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ABSTRACT 

Liu, Qi. Purdue University, August 2010. Synthesis of Mesoporous Phosphates Via Solid 
State Reaction at Low Temperature. Major Professor: Jian Xie. 
 
 
 

Three parts consist of my thesis work centered on the synthesis of inorganic 

phosphates and then metal organic frame work (MOF). The first part is the synthesis of 

mesoporous chromium phosphates using the room temperature solid state reaction (SSR) 

approach. One of the major aims of this work is to fill the gap of lacking a low cost, low 

or zero pollution, easy method to synthesize phosphates. The room temperature solid 

state reaction has been demonstrated in this work is such a method. Mesoporous 

chromium phosphates were prepared using the solid state reaction at low temperature 

using CrCl36H2O, and NaH2PO42H2O as precursors and the surfactant cetyltrimethyl 

ammonium bromide (CTAB) as template. The synthesized chromium phosphates were 

characterized by XRD, EDS, HR-TEM, N2-physisorption, TG-DSC and UV-Vis 

spectroscopies. The results indicate that chromium phosphate mesophases were formed 

only at atomic ratios of P/Cr ≥ 1.8. The mesophase for P/Cr = 2.0 phosphate possessed 

the highest ordering of pore array, with a specific surface area as high as 250.78 m2/g and 

an average pore size of 3.48 nm. The catalytic performance of the chromium phosphates 

was examined by employing a model reaction, namely the dehydration of isopropanol to 

propene. The results indicated that all synthesized chromium phosphates exhibited 

significantly higher isopropanol conversions and propene yields than that synthesized via 

the conventional precipitation route. The highest propene selectivity (96.43%) at the 

highest isopropanol conversion (93.10%) has been obtained over the mesoporous 

chromium phosphate catalyst synthesized with a P/Cr atomic ratio of 2.0. The formation 
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mechanism of the mesoporous chromium phosphate was investigated by FTIR technique. 

The results show that CTAB template plays a key role in the formation of mesoporous 

chromium phosphates. 

Mesoporous lithium manganese phosphates were also successfully synthesized 

using the same approach of solid state reaction (SSR) at low temperature by using 

LiC2O36H2O, MnCl26H2O and NH4H2PO42H2O as precursors and the surfactant 

cetyltrimethyl ammonium bromide (CTAB) as template. The synthesized lithium 

manganese phosphates were characterized by XRD, EDS, SEM, HR-TEM, N2-

physisorption. The results show that the synthesized meoporous lithium manganese 

phosphates exhibited a high specific surface area (256.63 m2/g) and a narrow pore size 

distribution. The electrochemical tests of Li-ion batteries were performed and the results 

show that the charge voltage could increase to be 3.60 V while the first time discharge 

capacity could be as high as 100 mAh/g. 

The Nitro-Cu-MOF complexes, a new class of metal organic frameworks, have 

been successfully synthesized using a conventional thermal reaction. The obtained Nitro-

Cu-MOFs have a specific surface area of 576.27 m2/g and a pore volume of 0.32 m3/g. 

The gas uptake of the obtained Nitro-Cu-MOFs at 60 psi is 68 mg/g (sorbate/sorbent) at 

298 K for carbon dioxide, which is much higher than that of the Cu-MOFs, 31 mg/g at 

298 K for carbon dioxide. 

Key Words: Mesoporous phosphates, Synthesis, Solid State Reaction, Lithium 

manganese phosphates, CO2 adsorption
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1.  INTRODUCTION 

1.1  Motivation 

Phosphate compounds have wide applications in the selective adsorption of metal 

ions, the catalysis of some organic reactions and li-ion batteries. In recent years, the 

application of phosphates compounds has a significance increase. The structure and 

composition of these compounds depends on the synthesis route, which in turn, 

determines the catalytic and adsorptive performances of these compounds. As a result, 

various synthesis methods have been studied by practitioners and researchers.  

Currently, most phosphates, such as amorphous CrPO4 and crystalline 

CrPO4·6H2O, were synthesized via the wet chemistry route. Yet, a high surface area is 

difficult to obtain for both amorphous and crystalline compounds due to agglomeration. 

Solid state reaction and high-temperature calcination routes for some phosphates have 

been explored, which usually results in the formation of crystalline phosphates such as 

LiFePO4 and LiMnPO4. These crystalline phosphates generally have low specific surface 

areas and low pore volumes.  

Mesoporous inorganic materials have some unique properties such as high 

specific surface area, large pore volume, tunable nanopore sizes, adjustable framework 

composition, and controllable particle morphology. Phosphates need to be made into 

mesoporous materials for their application in catalysis and selective adsorption. Since 

applications in the catalysis industry and li-ion batteries desire a high surface area of 

phosphates compounds, it is necessary to investigate a typically novel method to 

synthesize mesoporous phosphates. 
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Coal-fired power plants currently generate approximately 50% of the electricity in 

the United States. While coal is a cheap and abundant resource, the continued reliance 

upon coal as an energy source could potentially have serious consequences in terms of 

global warming. Capturing carbon dioxide from coal-fired power plants, thereby 

preventing release into the atmosphere is of fundamental importance. Metal-Organic 

Frameworks are crystalline compounds consisting of metal ions or clusters coordinated to 

often rigid organic molecules to form one-, two-, or three-dimensional structures that can 

be porous. To date, several MOFs have been shown to exhibit exceptional CO2 storage 

capacity under equilibrium conditions where pure CO2 or gas mixture is introduced into 

the pores. In this thesis, part of research will be focused on the synthesis of Nitro-Cu-

MOF complexes, a new class of metal organic frameworks that might show a great 

potential on the CO2 storage. 

1.2  Objectives  

The objective of the current work mainly includes the synthesis and application of 

the various mesoporous phosphates via a typically novel method. And obtained 

mesoporous phosphates have been characterized and studied. The detailed objectives 

could be shown in the following: 

 To develop a novel method, solid-state reactions at low temperatures (SSRLT), to 

synthesize the mesoporous chromium phosphates. The synthesis conditions will 

be optimized; furthermore, the catalytic performance of chromium phosphates 

prepared by SSRLT, in terms of activity and selectivity, will be studied. 

 To develop the solid-state reactions at low temperatures (SSRLT) to synthesize 

the mesoporous lithium manganese phosphates. The synthesis conditions will be 

optimized; furthermore, the electric performance of lithium manganese 

phosphates prepared by SSRLT will be studied.  
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 To develop the FTIR technique to study the mechanism of the formation 

mesoporous phosphates via solid-state reaction at low temperature (SSRLT). 

The objective of the current work also includes the synthesis and application of 

Nitro-Cu-MOFs, a new class of metal inorganic frameworks. The detailed objective 

could be shown in the following: 

 To synthesize the Nitro-Cu-MOFs, a new class of metal organic frameworks, via 

hydrothermal method, and structure will be characterized by Synchrotron X-ray 

radiation at ChemMatCARS beamlines. The CO2 uptake captivity, in terms of 

weight ratio, will be studied. 

1.3  Systems of Interest and Approach 

To achieve these objectives, mesoporous chromium phosphates and lithium 

manganese phosphates will be synthesized via solid state reaction at low temperature by 

varying different synthesized conditions. The obtained mesoporous phosphates will be 

initially characterized and studied. Characterization tools include X-ray diffraction, high 

resolution transmission electron microscopy, nitrogen adsorption-desorption, Ultraviolet-

visible diffuse reflection (UV-Vis) spectroscopy, Thermo-gravimetry analysis (TGA) and 

differential scanning calorimetry(DSC), Fourier transform infrared (FT-IR) spectroscopy. 

Chromium phosphates are the typical inorganic materials that could be 

synthesized via different methods. We selected the sol-gel route to synthesize the 

mesoporous chromium phosphates for comparison. To evaluate the catalytic performance 

of the synthesized chromium phosphate compounds, the dehydration of isopropanol to 

propene was used as a model reaction. The catalytic performance of chromium 

phosphates prepared by SSRLT, in terms of activity and selectivity, will be compared 

with those prepared via sol-gel route. 
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As for the mesoporous lithium manganese phosphates, they will be synthesized 

via solid state reaction at low temperature by varying different synthesis conditions. The 

electrochemical test will be performed using home designed cell with lithium foil as the 

counter electrode, and 1.2M LiPF6 in EC/EMC (3:7 by weight) as the electrolyte, the 

separator is Celgard 3501 from Celgard Company. The electrochemical property is tested 

on Solartron SL1260. And the charge/discharge rate of the LiMnPO4 half cell is 0.1 C 

between 2.8 V to 3.8 V. 

For the synthesis of Nitro-Cu-MOF complexes, the CO2 absorption on the MOF 

complexes surface will be examined in a home-made system. Briefly, certain amount of 

activated MOFs (solvent molecules removed under vacuum) will be placed in a stainless 

steel vessel. The vessel is sealed and weighed using an analytical balance. Ultra-pure 

carbon dioxide is then introduced into the vessel under various pressures to saturate the 

MOF complexes. The vessel is then sealed and weighed again. The weight increase 

observed will correspond to the amount of carbon dioxide absorbed at the surface of the 

MOF complexes. As well, the CO2 absorption on the Cu-MOF complexes surface will be 

also examined for comparison. 
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2.  BACKGROUND 

2.1  Mesoporous Materials 

2.1.1  Definition of Mesoporous Materials 

Porous materials are classified into several kinds by their size. According to 

IPUAC notation, three different porous materials have been classified: microporous 

materials have pore diameters of less than 2 nm and macroporous materials have pore 

diameters of greater than 50 nm; while the mesoporous material is a material containing 

pore with diameters between 2 and 50 nm. Since the 1940s, naturally porous materials 

have shown high performance as catalysts, when scientists began to prepare the 

synthesized porous materials, in which the pore size is limited in 2 nm. Zeolites are the 

typical example, which include the aluminosilicate members of the family of 

microporous materials known as “molecular sieves”. Zeolites are widely used as catalysts 

in the industry [1]. Zeolites confine molecules in small spaces, which cause changes in 

their structure and reactivity. The hydrogen form of zeolites (prepared by ion-exchange) 

is powerful solid-state acids, and can facilitate a host of acid-catalyzed reactions, such as 

isomerisation, alkylation, and cracking [2]. However, the pore size of the zeolites is all 

limited to 2 nm and does not allow the bigger molecules to pass, which limits their 

application as catalysts. Porous silica and porous glasses are typically unordered 

mesoporous materials. Compared to zeolites, the pore size of porous silica and porous 

glasses is larger, however, their pore structure is anomalous and the pore distribution is 

very broad, which limits their application in separation, adsorption and catalysis 

applications. In 1990, Japanese researchers first reported mesoporous materials with a 

long range order. In 1992, M41S, a series of mesoporous materials, were first synthesized 
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by Mobil's researchers [3]. Among them, MCM-41 and MCM-48 were studied most. 

Although they are composed of an amorphours silica wall, they possess a long range 

ordered framework with uniform mesopores. The surface area could be more than 1000 

m2/g. Moreover, the pore diameter of these materials can be freely controlled within a 

mesoporous range of 1.5 to 20 nm by adjusting the synthesis conditions and/or by 

employing surfactants with different chain lengths in their preparation. Zeolites are 

limited to pore sizes of ~20 Å, while mesoporous materials have material characteristics 

similar to zeolites, but with larger pores. This combination of material characteristics 

would be very useful for applications such as adsorption, separation and use in the 

catalysis industry.  

2.1.2  Classification and Characteristics of Mesoporous Materials  

According to the different composition, mesoporous materials could be divided 

into silica mesoporous materials that include some kinds of silica and alumina which 

have similarly-sized fine mesopores and non silica mesoporous materials including 

mesoporous oxides, phosphates et al. The non silica mesoporous materials, show promise 

to be used as catalysts due the existence of a Transition-state. However, this kind of 

mesoporous materials is not stable. The mesopores could collapse after calcination and 

also the mechanism of synthesis still remains unknown. This causes most scientists to 

focus their research on silica mesoporous materials.  

A mesoporous material can be disordered or ordered in a mesostructure. Just as 

mentioned above, porous silica and porous glasses are typically unordered mesoporous 

materials. Their pore structure is unordered and the pore distribution is very wide. While 

M41S is highly ordered and gives a diffraction pattern but the silicate walls are not 

crystalline, they are glass-like. The pore size distribution in MCM-41 is usually as narrow 

as well ordered materials can be made. As a novel ordered nanomaterial, research in this 

field has steadily grown. Notable examples of prospective applications are catalysis, 

sorption, gas sensing, optics, and photovoltaics. These applications also include magnetic 
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fluorescent delivery vehicles, mercury ion detection, drug-delivery systems, bone-tissue 

engineering, and other potential applications in the medical and environmental fields. The 

characteristics of ordered mesoporous materials are just between the amorphous 

disordered materials (such as amorphous silica) and zeolite, with a crystalline structure 

and uniform pore distribution. Typically, zeolites are limited to pore sizes of 1.5 nm, 

while for mesoporous materials, the materials characteristics are similar to zeolites but 

with larger pores, which would be very useful. Normally, the main characteristics of 

mesoporous materials could be shown in the following: 

1) The pore structure is high ordered; 

2) The pore size distribution is usually quite narrow. And the pore size can be 

controlled varying from 1.5 nm~30 nm by changing the composition of the 

synthesis mixture or surfactants; 

3) Huge surface areas, providing a vast number of sites where sorption processes can 

occur; 

4) By using different surfactants, different structure can be formed such as micelles, 

rods, sheets and 3D structures; 

5) After modification, high thermal stability and hydrothermal stability could be 

obtained. 

Here, for example, the pore size distribution in MCM-41 is usually quite narrow 

as well ordered materials can be made, but it is not as tightly defined as that for a zeolite 

as MCM-41 is not a crystalline product. And the main characteristics of the MCM-41 are: 

pore size is about 3.5 nm; pore wall is about 1 nm; the surface area could be as high as 

1000 m2/g and the pore volume is about1 ml/g. Up to now, a lot of work has been done 

exploring the formation of silicate structures using self assembled templates. And many 

different mesoporous materials have been synthesized. Mesoporous materials are 
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classified into several classes by their pore size and structure. A typical example can be 

seen in Table 2.1. 

Table 2.1 Mesoporous materials with different pore structures 

Characteristics of  
pore structure 

Structure  Typical example  

Lowly ordered, 1D 
 

1D (no pore distribution) 
 

2D lamellar 
 
 

3D (cages) 
 
 
 

3D (Intersecting 
channels) 

 
 

（hexagonal） 
 
 
 

Hexagonal 
 
 

cubic 
 
 

cubic-hexagonal 
 

cubic 
 
 

MSU-n, HMS, KIT-1 
 

MCM-50 
 

MCM-41, SBA-3, FSM-16, 
TMS-1 

 
SBA-1, 6, 16, FDU-2, 12, 

SBA-11 
 

 SBA-2, 7, 12, FDU-1 
 

SBA-16, MCM-48, FDU-5, 
HUM-7 

 

2.1.3  Synthesis Methods of Mesoporous Materials  

So far, a lot of work has been done to synthesize different mesoporous materials. 

From the initial M41S mesoporous materials to FSM, HMS, MSU, SBA, KIT et al., there 

have been literally thousands of publications dealing with mesoporous ceramics, with a 

wide variety of synthetic methods being developed. However, depending on the synthesis 

conditions, the silica source or the type of surfactants that has been used, many 

mesoporous materials can be synthesized following the co-operative assembly pathway. 

And there are several synthesis methods which are widely adopted by scientists. Among 

them, the sol-gel method and hydrothermal method have been adopted most.  
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2.1.3.1  Sol-gel Method 

The sol-gel process, also known as chemical solution deposition, is a wet-

chemical technique widely used in the fields of materials science and ceramic 

engineering. Such methods are used primarily for the fabrication of materials (typically a 

metal oxide) starting from a chemical solution which acts as the precursor for an 

integrated network (or gel) of either discrete particles or network polymers. The sol-gel 

method has also been widely used in the synthesis of mesoporous materials, during the 

synthesis, different template could be used as the template such as cation surfactants, 

triblock copolymers and organic small molecules. Ryoo et al. reported that by using 

CTAB (a kind of cation surfactants) as the template and sol-gel method, the mesoporous 

silica molecular sieve MCM-41 can be obtained in a highly ordered form with various 

pore diameters of micelle packing is suitably controlled with a mixture of n-

alkyltrimethylammonium bromide and nalkyltriethylammonium bromide according to the 

length of the C12–C22 alkyl groups [4]. Zhao et al. reported that by the use of amphiphilic 

triblock copolymers to direct the organization of polymerizing silica species has resulted 

in the preparation of well-ordered hexagontal mesoporous silica structures (SBA-15) with 

uniform pore sizes up to approximately 300 angstroms, and also the morphology and pore 

size distribution could be controlled [5]. Wei et al. reported that by using organic small 

molecule like glucose as the template, well-ordered mesoporous materials could be 

obtained [6]. 

2.1.3.2  Hydrothermal Methods 

Hydrothermal synthesis can be defined as a method of synthesis of single crystals 

which depends on the solubility of minerals in hot water under high pressure. The crystal 

growth is performed in an apparatus consisting of a steel pressure vessel called autoclave, 

in which a nutrient is supplied along with water. A gradient of temperature is maintained 

at the opposite ends of the growth chamber so that the hotter end dissolves the nutrient 

and the cooler end causes seeds to take additional growth. Hydrothermal method has also 

been widely used in the synthesis of mesoporous materials. Mizuno et al. has obtained 

the mesoporous V-P-O mesoporous materials by using the hydrothermal method, and 
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also the morphology of obtained materials could be controlled via changing the pH value 

[7]. 

Meanwhile, other methods have also been adopted in the synthesis of mesoporous 

materials. Yao et al. reported that by using the CTAB as the template, MCM-41 

mesoporous materials could be obtained via microwave heating [8]. And the results show 

that that by microwave heating, high ordered mesoporous materials could be obtained via 

in a very short time. The microwaves provide intense localized heating that may be 

higher than the recorded temperature of the reaction vessel. At some time, microwave is a 

promising way for synthesizing mesoporous materials as well as other nanomaterials.  

2.2  Solid State Reaction 

2.2.1  Introduction to the Solid State Reaction 

In the beginning of 20th century, solid state chemistry has been recognized as a 

separate science. The solid state chemistry is the study of the synthesis, structure, and 

physical properties of solid materials. It therefore has a strong overlap with solid-state 

physics, mineralogy, crystallography, ceramics, metallurgy, thermodynamics, materials 

science and electronics with a focus on the synthesis of novel materials and their 

characterization. A solid state reaction, also called a dry media reaction or a solventless 

reaction, is a chemical reaction in which solvents are not used. In a normal reaction, the 

reacting agents, also called the reactants, are placed in a solvent before the reaction can 

take place. These reactants react to form a new substance. After the reaction is completed, 

scientists are able to remove the new product from the solvent. Basically, the normal 

reaction is time and energy consumption, and also not environmental friendly. A solid-

state reaction, however, allows the reactants to chemically react without the presence of a 

solvent. It is important to economics because the elimination of solvents means that 

products will cost less. With normal reactions, scientists need to remove the residual 
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solvent from the resulting product after a reaction has finished. Producing materials from 

a solid state reaction will mean that scientists are able to bypass the purification process. 

So scientists began to focus on the solid state reaction method especially on the solid 

state reaction method at low temperature. Up to now, solid state reaction method has 

already been one of the most important methods for synthesis of nanomaterials. 

2.2.2  Classification of Solid State Reaction Method  

Solid state reaction methods are classified into several kinds by their different 

reaction temperature. 

2.2.2.1  High Temperature Solid State Reaction  

For high temperature solid state reaction, the reaction temperature is above 300 Ԩ. 

Although scientist cannot obtain ideal materials completely, the high temperature solid 

state reaction still holds a dominant position in the materials synthesis. For example, bulk 

solids are prepared using tube furnaces, which allow reactions to be conducted up to ca. 

1100 Ԩ. Special equipment e.g. ovens consisting of a tantalum tube through which an 

electric current is passed can be used for even higher temperatures up to 2000 °C. Such 

high temperatures are at times required to induce diffusion of the reactants, but this 

depends strongly on the system studied. Another good example of a high temperature 

solid state reaction is the “melt method”. One method often employed is to melt the 

reactants together and then later anneal the solidified melt. 

2.2.2.2  Low Temperature Solid State Reaction  

For low temperature solid state reaction, the reaction temperature is below 300 Ԩ. 

Since the reaction temperature is much lower, scientists begin to focus their research on 

the material’s synthesis at low temperature. Hou once reported ZnO nanorods synthesis 

by solid state reaction. These ZnO nanorods were prepared between anhydrous zinc 
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sulfate and sodium hydroxide in the absence of surfactant and template at relatively low 

temperature. And the results showed that when Zn2+/OH− ratio was 1:4, good rod-like 

morphology with the diameter of 30 – 50 nm and length of ca. 600 nm can be obtained 

[9]. Li once reported that nanosized MnO could also be prepared via solid state reaction 

route at room temperature. The MnO particles were acicular, in the size range 50 nm, and 

with large specific area which is as high as1200 m2/g [10]. Normally, solid state reaction 

is very promising in the materials synthesis. And there is no report about the synthesis of 

mesoporous materials via solid state reaction at low temperature. 

2.3  Phosphates 

2.3.1  Introduction to Phosphates 

A phosphate, an inorganic chemical, is a salt of phosphoric acid. In organic 

chemistry, a phosphate, or organophosphate, is an ester of phosphoric acid. Organic 

phosphates are important in biochemistry and biogeochemistry or ecology. Inorganic 

phosphates are mined to obtain phosphorus for use in agriculture and industry. At 

elevated temperatures in the solid state, phosphates can condense to form pyrophosphates. 

Phosphates are utilized for detergents, food additives, fertilizers, corrosion inhibitors, etc. 

as bulk materials, and for adsorbents, catalysts, chemical sensors, etc .as surface-

functional materials. The interaction of some guest molecules with the surface of a host 

functional phosphate results in (1) adsorption on the surface, (2) activation of the 

adsorbed molecules, (3) chemical reaction on the surface, (4) change in electric or 

electronic properties of the host phosphate, etc.  

2.3.2  Application of Phosphates as a Cathode in the Li-ion Batteries  

The lithium-ion battery is a kind of rechargeable battery, in which lithium ions 

move from the negative electrode to the positive electrode during discharge, and back 
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when charging. Lithium-ion batteries are common in consumer electronics. They are one 

of the most popular for portable electronics, with one of the best energy-to-weight ratios, 

no memory effect, and a slow loss of charge when not in use. Beyond consumer 

electronics, LIBs are growing in popularity for national defense, electric vehicles, and 

aerospace applications due to their high energy density. Research is yielding a stream of 

improvements to traditional LIBs technology, focusing on energy density, durability, cost, 

and safety. 

Recently, Lithium transition-metal (ortho) phosphates have attracted attention as 

potential Li-ion battery cathode materials due to their lower toxicity, lower cost and 

better chemical and thermal stability, when compared to the currently used LiCoO2. In 

1996, Goodenough and coworkers identified lithium iron phosphate (LiFePO4) and other 

phospho-olivines (lithium metal phosphates with olivine structure) as cathode materials 

[11]. Because of its low cost, non-toxicity, the high abundance of iron, its excellent 

thermal stability, safety characteristics, good electrochemical performance, and high 

specific capacity (170 mA·h/g, or 610 C/g) it gained some market acceptance. Chiang 

and his group at MIT reported that a dramatic improvement in the performance of lithium 

batteries has been obtained by boosting the material’s conductivity by doping it with 

aluminum, niobium and zirconium [12]. The exact mechanism causing the increase 

became the subject of a heated debate. In 2004, Chiang again reported that an increased 

performance by utilizing iron-phosphate particles of less than 100 nanometers in diameter 

[13]. This decreased particle density by almost one hundredfold, increased the cathode’s 

surface area and improved capacity and performance. Indeed LiFePO4 has been 

extensively investigated, and is now present in commercial cells for high power, and 

large format applications. 

Encouraged by the success of LiFePO4, LiMnPO4 is also attracting increased 

attention. Lithium manganese phosphate has a redox potential of 4.1 V versus Li+/Li, 

which is considered to be the maximum limit accessible to most liquid electrolytes. This 

is ~0.65 higher than LiFePO4, The high ionic and electronic resistance of LiMnPO4 have 

rendered it difficult to obtain high electrochemically activity. Li et al. first reported the 
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reversible reaction of Mn(II)↔Mn(III) in olivine phosphate. Their material presented a 

reversible capacity of ~140 mA·h g−1 at C/15 within 2.0–4.5 V vs. Li/Li+. Although 

several groups have explored various methods to prepare electro-active LiMnPO4, there 

are very few reports of performance greater than 100 mAh·g−1 [14 - 15]. 

2.3.3  Synthesis Methods for Metal Phosphates 

2.3.3.1  Hydrothermal Chemistry Method 

Hydrothermal (HDT) chemistry is one of the principal synthetic methods for the 

preparation of metal phosphates. It is used to produce various metal phosphates such as 

chromium phosphates, lithium ion phosphates and lithium magnesium phosphates which 

are functional in catalysis, electrochemistry and separation science. These compounds 

may have intriguing morphologies such as nanospheres, nanowires and nanotubes. 

Control of the products comes as a result of careful manipulation of concentration, pH 

and temperature. 

2.3.3.2  Solid State Reaction at High Temperature 

Solid state reaction route at high-temperature for metal phosphates synthesis has 

been explored for decades. For the synthesis of chromium phosphates, the formation of 

crystalline -CrPO4, -CrPO4, Cr(PO3)3, Cr3(PO4), Cr2P2O7, Cr7(PO4)6, Cr6(P2O7)4, and 

Na17Cr9P12O58H12 is normally obtained by using the solid state reaction at high 

temperature [16 - 19]. For the synthesis for LiMnPO4 and LiFePO4, the formation of 

olivine structure LiMnPO4 and LiFePO4 is normally obtained via solid state reaction at 

high temperature [15, 20 - 24]. Although scientist cannot obtain ideal materials 

completely, the high temperature solid state reaction still held a dominant position in the 

materials synthesis via solid state reaction. 
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These crystalline metal phosphates generally have low specific surface areas and 

low pore volumes. However, the use of solid-state reactions to synthesize the mesoporous 

materials at low temperatures has not been reported yet. Here, we present our work on 

employing the solid-state reactions at low temperatures (SSRLT) in synthesis of 

mesoporous chromium phosphates and mesoporous lithium magnesium phosphates.  
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3.  SYNTHESIS OF MESOPOROUS CHROMIUM PHOSPHATES VIA SOLID 
STATE REACTION AT LOW TEMPERATURE 

3.1  Introduction  

Chromium phosphate compounds, with the introduction of metal ion via ion 

exchange, show a promising activity in organic reactions, such as: 1) the dehydration of 

alcohols, 2) the oxidative dehydrogenation of alkanes, 3) the isomerization of alkenes, 

and 4) the alkylation of aromatics. The synthesis route, among other factors, plays an 

important role in the structure formation as well as the textile properties, like BET 

surface area, pore volume, and pore size distribution, which are vital to adsorption and 

activation of reactants. Currently, most chromium phosphates, such as amorphous CrPO4 

and crystalline CrPO4·6H2O, Cr(H2O)4HP2O7·3H2O, and Na2CrP2O7·0.5H2O [25], are 

commonly synthesized via the wet chemistry route, while a high surface area is difficult 

to be obtained either amorphous or crystalline compounds because of agglomeration 

during preparation.  

Mesoporous inorganic materials have some valuable properties such as high 

specific surface area and pore volume, with controllability in nano-pore sizes, framework 

composition, and particle morphology. Mesoporous chromium phosphates can be 

synthesized via the sol-gel method. This technique facilitates the controllable hydrolysis 

and condensation of precursor species, via the supramolecular assembly of surfactant 

micelles, generating mesoporous materials with a homogeneous distribution of 

components at molecular level.  Using the sol-gel technique, various mesoporous silicas 

such as M41S, SAB-n, MSU-X, and HMS, and numerous non-silica mesoporous 

materials of single metal oxides, mixed metal oxides, and aluminophosphates have been 
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synthesized. Very recently, Tarafdar et al. reported the synthesis of mesoporous 

chromium phosphate via the sol-gel route [26]. 

Just as mentioned above, the textile properties of chromium phosphate could be 

determined via the synthesis route. Solid state reaction and high-temperature calcination 

routes for chromium phosphates have been explored, which usually results in the 

formation of crystalline -CrPO4, -CrPO4, Cr(PO3)3, Cr3(PO4), Cr2P2O7, Cr7(PO4)6, 

Cr6(P2O7)4, and Na17Cr9P12O58H12 [16 - 19]. These crystalline chromium phosphates 

generally have low specific surface areas and low pore volumes. Though synthesis of 

mesoporous chromium phosphates, which have high specific surface areas and pore 

volumes, could be obtained via the sol-gel route, the sol-gel techniques offers some 

disadvantages over solid state reaction technique, for instance, more steps, complex 

operating conditions, and non-environmental friendly. So to explore a new route for 

synthesizing mesoporous chromium phosphates is desired. Currently, the use of solid-

state reactions to synthesize the mesoporous materials at low temperatures has not been 

reported yet. Here, we present our work on employing the solid-state reactions at low 

temperature (SSRLT) in synthesis of mesoporous chromium phosphates. The synthesized 

mesoporous chromium phosphates have better textural properties, compared with those 

prepared via the conventional sol-gel route. Meanwhile, the catalytic performance of 

chromium phosphates prepared by SSRLT, in terms of activity and selectivity, is 

significantly better than that of those prepared via sol-gel routes. 

3.2  Overview 

The general structure of this chapter includes the preparation of chromium 

phosphates via solid state reaction at low temperature and their structure and catalytic 

characterization. Characterization tools include X-ray diffraction, high resolution 

transmission electron microscopy, nitrogen adsorption-desorption, Ultraviolet-visible 

diffuse reflection (UV-Vis) spectroscopy, Thermo-gravimetry analysis (TGA) and 

differential scanning calorimetry (DSC). To evaluate the catalytic performance of the 
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synthesized chromium phosphate compounds, the dehydration of isopropanol to propene 

was used as a model reaction. The identification of the products was achieved using a 

Varian Saturn-2200 GC-MS equipped with a DB-1 capillary column (30 m  0.25 mm  

0.25 m). The quantitative analysis of the products was performed using a Perkin Elmer 

Clarus 500 GC equipped with a thermal conductivity detector (TCD) and a HayeSep DB 

column (30 × 1/8 × 0.085). 

3.2.1  X-ray Diffraction  

The structure of the synthesized compounds was determined using X-ray 

diffraction (XRD) (Brucker D8 advance diffractometer, Cu K radiation, wavelength 

1.5406 Å). The diffraction data were recorded for 2 angles between 0.35 and 75°, with a 

scanning speed of 0.02° /sec. 

3.2.2  High Resolution Transmission Electron Microscopy 

The morphology of the synthesized compounds was examined using high 

resolution transmission electron microscopy (HR-TEM) (JOEM-3010 electron 

microscope). Energy dispersible X-Ray spectroscopy (EDS) with an elemental analysis 

accessory (OXFORD) was used to analyze the local composition of the synthesized 

compounds. 

3.2.3  Nitrogen Adsorption-desorption 

The BET surface area and porosimetry of the synthesized compounds were 

measured using nitrogen adsorption-desorption (Beckman Counter SA 3100). Before 

adsorption measurements, the specimen was heated from room temperature up to 573 K, 

evacuated to 10-3 Pa, and then kept at that temperature and under that vacuum outgasing 

for 2 h. The specific surface area was determined by the BET method, and the pore size 
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distribution was obtained from the N2-desorption curve by the BJH (Barrett-Joyner- 

Halenda) method.  

3.2.4  Ultraviolet-visible Diffuse Reflection Spectroscopy 

The oxidation state of chromium in the chromium phosphates was determined 

using Ultraviolet-visible diffuse reflection (UV-Vis) spectroscopy (Perkin Elmer Lambda 

35 UV-Vis spectrometer). Data has been collected between 200 - 800 nm using BaSO4 as 

a reference. The thermal stability of the synthesized compounds was characterized using 

Thermo-gravimetry analysis (TGA) and differential scanning calorimetry (DSC) 

(Netzsch STA449C). The specimen was heated from room temperature to 1273 K at a 

rate of 5 oC/min, with a 98.5% N2 carrier gas at a flux of 50 ml/min. 

3.2.5  Catalytic Performance Evaluation 

To evaluate the catalytic performance of the synthesized chromium phosphate 

compounds, the dehydration of isopropanol to propene was used as a model reaction. 

Before testing, the chromium phosphate specimen was calcined at 823 K to remove the 

CTAB. The reaction was performed in a fixed-bed flow-type quartz reactor under the 

following conditions: catalyst amount = 1.0 g; flow rate of isopropanol (≥ 99.7%) = 0.085 

ml/min; reaction temperature = 473 ~ 563 K (at 30 K intervals); atmospheric pressure. 

The effluent from the reactor was cooled in an ice bath in which the gaseous products and 

residual isopropanol were separated. After the reaction proceeded smoothly for 60 min, 

both the liquid and the gases in the ice bath were sampled and analyzed. The 

identification of the products was achieved using a Varian Saturn-2200 GC-MS equipped 

with a DB-1 capillary column (30 m  0.25 mm  0.25 m). The quantitative analysis of 

the products was performed using a Perkin Elmer Clarus 500 GC equipped with a thermal 

conductivity detector (TCD) and a HayeSep DB column (30 × 1/8 × 0.085). The 

conversion of isopropanol and the selectivities to the reaction products were calculated as 

shown in the Appendix. 
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3.3  Experiment 

3.3.1  Objectives  

A set of chromium phosphates were synthesized via conventional sol-gel route 

according to the procedure reported in literatures to set as standard chromium samples. 

Several samples with different P/Cr ratio were synthesized with solid state reaction at low 

temperature. The set of samples were accordingly synthesized and characterized with the 

tools described as to the aforementioned methods and settings. 

3.3.2  Synthesis of CrPO4 via Conventional Sol-gel Route 

A solution containing chromium and phosphate was first prepared by dissolving 

equal moles of CrCl36H2O (Analytical reagent, A.R., Sigma Aldrich) and 

NaH2PO42H2O (Analytical reagent, A.R., Sigma Aldrich) into distilled water at 273 K, 

and then a cold ammonium aqueous solution (25 % volume) was added with continuous 

stirring. The resulting precipitate was aged at room temperature for 24 h, then recovered 

by filtration, washed thoroughly with distilled water, and dried at 373 K for 24 h. Finally, 

the synthesized chromium phosphates were calcined at 823 K for 6 h.  

3.3.3  Synthesis of Mesoporous CrPO4 via SSRLT Route 

CrCl36H2O (Analytical reagent, A.R., Sigma Aldrich) and NaH2PO42H2O 

(Analytical reagent, A.R., Sigma Aldrich) in various P/Cr molar ratios were mixed 

together and grinded in a mortar for 20 minutes, and then mixed further with a selected 

amount of cetyltrimethyl ammonium bromide (CTAB) and grinded together for another 

15 minutes. The obtained mixtures with atomic ratios of P: Cr: CTAB = x: 1.0: 0.001, 

where x = 1.0, 1.6, 1.8, 2.0, 2.2, 2.4 and 3, were transferred into beakers for heating at 

373 K for 24 h. After cooling to room temperature, the samples were washed thoroughly 
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with distilled water and then dried at 373 K for 24 h. To remove the surfactant, the 

specimens were further calcined in N2 at 823 K for 6 h. 

3.4  Results and Discussion  

3.4.1  X-ray Diffraction 

The XRD pattern of the chromium phosphate synthesized via the conventional 

sol-gel route (data not shown here) reveals that the chromium phosphate was amorphous 

phase.  This result is consistent with what Bautista et al. Found [27]. As shown in Figure 

3.1, the samples prepared by SSRLT were scanned by XRD. The curves indicated that, 

among the samples with various P/Cr atomic ratios, containing surfactant CTAB, there is 

no diffraction peak around 2θ = 2° over chromium phosphates with a P/Cr atomic ratio < 

1.8 (Figure 3.1 a and b), which suggesting the absence of a mesophase. A single 

diffraction peak starts around 2θ = 2°, over the sample with a P/Cr atomic ratio = 1.8, and 

intensifies with the increase in the atomic ratio until the atomic ratio = 2.0 (Figure 3.1 c 

to d). Further increase of the P/Cr resulted in the peak broadening and peak position 

shifting (Figure 3.1 e to g), indicating the broadening of the mesopore size distribution, 

possibly due to the enlargement of the mesopores and/or the thickening of the walls of 

the pores. The synthesized chromium phosphates from an initial batch with an atomic 

ratio of P/Cr = 2.0 possessed the maximum ordering of the mesopore array (as shown in 

Figure 3.1 TEM image). Wide angle XRD was also carried out for all the chromium 

phosphates, but no diffraction peaks were detected (data not shown here), suggesting that 

all the chromium phosphates have an amorphous structure. The XRD characterization of 

the chromium phosphate synthesized via SSRLT clearly shows that the pore structure of 

the synthesized chromium phosphates changes with the P/Cr atomic ratios from a non-

mesophase pore to a mesophase pore. The crystal structure of the synthesized chromium 

phosphates is not a crystalline phase; rather, it is an amorphous phase. 
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Figure 3.1 XRD patterns of chromium phosphate specimens synthesized before the 
surfactant removal 

 

The low angle portion of the XRD patterns of the chromium phosphates 

synthesized via the SSRLT route (with various P/Cr atomic ratios and removed CTAB 

surfactant) is also shown in Figure 3.2. It is clear that the chromium phosphates 

synthesized via the SSRLT route have a similar XRD peak pattern (Figure 3.2 a - g), in 

terms of peak shape and peak position changing with P/Cr atomic ratio, to that of a 

removed CTAB but with a much stronger peak intensity for the synthesized chromium 

phosphates containing CTAB. Note that the surfactant CTAB has been removed from 

these synthesized chromium phosphates through calcination. Thus, the XRD spectrum 

suggests that the mesostructure is retained after the surfactant CTAB has been removed 
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and the d-spacing (i.e. average distance between the centers of pores) of the mesophase 

decreases from ca.4.0 ~ 4.3 to ca. 3.5 ~ 3.86 nm, as compared with those containing the 

CTAB surfactant. Similarly, no diffraction peaks were detected in the high angle range 

for these synthesized chromium phosphates. 
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Figure 3.2 XRD patterns of chromium phosphates synthesized after the surfactant 
removal 

3.4.2  HR-TEM and EDS Results 

As shown in Figure 3.3, the HR-TEM micrograph of a mesoporous chromium 

phosphate synthesized via the SSRLT route (with P/Cr atomic ratio = 2 and removal of 

CTAB surfactant) shows a very orderly arranged wormhole-like pore array structure, 

which confirms the presence of a mesophase according to the XRD data. One possible 

mechanism for the formation of such a structure is that the surfactant CTAB and 

chromium phosphate form a uniform and orderly solid array, which consists of the rod-

like micelles of CTAB surrounded by chromium phosphates. Then a uniform and orderly 

pore array structure is formed when the rod-like micelles of CTAB are removed from this 
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solid array through calcinations. Thus, the surfactant CTAB plays an important role in the 

pore structure of chromium phosphates. In addition, the mesopores exhibit mostly 

wormhole-like pore geometry, with the average distance between the centers of the 

wormhole-like pores of ca. 3.8 nm, which correlates well with the results from the XRD 

data.  

 

Figure 3.3 HR-TEM micrograph of a mesoporous chromium phosphate prepared with an 
atomic ratio of P/Cr = 2.0 after the surfactant removal. 

 

Table 3. 1 EDS results and d-Spacings in Å obtained from XRD 

 P/Cr in the initial batches 

 1.00 1.60 1.80 2.00 2.20 2.40 3.00

P/Cr in the specimens 1.06 N.D 1.79 2.00 N.D. 2.31 3.03
O/P in the specimens 3.66 N.D. 4.76 4.69 N.D. 4.71 3.89

d-spacing of the specimens N.A N.A 4.04 4.13 4.17 4.52 5.17

* N.D.: not determined; N.A.: not available. 
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The P/Cr and O/P atomic ratios in the chromium phosphates synthesized via the 

SSRLT route were determined using EDS. All results are listed in Table 3.1. The results 

show that the P/Cr atomic ratios in the synthesized specimens are approximately equal to 

those in the initial batches, and the O/P atomic ratios are around 4. It is clear that the 

chemical compositions of synthesized chromium phosphates correlate well with the 

theoretical values. 

3.4.3  BET Results 

The nitrogen adsorption-desorption isotherm and the pore size distribution curve 

(in the inset) of the mesoporous chromium phosphate synthesized via the SSRLT route 

(with P/Cr atomic ratio = 2) is shown in Figure 3.4. The isotherm can be ascribed to type 

IV in the IUPAC classification and indicates a typical mesostructure. The desorption 

hysteresis loop corresponds to type H2, and is caused by pore blocking effects during 

desorption, indicating an ink-bottle pore geometry of the mesostructure. From Figure 3.4, 

a sharp increase of the volume adsorbed at very low relative pressures (P/P0) is observed, 

indicating that the walls of the mesophase pore contain micropores.  The BET specific 

surface area is 250.78 m2/g and the pore volume is 0.2069 cm3/g, which have been 

calculated, based on the adsorption in the relative pressure ranging from 0.05 to 0.2 and 

the relative pressure of 0.9814, respectively. The mesoporous chromium phosphate has a 

uniform and narrow pore size distribution, with most of the pore sizes centering around 

3.48 nm.  The mesoporous chromium phosphate synthesized between 353 and 393 K via 

the sol-gel route had a specific surface area of 384 m2/g and a pore volume of 0.2937 

m2/g [26]. However, when this chromium phosphate mesoporous material was heat 

treated at 823 K for 4 h, the specific surface area decreased rapidly to 201 m2/g due to the 

thermal collapse of the mesostructure. In this SSRLT work, the mesoporous chromium 

phosphate has been calcined at 823 K for 6 h to remove the surfactant before the N2-

physisorption measurements. It is therefore reasonable to conclude that the mesoporous 

chromium phosphate synthesized via the SSRLT route is thermally more stable and 

possesses a higher specific surface area than that prepared via the sol-gel route. 
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Figure 3.4 Adsorption-desorption isotherm and pore size distribution curve  (the inset) of  
a mesoporous chromium phosphate with an atomic ratio of P/Cr = 2.0 

3.4.4  TGA and EDS results 

The result of the thermal analysis on the mesoporous chromium phosphate 

synthesized via the SSRLT route (with P/Cr atomic ratio = 2 and removal of CTAB) is 

shown in Figure 3.5.  
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Figure 3.5 TG-DSC curves for the mesoporous chromium phosphate synthesized an 
atomic ratio of P/Cr = 2.0 

 
 

The weight loss amounting to 6.5 wt. % in the TG curve below 423 K is due to 

dehydration, and correspondingly, a small and broad endothermic band is present in the 

DSC curve in this temperature range. From 423 to 683 K, a weight loss of 24.5 wt. % is 

observed in the TG curve, and an endothermic peak-centered at 603 K is present in the 

DSC curve. This peak can be ascribed to the decomposition of the long-chain alkyl group 

of the surfactant CTA cation. A weight loss of 14 wt. % is observed in the temperature 

range of 683 to 793 K in the TG curve, and correspondingly, an endothermic peak 

centered at 733 K in the DSC curve is present. This peak is attributed to the 

decomposition of the head-group of the surfactant CTA cations. For temperatures higher 

than 793 K, a weigh loss of as small as 2 wt. % is observed in the TG curve along with a 

very broad exothermic band in the DSC curve. This may be due to the gradual phase 

transformation (from ordered mesophase to distorted mesophase) of the mesoporous 

chromium phosphate for temperatures above 793 K. 
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3.4.5  UV-Vis Results 

Figure 3.6 presents the UV-Vis spectrum of a mesoporous chromium phosphate 

prepared from an initial batch with a molar ratio of P/Cr = 2.0, after the CTAB removal. 

Having a d3 electronic configuration, the Cr(III) ion usually has an octahedral 

coordination, due to its high crystal field stabilization energy. Theoretically, the UV-Vis 

spectrum of the Cr(III) ion in the octahedral crystal field exhibits mainly three spin-

allowed d-d electron transitions 4A2g(F) → 4T1g(P), 4A2g(F) → 4T1g(F) and 4A2g(F) → 
4T2g(F) at 290, 450 and 664 nm, respectively, and several spin-forbidden transitions. 

Ravikumar et al. [28] detected the above three spin-allowed transitions at 290, 450, and 

664 nm in the UV-Vis spectrum of Cr(III) doped on a zinc phosphate glass substrate.  In 

addition, the 664 nm band exhibits two dips, and a fine structure, at ca. 650 and 687 nm, 

due to the spin-forbidden transitions 4A2g(F) → 2E2g(G) and 4A2g(F) → 2T1g(G).  

Depending on the substrate and/or coordination environment in which Cr(III) ions are 

located, red- or blue-shifts can occur for the above bands, and only some of the above 

bands could be detected in the chromium-containing compounds [29 - 30].  In Figure 3.6, 

all the above five bands at 290, 445, 665, 640, and 688 nm have been detected, and they 

can be ascribed to the d-d electron transitions from 4A2g(F) to T1g(P), 4T1g(F), 4T2g(F), 
2E2g(G), and 2T1g(G), respectively. This suggests that, in the mesoporous chromium 

phosphate prepared via the SSRLT route, the Cr(III) ions are highly dispersed and have 

an octahedral coordination. EDS has revealed that the specimen has atomic ratios P/Cr = 

2.0 and O/P = 4.69 (see Table 3.1). One can conclude that two phosphates (providing two 

oxygen coordinates per phosphate) and 1 ~ 2 water molecules (providing one oxygen 

coordinate per water) generate an octahedral coordination environment around the Cr(III) 

ion in the mesoporous chromium phosphate. The bands at 420 and 480 nm, as shoulders 

of the band 4A2g(F) → 4T1g(F), are probably caused by the different micro-environments 

around the Cr(III) ions in the mesoporous chromium phosphate. The slight distortion of 

the octahedral coordination, due to the partial loss of water molecules around some Cr(III) 

ions, might be a possible cause. In addition, a strong band at 215 nm and a weak band at 

335 nm were identified in Figure 3.6. The strong bands at ca. 270 and 340 nm have been 

usually attributed to an O → Cr(VI) charge transfer and/or to a polychromate species [31 
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– 35]. Because the band at ca. 270 nm could not be detected and at 335 nm is very weak 

(Figure 3.6), the content of the Cr(VI) ions and/or the polychromate species in the 

mesoporous chromium phosphate is expected to be low. It is well known that the 

oxidized states Cr(IV) and Cr(V) are rather unstable and Cr(V) can easily 

disproportionate into Cr(III) and Cr(VI). In addition, Cr(II) ions are strong reducing 

agents and are stable only in the absence of oxygen. Therefore, it is reasonable for us to 

assign the bands at 210 nm and 335 nm to the O → Cr(III) charge transfer. 
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Figure 3.4 UV-Vis spectrum of a mesoporous chromium phosphate prepared with an 

atomic ratio of P/Cr = 2.0 after the surfactant removal 

3.4.6  Catalytic Performance 

Table 3.2 shows the effects of reaction temperature on isopropanol dehydration to 

propene over the mesoporous chromium phosphate catalyst synthesized via the SSRLT 
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route from an initial batch with an atomic ratio of P/Cr = 2.0. It was found that with an 

increase in reaction temperature, the isopropanol conversion increases, but the propene 

selectivity exhibits a maximum at 533 K. 

Table 3.2 Effect of reaction temperature on isopropanol dehydration. 

Temperature X Si (%) Y 

(K) (%) Propene Diisopropyl ether (%) 

473 33.14 71.34 28.66 23.64 

503 58.97 94.66 5.34 55.82 

533 93.10 96.43 3.57 89.78 

563 96.37 86.33 13.67 83.19 

Note: X = conversion of isopropanol; Si, selectivity to component i; Y is the yield of 
propene 
 
 

Table 3.3 presents the results of isopropanol dehydration to propene at 533 K over 

chromium phosphate catalysts synthesized via the SSRLT and the conventional 

precipitation pathways. A propene selectivity of 87.70% at an isopropanol conversion of 

39.33 % was obtained on the catalyst synthesized via the conventional precipitation route 

from an initial batch with an atomic ratio of P/Cr = 1.0. This result is superior to that 

reported in ref. [36], where a propene selectivity of ca. 78% at an isopropanol conversion 

of ca. 6% was attained. Compared to the catalyst synthesized via the conventional 

precipitation route, the performance of the calcinated catalyst synthesized via the SSRLT 

route is much better. A propene selectivity of 90.74% at an isopropanol conversion of 

50.49% was obtained on the catalyst synthesized from an initial batch with an atomic 

ratio of P/Cr = 1.0. By increasing the P/Cr ratio, both the isopropanol conversion and the 

propene selectivity first increase and then are followed by a decrease. The highest 

propene selectivity (96.43%) and isopropanol conversion (93.10%) was achieved on a 

catalyst with an atomic ratio of P/Cr = 2.0. XRD revealed that for an atomic ratio of P/Cr 

≥ 1.8 the catalyst possesses a mesostructure, while the highest crystallinity of the 

mesophase appeared for an atomic ratio of P/Cr = 2.0. For atomic ratios of P/Cr < 1.8, the 
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structure was amorphous. Therefore, the mesostructure of chromium phosphate catalysts 

contributes in an important way to its catalytic performance in the dehydration of 

isopropanol to propene, mostly due to the high crystallinity, high surface area, high active 

centers/phase, and accessibility of the active sites of the catalyst. 

Table 3.3 Dehydration of isopropanol to propene over different CrPO4. 

Catalysts X  

(%) 

S (%) Y 

(%) Synthesis 

route 

P/Cr molar ratio 

in initial batch  

Propene Diisopropyl ether 

SSRLT 1 50.49 90.74 9.26 45.82 

SSRLT 1.6 67.82 95.67 4.33 64.88 

SSRLT 1.8 72.45 96.08 3.92 69.60 

SSRLT 2 93.10 96.43 3.57 89.78 

SSRLT 2.2 92.43 96.06 3.94 88.79 

SSRLT 2.4 91.34 95.85 4.15 87.55 

Sol-gel 1 39.33 87.70 12.30 34.49 

Note: X = conversion of isopropanol; Si = selectivity to component i; Y= yield of propene 

3.5  Conclusion 

A novel method using solid-state reactions at a low temperature (SSRLT) for 

synthesizing mesoporous chromium phosphates has been developed. The mesoporous 

chromium phosphates were successfully synthesized in the presence of a surfactant 

template via a SSRLT route at a low temperature (353 K). This novel method also can be 

used to synthesize other mesophase metal phosphates. The chromium phosphate 

synthesized via the SSRLT route exhibits a high specific surface area (250.78 m2/g) and a 

narrow pore size distribution after the removal of the surfactant template by heating at 

823 K for 6 h. The specific surface area achieved is larger than that obtained via the 

conventional sol-gel route. In mesoporous chromium phosphate, chromium presents 

mainly as Cr(III). The walls of the pores of the mesophase have an amorphous structure 
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and consist of highly-dispersed chromium surrounded octahedrally by phosphates. In the 

formation of a mesoporous chromium phosphate, the aggregates of the surfactant 

molecules act as structure-directing templates. The phosphates may interact first with the 

head groups of the surfactant CTAB, thus stimulating the assembly of chromium ions 

around the surfactant. The mesoporous chromium phosphate catalyst synthesized via the 

SSRLT route exhibits a significantly higher catalytic performance in the dehydration of 

isopropanol to propene, as compared to the amorphous chromium phosphate catalyst 

synthesized via either the SSRLT or conventional sol-gel routes. Propene selectivity and 

isopropanol conversion with values as high as 96.43% and 93.10%, respectively, have 

been achieved over the mesoporous chromium phosphate catalyst synthesized via the 

SSRLT route from an initial batch with an atomic ratio of P/Cr = 2.0. 
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4.  SYNTHESIS OF MESOPOROUS LITHIUM MANGANESE PHOSPHATES VIA 
SOLID STATE REACTION AT LOW TEMPERATURE 

4.1  Introduction  

Recently, Lithium transition-metal (ortho) phosphates have attracted attention as 

potential Li-ion battery cathode materials due to their lower toxicity, lower cost, and 

better chemical and thermal stability, when compared to the currently used LiCoO2. In 

1996, Goodenough, Akshaya Padhi and coworkers identified lithium iron phosphate 

(LiFePO4) and other phospho-olivines (lithium metal phosphates with olivine structure) 

as cathode materials [11]. Because of its low cost, non-toxicity, excellent thermal 

stability, positive safety characteristics, good electrochemical performance, high specific 

capacity (170 mA·h/g, or 610  C/g), and the high abundance of iron it gained some 

market acceptance.  

Encouraged by the success of LiFePO4, LiMnPO4 is also attracting increased 

attention. Lithium manganese phosphate has a redox potential of 4.1 V versus Li+/Li, 

which is considered to be the maximum limit accessible to most liquid electrolytes. This 

is ~0.65 higher than LiFePO4, The high ionic and electronic resistance of LiMnPO4 have 

rendered it difficult to obtain high electrochemically activity. Li et al. first reported the 

reversible reaction of Mn(II)↔Mn(III) in olivine phosphate. Their material presented a 

reversible capacity of ∼140 mA·h g−1 at C/15 within 2.0–4.5 V vs. Li/Li+. Although 

several groups have explored various methods to prepare electro-active LiMnPO4, there 

are very few reports of performance greater than 100 mAh g−1 [14, 15]. 

For the synthesis for LiMnPO4, the formation of olivine structure LiMnPO4 is 

normally obtained via solid state reaction at high temperature [15, 20 - 24]. Although 
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scientist cannot obtain ideal materials completely, the high temperature solid state 

reaction still held a dominant position in the materials synthesis via solid state reaction. 

Yet these crystalline metal phosphates generally have low specific surface area and small 

pore volume. Mesoporous phosphate materials have some valuable properties such as 

high specific surface area and large pore volume, with controllability in nano-pore sizes, 

framework composition, and particle morphology. Mesoporous lithium manganese 

phosphates can be synthesized via the sol-gel method and also show an excellent 

electrochemical performance as a cathode. This technique facilitates the controllable 

hydrolysis and condensation of precursor species, via the supramolecular assembly of 

surfactant micelles, generating mesoporous materials with a homogeneous distribution of 

components at the molecular level. 

However, the use of solid-state reactions to synthesize the mesoporous lithium 

manganese materials at low temperatures has not yet been reported. Here, we present our 

work on employing solid-state reactions at low temperatures (SSRLT) in the synthesis of 

mesoporous lithium manganese phosphates. The synthesized mesoporous lithium 

manganese phosphates have excellent textural properties. Additionally, the 

electrochemical test of lithium manganese phosphates prepared by SSRLT was 

performed.  

4.2  Overview  

The general structure of this chapter includes the preparation of lithium 

manganese phosphates and lithium iron phosphates via solid state reaction at low 

temperature their structure and catalytic characterization. Characterization tools include 

X-ray diffraction, high resolution transmission electron microscopy, and nitrogen 

adsorption-desorption. The electrochemical test were performed using home designed 

cells with Lithium foil as the counter electrode, and 1.2M LiPF6 in EC/EMC (3:7 by 

weight) as the electrolyte, the separator is Celgard 3501 from Celgard Company. The 

electrochemical property was tested on the Solartron SL1260. 
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4.2.1  X-ray Diffraction  

The structure of the synthesized compounds was determined using X-ray 

diffraction (XRD) (Brucker D8 advance diffractometer, Cu K radiation, wavelength 

1.5406 Å).  The diffraction data was recorded for 2 angles between 0.35 and 75°, with a 

scanning speed of 0.02° /sec. 

4.2.2  High Resolution Transmission Electron Microscopy 

The morphology of the synthesized compounds was examined using a high 

resolution transmission electron microscopy (HR-TEM) (JOEM-3010 electron 

microscope).  Energy dispersible X-Ray spectroscopy (EDS) with an elemental analysis 

accessory (OXFORD) was used to analyze the local composition of the synthesized 

compounds. 

4.2.3  Nitrogen Adsorption-desorption 

The BET surface area and porosimetry of the synthesized compounds was 

measured using the nitrogen adsorption-desorption (Beckman Counter SA 3100).  Before 

adsorption measurements, the specimen was heated from room temperature up to 573 K, 

evacuated to 10-3 Pa, and then kept at that temperature and under vacuum outgasing for 2 

h. The specific surface area was determined by the BET method, and the pore size 

distribution was obtained from the N2-desorption curve by the BJH (Barrett-Joyner-

Halenda) method.  

4.2.4  Electrochemical Test  

The electrochemical tests were performed using a home designed cell with 

Lithium foil as the counter electrode, and 1.2M LiPF6 in EC/EMC (3:7 by weight) as the 

electrolyte, the separator is Celgard 3501 from the Celgard Company. The 
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electrochemical property was tested on the Solartron SL1260. The charge/discharge rate 

of the LiFePO4 half cell is 0.1C, between 2.8V to 3.8V. The preparation of the electrode 

followed these standards: 0.78 g obtained mesoporous LiMnPO4 powder was first mixed 

with 0.15 g BP2000, then ground for 1 h. Next carbon black is added to increase the 

electrical conductivity of LiMnPO4.In a separate container, 0.07 g PVDF 

(Polyvinylidence Fluoride) was dissolved in 1 g NMP (N-Methyl-2-pyrrolidone), and 

then obtained mixture was mixed vigorously for 0.5 h to get the clear sol. Finally, the 

obtained NMP sol and the LiFePO4/BP2000 were mixed and grinded for another 0.5 h to 

obtain the electrode ink. Before coating, the aluminum foil was first washed by acetone. 

Then the electrode ink would be coated on the aluminum foil by the coater and dried in 

the oven at 60 ˚C. The effective surface of the electrode would be 10 mg/cm2. 

4.3  Experiment 

4.3.1  Objectives 

Several samples with different P/Mn ratio were synthesized with solid state 

reaction at low temperature. The set of samples were accordingly synthesized and 

characterized with the tools described as to the aforementioned methods and settings. 

4.3.2  Synthesis of Mesoporous LiMnPO4 via SSRLT Route 

LiC2O36H2O (Analytical reagent, A.R., Sigma Aldrich), MnCl26H2O (Analytical 

reagent, A.R., Sigma Aldrich) and NH4H2PO42H2O (Analytical reagent, A.R., Sigma 

Aldrich) in various P/Mn molar ratios were mixed together and ground  in a mortar for 20 

minutes then mixed further with a selected amount of cetyltrimethyl ammonium bromide 

(CTAB), and ground together for another 15 minutes.  The obtained mixtures with atomic 

ratios of Li: P: Mn: CTAB = 1.0: x: 1.0: 0.001, where x = 1.0, 2.0 and 3.0, were 
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transferred into beakers for heating at 373 K for 24 h.  After cooling to room temperature, 

the samples were washed thoroughly with distilled water and then dried at 373 K for 6 h.  

To remove the surfactant, the specimens were further calcined in N2 at different 

temperatures for 6 h. The obtained samples were marked as Sx-y, while x equals to the 

atomic rations of Mn: P and y equals to the calcination temperature. For example, S1-600 

means the obtained samples was calcined at 600 ˚C, which was with the atomic rations of 

Mn: P equals to 1:1. 

4.4  Results and Discussion  

4.4.1  X-ray Diffraction 

                        

Figure 4.1 XRD pattern for S1-600 via solid state reaction 

 

Figure 4.1 shows the XRD pattern of the obtained S1-600 via SSRLT method. A 

peak at 2θ = 0.70 o with a d-spacing (pore-to-pore distance) of 12.7 nm present in low 

angle range (2θ = 0.35 - 5o), indicating that the obtained LiMnPO4 belongs to a 
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wormhole-like MSU-type structure. No diffraction peak was detected in high angle range, 

suggesting an amorphous nature associated with the pore walls of this mesoporous 

material. 

4.4.2  HR-TEM Micrograph 

As shown in Figure 4.2, the HR-TEM micrograph of a mesoporous lithium 

manganese phosphate synthesized via the SSRLT shows a very orderly arranged 

wormhole-like pore array structure, which confirms the presence of a mesophase 

according to the XRD data.  

 

Figure 4.2 The HR-TEM micrograph of the obtained S1-600 via SSRLT method 

 

One possible mechanism for the formation of such a structure is that the 

surfactant CTAB and lithium manganese phosphate form a uniform and orderly solid 

array, which consists of rod-like micelles of CTAB surrounded by lithium manganese 

phosphates. Then a uniform and orderly pore array structure is formed when the rod-like 

micelles of CTAB are removed from this solid array through calcinations. Thus, the 
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surfactant CTAB plays an important role in the pore structure of lithium manganese 

phosphates. In addition, the mesopores exhibit mostly wormhole-like pore geometry, 

with the average distance between the centers of the wormhole-like pores of ca. 3.8 nm, 

which correlates well with the results from the XRD data. 

4.4.3  SEM Micrograph 

Figure 4.3 shows the SEM micrograph of the mesoporous LiMnPO4, which 

indicates mainly a spherical morphology and a particle size of about 200 nm.  It hints that 

the formation of the mesoporous LiMnPO4 had been a result of supramolar assembly 

process.        

 

Figure 4.3 The SEM micrograph of the obtained S1-600 via SSRLT method 
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Table 4.1 EDS results and d-Spacings in Å obtained from XRD spectra 

 Mn/P in the initial batches 

 1/1 1/2 1/3 

Mn/P  in the specimens 0.98/1 1/1.18 1/1.20 

 

O/P in the specimens 

 
3.78 

 
4.23 

 
3.89 

d-spacing of the specimens  3.8 4.13 5.17 

 

The Li/Mn/P and O/P atomic ratios in the lithium manganese phosphates 

synthesized via the SSRLT route were determined using EDS. All results are listed in 

Table 4.1. The results show that the Li/Mn/P atomic ratios in the synthesized specimens 

are approximately equal to 1:1:1, no matter how much was those in the initial batches, 

and the O/P atomic ratios are around 4. 

4.4.4  BET Results  

The nitrogen adsorption-desorption isotherm and the pore size distribution curve 

(in the inset) of the mesoporous lithium manganese phosphate S1-600 synthesized via the 

SSRLT route are shown in Figure 4.4.  
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Figure 4.4 The nitrogen adsorption-desorption isotherm and pore size distribution 
curve of S1-600 

The isotherm can be ascribed to type IV in the IUPAC classification and indicates 

a typical mesostructure. The desorption hysteresis loop corresponds to type H2, and is 

caused by pore blocking effects during desorption, indicating an ink-bottle pore geometry 

of the mesostructure. The BET specific surface area is 133.76 m2/g and the pore volume 

is 0.2987 cm3/g, these were calculated based on the adsorption in the relative pressure 

ranging from 0.05 to 0.2 and the relative pressure of 0.9814, respectively. The 

mesoporous lithium manganese phosphate has a uniform and narrow pore size 

distribution, with most of the pore sizes centering around 4.8 nm. It can be found that the 

specific surface area and pore volume are ca. 0.4 - 0.5 nm fold and the pore size ca. 0.19 

nm. This suggests that the SSRLT is effective in increasing the thickness of pore walls, 

which is useful to the stability of mesoporous materials. 
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Table 4.2 BET results for LiMnPO4 with different ratio and calcined temperature 

 
 
 

 

 

 

 

 

The BET results for the obtained LiMnPO4 with different ratio and calcined 

temperature have also been shown as in the table 4.2. It can be shown that the obtained 

LiMnPO4 at 400 ˚C is not an olivine or mesoporous structure but in fact amorphous 

structure, yet the surface area can be as high as 198.21 m2/g. And when the calcined 

temperature was increased to 500 ˚C, the LiMnPO4 possessed a mesoporous structure and 

the surface area was as high as 256.63 m2/g. When the calcined temperature was 

increased to 600 ˚C, the obtained LiMnPO4 started to crystallize, and yet it showed a 

microporous and mesoporous structure. Yet the surface area decreased to 133.76 m2/g.  

Sample LiMnPO4 Structure type  Surface area (m2/g) 

S1-400（Li:Mn:P=1:1:1)  Amorphous 198.21 

S1-500 （Li:Mn:P=1:1:1) Mesoporous  256.63 

S1-600 （Li:Mn:P=1:1:1) Microporous 
&Mesoporous 

133.76 

S2-600   (Li:Mn:P=1:1:2) Mesoporous  98.15 

S3-600 (Li:Mn:P=1:1:3) Mesoporous  112.75 
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4.4.5  Electrochemical Test Results--Effect of Calcined Temperature  

 

                             
Figure 4.5 The initial charge/discharge curve of LiMnPO4 which calcined at different 

temperature.(cycled in the voltage of 2.8 V to 3.8 V at 0.1 C.) 

Figure 4.5 shows the charge curve of mesoprous LiMnPO4 calcined at different 

temperatures. It can be seen that the calcined temperature greatly affects the capacity of 

the LiMnPO4 synthesized by solid state reaction.  The sample calcined at 400 ˚C shows 

the worst electrochemical property, when it was charged, the potential dropped quickly. 

When the calcined temperature was increased to 500˚C, the charge voltage increased to 

3.25V. When the calcined temperature was increased to 600˚C, the charge voltage 

increased to 3.60 V while the first time discharge capacity was seen to be as high as 100 
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mAh/g. Obviously, the capacity of LiMnPO4 is greatly affected by the calcined 

temperature. It is probably due to the different LiMnPO4 structures that were formed 

under different calcined temperatures. Normally, the crystallinity of the obtained 

LiMnPO4 at 400 ˚C is not good enough; it is not an olivine structure, or mesoporous 

structure but actually an amorphous structure. And when the calcined temperature was 

increased to 500 ˚C, the LiMnPO4 started to crystallize though it still possessed a 

mesoporous structure. And when the calcined temperature was increased to 600 ˚C, it is 

assumed that part of the crystalline structure had formed, which could be supported by 

the BET and XRD results.  

4.4.6  Electrochemical Test Results--Effect of Different P:Mn Ratio 

The charge/discharge curve of LiMnPO4 with different P/Mn ratio is been shown 

in Figure 4.6. Also the charge/discharge capacity of LiMnPO4 with different P/Mn ratio 

is shown in Table 4.3. It can be seen from the results that P/Mn ratio is not the main 

determinant of the electrochemical property of the synthesized LiMnPO4, the capacity of 

the LiMnPO4 with different P: Mn ratio is almost the same, varying from 98 to 113 

mAh/g. This result is accordant to the EDX results, which show that the Li/Mn/P atomic 

ratios in the synthesized specimens are approximately equal to 1:1:1, no matter the ratio 

in the initial batches, and the O/P atomic ratios are around 4. 



45 
 

 

 

 

Figure 4.6 The charge/discharge curve of LiMnPO4 calcined at 600 ˚C, a.1:1; b.1:2; c.1:3; 
(The test cycled in the voltage of 2.8 V to 3.8 V at 0.1 C) 

 

Table 4.3 The charge/discharge capacity of the LiMnPO4 calcined at 600 ˚C 

P:Mn ratio 1:01 1:02 1:03 

charge capacity 98 110 113 

discharge capacity 83 90 95 



46 
 

4.5  Conclusion 

A novel method using solid-state reactions at a low temperature (SSRLT) for 

synthesizing mesoporous lithium manganese phosphates has been developed. The 

mesoporous lithium manganese phosphates were successfully synthesized in the presence 

of a surfactant template via a SSRLT route at a low temperature (353 K). This novel 

method can also be used to synthesize other mesophase metal phosphates. The lithium 

manganese phosphates synthesized via the SSRLT route exhibit a high specific surface 

area (256.63 m2/g) and a narrow pore size distribution after the removal of the surfactant 

template by heating at 873 K for 6 h. The structure can be controlled by the calcined 

temperature. When the calcined temperature was increased to 600 ˚C, the obtained 

LiMnPO4 started to crystallize. The obtained LiMnPO4 shows a microporous and 

mesoporous structure. The surface area decreased to 133.76 m2/g. Electrochemical tests 

of li-ion batteries have also been performed. The results show that when obtained 

mesoporous LiMnPO4 is calcined at 600 ˚C, the charge voltage increased to 3.60 V while 

the first time discharge capacity was as high as 100 mAh/g. 
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5.  MECHANISM STUDY FOR THE MESOPOROUS PHOSPHATE SYNTHESIS 
VIA SOLID STATE REACTION  

5.1  Introduction  

At this time a volumous amount of work has been done to synthesize different 

mesoporous materials. From the initial M41S mesoporous materials to FSM, HMS, MSU, 

SBA, KIT et al., there have been literally thousands of publications dealing with 

mesoporous ceramics, with a wide variety of synthetic methods being developed. And 

also, many research teams have focused on the understanding of the formation 

mechanisms. However, most of the proposed mechanisms concern silica-based MCM-41 

type solids. Meanwhile, a lot of different modes of synthesis have been rapidly extended 

to non-siliceous mesoporous. And all of modes are based on the same point which is that 

the template has play an important role in the formation of mesoporous materials, though 

the formation mechanism of mesoporous materials still remains arguable. 

In this text, we present our work on employing the solid-state reactions at low 

temperature (SSRLT) in synthesis of mesoporous chromium phosphates. And for the first 

time, we have focused on the understanding of the formation mechanism of mesoporous 

chromium phosphates by using FITR method. The results show that the CTAB do play an 

important role in the formation of mesoporous chromium.  

5.2  Overview  

In this chapter, the mechanism for the formation of mesoporous phosphate via 

solid state reaction has been studied via Fourier transform infrared (FT-IR) spectroscopy. 

Basically, the formation of CTAB micelles was examined using Fourier transform 
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infrared (FT-IR) spectroscopy (Varian 3100 spectrometer with a DTGS detector and a 

CeI beamsplitter). Before the measurement, the sample was ground together with KBr 

and pressed into a wafer. The data ranging from 300 cm-1 to 4000 cm-1 were recorded as 

accumulated results of 20 scans, at a resolution of 4 cm-1.  

5.3  Experiment  

5.3.1  Synthesis of Mesoporous CrPO4 via SSRLT Route 

CrCl36H2O (Analytical reagent, A.R., Sigma Aldrich) and NaH2PO42H2O 

(Analytical reagent, A.R., Sigma Aldrich) were mixed together and grinded in a mortar 

for 20 minutes, and then mixed further with a selected amount of cetyltrimethyl 

ammonium bromide (CTAB) and grinded together for another 15 minutes. The obtained 

mixtures with atomic ratios of P: Cr: CTAB = 2.0: 1.0: 0.001, were transferred into 

beakers for heating at 373 K for 24 h.  After cooling to room temperature, the samples 

were washed thoroughly with distilled water and then dried at 373 K for 24 h.  To remove 

the surfactant, the specimens were further calcined in N2 at 823 K for 6 h.  

5.4  Results and Discussion  

5.4.1  The FT-IR Spectra of CTAB and CrPO4(P/Cr = 2) 

The FT-IR spectra of CTAB and mesoporous chromium phosphate synthesized 

via the SSRLT route (with P/Cr atomic ratio = 2 and removed CBAT surfactant) is shown 

in Figure 5.1. The spectrum of the pure surfactant CTAB (Figure 5.1 a) exhibits the 

characteristic vibration absorptions of a quaternary ammonium compound with a long 

alkyl chain, i.e., (CH3) and (CH2) (3020, 2920, and 2850 cm-1), (CH3) and (CH2) 
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(1480~1360 cm-1), (C-N) (1290 and 1240 cm-1), as(N-R4) (~960 cm-1), (CH2) (730 cm-

1), and s(N-R4) (~720 cm-1).  With the exception of the band at 2347 cm-1 (as(CO2)) [37], 

the weak bands in the range between 2650 and 1600 cm-1 probably reflect combinations 

or overtones of the skeleton of CTAB. In the spectrum of mesoporous chromium 

phosphate containing the CTAB (Figure 5.1 b), some of the characteristic vibration bands 

of CTAB (2920, 2850, 1480, 1290, 910 and 715 cm-1) are present. Besides several broad 

bands centered at 3500 cm-1 ((OH or H3O
+) [38 – 39], and/or (P-OH), those at 1630 

cm-1 (as(OH or H3O
+) [39], 1070 cm-1 (s(PO4)) [26], and 505 cm-1 (out(POH) and/or 

PO4) are also detected [39].  Compared to Figure 5.1 a, the intensities of the absorption 

bands of both the alkyls and the N-R4 head group in the CTAB in Figure 5.1 b are much 

smaller, especially for the N-R4 head group.  The wave numbers of the absorption bands 

of the N-R4 head group shifted from 960 and 720 cm-1 in Figure 5.1 a to 910 and 715 cm-

1 in Figure 5.1 b, respectively. These results indicate that the CTAB has been 

incorporated into the mesopores of the chromium phosphate, and there is a strong 

interaction between the head group of the CTAB and the chromium phosphate moieties, 

which contributes to the building of the mesoporous chromium phosphate.  In the 

spectrum of mesoporous chromium phosphate after the CTAB removal (Figure 5.1 c), all 

the bands of CTAB disappeared but those of phosphates (shown in Figure 5.1 b) 

remained. Two new bands (930 and 755 cm-1) appeared (Figure 5.1 c), due to the mixed 

motions involving both the PO4 tetrahedron and the CrO6 octahedron [27]. The 

characteristic vibrations due to the skeleton of PO4 (s(PO4) and PO4)) have been 

shifted from 1070 and 505 cm-1 for the specimen containing the surfactant CTAB to 1130 

and 530 cm-1 for the specimen without the surfactant CTAB. This indicates that, in the 

formation of mesoporous chromium phosphates, the phosphates play an important role by 

interacting first with the surfactant CTAB, thus stimulating the assembly of chromium 

ions around the surfactant molecules. There is a stronger interaction between chromium 

and phosphate ions after the surfactant removal. 



50 
 

4000 3500 3000 2500 2000 1500 1000 500

T
ra

n
s

m
it

ta
n

c
e

Wave number (cm-1)

a

b

c

 

Figure 5.1 FT-IR spectra of pure CTAB (a) and mesoporous chromium phosphate 
prepared (P/Cr = 2.0) before (b) and after (c) the surfactant removal 

5.4.2  FT-IR Spectra of CrPO4 before Surfactant Removal 

Figure 5.2 is the FT-IR spectra of chromium phosphate specimens prepared from 

initial batches with various P/Cr atomic ratios, before the surfactant removal. For P/Cr ≥ 

2.0 (Figure 5.2 d - g), the spectra are very similar to each other and the vibration band 

assignment is similar to that of P/Cr = 2.0 in Figure 5.2 b. The spectrum for P/Cr = 1.8 

(Figure 5.2 c) is similar to that of P/Cr ≥ 2.0, but the intensity of the band at 2347 cm-1 

(as(CO2)) is much larger in the former than in the latter.  For P/Cr < 1.8 (Figure 5.2 a and 

b), most of the vibration bands observed for P/Cr = 1.8 in Figure 5.2 c are nearly 

unchanged, except that the vibration bands of CTAB are absent. 
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Figure 5.2 FT-IR spectra of mesoporous chromium phosphate prepared with various P/Cr 
atomic ratios before the surfactant removal. The P/Cr atomic ratio is equal to 

a) 1.0, b) 1.6, c) 1.8, d) 2.0, e) 2.2, f) 2.4, and g) 3.0. 

5.4.3  FT-IR Spectra of CrPO4 after Surfactant Removal 

Figure 5.3 presents the FT-IR spectra of chromium phosphate specimens prepared 

from initial batches with various P/Cr molar ratios after the surfactant removal.  The 

spectra are similar to those of Figure 6 c, however, the intensity of the band at 2347 cm-1 

(as(CO2)) is obviously larger for P/Cr ≤ 1.8 (Figure 5.3 a - c) than for P/Cr > 1.8 (Figure 

5.3 d - g).  
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Figure 5.3 FT-IR spectra of mesoporous chromium phosphate prepared with various P/Cr 
atomic ratios after the surfactant removal. The P/Cr atomic ratio is equal to a) 

1.0, b) 1.8, c) 2.0, d) 2.0, e) 2.2; f) 2.4, and g) 3.0 

5.4.4  Formation Mechanism of Mesoporous CrPO4 via SSRLT 

So far, many research teams have focused on the understanding of the formation 

mechanisms. However, most of the proposed mechanisms concern silica-based MCM-41 

type solids. Meanwhile, a lot of different modes of synthesis have been rapidly extended 

to non-siliceous mesoporous. And all of modes are based on the same point which is that 

the template has play a important role in the formation of mesoporous materials, though 

the formation mechanism of mesoporous materials still remains arguable. Two famous 

models are liquid-crystal templating mechanism and charge density matching mechanism. 



53 
 

About the formation mechanism of MCM-41 mesoporous materials, the scientists 

from Mobil firstly reported the liquid-crystal templating mechanism. From this 

mechanism, they believe that the liquid-crystal surfactant is just the template for the 

MCM-41 structure formation. And there are two possible synthesis procedures for the 

formation of MCM-41 [3]. In this mechanism, inorganic materials firstly occupy the 

continuous solvent (water) region to create inorganic walls between the surfactants 

cylinders. It may be that encapsulation occurs because anionic aluminosilicate species 

enter the solvent region to balance the cationic hydrophilic surfaces of the micelles. Then 

it might be the introduction of the aluminosilicate species themselves that mediates the 

hexagonal ordering. 2) Once the ordered array is established, a stable mesoporous 

molecular sieve is formed after the removal of the organic material. However, later 

results show that the mesoporous materials could also formed even the density of the 

templates is lower than that needed for the formation of liquid-crystal. For example, for 

the Cetyltrimethylammonium bromide (CTAB), hexagonal ordering could be formed 

when the density of surfactants reaches 28%, while for the formation of cubic ordering, 

the density of surfactants should be as high as 60%. However, MCM-41 mesoporous 

materials could be obtained even the density of surfactants is as low as 2%. And MCM-

48 (which has a cubic structure) could be obtained when the density of the surfactants is 

as low as 10%.  So, under some way, this mechanism is not so reasonable.  

Just as stated in the above, Monnier et al. [40] reported that MCM-41 could be 

prepared even at the density of surfactants is as low as 2% during which the micelles 

could be formed, or at a higher temperature (>70 Ԩ) which obtained micelles is not 

stable. During the water-CTAB system, when the density of CTAB is lower than 5%, 

there are only micelles, however, the mesoporous materials could also be formed when 

mixing the aluminosilicate species and CTAB together.  Based on the experiment, 

Monnier reported the charge density matching mechanism and three processes are 

identified: multidentate binding of silicate oligomers to cationic surfactant, preferential 

silicate polymerization in the interface region, and charge density matching between the 
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surfactant and silicate. In order to reach this charge density balance, a lamellar structure 

begins to transfer to hexagonal or cubic mesostructures. 

Figure 5.4 The formation mechanism for the synthesis of mesoporous chromium 
phosphate. 

 

Here, in our experiment, the above FT-IR spectra (Figure 5.1, 5.2 and 5.3) show 

that no CTAB was incorporated into the chromium phosphate, when the specimens were 

prepared from initial batches with atomic ratios of P/Cr < 1.8. In the XRD 

characterization of these specimens, we found that chromium phosphate mesophases are 

formed only for atomic ratios P/Cr > 1.8 (see Figure 3.1).  Therefore, the surfactant 

CTAB plays a key role in the formation of the mesoporous chromium phosphate. It 

probably involves the formation of mesoporous chromium phosphate by first assembling 

the phosphates around the head groups of the surfactant CTAB and subsequently 

assembling chromium around the moiety of the CTAB and the phosphates. The removal 

of the surfactant promotes the interaction between phosphate and chromium ions, 

resulting in the formation of chromium phosphate. The higher P/Cr atomic ratios (> 1.8) 

facilitate the interactions of the CTAB and the phosphates, which in turn, results in the 

incorporation of the surfactant CTAB into the chromium phosphates. Another result of 

the higher atomic ratios of P/Cr (> 1.8) is that the chromium is surrounded by a larger 

number of phosphates, thus, the adsorption of CO2 over chromium is largely hindered, 

which is in contrast to the case with lower atomic ratios of P/Cr (< 1.8). This is evidenced 
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by the larger intensity of the CO2 vibration bands for P/Cr < 1.8 than for P/Cr > 1.8 (cf. 

Figure 3.2 a - c and d - g; Figure 3.3 a - c and d - g).  

5.5  Conclusion  

The mesoporous chromium phosphates were successfully synthesized in the 

presence of a surfactant template via a solid state reaction at a low temperature (353 K). 

The formation of the mesoporous chromium phosphate has been developed by using the 

FTIR.In the formation of a mesoporous chromium phosphate, the aggregates of the 

surfactant molecules act as structure-directing templates. The phosphates may interact 

first with the head groups of the surfactant CTAB, thus stimulating the assembly of 

chromium ions around the surfactant. It probably involves the formation of mesoporous 

chromium phosphate by first assembling the phosphates around the head groups of the 

surfactant CTAB and subsequently assembling chromium around the moiety of the 

CTAB and the phosphates. The removal of the surfactant promotes the interaction 

between phosphate and chromium ions, resulting in the formation of chromium 

phosphate. 
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6.  PREPARATION OF HIGHLY POROUS METAL ORGANIC FRAMWORK(MOFS) 
COMPLEX FOR CARBON DIOXIDE STORAGE 

6.1  Overview 

Coal-fired power plants currently generate approximately 50% of the electricity in 

the United States. While coal is a cheap and abundant resource, the continued reliance 

upon coal as an energy source could potentially have serious consequences in terms of 

global warming. Capturing carbon dioxide from coal-fired power plants, thereby 

preventing release into the atmosphere is of fundamental importance. Effective systems 

for CO2 removal must combine high selectivity and capacity with minimal energetic 

input to liberate the captured CO2. Materials presently used are amine solutions, zeolites, 

and porous membranes, but all fall short in one or more of these categories [41 - 44]. 

Metal-Organic Frameworks are crystalline compounds consisting of metal ions or 

clusters coordinated to often rigid organic molecules to form one-, two-, or three-

dimensional structures that can be porous [45 - 46]. In some cases, the pores are stable 

after the elimination of the guest molecules (often solvents) and can be used for the 

storage of gases such as hydrogen and carbon dioxide. To date, several MOFs have been 

shown to exhibit exceptional CO2 storage capacity under equilibrium conditions where 

pure CO2 or gas mixture is introduced into the pores [47 - 50].  

Many researchers have found that the introduction of functional groups to the 

structure of MOFs could greatly increase the CO2 storage capacity. In this text, by 

employing a bi-dentate ligand 5-nitroisophthalic acid, we synthesized a copper based 

metal organic polyhedron, which is considered as a miniature MOF, with a formula of 

Cu24(nitro-IPA)24(DMF)n.(nitro-IPA = 5-nitroisophthalic acid; DMF = 
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dimethylformamide). And also, the Nitro-MOFs have also been obtained by introduction 

of Nitro to the structure.  

The general structure of this chapter includes the preparation of Nitro-MOFs and 

their structure and CO2 storage capacity characterization. Characterization tools include 

Single-crystal X-ray diffraction, Scanning electron microscopy (SEM). To evaluate the 

storage capacity performance of the synthesized MOFs, a home-made storage apparatus 

has been designed. 

6.1.1  Synchrotron X-ray Radiation at ChemMatCARS Beamlines 

 

 

Figure 6.1 The green block was placed onto the trip of a 0.1mm diameter glass fiber 

 

Due to the weakly diffracting nature of the crystal, the diffraction data were 

acquired with synchrotron X-ray radiation at ChemMatCARS beamline, Advanced 
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Photon Source, Argonne National Laboratory.  A green block (approximate dimensions 

0.10  0.07  0.04 mm3) was placed onto the tip of a 0.1 mm diameter glass fiber and 

mounted on a platform diffractometer equipped with an APEX II detector at 120(2) K. 

6.1.1.1  Data Collection 

The data collection was carried out using synchrotron X-ray radiation (　  = 

0.41328 Å, diamond 111 monochromator) swith a frame time of 0.5 second and a 

detector distance of 7.0 cm.  Two major sections of frames were collected with 0.5º 

stepsize in  and a detector position of -5° in 2. Data to a resolution of 0.80 Å were 

considered in the reduction.  Final cell constants were calculated from the xyz centroids 

of 1255 strong reflections from the actual data collection after integration (SAINT).1.The 

intensity data were corrected for absorption (SADABS).2. Please refer to Table 6.1 for 

additional crystal and refinement information. 

6.1.1.2  Structure Solution and Refinement 

The space group P-1 was determined based on intensity statistics and systematic 

absences. The structure was solved and refined using SHELXTL.3. A direct methods 

solution was calculated, which provided most atomic positions from the E-map. Full-

matrix least squares / difference Fourier cycles refined with anisotropic displacement 

parameters. The hydrogen atoms were placed in ideal positions and refined as riding 

atoms with relative isotropic displacement parameters. Approximately 46% of the unit 

cell volume comprises a large region of disordered DMF solvents which could not be 

modeled as discrete atomic sites. PLATON/SQUEEZE 4 was employed to calculate the 

contribution to the diffraction from the solvent region, and it estimated a total count of 

391 electrons per unit cell which could be assigned as 10 DMF molecules. Using a set of 

solvent-free diffraction intensities, the final full matrix least squares refinement 

converged to R1 = 0.0646 and wR2 = 0.1438 (F2, all data). The remaining electron 

density is minuscule and located on bonds. 
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6.1.2  Nitrogen Adsorption and Desorption  

The BET surface area and porosimetry of the synthesized compounds were 

measured using nitrogen adsorption-desorption (Beckman Counter SA 3100). Before 

adsorption measurements, the specimen was heated from room temperature up to 573 K, 

evacuated to 10-3 Pa, and then kept at that temperature and under that vacuum outgasing 

for 2 h. The specific surface area was determined by the BET method, and the pore size 

distribution was obtained from the N2-desorption curve by the BJH (Barrett-Joyner-

Halenda) method.  

6.1.3  Determine the CO2 Capacity of MOF Complexes 

 

 

Figure 6.2 The sample holder for the CO2 capacity of the MOF complexes. 

 

The CO2 absorption on the MOF complexes surface will be examined as in the 

following, the absorption of pure carbon dioxide will be investigated. Briefly, certain 

amount of activated MOFs (solvent molecules removed under vacuum) will be placed in 
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a stainless steel vessel. The vessel is sealed and weighed using an analytical balance. 

Ultra-pure carbon dioxide is then introduced into the vessel under various pressures to 

saturate the MOF complexes. The vessel is then sealed and weighed again. The weight 

increase observed will correspond to the amount of carbon dioxide absorbed at the 

surface of the MOF complexes. 

To confirm the weight gain is due to the absorption of CO2, the vessel will be 

subsequently heated to 200 ˚C to allow the release of the adsorbed gas. Any gas released 

will be guided into a Ba(OH)2 solution. CO2 readily reacts with Ba(OH)2 to yield BaCO3 

as a white precipitate, which will be collected, washed by water, dried under vacuum and 

weighed to determine the amount of CO2 generated. 

6.2  Experiment  

6.2.1  Preparation of Copper Based Metal Organic Polyhedral 

The Cu-MOF complexes are going to be synthesized via a conventional thermal 

reaction (Figure 6.3) [51]. Briefly, 50 mM copper(II) nitrate solution in DMF is added to 

an equal amount of isophthalic acid or its derivatives dissolved in DMF as well. The 

resulting solution is heated at 80 ˚C for 12 hours. The correspondent copper-MOF 

complexes formed will precipitate out as microcrystals due to the much reduced 

solubilities of these macromolecules. 

6.2.2  Preparation of (Nitro-) copper Based Metal Organic Frameworks 

The Nitro-Cu-MOF complexes are going to be synthesized via a conventional 

thermal reaction (Figure 6.3) [51]. Briefly, 50 mM copper (II) nitrate solution in DMF is 

added to an equal amount of nitro-isophthalic acid or its derivatives dissolved in DMF as 

well. The resulting solution is heated at 80 ˚C for 12 hours. The correspondent nitro-Cu-
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MOF complexes formed will precipitate out as microcrystals due to the much reduced 

solubilities of these macromolecules. 
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Figure 6.3 Preparation of the nitro-copper based metal organic frameworks. 

6.3  Results and Discussion  

6.3.1  Structure Analysis for Cu-MOFs  

It could be shown from the figure 6.4, the arrangement results in a porous 

polyhedron could be described in the following: it results in a porous polyhedron having 

8 triangular and 6 square crevices that are 8 and 12 Å across, respectively, and a benzene 

unit depth (Figure 6.4 a, c). These open into an internal spherical cavity having an 

average diameter of 15 Å and a volume of 1766 Å3. Each paddle-wheel unit of the Cu-O-

C polyhedron has two terminal ligands: one pointing into the internal cavity toward the 

center of the polyhedron while the other is bound to the copper center outside pointing 

away from the outside surface of the polyhedron. Thus, the paddle-wheel units have a 
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total of 24 terminal DMF and water ligands. These are distributed as follows: 4 units have 

only DMF (8 DMF), 6 units have 1:1 DMF: water (6 DMF and 6 water), and 2 units have 

only water ligands (4 water). A combination of 8 DMF and 4 water ligands point toward 

the center of the polyhedron, while additional 6 DMF and 6 water ligands point away 

from the surface of the polyhedron to give it an overall size of 34 Å (with terminal 

ligands) or 25 Å (without terminal ligands) in diameter. 

 

Figure 6.4 Formation of Cu-MOF complex. The crystal structure of Cu-MOF (when R = 
H) showing copper coordination spheres (Cu, red; O, blue, C; gray) [50] 

6.3.2  Structure Analysis for Nitro-Cu-MOFs  

The secondary building unit(SBU) for the obtained Nitro-Cu-MOFs could be 

shown in Figure 6.5, expanded to show the four 5-nbdc ligands, each coordinated to a 

dicopper paddle wheel unit via one of their carboxylate groups. The second carboxylate 

group of each 5-nbdc ligand coordinates to another paddle wheel unit, generating the 
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extended structure. As well, both of the independent copper centers and both of the 

independent 5-nbdc ligands are incorporated into each sheet.  

 

Figure 6.5 The secondary building unit(SBU) for the obtained Nitro-Cu-MOFs 

 

The 3-Dimensional structure of Nitro-Cu-MOF complexes could be viewed via 

different axis in Figure 6.6, Figure 6.7 and Figure 6.8. And the crystal data and structure 

refinement for the obtained Nitro-Cu-MOFs could also been shown in table 6.1. The 

structure can be described as a 3-dimensional porous coordination polymer which 

consists of Cu dimers as a building unit.  Each Cu atom displays 5-fold square pyramidal 

coordination geometry by bonding to four carboxyl oxygen and one oxygen from DMF. 

The X-ray crystallographic analysis revealed that 2 crystallises in the space group P-1 

with 3 copper atoms, 3 5-nbdc ligands, 3 coordinated DMF molecules and 5 guest DMF 

molecules in the asymmetric unit, giving a formula of {[Cu2(5-
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nbdc)2(DMF)2]·3/(1/3)DMF}. The material is composed of the very different SBU as 

the Cu-MOFs. 

Due to the very different SBU structure as the Cu-MOFs, the obtained Nitro-Cu-

MOFs have the potential to be very porous. The material still has the potential to be 

porous; however, as oval-shape d channels are present in the extended structure. These 

channels are 3.7 A˚ wide at the narrowest point, and in the crystal structure they are filled 

by guest DMF molecules. 

 

Figure 6.6 The 3-Dimensional structure for the obtained Nitro-Cu-MOFs. (View along a-
axis. Hydrogen atoms are omitted for clarity) 
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Figure 6.7 The 3-Dimensional structure for the obtained Nitro-Cu-MOFs. (View along b-
axis. Hydrogen atoms are omitted for clarity) 

 

Figure 6.8 The 3-Dimensional structure for the obtained Nitro-Cu-MOFs. (View along c-
axis. Hydrogen atoms are omitted for clarity) 
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Table 6.1 Crystal data and structure refinement for Nitro-Cu-MOFs. 

Crystal data and structure refinement for the obtained Nitro-Cu-MOFs. 

 

Empirical formula  C48 H65 Cu3 N11 O26 

Formula weight  1402.73 

Temperature  120 (2) K 

Wavelength  0.41328 Å 

Crystal system  Triclinic 

Space group  P -1 

Unit cell dimensions a = 13.3142(14) Å  

b = 14.6624(15) Å = 70.250(3)°. 

c = 18.405(2) Å  = 80.114(2)°. 

Volume 3100.1(6) Å3 

Z 2 

Density (calculated) 1.503 Mg/m3 

Absorption coefficient 0.589 mm
-1

 

F(000) 1450 

Diffractometer Bruker APEX II 

Crystal morphology & size Blue plate, 0.10 x 0.07 x 0.04 mm3 

Theta range for data collection 0.88 to 14.42°. 

Index ranges -15<=h<=16, -17<=k<=17, -19<=l<=22 

Reflections collected 47368 

Independent reflections 10299 [R(int) = 0.0452] 

Completeness to theta = 14.42° 90.7 % 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9768 and 0.9435 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 10299 / 0 / 574 

Goodness-of-fit on F2 1.114 

Final R indices [I>2sigma(I)] R1 = 0.0481, wR2 = 0.1359 

R indices (all data) R1 = 0.0646, wR2 = 0.1438 

Largest diff. peak and hole 0.876 and - 0.675 e.Å-3 
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6.3.3  CO2 Adsorption Results 

The CO2 adsorption curve for both Cu-MOFs and Nitro-Cu-MOFs could be 

shown in the Figure 6.9. It could be shown from the Figure that the excess gas uptake of 

the obtained Nitro-Cu-MOFs at 60 psi could be as high as 68 mg/g at 298 K for carbon 

dioxide, which is much higher than the performance of the Cu-MOFs (31 mg/g at 298 K 

for carbon dioxide).  
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Figure 6.9 The CO2 adsorption curve for both Cu-MOFs and Nitro-Cu-MOFs 

 

From CO2 uptake behavior in obtained Cu-MOFs and Nitro-Cu-MOFs materials, 

it is likely that the intrinsic surface area plays a critical role in determining the total 

capacity of gas storage. The results of structure analysis show that the obtained Nitro-Cu-

MOF is composed of the very different secondary building units as the Cu-MOFs. The 

obtained Nitro-Cu-MOFs have the potential to be very porous due to the 3-dimensional 

structure, while the obtained Nitro-Cu-MOFs posses a one-dimensional polyhydroen 

structure. To clarify this point, the surface area and pore volume of obtained MOFs has 

been observed by BET. And the results have been shown in the table 6.2. The obtained 
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Nitro-Cu-MOFs had a specific surface area of 576.27 m2/g and a pore volume of 0.32 

m3/g, which is much higher than obtained Cu-MOFs that had a specific surface area of 

200.81 m2/g and a pore volume of 0.30 m3/g. 

Table 6.2 Porosity measurements for Cu-MOFs and Nitro-Cu-MOFs. 

Materials Pore 

Size/ Å 

Slang/ 

m2g-1 

SBET/ 

m2g-1 

Vp,DR/ 

cm3g-1 

Cu-MOFs 1.5 200.81 184.23 0.30 

Nitro-Cu-MOFs 2.7 576.27 467.31 0.32 

6.4  Conclusion  

The Nitro-Cu-MOF complexes, a new class of metal organic frameworks have 

been successfully synthesized via a conventional thermal reaction. Unlike the Cu-MOFs, 

the Nitro-Cu-MOF has a 3-dimensional structure. The obtained Nitro-Cu-MOFs had a 

specific surface area of 576.27 m2/g and a pore volume of 0.32 m3/g. The excess gas 

uptake of the obtained Nitro-Cu-MOFs at 60 psi could be as high as 68 mg/g at 298 K for 

carbon dioxide, which is much higher than the performance of the Cu-MOFs (31 mg/g at 

298 K for carbon dioxide. 
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