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ABSTRACT

Khadke, Kunal R. M.S.M.E., Purdue University, May 2015. Material Design Using
Surrogate Optimization Algorithm. Major Professor: Andrés Tovar.

Nanocomposite ceramics have been widely studied in order to tailor desired prop-

erties at high temperatures. Methodologies for development of material design are

still under effect [1]. While finite element modeling (FEM) provides significant insight

on material behavior, few design researchers have addressed the design paradox that

accompanies this rapid design space expansion. A surrogate optimization model man-

agement framework has been proposed to make this design process tractable. In the

surrogate optimization material design tool, the analysis cost is reduced by performing

simulations on the surrogate model instead of high fidelity finite element model [2].

The methodology is incorporated to find the optimal number of silicon carbide (SiC)

particles, in a silicon-nitride Si3N4 composite with maximum fracture energy [2].

Along with a deterministic optimization algorithm, model uncertainties have also

been considered with the use of robust design optimization (RDO) method ensuring

a design of minimum sensitivity to changes in the parameters. These methodologies

applied to nanocomposites design have a significant impact on cost and design cycle

time reduced.
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1. INTRODUCTION

The research applications involving predicting the correct morphology of a composite

material has not been developed to a large extent. This methodology involves ad-

vanced numerical tools for simulating material behavior which can also permit design

optimization procedure. Therefore a methodology is needed to incorporate simula-

tions in recur rations for optimization and also reducing the cost of optimization.

1.1 Justification: Need for Better Materials

The ongoing development of technological platforms in every field requires de-

velopment of materials that would perform well at extreme and rough conditions.

Finding materials which would perform well at high temperatures is of prime impor-

tance these days.

The advent of the modern jet-type power plant for aviation has greatly accelerated

the development of new high-temperature ceramic materials. These power plants

are essentially high-temperature engines which convert heat energy into work. The

greater the differential in temperature of the air between the beginning and end of

the conversion, the greater the efficiency of the engine. Consequently, turbo-jets,

gas turbines, ram-jets and rockets have created a demand for materials which will

withstand elevated temperatures [3].

Ceramic composites are also used in fuel cells [4]. The bipolar plates in fuel cells

are made of materials like coated metal, graphite, flexible graphite, C-C composite

and carbon-polymer composites among others.

All the above applications place demand on ceramic materials that can exhibit ex-

cellent properties at elevated temperatures and high loads. The growth of nanoscale

materials for high temperature applications also places a demand for developing sim-
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ulation methods of predicting the most suitable microstructural morphologies using

robust optimization techniques.

1.2 Literature Review

The composite material design work has conventionally focused on strength, cost

or stiffness without considering global and local tailoring of the structures [2, 5].

Haftka [6] used a stacked composite laminate to find an efficient composite material

design by tailoring the thickness and orientation of the laminates [1]. Aronsson [7]

predicted the strength of composites based on fracture energy using the damage zone

model (DZM) by developing a notch in the composite material design. The damage

zone model was shown to accurately predict fracture load, load- deformation behavior

and damage zone sizes in these types of laminates.

A two-phase material characterization method was proposed by mapping non-

linear, nonphysical regression parameters in microstructure correlation functions to

a physically based, simple regression model of key material characteristic parame-

ters [8]. A new descriptor based material design model of particle-based heteroge-

neous microstructures based on 2D images and then latter mapping it into a 3D model

has been developed [9]. This design model cannot be used for reconstruction or in

multiple iterative designs.

A multi-objective design objective algorithm called the artificial bee colony (ABC)

was used on laminated composites to optimize the strength and the cost of the ma-

terial [10]. A similar optimization of stacked laminated composite materials was

carried out using a model with straight fiber layers using multiple optimization tech-

niques [11]. A Reliability based optimization was also carried out 3D laminated

composite shell structures. Delamination failures using the explicit non-linear finite

element code was tested by a technique called as the matrix reinforced mixed the-

ory in which several elements were stacked in a single finite element [12]. But the
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multi-phase properties, morphology and the topologies of the composites have not

been taken into consideration in the same algorithm.

Therefore, a novel simulation design is needed to incorporate the elasto-plastic

properties of the composite material in the design and at the same time the design

simulation should be generated in an iterative manner quickly. A design model is

needed that can control the size of all phases in the composite for the purpose of

optimization.

1.3 A Material Design Methodology

Nanomaterials are of great research interest in the past few years. Since the

microstructural morphologies of these composites affect their properties to a large

extent, it is very important to establish a design methodology and predict its behavior

through simulation techniques [13]. Therefore, a simulation based design is needed

to exploit computational material science and physics in accelerating the discovery

of new materials [14]. Many researches have used the traditional methods like the

Voronoi network [15] or the Lattice based model [16] for generating their designs. But

very few have used it in iterations for solving problems of this type.

Morphology of a composite material the form in which different phases are ar-

ranged to form the structure of the material. The aim of this research is to predict

the most suitable phase morphology of Si3N4 nanocomposites at room temperature

and high temperature of 1400◦C.The research serves as a good foundation for extend-

ing this methodology for other multiphase composites as well.

The difference between this work and the previous work presented is the charac-

teristic of the model is the microstructure reconstruction with the change in input

parameters. A novel contribution through this research is the generation of unique

algorithm of creating a fixed mesh through the microstructure design. The design

process is based on randomness. Therefore a random design, the finest finite element
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mesh and a robust optimization algorithm provide a significant contribution to the

material design optimization process.

A surrogate model algorithm is incorporated to the microstructural simulation and

analysis code which further reduces the high fidelity function calls of the optimization

process significantly [17,18].

Figure 1.1. Composite Structure Design and Optimization Methodology

1.4 Research Objectives

A robust design model methodology incorporating the elasto-plastic properties

along with user controllable characteristics of different phases in the composite which

can be used in an iterative manner was not used in a surrogate optimization algorithm.

Along with meticulously choosing the size of the simulation model, a consolidated

approach of using the surrogate optimization technique in the current research is

demonstrated with verification. The results obtained through this technique also
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comply with the actual physical tests and material properties of the composite. No

methodology of converting an image by pixel to element strategy has been developed

for composite material design optimization.

The application of this design simulation technique in material optimization is

demonstrated by using the fracture energy as the design variable. The optimization

tool is applied to obtain an optimal number and size of the second phase Silicon

Carbide particles along the Silicon Nitride grain boundaries with optimal fracture

energy. The 2D design is based on randomness and reconstruction. The finite element

model is based on a fixed mesh obtained from the 2D design. The uncertainty in the

design is quantified which gives a robust design algorithm for finding the optimum

morphology of a composite material. This design methodology can also be extended

to any three or two phase composite material.

The first objective of this research is to create a microstructure reconstruction

model with variable input design parameters. The optimization problem for determi-

nation of second phase size and number in the microstructure will be solved based on

this model. The second objective will be to replicate this reconstruction model based

on its properties in finite element software for determining its fracture energy. This

approach will help in developing a statistically equivalent model for reconstruction

every time it is generated. The third objective will be to quantify the uncertainties in

the reconstruction model. As the reconstruction model will be based on randomness

it will be important to quantify the uncertainties in the model to incorporate it in

the robust surrogate optimization framework. The fourth objective will be to apply

surrogate model optimization framework to the described methodology for reducing

the expensive high fidelity function calls. As the explicit finite element problem will

be time dependent, the high fidelity function calls will increase the time consumed

for converging the optimization problem. The final objective will be to determine

the optimal size and number of the second phase particles in the composite structure

through this methodology.
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1.5 Contribution in the Research

The 2D simulation model in Matlab is converted to a Finite Element Model by

creating an interface between Matlab and LS-Dyna.LS-Dyna is chosen an explicit

FEA solver for this research. A surrogate model based on radial basis function is

generated in Matlab itself and linked with the high fidelity finite element model. The

surrogate model generated in Matlab is also tested on a trial banana function which

helps in building confidence in going ahead in going ahead and implementing that

methodology in the material model design. The uncertainties in the model are also

quantified using the Monte Carlo method. One iteration of the high fidelity model

takes more than one hour and hence it takes easily more than one day to converge

to a solution. The incorporation of surrogate model brings down the optimization

convergence time to less than four hours because it uses very less of high fidelity

function calls. The design methodology finds the optimum morphology at both the

room temperature and the high temperature of 1400◦C.
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2. MICROSTRUCTURAL MODEL OF COMPOSITE CERAMICS

2.1 Microstructural Reconstruction

Creating microstructural simulations has become an integral part in material sci-

ence and has been widely been accepted in research related to these topics. These

simulations reduce the cost and time of performing actual physical simulations for

different material samples required to perform the set of analysis. Assigning proper

physical properties to the simulation and understanding relation between the physi-

cal structure and the simulation structure becomes an important part for successful

computation of the experiment. Microstructure characterization is based on the fea-

tures like the grain boundaries, grain size, grain orientation etc. Microstructures are

characterized by grain sizes, phase dispersions, grain orientation in structure-property

based simulations. The material properties can be controlled by tailoring the char-

acteristics of the microstructure. In the material design the optimization algorithms

are incorporated in the microstructure generation algorithm itself. In this way the

microstructure is tailored comprehensively according to the need of the optimization

algorithm. The Johnson-Mehl model and the Voronoi network models are the most

well-known techniques for realistic microstructural representation.

In most of the microstructure generation algorithms randomly generated points

serve as the nucleation sites for generation a grain structure.

2.1.1 Voronoi Network

The process which covers a plane with congruent plane figures is defined as a

tessellation. Random numbers of points are generated in a plane [19]. Voronoi cells

are constructed from these points by forming convex polygons. These cells grow in

recurrence as long as all the generated points are covered in a particular plane.
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Figure 2.1. Vornoi network diagram [19]

When a line joining the points is shared by a side of a polygon Voronoi cells are

created. The map generated by joining the points is called a Delaunay triangulariza-

tion [20].

2.1.2 Johnson Mehl Model

The Johnson-Mehl model was first generated by Frost and Thompson [16].The

Johnson Mehl model is based on the concept of grain growth. The nucleation sites

are the randomly generated points same as in the Voronoi network. The grains begin

to grow around the nucleation sites. The growth is time dependent which simulates

a Poisson distribution by incrementing time of random intervals. The nucleation

continues at one grain per unit time per unit of initial area till the entire plane is



9

covered. The total number of grains generated in a plane is thus dependent on the

growth rate of nucleation.

After the growth rate is complete the triple points or the hyperbolic boundary

between the grains determines the grain boundary. Figure 2.2 shows an example of

John Mehl model.

Figure 2.2. An example of the Johnson-Mehl model [21]

2.1.3 Cellular Automation Model (CA model)

The CA method uses physically based rules and provides a simpler physical real-

ization of folding on a regular lattice in 2D and 3D. This model is computationally

efficient and can be easily incorporated in a fixed-mesh finite element analysis frame-

work. This work makes use of the CA method, which is extended to incorporate

two-phase composite materials and crystalline orientation.
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The microstructural simulation model incorporated in this work has two stages for

each phase: nucleation and growth. Nucleation sites are randomly assigned preserving

a critical box distance. The maximum number of nucleation sites is unknown a priori

and should be determined by simulation.

The growth is defined by recrystallization kinetics of the parent phase surrounding

the nucleation sites. The CA method incorporated determines the transformation of

the parent phase in the neighborhood of a grain without regard of the energy field

intruded by the grain, i.e., a neighboring parent phase is transformed with a given

probability. The grain growth is therefore a function of both the neighborhood size

and probability of transformation [22].

The neighborhood Ni of a cell i in a CA lattice is defined by

Ni = j : d(i, j) ≤ r (2.1)

where d(i, j) is the distance between cells i and j, and r is the size of the neigh-

borhood. If all neighboring parent-phase cells are transformed, the topology of the

grain is determined by the size of the neighborhood as shown in Figure 2.3.

If the transformation occurs with a given probability p, such probability also

determines the topology of the grain as shown in Figure 2.3. Bias can be incorporated

by modifying the neighborhood layout. A comparison of models with and without

bias is shown in Figure 2.4.

The user has good amount of control on the grain size, grain boundary size and

the number of grains in the cellular automation model.

The grain boundary is identified using a CA rule and its thickness can be con-

trolled with neighborhood size (Figure 2.6). The amorphous grain boundary has

lower mechanical properties than the ceramic phases but, in moderate quantity, it

increases the fracture energy of the CMC. The following sections deal with the nu-

merical finite element model and the optimization method to determine the optimum

microstructural layout.
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Figure 2.3. Grain topology as function of the CA neighborhood after
a constant number of time steps. In each time step, all neighboring
parent-phase cells are transformed.

Figure 2.4. Grain topology as function of the probability p of trans-
formation after a constant number of time step for a neighborhood
size r = 1.0.
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Figure 2.5. Microstructural for 40 grains, r = 1.0 and p = 1.0 with
bias (left) and without bias (right).

Figure 2.6. Microstructure with grain boundary size and resolutions:
1000 ∗ 1000 cells (Right) and 100 ∗ 100 cells (center and right).
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3. FINITE ELEMENT MODEL FOR FRACTURE ANALYSIS

In this chapter a robust optimization tool using Surrogate Model Optimization method-

ology is incorporated to attain the optimal size and number of second phase Silicon

Carbide (SiC) particles along the Silicon Nitride (Si3N4) grain boundaries to obtain a

SiC- Si3N4 nanocomposite ceramic structure with maximum high and room tempera-

ture fracture energy. To study the properties of these nanocomposites it is important

to find the behavior of these materials at both the room temperature as well as at

temperatures of nearly 1400◦C.

The main driving force for the interest of Si3N4-SiC composite materials has been

their promise for high temperature applications. The Si3N4-SiC composite materials

have distinctive behavior above 1200◦Cin their fracture properties [23]. The primary

initiation or the source of fracture are the grain boundaries.

3.1 Ceramic Matrix Composite Materials

The use of Ceramic Matrix Composites (CMCs) such as carbon fiber reinforced

silicon carbide composites (C/SiC), carbon fiber reinforced carbon composites (C/C)

but also silicon carbide fiber reinforced silicon carbide composites (SiC/SiC) is manda-

tory within the aerospace sector whenever the transfer of mechanical loads at high

temperatures (up to 1900 K in air) is required and any metallic material (e.g. re-

fractory metals) or intermetallic materials cannot be employed [24]. Ceramic matrix

composite (CMC) materials can benefit aerospace in propulsion and exhaust, thermal

protection, and hot primary structure applications.

The extremely good high temperature fracture toughness of CMCs is provided by

the crack bridging effect of the carbon fibers: stress concentrations, e.g. notches or

holes, are reduced by stress redistribution and inelastic deformation [25]. In case of
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overloading, monolithic ceramics break immediately, while CMC materials are still

able to carry load even if the elastic mechanical load range is exceeded. Such a damage

tolerant behavior constitutes an important point for the safety issues in particular for

space re-entry vehicles.

The Garrett engine (AGT 101) was an extension of the Ford 820 ceramic engine

design [26]. It had a single shaft, a radial rotor, and air bearings. Many ceramic

components fractured during testing, some due to design and assembly problems

but most from material limitations. The desire was to use net-shape fabrication

processes, but the state of technology in 1985 did not result in reliable ceramic turbine

components. A CMC was therefore needed which has high fracture toughness at high

temperatures. Hence, the Silicon Carbide-Silicon Nitride nanocomposite was found

to be the solution for these applications and it is the prime area of focus in this

investigation.

3.2 Observed Material Behavior

The properties and failure characteristics of ceramic materials change when the

temperature increases. At room temperature the ceramics materials have no plastic

strain and behave as brittle materials. But they gradually start weakening at around

900◦C [27]. The failure mechanism is based on the phenomena of slow crack growth.

The failure mechanism primarily is a function of the size of the grains, size and

distribution of the grain boundary phase, the size of the distributed third phase

particles. Through an experiment using a negative rake angled diamond cutting tool

it was found that fracture is mainly a surface phenomenon and gradually presides

through the cross-section of the solid. Hence, a 2D model with imbibed physical

properties of the material can be used effectively to study the fracture initiation and

to some extent growth as well [28].
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3.2.1 Plastic Strain

The high temperature mechanical properties such as fracture energy or creep resis-

tance of fine grained ceramics are controlled by their microstructure which determines

the micro mechanisms of plastic deformation. Several ceramics have been found to

exhibit enhanced ductility or even structural super plasticity at high temperature.

Although these ceramics are very different with regard to microstructure, physical

and chemical properties, they share one common feature that all of them have a very

fine grain size (of the order of a micron or less).Consequently, grain boundaries (GBs)

play a dominant role in the high temperature deformation process of these materi-

als. Effectively, a major component of high temperature deformation is attributed to

diffusion-accommodated GB-sliding [29].

A summary of experimental developments in nanoindentation of silicon by Dom-

nich [30] revealed the elastic-plastic response and hysteresis of these normally brittle

materials. The experiments showed that Si transforms from the cubic diamond phase

to a metallic phase at elevated pressures. It was also found that it takes less energy

to generate and propagate a crack (in a brittle material) than it takes to plastically

deform the material.

The elastic behavior is specified by providing the elastic modulus and Poissons

ratio. The strain hardening behavior is specified by a power law model given by

g(εp) = σ0θ(T )[1 +
εp

εp0
] (3.1)

where, g(εp) is the flow stress, σ0 is the initial yield stress determined using the

Drucker-Prager yield condition, θ(T ) is the thermal softening factor, n is the strain

(work) hardening exponent and εp and εp0 are the accumulated plastic strain and

reference plastic strain respectively [31].The Finite Element software LS-Dyna takes

the value of effective plastic strain for considering the breakage criteria. The value of

this effective plastic strain is always a fraction less than the real plastic strain value.
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The simulations carried out in this research use a constitutive model that treats

the material as elasto-plastic. Both the primary materials in the composite (i.e SiC

and Si3N4 ) have very negligible plastic strain at the room temperatures. But at

temperatures around 1400◦C,silicon carbide shows a significant amount of plastic de-

formation before fracture [32]. In silicon nitride, the dislocations along the grain

boundaries play a significant role for their plastic deformation along the grain bound-

aries. As the composition of the material plays an important part in observing the

values of the plastic strain, it will always have a range of values for a specific temper-

ature. The plastic strain of silicon carbide is taken as 0.05 and that of silicon nitride

to be 0.02 at 1400◦Cin the finite element simulations for this research [33].

3.2.2 Temperature Effect

Sintered α-SiC shows an exceptional behavior of increasing flexural strength with

increasing temperature when the tests are conducted in an open environment. But

the 3 point bending strength results for α-SiC shows a slight decrease in the elastic

modulus with the increase in temperature [34].

3.3 Observed Fracture

Si3N4 shows plastic deformation characteristics at higher temperatures. The in-

tergranular grain boundaries are found to be the primary mechanisms of fracture.

The grain boundaries are responsible for crack deection and accordingly damage

is limited to a smaller geometric region in microstructures with grain boundaries.

Hence, grain boundaries are the most influential phase in the microstructure for frac-

ture propagation. On an average, a microstructure with grain boundaries present

is stronger than the corresponding microstructure with grain boundaries removed

because they tend to divert the line of fracture propagation.

The silicon carbide particles have higher elastic modulus than silicon nitride grains.

In cases where the second phase SiC particles are in the wake of micro cracks the
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Figure 3.1. Temperature effect on the elastic properties of SiC [30]

Figure 3.2. Micro-crack growth along grain boundary [35]
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Figure 3.3. GB separation after deformation [36]

microstructure become stronger against fracture. The second phase SiC particles

cause a crack bridging effect.

To verify the significance of SiC particles along the grain boundaries, a FEA

simulation is carried out using the same CA lattice model. An average from 10

readings is taken from the models having SiC particles and the other one without

SiC particles along the grain boundaries. The model with SiC particles in the wake

of the grain boundaries has an average fracture energy of 42.45 J and the other with

no SiC particles along grain boundaries has an average fracture energy of 32.10 J.

3.4 Si3N4 & SiC properties

Kusunose [37] studied the high-temperature mechanical properties of Si3N4/BN

nanocomposites. The Youngs modulus of the nanocomposite increases gradually

maintaining its hardness and strength even at elevated temperatures of 1400◦C. The
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fracture strength of Si3N4/BN however decreases at elevated temperatures but the

rate is small compared to monolithic Si3N4.

The grain boundary sliding phenomenon was observed to be a critical factor for

the high temperature fracture strength of Si3N4/BN. The nano sized h-BN particles

have excellent high temperatures which were placed along the grains which in turn

helped in strengthening these grain boundaries and increasing the strength of the

composite [38]. The grain boundaries were thus strengthened by the dispersion of

nano sized h-BN particles by chemical processing.

Nihara [39] experimented by embedding nanoparticles (20-300 nm) within the

grains and also along the grain boundaries. It was found that along with fracture

strength and toughness, even the creep properties were retained because of these

dispersed nano sized particles. The properties of these nanocomposites were then

compared to monolithic ceramics and the property retention in nanocomposites was

therefore attributed to the second phase nanoparticles.

Weimer and Bordia [40] investigated Si3N4-SiC nanocomposites with aluminum

oxide compositions. Their studies concluded that there was 10% improvement in

strength in the composite with 5-10% decrease in grain size. But there was a slight

decrease in the fracture strength of these composites with the decrease in the grain

size.

There are large property variations that have been reported by different researches

in the past. These large variations are mainly attributed to the factors like the sample

size which is being used for testing, its morphology and also the testing (3 pt. vs. 4

pt.) techniques used. But the critical discrepancy is always found the effect of the

dispersed particles on the fracture toughness and strength of the composites which is

invariably difficult to test through physical experiments.

A comprehensive study is needed on the effect of the dispersed particles on the

mechanical behavior of the composites. A methodical investigation is needed to study

the changes in the behavior of the Si3N4-SiC composite structures due to inclusions

of different volume fractions of SiC particles and also its size. These experimental
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based studies have not been carried out to find the fracture strength and toughness

with variations in the size and volume of SiC particles in the matrix of silicon nitride

grains [40].

A small amount of plastic deformation was identified for silicon nitride because

of the dislocation motion in the reaction bonded grain boundaries at 1400◦C. But at

most only ”microplastic” deformation is achieved, which is controlled by the ”interface

reaction” process which depends either on the transfer of matter through the glassy

phase or on the mobility of GB-dislocations [29].

Hardness test was carried out on polycrystalline silicon. Initial yield for SiC was

taken to be 11.82 GPa based on a proposed value of H/2.2 [41]. Based on initial yield

and the Young’s modulus test values effective plastic strain values were calculated for

SiC at both the temperatures using the relation θ0
E

.

The elastic and plastic properties used for all the three phases are shown in the

table material properties at 20◦C.

Table 3.1. Material and Mechanical properties at 25◦C [15,42–49]

MATERIAL
YOUNGS

MODULUS

POISSON

RATIO

YIELD

STRESS

PLASTIC

STRAIN

Si3N4 210 GPa 0.22 9.8 GPa 0.01

SiC 450 GPa 0.16 14 GPa 0.02

Grain Boundaries 190 GPa 0.22 5 GPa 0.008

3.5 Methodology of Materials Design

To find the optimal fracture energy of this composite material a 2D model is devel-

oped for analysis and optimization. The 2D model which is created using the cellular

automation lattice model uses physically based rules and provides a simpler physical

realization of folding on a regular lattice in 2D.A finite element fixed mesh is created
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Table 3.2. Material and Mechanical properties at 1400◦C [15,42–49]

MATERIAL
YOUNGS

MODULUS

POISSON

RATIO

YIELD

STRESS

PLASTIC

STRAIN

Si3N4 200 GPa 0.18 11.8 GPa 0.02

SiC 380 GPa 0.15 16 GPa 0.05

Grain Boundaries 170 GPa 0.17 7 GPa 0.0017

using a one to one pixel to element correspondence in LS-Dyna for the non-linear

dynamic fracture analysis. The uncertainties in the model are quantified using the

Monte Carlo simulation [50]. The optimization is carried out using a surrogate model

instead of high fidelity time consuming Finite Element Model. A surrogate model is

developed using the radial basis function which helps in reducing the optimization

time. So the “high fidelity” 2D Finite Element Model guides the “low fidelity” model

towards the optimal design only to make significant savings in time. The radial basis

model is not based on true physics.

3.5.1 Model for High Fidelity Analysis

A 2D finite element model formed by creating a fixed mesh from the lattice model

is used for the high fidelity analysis.

The Figure 3.4 illustrates the composite model analyzed in this research. The

second phase(blue) are the second phase SiC particles whose number and size along

the grain boundaries(green) has an impact on the fracture energy of this model.

A dynamic non-linear fracture analysis is performed on this Finite Element Model

which has a fine resolution of 50 nanometers.

The problem is to design a microstructure having high fracture energy having

the constraints of size of the second phase SiC particles of less than or equal to 400

nanometers (i.e 8 pixel radius) and its number to be less than or equal to 15.Therefore
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Figure 3.4. 2D Microstructure generation (left), identification of three
phases Si3N4, SiC, and GB (center), and FEA model generation in
LS-Dyna (right).

the two design variables are (1) the size of the Silicon Carbide particles and (2) the

number of Silicon Carbide particles.

Explicit FEA using LS-Dyna

Consider the system of 2nd order differential equations that govern a discretized

structure

Mẍ(t) + Cẋ(t) +Kx(t) = F (t) (3.2)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix

and ẍ(t), ẋ(t), x(t) are the vectors of acceleration, velocity, and displacement (re-

spectively) for the nodal locations at any given time t. F (t) is the vector of external

forces applied to the structure. Solving for acceleration, equation 3-4 becomes

ẍ(t) = M−1(F (t) + Fs(t)) (3.3)

where Fs(t) is the vector of internal structural forces. In fracture analysis the crack

growth pattern is highly time dependent and also the failure occurs in the plastic phase
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Figure 3.5. Boundary Conditions of the Finite Element Model

of the material. One method for solving such highly non-linear problems is to use an

explicit finite element method.

The terms implicit and explicit refer to time integration algorithms. An Explicit

FEA analysis utilizes an incremental procedure to solve for nodal dynamics. At the

end of each increment, it updates the stiffness matrix based on geometry changes

(if applicable) and material changes (if applicable). Then a new stiffness matrix

is constructed and the next increment of load (or displacement) is applied to the

system. The purpose for this explicit approach is that if the increments are small

enough, then the results will be accurate. One problem with this method is that the

time increment must be very small for a high level of accuracy and thus the simulation
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can be extremely computationally expensive. If the time increment is too large, the

solution tends to drift from the correct solution.

3.6 Fracture Calculation

While performing finite element analysis the sample is assumed to be defect free.

But to incorporate the actual defects in the microstructure, a fictitious crack model

is used [16] for the finite element . The stress intensity factor is the parameter

for fracture mechanics used in a fictitious crack model. The analytical and exper-

imental methods both have been have extensively being used in the past century

to find the fracture behavior of these complex composite materials. The ideal ge-

ometries have always been used for analytical and experimental methods to calcu-

late their fracture strength [51] and for the complex geometries numerical meth-

ods has been the source to calculate its fracture strength [52, 53]. The LS-Dyna

model used for performing the fracture analysis is Material number 81 called as the

∗MAT PLASTICITY WITH DAMAGE.

Figure 3.6. Figure (a)Damage Characteristic (b)Fracture criteria [54]
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This material model has Isotropic damage and fracture characteristic and its uni-

axial stress-strain curve is completely symmetric about an origin. Therefore, damage

and fracture occur in tensional and compressive regions. The constitutive properties

of the damaged model are obtained from the undamaged material properties. The

amount of damage evolved is constituted by the constant ω, which varies from zero

if no damage has occurred to unity for complete rupture. For uniaxial loading, the

nominal stress in the damaged material is given by

σnomial =
ρ

A

where ρ is the applied load and A is the surface area. The true stress is given by

σtrue =
ρ

A− Aloss
where Aloss is the void area. The damage variable can be defined as 0ω1. In

model damage is defined in terms of plastic strain after the failure strain is exceeded:

ω =
εpeff − ε

p
failure

εprupture − ε
p
failure

if εpfailure ≤ εpeff ≤ εprupture (3.4)

After exceeding the failure strain softening begins and continues until rupture

strain is reached.

3.7 Fracture Analysis of Composite Materials

The main application of the Si3N4-SiC nanocomposite is in the aerospace industry.

Hence the material must have sufficient fracture toughness so that a noticeable crack

can be detected before failure. The toughness of the composites depends on the

volume fractions of inter and intragranular SiC dispersions, and controlling these

fractions precisely is challenging. Ohji [55] proposed a particle-bridge mechanism,

whereby crack face shielding results when nano-size particles bridge the crack surfaces.

The SiC particles act as the toughening mechanisms in the composite material

because they are mainly responsible for crack deflection and crack impediment.
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Figure 3.7. Figure. Stress-Strain behavior when damage is included

The average fracture energy of the intergranular structure was found to be 44.68J

with a standard deviation of 3.49 while that for a structure having both dispersions

was 36.47J with a deviation of 3.12 from 8 readings respectively. Both the structures

have 15 SiC particles .Thus, the analysis show that SiC particles along the grain

boundaries have significant impact on its fracture energy. Hence the number and

size of intergranular SiC particles is chosen as our design variables for finding the

morphology with the highest fracture energy.

3.8 Microstructural Randomness

With a fixed given set of input parameters different models having the same struc-

tural properties but different topologies are generated as the microstructure genera-

tion is based on randomness.
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Figure 3.8. Schematic diagram of fracture frontal process zone

Figure 3.9. (A) Intergranular Structure (B) Inter+Intragranular Structure

This formulation goes hand in hand with the actual physical material testing

methods because every physical composite having the same parameters is bound to

have different topologies.
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Figure 3.10. Four different lattice models with the same input parameters

But even though they have the same parameters these models are bound to have

different fracture patterns and hence different fracture energies.

Figure 3.11. Three models of 1010 micrometers with same input
parameters but different fracture energies at room temperature
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Along with the morphology, the topology of the composite material also plays an

important role while determining its fracture toughness.
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4. DESIGN OPTIMIZATION METHODS

These material design optimization techniques are iterative design based and are

computationally very expensive. Therefore, to impregnate these expensive material

design cycles in an iterative manner for optimization an efficient design technique is

needed. Qian et al. [56], and Osio worked on building surrogate models with good

accuracy. But this work primarily focused on adapting the surrogate model technique

for decreasing the material design optimization time. Mej́ıa-Rodŕıguez et al. [50]

presented a material design tool based on the variable fidelity model management

framework. In this research the high fidelity simulations are used in the algorithm

only to obtain the low fidelity simulation results in the accurate range. Response

surfaces are generated in Successive approximate optimization (SAO) algorithms to

conduct optimization on an inexpensive surrogate model which efficiently reduce the

optimization time [57].

In the field of mathematical modeling, a radial basis function network is an ar-

tificial neural network that uses radial basis functions as activation functions. The

output of the network is a linear combination of radial basis functions of the inputs

and neuron parameters. Radial basis function networks have many uses, including

function approximation, time series prediction, classification, and system control [58].

The use of radial basis function was proved to be universal approximation [59].This

function could therefore successfully used as a surrogate model in expensive compu-

tational problems [60].

A Kriging model approach by adopted by Timothy [61] as alternatives to second-

order polynomial response surfaces for constructing global approximations for use in a

real aerospace engineering application, namely, the design of an aerospike nozzle. The

Kriging model is similar to Radial Basis Function except that it combines localized

departures or deviations in addition to the global model [62].



31

In this design process we are using the 2D finite element model as the high fidelity

model and the low fidelity model is a surrogate model based on the radial basis func-

tion. The low fidelity model neglects the important physics involved in the composite

material design hence it is much cheaper to evaluate compared to the expensive high

fidelity 2D model.

This section deals with the design optimization algorithms and methods intro-

duced in the earlier sections for material design, that are used in material design

effectively to reduce the design cycle time.

4.1 Surrogate Model Management Materials Design

High fidelity models are expensive to perform the entire design optimization.

Hence low fidelity models are used to drive the expensive high fidelity models to-

wards convergence in a shorter period of time. Higher fidelity models are mostly

used in the algorithm to get the accuracy of the results in the latter stage. Accurate

high fidelity models are expensive to carry the entire optimization process on [18].

The optimization is carried mostly on the surrogate models and then the high fidelity

models are used to refine the accuracy of the design and optimality [63].

4.2 Surrogate Model Optimization Algorithm

The reason to use the surrogate model is to lessen the function calls of the high

fidelity model. The framework is designed as follows: At the starting point ′x0′ the ob-

jective function is evaluated using both high fidelity fhigh(x0) and surrogate functions

fsurrogate(x0).The objective function for the optimization problem is to maximize the

fracture energy of the given composite material. The design variables are the size and

the number of SiC particles to obtain the most suitable morphology with maximum

fracture energy.

Starting point:
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x0 ∈ Rn

The standard non-linear optimization problem can be written as:

Find:

X=[x1,x2]

x1: Number of inter-granular SiC grains

x2: Size of Intra-granular SiC

Maximize

F= Total Fracture Energy

f1 = fracture energy at 25◦C

f2 = fracture energy at 1400◦C

ω = weights for distributing the fracture energy values at temperature 25◦Cand

1400◦C

α = weights for distributing the fracture energy values of the mean and the ratio

of standard deviation to mean

Where

FX = ωF1(x1, x2) + (1− ω)F2(x1, x2) (4.1)

F1(x1, x2) = −α ∗meanf1 + (1− α)
std(f1)

mean(f1)
(4.2)

F2(x1, x2) = −α ∗meanf2 + (1− α)
std(f2)

mean(f2)
(4.3)

At T1 = 30◦C

T2 = 1400◦C

Subject to

0 ≤ x1 ≤ 15
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1 ≤ x2 ≤ 8

The fracture energy is found at room temperature (f1) and also at 1400◦C(f2).The

calculation of fracture energy can either be calculated by using the entire design space

or the high fidelity analysis or by using sampling points of the radial basis model.

4.2.1 Design of Experiments

The design of experiment is a set of point’s setup for sampling. The goodness of

the designs depends on the number of samples which is severely limited by the com-

putational time of each sample. As the design variables are deterministic, the set of

sampling points are chosen to effectively cover the entire design space uniformly with-

out hampering the computational cost. The uniformity is obtained by maximizing the

distance between the points. Examples of these methodologies are Latin Hypercube

sampling and orthogonal arrays. [64]. Latin Hypercube methods have been proposed

because of its efficiency.

Latin Hypercube Sampling

A stratified sampling approach is chosen by distributing a set of points in the

design space by 1/Ns distance. The sampling approach samples all the spaces in the

given design equally depending on the number of points ’k’ [65].

By changing the relation between the points and uniformity, different sets of sam-

pling points can be obtained.

Optimal Latin Hypercube Sampling

Johnson, Moore, and Ylvisaker [66] proposed the maximim distance criterion,

which maximizes the minimum inter-site distance. Morris and Mitchell [67] ap-

plied this criterion to the class of LHDs to nd the optimal LHD. Because there are
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Figure 4.1. A Latin Hypercube Design with Ns = 6 and Ndv = 2 for
X uniformly distributed among unit square.

many designs that maximize the minimum inter-site distance, they proposed an ex-

tended denition of the maximin criterion. A family of designs defining a distance list

(D1, D2, D3Dm) in which the elements are the distinct values of inter-site distances,

sorted from the smallest to the largest for a given LHD. Let Ji be the number of pairs

of sites in the design separated by Di.

The family of functions indexed by p is given as

φp = (
m∑
i=1

JiD
−p
i )1/p (4.4)



35

Figure 4.2. LHS designs with significant increase in terms of unifor-
mity from (a) to (c).

where Ji is the number of pairs of sites in the design separated by Di.

The design that minimizes φp is called the maximin design [68]. This design forms

the optimal Latin hypercube design (OLHS).

4.2.2 Construction of Surrogate Model

There are different ways of constructing a surrogate model with parametric and

nonparametric approach. The radial basis function is a non-parametric approach

which used data points to create a surrogate model.

Radial Basis Function (RBF)

This research explores the implementation of radial basis function networks as a

metamodeling technique. It is the intention that the radial basis function network

tools can be used to approximate the response of the system normally calculated be

means of FEA simulation, and therefor improve computational efficiency.

Radial basis function networks are a type of artificial neural network. An artificial

neural network, inspired by the neurobiological workings of the brain, is composed
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of an interconnected group of artificial neurons [69]. The network processes infor-

mation as a relation of connections between these neurons, often referred to as the

connectionist approach to computation. A radial basis function (RBF) is simply a

function whose value is based on the distance from the origin. In turn, a radial ba-

sis network is a neural network that uses RBF functions as the method of neural

approximations [70].

A radial basis function network, as shown in, has three layers: an input layer, a

hidden layer containing RBF functions, and an output layer. The input layer can be

modeled as vector of real numbers x ∈ Rn and the output is a scalar function of the

input vector ϕ: Rn → R. The hidden layer, which contains the RBF functions, is

used to approximate the output function expressed as

ϕ(x) =
N∑
i−1

αiρ(||x− ci||) (4.5)

where N is the number of neurons, ci is the center vector for neuron i, and αi is

the weight of neuron i in the linear output neuron [71]. The values for ci and αi are

chosen such that ϕ(x) best fits the data.

Due to the best-fit scheme for the weights, it is necessary to train the neural net-

work with several sets of input data to achieve the desired level of accuracy. As is

shown in Figure 4.3, the RBF network takes the set of design variables d as inputs and

approximates a value for the system response of interest. LS-DYNA finite element

simulations are used to train the network initially through a factorial of the input

variables. The optimization problem is then solved and the output is compared to an

additional FEA simulation for evaluation of network accuracy. The optimization rou-

tine is illustrated in Figure 4.4 . The RBF network implemented here is the function

newrbe which exists as part of the Matlab neural toolbox plug-in.This function can

produce a network with zero error on training vectors. It is called in the following

way: net = newrbe (P, T, SPREAD).

The function newrbe takes matrices of input vectors P and target vectors T, and

a spread constant SPREAD for the radial basis layer, and returns a network with
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Figure 4.3. Radial basis function architecture [72]

weights and biases such that the outputs are exactly T when the inputs are P. Each

bias in the first layer is set to 0.8326/SPREAD. This gives radial basis functions that

cross 0.5 at weighted inputs of +/ SPREAD. This determines the width of an area

in the input space to which each neuron responds. Hence, the value of SPREAD

needs to higher than 1(depending on the function) so that neurons respond strongly

to overlapping regions of the input space.
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Optimize Surrogate Model

Figure 4.4. Surrogate Model Optimization Framework

Evaluate new design

A new point xn the value taken is of the high fidelity function. If the evaluated

function value is within the convergence criteria then the solution is accepted other-

wise the evaluated function value is added in the network to create a new RBF for

further iterations.
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The optimization is carried out using the sequential quadratic algorithm from the

Matlab toolbox. The command used in the Matlab program is called the fmincon

which solves a quadratic problem at every iteration.

4.3 Robust Design Algorithm

A sequential approximate optimization under uncertainty algorithm is applied to

find the optimal morphology of the nanocomposite material. Robust Design Method,

also called Taguchi Method, was originally developed by Genichi Taguchi [73]. In

robust or statistical optimization, a design variable which is the most feasible and

efficient is found which minimizes or maximizes the objective function is found.

There is a significant need to apply uncertainty quantification in the area of ma-

terial optimization due to the errors occurring in design. The quantification of how

uncertainty propagates throughout the system is the general goal of such endeavors

and is commonly referred to as uncertainty propagation.

Monte Carlo simulation is a well-known method of quantifying the uncertainty

and is extensively used in physical and mathematical problems and are most suited

to be applied when it is impossible to obtain a closed-form expression or infeasible to

apply a deterministic algorithm. Monte Carlo methods (or Monte Carlo experiments)

are a broad class of computational algorithms that rely on repeated random sampling

to obtain numerical results; i.e., by running simulations many times over in order to

calculate those same probabilities heuristically.

This simulation method was introduced in uncertainty quantification of Markov

Unreliability Models [74]. When the simulation programs may have deviations associ-

ated with input parameters (external uncertainties), as well as internal uncertainties

due to the inaccuracies of the simulation tools or system models it is difficult to

compromise on the output of the system. These uncertainties will have a great in-

fluence on design negotiations between various disciplines and may force designers to
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make conservative decisions. Hence this statistical methodology proved to be a good

approach to mitigate the effect of uncertainty in simulation based design [75].

4.3.1 Uncertainty Quantification of Material Design Model

This method that this research used for optimization is the Monte Carlo method

wherein orthogonal arrays are set to evaluate the variations in the design. With the

decrease in the number of function calls a trade-off is achieved between the function

accuracy and the optimization convergence time. Hence, to reduce the accuracy a

multi-objective function with variations of the objective function is also added with

the conventional objective function.

The optimization formulation in this investigation takes the form:

Minimize:

Find:

x ∈ Rn

Minimize:

F (x) = αf̂p(x) + (1− α)vrt[fp(x)] (4.6)

Subject to:

xL ≤ x ≤ xU

where :

fp(x) = fracture energy

defined as:

fp(x) = f(x) + Ω[R, g(x)]

Ω = summation of variation of fracture energy values and

vrt[fp(x)] =

√√√√ 1

ns

ns∑
i=1

(fpi − f̂p)2
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In the research of Gu and Renaud [76] the sample designs i in Equation 3-4 are

determined by orthogonal arrays for selecting a combination of design variables. In

this investigation, there are random errors arising in the microstructure generation

simulations so there is no requirement of using orthogonal array technique for quan-

tifying the uncertainty. The variation in results with the same input parameters is

the basis of uncertainty quantification, see Figure 4.5.

Figure 4.5. a) Input variable non-deterministic b) Function value non-deterministic

4.3.2 Quantifying the Response of Non-Deterministic Function

In this research the function fracture energy is a non-deterministic function, caused

mainly due to random errors in the microstructural generation simulations [77]. The

microstructure is generated based on a random process. The design is repeated 20

times for each design point to quantify the uncertainty [1]. The mean and standard

deviation values are obtained from these responses. The mean and standard deviation

values obtained are used to create the surrogate models. After 20 simulations the

standard deviation of the responses was stabilized and hence it was chosen as a

number to quantify the uncertainty.
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4.4 Verification of Surrogate Model Algorithm

The verification of the Surrogate Model is done using the Rosenbrock function

or the banana function. In mathematical optimization, the Rosenbrock function is a

non convex function used as a performance test problem for optimization algorithms

introduced by Howard H. Rosenbrock in 1960. It is also known as Rosenbrock’s valley

or Rosenbrock‘s banana function.

The global minimum is inside a long, narrow, parabolic shaped flat valley. To find

the valley is trivial. To converge to the global minimum, however, is difficult. The

function is defined as:

f(x, y) = 100(1− x2) + (y − x2)2 (4.7)

4.4.1 Initialization

The optimization of the banana function is carried out in Matlab. The function

resembles a parabolic curve. A start point of [0.5; 0.5] is given for SQP algorithm

using the fmincon function. The function is also given a lower bound of [0; 0] and

an upper bound of [2.5; 2.5].The high fidelity function converges to a value of 0.0000

with the results [1.0000; 0.9999].

4.4.2 Design of Experiments

The sampling points are setup using the Optimal Latin Hypercube in ISIGHT.

15 sampling points are chosen between the defined lower and upper bounds. The

optimal Latin Hypercube effectively covers the function domain between the defined

bounds.
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Figure 4.6. Banana Function converged: Banana Function with
[1.0000; 0.9999] optimum

4.4.3 Construction of the Surrogate Model

The surrogate model is setup using the radial basis function in Matlab. It uses

the in-built function “newrbe” for setting up a neural network of the radial basis

function. The value of SPREAD is taken based on the judgment with solving the

function on trial functions like the banana functions. The value of ’3’ is chosen as the

SPREAD value for this fracture energy function because it invariably gives the best

solution based on the results obtained.



44

Figure 4.7. Sampling using Optimal Latin Hypercube:15 sampling
points between the defined function bounds

4.4.4 Surrogate Model Optimization

The optimization based on Surrogate Model based on the Surrogate Model Opti-

mization algorithm is carried out. The results are shown in the following table.

Table 4.1. Convergence obtained using surrogate model optimization
on banana function

Model x y Function calls Function value

High Fidelity 1.0000 0.9999 106 0.0000

Surrogate 0.9993 1.0005 30 0.0004
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Figure 4.8. Surrogate Model Using Radial Basis Network

4.5 Variable Fidelity Algorithm

A low fidelity model (LFM) is added to the algorithm to further reduce the op-

timization time. The low fidelity model is based on physics but is not accurate as

the high fidelity model. The low fidelity model is also compared along with the high

fidelity model to the surrogate model result in the convergence criteria. The low

fidelity model further reduces the optimization time and high fidelity function calls.

The variable fidelity algorithm with lower number of Monte Carlo simulations with

that used for the high fidelity model could not implemented in this research because

the variations in the values of standard deviations increases with the increase in the
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Figure 4.9. Banana function optimized

number and size of SiC phase. The radial basis function would have been inefficient

in this case to do an approximation of the low fidelity model.
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Figure 4.10. Variable Fidelity Algorithm
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5. COMPOSITE MATERIAL DESIGN RESULTS & SUMMARY

The most optimal morphology of the nanocomposite SiC-Si3N4 for both low and

high temperatures is presented in this chapter. The optimal morphology is predicted

by maximizing the fracture energy function at two temperatures: 25◦Cand 1400◦C.

The fracture point is determined by the area under the force-displacement curve by

performing tensile tests using the finite element method. The optimization algorithm

used is the sequential approximate along with quantifying the uncertainties in finding

the optimal morphology of the nanocomposite. The uncertainties arising from the

random errors in the model are quantified using the Monte Carlo simulation [1]. The

results show that the SiC volume fraction, the number of Si3N4 grains, grain size

distribution of the Si3N4 grains have significant effects on the fracture energy values.

At room temperature (25◦C) the preferred material is one with higher Si3N4 and on

the other hand the preference is on the material with higher SiC volume fraction. The

results found in this investigation are in conjecture with the findings and results in the

literature. This study is overall a systematic methodology in predicting the optimal

morphology of the SiC-Si3N4 ceramic composite which maximizes the fracture energy

of the microstructure and at the same time reduces the optimization time. The

investigation is performed on the Si3N4-SiC composite but this methodology can be

extended to any composite mateial [1].

5.1 Methodology for Materials Design

To implement the proposed material design methodology, a function having equal

weights of fracture energy at 25◦Cand 1400◦Cis maximized with simultaneously quan-

tifying the uncertainties in the model. The microstructural generation input param-

eters are variable bound along with its size.
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5.1.1 Design Model

A Finite Element fixed mesh model derived from lattice model in Matlab is chosen

for achieving the design objective.

Figure 5.1. Finite Element Model

Choosing a correct sample size for analysis and further for optimization is of ut-

most importance for getting the correct optimum point in the chosen design method-

ology. Some researches use a square sample and some use a rectangular sample for

fracture analysis [78, 79]. A square sample of 7.5 ∗ 7.5 micrometers and a rectangu-

lar sample of 7.5 ∗ 10 micrometers are compared with their average fracture energies

and standard deviations taking 20 readings each. The resolution of the structure is

20 pixels to one micrometer. Hence, a unit radius of SiC particle represents 0.05

micrometers, i.e. 50 nanometers.

The contour plot of the deviations of the square model shows that the standard

deviation increases as the number and size of SiC particles increase. But the contour

of a rectangular model is smoother and shows no such rapid increase in standard

deviation with change in the SiC particle size and dimension. Although the values

of deviation are a bit higher for a rectangular model but the variance is very less if
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Figure 5.2. Standard deviations and fracture energies of a square
sample (7.5 ∗ 7.5 micrometers) top and Standard deviations and frac-
ture energies of a rectangular sample (7.5 ∗ 10 micrometers)

we take into account the values of fracture energies (Figures on the right).Hence, a



51

rectangular model gives better results and can serve as an ideal model for further

investigations. The model size chosen for this research was 6.25 ∗ 12.5 micrometers.

5.1.2 Design Model Objective

The number of silicon nitride grains and the intra-granular SiC particles are chosen

as the fixed parameters while achieving the desired design objective.

A filter radius of 2.25 is kept constant for both SiC and Si3N4 phases in the CA

lattice model for all the inputs to obtain a nearly uniform round structure of all the

cells. The filter radius for the grain boundaries is 1.25 for achieving a square structure

for every pixel. The diameter (or the critical radius distance) is kept constant to be

0.7 throughout all the readings.

Fixed Parameters:

Total Si3N4 grains = 30;

Intra-granular SiC particles = 0;

Weights: α = 0.5 ω = 0.5

Find:

X=[x1,x2]

x1: Number of inter-granular SiC grains

x2: Size of Intra-granular SiC

Maximize

F= Fracture Energy

Where

FX = ωF1(x1, x2) + (1− ω)F2(x1, x2) (5.1)

F1(x1, x2) = −α ∗meanf1 + (1− α)
std(f1)

mean(f1)
(5.2)

F2(x1, x2) = −α ∗meanf2 + (1− α)
std(f2)

mean(f2)
(5.3)
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At T1 = 30◦C& T2 = 1400◦C

Subject to

0 ≤ x1 ≤ 15

1 ≤ x2 ≤ 8

In equation 5-2 f1 represents the fracture energy at temperature T1 and f2 rep-

resents the fracture energy at temperature T2, std(f1) and mean(f2) represent the

standard and mean deviation of the fracture energies derived from the Monte Carlo

method. The parameter ω is used to distribute the weight of the fracture energies

in the equation and is the parameter used to distribute the weight of the uncer-

tainties to be adopted in the equation. The Matlab function fmincon is used for the

optimization [1].

Table 5.1. Material and Mechanical properties at 25◦C [15,42–49]

MATERIAL
YOUNGS

MODULUS

POISSON

RATIO

YIELD

STRESS

PLASTIC

STRAIN

Si3N4 210 GPa 0.22 9.8 GPa 0.01

SiC 450 GPa 0.16 14 GPa 0.02

Grain Boundaries 190 GPa 0.22 5 GPa 0.008

Finite element simulations give us the result of the area under the force-displacement

curve which is nothing but the fracture energy of the material up to the fracture limit.

Table 3-1 & Table 3-2 show the elastic material properties for the bulk components

of the SiC-Si3N4 nanocomposite.

The microstructural generation simulations induce uncertainties in the model

which in turn generate uncertainties in the finite element analysis. With the same in-

put parameters for the microstructural generation simulation, different models with
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Table 5.2. Material and Mechanical properties at 1400◦C [15,42–49]

MATERIAL
YOUNGS

MODULUS

POISSON

RATIO

YIELD

STRESS

PLASTIC

STRAIN

Si3N4 200 GPa 0.18 11.8 GPa 0.02

SiC 380 GPa 0.15 16 GPa 0.05

Grain Boundaries 170 GPa 0.17 7 GPa 0.0017

variations in its characteristics are generated and therefore fracture energy results

with variations are achieved.

The initial surrogate design matrix is setup using the optimal Latin hypercube in

Isight.8 sampling points are setup initially for covering the design space effectively.

The sample size chosen for this investigation is 6.25 ∗ 12.5 micrometers. The number

of silicon nitride grains is kept constant to be 30 throughout the investigation.

Table 5.3. Design matrix chosen from ISIGHT using OLH sampling method

X1 X2

1 1

2 3

4 2

1 4

5 7

9 3

12 4

15 6
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5.2 Results

5.2.1 ω = 0.5 and α = 0.5

By using ω = 0.5 we use equal distribution of both the temperatures in the

equation. By using α = 0.5 we take 50% weightage of the uncertainties in the design.

Surrogate model is created from the fracture energy responses. Every sample is tested

20 times to quantify the uncertainty. The standard deviations of fracture energies for

both the temperatures were around 3.2.

Table 5.4. Results for ω = 0.5 and α = 0.5

High Fidelity Model Surrogate Model

Fracture Energy 21.551 J 21.508 J

Number of functions calls 5 227

The optimized result for the above input conditions is as shown in the Figure 5.3.

The optimum result obtained is [10, 3].Hence the average size of SiC particles is 600

nanometers.

5.2.2 ω = 0.5 and α = 1

By using α = 1 we do not consider the standard deviations of the fracture energies.

Surrogate model is created from the fracture energy responses. Every sample is tested

20 times to quantify the uncertainty [1].

Table 5.5. Results for ω = 0.5 and α = 1

High Fidelity Model Surrogate Model

Fracture Energy 21.898 J 22.050 J

Number of functions calls 7 285
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Figure 5.3. Optimal Morphology for input ω = 0.5 and α = 0.5

The number of SiC particles and its size is same as shown in the Figure 5.3 but it

takes 58 more functions calls to converge to the same solution. Hence, it proves that

considering a low fidelity model takes more function calls for the solution to converge.

5.2.3 Temperature 1400◦Cand α = 0.5

By using ω = 0 we consider only the sample for temperature 1400◦C. By using

α = 0.5 we take 50% weightage of the uncertainties in the design. Surrogate model

is created from the fracture energy responses. Every sample is tested 20 times to

quantify the uncertainty. The standard deviations of fracture energies for both the

temperatures were around 2.4.

The optimized result is as shown in the Figure 5.4.The optimum result obtained

is [5, 7].Hence the average size of the SiC particles is 1000 nanometers.
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Table 5.6. Results for Temperature 1400◦Cand α = 0.5

High Fidelity Model Surrogate Model

Fracture Energy 24.600 J 25.332 J

Number of functions calls 4 208

Figure 5.4. Optimal morphology for input temperature 1400◦Cand α = 0.5

5.2.4 Temperature 25◦Cand α = 0.5

By using ω = 1 we consider only the sample for temperature 25◦C. By using

α = 0.5 we take 50% weightage of the uncertainties in the design. Quadratic surface

polynomials at every point of the fracture energy are generated to create a surrogate

model. Every sample is tested 20 times to quantify the uncertainty. The standard

deviations of fracture energies for both the temperatures were around 3.7.

The optimized result is as shown in the Figure 5.5. The optimum result obtained

is [4, 11].Hence the average size of the SiC particles is 800 nanometers.
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Table 5.7. Results for Temperature 25◦Cand α = 0.5

High Fidelity Model Surrogate Model

Fracture Energy 19.736 J 19.582 J

Number of functions calls 8 389

Figure 5.5. Optimal morphology for input temperature 25◦Cand α = 0.5

5.3 Summary

The goal of this research is to find the optimal morphology of the composite at low

and high temperatures while incorporating the robust optimization algorithm along

with reduction in computational cost.

5.3.1 Material Design using Surrogate Optimization Algorithm

A surrogate model is integrated in the material design framework to reduce the

number of high fidelity function calls. The above methodology proves in generating
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feasible and optimal optimal hybrid material morphologies with targeted material

properties. A summary of the optimization framework is as shown in Figure 5.6.

Figure 5.6. Structural integration of the investigation

Investigation # ω = 0.5 and α = 1

In this investigation the target result was achieved in 227 surrogate model calls and

5 high fidelity function calls. The target numbers of SiC particles found for this input

were 10 and its size 3 (600 nanometers).The surrogate model optimization algorithm

was therefore effective in maximizing the fracture energy of the composite material.

The surrogate model was developed using the radial basis function to minimize the

optimization time.
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Investigation # Temperature 1400◦Cand α = 1

In this investigation the target result was achieved in 208 surrogate model calls

and 4 high fidelity function calls. The target number of SiC particles found for

this input were 7 and its size 5 (1000 nanometers).The result proves that increase

in the size of the SiC particles is necessary for the crack bridging effect at elevated

temperatures due to the weakening of the grain boundaries [19, 22].The amount of

SiC particles required are less because these can be effective enough to divert the

fracture path [26,29].

Investigation # Temperature 25◦Cand α = 1

In this investigation the target result was achieved in 389 surrogate model calls

and 8 high fidelity function calls. The target numbers of SiC particles found for

this input were 11 and its size 4 (800 nanometers).The size of the SiC particles

required to increase the fracture energy at room temperature may not be as high

as compared to the size at 1400oC because the SiC flexural properties are higher

than at room temperature [31–36]. Also the grain boundaries are stronger at room

temperature so they only need the SiC nanoparticles to prevent the grain boundary

sliding effect [27,29].
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6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

The research introduces a methodology to find the optimal morphology of a com-

posite material at various temperatures. The design optimization framework incor-

porates surrogate algorithm in the optimization framework. The CA model is intro-

duced for microstructure generation and the random errors in its generation are also

quantified making the optimization robust [1]. The design methodology is applied

to three different test problems. The results show that the number of silicon carbide

particles and its size has varied for 25◦Cand 1400◦Cbased on the fracture energy of

the material. At 25◦Cthe preferred material is the one with higher number of silicon

carbide particles but with small size and at 1400◦Cthe preferred material is exactly

the opposite. In all the three cases it calls the high fidelity model less than 9 times

which is a significant reduction to optimize this design model. The results obtained

not only give a comprehensive overview on the optimal morphology of the composite

material but also reduces the optimization time.

Thus this methodology can also be extended for optimizing the morphology of

any multiphase composite material.

6.2 Future work

6.2.1 Apply the algorithm to a 3D high fidelity model

The present algorithm can be applied to a 3D high fidelity for more better solu-

tions. But a compromise has to be made between the design time and the fidelity of

the model. Also a scaling function will have to be introduced in the algorithm for

making it more accurate.
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6.2.2 Increasing the number of design variables

The number of design variables in the optimization algorithm can also be increased

by including also the size and the number of Si3N4 particles. Also the adding the size

of the grain boundary as a design variable can also prove to effective for maximizing

its fracture energy.

6.2.3 Incorporate higher physics models in the optimization algorithm

The physics involved in the structure of the Si3N4-SiC is not completely repre-

sented in this work. High temperature plastic behavior, atomic behavior and cohesive

fracture are some of physical features that can be incorporated in the high fidelity

model [1]. Hence research can be done in conjecture with scientists involved in ex-

perimentation of these composite materials.

6.2.4 Experimental testing of methodology

Physical experiments are needed to validate the results obtained in this investiga-

tion. This will effectively prove the capability of this methodology in material design.

For this purpose, collaborative research is needed with experimentalists.
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