be partially known outside of this radius, but as shown later, the

resulting paths from this setup provide a suitable balance between computation time

and path length.
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Chapter 5: Methods Used to Improve Path Quality

The framework is now set up to adapt and merge D* Lite and HPA* into HD*,

but there are many improvements that can be made. This chapter will discuss the

optimizations implemented to produce shorter and more realistic looking paths, and

Chapter 6 will detail the techniques used to obtain performance suitable for real-time

use.

5.1 Abstract Levels

With hierarchical planning, there is no reason to restrict the map to just one

abstraction. In fact, it is beneficial to have more levels since this provides more

flexibility when planning the coarse paths. When the start and goal nodes are on

opposite sides of a large map, a very coarse abstract level is desired to quickly find

a path. It is also possible that on this same map the next target is close by, in

which case the coarse level is not useful. In this situation it is ideal to have multiple

abstract levels, and the one used to find the initial coarse path is dependent on how

far away the goal is. Multiple abstract levels also results in improved quality during

the path refinement and smoothing stages, which are discussed in Section 5.2

Therefore, HD* abstracts the map into multiple levels, where level 0 is the
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initial map resolution. Due to the method used to determine successors, the abstract

levels are easily defined by the distance between a node and its successors. This

successor distance is measured in the number of nodes, and the distance used for

each level is given by 2n+1, where n is the level number. Therefore, level 1 successors

are a distance of 21+1 = 4 nodes away, level 2 successors are 8 nodes away, level 3

successors are 16 nodes away, and so on. The maximum level used by HD* is the level

in which the distance between successor nodes is approximately 1⁄8 the maximum

map dimension. This cutoff was used to ensure the paths are good quality, as a grid

that is too coarse provides provides poor paths. This limit also helps reduce the

time spent on line-of-sight checks, which take more time to execute as the distance

between nodes increases.

For example, a map with an initial size of 128 in each dimension would have

four levels. Level 0 consists of the individual nodes composing the map. Levels 1,

2, and 3 use successor nodes as stated above. At level 3, the successor nodes are 16

nodes apart, which is 1⁄8 of 128, so no additional levels are created.

5.2 Path Refinement and Smoothing

The use of multiple abstract levels allows the inclusion of a refinement stage

to increase the benefits of path smoothing. The initial coarse path is likely to pass

widely around obstacles, and smoothing would not do much to resolve this if the

nodes are far apart. To improve the smoothing quality, the initial coarse path

is repeatedly refined until it is represented by the highest resolution nodes. This
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refinement is performed by using the next level down to compute the shortest path

between successive nodes of the current level. If the initial coarse path is a level 3

path, the first stage of refinement is performed by finding the shortest path between

each pair of these nodes using level 2 nodes. With the coarse path represented by

level 2 nodes, the process is repeated using level 1 nodes. Finally, it is repeated one

more time until represented by the level 0 nodes. This increases the number of nodes

used to define the path, which increases the quality of path smoothing and therefore

provides shorter and more realistic paths. Once represented as level 0 nodes, the

path is smoothed.

The smoothing algorithm is presented in Algorithm 4. It is a modified version

of the one presented in [13], and works as follows. The path is input as a series

of nodes. Starting from the first node in the path, s0, the smoothing algorithm

checks for line-of-sight to the third node in the path, s2. If line-of-sight exists, the

intermediary node s1 is removed from the path. This process is repeated until the

goal node is reached or there is not line-of-sight from the first node. If there is not

line-of-sight to a node, the process now restarts from that node and continues in

the same fashion. When the status of a node is unknown, it is assumed to be open.

Therefore, when smoothing the path, line-of-sight is assumed to exist between nodes

that have yet to be explored.

Smoothing is only used in directions of uniform cost in order to ensure this

process does not increase path cost. This can occur when altitude changes are

expensive. Smoothing a quick and steep traverse into a gradual slope results in the

UAV traveling upwards for a longer time. HD* considers the cost of altitude changes
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to be the same regardless of the path angle relative to the ground, thus using more

distance to change altitude would result in an increased cost.

Algorithm 4 Path Smoothing Algorithm
This version assumes cx = cy = 1

1: function SmoothPath([s0, s1, ..., sn]) . Nodes are (x, y, z) coordinate tuples
2: k = 0
3: pk = s0
4: for i = 1 to n− 1 do
5: x1 = pk, x ; y1 = pk, y ; z1 = pk, z
6: x2 = si+1, x ; y2 = si+1, y ; z2 = si+1, z
7: if (z1 6= z2 and cz 6= 1) or not LineOfSight(pk, si+1) then
8: k+ = 1
9: pk = si

10: k+ = 1
11: pk = sn
12: path = [p0, p1, ...pk]
13: return path

The next step involves generating a centripetal Catmull-Rom spline [28] to

smooth any sharp turns from the path. This type of spline is used as it is guaranteed

to pass through the specified nodes [16], and will not result in any self-intersections

or cusps [28]. To create the splines, four consecutive points are used as the input,

and the result is a spline between the second and third points. To generate a spline

between the first two nodes, we simply input the first node as both the first and

second points. Likewise, the spline between the last two nodes is created by using

the final node for the third and fourth input points. The spline is represented by

three additional points between the second and third input points, with pseudocode

presented in Algorithm 5. Generation of these splines brings an increase in path

length but is necessary to create a path that can realistically be followed.

In the final step, the points that define that path are used to generate a
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trajectory composed of (x, y, z) coordinates, with each coordinate no more than one

unit away from the previous one. The number of coordinates generated between

two successive nodes in the path is equal to the maximum absolute value of the

differences in the x-, y-, and z-coordinates. If two consecutive nodes in the path

are located at (9, 2, 6) and (6, 10, 7), then there will be 8 points used to define the

trajectory between them. This trajectory is followed until an obstacle is detected

or the halfway point of the refinement region is reached. The refinement region is

explained, along with a walkthrough of the path-finding process, in Section 6.3.

Optimal Grid-Based Path
True Optimal Path

Figure 5.1: Optimal path produced by grid-based planners compared to the true
optimal path.

It is important to note that although smoothing will result in shorter paths,

this does not mean it always results in the true shortest path. The path found

by using a grid representation may be the optimal path found by traveling between
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node centers, but node centers do not always compose the true shortest path. This is

shown in Figure 5.1, where the optimal path between two locations cannot be found,

and smoothing does not reduce path length. Any angle planners such Theta* [13]

and Field D* [14] are better at finding a near-optimal path in these situations. These

algorithms are more computationally expensive as they require frequent line-of-sight

checks or interpolation to determine what angle to travel at. Path lengths may be

shorter with these approaches, but Chapter 7 shows that HD* outperforms 3D Field

D* [3] and still produces near-optimal path lengths.
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Algorithm 5 Catmull-Rom Spline Generation
ti determines the parameterization, α = 0.5 results in the centripetal parameteriza-
tion used by HD*, p1 and p2 are a pair of (x, y, z) input control points. HD* uses
nPts = 5, resulting in three points between p1 and p2.

1: function ParameterValues(ti, p1, p2, α)
2: dx = p1,x − p2,x ; dy = p1,y − p2,y ; dx = p1,z − p2,z

3: return
(√

dx2 + dy2 + sz2
)α

+ ti

4: function CatmullRomPoints(p0, p1, p2, p3, nP ts)
5: t0 = 0
6: for i = 1 to 3 do ti = ParameterValues(ti−1, pi−1, pi, α)
7: if t0 = t1 then t1 = 10−8 . to avoid divide by zero error
8: if t2 = t3 then t3 = t2 + 10−8

9: t is a linearly spaced column vector between [t1, t2] with nPts elements
10: L01 = t1−t

t1−t0 × p0 + t−t0
t1−t0 × p1

11: L12 = t2−t
t2−t1 × p1 + t−t1

t2−t1 × p2

12: L23 = t3−t
t3−t2 × p2 + t−t2

t3−t2 × p3

13: L012 = t2−t
t2−t0 × L01 + t−t0

t2−t0 × L12

14: L123 = t3−t
t3−t1 × L12 + t−t1

t3−t1 × L23

15: C = t2−t
t2−t1 × L012 + t−t1

t2−t1 × L123

16: function CatmullRomSpline(path)
17: if path has less than 3 nodes then
18: Not enough nodes to generate a spline
19: return path
20: else
21: Copy first and last nodes such that path0 = path1 and pathn−1 = pathn
22: C = ∅
23: k = length(path)− 3
24: for i = 1 to k do
25: c = CatmullRomPoints(pathi, pathi+1, pathi+2, pathi+3, nP ts)
26: C = {C} ∪ {c}
27: return C

5.3 Cost Computation

Although HD* is not designed to account for the UAV’s dynamics, it should

be capable of at least handing some basic constraints. The cost to change elevation

can vary depending on the particular vehicle, and a planner that neglects this will
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not always produce the optimal path. Likewise, some UAVs cannot travel vertically,

so a path that includes vertical movement is useless for these vehicles. Therefore, it

is essential that the planner factor in these cost constraints.

First, the default cost of traversal between two nodes must be defined. This

is simply the Euclidean distance between the two nodes. If line-of-sight does not

exist or the target node has an obstacle, the cost is infinity. Assuming the target

node is open, the final traversal cost is determined by multiplying the distance by a

directional cost scale factor, given by cx, cy, and cz for the x-, y-, and z-directions

respectively. These scale factors have a default value of one and can be configured

by the user to modify the cost of travel in each direction. The predominant scale

factor is used when computing cost. If the cost of the z-direction is set to 2 and the

UAV is traveling upwards at some angle relative to the ground, the cost is still 2

and is not reduced by the fact that travel is not vertical.

Algorithm 6 Cost Computation
This version assumes cx = cy = 1

1: function EuclideanDistance(s, s′)
2: return

√
(sx − s′x)2 + (sy − s′y)2 + (sz − s′z)2

3: function ComputeCost(s, s′)
4: if s′ contains an obstacle then
5: return ∞
6: else if computing cost for the coarse path then
7: if within search radius and not LineOfSight(s, s′) then
8: return ∞
9: if sz 6= s′z then

10: costFactor = cz
11: else
12: costFactor = 1 . Default planar cost
13: cost = costFactor × EuclideanDistance(s, s′)
14: return cost
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Depending on the environment, increasing cz can result in the planner pre-

ferring strictly vertical movement. Many UAVs are unable to change their altitude

in this manner, so this must be restricted as necessary. A boolean variable called

restrictV erticalMovement is used to control this, and when used, vertical successor

nodes are no longer included in the set of successors. To implement these changes,

the way D* Lite computes cost is modified. The cost between two nodes c(s, s′)

was previously the distance between the nodes. We replace this with the function

ComputeCost(s, s′), which is defined in Algorithm 6. The function shown assumes

the cost in the x- and y-directions is one, and the z-direction cost is varied. This

is a reasonable assumption the majority of the time but can be easily altered if de-

sired by modifying the “if” statements beginning on line 9. This cost computation

function is the same when computing paths at any level, with the addition of a

line-of-sight check for the coarse paths.

5.4 Safety Margin

Because HD* searches for the shortest path, it is likely that portions of the

path will be directly adjacent to obstacle edges and corners. For a realistic imple-

mentation, this is dangerous and increases the risk of collision. It is also possible

that the generated path passes through a region too narrow to safely pass through.

Thus, a safety margin is needed to prevent the UAV from getting too close to ob-

stacles. The safety margin is defined as the distance, in nodes, to maintain between

the agent and an obstacle. To implement it, we extend the footprint of obstacles to
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include the surrounding nodes within the safety margin.
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Chapter 6: Methods Used to Improve Performance

6.1 Data Structures

When finding a path, a large percentage of time is spent managing the priority

queue, so the data structure chosen to manage this queue is an important decision.

The four primary operations performed on the queue are:

1. Pop best node, which is the action of removing the best node from the priority

queue and returning the node number and key values.

2. Find node, which checks whether a node is a member of the priority queue.

3. Add node, in which is a new node is added to the priority queue.

4. Update node, which updates a node’s priority when it is already in the queue

and the new key value is different from the existing value.

To determine the ideal data structure both the frequency of these operations

and their time complexities must be considered. The different data structures and

their worst case performance for each operation [27, 29] are compared in Table 6.1.

For heaps, the time complexities of “Pop Node” and “Add Node” include the time to

restore the heap properties. The hybrid structure uses a binary heap to add nodes
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and pop the best node, and a hash table to check for membership.

We refer to Algorithm 2 to determine the frequency of these operations.

Line 14 of the pseudocode shows that the pop operation occurs once for each node

visited. Lines 17 and 20 show that UpdateVertex(s) is called once for each successor,

which is up to 26 times per node. Consequently, the speed of the membership check

and node insertion operations are important, as they occur frequently. The update

node operation on line 35 is the least common, which is fortunate since Table 6.1

shows that it is an expensive two-step operation.

Unsorted arrays can be removed from consideration because of their slow mem-

bership test, and sorted arrays can be eliminated due to their slow insertion. The

Fibonacci heap seems efficient in theory but is complicated to implement and not

as fast in practice [29, 30]. This leaves the binary heap and hybrid structure as the

remaining options. The binary heap may be simpler to implement, but a hybrid

structure was chosen for its superior performance when finding and updating nodes.

Algorithm 7 shows the pseudocode used to implement this structure. HD* is written

in Python so the binary heap is implemented via the “heapq” module, and the hash

table is implemented using a dictionary.
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Table 6.1: Comparison of asymptotic upper bound running times between different
data structures for priority queue operations.

Data
Structure

Pop Best
Node

Find
Node Add Node Update Node

Unsorted
Array O(n) O(n) O(1) Find: O(n)

Update: O(1)

Sorted Array O(1) O(log n) O(n) Find: O(log n)
Update: O(n)

Binary Heap O(log n) O(log n) O(log n) Find: O(log n)
Update: O(log n)

Fibonacci
Heap O(log n) O(log n) O(1) Find: O(log n)

Update: O(1)

Hybrid
Structure O(log n) O(1) O(log n) Find: O(1)

Update: O(log n)

Algorithm 7 Priority Queue Operations for Hybrid Data Structure
The entries in entryfinder and U are formatted as [k1, k2, u], where k1 and k2
represent the priorities and u is the node

1: entryfinder = ∅ . Hash table mapping tasks in U to entries
2: function RemoveNode(u)
3: Delete entry in entryfinder with key u
4: function AddNode(k1, k2, u) . Add node or update key of existing node
5: if u ∈ entryfinder then
6: RemoveNode(u)
7: Add key u with value [k1, k2, u] to entryfinder
8: Add entry [k1, k2, u] to U
9: function PopNode( )

10: while True do
11: k1, k2, u = U.Pop()
12: if u ∈ entryfinder then
13: Delete entry in entryfinder with key u
14: return [k1, k2, u]

The data structure used to keep track of the cost, g-value, rhs-value, and

backpointer for each node must also be determined. O(1) performance is desired

for lookup of these values to minimize the time spent on these operations. From
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Table 6.1 we saw that the use of hash tables for the hybrid structure allowed for

O(1) lookup of a value. For smaller maps, hash tables are suitable to store these

four values. However, for larger maps this is not always feasible, as the storage

requirements would get very large. In Python, the hash table for a 256× 256× 256

map would contain nearly 17 million keys and takes 805 MB of storage for the

dictionary overhead alone. Since each node has four values associated with it, the

actual storage space would be even greater, particularly when map size increases.

Instead, Python’s “defaultdict” container is used to store these values. This provides

O(1) lookup like a standard dictionary, but does not require an entry for each node.

If the lookup key, which is the node, does not exist in the dictionary, a default

value is returned. The default values are 1 for the cost, infinity for the g-values and

rhs-values, and “None” for the backpointers.

6.2 Heuristic Choice

As described in Section 3.1, an admissible heuristic is required to find the short-

est path between the start and goal. In this implementation, the Euclidean distance

between two points represents the smallest possible cost between two nodes and

is both an admissible and consistent heuristic. In reality, distances will generally

be longer than this estimate due to the presence of obstacles. A heuristic which

underestimates the true distance is guaranteed to find the shortest path, and the

more it underestimates the distance the more nodes it will search [6]. This is evi-

dent in the limiting case when the heuristic is zero, and A* reduces into Dijkstra’s
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algorithm [27], which expands every node until it finds the shortest path.

On the other hand, a non-admissible heuristic overestimates the distance be-

tween two nodes, which results in fewer nodes being expanded. The downside to this

is that finding the shortest path is no longer guaranteed [6]. Since the ability to find

a true shortest path was already sacrificed by implementing hierarchical planning,

it is worth making the heuristic slightly non-admissible to help reduce computation

time. Inflating the heuristic also helps speed up the search is when there are multiple

paths with the same cost, which is common on uniform cost grids. An admissible

heuristic will spend more time deciding between paths of equal or near equal cost

than a non-admissible heuristic [31]. For these reasons, it is often beneficial to in-

crease the heuristic value to improve performance. It has been proven in [32] that for

a consistent heuristic which has been multiplied by a factor of (1 + ε), the resulting

path is guaranteed to be within (1 + ε) times the shortest path. This is expressed

in 6.1, where Lopt represents the optimal path length and Lmod represents the path

found when the heuristic is modified.

Lopt ≤ Lmod ≤ Lopt(1 + ε) (6.1)

HD* uses a default value of ε = 0.01, which would guarantee path lengths

within 1% of optimal if hierarchical techniques were not used. The tradeoff between

ε, path cost, and performance is explored in Chapter 7.
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6.3 Path-Finding Process

HD* computes the entire coarse path from goal to start, but this does not

mean the entire path must be refined as well. Only a portion needs to be refined

to get the UAV moving in the right direction, and the remainder can be refined as

necessary. Furthermore, when the environment is unknown outside of the search

radius of the UAV, the planned coarse path may soon become invalid. Therefore,

refining the entire path up front is wasteful. Instead, we only refine the section of

the path that lies within the refinement distance d r. This distance is expressed as

a function of the sensor range, rs, of the UAV. An intuitive choice would be to set

d r = rs, but this may not be ideal when rs is large. A large sensor range causes

the time spent in the refinement to become greater, thereby increasing the planning

time. Alternatively, this choice of d r may be too conservative for situations when

the agent has a small search radius. To counter these situations, HD* allows the

user to specify the value of d r, providing control over the trade-off between path

quality and computation time. The value selected for d r can significantly affect both

path length and computation time, and we explore this relationship in Chapter 7.

Once the lowest resolution path is computed, the portion within d r is refined.

The segment is continually refined by the process presented in Section 5.2 until

represented in the highest resolution nodes. Next, the entire path is smoothed.

Once smoothing is complete, the path is represented by many closely spaced level

0 nodes within the refinement region, and fewer nodes elsewhere. Splines are then

generated and the exact coordinates defining the trajectory are computed. This
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process is shown in Figure 6.1 from the top down view of a 128×128×128 3D map.

The UAV follows the resulting trajectory until one of four possible situations occur:

1. New obstacles are detected that invalidate the current path.

2. The target location has moved.

3. The UAV reaches the midway point of the refinement region.

4. The goal is reached.

When scenarios 1 or 2 occur, a new coarse path is planned, and the process

restarts. Scenario 3 occurs when neither of the two preceding scenarios forces a

replan before the midway point of the refinement region is reached. Scheduling

replans halfway through the refinement region helps ensure high-quality paths. If

scenario 4 occurs, no further planning is needed and the algorithm terminates.

6.4 Time Restrictions

When there is a restriction on planning time, it is possible that the time

required to complete all of these steps may be too long. Therefore HD* allows

the user to set a time limit, tmax, on the path-finding process. This limit does not

affect the smoothing, spline generation, and trajectory generation steps, as these are

necessary to produce realistic paths. Instead, the limit affects the path refinement

process.

Once HD* finds a coarse path, the elapsed time is compared to the value of

tmax. If the elapsed time is greater than tmax, the function exits and passes the
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coarse path to the smoothing function. If it is less than tmax, one additional level of

refinement is completed. HD* again checks the elapsed time and executes another

level of refinement if tmax has not been exceeded. This process repeats until the

path has been refined down to level 0, or the time limit was reached. This approach

is not a hard restriction in the sense that the total path planning time will exceed

tmax, but it still allows for some flexibility in limiting the time spent planning.
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(a) First, the lowest resolution path is found
using level 3 with nodes 16 units apart. Blue
circles represent the nodes composing the path.
Some nodes pass through obstacles, as the UAV
is currently unaware of those obstacles.

(b) Next, level 2 nodes a distance of 8 units
apart are used to refine the segment of the path
within the refinement distance.

(c) Level 1 nodes a distance of 4 units apart are
used to further refine the path.

(d) The next refinement stage uses the highest
resolution nodes.

(e) The path is then smoothed. Only one node
is needed to define the path because the UAV
currently assumes line-of-sight exists from the
blue node to the goal.

(f) Finally, additional points are generated with
a centripetal Catmull-Rom spline. These points
are used to create the trajectory composed of
(x, y, z) coordinates that the UAV will follow.

Figure 6.1: Path Finding and Refinement Process
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Chapter 7: Experimental Results

Table 7.1: Default Testing Parameters

Parameter Value

Map Size 150×150×150

Obstacle
Density (ρ) 15%

Heuristic Scale
(hs)

1.01 (ε = 10−2)

Cost of Altitude
Change (cz)

2

Search Radius
(rs)

20

Refinement
Distance (d r)

rs

Maximum
Path-Finding
Time (tmax)

No limit

Restrict Vertical
Movement True

The performance of HD* was

analyzed in a variety of situations.

Performance is measured with re-

spect to path cost, the number of

nodes expanded, and mean path

computation time. The values re-

ported for computation time and are

given in milliseconds and refer to the

CPU time. It include all stages of the

path-finding process, from the initial

coarse path to the final trajectory.

Therefore, the computation time rep-

resents the delay between requesting

a new path and obtaining a path to

follow. First, the suboptimality of HD* will be quantified; then it will be com-

pared to 3D Field D*, which is another real-time planning algorithm. Next, various

parameters will be modified to determine how performance can vary in different
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Table 7.2: HD* Path Cost vs. Optimal Path Cost

Obstacle
Density (%) 5 10 15 20 25

Optimal
Cost 198.39 198.92 199.78 201.39 201.80

HD* Cost 199.73 203.81 212.33 216.13 220.73

Percent
Increase 0.68 2.46 6.28 7.32 9.38

scenarios. These parameters and their default values are listed in Table 7.1, and are

the values used for each test case unless otherwise specified. Finally, a few example

paths will be presented. Results were obtained on a 2.6 GHz Intel Core i5 MacBook

Pro with 8 GB of RAM.

7.1 Quantifying Degree of Suboptimality

To measure the variability in cost, we compare the path cost found by HD*

with an empty initial map to that found by A* with full knowledge of the envi-

ronment. A* used an admissible heuristic to ensure the optimal path was found.

The percentage differences were compared using random maps with obstacle densi-

ties ranging from 5% – 25%. At each density, 25 trials were run, and the median

values are reported. Path lengths are reported without Catmull-Rom splines as

the extra length generated by the splines may exacerbate the difference and is not

fundamental to the planning procedure. The results are shown in Table 7.2.

We see that with fewer obstacle HD* finds paths that are very close to optimal,
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and the deviations become greater as the obstacle density increases. This trend is

expected, as HD* must find a path fast enough to operate in real-time, and the effort

required to find the optimal path increases with the number of obstacles. Section 7.3

discusses some changes can be made to the default HD* implementation if shorter

path lengths are desired.

7.2 Comparison to 3D Field D*

In [3], the 3D Field D* (3DF) algorithm was tested on a 150 × 150 × 150

map. This algorithm uses interpolation based planning to remove the limitation

that the agent must transition between node centers when planning a path. 3DF

and HD* are both based on D* Lite, so comparing the two allows us to determine

if HD* improves upon similar existing algorithms. To compare HD* with 3DF, the

experimental setup used in [3] was replicated. A sensor range of seven units was

used, and the map was assumed to be initially empty. The path was updated as

changes in the environment were detected. The agent began in the center of the

environment at (75, 75, 75) with the goal location at (150, 75, 75). Vertical movement

is allowed and cx = cy = cz = 1. The obstacle densities tested were ρ = 20% and

ρ = 50%. Because 3DF is conceptually similar to D* Lite but with the addition of

interpolation, a comparison with D* Lite is not presented as its performance will be

similar to 3DF.

The results are presented in Table 7.3. Note that HD* did not use splines for

the tests with 50% obstacle density, as the splines pass through obstacles in dense
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Table 7.3: Comparison of HD* with 3D Field D*

Algorithm Obstacle
Density (%)

Nodes
Expanded

Run Time
(ms)

3D Field D* 20 25,200 11.07

HD* 20 2,293 9.67

3D Field D* 50 62,400 20.80

HD* 50 5,090 15.34

environments. This problem is discussed more in Section 8.1. Path length is not

presented as it is not reported in [3], aside from the fact that the vehicle moved at

least 75 units each time. We see that HD* finds path faster than 3DF, and the time

savings increase as ρ increases. HD* is over 12% faster with ρ = 20%, and about

26% faster when ρ = 50%. Additionally, the number of nodes expanded by HD*

is an order of magnitude less than 3DF. The difference in node expansions would

become more drastic as map size increases. Although not evident from this data,

the runtime of 3DF will increase as map size increases, as it must replan each path

at the highest resolution. HD* is capable of providing more consistent performance

in a variety of environments due to the hierarchical planning, which is the biggest

benefit it provides over 3DF.

7.3 HD* Performance Analysis

Next, the performance of HD* is analyzed for a wide range of possible con-

figurations to determine how performance varies. Twenty-five trials were run for
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each configuration, and the median values are reported. Error bars represent the

25th and 75th percentile values. The trials use randomly generated obstacles of size

5 × 5 × 5, and parameters will be analyzed in the order they appear in Table 7.1.

The start and goal locations are always located in opposite corners of the map,

with sstart = (5, 5, dz/2) and sgoal = (dx − 5, dy − 5, dz/2) where the map dimen-

sions are given by (dx, dy, dz). The impact of directional cost factors and vertical

movement restriction are not presented as they do not have a significant impact

on performance. Directional costs alter the path but do not have a large impact

on computation time, and the restriction of vertical movement simply removes two

successor nodes.
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Figure 7.1: Effect of Map Dimensions on Performance
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Figure 7.1 shows the impact of performance when map size is varied. The x-,

y, and z- dimensions are equal for each trial, and tests were performed at values of

50, 100, 150, 200, 250, and 300. The results match what should be expected for an

algorithm that must plan the entire path. We see that planning time is correlated

with the number of nodes expanded, and both increase with map size. However,

planning time does not increase as fast as map size. The planning time for the

largest map is less than 3.5 times that of the smallest map, which is impressive

considering the larger map has 216 times more nodes.

The increase in node expansions can be attributed to two main factors. The

first is simply that a larger map means the goal is further away and there are more

nodes to explore. The second factor is that the sensor range remains constant as map

size increases. When the map dimensions are 50× 50× 50, the search radius covers

40% of the length of the map and can see 6.4% of all the nodes. Comparatively,

these values decrease to 6.67% of the length and 0.03% of the entire map for the

largest map tested. Such little foresight on the larger maps results in less informed

paths, leading to routes that are more likely to be suboptimal and therefore require

frequent replanning and more node expansions.

64



8
10
12
14
16
18

Ti
m

e 
(m

s)

0

1000

2000

3000

E
xp

an
si

on
s

0 5 10 15 20 25
Obstacle Density (%)

150

200

250

300

350

C
os

t

Figure 7.2: Effect of Obstacle Density on Performance

The effect of obstacle density can be seen in Figure 7.2. Obstacle densities

from 0% – 25% were tested in increments of 5%. As expected, the more complex

the environment is, the longer planning takes and the longer the resulting path

lengths. If the planning needs to be sped up, the values of hs, rs, d r, and tmax may

be modified to decrease planning times, but this frequently comes with an increase

in path cost.

Recall that when increasing hs, the algorithm overestimates the distance to

the goal and is more aggressive in pushing the search towards the goal. This results

in following a path that may not be optimal, but in return it reduces the number of

65



nodes expanded [6]. This relationship is explored in Figure 7.3, where the heuristic

is multiplied by a scale factor of (1 + ε). The admissible heuristic is given by the

case when ε = 0. The tested ε values were 0, 10−3, 10−2, 0.05, 0.1, 0.25, 0.5, and 1.

It is evident from the figure that the impact of ε diminishes as it increases.

The planning time and node expansions decrease until around ε = 0.05, at which

point results remain fairly constant with a few fluctuations attributed to the random

maps. Interestingly, there does not seem to be a correlation with the cost. This

must be due to the random maps, as it was proved in [32] that an increase in ε

does result in longer paths. Therefore, we can conclude that because the number

of node expansions reaches a limit, the cost increase should also reach a limit. To

confirm this, one of the randomly generated maps was used to repeat the test, with

the results shown in Figure 7.4. In this case, the maximum path cost is rapidly

reached at ε = 0.001, at which point computation time and the number of node

expansions can be reduced without a corresponding cost increase. Above ε = 0.01

the number of expansions remains constant, confirming that there is a limit to the

trade-off experienced by inflating ε.
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Figure 7.3: Effect of heuristic scale on performance with randomly generated maps.
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Figure 7.4: Effect of heuristic scale on performance with each test performed on the
same map.
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The impact of rs and d r can be seen in Figure 7.5. The value tested for rs were

5 – 40 in increments of five, and the values of d r were rs/4, rs/2, rs, 1.5rs, and 2rs.

When the search radius and refinement distances are small, the splines frequently

pass through obstacles. This problem was seen earlier when running the compar-

ison tests to 3DF, and is elaborated upon in the following chapter. To maintain

consistency between trials, splines were not used for any of the tests performed to

generate Figure 7.5.

There are a few insights gained from this figure. In the previous tests, the

number of node expansions was correlated with computation time, but the opposite

is true here. As the number of node expansions decreases, planning time increases.

We know that as rs and d r increase, less replanning is necessary because more

of the map can be seen at any given time, resulting in fewer node expansions.

However, these larger values of rs and d r also result in more time dedicated to

the refinement stage. Thus, Figure 7.5 leads to the conclusion that the refinement

process dominates node expansions in regards to impact on planning time.
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Figure 7.5: Effect of Search Radius and Refinement Distance on Performance

Intuitively, it would be expected that larger values of rs and d r would result

in shorter paths, but it appears there is no correlation between the two. This was

also observed during the heuristic tests and is again suspected to be the result of

the randomly generated maps that were used. It is possible that the layout of the

maps results in similar paths being favored regardless of these parameters. This is
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tested in Section 7.4 by comparing results on a map designed to represent a portion

of a city.

The final parameter to examine is the maximum time limit tmax applied to

planning, which is shown in Figure 7.6. A limit of zero milliseconds will only find

the most coarse path, which is not refined before being passed on to the remainder

of the path-finding process. As the limit increases, the planner has more time to

refine the path, which is expected to result in a shorter path. From the figure, it

appears the path length only begins to decrease after about 4 ms. By comparing the

x-axis to the time plot in Figure 7.6, the relationship between the configured limit

and actual computation time can be seen. The figure indicates that HD* needs a

minimum of about 6 ms to find a path to begin following.
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Figure 7.6: Performance Impact of Restrictions on Planning Time

7.4 Example Paths Produced by HD*

This section presents various paths produced by HD* in a 256 × 256 × 256

environment designed to be representative of a city. The examples presented use

cz = 2 and therefore the paths do not change elevation. If we had set cz = 1 there

would be elevation changes, but for clarity paths of constant altitude are shown.

Figure 7.7 compares the resulting paths when varying rs and Figure 7.8 shows

the impact of varying d r. This was done in response to the results of Figure 7.5.

Table 7.4 provides the performance data for these maps. The figures show a top-

down view of the map, and the correlation between both rs and d r with path length
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Table 7.4: Performance of Paths Shown in Figures 7.7 and 7.8

Figure
Number rs d r Expansions Time

(ms) Cost

7.7(a) 20 1/2 6049 14.20 443
7.7(b), 7.8(b) 20 1 3684 16.40 429

7.7(c) 20 2 4092 22.47 399
7.8(a) 10 1 6434 13.32 423
7.8(c) 30 1 3698 19.71 408

becomes clear. Figures 7.7(c) and 7.8(c) represent the shortest and most realistic

paths, suggesting that a larger search radius and refinement distance are key to

producing quality paths.

Figure 7.9 shows how the paths vary for different safety margins. The use of

a safety margin does not impact performance, and simply expands the footprint of

obstacles by treating the surrounding nodes as if they had infinite cost. The same

city map is used but at half the size to more clearly see the gap between the path

and the obstacles. These paths used rs = 20 and d r = 2rs, as this combination has

been shown to produce high-quality paths for the examples above. The figure shows

that the path can vary widely depending on the chosen safety margin. We can see

that even with the addition of splines, the generated path may still result in sharp

turns that may be difficult or impossible to execute. A revision to HD* that allows

the current heading of the agent to be considered should resolve this issue and is

discussed in the following chapter.
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(a) d r = 1/2; The short refinement distance
leads to jagged paths.

(b) d r = 1; Paths are a little smoother and
shorter, but still contain unnecessary head-
ing changes.

(c) d r = 2; A larger refinement distance leads
to ideal paths with no unnecessary heading
changes.

Figure 7.7: Paths produced when rs = 20 for varying values of d r
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(a) rs = 10; A small sensor range results in
suboptimal paths that frequently need to be
replanned, leading to a jagged traverse.

(b) rs = 20; Note this is the same as Fig-
ure 7.7(b). The increased search radius pro-
duces better, more informed paths, but it
still contains frequent heading changes.

(c) rs = 30; Path quality is further improved,
and can be made smoother if a larger sensor
range or refinement distance is used.

Figure 7.8: Paths produced when d r = 1 for varying values of rs
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(a) Safety Margin = 2; Here, the UAV goes
past the first gap and makes a sharp turn to
gain enough clearance between the two obsta-
cles.

(b) Safety Margin = 3; In the top right, we
see the UAV can no longer fit through the sec-
ond gap and must take an alternative route.

(c) Safety Margin = 4; The first gap has a
width of eight units, so the UAV abruptly
turns around to follow a new path when it
learns the gap is too narrow.

(d) Safety Margin = 5; Traveling around all of
the obstacles is now the only route that pro-
vides sufficient clearance.

Figure 7.9: Paths produced by various safety margins.
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Chapter 8: Future Work and Conclusion

8.1 Future Work

Although HD* is capable of producing realistic, near-optimal paths in real-

time, there are still a few aspects that can be improved. As briefly discussed earlier,

when using a small search radius or in an obstacle dense environment, the spline

generation sometimes results in turns that pass through nearby obstacles or violate

the safety margin. This is because they do not follow the path exactly, so the spline

path cannot always be guaranteed to be free of obstacles. A possible solution is to

inflate the selected safety margin, to ensure extra surrounding nodes are open to

contain the spline path. Alternatively, another method for the splines can be used

which allows a turning radius to be input. This could help keep tighter curves while

also accounting for the actual turning radius of the vehicle. It has also been shown

that splines are not sufficient to prevent all sharp turns, so factoring in the current

direction of travel would further improve path quality.
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Figure 8.1: A possible approach to reduce the number of successor nodes. After
the red node is expanded, the blue node has the lowest priority and is expanded
next. Nodes 1-17 are all accessible from the red node, so we can conclude that, if
expanded, their priority will not be lower than the blue node’s priority. Therefore,
only nodes 18-26 need to be considered when expanding the blue node.

The time required to find the shortest path, whether coarse or fine, can be

reduced if we can limit the number of successor nodes. Every time a node is expanded

up to 26 successor nodes need to be examined, but only a few of them will bring the

agent closer to the goal. A method of filtering the successor nodes to only include

those that are expected to have a lower cost would reduce computation time. This

concept is used by Jump Point Search (JPS) [33] to speed up the path-finding

process. A 3D example of how this approach would work is as follows. Consider the

scenario shown in Figure 8.1. The red node has just been expanded and resulted in

the blue node possessing the lowest priority. The blue node is then popped from the

queue and expanded. All of the cubes shown in this figure represent the successors
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of the blue node. Normally, each cube shown in the figure is expanded. However, we

can deduce that nodes 1-9 will not have the lowest priority after expansion. They are

successors of the red node, so if one of them did have a lower priority, it would have

been expanded instead of the blue node. The same logic can be applied to nodes

10-17, as they are also successors of the red node, and we can also omit them from

expansion. Therefore, only nodes 18-26 need to be expanded, and we have reduced

the number of successors from 26 to 9. JPS takes this a step further and says that,

of the remaining nodes, only node 22 is the least expensive to get to via the blue

node from the red node. The surrounding nodes are excluded from consideration

because there are alternative paths to get there. Thus, we can jump from the red

node directly to node 22. This technique has only been used on 2D grids with

uniform cost, so it remains to be seen how effective a 3D implementation would

be, and if it can be modified to support directional cost scale factors. Application

of this technique may also be used to help prevent sharp turns by restricting the

backwards and sideways nodes from being considered successors.

An alternate approach to hierarchical planning that is worth considering is

Anytime Truncated D* (ATD*) [34]. An anytime algorithm quickly provides an

initial suboptimal path, and iteratively improves the solutions as time permits.

This is similar to the iterative refinement process used by HD*. Truncated D*

limits the propagation of cost changes using a suboptimality bound, which speeds

up replanning and guarantees a solution within the bound. These approaches are

merged to develop ATD* in [34], which is shown to be superior to current real-time

algorithms in unknown environments. It is tested on a robot using (x, y, heading)
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as the coordinate system, and HD* can be modified to operate in these coordinates

as well to compare the two algorithms.

8.2 Conclusion

This thesis presents a path-finding algorithm for use in unknown environments

that improves upon current real-time algorithms. A new hierarchical planning ap-

proach is used to allow for rapid replanning without first requiring map corrections.

It implements directional cost factors, path smoothing, and spline generation to

create realistic paths that are not limited to transitions between node centers. The

optimality of the produced paths depends on the sensor range, refinement distance,

and planning time restrictions, but paths are no more than 10% longer than the

optimal path. Larger sensor ranges and time limits allow for a greater refinement

distance to be used, which can significantly improve path quality. On a cubic map

300 units in each direction paths are produced in under 35 milliseconds, and path

computation is faster on smaller maps.
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Appendix A: HD* Pseudocode

The full pseudocode for HD* is presented below1.

Algorithm 8 HD* Algorithm
1: class CreateLevel
2: Class containing the following functions: Initialize(), CalcKey(),

AddNode(), RemoveNode(), PopNode(), UpdateVertex(),
ComputeCost(), Succ(), ComputeShortestPath()

3: U, entryfinder, km, g, rhs, and bptr are class variables

4: function SetupLevels( )
5: Calculate number of levels and the successor distance at each level
6: Define a variable L for each level, where L is an instance of the CreateLevel class
7: return L1, L2, ..., LnLevels

8: function FindPath(L)
9: d = EuclideanDistance(sstart, sgoal)

10: path = [sstart, sgoal]
11: if d < 28 then . Distance too short to benefit from hierarchical planning
12: path = L0.ComputeShortestPath(path)
13: return path

14: for levela = nLevels to 0 do
15: if d >= 7× Llevela .length then . Length is the successor distance
16: path = Llevela .ComputeShortestPath(path)
17: break
18: while tmax has not been exceeded do
19: pathrefined = segment of path that lies within the refinement distance d r
20: for levelb = levela − 1 to 0 do . Start refinement from next lowest level
21: pathrefined = Llevelb .ComputeShortestPath(pathrefined)
22: Splice pathrefined into the beginning of path
23: return path

1The complete Python implementation can be seen at https://github.com/mds1/
path-planning.
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24: function GenerateTrajectory(path)
25: newpath = ∅
26: for i = 0 to length(path)− 1 do
27: s = pathi
28: s′ = pathi+1
29: dx = sx − s′x; dy = sy − s′y; dz = sz − s′z
30: dmax = max(|dx|, |dy|, |dz|)
31: if dmax ≤ 1 then . Occurs when spline points are close together
32: newpath = newpath ∪ {s′}
33: else
34: for j = 1 to dmax do
35: fx = dx/dmax; fy = dy/dmax; fz = dz/dmax
36: ux = sx + j × fx
37: uy = sy + j × fy
38: uz = sz + j × fz
39: newpath = newpath ∪ {(ux, uy, u′z)}
40: return newpath

41: function Main(L)
42: L = SetupLevels()
43: Scan environment for obstacles
44: while sstart 6= sgoal do
45: path = FindPath(L)
46: path = SmoothPath(path)
47: path = CatmullRomSpline(path)
48: path = GenerateTrajectory(path)
49: slast = sstart
50: dfs = 0 . Tracks distance traveled since path was found
51: while sstart 6= sgoal and path is valid do
52: Move to next point in path
53: sstart = current location
54: Scan for new obstacles and determine if they block the current path
55: if current path is blocked then
56: for all nodes u with changed costs do
57: Update traversal cost of u
58: Path is no longer valid
59: dfs = EuclideanDistance(sstart, slast)
60: if dfs ≥ d r/2 or goal has moved then
61: Path is no longer valid
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