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ABSTRACT

Shimoga Muddappa, Vinay Kumar. M.S.M.E, Purdue University, May 2014. Elec-
trochemical Model Based Condition Monitoring of a Li-ion Battery Using Fuzzy Logic.
Major Professor: Sohel Anwar.

There is a strong urge for advanced diagnosis method, especially in high power

battery packs and high energy density cell design applications, such as electric vehicle

(EV) and hybrid electric vehicle segment, due to safety concerns. Accurate and robust

diagnosis methods are required in order to optimize battery charge utilization and

improve EV range. Battery faults cause significant model parameter variation affect-

ing battery internal states and output. This work is focused on developing diagnosis

method to reliably detect various faults inside lithium-ion cell using electrochemical

model based observer and fuzzy logic algorithm, which is implementable in real-time.

The internal states and outputs from battery plant model were compared against

those from the electrochemical model based observer to generate the residuals. These

residuals and states were further used in a fuzzy logic based residual evaluation algo-

rithm in order to detect the battery faults. Simulation results show that the proposed

methodology is able to detect various fault types including overcharge, over-discharge

and aged battery quickly and reliably, thus providing an effective and accurate way

of diagnosing li-ion battery faults.
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1. INTRODUCTION

1.1 Overview

Lithium-ion batteries are family of rechargeable batteries which can provide mainly

two functions, one is to store energy in electro-chemistry and other is to provide elec-

tric power supply. The two functions are generally called as charging and discharg-

ing [1]. They are one of the most efficient solution for storage of renewable energy

and mobile solutions due to high electrochemical potential and high energy density.

They are the most popular types of batteries in portable consumer electronics and

devices. Their highest energy density, high power density, no memory effect and low

self-discharge rate when not in use as compared to there alternatives has increasingly

driven use of these batteries in automotive and aerospace applications [2]. Along with

all these advantages, lithium-ion battery comes with safety concerns. Many failure

mechanisms are identified which may lead to abrupt or gradual battery degradation.

In some cases these failure conditions may lead to irreparable damage or dangerous

failure conditions [3]. Hence there is a need of diagnostics which detect these failure

conditions early. Based on these detections appropriate actions can be taken to pro-

tect lithium ion battery. In this thesis, a diagnostics method has been developed to

reliably detect failures based on the model based diagnostics technique.

1.2 Structure of Lithium-ion Batteries

Electrical battery is a device which can convert chemical energy to electrical en-

ergy. A battery consists of a positive electrode, a negative electrode and electrolyte [4].

Mainly there are two types of electrical batteries: Primary batteries, which can only

be used once, these are also called as disposable batteries; and secondary batteries,
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which can be used multiple times by charging and recharging, these are also called as

rechargeable batteries. Lithium-ion battery falls into secondary battery type.

A typical lithium-ion battery has five components namely cathode (positive elec-

trode), anode (negative electrode), electrolyte, separator and package. Figure 1.1

shows the structure of lithium-ion battery in a prismatic type. In this battery, posi-

tive electrode and negative electrode are separated by a separator. The separator is a

very thin sheet of microperforated plastic which allows ions to pass through. Separa-

tor is soaked with non-aqueous electrolyte to connect the two electrodes. Inside the

case cathode, anode and separator are submerged in an organic solvent that acts as

the electrolyte. An important function of the case or package is to isolate the internal

cell from external elements like water or moisture. The lithium-ion battery is highly

sensitive to water which can react to lithium metal or electrolyte to breakdown the

battery. Gas release vent is also designed into the case to prevent the battery from

exploding because of high internal gas pressure created inside the battery during its

normal operation [1].

The three participants in the electrochemical reactions in a lithium ion battery

are the anode, cathode, and the electrolyte. The cathode is made up of some

active materials like LiCoO2, LiFePO4, LiMn2O4,LiNiO2,Li(LiaNixMnyCoz)O2,

LiCo1/3Ni1/3Mn1/3O etc. The anode is made up of materials like graphite, hard

carbon, (LiPF6), Li4Ti5O12, Si, Ge etc. Electrolytes can be in liquid or solid form.

Liquid electolytes contain lithium salts, such as LiPF6, LiBF4 or LiClO4 in an organic

solvent, such as ethylene carbonate, diethyl carbonate and dimethyl carbonate [1]

1.3 Chemistry of Lithium-ion Batteries

As a secondary battery type, the lithium-ion battery works in charging and dis-

charge process. Lithium-ions can move in and out of both positive and negative elec-

trodes.The process of lithium-ions moving into the electrode is referred as intercalation

and process of lithium-ion moving out of the electrode is referred as deintercalation.
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Fig. 1.1. Lithium-ion battery structure [5]

During charging process, the lithium-ions move from positive electrode through elec-

trolyte and are inserted to negative electrode, where they become embedded in the

porous electrode material. During discharge process, lithium ions are extracted from

negative electrode and moved to the positive electrode through electrolyte. Charging

and discharging process is shown in Figure 1.2.

Fig. 1.2. Lithium-ion charging and discharging process [6]
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Let us take an example of battery chemistry where in anode is made up of LiCoO2

and cathode is made up of carbon. Electrochemical reaction for this battery chemistry

in cathode part is:

LiCoO2 
 Li(1−x)CoO2 + xLi+ + xe− (1.1)

The corresponding electrochemical reaction on anode part is:

xLi++xe− + 6C 
 LixC6 (1.2)

There are some cases where reaction can vary from these standard reactions. For

example, in cases where in lithium-ion battery is over-charged and over-discharged.

These reactions are irreversible in nature and can lead to defective electrode materi-

als. In over-discharge case, reaction which may happen on cathode side is:

Li+ + LiCoO2 → Li2O + CoO (1.3)

In this reaction, a lithium-ion gets blocked and can never be re-utilized. Also,

this reaction destroys cathode material resulting in reduced life of the battery [7]. In

over-charge case, reaction which may happen on anode side is:

LiCoO2 → Li+ + CoO2 (1.4)

Similar to the irreversible reaction on cathode this reaction can also cause defect in

the active material on cathode to reduce life of the lithium ion battery [8]. Above this,

over-charge and over-discharge reactions are exothermic than the normal reactions.

They accelerate temperature rise of the battery which may result in thermal runway

of lithium-ion batteries.

1.4 Major Contributions of Thesis Work

Main focus of this thesis work is to monitor the lithium-ion battery condition, fault

detection and diagnosis. The contribution of this thesis work consists of two parts:

First, generation of the residual which can be used by the model based diagnostics
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method to monitor battery condition and to detect the fault. Second, developing

fuzzy rule based battery condition monitoring and fault detection system.

Generation of the residual is an important process in designing a model based

diagnostics method. An electrochemical model based observer was used to generate

the residuals. This process also involved fine tuning of the observer gains to accurately

track the battery state variables. This observer is computationally less expensive,

accurate and efficient to be used for real-time residual generation.

A fuzzy logic based decision logic was developed. This decision logic used residuals

of battery output voltage, temperature and SOC along with temperature change,

voltage level and SOC level as inputs to monitor battery health and detect the failures.

A plant model capturing all the electrochemical reaction dynamics of the battery,

including temperature effects was built. This plant model was used to verify and

validate model based fault diagnosis system.

1.5 Organization of this Thesis

Electrochemical based model capturing all battery dynamics along with temper-

ature effect was explored to build plant model in this research. The electrochemcial

modeling approach and models are explained in Chapter 2. This is followed by de-

tailed explanation of electrochemical observer based battery model for the observer

design and tuning of the observer gains in Chapter 3.

The fault detection technique has two main parts, first part deals with implemen-

tation of the observer to generate the residuals, while the second part implements

fuzzy logic residual evaluation process. This technique is detailed in Chapter 4.

In Chapter 5, experiments are designed for lithium-ion battery aging, over-charge

and over-discharge fault detection, and fault detector was simulated and validated.

The simulation results confirm the effectiveness of the fault detection technique. To

conclude, Chapter 6 summarizes the details of the fault detection technique in ad-
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vantages and drawbacks based on the results of validation. The conclusion is drawn

and the possible future scope of work is discussed as well.
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2. LITERATURE SURVEY

The fault detection and diagnosis on lithium-ion battery is not young, a lot of work in

this area has already been done by researchers. The work on lithium-ion battery fault

detection is primarily based on state estimation techniques and empirical techniques

or data driven methods.

2.1 State Estimation Based Diagnostics

State estimation based diagnosis encompasses the evaluation of different states of

the battery. The choice of the state variables to be estimated mainly be subjected

to model of the system being evaluated. For lithium-ion battery open circuit voltage

(OCV) and state of charge (SOC) are natural candidates among others. The choice

of techniques to evaluate state estimation like standard observers, Luenberger ob-

servers (LO), Kalman filter and particle filters differ based on the requirements. The

main goal is to access the information of the lithium-ion battery which is not readily

obtainable through direct measurements [9]. Luenberger observer based FDD can be

found in [10]. Here Chen et al. used bank of reduced order observers on a string of

lithium-ion batteries to implement the diagnosis. This approach will work best for

the systems with slight or no measurement noise. But it will face inherent difficulties

and performance issues in presence of noise. Application of Kalman filter for fault

diagnosis can be found in [11]. Here optimal Kalman filtering shows sturdy robust-

ness to noise. Because of adaptive nature of this approach, accurate fault detection

is possible.

Lately, multiple state estimation approaches have been proposed using physics

based electrochemical model [12]; lumped version of the electrochemical model, usu-

ally referred to as single particle model (SPM) [13, 14] and the linearized versions
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of the electrochemical model [15, 16]. Success of SPM model and the linearized ver-

sions of the electrochemical model are limited to battery operating regime. Their

approximations fail in case of high power and high current applications like auto-

motive and aerospace. Electrochemical model captures all the dynamics including

the temperature effect, which affects the battery performance intensely. In this work

state estimation using electrochemical model presented in [12] was incorporated to

design a reliable FDD technique.

2.2 Data Driven Fault Detection and Diagnosis

Extensive study has done on data driven fault detection and diagnosis methods by

many researchers. They are based on analysis of time series data. Saha et al [17–19]

has done substantial work on this. Nuhic et al. [20] and Wang et al. [21] presented

estimation of remaining useful life (RUL) and state of health (SOH) using support

vector machine algorithm. This method comprises the application of regression and

classification algorithms found under the paradigm of machine learning. Kozlowski

et al. [22] proposed parameter identification, estimation and battery prognosis using

techniques like impedance spectroscopy (IS), fuzzy logic (FL), neural network (NN)

and auto regressive moving average (ARMA). Data driven methods do not truly rep-

resent physics behind the modeled process as they are based on objective information,

they just capture the relationship between input and output of modeled process. The

main hurdle of data driven methods are they need substantial data for their training

and have wider confidence intervals as compared to physics based approaches [23].

Further, time involved in training these methods is a concern.

Xiong et al. discussed combination of probability and rule based signal moni-

toring based lithium-ion battery fault diagnosis and detection [24]. These methods

profoundly rely on the thermal signatures of the battery. These thermal signatures in

turn depend on the charge and discharge duty cycle applied on the battery. Rocher

et al. [25] explained approach to prognosis using model based approach. Here they
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analyzed open circuit voltage (OCV) to detect the cell capacity fade due to usage.

This approach is worthy for offline applications where in the battery and load can

be disconnected for sufficient amount of time to measure the accurate OCV. But,

they cannot be used in battery applications like automotive and aeronautical indus-

try. Amardeep et al. [11] demonstrated fault detection and diagnosis using electrical

circuit model (ECM) and Multiple Model Adaptive Estimation (MMAE). This ap-

proach is ideal if all the fault conditions are known before. This approach fails to

detect the unknown fault conditions.
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3. ELECTROCHEMICAL BATTERY MODELING

Model for lithium-ion battery can be developed using different techniques namely

empirical, neural networks, equivalent circuit and electrochemical or physics based

models [2,26,27]. These models vary broadly in terms of computational requirements,

complexity and accuracy of their predictions. Empirical modeling techniques capture

very less dynamics of the battery making them less efficient in terms of battery

state prediction when the operating rage varies broadly. Electrochemical model being

physics based mathematical model, predict states of battery with high precision.

Hence they are used in this thesis for better, accurate and reliable lithium-ion battery

fault detection and diagnosis.

3.1 Electrochemical Model

Electrochemical model is physics-based and is constructed based on electochemical

principles. 1D-spatial model, also known as pseudo-two-dimensional model of lithium-

ion battery is considered in this thesis. 1D-spatial model considers battery dynamics

only in one axis i.e. X-axis neglecting the dynamics along other two axes, Y-axis

and Z-axis [28–32]. This model is applicable to cell structures with out-sized cross-

sectional area and low currents. A typical lithium-ion battery cell has X-axis length

in scale of 100µ, whereas Y-axis and Z-axis length in scale of 100,000µ [2].

Figure 3.1 shows the representation of different domains of battery model namely,

negative electrode, separator and positive electrode. Positive electrode is made up

of very pure metal oxides. Performance and life of battery is directly related to

uniformity of metal oxide chemical composition. Negative electrode is made up of

layered structure of graphite, a form of carbon. Active materials of both electrode is

represented as a continuum of spheres in the model. Positive and negative electrodes
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Fig. 3.1. Lithium-ion electrochemical battery model [12]

are separated by a very thin membrane made up of insulating material, but it has

property of permeability through which tiny lithium-ions can diffuse. Current through

the electrodes is carried by both lithium-ions and electrons, where are in separates

current is carried only by lithium-ions. Lithium-ions inside the active material of

electrodes and the electrolyte are interconnected through an interface called solid-

electrolyte-interface (SEI) by lithium-ion flux [12]. Potential difference between the

electrodes is output of the model which is voltage.

At any at any position x, at any time t, the state variables needed to describe

the electrochemical model are the lithium ion concentration ce(x, t) in the electrolyte,

the lithium concentration cs(r, x, t) in the positive and negative electrode, the current

is(x, t) in the solid electrode, the current ie(x, t) in the electrolyte, the electric po-

tential ϕs(x, t) in the solid electrode, the electric potential ϕe(x, t) in the electrolyte

and the molar flux jn(x, t) of lithium at the surface of the spherical particle [12].

The governing equations for the positive electrode of lithium-ion battery are given

by [12,29,33].

ϵe
∂ce(x, t)

∂t
=

∂

∂t
(ϵeDe

∂ce(x, t)

∂x
+

1− toc
F

ie(x, t)) (3.1)
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∂cs,i(x, r, t)

∂t
=

1

r2
∂

∂r
(Ds,ir

2∂cs,i(x, r, t)

∂r
) (3.2)

∂ϕe(x, t)

∂x
= −ie(x, t)

κ
+

2RT

F
(1− t0c)× (1 +

dlnfc/a
dlnce(x, t)

)
∂lnce(x, t)

∂x
(3.3)

∂ϕs(x, t)

∂x
=

ie(x, t)− I(t)

σ
(3.4)

∂ie(x, t)

∂x
=

n∑
i=1

3ϵs, i

Rp,i

Fjn,i(x, t) (3.5)

jn,i(x, t) =
i0,i(x, t)

F
(eαaFηi(x,t)/RT − eαcFηi(x,t)/RT ) (3.6)

where,

i0,i(x, t) is the current density of the main reaction

ηi(x, t) is the over-potential of the main reaction

i0,i(x, t) and ηi(x, t) are modeled as:

i0,i(x, t) = reff,ice(x, t)
αa(cmax

s,i − css,i(x, t))
αacss,i(x, t)

αc (3.7)

ηi(x, t) = ϕs(x, t)− ϕe(x, t)− U(css,i(x, t))− FRf,ijn,i(x, t) (3.8)

where,

css,i(x, t) is the ith solid phase concentration

Ui(css,i(x, t)) is the open-circuit potential of the ith active material in the solid elec-

trode

cmax
s,i is the maximum possible concentration in the solid phase of the ith active ma-

terial.

Additionally, reff , Rf,i and Ds,i are temperature dependent parameters. The rela-

tionship between these parameters and temperature are given by Arrhenius equation.

Arrhenius equations for temperature dependency is given by,

Θ(T ) = ΘT0e
Aθ((T (t)− T0)/(T (t)T0)) (3.9)
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where,

T0 is a reference temperature

Aθ is a constant

Further, Subramanian et al. [34] developed approximated model for the Equation

3.2 which stands for mass transfer in the solid material. The approximation has been

done in the radial direction.

Approximated model is given by,

∂

∂t
cs(x, t) = − 3

Rp

jn(x, t), (3.10)

∂

∂t
qs(x, t) = −30Ds

R2
p

qs(x, t)−
45

2R2
p

jn(x, t) (3.11)

css(x, t) = cs(x, t) +
8Rp

35
qs(x, t)−

Rp

35Ds

jn(x, t) (3.12)

where,

cs(x, t) is volume averaged concentration

qs(x, t) is averaged concentration flux

css(x, t) is particle surface concentration

In the above equations ρavg, R, Rp,i, αa, αc, σ, cp, hcell, t
0
c , ϵe, ϵs, r are model

parameters and are constant in each region. κ, De, fc/a are functions of electrolyte

concentration and temperature [35].

Considering this approximation, model for each electrode of lithium-ion battery

is given by

(a) Positive electrode, where x ∈ [0+, L+]

∂

∂t
c+s (x, t) = − 3

R+
p,i

j+n (x, t), (3.13)

∂

∂t
q+s (x, t) = − 30D+

s

(R+
p,i)

2
q+s (x, t)−

45

2(R+
p,i)

2
j+n (x, t) (3.14)
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c+ss(x, t) = c+s (x, t) +
8R+

p,i

35
q+s (x, t)−

R+
p,i

35D+
s

j+n (x, t) (3.15)

∂ϕ+
e (x, t)

∂x
= −i+e (x, t)

κ+
+

2RT

F
(1− t0c)× (1 +

dlnfc/a
dlnce(x, t)

)
∂lnce(x, t)

∂x
(3.16)

∂ϕ+
s (x, t)

∂x
=

i+e (x, t)− I(t)

σ+
(3.17)

∂i+e (x, t)

∂x
=

n∑
i=1

3ϵ+
s,i

R+
p,i

Fj+n,i(x, t) (3.18)

j+n,i(x, t) =
i+0,i(x, t)

F
(eαaFη+i (x,t)/RT − eαcFη+i (x,t)/RT ) (3.19)

(b) Negative electrode, where x ∈ [0−, L−]

∂

∂t
c−s (x, t) = − 3

R−
p,i

j−n (x, t), (3.20)

∂

∂t
q−s (x, t) = − 30D−

s

(R−
p,i)

2
q−s (x, t)−

45

2(R−
p,i)

2
j−n (x, t) (3.21)

c−ss(x, t) = c−s (x, t) +
8R−

p,i

35
q−s (x, t)−

R−
p,i

35D−
s

j−n (x, t) (3.22)

∂ϕ−
e (x, t)

∂x
= −i−e (x, t)

κ− +
2RT

F
(1− t0c)× (1 +

dlnfc/a
dlnce(x, t)

)
∂lnce(x, t)

∂x
(3.23)

∂ϕ−
s (x, t)

∂x
=

i−e (x, t)− I(t)

σ− (3.24)

∂i−e (x, t)

∂x
=

n∑
i=1

3ϵ−
s,i

R−
p,i

Fj−n,i(x, t) (3.25)

j−n,i(x, t) =
i−0,i(x, t)

F
(eαaFη−i (x,t)/RT − eαcFη−i (x,t)/RT ) (3.26)

Output voltage of the model is given by,

V (t) = ϕ+
s (0

+, t)− ϕ−
s (0

−, t) (3.27)
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3.2 Battery Temperature Model

The lumped temperature of the battery is modeled by,

ρavgcp
dT (t)

dt
= hcell(Tamb(t)−T (t))+I(t)V (t)−

n∑
(i=1)

[

∫ 0−

0+

3ϵs,i
Rp, i

Fjn, i(x, t)∆Ui(x, t)dx]

(3.28)

where,

∆Ui(x, t) , Ui(cs, i)(x, t))− T (t)
∂Ui(cs,i(x, t))

∂T
(3.29)

Tamb(t) is the ambient temperature

cs,i(x, t) is volume averaged concentration of a particle in solid phase

cs,i(x, t) is defined as

cs,i(x, t) =
3

R3
p,i

∫ Rp,i

0

r2cs,i(x, r, t)dr (3.30)

3.3 OCP Equation of Electrode Material

The open circuit potential of electrode material is a function of SOC. For LiCoO2(positive

electrode) and LiC6 (negative electrode) battery system which is the subject of this

thesis is given by [34],

Positive electrode OCP:

Up =
−4.656 + 88.669 θ2p − 401.119 θ4p + 342.909 θ6p − 462.471 θ8p + 433.434 θ10p

1.0 + 18.933 θ2p − 79.532 θ4p + 37.311 θ6p − 73.083 θ8p + 95.96 θ10p
(3.31)

where

θp =
css,p

cs,p,max

(3.32)

Negative electrode OCP:

Un = 0.7222 + 0.1387 θn + 0.029 θ0.5n − 0.0172

θn
+

0.0019

θ1.5n

+ 0.2808 exp(0.90− 15 θn)− 0.7984 exp(0.4465 θn − 0.4108)

(3.33)
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where

θn =
css,n

cs,n,max

(3.34)

3.4 Solving Electrochemical Model

The complex PDAE described above were solved using Modelica. Modelica is

a modeling language for component oriented modeling of complex systems like hy-

draulic, thermal, electrochemical models etc.

The parameter values for LiCoO2 and LiC6 battery system which was the subject

for this thesis work were chosen from [36] and are listed in Table 6.1. Figure 3.2 gives

the discharge curves for 1C (30 A/m2), 2C and 0.5C rates of galvanostatic discharge.

Figure 3.3 shows the average internal temperature of the battery during different

discharge rates.
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Fig. 3.2. Plant model voltage output C/2, 1C, and 2C discharge rate
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Fig. 3.3. Plant model temperature output C/2, 1C, and 2C discharge rate
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4. ELECTROCHEMICAL MODEL BASED OBSERVER

The partial differential algebraic equations (PDAE) model described in Chapter 3 is

very complex for model based diagnostics development. They are computationally

very expensive, thus limiting usage of this model in real-time applications. There is

a different version of approximated PDAE model available in the literature namely

single particle model (SPM). This model provide very less information on different

states of the battery with reduced accuracy. Additionally, this is not valid if battery

has a wide operating range [2].

4.1 Model Reduction

Klein et al, [12] designed an effective approximated model with a key assumption

that electrolyte concentration remains constant in battery i.e. ce(x, t) = 0. This

simplifies the Equation 3.3 to

∂ϕe(x, t)

∂x
= − ie(x, t)

κ
(4.1)

∵ since ce(x, t) = constant,

∂lnce(x, t)

∂x
= 0

therefore,

2RT

F
(1− t0c)× (1 +

dlnfc/a
dlnce(x, t)

)
∂lnce(x, t)

∂x
= 0

Similarly, Equation 3.1 vanishes as partial derivative of ce(x, t) = 0

This drastically reduces the complexity of the model, thus making it more com-

putationally inexpensive.
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Rewriting the approximated model for each electrode,

(a) Positive electrode, where x ∈ [0+, L+]

∂

∂t
c+s (x, t) = − 3

R+
p,i

j+n (x, t), (4.2)

∂

∂t
q+s (x, t) = − 30D+

s

(R+
p,i)

2
q+s (x, t)−

45

2(R+
p,i)

2
j+n (x, t) (4.3)

c+ss(x, t) = c+s (x, t) +
8R+

p,i

35
q+s (x, t)−

R+
p,i

35D+
s

j+n (x, t) (4.4)

∂ϕ+
e (x, t)

∂x
= − i+e (x, t)

κ+
(4.5)

∂ϕ+
s (x, t)

∂x
=

i+e (x, t)− I(t)

σ+
(4.6)

∂i+e (x, t)

∂x
=

n∑
i=1

3ϵ+s,i
R+

p,i

Fj+n,i(x, t) (4.7)

j+n,i(x, t) =
i+0,i(x, t)

F
(eαaFη+i (x,t)/RT − eαcFη+i (x,t)/RT ) (4.8)

(b) Negative electrode, where x ∈ [0−, L−]

∂

∂t
c−s (x, t) = − 3

R−
p,i

j−n (x, t), (4.9)

∂

∂t
q−s (x, t) = − 30D−

s

(R−
p,i)

2
q−s (x, t)−

45

2(R−
p,i)

2
j−n (x, t) (4.10)

c−ss(x, t) = c−s (x, t) +
8R−

p,i

35
q−s (x, t)−

R−
p,i

35D−
s

j−n (x, t) (4.11)

∂ϕ−
e (x, t)

∂x
= − i−e (x, t)

κ− (4.12)

∂ϕ−
s (x, t)

∂x
=

i−e (x, t)− I(t)

σ− (4.13)

∂i−e (x, t)

∂x
=

n∑
i=1

3ϵ−s,i
R−

p,i

Fj−n,i(x, t) (4.14)
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j−n,i(x, t) =
i−0,i(x, t)

F
(eαaFη−i (x,t)/RT − eαcFη−i (x,t)/RT ) (4.15)

(c) Internal lumped temperature model of battery is given by

ρavgcp
dT (t)

dt
= hcell(Tamb(t)− T (t)) + I(t)V (t)

−
n−∑

(i=1)

[

∫ L−

0−

3ϵ−s,i
R−

p,i

Fj−n,i(x, t)∆U−
i (x, t)dx]

−
n−∑

(i=1)

+[

∫ L+

0+

3ϵ−s,i
R+

p,i

Fj+n,i(x, t)∆U+
i (x, t)dx]

(4.16)

Output voltage of the model is given by,

V (t) = ϕ+
s (0

+, t)− ϕ−
s (0

−, t) (4.17)

4.2 Observer Design

Afore mentioned approximated model has accuracy issues when the input current

to battery is high. In [12] Klein et al. also designed an observer to overcome this issue.

They propose observer wherein they take feedback of error between the calculated

and the measured voltage and inject it as a linear corrective term in volume averaged

concentrations in the individual electrodes. Similarly for the cell temperature, they

propose to take feedback of error between calculated and the measure temperature

and inject it to internal average temperature model.

Observer equations are given by [12],

(a) Positive electrode, where x ∈ [0+, L+]

∂

∂t
ĉs

+
(x, t) = − 3

R+
p,i

ĵ+n (x, t) + γ+
i (V (t)− V̂ (t)) (4.18)

∂

∂t
q̂s

+
(x, t) = − 30D+

s

(R+
p,i)

2
q̂s

+
(x, t)− 45

2(R+
p,i)

2
ĵ+n (x, t) (4.19)

ĉ+ss(x, t) = ĉs
+
(x, t) +

8R+
p,i

35
q̂s

+
(x, t)−

R+
p,i

35D+
s

ĵ+n (x, t) (4.20)
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∂ϕ̂e

+
(x, t)

∂x
= − î+e (x, t)

κ+
(4.21)

∂ϕ̂s

+
(x, t)

∂x
=

î+e (x, t)− I(t)

σ+
(4.22)

∂î+e (x, t)

∂x
=

n∑
i=1

3ϵ+s,i
R+

p,i

F ĵ+n,i(x, t) (4.23)

ĵ+n,i(x, t) =
î+0,i(x, t)

F
(eαaF η̂+i (x,t)/RT − eαcF η̂+i (x,t)/RT ) (4.24)

(b) Negative electrode, where x ∈ [0−, L−]

∂

∂t
ĉs

−
(x, t) = − 3

R−
p,i

ĵ−n (x, t) + γ−
i (V (t)− V̂ (t)) (4.25)

∂

∂t
q̂s

−
(x, t) = − 30D−

s

(R−
p,i)

2
q̂s

−
(x, t)− 45

2(R−
p,i)

2
ĵ−n (x, t) (4.26)

ĉ−ss(x, t) = ĉs
−
(x, t) +

8R−
p,i

35
q̂s

−
(x, t)−

R−
p,i

35D−
s

ĵ−n (x, t) (4.27)

∂ϕ̂e

−
(x, t)

∂x
= − î−e (x, t)

κ− (4.28)

∂ϕ̂s

−
(x, t)

∂x
=

î−e (x, t)− I(t)

σ− (4.29)

∂î−e (x, t)

∂x
=

n∑
i=1

3ϵ−s,i
R−

p,i

F ĵ−n,i(x, t) (4.30)

ĵ−n,i(x, t) =
î−0,i(x, t)

F
(eαaF η̂−i (x,t)/RT − eαcF η̂−i (x,t)/RT ) (4.31)

(c) Internal lumped temperature model of battery is given by

ρavgcp
dT̂ (t)

dt
= hcell(Tamb(t)− T̂ (t)) + I(t)V̂ (t)

−
n−∑

(i=1)

[

∫ L−

0−

3ϵ−s,i
R−

p,i

F ĵ−n,i(x, t)∆U−
i (x, t)dx]

−
n−∑

(i=1)

+[

∫ L+

0+

3ϵ−s,i
R+

p,i

F ĵ+n,i(x, t)∆U+
i (x, t)dx] + γ−

T (T (t)− T̂ (t))

(4.32)
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Output voltage of the observer is given by,

V̂ (t) = ϕ̂+
s (0

+, t)− ϕ̂−
s (0

−, t) (4.33)

4.3 Initial and Boundary Conditions of Observer

Above PDAE system initial conditions are given by,

ˆcs,i
±
(x, t) = ˆcs,i,0

±
(x) (4.34)

ˆqs,i
±
(x, t) = ˆqs,i,0

±
(x) (4.35)

T̂ (0) = T̂0 (4.36)

Boundary conditions are given by,

ϕ̂e

+
(0+, t) = 0, (4.37)

ϕ̂e

−
(L−, t) = ϕ̂e

+
(L+, t)− I(t)Lsep

κsep
(4.38)

i±e (0
±, t) = 0 (4.39)

i±e (L
±, t) = ±I(t) (4.40)

The only difference between the approximated model and the observer are the

voltage error feedback in Equations 4.18 and 4.25, and temperature error feedback in

Equation 4.32.

The gains γT ,γ
−
i and γ+

i are the observer design parameters. γ−
T should be tuned

to large value so that estimation error in the temperature calculation is quickly re-

moved. Design parameters, γ−
i and γ+

i are very closely related to each other. The

relationship between them is given by,
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 γ−
i

γ+
i

 = γ ∗

 1
n−ϵ−s,iL

−

1
n+ϵ−s,iL

+

 (4.41)

Both gain parameters γ−
T and γ ∈ R+

4.4 Simplified OCP Equation of Electrode Material

The OCP equations given in Equations 3.31 and 3.33 have higher-order terms.

These higher-order terms decrease computational speed of the observer, thus limiting

its application in real time. These equations can be reduced to lower order terms to

increase the computational speed. Dao et al. [37] proposed simpler forms of these

equations by applying non-linear curve fitting technique. The simpler forms of these

equations are given by,

Up =
−4.875 + 5.839 θp − 1.507 θ3p + 0.531 θ5p

θp − 1.005
(4.42)

Un = 0.15− 0.1 θn +
0.00778

θn
(4.43)

Figure 4.2 and 4.1 show the comparison of simpler equations with the original

equations.

4.5 Solving Electrochemical Model Based Observer

In this thesis work, the complex PDAEs of observer were solved using Matlab.

PDAEs were discretized in both space and time domain. Finite difference numerical

method was applied to solve equations. Total 193 nodes were solved along spatial

domain. Time domain nodes were 1 second interval. Total 193 nodes were sufficient

enough to achieve the voltage estimation error less than 0.5 %. 1 second interval

of time domain was chosen keeping real time execution in mind. This interval is

necessary to solve the complex PDAEs during real time.
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Fig. 4.1. OCP negative electrode [37]

The parameter values for LiCoO2 and LiC6 battery system which was the subject

for this thesis work were chosen from [36] and are listed in Table 6.1. Observer gains

were tuned by trial and error method. Figure 4.3 compares the voltage estimates

from observer and plant model with different observer gains. Figure 4.3 shows that

at lower observer gains(in this example gain value of 5), error was high, observer

voltage was not following the plant model very closely. As and when the observer

gain increases(in this example 35), observer voltage follows closely. From trial and

error it’s been found that observer gain of 51 was the optimum value. Figure 4.4

shows different discharge rate, 0.5C, 1C and 2C curves for full model and observer

with gain of 51. As it can be seen in the Figure 4.4, estimation error decreases with the



26

Fig. 4.2. OCP negative electrode [37]

discharge rate. Within normal operation of the cell, estimation errors were 0.025 %,

0.05 % and 0.23 % for 0.5C, 1C and 2C respectively. Similarly, Figure 4.5 shows the

temperature estimate of the observer and plant model. Rate of change of temperature

increased with discharge rate. Temperature was estimated very precisely with almost

zero estimation error. The optimal gain for the temperature equation was 2.
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(a) Observer Gain 5 (b) Observer Gain 35

(c) Observer Gain 51

Fig. 4.3. Voltage output: Observer vs plant model at different gain values
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Fig. 4.4. Voltage output: Observer vs plant model at optimal gain value
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Fig. 4.5. Temperature output: Observer vs plant model at optimal gain value
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5. FUZZY LOGIC BASED CONDITION DIAGNOSIS

Lithium-ion battery fault detection and diagnosis(FDD) has been systematically pur-

sued by many researchers during last few years. The main driving force for this is

the high importance of the battery in real world situations like automotive and aero-

nautical industry etc.

Just like any other physical system, lithium-ion batteries are designed and devel-

oped by incorporating better chemistry, protection circuitry, advanced manufacturing

process etc. for increased performance and reliability. The risk of lithium-ion failures

have reduced considerably with all these precautions and measures. But still a signif-

icant amount of risk leak through making them unsafe. Hence there is a need of fault

detection and diagnosis system which can continuously diagnose the battery and re-

port the fault well ahead of time. Fault diagnosis can be thought of as a simple on-off

switch where in switch goes on when there is any fault detected in the system [11].

Traditional FDD methods can be classified mainly into different categories like,

quantitative model based methods, qualitative model based methods and process his-

tory based methods [38]. Quantitative model based methods are based on the physics

of the monitored process. Here process being monitored is represented in mathemati-

cal, functional relationship between inputs and outputs. Examples of this method are,

diagnostics observers like, Kalman filter, Luenberger, physics model based etc. Quali-

tative methods have process input and outputs relationships represented in qualitative

functions centered around the different units of process. History based methods based

on historical data of the process. They do not make use of physics based information

of the process. Examples of this method are, neural networks, neuro-fuzzy models,

statistical methods etc. [38].
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5.1 Model based FDD

In this thesis, model based FDD method has been used; as this approach captures

real dynamics of lithium-ion battery enabling accurate estimation of the different

states and output of the battery. This further enables the reliable early detection of

the fault conditions in lithium-ion battery.

Fig. 5.1. Model based fault diagnosis block diagram [39]

Figure 5.1 shows the block diagram of basic structure of model based fault di-

agnosis. Process input U and output Y is fed to the process model and feature

generation block to estimate different states, x̂ or parameters, Θ̂ of the process model

and generate residuals, r. These estimated states, parameters and generated resid-

uals are called features. These features are further sent to feature processing and

change detection block to compare them with the corresponding features generated

out of normal behavior system. Comparing with normal behavior system reveals the

changes of feature which are called as analytical symptoms, s; by quantifying these

symptoms different faults in the system can be detected [39].

The process model used in the model based diagnosis method is the mathematical

representation of the system. This mathematical representation should capture the

system dynamics of the process; more essentially it should capture the system dy-

namics which represents faults in the process. At the same time, this process model

should also be computationally inexpensive so that faults can be reliably detected

in real-time applications. This is very critical in mobile applications like automotive

and aeronautics industry.
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There are few limitations in using the pure process model in the model based

diagnostics because of modeling inaccuracies, input and output measurement noise,

faulty initial conditions, unknown disturbances and system noise. These might lead

to inaccurate or unstable state estimation or parameter estimation, leading to un-

reliable fault detection. This can be overcome by replacing the pure process model

by observers [39, 40]. There are many different kinds of observers like Kalman fil-

ter, Luenberger observer, output error injection based etc. [12, 40] can be found in

literature.

5.2 Simulink Design for FDD

In this thesis, a full battery model described in Chapter 3 is used for process

model as it captures complete dynamics of the lithium-ion battery. Approximated

lithium-ion battery model along with output error injection based observer described

in Chapter 4 is used as process observer model. Matlab/Simulik model designed for

the lithium-ion battery detection is shown in Figure 5.7.

Each subsystems shown in the simulink diagram corresponds to one or more func-

tionality of the blocks shown in 5.1. ’Battery Process Model’ and ’Battery Observer’

subsystems represents process model and process model based observer for lithium-ion

battery respectively. Feature generation subsystem takes process model and observer

outputs like voltage, temperature and SOC and generates features which can be used

for FDD. Generated features include,

1. Battery output voltage residual

2. Battery temperature residual

3. SOC residual

4. Battery voltage level

5. Battery temperature change
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Fig. 5.2. Matlab/Simulink design for the FDD

6. Battery SOC Level

’Change detection and fault diagnosis’ subsystem is fuzzy logic based. Fuzzy

membership functions were designed for all features and fuzzy output fault decision

signal. A strong and accurate fuzzy rule base was developed based on the analysis

of faulty and healthy lithium-ion battery systems. Fuzzy rule base is shown in Table

5.1. Additionally, there exist an enable subsystem, ’FDD Enable’ to enable feature

generation block only during time windows when feature signatures represent true

fault conditions.

5.2.1 Membership Functions(MF)

Voltage residual MF

Voltage residual is the relative error calculated in percentage(%). Figure 5.3 shows

the MF for voltage residual. Three different fuzzy sets were defined namely, Z(Zero),
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N(Negative) and P(Positive). Z, N and P use ’triangular’, ’z’ and ’s’ membership

functions respectively. If incoming residual is close to zero then it’s classified as fuzzy

’Z’, if it is close to or greater than +1 then its classified as fuzzy ’P’, and if it is close

to or greater than -1, its classified as fuzzy ’N’. Voltage fuzzy sets range were designed

based on knowledge of voltage residual for healthy and faulty battery systems.

Fig. 5.3. Voltage residual fuzzy MF

Temperature residual MF

Temperature residual is the relative error calculated in percentage(%). Figure 5.4

shows the MF for temperature residual. Similar to voltage residual fuzzy sets, three

different fuzzy sets were defined namely, Z(Zero), N(Negative) and P(Positive). If

incoming residual is close to zero then its classified as fuzzy ’Z’, if it is close to or

greater than 0.2 then its classified as fuzzy ’P’, and if it is close to and greater than

-0.2 then its classified as fuzzy ’N’. Temperature fuzzy sets range were designed based

on knowledge of temperature residual for healthy and faulty battery systems.
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Fig. 5.4. Temperature residual fuzzy MF

SOC residual MF

SOC residual is the relative error calculated in percentage(%). Figure 5.5 shows

the MF for SOC residual. Similar to voltage and temperature residuals three different

fuzzy sets were defined. If incoming residual is close to zero then its classified as fuzzy

’Z’, if it is close to or greater than +1 then its classified as fuzzy ’P’, and if it is close

to and greater than -1 then its classified as fuzzy ’N’. SOC fuzzy sets range were

designed based on knowledge of SOC residual for healthy and faulty battery systems.

Battery Voltage level MF

Battery voltage level is the output voltage in volts from the battery plant model.

Figure 5.6 shows the MF for battery voltage level. Three different fuzzy sets were

defined, namely Nominal, Low and High. Low, Nominal and High use ’s’, ’trapezoidal’

and ’z’ membership functions respectively. If incoming signal is within 4.3 and 3.7

then its classified as fuzzy Nominal, if it is close to or less than 3.7 then its classified

as fuzzy Low, and if it is close to and greater than 4.3 then its classified as fuzzy
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Fig. 5.5. SOC residual fuzzy membership function

High. Range of voltage level fuzzy sets were designed based on knowledge of voltage

level for healthy and faulty battery system.

Fig. 5.6. Battery voltage level fuzzy MF
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Battery Temperature change MF

Battery temperature change is the rate of change of battery temperature from

plant model calculated in Kelvin per second. Figure 5.6 shows the MF for battery

temperature change. Two different fuzzy sets were defined, namely Nominal and

High. Nominal and High use z and s membership functions respectively. If incoming

signal is greater than 0.1, its classified as fuzzy High and if it is less than 0.2 then

its classified as fuzzy Nominal. Temperature change fuzzy sets range were designed

based on knowledge of temperature rate change for healthy and faulty battery system.

Fig. 5.7. Battery temperature change MF

Battery SOC level MF

Battery SOC level is the SOC calculated from coulomb counting approach on

load current. Figure 5.8 shows the MF for battery SOC level. Three different fuzzy

sets were defined, namely Nominal, Low and High. Nominal, Low and High use

trapezoidal, z and s membership functions respectively. If incoming signal is between

0.9 and 0.1, its classified as fuzzy Nominal, if it is close to or less than 0.2, its
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classified as fuzzy Low, and if it is close to and greater than 0.9 then its classified as

fuzzy High. SOC level fuzzy sets range were designed based on knowledge of SOC

level for overcharge, over-discharge and nominal battery.

Fig. 5.8. Battery SOC level fuzzy MF

Fault decision MF

Fault decision is defuzzyfied output. Figure 5.9 shows the MF for output fault

decision signal. In this MF two different fuzzy sets were defined, namely N(No Fault)

and F(Fault). Both MF uses triangular membership function. -1 indicates no fault

in the battery, while +1 indicates definite fault.

5.2.2 Decision Signal Generation

Fuzzy input MFs use respective ’feature’ values to calculate fuzzy values. Fuzzy

values decide which rules to be triggered and their degree of activation. Based on the

triggered rules and their degree, decision signal gets calculated using the output MF.

Centroid method was applied to derive the decision signal value from output MF.
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For detailed working of the fuzzy systems used in this thesis, [41] is recommended for

readers.

Fig. 5.9. Fault decision output MF

Table 5.1
Fuzzy rule base for the lithium-ion FDD
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6. DESIGN OF EXPERIMENTS

6.1 Battery Chemistry and Battery Parameter Values

As mentioned in Chapter 3 and Chapter 4, a lithium-ion battery cell can be

modeled using mathematical equations based on electrochemical reactions. These

equations have parameters to represent different physical phenomenon like positive

electrode diffusion and reaction rate constant, negative electrode diffusion and reac-

tion rate constant, electrolyte diffusion constant, conductivity of electrode material

etc. When a fault occurs in the lithium-ion battery, these electrochemical parameters,

mainly, positive electrode diffusion and reaction rate constant, and negative electrode

diffusion and reaction rate constant show a marked variation from their healthy bat-

tery counterparts. The primary focus of this study is the FDD of degraded/aged

battery, over charge(OC), over discharge(OD), internal short circuit and any other

deviation from the healthy battery operation. When considering degraded/aged bat-

tery faults the battery model parameters show a particular and distinct trend in

parameter variation with battery age [42].

In this study all the dynamics of the battery is considered including temperature

effects of the battery. The test subject selected for this study was LiCoO2(positive

electrode) and LiC6 (negative electrode) battery system. Table 6.1 shows the param-

eter values for healthy battery system [36].

Ramadesigana et al. [42] have shown the effect of cycling/aging on battery pa-

rameters. For aged/degraded battery, key parameters like diffusion coefficient and

reaction constant of positive electrode, diffusion coefficient and reaction constant of

negative electrode and diffusion constant of electrolyte have shown significant degra-

dation trend with aging. For OC and OD case, based on the detailed study as

per [43,44] and insight into the battery behavior during OC and OD fault conditions
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a degradation trend was presumed for these parameters. Table 6.2 shows the list

of parameters which get affected and their values for the degraded/aged, OC and

OD fault conditions and percentage of the degradation of these parameters as com-

pared to healthy system. Using this data, multiple faults representing plant/process

model can be formulated. Hybrid pulse power characterization(HPPC) load current

cycle was applied to lithium-ion battery to demonstrate various fault conditions like

degraded battery, OD and OC.

6.2 Hybrid Pulse Power Characterization Drive Cycle

HPPC was accessed from [45] and is represented in Figure 6.2. The objective of

this is to demonstrate battery pulse power regeneration capabilities and discharge

pulse capabilities at various SOC. The complete HPPC sequence applied on the bat-

tery is shown in Figure 6.1. The duration of load current selected for this study was

12210 seconds. HPPC drive cycle began on battery with 100 percent SOC. Between

each pulse power characterization, there was a resting period to allow battery to come

back to complete rest so that it can establish OCP. At the end of the HPPC cycle

sequence capacity of the battery was close to zero.
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Fig. 6.1. Complete hybrid pulse power characterization Sequence
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Fig. 6.2. Hybrid pulse power characterization profile
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7. DIAGNOSIS PERFORMANCE EVALUATION

7.1 Fault Injection

The effectiveness of the fault diagnosis and detection was examined by injecting

consecutive fault conditions and studying them. Fault conditions were injected by

introducing variations in the parameters of battery model. The simulation was run

for total of 12210 seconds and sample time was 1 second. Sample time was chosen

keeping complex PDAEs of process observer model and their real time executions in

mind. Based on today’s computational capabilities, 1 second is sufficient amount of

execution time to solve PDAEs. The total simulation was divided into six parts which

occurred consecutively:

1. For the first 800 s healthy battery cell operation

2. For next 3500 s OC fault condition

3. For next 3500 s return to healthy battery cell operation

4. For next 3500 s degraded battery fault condition

5. For next 3500 s sample return healthy battery cell operation

6. For remaining time OD fault condition

In this setup it is assumed that only one fault can occur in the system at any

given point of time. This setup helps to verify the effectiveness of the fault diagnosis

and detection algorithm to de-latch itself from its earlier diagnosed conditions once

operational conditions is diagnosed correctly [46].
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7.2 Fault Detection

At every execution step below features were calculated:

1. Battery output voltage residual

2. Battery temperature residual

3. SOC residual

4. Battery voltage level

5. Battery temperature change

6. Battery SOC Level

The features such as voltage level, battery temperature change and SOC level

were fed to fuzzy rule based fault detector at every executions step as and when they

were calculated. Figure 7.1 shows these signals from plant model and observer. But,

features such as voltage, temperature and SOC residuals were fed only during certain

enable time window. Figure 7.2 shows these signals along with enable signal. Figure

7.3 shows zoomed version of the part highlighted in Figure 7.2. Subplot 1 of Figure

7.3 shows that, the moment when load current excitation was applied(at 1260 s, 1278

s, 1310 s and 1320 s) voltage residual value was high; it gradually decreased even

though the load current remained same. This behavior was because of the output error

injection and observer gain term which gave capability to the observer to converge

to true value coming from the plant model. This gradually reduced the separation

between faulty and healthy battery. So in order to get a good separation, residuals

were sampled only during first few seconds of load current excitation. Subplot 4 in

Figure 7.3 shows the ’enable’ signal to sample the residuals. Fuzzy rule based fault

detector ran at every simulation step to evaluate probability of fault. It calculated

values between -1 and +1; +1 indicated definite fault and -1 indicated no fault or

healthy behavior of the system. The resulting probabilities are shown in Figure 7.4.



48

Fig. 7.1. Lithium-ion battery plant versus observer outputs

The test was run for total duration of 12210 seconds. At 1260 seconds, OC fault

was indicated as probability transited from -0.5 to +0.5. At 3900 seconds, the OC

probability previously at 0.5, transited to -0.5 to indicate healthy battery condition.

At 6540 seconds, probability moved back to +0.5 indicating degraded battery. Further

at 9180 seconds, it moved to -0.5 to indicate healthy battery. Finally at 11840 seconds,

it moved to +0.5 to indicate OD fault condition. From subplot 1 of Figure 7.4 some

amount of uncertainty was observed in probability. This change in the probability

values was an inherent feature in fuzzy rule base. This was corrected by comparing the

probability value against a threshold of 0.3. This threshold value was chosen carefully

so that faults can be detected accurately without compromising on losing out any fault
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Fig. 7.2. Voltage, temperature and SOC residuals

related information. The resulting final fault decision is shown in subplot 2 of Figure

7.4. From the results it is evident that electrochemical model based observer can

be successfully incorporated with the fuzzy rule based system for accurate and real

time OC, degraded and OD fault detection of the lithium-ion battery energy storage

device.
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Fig. 7.3. Voltage, temperature and SOC residuals



51

Fig. 7.4. Fuzzy output and diagnostics decision
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8. CONCLUSION

8.1 Conclusion

The safety has been one of the most critical concerns for the lithium-ion batteries

due to their precarious nature. For this concern in the present thesis work, an effective,

practical and reliable failure detector was developed.

• Physics based electrochemical lithium-ion battery model was built to use as

battery plant model. This plant model captures all the dynamics of lithium-ion

battery reactions happening inside positive electrode, negative electrode and

electrolyte. This model also captures temperature effects on the battery cell.

This complete physics based plant model was used to verify the performance of

the lithium-ion battery diagnostics.

• Approximated version of the electrochemical lithium-ion battery model along

with observer capabilities was built to use as a process observer to generate

features required for the model based diagnostics purpose. The approximated

model reduced the computational time thus enabled design of real-time failure

detector. Observer gain parameters were tuned for accurate state estimation

and fault diagnosis

• Moreover, a model based failure detector was built based on fuzzy rules and

electrochemical observer to detect various fault conditions like OC, degraded

battery, OD, internal short circuit and any unknown fault conditions which

deviates battery from its normal behavior. Model based fault detector uses

load current (charging/discharging) and measured battery voltage as input to

evaluate features like voltage level, SOC level and temperature change. Further,

load current and measured voltage were used to estimate various states of the
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battery using which features like voltage residual, temperature residual and

SOC residual were calculated. These features were further used in the fuzzy rule

base system to categorize them into healthy or faulty signatures, thus detecting

battery failure.

• This fault detector was validated to detect fault conditions like OC, degraded

battery and OD in HPPC drive cycle. Fault conditions were created by in-

troducing the variations in parameters. Simulation results showed that the

proposed method is very effective in detection of the stated faults in real-time,

thus providing an effective way of diagnosing lithium-ion battery failure. This

diagnostics approach captured real dynamics of the battery systems including

temperature effects unlike other diagnostics methods presented in [10,11,20–22],

thus giving an extra edge to detect the faults accurately.

8.2 Recommendation for Future Work

In the future, extension of the current work can be performed towards real world

validation of the proposed diagnosis method.

• As the next step, fuzzy rule based fault diagnosis technique can be implemented

on an on-board computer and validate on physical battery cell for different

failures

• The diagnostics approach developed in this thesis is for a battery cell. It will be

interesting to study how this diagnostics approach can be extended to battery

module as well as pack.

• Study of battery parameter identification for various battery conditions can be

carried out.

• Study of robustness of the algorithms developed can be performed.
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• Incorporate developed algorithms into battery management system and study

its performance.

• Design observer based on the full battery model, rather than approximated

model and evaluate its real-time application capability.
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