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ABSTRACT

Srinivasan, Prashant Ph.D., Purdue University, December 2012. Investigation of
quantum fluctuations in a nonlinear interferometer with harmonic generation and
coherent interaction of light and Cs atoms . Major Professor: Zhe-Yu Jeff Ou.

In the first part of this thesis, we investigate the propagation of quantum fluctu-

ations in a nonlinear interferometer comprising under conditions of harmonic gener-

ation by computer simulations. This investigation assumes idealized conditions such

as lossless and uniform nonlinear media, an ideal cavity and ideal photodetectors.

After linearizing wave equations for harmonic generation with a coherent state in-

put, we obtain equations for one dimensional spatial propagation of the mean field

and quantum fluctuations for initial conditions set by arbitrary interferometer phase.

We discover that fluctuations are de-squeezed in the X and Y quadratures as the

interferometer phase is tuned. However, we discover that there is are quadratures

P-Q obtained by rotating the X-Y quadratures for which squeezing is improved by

factors of 109. We present a practical idea to implement rotation of X quadrature

fluctuations to the Q quadrature by using an ideal empty optical cavity. Signal-to-

Noise ratio of the nonlinear interferometer was calculated and compared with that

of a linear interferometer with coherent state input. We calculated a maximum per-

formance improvement of a factor of 60 for a normalized propagation length ζ0 = 3

under ideal conditions. In the second part of this thesis, we investigate experimental

arrangements to transfer atomic coherence from light to cesium atoms. We discuss

the experimental arrangement to generate coherence under conditions of electromag-

netically induced transparency (EIT). We measure a continuous wave EIT width of

7.18 MHz and present results for pulsed arrangements.



PART I: QUANTUM FLUCTUATIONS IN A NONLINEAR INTERFEROMETER

WITH HARMONIC GENERATION
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1. INTRODUCTION

1.1 Precision Measurements

Experiments have played an unequivocal role in the development of physics [1, 2].

Within the realm of experimental physics, precision measurements have a long and

rich history in contributing to our understanding of nature [3]. While the motiva-

tion for precision measurements has remained the same, with the advent of quantum

physics, the “tools of the trade” have become increasingly sophisticated. Almost all

current precision measurement techniques rely on some aspect of quantum theory.

The cornerstone of precision measurements is based on the Heisenberg uncertainty

principle, which asserts that there exists a fundamental lower bound on the precision

with which certain pairs of physical properties of an object can be simultaneously

known. One can also argue that since measurements require energy we cannot deter-

mine a physical quantity to infinite accuracy as it would require infinite energy. The

difference between measurements in classical and quantum theory is that in quantum

theory, uncertainties in measurements are due to the structure of the theory itself,

whereas in classical physics uncertainties are due experimental factors that may be

eliminated by improving the quality of measurement procedures. A common theme

among precision techniques is to exploit the sensitivity of quantum states to small

variations in external parameters (such as phase). In practice, we can use either dis-

crete quantum variables such as photon number, or continuous variables such as the

quadrature amplitudes of light for measurements. It is therefore useful to understand

the limits of such quantum measurement devices. The earliest and perhaps most

useful example of such an approach is interferometry.
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1.2 Interferometry

Interference occurs when radiation follows more than one path from its source to

the point of detection. The striking feature of interference is the redistribution of en-

ergy, which manifests as a departure from the law of addition of intensities. Derived

from interference is the technique of interferometry, one of the most important mea-

surement techniques with applications in other branches of science. The development

of optical interferometry extends over 300 years and is closely linked with the history

of wave optics. In the 1600’s Hook and Boyle put forward the wave theory of light

to explain interference of light reflected by a film, which was expanded by Huygens

in 1690. In 1801 and 1803 Thomas Young explained the principle of superposition of

light and the theory in its final form was perfected by Fresnel in 1818 [4]. An inter-

ferometer is a device that measures small lengths and phase shifts [5]. The physical

principle exploited is the superposition of field amplitudes. In its simplest form, a

generic interferometer is a four port device that consists of two input channels, an

interaction region and two output channels. An input coherent field is split into two

arms, one of which is the phase sensing field. The phase sensing field interacts with

the system under study and acquires a phase shift. This phase-sensing field is then

superposed with the unmodified field at the output. Any changes that occur in the

system under study modify the output and the desired information about the sys-

tem under investigation can be extracted from the output signal. This is the basic

principle of interferometry.

Broadly speaking, we can divide interferometers into two classes, matter interfer-

ometers (ex. BEC’s, cold atoms) [6] and electromagnetic interferometers, where the

fields employed are photons. Optical interferometers are the most commonly used sub-

group of electromagnetic interferometers. Optical Interferometry is a widely applied

technique in sensitive measurements and has resulted in basic experiments starting

with the famous Michaelson-Morley experiment to measure the speed of light [7].
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1.3 Interferometer Phase Sensitivity and Precision

The dictionary definition of the word sensitivity is given as the “degree of suscep-

tibility to stimulation” [8]. In the context of an interferometer, the response is the

formation of interference fringes and the quality of this response is the fringe visi-

bility [5]. Another useful evaluation metric is Signal-to-Noise ratio (SNR) which is

defined as the ratio of signal power to noise power. The classical phase sensitivity of

an interferometer is defined as the smallest phase change that generates a measurable

output. However, this description is incomplete and does not work for weak fields.

Also, implied within such a definition is the assumption that in principle, one can have

an interferometer of infinite sensitivity because, according to classical theory, noise

is deterministic and all experimental noise sources can, in principle, be eliminated.

A practical interferometer cannot measure phase differences with arbitrary precision.

A quantum mechanically formulated definition is given by the unity SNR criterion.

According to this definition, the minimum detectable phase shift is the one where

the signal equals the noise. The difference between quantum and classical definitions

is that in quantum theory, noise (given as the variance) cannot be eliminated. In

sections 1.4 and 1.5 we discuss two important limits pertaining to quantum noise.

1.4 Standard Quantum Limit (SQL)

The sensitivity of a practical interferometer is encapsulated by the so called “Stan-

dard Quantum Limit” (SQL). The standard quantum limit (SQL) is a consequence

of Heisenberg’s Uncertainty Principle and sets a limit to the sensitivity of a contin-

uous measurement (monitoring) of a quantity that does not commute with itself at

different times. For example, in the gravitational wave interferometer, the SQL has

contributions from both shot noise and radiation pressure noise. Shot noise is associ-

ated with the “irregularity” or discontinuities in flow of electronic current (assuming

an ideal photodetector, photon statistics are transferred to the electronic current).

We can attribute shot noise to the Poissonian statistics of photons exhibited by laser
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light as there is a one to one correlation between the arrival of a photon wave-packet

and the generation of the photo-current.

In literature, it is common to see the use of the terms Shot noise and SQL in-

terchangeably. The nomenclature depends on the context. For low intensity fields,

the major contribution to measurement uncertainty is due to the Shot Noise, whereas

for strong fields such as those employed in the LIGO project, the major factor is

radiation pressure noise.

The best precision in phase measurement which can be obtained using classical

states of light (light that exhibits Poissonian statistics) scales as
1√
N
, where N is the

number of photons in the sensing beam. Traditional interferometers operate above

or at best, at the SQL and therefore a large body of research is devoted to designing

devices that operate below the standard quantum limit [9]. A ‘classical’ solution to

decrease the Shot noise consists of an increase of the circulating light power. A higher

optical power inside the interferometer will, however, lead to thermally-induced beam

distortion as well as to an increased radiation pressure noise. Therefore, something

else has to be done.

1.5 Heisenberg Limit (HL)

In the previous sections we discussed a practical limit to precision measurements

with a classical (coherent) state called the SQL. However, it turns out that this is

not a fundamental limit. In general, the HL can be defined as the uncertainty in the

value of an unknown parameter Δφ of an observable X given by the rule Δφ ≥ 1

N
,

where N is the number of physical systems in the probe (number of photons) [10–12].

Current research has placed more demands on the sensitivity of an interferometer

and the need for interferometers that go beyond the SQL is urgently necessary [13].

The Advanced LIGO project [14] for example, the experimental search for gravita-

tional waves predicted by the general theory of relativity, requires a sensitivity that
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goes beyond the (SQL) [15, 16]. This has led to developing theoretical and experi-

mental schemes to approach the Heisenberg limit [17].

Increasing beam power alone does not improve the noise performance. If an ex-

periment has to be improved, an obvious candidate for improvement would be the

measuring device or an active component in the measuring device. In our case, the

measuring device is the interferometer and the active component is light itself. The

modification of the quantum state of light has taken two approaches: Techniques

that use discrete variables, such as photon number, and techniques that use continu-

ous variables, such as the quadrature amplitudes of the electromagnetic field. Most

of the focus in the past was on using non-classical states of light (light exhibiting

sub-Poissonian statistics) to improve measurement precision beyond the SQL.

Use of the so-called squeezed states of light [18] as a probe was first proposed by

Caves [10]. Such a light field has a characteristic non-classical noise distribution in the

field quadratures, the relevant point being a reduction in fluctuation of amplitudes.

Experiments have used non-classical light input such as squeezed states and the so

called maximally entangled NOON states [19, 20]. In all these approaches, the inter-

ferometer itself was not modified, i.e. the interferometer used linear optical elements,

only the input state of light was changed. While the problem was solved in theory,

there were many practical difficulties that prevented widespread implementation of

linear interferometers with quantum sources. The main drawback in schemes that use

non-classical light sources is the difficulty in generating sufficiently bright non-classical

light and their fragility due to un-avoidable losses in experiments. Nonetheless, the

principle of modifying a traditional interferometer to improve sensitivity resulted in

new and interesting physics [21].
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1.6 Nonlinear Interferometry

In the previous sections, we discussed some aspects of current research, the use of

squeezed light to improve measurement precision and experimental drawbacks that

were encountered.

This thesis takes a different approach to the works cited earlier. In a series of

important papers by Yurke [22] and Ou [9] , the possibility of replacing the linear

optics of an interferometer (see figure 1.1) with nonlinear beam splitters (NLBS) was

investigated (see figure 1.2). Ou in particular cast the problem in terms of a unitary

transformation process, where the nonlinear medium acts as a generator of squeezing.

The main advantage is that there is no need to use a special probe with non-classical

photon statistics. In this scheme, a coherent state is injected into the input NLBS. The

light interacts with the NLBS and a second harmonic is generated [23]. The uncon-

verted fundamental field is the phase sensing beam. Ou showed that the phase sensing

beam (probe)undergoes intensity squeezing, i.e has intensity fluctuations that are far

below the vacuum noise level. In fact, we are generating squeezed light within the

system itself and more importantly, the intensity of the probe beam can be controlled

experimentally. The fundamental and second harmonic light are then combined on

the output NLBS, which is setup for parametric downconversion and measurements

are made on the phase sensing beam at the output.

To fully understand the feasibility of this approach, it is necessary to first under-

stand how quantum fluctuations evolve in a nonlinear medium and this is the focus

of our investigation. The main theory [9, 24, 25] and its experimental realization [26]

in the context of parametric amplifiers was developed by Ou.

We investigate a nonlinear interferometer based on harmonic generation and our

calculations show that we can expect an improvement of a factor of 60 over a linear

interferometer.
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Figure 1.1. Schematic of a normal interferometer. Linear optical elements
are used.
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Figure 1.2. A schematic representation of a nonlinear interferometer with
beamsplitters replaced by nonlinear crystals (in pink) operating under
conditions of harmonic generation (SHG) and parametric downconversion
(PDC).
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2. SINGLE PASS HARMONIC GENERATION

AND PARAMETRIC DOWNCONVERSION

2.1 Introduction

Optical nonlinearity is quantified by the dependence of the dipole moment per unit

volume (polarization) of the medium on the electric field strength of the light. The

normal response of a medium to light is linear and as a consequence most optical

phenomena can be described with a linear refractive index. With the advent of laser

sources the available optical power level increased to a level where the response of

the medium started to deviate from the linear behavior. It was discovered that at

sufficiently high light intensities the response of the material depends on the light

intensity (E2). This gave birth to the field of nonlinear optics and led to a flood

of interesting phenomena such as second harmonic and sum, difference frequency

generation [23,27]. Harmonic generation has found wide applications in diverse areas

such as engineering, consumer electronics and medicine [28].

Most of the above mentioned applications in diverse areas exploit the classical

features (mainly intensity) of the Harmonic generation process. In this thesis we

focus on the quantum properties of the generated light. More specifically, we are

interested in the propagation of quantum fluctuations or ”squeezing” of the intensity

fluctuations. This chapter is organized as follows, in section 2.2, we revisit well known

classical theory of harmonic generation, in section 2.3 we discuss the motivation for

working with continuous quantum variables and we solve the spatial propagation

equations obtaining solutions for the propagation of the mean field, in section 2.3 we

explore in the use of field quadratures in detail and derive equations for propagation

of quantum fluctuations for a couple of special cases.
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Figure 2.1. Physical processes of harmonic generation (SHG) and para-
metric downconversion (PDC).
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2.2 Classical Field Equations

Second harmonic generation (SHG) is a nonlinear process in which light of fre-

quency ω (fundamental) is converted to light at 2ω (second harmonic) by eliciting

a nonlinear response from a dielectric medium. The reverse process is known as

parametric downconversion (PDC). The theory of conversion from fundamental to

harmonic is well known and is governed by nonlinear propagation equations. These

equations are obtained by solving the electromagnetic wave equation with the polar-

ization of the medium as the source term and are described in standard books on

nonlinear optics [23, 29]. Nonetheless it is useful to summarize the basic ideas for

clarity of the subsequent discussion.

The polarization of a medium can be written as a sum of its linear and nonlinear

response to an optical field as


P(z, t) = 
P(L)(z, t) + 
P(NL)(z, t), (2.1)

where 
P(L)(z, t) is the linear polarization and 
P(NL)(z, t) is the nonlinear polarization

of the medium as a function of position and time.

Wave mixing is a phenomena where light of different frequencies interact with a

nonlinear medium and generate additional frequencies. For a general wave-mixing

problem, the nonlinear response of the medium can be written as a sum of the re-

sponses due to each field. Harmonic generation is a special case of wave-mixing.

In general, the second order nonlinear polarization that describes wave mixing can

be written as [23]

Pi (ωn + ωm) = ε0
∑
jk

∑
(nm)

χ
(2)
ijk (ωn + ωm, ωn, ωm)Ej (ωn)Ek (ωm) , (2.2)
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where χ
(2)
ijk is the second order nonlinear susceptibility, i, j, k are cartesian components

of the fields and n,m = 1, 2 label the fields. In harmonic generation ω1 = ω2 and

ω3 = 2ω1. Equation 2.2 can be written as [23]

Pi (2ω1) = ε0
∑
jk

χ
(2)
ijk (2ω1, ω1, ω1)Ej (ω1)Ek (ω1) , (2.3)

For lossless, uniform media, the amplitude of the electromagnetic fields at every

point in space and time is governed by the electromagnetic wave equation

∇2En − ε(L) (ωn)

c2
∂2En

∂t2
=

1

ε0c2
∂2P

(NL)
n

∂t2
, (2.4)

The derivation to obtain the evolution of the optical fields from 2.3 and 2.4 is

complicated and was done in detail in [30]. To summarize the calculation, optical fields

are decomposed as plane waves given by Ej(z, t) = Aj(z)e
i(kjz−ωjt)+A∗

j(z)e
−i(kjz−ωjt),

where Aj(z) is the field amplitude, kj is the wave vector, ωj is the frequency and

j = 1, 2 are subscripts that denote the fundamental and second harmonic fields. The

resulting spatial propagation equations are [23, 30–32]

dA1(z)

dz
= 2αA1(z)

∗A2(z)e
−iΔkz

dA2(z)

dz
= −αA2

1(z)e
iΔkz, (2.5)

Where A1(A2) are slowly-varying amplitudes of the Fundamental and Harmonic fields,

Δk = 2k1 − k2 is the wave vector mismatch, α = deff

√
2ω1

2ω2�

ε0c2V n2
1n2

is the nonlinear

matter electromagnetic field coupling coefficient, V is the mode volume, n1, n2 are

the refractive indices of the medium at angular frequency ω1, ω2, deff is the effective

second order nonlinearity and z is the propagation length through the crystal.
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2.3 Generalized Quantum Propagation Equations

2.3.1 Motivation

We are interested in continuous variables of the light field. A complete descrip-

tion of a given quantum state has to take into account its degrees of freedom and

for an optical field, some of the important degrees of freedom are photon number,

frequency, polarization and phase. When the electromagnetic field is quantized, the

procedure followed yields quantized excitation (energy) per field mode called the

photon. Degrees of freedom such as phase and amplitude retain their continuous

character. However, if we look at variables such as field amplitudes or phase, their

spectrum is continuous. Nonetheless, quantization results in unavoidable uncertain-

ties between conjugate variables described by Heisenberg’s relations. Is a continuous

variable description more useful than a discrete variable description? The usefulness

of the theoretical description (representation) depends on the experiment it tries to

describe. To be clear, both descriptions are equally valid, describe the same physical

reality and one can consistently go back and forth between the two representations.

The choice of representation depends on convenience. If say, we have a photon count-

ing experiment, then the logical choice is to use a photon number state basis. On

the other hand, if we have intense fields, then such a basis, is not suitable because

detectors cannot distinguish between say, 1010 and 1010+1 photons. In this case, it is

more suitable to setup an interference experiment and use continuous variables such

as field amplitude and phase. The “quantumness” of light, in this case, manifests

as the uncertainty of the conjugate amplitude and phase quadrature observables. To

re-emphasize, if an unsuitable basis is used, the details of the description may not be

experimentally accessible. In our work, we are interested in the uncertainties in the

continuous variables of field amplitude and phase and we study how these uncertain-

ties evolve with spatial propagation through the nonlinear medium.
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Since we are interested in studying the evolution of quantum fluctuations, we

need to extend the earlier classical analysis to the quantum field regime. This has

been done in many ways [33–36] and the results are the same as invoking the Bohr

correspondence principle, where we just replace the field amplitudes by operators

Âj(z) where j =1,2 to obtain a quantum picture. The main framework our research

builds upon was first established by Ou [31] and by Li [32].

Assuming a lossless system, the field evolution equations 2.5 thus become

dÂ1

dz
= 2αÂ†

1Â2e
−iΔkz (2.6)

dÂ2

dz
= −αÂ2

1e
iΔkz,

The operator equations 2.6 are nonlinear and analytical solutions are possible only

if we make an approximation in linearizing them. The standard technique employed

based on the so called background field method is to write the total field amplitude

as a sum of the mean field amplitude and fluctuations about the mean. The theory

also allows us to decouple the fluctuations from the mean field values [37–42].

Â1 = 〈Â1〉�+ â1 (2.7)

Â2 = 〈Â2〉�+ â2,

We make an approximation by neglecting the terms â†1â2 and â21. This can justi-

fied because in an experiment, the mean field amplitudes are much larger than the

fluctuations. This approximation is rendered invalid for extremely weak fields i.e.

fields with a very low photon number. We make an assumption that the fluctuations

between the fundamental and harmonic fields are completely uncorrelated before they

interact with the nonlinear medium in SHG. As we will show, it is the nonlinear in-

teraction that generates correlations between the photon statistics of the two optical

fields. Later, we will exploit this fact to study the noise performance of our nonlinear

interferometer.
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2.3.2 Mean Field Solutions

Substituting equations 2.7 in 2.6 we obtain

d〈Â1〉
dz

= 2α〈Â∗
1〉〈Â2〉e−iΔkz (2.8)

d〈Â2〉
dz

= −α〈Â1〉2eiΔkz,

where Â1, Â2 are the mean field amplitudes of the fundamental and second harmonic

fields, z is the propagation length in the medium, α is the nonlinear coupling coeffi-

cient and Δk is the wave-vector mismatch.

We now proceed to obtain solutions to the mean field equations 2.8. These so-

lutions were first derived by Amstrong et.al., in 1962 [30] from purely classical con-

siderations. It is easier to solve these coupled equations if we define dimensionless

quantities [23, 31, 32]. Using the definitions in table 2.1, we can write,

A1 = a× u1A10e
iϕ1

A2 = b× u2A10e
iϕ2

ζ = c× αzA10

Δs = d× Δk

αA10

, (2.9)

Where a,b,c,d are undetermined real, numerical constants that make the equations 2.8

dimensionless and ϕ1, ϕ2 are the phases of the fields. Using the definitions in equa-

tion 2.9 and setting Δk = 0 we can re-write 2.8 as

c(
du1
dζ

+ iu1
dϕ1

dζ
) = 2bu1u2e

−i(2ϕ1−ϕ2)

bc(
du2
dζ

+ iu2
dϕ2

dζ
) = −a2u21ei(2ϕ1−ϕ2), (2.10)

For the above equations to be dimensionless we obtain the conditions c = 2b, d = c

and bc = a2. Choosing a = 1 we obtain a = 1, b =
1√
2
, c =

√
2, d =

√
2.
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Table 2.1: Variables used in deriving nonlinear propagation equations.

Normalization variables

Variable Description Value

A10 Initial fundamental field amplitude | 〈A1(0)〉 |
A20 Initial harmonic field amplitude | 〈A2(0)〉 |
A1 Fundamental field amplitude | 〈A1(ζ)〉 |
A2 Harmonic field amplitude | 〈A2(ζ)〉 |
ζ Normalized length | 〈A2(ζ)〉 |
u1 Normalized fundamental amplitude |〈Â1(ζ)〉|

|〈Â1(0)〉|

u2 Normalized harmonic amplitude
√
2 |〈Â2(ζ)〉|
|〈Â1(0)〉|

Δs Normalized phase mismatch Δk(ζ)

α|〈Â1(0)〉|
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Taking equations 2.10 and equating real and imaginary parts we obtain the prop-

agation equations for the fields and their phases as

du1
dζ

= u1u2cosθ

du2
dζ

= −u21 cos θ
dϕ1

dζ
= u2sinθ

dϕ2

dζ
=
u21
u2

sinθ,

(2.11)

where θ(ζ) = 2ϕ1(ζ)− ϕ2(ζ).

It is useful to look for invariants in these system of equations. This was done

in [23, 30] by considering the spatial derivative of log u21u2 along with equations 2.12

and the invariant quantity was calculated to be Γ = −u21u2 sin θ.

2.3.3 Special Cases

Thus, the mean field equations can be written in a compact form as

du1
dζ

= u1u2cosθ (2.12)

du2
dζ

= −u21cosθ
dϕ1

dζ
=

Γ

u12
(2.13)

dϕ2

dζ
=

Γ

u22

dθ

dζ
= (

2

u12
− 1

u22
)Γ, (2.14)

The above equations give us information about the evolution of the amplitudes

and phases of the harmonic and fundamental fields as they propagate through the

nonlinear medium.
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2.3.3.1. Harmonic Generation θ = π

Setting θ = π corresponds to the case of SHG and we can obtain the analytical

solutions by direct integration as u1(ζ) = sech (ζ0 − ζ), u2(ζ) = tanh(ζ0 − ζ). With

the initial conditions as u1(0) = 1 and u2(0) = 0 we obtain u1(ζ) = sech (ζ), u2(ζ) =

tanh(ζ). The solution to the above special case of θ = π can be plotted graphically

as shown in figure 2.2 and is a well known result [23, 30]. We see that eventually all

the fundamental is converted into the harmonic.
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Figure 2.2. Spatial evolution of fundamental (red) and harmonic (blue)
intensities in second harmonic generation.

2.3.3.2. Parametric Downconversion θ = 0

Parametric downconversion is the nonlinear process by which a pump photon at

frequency ω0 is destroyed to produce two new photons (called the signal and idler)

at frequencies ωs and ωi [23]. This process may occur spontaneously with only a

pump field as an input, or seeded by the presence of an additional field at some

other frequency (usually at the desired signal frequency). In the seeded case, this
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externally provided signal field will be amplified, accompanied by the production of

an idler beam at an appropriate wavelength. In literature, the common terms one

encounters are, optical parametric generator, optical parametric amplifier, paramet-

ric oscillator. An optical parametric generator (OPG) is based on the spontaneous

parametric downconversion (SPDC) effect described earlier, an optical parametric

amplifier amplifies a weak seed beam and optical parametric oscillator configuration

is an optical cavity enhanced conversion process, where the nonlinear crystal is placed

in an optical cavity.

We can think of parametric amplification/downconversion (PDC) as the reverse

process of harmonic generation with the essential difference that in the specific case

we are interested in, both fundamental and harmonic field injection is necessary.

In PDC, the harmonic is strong and the fundamental serves as a weak seed. As the

fields interact with the medium, the harmonic gets depleted and the fundamental gets

amplified. The necessary phase condition for a normal parametric down-conversion

process is θ = 0. An important point to note is that PDC occurs as long as the

initial phase condition is satisfied. The phases of both fields evolve as the propagate

through the medium and once they attain θ = 0, the interaction reverts back to

harmonic generation as in figure 2.3.
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Figure 2.3. Spatial evolution of fundamental and harmonic fields for dif-
ferent input intensities with θ = 0.
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2.4 Quantum Fluctuations

2.4.1 Quadrature Representation

Field quadratures are related to the amplitude and phase properties of light. In

the quantum description, they correspond to position and momentum of a simple

harmonic oscillator and constitute an infinite dimensional Hilbert space. Our main

interest is to work with intense optical fields (also known as a bright field). As

discussed earlier, measurements with photodetectors have limited resolution, which

means they are not capable of distinguishing between individual photon numbers,

therefore it is customary to decompose the field operator for large field amplitudes

into a “classical” displacement and a quantum operator and we will see later that in

the limit of sufficiently large classical field amplitudes, the generated photocurrents

yield direct information about the amplitude quadrature, while the uncertainty about

the orthogonal phase quadrature cannot be seen. In direct detection, the bright beam

carries its own local oscillator and thus intrinsically determines a fixed phase differ-

ence. However, direct detection lacks any information about the phase quadrature.

We will explore this in more detail in the next chapter of this thesis.

2.4.1.1. Classical Field Quadratures

In an experiment, we measure the intensity of light and this measurement yields a

real number as a result. In general, from a classical point of view we can describe

a monochromatic sinusoidal electric field as a sum of two complex quantities E(t) =

1
2
(a(t)+a∗(t)), where a(t) is a complex quantity that can be written as a(t) = ae−iωt,

where a the time independent, complex amplitude. Writing the amplitude as a =

x+ iy , the electric field can be written as
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E(t) = x cosωt+ y sinωt (2.15)

x and y are called quadrature components because they are orthogonal to each other.

2.4.1.2. Quadrature Representation of Quantum Fields

The same formalism can be used for quantum operators. Annihilation and creation

operators are non-Hermitian so they are not observables. When related to experi-

ments, the real part of the field operator âj has information about the photon number

while the imaginary part can be related to the phase. Our goal is to study the fluc-

tuations of these two parameters (of which, photon number fluctuations are direct

observables). Therefore, we define a new set of Hermitian operators called the field

quadrature operators, x̂j and ŷj, where ϕj (j=1,2) is the phase of the fundamental

and harmonic fields respectively.

x̂j =
âje

−iϕj + â†je
iϕj

2
, (2.16)

ŷj =
âje

−iϕj − â†je
iϕj

2i
,

We define the following correlation relationships between the quadrature operators

based on the assumption that before the interaction with the nonlinear medium, the

fields are just vacuum

〈x̂i(0)x̂j(0)〉 = 〈ŷi(0)ŷj(0)〉 = 1

4
δij

〈x̂i(0)ŷj(0)〉 = 〈ŷi(0)x̂j(0)〉 = 0

〈x̂i(0)ŷi(0)〉+ 〈x̂j(0)ŷj(0)〉 = 0, (2.17)
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From equations 2.6, 2.7

dâ1
dz

= 2α
{
â†1A2 + A∗

1â2

}
(2.18)

dâ2
dz

= −2αâ1A1,

Substituting equations 2.16 in 2.18 we get

d

dζ

{
(x̂1 + iŷ1) e

iϕ1
}
= u2 (x̂1 − iŷ1) e

−iϕ1eiϕ2 +
√
2u1 (x̂2 + iŷ2) e

−iϕ1eiϕ2 ,

dx̂1
dζ

+ ix̂1
dϕ1

dζ
+ i

dŷ1
dζ
− ŷ1

dϕ1

dζ
= u2 (x̂1 − iŷ1) e

−i(2ϕ1−ϕ2) +
√
2u1 (x̂2 + iŷ2) e

−i(2ϕ1−ϕ2)

Using θ = 2ϕ1 − ϕ2 and
dϕ1

dζ
=

Γ

u21
we get

dx̂1
dζ

+ ix̂1
Γ

u21
+ i

dŷ1
dζ
− ŷ1

Γ

u21
= u2 (x̂1 − iŷ1) e

−iθ +
√
2u1 (x̂2 + iŷ2) e

−iθ,

Using the expansion eiθ = cos θ + i sin θ, equating real and imaginary parts we

have

dx̂1
dζ

= u2x̂1cosθ − ŷ1

(
u2sinθ − Γ

u21

)
+
√
2u1x̂2cosθ +

√
2u1ŷ2sinθ, (2.19)

dŷ1
dζ

=

(
u2sinθ − Γ

u21

)
x̂1 − u2ŷ1cosθ −

√
2u1x̂2sinθ +

√
2u1ŷ2cosθ, (2.20)

Likewise, for the harmonic equating real and imaginary parts for the resultants

gives us
dx̂2
dζ

= −
√
2u1x̂1cosθ +

√
2u1ŷ1sinθ + ŷ2

Γ

u22
(2.21)

dŷ2
dζ

= −
√
2u1x̂1sinθ −

√
2u1ŷ1cosθ + x̂2

Γ

u22
, (2.22)
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2.4.1.3. Harmonic Generation

The case of θ = π describes harmonic generation where u1(0) = 1, u2(0) = 0, Γ = 0

hence the quadrature fluctuation equations simplify as

dx̂1
dζ

= −u2x̂1 −
√
2u1x̂2

dŷ1
dζ

= u2ŷ1 −
√
2u1ŷ2

dx̂2
dζ

=
√
2u1x̂1

dŷ2
dζ

=
√
2u1ŷ1,

(2.23)

2.4.1.4. Parametric Downconversion

The case of θ = 0 describes parametric downconversion where u1(0) = ε (ε is a small

number), u2(0) = 1, Γ = 0 and the quadrature fluctuation equations simplify as

dx̂1
dζ

= u2x̂1 +
√
2u1x̂2

dŷ1
dζ

= −u2ŷ1 +
√
2u1ŷ2

dx̂2
dζ

= −
√
2u1x̂1

dŷ2
dζ

= −
√
2u1ŷ1,

(2.24)

Equations 2.23, 2.24 are linear in x̂i, ŷi and were first derived by Ou [31] and

Li [32]. These equations describe the spatial propagation of quadrature components

of the quantum fluctuations. Note that there are no cross terms in the differential

equations and can be solved analytically.
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2.4.2 Numerical Solutions to the Evolution Equations

The solution to the operator equation 2.23 can be obtained in terms of the evolu-

tion of the coefficients. We can organize these equations in a matrix form as shown

below

d

dζ

⎛
⎜⎜⎜⎜⎜⎜⎝

x̂1

ŷ1

x̂2

ŷ2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−u2 0 −√2u1 0

0 u2 0 −√2u1√
2u1 0 0 0

0
√
2u1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x̂1

ŷ1

x̂2

ŷ2

⎞
⎟⎟⎟⎟⎟⎟⎠
, (2.25)

Next, we obtain solutions to the coupled system by using the fact that the solution

to any linear differential equation can be expressed as a linear combination of the

initial conditions. We can write the solutions in Matrix form as

⎛
⎜⎜⎜⎜⎜⎜⎝

x̂1(ζ)

ŷ1(ζ)

x̂2(ζ)

ŷ2(ζ)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

c11(ζ) c12(ζ) c13(ζ) c14(ζ)

c21(ζ) c22(ζ) c23(ζ) c24(ζ)

c31(ζ) c32(ζ) c33(ζ) c34(ζ)

c41(ζ) c42(ζ) c43(ζ) c44(ζ)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x̂1(0)

ŷ1(0)

x̂2(0)

ŷ2(0)

⎞
⎟⎟⎟⎟⎟⎟⎠
, (2.26)

Substituting equation 2.26 in 2.25 we end up with

d

dζ

⎛
⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−√2c31u1 − c11u2 −√2c32u1 − c12u2 −√2c33u1 − c13u2 −√2c34u1 − c14u2

−√2c41u1 + c21u2 −√2c42u1 + c22u2 −√2c43u1 + c23u2 −√2c44u1 + c24u2√
2c11u1

√
2c12u1

√
2c13u1

√
2c14u1√

2c21u1

√
2c22u1

√
2c23u1

√
2c24u1

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.27)

Note that ui and cij are functions of the normalized propagation length ζ.
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2.5 Squeezing

In the preceding section, we have derived the evolution of quadratures. The

question is, how can we experimentally quantify any changes that have occurred

to the light? Since we established earlier that fluctuations are directly related to

measurement precision, it is logical to investigate the variances of the quadrature

operators. This is encapsulated by the paradigm of “squeezing”. Light is said to be

squeezed if the variance of a certain field quadrature falls below the level of vacuum

state fluctuations. Following [31], [32] we define squeezing as the ratio of the average

variance at propagation lengths ζ and 0. Values of Sx, Sy < 1 indicate a decrease in

fluctuations or “squeezing” in uncertainty in a quadrature, while Sx, Sy > 1 would

indicate an increase in fluctuation or “de-squeezing”.

S1x ≡ 〈x̂1(ζ)
2〉

〈x̂1(0)2〉 , S1y ≡ 〈ŷ1(ζ)
2〉

〈ŷ1(0)2〉

S2x ≡ 〈x̂2(ζ)
2〉

〈x̂2(0)2〉 , S2y ≡ 〈ŷ2(ζ)
2〉

〈ŷ2(0)2〉 , (2.28)

Making use of the correlation properties of the quadrature operators given in equa-

tion 2.17 that describes the spatial evolution of the quadratures the variances can be

organized as

⎛
⎜⎜⎜⎜⎜⎜⎝

x̂2
1(ζ)

ŷ21(ζ)

x̂2
2(ζ)

ŷ22(ζ)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

c211x̂
2
1(0) + 2c11c13x̂1(0)x̂2(0) + c213x̂

2
2(0) + c212ŷ

2
1(0) + 2c12c14ŷ1(0)ŷ2(0) + c214ŷ

2
2(0)

c221x̂
2
1(0) + 2c21c23x̂1(0)x̂2(0) + c223x̂

2
2(0) + c222ŷ

2
1(0) + 2c22c24ŷ1(0)ŷ2(0) + c224ŷ

2
2(0)

c231x̂
2
1(0) + 2c31c33x̂1(0)x̂2(0) + c233x̂

2
2(0) + c232ŷ

2
1(0) + 2c32c34ŷ1(0)ŷ2(0) + c234ŷ

2
2(0)

c241x̂
2
1(0) + 2c41c43x̂1(0)x̂2(0) + c243x̂

2
2(0) + c242ŷ

2
1(0) + 2c42c44ŷ1(0)ŷ2(0) + c244ŷ

2
2(0)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x̂21(ζ)

ŷ21(ζ)

x̂22(ζ)

ŷ22(ζ)

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

c211 + c212 + c213 + c214

c221 + c222 + c223 + c224

c231 + c232 + c233 + c234

c241 + c242 + c243 + c244

⎞
⎟⎟⎟⎟⎟⎟⎠
, (2.29)
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Using the definition of the squeezing function given in equation 2.28

⎛
⎜⎜⎜⎜⎜⎜⎝

Sx1

Sy1

Sx2

Sy2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

c211 + c212 + c213 + c214

c221 + c222 + c223 + c224

c231 + c232 + c233 + c234

c241 + c242 + c243 + c244

⎞
⎟⎟⎟⎟⎟⎟⎠
, (2.30)

2.5.1 Squeezing in Harmonic Generation

We numerically solve equation 2.4.2 for cij’s and plot the results for squeezing of

both optical fields as a function of ζ as shown in figure 2.4. The values of Sx, Sy

give us information about the fluctuations in photon number and phase fluctuations

respectively. Assuming a coherent state input for the fundamental field, we can

see that the amplitude fluctuations in the fundamental field can be suppressed to

an arbitrarily small value, while for the harmonic field, at best 50% squeezing of

amplitude fluctuations is possible. These results were first obtained by Ou [31].
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Figure 2.4. Spatial evolution of fundamental and harmonic squeezing.
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2.5.2 Squeezing in Parametric Downconversion

Inspecting the linear differential equations 2.24, we can clearly expect a smooth

reversal in behavior when compared with the SHG case. So if we place back to back

SHG and PDC stages, the fluctuations should go back to the vacuum state after

interacting with the same characteristic length of the medium. The equations are

numerically evaluated and the results are plotted as shown in figure 2.5

Figure 2.5. Fundamental quadrature squeezing is given by the red curves
and harmonic quadrature squeezing is given by the blue curves. Solid
curves are the x quadrature and dotted curves are the y quadrature. The
normalized length of the crystal is ζ0 = 1.
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3. NONLINEAR INTERFEROMETER ANALYSIS

3.1 Nonlinear Interferometer Setup

In the previous chapter, we discussed the evolution of mean fields and fluctuations in

specific cases of harmonic generation and parametric downconversion. In this chapter,

we investigate the physics of the system for a more general case of an arbitrary phase

difference between the optical fields, parameterized by the variable δ.

From chapter 1, the basic construction of a nonlinear interferometer can be de-

picted as shown in the figure 3.1. The nonlinear interferometer setup consists of two

nonlinear crystals which serve as field splitter and combiner (SHG/PDC).1 We will

see later that the same unitary evolution formalism that was used to describe a linear

interferometer can be applied to our system. Each crystal has two inputs and and

two outputs. In the SHG stage, a strong, coherent IR laser (u10) serves as the pump

(fundamental). There is no harmonic input, just vacuum modes that couple into

the system through this port. The nonlinear process of second harmonic generation

creates entanglement between the pump field and the vacuum field [26, 43] akin to

a linear beamsplitter with the important difference that in a nonlinear process, new

fields are generated and this manifests as a squeezed coherent output at the end of

the SHG stage. The fundamental intensity decreases as it is converted to a harmonic

field and as we saw in the previous chapter, both fields are squeezed. The phase

shifted fundamental and the harmonic fields are then superposed on the second crys-

tal. We address the question of how the fluctuations evolve if we change the external

phase δ between the depleted fundamental and the generated harmonic. From the

previous chapter, we saw that both the fundamental and harmonic fields are intensity

1In a linear interferometer these elements would be glass beamsplitters.
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squeezed. Our proposal is a form of squeezed state enhanced interferometry suggested

by Caves [10, 44] and the second stage of our interferometer accomplishes just that

with the important advantage of the phase sensing field being amplified.

Figure 3.1. Introduction of a controllable phase delay δ′ at the PDC stage.
Note that the initial conditions are set by the SHG stage.

3.2 Mean Field Solutions For Arbitrary Phase

We shift the phase of the fundamental by δ/2 such that the, the mean field prop-

agation equations are modified as follows

du1
dζ

= u1u2cos(θ + δ)

du2
dζ

= −u21cos(θ + δ)

dϕ1

dζ
=

Γ(δ)

u12

dϕ2

dζ
=

Γ(δ)

u22

dθ

dζ
= (

2

u12
− 1

u22
)Γ(δ)

Γ(δ) = −u210u20 sin δ,

(3.1)

Γ is still an invariant, but unlike the special cases where Γ = 0, we have a non-

zero value here which renders the system of equations analytically unsolvable. Hence
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we resort to a numerical solution2. In the simulation, we vary δ ε [0, 2π] and report

how the field amplitudes, optical phases evolve as a function of δ and their spatial

evolution over the interaction length.

3.2.1 Mean Field Simulation Results

3.2.1.1. Amplitude and Phase Evolution

We claimed that a nonlinear interferometer not only suppresses quantum fluctuations,

but also amplifies the phase sensing signal (u1). Figures 3.2, 3.3 show the phase

sensing field at the output of the second stage of the interferometer. From the analysis

of propagation of quantum fluctuations in harmonic generation, we saw that squeezing

of the fundamental was directly proportional to the interaction length of the nonlinear

crystal. However, the penalty incurred was in terms of the decreased amplitude of the

phase sensing field. In any measurement scheme, we would like the measuring device

to not influence or taint the measurement itself. While this may not be possible, we

minimize the possibility by using a weak phase sensing field. So, the fact that the

phase sensing field is weak is not the problem, the problem lies in the recovery of

information imprinted on the phase sensing field. The second stage of the nonlinear

interferometer alleviates this problem by amplifying the phase sensing field. Figures

3.2, 3.3 show this for two specific lengths ζ0 = 0.5 and ζ0 = 3.0. Hence the second

stage does indeed act as an amplifier and it is possible to obtain a full recovery of

the phase sensing signal. We plot the fundamental field amplitude u1 as a function

of propagation length for different values of δ. It can be seen that conversion from

harmonic to fundamental depends critically on the relative phase between the fields.

We can use the special case of δ = 0 as our reference. As the phase is tuned,

conversion from harmonic to fundamental first decreases and then begins to recover

as δ approaches 2π.

2C++ and Mathematica code can be found in the appendices
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Figure 3.2. Colors represent u1 for different δ, the values of which are
given in the legend for ζ0 = 0.5.
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Figure 3.3. Colors represent the fundamental field amplitude, u1 for dif-
ferent δ, values for which are given in the legend for ζ0 = 3.
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In an interferometer sensitivity to phase is of paramount importance. With this

in mind, we can look at data for variation of optical phase with interaction length for

different values of δ. In figure 3.4 we plot the optical phase of the fundamental as a

function of normalized interaction length. When we compare interaction lengths of

ζ0 = 0.5 in figure 3.4 and ζ0 = 3 in figure 3.5 we notice that the behavior of ϕ1 is

dramatically different for δ = 3.11, where the phase decreases more rapidly.
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Figure 3.4. Colors represent ϕ1 for different δ, whose values are given in
the legend at ζ0 = 0.5.
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Figure 3.5. Colors represent ϕ1 for different δ at ζ0 = 3.
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3.2.1.2. Interferometer Fringes

As discussed earlier, the output of an interferometer is an intensity that follows the

phase difference between the fields in its arms. Usually, the phase is such that the

intensity is periodic. In a linear interferometer, the output has the same frequency

as the input light. In a nonlinear interferometer, new optical fields are generated and

the phase dependence manifests as oscillations in both the fundamental and harmonic

fields as shown in figures 3.8 and 3.9.

Visibility, defined as V = (Imax − Imin)/(Imax + Imin) is close to unity when

Imax � Imin. From table 3.1 and figure 3.6 we can see that it is indeed possible

to attain maximum visibility with a nonlinear interferometer, contingent on the fact

that the visibility does vary with the interaction length. So in this respect, both the

linear and nonlinear interferometers behave identically. For better phase sensitivity,

it is desirable to operate the interferometer in the region of maximum slope of the

intensity phase graph. In a nonlinear interferometer, there is enhancement of the

phase sensing signal, so it is possible to obtain a steeper slope, which translates

to a better discrimination of phase. For ζ0 = 0.5, the slope is small because full

conversion from harmonic to fundamental has not occurred. From figure 3.7, we

see that the slope increases with increasing interaction length. The slope saturates at

about ζ0 = 2, which means the sensitivity of the interferometer based on the steepness

of the slope does not show dramatic improvements for longer normalized lengths ζ0.
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Table 3.1: Slope and visibility of the interferometer fringe.

Slope and visibility

ζ m Imax Imin V
0.5 0.29088 1.0 0.41997 0.41

0.75 0.42475 1.0 0.18071 0.69

1.0 0.52722 1.0 0.0765 0.0.87

1.25 0.61634 1.0 0.02659 0.94

1.50 0.68607 1.0 0.00987 0.98

1.75 0.7347 1.0 0.00364 0.992

2.0 0.76597 1.0 0.00134 0.997

3.0 0.80296 1.0 0.00098 0.998
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Figure 3.6. Fringe visibility as a function of normalized propagation length
ζ0.
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Figure 3.7. Maximum slope of the interference fringe for different normal-
ized propagation lengths ζ0.
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Figure 3.8. Interferometer fringes for ζ0 = 0.5. Complete conversion from
harmonic to fundamental is not achieved.
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Figure 3.9. Interferometer fringes for ζ0 = 3.0. Note that there is some
saturation of intensity.
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3.2.1.3. Variation of Phase ϕ1 with δ

Next, we look at the variation of the mean field phase of the fundamental with δ.

From figure 3.10 the propagation length increases, the phase plot becomes more linear

and its slope increases.
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Figure 3.10. Variation of fundamental phase ϕ1 as a function of interfer-
ometer phase δ for different characteristic lengths ζ0.

3.3 Propagation of Quantum Fluctuations

3.3.1 Solutions for Arbitrary Phase

In the previous section, we studied the evolution of the mean field. In this section,

we investigate the propagation of quantum fluctuations. Using the output of quan-

tum fluctuations for ζ = ζ0 from the previous section, we can study the evolution of
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quantum fluctuations at ζ = 2ζ0. After the fields propagate by ζ0 their amplitude

fluctuations are squeezed and serve to seed further evolution. But the difference is

that our control of the relative phase between the mean fields governs the subse-

quent evolution of the quadrature fluctuations from ζ0 to 2ζ0 To do so, we take the

generalized form of equation 2.4.2 which can be written as

d

dζ

⎛
⎜⎜⎜⎜⎜⎜⎝

x̂1

ŷ1

x̂2

ŷ2

⎞
⎟⎟⎟⎟⎟⎟⎠

=M

⎛
⎜⎜⎜⎜⎜⎜⎝

x̂1

ŷ1

x̂2

ŷ2

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.2)

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2cosθ

(
Γ

u21
− u2sinθ

) √
2u1 cosθ

√
2u1 sinθ

−u2sinθ − Γ

u21
−u2cosθ −√2u1 sinθ

√
2u1 cosθ

−√2u1 cosθ
√
2u1 sinθ 0

Γ

u22

−√2u1 sinθ −√2u1 cosθ
−Γ
u22

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.3)

Following the same arguments that lead to equation (2.26) outlined in section 2.4.2

we obtain the evolution of quantum fluctuations explicitly given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2d31 cos(θ + δ)u1 +

√
2d41 sin(θ + δ)u1 + d11 cos(θ + δ)u2 + d21

(
Γ

u2
1

− sin(θ + δ)u2

)
√
2d41 cos(θ + δ)u1 −

√
2d31 sin(θ + δ)u1 − d21 cos(θ + δ)u2 + d11

(
− Γ

u2
1

− sin(θ + δ)u2

)
−√2d11 cos(θ + δ)u1 +

√
2d21 sin(θ + δ)u1 +

d41Γ

u2
2

−√2d21 cos(θ + δ)u1 −
√
2d11 sin(θ + δ)u1 − d31Γ

u2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

√
2d32 cos(θ + δ)u1 +

√
2d42 sin(θ + δ)u1 + d12 cos(θ + δ)u2 + d22

(
Γ

u2
1

− sin(θ + δ)u2

)
√
2d42 cos(θ + δ)u1 −

√
2d32 sin(θ + δ)u1 − d22 cos(θ + δ)u2 + d12

(
− Γ

u2
1

− sin(θ + δ)u2

)
−√2d12 cos(θ + δ)u1 +

√
2d22 sin(θ + δ)u1 +

d42Γ

u2
2

−√2d22 cos(θ + δ)u1 −
√
2d12 sin(θ + δ)u1 − d32 Γ

u2
2
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√
2d33 cos(θ + δ)u1 +

√
2d43 sin(θ + δ)u1 + d13 cos(θ + δ)u2 + d23

(
Γ

u2
1

− sin(θ + δ)u2

)
√
2d43 cos(θ + δ)u1 −

√
2d33 sin(θ + δ)u1 − d23 cos(θ + δ)u2 + d13

(
− Γ

u2
1

− sin(θ + δ)u2

)
−√2d13 cos(θ + δ)u1 +

√
2d23 sin(θ + δ)u1 +

d43Γ

u2
2

−√2d23 cos(θ + δ)u1 −
√
2d13 sin(θ + δ)u1 − d33Γ

u2
2

√
2d34 cos(θ + δ)u1 +

√
2d44 sin(θ + δ)u1 + d14 cos(θ + δ)u2 + d24

(
Γ

u2
1

− sin(θ + δ)u2

)
√
2d44 cos(θ + δ)u1 −

√
2d34 sin(θ + δ)u1 − d24 cos(θ + δ)u2 + d14

(
− Γ

u2
1

− sin(θ + δ)u2

)
−√2d14 cos(θ + δ)u1 +

√
2d24 sin(θ + δ)u1 +

d44Γ

u2
2

−√2d24 cos(θ + δ)u1 −
√
2d14 sin(θ + δ)u1 − d34Γ

u2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.4)

θ = 2ϕ1 − ϕ2 is the optical phase that varies with propagation length and δ is

user set parameter. The complicated matrix in (3.4) can be evaluated numerically in

a few simple sequential steps. First we recognize that the contributions of the mean

field terms can be obtained directly by numerically solving equations 3.1. Next, we

use these generated numbers along with the initial conditions for the fluctuations that

were obtained by numerically solving equation 2.4.2. We can evaluate Sx, Sy for a

few select initial conditions and plot the results. From figure 3.11 we see that the X

quadrature undergoes de-squeezing as the external phase parameter δ is tuned away

from 0. The Y-quadrature also undergoes de-squeezing. Clearly, this is not promising

because an increase in fluctuations would imply a degradation of signal to noise ratio.

But all hope is not lost! Suppose we ask the question, is there a minimum value of

X-quadrature squeezing, i.e one that is smaller than the vacuum noise? If so, what are

the conditions under which this occurs? To answer this question, we have to transform

to a different quadrature basis. It must be noted that transforming to a different basis

still preserves physical properties, i.e. commutator relationships are preserved and

this would imply that Heisenberg’s uncertainty is not violated Sx× Sy ≥ 1. We use

this as a check in our simulation.



42

����� ����� ����� ����� 	��
�

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�
�
�
�
�
��
	
�

�
�
��
�
��


�

���������

	
��

	
�


��

Figure 3.11. X quadrature squeezing (solid triangle) and Y quadrature
squeezing (open triangles) as a function of interferometer phase δ. The Sx
point at 10−3 is the value of X quadrature squeezing for the special case
of δ = π discussed in the previous chapter.

3.3.2 Optimum Squeezing

When we introduce a phase shift, it is possible that maximum squeezing may not

occur in either the amplitude or the phase quadrature. We can calculate the quadra-

ture with maximum amplitude squeezing by defining a quadrature at an arbitrary

phase αj. We investigate the possibility of rotating to a quadrature where the value

of S, the squeezing is optimum.

The field operator â and its conjugate can be written in two different basis (x̂, ŷ)

and (q̂, p̂), where the former is the original basis and the latter is the basis where

squeezing is minimum. We can define arbitrary quadratures as
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q̂j =
1

2

(
âje

−iαj + â†je
iαj

)
p̂j =

1

2i

(
âje

−iαj − â†je
iαj

)
, (3.5)

Using the original quadratures given by

x̂j =
1

2

(
âje

−iϕj + â†je
iϕj

)
, ŷj =

1

2i

(
âje

−iϕj − â†je
iϕj

)
,

We wish to transform from the (x,y) basis to the (q,p) basis and therefore we can

express the new quadratures in terms of the old as

q̂j = x̂jcosβj + ŷjsinβj (3.6)

p̂j = −x̂jsinβj + ŷjcosβj, (3.7)

where βj = αj − ϕj.

To calculate squeezing, we have to calculate the variance of the field operators

(〈Δq̂2〉, 〈Δp̂2〉). Therefore, we have

〈Δq̂2j 〉 = 〈q̂2j 〉 − 〈q̂j〉2, (3.8)

q̂2j = x̂2j cos
2 βj + ŷ2j sin

2 βj +
1

2
sin 2β(x̂j ŷj + ŷjx̂j)

〈q̂2j 〉 = 〈x̂2j〉 cos2 βj + 〈ŷ2j 〉 sin2 βj +
1

2
sin 2β〈(x̂j ŷj + ŷjx̂j)〉,

Using the correlation definitions for the quadratures, we can get

〈q̂2j 〉 = 〈x̂2j〉 cos2 βj + 〈ŷ2j 〉 sin2 βj

〈q̂j〉2 = 〈x̂j〉2 cos2 βj + 〈ŷj〉2 sin2 βj + 〈x̂j ŷj〉sin2βj,



44

Therefore, the variance in the q-quadrature is given as

〈Δq̂2j 〉 = {〈x̂2j〉 − 〈x̂j〉2} cos2 βj + {〈ŷ2j 〉 − 〈ŷj〉2} sin2 βj + 〈x̂j ŷj〉sin2βj

〈Δq̂2j 〉 = 〈Δx̂2j〉 cos2 βj + 〈Δŷ2j 〉 sin2 βj + 〈x̂j ŷj〉sin2βj, (3.9)

We originally defined squeezing as

Sjx =
〈x̂j(ζ)2〉
〈x̂j(0)2〉

Sjy =
〈ŷj(ζ)2〉
〈ŷj(0)2〉

〈x̂j(ζ)2〉 = Sjx

4

〈ŷj(ζ)2〉 = Sjy

4

Sjxy =
〈x̂j(ζ)ŷj(ζ)〉
〈x̂j(0)〉〈ŷj(0)〉

〈x̂j(ζ)ŷj(ζ)〉 = Sjxy

4
, (3.10)

Finally,we have

〈Δq̂2j 〉 =
1

4
{Sjx cos

2 βj + Sjy sin
2 βj − Sjxy sin 2βj},

Similarly, we can get the variance for the phase quadrature as

〈Δp̂2j〉 =
1

4
{Sjx cos

2 βj + Sjy sin
2 βj + Sjxy sin 2βj},

We can explicitly write the q-quadrature fluctuations as

〈Δq̂2(2ζ)〉 = 〈Δx̂2(2ζ)〉 cos2 β + 〈Δŷ2(2ζ)〉 sin2 β − (3.11)

1

2
sin 2β{(〈x̂(2ζ)ŷ(2ζ)〉 − 〈x̂(2ζ)ŷ(2ζ)〉) + (〈ŷ(2ζ)x̂(2ζ)〉 − 〈ŷ(2ζ)x̂(2ζ)〉)},
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Designating the first term as S1x = A, the second as S1y = B and the third term

within parenthesis as S1xy = C, we can calculate the value of β at which squeezing

is an optimum (minimum) and the value of squeezing by evaluating
∂

∂β
〈Δq̂2〉 = 0,

which gives:

β =
1

2
tan−1 2C

B − A

Sq =
1

2
{A+B −

√
4C2 + (B − A)2}

(3.12)

In the actual computation, we revert back to working with the coefficient represen-

tation of the quadrature field operators. We can write the output of the first stage

(from chapter 2) in compact form as Xij(ζ) = Cik ·X(0)kj and the output after the

second stage is gives as Xij(2ζ) = Dil · Xlj(ζ) = Dil · Clk · Xkj(0). Using this to

evaluate Sq we obtain:

S1x(2ζ) = f1d
2
11 + f2d

2
12 + f3d

2
13 + f4d

2
14 + 2(f5d11d13 + f6d12d14)

S1y(2ζ) = f1d
2
21 + f2d

2
22 + f3d

2
23 + f4d

2
24 + 2(f5d21d23 + f6d22d24)

S1xy(2ζ) = f1d11d21 + f2d12d22 + f3d13d23 + f4d14d24+

f5(d11d23 + d21d13) + f6(d12d24 + d22d14),

(3.13)

Where fj are values of squeezing and correlations after the first stage.

f1 = c211 + c213

f2 = c224 + c222

f3 = c231 + c233

f4 = c242 + c244

f5 = (c11c31 + c13c33)

f6 = (c42c22 + c44c24),
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It can be seen that we now have X −Y cross terms that arise, i.e the term S1xy. The

significance of this term is that it is an indicator of the minimum value of squeezing

and the shift of this minimum away from the canonical (X) quadrature.

From figure 3.11 we see that as the phase δ is varied the fluctuations in the X-

quadrature increase rapidly and as discussed in the previous chapter, this is not the

optimum quadrature. The transformed quadrature Q however, exhibits squeezing

below the vacuum level of 1. We discuss the data in detail in the next section.

3.3.3 Results and Discussion

3.3.3.1. X,Y Squeezing

Figures 3.12 to 3.20 show the evolution of intensity (X) and phase (Y) quadrature

fluctuations as a function of δ, the interferometer phase. We see that both quadratures

are de-squeezed, except at δ = π. There are two important aspects of the squeezing

plots that have a direct bearing on the usable range of the interferometer. First, we

take a look at the region close to zero, i.e δ ε [0, 0.2]. In this region Sx and Sy are

almost equal and upon zooming in, the numerical results show noisy behavior (see

insets). This behavior persists with change in numerical parameters such as step size,

number of steps and even upon use of different methods. Hence we conclude that

this unstable behavior is inherent in the system. Next, we see that at some δ, Sx and

Sy cross. This has a serious bearing on the squeezing angle β as a change in sign

leads to discontinuities. The number of crossing points dictates the usability range of

the interferometer. For small characteristic lengths ζ0, there is at most one crossing

point, but as the length is increased, the crossing point shifts to the right, i.e. towards

increasing δ. Figure 3.12 shows only one possible region of crossing, very close to

zero. As we increase ζ0, a second crossing region develops near δ = π/2 (figures 3.13

to 3.17). Another point to note about the figures is that as ζ0 increases, the second
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crossing region moves towards δ = π. We will see later that these crossing regions

between Sx and Sy are undesirable and detrimental to interferometer operation.
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Figure 3.12. The main figure describes X (triangle) and Y (circle) squeez-
ing for ζ0 = 0.5 as a function of interferometer phase δ. The inset depicts
a region where Sx and Sy are almost equal.
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Figure 3.13. The main figure describes X (triangle) and Y (circle) squeez-
ing for ζ0 = 0.75 as a function of interferometer phase δ. The inset
depicts a region where Sx and Sy are almost equal. Sx and Sy cross close
to δ = π/2.



49

����� ����� ����� ����� 	��
�

���

�

��

���

����

�����

�
�
�
�
�
�
�
�
�

���������

����

����

	
��

���� ���� ���� ���� ����

�����


������

����
�

�����	

�

Figure 3.14. The main figure describes X and Y squeezing for ζ0 = 1.0 as
a function of interferometer phase δ. Sx and Sy cross close to delta = π.
The inset on right depicts a region where Sx and Sy are almost equal.
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Figure 3.15. The main figure describes X (triangle) and Y (circle) squeez-
ing for ζ0 = 1.25 as a function of interferometer phase δ. The inset depicts
a region where Sx and Sy are almost equal.
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Figure 3.16. The main figure describes X (triangle) and Y (circle) squeez-
ing for ζ0 = 1.5 as a function of interferometer phase δ. The inset depicts
a region where Sx and Sy are almost equal.
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Figure 3.17. The main figure describes X (triangle) and Y (circle) squeez-
ing for ζ0 = 1.75 as a function of interferometer phase δ. The inset depicts
a region where Sx and Sy are almost equal.
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Figure 3.18. The main figure describes X (triangle) and Y (circle) squeez-
ing for ζ0 = 2 as a function of interferometer phase δ. The inset depicts a
region where Sx and Sy are almost equal.
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Figure 3.19. The main figure describes X (triangle) and Y (circle) squeez-
ing for ζ0 = 3 as a function of interferometer phase δ. The inset depicts a
region where Sx and Sy are almost equal.
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Figure 3.20. The main figure describes X (triangle) and Y (circle) squeez-
ing for ζ0 = 4 as a function of interferometer phase δ. The inset (a) depicts
a region where Sx and Sy are almost equal. Inset (b) shows fluctuations
in Sx.
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3.3.3.2. Q-Quadrature Squeezing

From the figure 3.21 it can be seen that Sq can go below the vacuum level (indicated

by the horizontal line F1) for certain range of phase angle δ. The squeezing scales

with interaction length and one may be tempted to conclude that by merely having

a long crystal we could obtain arbitrarily large SNR. However, as the interaction

length increases, after the SHG stage, the intensity of the phase sensing field decreases

rapidly. For low values of the phase sensing field, it is possible that our linearization

approximation breaks down, but we have not investigated this in detail.
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Figure 3.21. Q-quadrature squeezing for different interaction lengths. It
can be seen that as the interaction length increases, so does squeezing.
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3.3.3.3. Squeezing Angle β

The squeezing angle gives us an indication of the useful operating range of the

interferometer. More specifically, we identify smooth, continuous regions of the plot as

stable and discontinuous regions as unstable. It should be noted that this has nothing

to do with the numerical stability of our differential equations (which are a function

of length) but instead indicate the behavior of our system response to different initial

conditions encapsulated by the conserved quantity (Γ). Discontinuities arise mainly

due to the crossing behavior of Sx and Sy which generates an abrupt change in sign

and causes β to latch to extreme values of ±π/4.
Figures 3.22 to 3.30 show the squeezing angle as a function of interferometer phase

δ. For small characteristic length ζ0 = 0.5, we see that there are less discontinuities

in the squeezing angle (inset of figure 3.22). At δ = 0, the Q-quadrature is the

same as the X-quadrature and therefore the squeezing angle is simply 0. However, as

we increase the characteristic length ζ0, we see a few trends in the squeezing angle

graphs. First, the graph is broken up into three separate regions symmetric about

δ = π. From ζ0 = 0.75 to ζ0 = 4, the central segment about δ = π gets progressively

compressed (main figures 3.23 to 3.30). In addition to this, the fluctuations in the

squeezing angle close to δ = 0 begin to progressively increase (inset of figures 3.23

to 3.30).
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Figure 3.22. Main figure shows the squeezing angle for a length of ζ0 = 0.5.
The inset shows fluctuations in squeezing angle.
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Figure 3.23. Main figure shows the squeezing angle for a length of ζ0 =
0.75. The inset shows fluctuations in squeezing angle.
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Figure 3.24. Main figure shows the squeezing angle for a length of ζ0 = 1.0.
The inset shows fluctuations in squeezing angle.
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Figure 3.25. Main figure shows the squeezing angle for a length of ζ0 =
1.25. The inset shows fluctuations in squeezing angle.
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Figure 3.26. Main figure shows the squeezing angle for a length of ζ0 =
1.50. The inset shows fluctuations in squeezing angle.
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Figure 3.27. Main figure shows the squeezing angle for a length of ζ0 =
1.75. The inset shows fluctuations in squeezing angle.
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Figure 3.28. Main figure shows the squeezing angle for a length of ζ0 = 2.
The inset shows fluctuations in squeezing angle.
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Figure 3.29. Main figure shows the squeezing angle for a length of ζ0 = 3.
The inset shows fluctuations in squeezing angle.
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Figure 3.30. Main figure shows the squeezing angle for a length of ζ0 = 4.
The inset shows fluctuations in squeezing angle.
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3.4 Rotating X-quadrature to Q-quadrature by an Optical Cavity

In the previous section we discovered that it was possible to obtain reduced quadra-

ture fluctuations if the measurement angle was shifted away from the canonical X-Y

quadratures and we calculated the squeezing angle β at which the fluctuations are

minimized. In other words, we have to rotate our measuring device by a certain angle

ψ to observe this squeezing. The question now is, how do we do it in practice? In this

section we present a way to accomplish this experimentally. Our choice of technique

is based on the practical limitations involved in detecting quantum fluctuations of a

bright (intense) field. In a traditional Mach-Zehnder interferometric setup, measuring

the intensity difference between output ports, it is possible to infer the relative phase

between the two paths.

The central devices to this technique are an empty optical cavity and a spectrum

analyzer (SA). A SA is an electronic device that is used to measure the power spectrum

of a signal. To transfer information from the optical domain (THz frequency) to the

electronic domain (GHz or MHz) it is necessary to down-shift the signal and therefore

the SA is usually based on the super-heterodyne principle [45] where the input RF

signal from the photodiode is converted to an intermediate frequency that is analyzed

after filtering.

An interferometer directly measures the X quadrature and its fluctuations, but

this is not the quadrature where squeezing is optimum. The optimum quadrature

is the Q-quadrature, so we need to rotate the angle and this can be accomplished

by an optical cavity [46, 47]. This technique relies on the fact that the cavity has a

frequency dependent response, i.e. different frequency components acquire different

phase shifts. The output light from the cavity consists of the sum of electric fields

from the direct reflection from the front mirror and the leaked light from inside the

cavity. This is not the same as the input light and therefore in any calculation of

SNR, we need to calculate the quadrature rotated signal which is precisely the output

of the optical cavity. This is accomplished as shown in figure 3.31.
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Figure 3.31. Schematic of the detection apparatus.

In the previous sections we discussed introducing an external phase δ and studying

the interferometer response. The amplified phase sensing field at the output of the

interferometer is given as

a(t) = A(1 +m sin δ)e−iω0tei(ϕ+β sin δ), (3.14)

Equation 3.14 consists of both amplitude and phase modulation. We can expand

equation 3.14 as

ā(t) = A(1 +
m

2i
(eiδ − e−iδ))(1 +

β

2
(eiδ − e−iδ)e−iω0t, (3.15)

For small modulations, we can neglect mβ terms and we end up with:

ā(t) = A(1 +
1

2
(β − im)eiδ − 1

2
(β − im)e−iδ)e−iω0t, (3.16)
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Sending the field through a cavity imposes phase shifts on each of the frequency

components, i.e f(δ) → f(δ)eiϕj , where ϕj is the cavity imposed phase shift on the

jth frequency component, therefore we have

ā(t) = A(1 +
1

2
(β − im)eiδeiϕ1 − 1

2
(β − im)e−iδeiϕ2)e−iω0t, (3.17)

The photodetector measures intensity i.e. I =| ā |2= a∗a and therefore we have

I ≈ A2(1 +
1

2
(β + im)e−iδe−iϕ1 − 1

2
(β + im)eiδe−iϕ2)× (3.18)

(1 +
1

2
(β − im)eiδeiϕ1 − 1

2
(β − im)e−iδeiϕ2),

Neglecting higher order terms we have

| ā |2= A2(1 + [
(β − im)

2
eiϕ1 − (β + im)

2
e−iϕ2 ] + c.c), (3.19)

To get the signal, it is sufficient to analyze the positive frequency part of equa-

tion 3.19, which can be rewritten as

ei
(ϕ1−ϕ2)

2 [
(β − im)

2
ei(ϕ1+ϕ2) − (β + im)

2
e−i(ϕ1−ϕ2)], (3.20)

Defining Δϕ = (ϕ1 + ϕ2)/2 and neglecting the global phase, we can write the signal

as

S = β sinΔϕ−m cosΔϕ (3.21)

Δϕ is the rotation imposed by the Fabry-Perot cavity on the mean field. We

would now like to determine the relationship of this angle with the squeezing angle β

and do so in the next section.
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3.5 Time Domain Analysis

In this section we analyze what happens to the quantum fluctuations after fre-

quency dependent phase shifts have been imposed on it by the Fabry-Perot cavity.

The optical field is given as a(ω) = eiθ(ω), where θ(ω) is the phase associated with

each spectral component of the light. In the time domain, the detector response is

the Fourier transform of a(ω) and is given as

a(t) =

∫
dωa(ω)eiθ(ω)e−iωt, (3.22)

Writing the signal as a sum of its mean value ā and fluctuations Δa, we have

a(t) =

∫
dω[ā(ω) + Δa(ω)]eiθ(ω)e−iωt, (3.23)

The carrier is assumed monochromatic so ā(ω) → ā(ω0) and hence equation 3.23

describes a carrier with a small bandwidth of frequencies around the central frequency.

This can be further simplified as

a(t) =

∫
dωā(ω)δ(ω − ω0)e

iθ(ω)e−iωt +

∫
dωΔa(ω)eiθ(ω)e−iωt

= ā(ω0)e
iθ(ω0)e−iω0t +

∫
dωΔa(ω)eiθ(ω)e−iωt,

A detector measures intensity I(t) = a(t)∗a(t) and is given by

I(t) = {ā(ω0)e
iθ(ω0)e−iω0t +

∫
dωΔa(ω)eiθ(ω)e−iωt}∗ × (3.24)

{ā(ω0)e
iθ(ω0)e−iω0t +

∫
dωΔa(ω)eiθ(ω)e−iωt},



71

Neglecting higher order terms, we have

I(t) =| ā(ω0) |2 +ā∗(ω0)

∫
dωΔa(ω)ei(θ(ω)−θ(ω0))e−i(ω−ω0)t + (3.25)

ā(ω0)

∫
dωΔa(ω)†e−i(θ(ω)−θ(ω0))ei(ω−ω0)t,

We define the following variables and bear in mind that in a Fourier transform we have

positive and negative frequency components and the limits are therefore (−∞,∞) and

(∞,−∞) on the respective integrals

Δθ(ω) = θ(ω)− θ(ω0)

ω − ω0 = Ω

ϕ1 = Δθ(−Ω) = θ(ω0 − Ω)− θ(ω0)

ϕ2 = Δθ(Ω) = θ(ω0 + Ω)− θ(ω0),

Substituting the above variables in equation 3.24we end up with

I(t) =| ā(ω0) |2 +ā∗(ω0)

∫
dΩΔa(ω0 + Ω)eiΔθ(Ω)e−Ωt +

ā(ω0)

∫
dΩΔa†(ω0 − Ω)e−iΔθ(−Ω)e−Ωt, (3.26)

In the most general sense, we can write the classical amplitude of an electric field

as a sum of its mean value and fluctuations about the mean.

a = a+Δa, (3.27)

Using this, we can write

I(t) =| ā(ω0) |2 + | ¯a(ω0) | eiϕ0

∫
dΩΔa(ω0 + Ω)eiΔθ(Ω)e−Ωt +

| ¯a(ω0) | eiϕ0

∫
dΩΔa†(ω0 − Ω)e−iΔθ(−Ω)e−Ωt, (3.28)
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Thus far we have described the response of an ideal detector to an optical field. Our

strategy for completing the analysis is as follows: First, we derive the consequences

of imposing frequency dependent phase shifts and demonstrate mathematically what

exactly the rotation of quadratures means. Next we use equation 3.26 and verify that

the quantum fluctuations rotate with the same angle as the mean field .

Since we work with intense fields, we make the assumption | Δa(t) |�| a |. A

photodetector measures the field intensity given as

I(t) = a∗(t)a(t) = (a∗ +Δa∗(t))(a+Δa(t))

= u2 + u(Δa(t)e−iϕ0 +Δa∗(t)eiϕ0), (3.29)

The second term is the perturbation in the field amplitude which we express as

ΔI(t) = u(Δa(t)e−iϕ0 +Δa∗(t)eiϕ0), (3.30)

The amplitude quadrature is defined as

Δx = Δa(t)e−iϕ0 +Δa∗(t)eiϕ0 , (3.31)

The rotation from X-quadrature to the Q-quadrature is with ϕ1, ϕ2 being the

cavity imposed, frequency dependent phase shifts, we can write the transformation

equation as

Δq = Δa(t)e−iϕ0e−iϕ2 +Δa∗(t)eiϕ0e−iϕ1

= e−i(ϕ2+ϕ1)/2[Δa(t)e−iϕ0ei(ϕ1−ϕ2)/2 +Δa∗(t)eiϕ0e−i(ϕ1−ϕ2)/2], (3.32)

Defining Δϕ = (ϕ1 − ϕ2)/2 and neglecting the global phase term we obtain:

Δq = Δa(t)e−iϕ0eiΔϕ +Δa∗(t)eiϕ0e−iΔϕ, (3.33)
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We can perform the same analysis on equation 3.26. From the second term, we can

write Δq as

Δq = Δa(ω0 + Ω)e−iϕ0eiϕ2 +Δa(ω0 + Ω)†eiϕ0eiϕ1 ,

Getting rid of the global phase term and defining Δϕ as before, we end up with:

Δq = Δa(ω0 + Ω)e−iϕ0eiΔϕ +Δa(ω0 − Ω)†eiϕ0e−iΔϕ, (3.34)

The significance of equation 3.34 is readily seen when consider the term Δϕ = ϕ1−
ϕ2, and we set ϕ1 = ϕ2 or Δϕ = 0, then Δq = Δx. The point is, in order to rotate the

X-quadrature to the Q-quadrature, we need phase shifts that are different. An optical

cavity such as a Fabry-Perot cavity offers a simple and elegant avenue to accomplish

this. To summarize, we have proved that both the spectral components of the mean

field and the fluctuations associated with each mean field spectral component are

rotated by the same phase angle.

In our discussion of squeezing angle, we defined the squeezing angle to be β =

ϕ0 − α, where α (equation 3.7) was the amount the mean field phase given by ϕ0

ought to be rotated by. We can clearly see that α is the same as Δϕ and hence the

angle of rotation necessary to obtain best squeezing performance is:

Δϕ = ϕ0 − β, (3.35)

We use the above angle in our analysis of interferometer performance described

in the next section.
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3.6 Interferometer Performance

3.6.1 SNR of the Nonlinear Interferometer

In this section, we calculate the SNR for a generic nonlinear interferometer. Con-

sider a schematic described in figure ( 3.1). From equation 5.5, we identify that the

perturbations in amplitude and phase introduced by modulating the phase sensing

beam are give by m1 =
du1

dδ
,m2 =

dϕ0

dδ
and therefore the signal can be written as

S =
dϕ1

dδ
sin(Δϕ)− du1

dδ
cos(Δϕ), (3.36)

Suppose we designate the mean field intensity as I0, the total signal is given as

S = I0ΔI = kε (k is some constant of proportionality). The differential intensity is

simply the amplified phase sensing field at the output of the interferometer and if we

denote the phase sensing field as u′1 (i.e. after the PDC stage) we can write

I0ΔI = 2u′1Δu
′
1I0 = 2u′1kδI0, (3.37)

The quadrature noise is given by the value of the Q-Quadrature squeezing. The

total noise depends on the light intensity and can be calculated as u′1
√
I0
√
Sq. This

is the noise in the phase sensing beam of amplitude u′1. We can therefore calculate

Signal-to-Noise ratio as

SNRNL =
2δk
√
I0√

Sq

, (3.38)

However, if we wish to compare the the performance of the nonlinear interferometer to

a linear interferometer, we need the field prior to the output stage and thus I0 = Ips/u
2
1

where u1 = sech ζ0. Using this in equation 3.38we can write the SNR of a nonlinear

interferometer as

SNRNL =
2kδ

√
Ips

u1
√
Sq

, (3.39)
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Finally, using 3.38 and the SNR for a linear interferometer from equation 3.47, we

can define a performance metric R = SNRNL/SNRL given as

R =
2k

u1
√
Sq

(3.40)

3.6.2 Linear Interferometer

Consider a simple Mach-Zehnder Interferometer made of 50:50 linear beamsplitters

and a phase shifter. In the Heisenberg picture, we can write the beamsplitter and

phase shifter operators as

B̂ =
1√
2

⎛
⎝ 1 −i
−i 1

⎞
⎠ , P̂ =

⎛
⎝ 1 0

0 eiϕ

⎞
⎠ , (3.41)

The output (Out)= B̂P̂ B̂ × (In) is therefore given as

⎛
⎝ âout

b̂out

⎞
⎠ = −ieiϕ/2

⎛
⎝ sin ϕ

2
cos ϕ

2

cos ϕ
2
− sin ϕ

2

⎞
⎠

⎛
⎝ âin

b̂in

⎞
⎠ , (3.42)

We are interested in the output SNR. The signal is given by the average photon

number and the noise is the variance in the average photon number. Explicitly

evaluating the operator products we have

â†outâout = sin2 ϕ

2
â†inâin + cos2

ϕ

2
b̂†inb̂in +

1

2
sinϕ(â†inb̂in − b̂†inâin) (3.43)

b̂†outb̂out = cos2
ϕ

2
â†inâin + sin2 ϕ

2
b̂†inb̂in −

1

2
sinϕ(â†inb̂in − b̂†inâin).
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With a coherent state |α〉 at the first port and vacuum |0〉 at the second port, the

input state is |0〉 |α〉. The output is obtained by applying the operator â†outâout on the

input and can be written as

Iout =
1

2
(〈0| 〈α| â†outâout |0〉 |α〉 = Ips(1− cosϕ). (3.44)

where Ips =| α |2 /2 is the phase sensing signal.

We are working at a region where the slope of the intensity phase graph is a

maximum (ϕ = π/2). We are interested in the signal ΔIout which can be calculated

from equation 3.44 for a small perturbation δ, around π/2 (such that ϕ = π
2
+ δ) as

dIout
dϕ

= Ips sinϕ ≈ Ipsδ (3.45)

where δ is the perturbation in the angle. The noise is given by the square root of

the variance of the output photon number and for a coherent state with Poissonian

statistics, we can calculate the noise as

√
〈Δn̂2

out〉 =
√
〈n̂2

out〉 − 〈n̂out〉2 =
√

1

2
| α |2 = √

Ips, (3.46)

where 〈n̂out〉 = 〈â†outâout〉 =| α |2 is the average photon number at the output.

Dividing equation 3.44 by 3.46 the SNR of a linear interferometer is given as

SNRL = (
√
Ips)δ. (3.47)

3.6.3 Summary and Discussion

The results of our analysis encapsulated by equation 3.40 is plotted as a function

of interferometer phase δ for different interaction lengths ζ0 as shown in figures 3.32

to 3.40. The horizontal indicates the baseline value where the nonlinear interferom-
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eter (NLI) and linear interferometer (LI) have the same SNR. Values below this line

indicate worse performance of the NLI when compared to a LI.

We are interested in regions for which the NLI performance is greater than a

corresponding LI. We see a general trend of increase in interferometer performance

as the propagation length increases. For small interaction lengths (figure 3.32), there

is no improvement over a linear interferometer and in fact it is worse for most of the

operating range. We define two metrics that illustrate the usability of the nonlinear

interferometer, performance (based on equation 3.40) and stable operating range.

Only regions that do not have discontinuities offer stable operating range. We saw

earlier that the squeezing angle had discontinuities for certain ranges of δ and this is

the cause of instabilities that the discontinuities indicate. Physically, this means the

unstable ranges of the interferometer are not experimentally useful. Another point to

note is that the performance of a NLI varies with interferometer phase in a non-trivial

way. For certain ranges of δ, the performance is much worse than a LI.

Improvement in performance with interaction length is due to squeezing of the

phase sensing field. For larger interaction lengths, there is increased squeezing in the

Q-quadrature, i.e. a decrease in noise, so not only does the visibility of the interference

fringes improved, but also the noise of the signal is reduced.

To summarize, a nonlinear interferometer under conditions of harmonic generation

can have better performance than a linear interferometer. We demonstrate theoret-

ically that it is possible to obtain a performance improvement of about a factor of

60 over a linear interferometer. This improvement is because of both amplification

and squeezing of the phase sensing beam. Squeezing occurs after the first nonlinear

beamsplitter and enhancement of the squeezed signal occurs at the second nonlinear

beamsplitter.
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Figure 3.32. Interferometer performance for ζ = 0.5.
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Figure 3.33. Interferometer performance for ζ = 0.75.
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Figure 3.34. Interferometer performance for ζ = 1.0.
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Figure 3.35. Interferometer performance for ζ = 1.25.
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Figure 3.36. Interferometer performance for ζ = 1.50.
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Figure 3.37. Interferometer performance for ζ = 1.75.
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Figure 3.38. Interferometer performance for ζ = 2.0.
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Figure 3.39. Interferometer performance for ζ = 3.0.
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Figure 3.40. Interferometer performance for ζ = 4.0.

To reiterate, as seen from figures 3.32 to 3.40, the performance ratio R increases

with increasing interaction length ζ0. We plot this dependence in figure 3.41. We

see that apart from ζ0 = 0.5, there is a clear improvement in the performance of the

nonlinear interferometer over a linear interferometer. To generate this plot, we choose

a region where the graph is reasonably flat, i.e., we avoid regions close to δ = π.

In figure 3.42, we plot the value of δ = δmax for which maximum performance

is obtained. For the most part, best performance is obtained at an angle of about

δmax = 1.75 radians. Operational regions were chosen by hand as long as they were

continuous and were away from δ = π.
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Figure 3.41. Interferometer performance as a function of characteristic
length ζ0. It can be clearly seen that the performance increases as the
interaction length increases. The straight line indicates the region where
nonlinear and linear interferometer performance are the same. Points
above the line indicate performance greater than a linear interferometer
and points below the line indicate performance worse than a linear inter-
ferometer.
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Figure 3.42. The interferometer phase angle δ at which its performance
is a maximum as a function of characteristic length ζ0.



PART II: COHERENT INTERACTION OF LIGHT AND CS ATOMS
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4. INTRODUCTION

The experimental development of long-distance quantum communication is of much

interest as it would allow secure transmission of messages and faithful transfer of

unknown quantum states [48]. Current research is focused on using photons as the

information carrier because their interaction with matter in the communication chan-

nel can be made very weak. However due to decoherence, quantum communication

fidelity decreases exponentially with the length of the transmission line. A possible

solution to alleviate the loss of fidelity is to use quantum repeaters [49], [50]. To

implement this, some form of quantum memory is required. Since it is difficult to

store photons for long times, a possible approach to a practical quantum memory is to

reversibly transfer the quantum information carried by photons into a non-photonic

form. Coherently prepared atomic gases [51], is one possible candidate to achieve this

conversion. Technology is limited by the availability of laser sources and detectors at

the single photon level that are not noisy. With these constraints, quantum memory

research is currently done at the 750nm 850nm wavelength in alkali metal vapors.

Atom-Photon conversions involve converting the photonic state to an Atomic Spin

wave by the interaction of a write laser beam with a gas of coherently prepared atoms

and recovering the photonic state after a pre-determined storage time. The photonic

state represents the information carried by a collective photon mode or by a single

photon. A photon has a set of observables given as energy, linear momentum and

angular momentum. Each of these attributes can be preserved in the collective atomic

system and can be faithfully recovered or modified.

The basic principle involves destruction of a write photon whose energy is used

to flip the spin of a single atom in a ground state hyperfine level by pushing it to the

next level in the same manifold. Recovery of the photonic state is accomplished by

a read laser that reverses this process. This is the atom-photon conversion process
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and the system is in an entangled state. We investigate atom-photon conversion by

stimulated Raman scattering i.e., reversible storage and retrieval of quantum states

of light in a coherently prepared atomic gas of hot cesium atoms. Our investigation

is based on the physics of three-wave mixing. The efficiency of conversion from atom

to photon can in principle reach 100 percent and in theory, the conversion process

can be noiseless [52].
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5. PHYSICAL PRINCIPLES

In this chapter, we will discuss the physics of atom-photon conversion. First, we dis-

cuss basic light-matter interaction and the feature of superposition of states followed

by the atomic structure we choose to work with, and finally present a brief introduc-

tion to two schemes that are used to build up atomic coherence and their relative

merits and present a possible solution to alleviate the problems associated with the

schemes discussed in the previous section.

5.1 Physics of Light-Matter Interaction

5.1.1 Principle of Superposition of States

Quantum mechanics gives us the ability to calculate the probability that a physical

event would occur. We describe a path by which an event occurs by a wave function.

The wave function has a probability amplitude associated with it. The square of the

amplitude gives us the probability of the event occurring. If there is more than one

possible pathway for an event to occur and the paths are in principle indistinguish-

able, the probability for that event to take place can be obtained by summing the

probability amplitudes corresponding to the various paths. Taking the square of this

sum gives us the probability of the event. In other words, quantum mechanics allows

a system to be in a superposition of states.

The important concept of superposition of states can also be applied when one

tries to determine the quantum state of a physical system. If after some evolution,

the system can end up in several states which are indistinguishable, the system is in

a coherent superposition of all the possible states. Consider an atomic system with

three energy levels |g〉,|m〉 and |e〉 as shown in figure 5.1.
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Figure 5.1. A three level Lambda arrangement of energy levels.

Assume that an atom that is initially in an excited state with two decay paths.

After the atom decays to the ground states and emits a photon, the state of the

system composed of the atom and the emitted photon can be written as

|Ψ〉 = 1√
2
{|g〉|1p〉+ eiφ|m〉|1s〉}

|Ψ〉 = 1√
2
{â†p|0〉}|g〉+ eiφ{â†s|0〉}|m〉, (5.1)

where each term stands for the final state of the atom and the emitted photon for

the two possible decay paths. Incidentally, the above arrangement of energy levels

is called a Λ (Lambda) system. The creation of a light-matter superposition state is

also known as an entangled state.
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5.1.2 Atomic Coherence

Atomic Coherence is defined as the superposition of ground states |g〉 , |m〉 of an
atomic system such that the atomic state |Ψ〉atom = α |g〉 + β |m〉. Mathematically,

it is given by the off-diagonal elements of the density matrix (representation) in the

bare state basis, of the atomic system. This is a very important concept that is

central to achieving atom-photon conversion. In this process, we create entangled

states of photons and atoms. The states |g〉 , |m〉 are chosen such that they are dipole

disallowed. Suppose we have an ensemble of atoms in a Lambda configuration, we

can define an operator for the atomic system as

Ŝ =
1√
Na

∑
i

|gi〉〈mi|, (5.2)

We now call Ŝ operator the Spin Wave. This operator quantifies atomic coherence.

We can see readily that: Ŝ|mi〉 = |gi〉. Hence Ŝ may also be considered an atomic

demotion operator where 〈Ŝ〉 
=0. In the context of a real atom, usually, |g〉 and |m〉
are ground state hyperfine levels (discussed in the next section) and hence Ŝ is also

known as the spin-flip operator as the spin quantum number of the atom changes.

The index i is a label attached to each atom and the sum indicates that the spin-flip

operator describes the collective atomic system involving many atoms.

5.2 The Cesium Atomic System

As mentioned previously, storage of light is essential to implement quantum mem-

ory. An atomic gas is an attractive alternative to accomplish this because of less

decoherence when compared with solid state media. This is partly because of the

near continuum distribution of energy levels in solids. Equation 5.2 is the simplest

form of coherent superposition. This is realized in a real atomic system by choosing

atoms with two ground states that couple to a common excited state each via one of

two light fields as shown in figure 5.3. The important point to note is that all other

energy levels are far enough away that their influence can be neglected. Then, these



90

atoms can be thought of as three-level-systems, commonly called Λ-systems. Of the

atomic systems available, alkali atoms are the simplest systems (experimentally) that

can be used in a Λ configuration (in our experiments we choose to work with a system

comprising of the F = 3, 4 ground states and an excited state such as F ′ = 4. Note

that |g〉 and 〈mi| are long lived (compared to the timescale on which our experiments

take place) states of the systems.

We choose to work with the 62S1/2 - 62P3/2 energy levels (referred to as the D2

Line in spectroscopic literature) of the Cesium atomic system. The energy levels

of this system can be accessed by light of wavelength 852 nm. The specifics of the

laser system will be discussed in a later section. A compendium of physical and

spectroscopic properties of Cs can be found in [53].

Figure 5.2. The Cesium D2-Line energy level structure.
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5.3 Preparation of Atomic Coherence

Experimental configurations for atom-photon conversions independent of each

other in terms of the physics, but follow different implementations. The essential dif-

ference lies in how the atoms are placed in a coherent superposition of ground states.

This can be accomplished by either resonant phenomena such as Electromagnetically

Induced Transparency (EIT) [54] or via far off-resonant Raman processes [48]. In

all these experiments, it is essential to prepare the atoms in a ground state i.e in

|g〉 or |m〉 as a prelude to building up atomic coherence. In an experiment, the ac-

cessible part of the atom-photon superposition state are photons. In order to exert

control over the evolution of the collective atomic wavefunction via light, we have to

build up the coherence as opposed to allowing thermal fluctuations to redistribute

atoms. There is no definite phase relationship between atomic wavefunctions in case

of thermal distribution and hence a thermal redistribution does not make a coherent

state. Ground state preparation of the atomic system is accomplished by shining a

strong resonant laser on the atomic ensemble coupling the upper ground state with

an excited state and allowing the atoms to spontaneously decay to the next hyperfine

state in the same manifold. This is called optical pumping [55].

Next, atomic coherence is generated by a write process (as in writing the quantum

state of light). EIT based writing has been demonstrated by [56, 57]. In an EIT

scheme, a Λ energy level atomic system interacts with two resonant lasers. A strong

laser called control Ac, couples the upper ground state |m〉 to an excited state |e〉 and
a weak laser, called probe or write, Ap couples the lower ground state |g〉 to |e〉. It is
seen that the probe absorption vanishes at the excitation energy of |e〉. This unusual
effect results from the quantum coherence between two atomic transitions created

by the strong control field applied to one of the two transitions and a weak probe

field applied to the other. The origin of these effects has been explained in terms

of superposition states induced in a multi-level atom driven by two laser fields. The

control laser dresses the states it couples to into a so called bright and dark state. In

the dressed state basis, the probe field absorption vanishes [58].
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Figure 5.3. EIT configuration in a Lambda system.

In EIT centric studies the emphasis is on investigating what happens to the probe

field and not on the atomic system. When the atomic density matrix is calculated,

it is done to study the refractive properties of the medium from which propagation

of the probe field is studied. For any study of using atoms in quantum computing

(quantum registers) [59], the point that the coherence (off-diagonal) terms are non-

zero deserves more attention. One of the drawbacks of using EIT in the write process

lies in the fact that it is a resonant phenomenon. Hot atoms constitute a Doppler

medium due to the Maxwell-Boltzmann distribution of atomic velocities. This means,

a weak write beam can be incoherently scattered by closely spaced velocity classes,

i.e. photons can be lost due to spontaneous scattering which would be a problem for

low intensity write beams used in typical quantum level experiments.

To alleviate absorption issues associated with resonant phenomena, we can look

towards off-resonant processes. How can an off-resonant process make coherent prepa-

ration possible? The principle is that spontaneously scattered light acts as a seed for

stimulated emission [60,61]. In brief, a spontaneously emitted photon, after a series of

emissions and absorptions propagates through the atomic sample building up coher-

ence in a spatially narrow pencil like geometry in the direction of the propagation of
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the initial light wave. Based on this theory a technique to prepare a coherent super-

position of atomic states is by an off-resonant process was demonstrated by [48]. In

this scheme, after the initial pure state preparation, a weak, off-resonant write laser

incident on the |g〉 level transfers atoms to the |m〉 level by a spontaneous Raman

scattering. “Reading” is accomplished by the reverse process. Although, losses are

significantly lower, the interaction strength is also lower than a resonant process. To

compensate, the atomic density must be increased. Although the experiment in [48]

was performed in a cold ensemble of laser cooled rubidium atoms, subsequent experi-

ments have demonstrated the success of the scheme in hot atoms [62–64] and in cold

atoms [65]. A natural advantage of this process lies in the reading process (the atomic

spin wave is converted back to a photon) which can be done at a different frequency

than the write process.

Figure 5.4. Preperation of coherence by spontaneous Raman scattering.

Hot or cold systems have their unique disadvantages and advantages. The main

experimental limitation in either case is decoherence or dephasing of the atomic spins

[64]. This is an important characteristic of a collective system where there is a unique

1-1 mapping between a scattered photon and a spin flipped atom. In this context, if

the atomic spins flip for any reason other than their interaction with the read/write
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lasers, this 1-1 correspondence is lost which in turn implies a loss of information. It

is the mechanism of dephasing that is different in hot versus cold systems.

In addition, there is always the problem of quantum noise in both schemes. By

noise we mean the creation of a photon which has random polarization and is not

associated with a corresponding spin flip. In theory, to simplify calculations, we

assume that atoms are moving along the beam and that the same velocity class of

atoms are being addressed by the control and probe i.e a one dimensional theory.

But this is not the case in real experiments. In off-resonant spontaneous Raman

experiments, although coherence is built up from spontaneous scattering, the process

is essentially noisy. We discuss this in the next chapter.

The main causes of decoherence in a hot atoms vapor cell are wall atom collisions

(inelastic), atom-atom collisions and a prepared atom drifting out of the interaction

areas serviced by the read/write beams [64, 66]. The collision issues have been al-

leviated to a certain extent by using paraffin coated cells and buffer gases. While

an atom trap containing a cold cloud of atoms seem to solve the collision related

decoherence problems, the external magnetic field required to trap the atoms interact

with the atomic spins causing inhomogeneous broadening of the ground state and

their dephasing [67]. Cost, size and complexity issues also go against a cold atom

setup. With this in mind, we have opted to work with hot atomic gas (T = 50◦C). A

possible solution to achieve high photon-photon conversion efficiency would be to use

a stimulated process. The main advantage is that this process is in theory noiseless.

We discuss this in detail in the next chapter.

5.4 Atom-Photon and Photon-Photon Conversion in Raman Scattering

In this chapter, we discuss atom to photon conversion and photon to photon

conversion in Raman scattering. First we review Raman interactions in a three level

Λ system, then we discuss a parametric Raman amplifier, next we discuss atom-
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photon conversion by stimulated Raman scattering (when the pump field is large)

and finally we discuss photon-photon conversion when the spin wave is large.

In all subsequent discussion, light and the atomic system interactions are given

by the following figure:

Figure 5.5. The Pump (Write) field couples levels |g〉 and |e〉, the Control
(Stokes) couples levels |m〉 and |e〉. Optical and spin fields can be either
weak (represented by operators) or strong (represented by amplitudes).

5.4.1 Raman Interactions in a Λ System

A Raman interaction is a non-resonant, nonlinear process where a photon of energy

�ω1 is destroyed and simultaneously a photon of energy �(ω1−ΩR) is generated [68].

The difference in energy between the two appears as a quantum of Raman excitation

�ΩR. When the energy of the emitted photon is less than the energy of the incident

photon, the process is called Stokes scattering. In a Stokes process, the internal

energy of the medium increases. The reverse process is called anti-Stokes scattering

where the energy of the scattered photon is higher than the energy of the incident

photon.
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The interaction hamiltonian for a Raman process in a Λ system shown in fig ( 5.5)

was given by Duan et al., in [48] as

ĤR = ı�ηâpâ
†
sŜ

† − ı�ηâ†pâsŜ, (5.3)

Ŝ is the spin-flip operator that describes the collective atomic system, âs, âp are

operators that describe the light fields and η = gegg
∗
em

√
Na/Δ where geg, gem are

coupling coefficients between the light and atomic states and Δ is the detuning of the

light fields from the upper excited state. Here we are considering a single velocity

class of atoms and that information is in Δ, if effects of additional velocity classes are

to be considered, we have to convolve the result with a Doppler velocity distribution.

Conventionally, the photon fields âs, âp are called signal and idler respectively. In

a semi-classical treatment, ηŜ is usually treated classically and lumped together as

one term. This is form of the Hamiltonian is used to describe parametric process,

where the interacting light fields do not change the energy of the medium. Figure 5.5

shows pump,stokes and spin waves that constitute the interaction Hamiltonian given

in equation 5.3. We can analyze this Hamiltonian under a few special conditions

which will correspond to different physical situations.

5.4.2 The Parametric Raman Amplifier

A parametric amplifier can be described by the following interaction Hamiltonian

[69]:

ĤR = ı�ηâpâ
†
sâ

†
i − ı�ηâ†pâsâi, (5.4)

This represents a non-linear process where a photon in the pump field âp is destroyed

and two photons are created in the âs and âi modes. The subscripts stand for pump,

signal and idler. Note that the energy structure of the medium is not modified and

the only role played by the medium is one of a passive facilitator of mixing the optical

fields. In a Raman amplifier however, the energy of the medium is modified and this



97

results in amplifying a Stokes field with gain being proportional to the pump intensity.

Notice the similarity in the structure of the interaction hamiltonian discussed in the

previous section and the parametric amplifier hamiltonian.

The output states of the signal and idler fields are given as

âouts = âs cosh |ηAp|τ + eiϕp â†i sinh |ηAp|τ
âouti = âi cosh |ηAp|τ − eiϕp â†s sin |ηAp|τ, (5.5)

A Raman amplifier is described by replacing the idler field of equation 5.4 with

an atomic spin wave. In other words, the spin wave takes the role of the idler field.

Consider a Raman system with a strong pump field where we make the replacement

âp → Ap, i.e., the pump field is intense and hence the operator average can be

represented by a classical amplitude. In the absence of a Stokes field we can write

the hamiltonian 5.3 as [52]

ĤR = ı�ηApâ
†
sŜ

† − ı�ηA∗
pâsŜ, (5.6)

The output states of the Stokes and idler fields are given below [52]. (Note the

difference in designation of the subscripts when comparing equations in 5.5):

Ŝout = Ŝ cosh |ηAp|τ + eiϕS â†s sinh |ηAp|τ (5.7)

âouts = âs cosh |ηAp|τ − eiϕS Ŝ† sin |ηAp|τ, (5.8)

The above equations describe a Raman amplifier operating under high gain conditions.

5.4.3 Atom-Photon Conversion: Strong Pump Regime

As discussed in chapter 2, stimulated emission is seeded by spontaneous scattering.

The motivation for this idea stems from the basic principle that the probability of

emission into a particular mode is increased by a factor of n+1 if there are already n
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photons in that state. Suppose there is a strong Stokes field injection and the pump

field is made very weak, we can rewrite equation 5.3 as

ĤR = ı�ηâpA
∗
sŜ

† − ı�ηâ†pAsŜ, (5.9)

The evolution of the operators in the Heisenberg picture is given as [52]:

âoutp = âp cos |ηAS|τ + eiϕS Ŝ sin |ηAS|τ (5.10)

Ŝout = Ŝ cos |ηAS|τ − eiϕS âp sin |ηAS|τ, (5.11)

Here eiϕS ≡ ηA∗
S/|ηAS|. The η term depends on the coupling coefficients between

the atom and the field while the AS term is the classical amplitude of the injected

Stokes field. When the argument of the cosine term is π/2 and when ϕS = 0 we have

âoutp = Ŝ and Ŝout = −âp. (There is no particular significance to the negative sign.)

This is called atom-photon conversion and vice versa. Equation 5.11 tells us

that given an initially prepared atomic system the presence of a strong Stokes field

converts the pump photon into an atomic coherence with very high efficiency. Likewise

Equation 5.10 describes the reverse process. Note that in the reverse process the

Stokes field can be of a different frequency.

5.4.4 Photon-Photon Conversion: Strong Spin Wave Regime

We revisit the fact that it is necessary to build atomic coherence to achieve photon

photon conversion. We have also discussed three different schemes that can be used

to build atomic coherence.

Suppose the spin wave is very large in equation 5.3, the interaction Hamiltonian

can be written as

ĤR = ı�ηâpâsS
∗ − ı�ηâ†pâsS, (5.12)
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We can then treat the spin wave as a classical amplitude. The corresponding

output operators for the Stokes field and pump fields will become

âouts = âs cos |ηS|τ − eiϕS âp sin |ηS|τ, (5.13)

âoutp = âp cos |ηS|τ − eiϕS âs sin |ηS|τ, (5.14)

Here eiϕS ≡ ηS∗/|ηS|. The η term depends on the coupling coefficients between

the atom and the field while the S term is the amplitude of the spin wave. When

the argument of the cosine term is π/2 and when ϕS = 0 we have âoutp = âS for the

creation of a pump photon from a Stokes photon as shown in figure 5.6.

Figure 5.6. Converting a pump photon to a Stokes photon

The result we are interested in given by âouts = −âp describes the creation of a

Stokes photon from a pump photon. This can be done with a controllable recovery

time. In other words, we can create a large atomic spin wave and after a specific
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time delay, recover the photon field in the Stokes mode. In traditional light storage

experiments based on resonant phenomena such as EIT, the spin coherence is con-

verted back into a light pulse that has the same frequency as the weak input probe

pulse, so there is no frequency conversion. The same field is stored and recovered.

Our project is an experimental investigation of frequency conversion by mapping the

spin coherence back into light at a different frequency. This is done by injecting a

Raman field that is far off-resonant, which means the injected field is not absorbed

by the medium and can be made weak, as opposed to a resonant control field in a

traditional light storage experiment.
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6. EXPERIMENTAL ARRANGEMENTS

6.1 Generating Atomic Coherence by EIT

Electromagnetically Induced Transparency (EIT) is a quantum interference effect

where the absorption of a weak resonant field is canceled by the introduction of a

strong coupling field. This effect results in the transmission of light through an oth-

erwise opaque medium [70]. Fleischhauer and Lukin [71, 72] developed the theory of

light storage in atomic media using the EIT effect and it was experimentally demon-

strated by Phillips et al., [56] in Rubidium. If a weak light field and a strong control

light field are interacting with an atomic system, the quantum field can be converted

fully into atomic coherence by adiabatically changing the control field intensity and

pulse shape [71]. Fleischhauer and Lukin proposed a new quantum field to describe

the physics of photon-atom conversion called the dark-state Polariton. It is basically

an operator that is a linear superposition of the an atomic spin wave (eigenstates

of Ŝ) and the weak quantum field that describes the light. The main result of the

theory and experiment is that this conversion from photon to atom is reversible and

the storage time can be controlled by changing the intensity of the control beam.

6.1.1 Continuous Wave EIT

In a typical EIT experiment, a strong control laser and a weak probe laser interact

with a lambda system as shown in figure 5.3. The control laser is frequency locked and

the probe laser is scanned across the various excited state energy levels. When the

two photon resonance condition is met, the probe transmission is increased dramati-

cally (i.e the medium becomes transparent). The point relevant to our experiment is

that under conditions of EIT, atomic coherence is generated and by maximizing the
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EIT signal, we enhance the generation of atomic coherence. With this in mind, we

performed CW EIT experiments to obtain conditions for which enhanced atomic co-

herence was generated. In the following sections, we discuss important experimental

parameters and explain our setup in detail.

6.1.1.1. Cesium Vapor Cells

Metallic cesium (Cs) is highly toxic and reacts violently when exposed to moisture.

It is common practice in atomic physics experiments to use vapor cells. These are

evacuated glass cells filled with a small quantity of Cs. Under conditions of low

pressure (typically 10−6 Torr), Cs vaporizes and constitutes a dilute system, i.e. Cs-

Cs interactions can be ignored for most purposes. Our cylindrical vapor cells were

typically 10cm long and 2.5cm radius. We employed three different kinds of vapor

cells, a bare cell consisting of Cs alone, a buffer gas cell filled with Ne at 40 Torr and

a paraffin coated cell.

Figure 6.1. The paraffin cell used in our experiment.
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From Daniel Steck’s Cs D Line data compendium [53], we can calculate the vapor

pressure of Cs for as

log10 Pv = 8.22127− 4006.048

T
− 0.00060194T + 0.19623 log10 T, (6.1)

where Pv is the vapor pressure of Cs and T is the temperature in Kelvin.

In detailed studies by Klein et al., the generation of atomic coherence is greatly

enhanced by increasing the number density of atoms in the cell [73] and this can

be calculated from the vapor pressure at specific temperatures. A theoretical plot is

given in figure (6.2).
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Figure 6.2. Theoretical plot of number density of Cs atoms with temper-
ature.

Another important factor in atomic coherence experiments is the time atoms spend

in the laser beams. Assuming a sufficiently dilute system, and a Maxwell-Boltzmann
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distribution of atoms, the most probable atomic speed and average speeds are given

as [74]

v =

√
2kT

mCs

(6.2)

〈v〉 =
√

8kT

πmCs

, (6.3)

For our system at T = 60◦C, 〈v〉 ≈ 250 m/s. Assuming a typical beam diameter

of 2.0 mm, an atom exits the laser beam in about 8μs. This is a serious limitation in

atomic coherence experiments because while the system may be coherently prepared,

recovery of information is hampered due to loss of atoms from the laser beams. One

way to alleviate this problem is to increase the beam diameter, but this comes at the

cost of reduced light intensity. To slow down or limit the atoms from escaping the

beam, it was suggested that an inert buffer gas be used and a detailed study was

performed by Mikhailov [75]. We used a cell filled with 40 Torr Ne buffer gas. The

number density of Ne can be calculated from the ideal gas law gives nNe ≈ 1.3× 1018

cm−3.

The diffusion time of the Cs atoms change due to elastic collisions with Ne and

this has been studied in great detail, for example in [76]. The diffusion time is given

as t = r2/4D2 where r is the beam radius and D is the diffusion coefficient [77] . The

diffusion coefficient is given as [78]:

D =
1

3
〈v〉λm (6.4)

λm =
1

nσCsNe

, (6.5)

where λm is the mean free path n is the number density of Cs, 〈vμ〉 ≈ 600 m/s

is the velocity of the reduced mass of the Cs-Ne system and σCs−Ne = 2.871× 10−14

cm2 is the collisional cross section calculating using the radius of the Cs-Ne molecule

given in [79–81]. Using this data, we can calculate D = 0.168 cm2/s and therefore

the modified diffusion time is t = 0.6 ms.
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In addition to loss of atoms from the beam, atoms can depolarize due to colli-

sions with the walls of the cell. This is referred to dephasing of spins and is another

undesirable effect. Collisions with walls can result in redistribution of atoms occu-

pying different closely spaced energy levels and consequently, the phase coherence

built up when the atomic system interacts with light is destroyed. It was discovered

long ago [82] that coating the walls of the vapor cell with paraffin wax minimized

depolarization. More recent detailed studies in the context of EIT and generation of

atomic coherence have established paraffin coatings as standard technology [83]. We

used a paraffin coated cell for the main experiment.

6.1.1.2. Experiment Setup

The complete setup is shown in figure 6.3. We employed two home made 852 nm

frequency stable diode lasers in the Littrow configuration [84,85] that operate on the

Cs D2 line. The probe laser was was locked to the |F = 3〉 → |F ′ = 4〉 transition
at room temperature by standard frequency modulation (FM) spectroscopy. The

probe beam had a diameter of 2.5 mm and was linearly polarized by employing a

half-wave plate and a polarizing beamsplitter. The orthogonal polarization was used

by the locking setup. The laser power was attenuated to 500μW for use in the main

experiment. The control laser was locked to the |F = 4〉 → |F ′ = 4〉 transition at

room temperature by FM spectroscopy. This laser had a power of about 10mW and

was linearly polarized and expanded to a diameter of 1cm.

The interaction chamber consists of a paraffin coated Cs cell enclosed in a custom

made cylindrical three layer μ-metal shield to keep out stray magnetic fields. Magnetic

shielding is necessary to ensure that we work with one lambda system as opposed to a

manifold of such systems generated by Zeeman interactions of the atoms with external

magnetic fields. The entire chamber was wrapped in a multi-stranded resistive heating

wire and covered in aluminum foil. The chamber was maintained at a constant

temperature of about 60◦C. The laser beams were first made orthogonally polarized



106

to each other and then superposed on a polarizing beamsplitter in a co-propagating

configuration. The polarizations were made orthogonal to ensure that the probe laser

can be extracted by an output polarizing beamsplitter. We used appropriate lenses to

shape the beam waists of both lasers. Before entering the interaction chamber, both

lasers were tapped off by a small glass plate (microscope cover slip) and sent into an

8GHz FSR Burliegh SA100 Fabry-Perot Spectrum Analyzer to monitor their mode

quality during the course of the experiment. After exiting the interaction chamber,

the signal (probe) beam was separated out by a high quality polarizing beamsplitter

(extinction factor of 106) and the light was detected by a homemade detector based

on the fast photodiode FFD100 made by EG&G1. We observed the electronic signals

on an oscilloscope (Textronix TDS2014-B)2.

6.1.1.3. Observation of CW EIT signal

To observe CW EIT signals, we scanned the probe laser between the |F = 3〉 → |F ′〉
transitions, while the control laser was locked to the |F = 4〉 → |F ′ = 4〉 transition.
The interaction chamber was heated up to stable temperatures of between 50◦C up

to 75◦C. When the control laser was blocked, we observed a peculiar shape for the

doppler broadened absorption that seemed to be unique only for the paraffin coated

cell as shown in figure 6.4. This does not happen with either a bare cell, or with the

buffer gas cell. With the buffer gas cell, the observed fluorescence (by an inexpensive

Sony Handycam with nightshot mode)was much less brighter than either the bare cell

or the paraffin cell. This indicates that the atoms in the buffer gas cell are spending

more time in the laser beam path before diffusing out.

1Dark current 5nA, rise time 2ns, bandwidth of 150MHz.
2Details of all the home made electronics and other devices including magnetic shielding can be
found in the appendices.
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Figure 6.3. CW EIT Setup.
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Figure 6.4. Raw data showing the reference saturation spectroscopy signal
of the probe laser (pink with small peaks inside), a ramp voltage applied to
the piezo which provides the time-base (blue triangle) and the absorption
signal of the probe (yellow) after it exits the hot interaction chamber. The
probe emerging from the interaction chamber was not at zero because of
the DC offset added on by the photodetector used in this measurement.
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When the control laser was unblocked, we observed enhanced transmission of the

probe signal under conditions of EIT as shown in figure 6.5. The transmission signal

could be moved by shifting the lock-point of the control laser. It was sufficient to

turn down the servo loop gain to its minimum value and manually changing the

piezo DC offset as shown in figure 6.6. The EIT signal under these conditions had

a width between 7 MHz to even 17 MHz. Figures 6.5 and 6.6 are two different

measurements of the EIT transmission signal. Our best measurement was a width

of 7.187 MHz (figure 6.7). We checked calibration in two ways, first by directly

calibrating the frequency axis by using a Burliegh 8GHz FP interferometer and as a

quick check, we used the theoretical doppler width at the experimental temperature

to calibrate the frequency axis. Both methods were consistent with each other over a

range of temperatures, but the flattening of the doppler absorption well complicated

any attempt to fit the data to a gaussian. The inset in each figure is the saturation

absorption spectrum of the probe that indicates the transitions it is scanning over.

Figure 6.5. Raw data showing the transmission of the probe laser under
conditions of EIT after it exits the hot interaction chamber.
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Figure 6.6. Raw data showing the transmission of the probe laser under
conditions of EIT after it exits the hot interaction chamber.
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Figure 6.7. EIT transmission signal. Cell temperature was 67◦C , probe
power of 75μW and a pump power of 10mW. The pump was locked to
the F=4→F’=4 transition in an unshielded cell. The probe was scanned
across F=3→F’ transitions.
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6.1.2 Pulsed EIT

Once we saw CW EIT signals, the next step was to investigate generation of a

large spin wave based on the light storage experiment of Phillips et al., [56, 63]. We

use their idea to obtain a large atomic spin wave under conditions of EIT. In this

technique, both the control and probe lasers are pulsed and are partially overlapped.

Turning off the control field causes part of the probe to be converted into coherent

atomic excitations (spin wave). When the control field is turned on after a short

duration, the atomic excitation is converted back to light.

The first step towards generating atomic coherence is to ensure that all the atoms

we address are in the lowest |F = 3〉 ground state. This is accomplished by optical

pumping. To test the efficiency of optical pumping, we locked the strong control

laser to the |F = 4〉 → |F ′ = 4〉 transition and split the beam into a high intensity

pulse and a low intensity pulse (attenuated by a neutral density filter) as shown in

figure 6.8. Both pulses were controlled by separate acousto-optic modulators (AOM).

The pulses were timed such that first, the strong pulse pumped the atoms to |F = 3〉
and after a brief delay, the weak probe pulse measures optical pumping efficiency by

sampling the residual atoms in the upper |F = 4〉 ground state. The data is shown

in figure 6.9. The black pulse is a calibration data-set where both the optical pump

and the probe were off resonant. The red pulse shows probe transmission when the

optical pump is turned off. As expected, the probe is absorbed. The blue pulse shows

greatly enhanced probe transmission with the optical pump pulse turned on which

verifies optical pumping.
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Figure 6.8. Experimental setup to verify optical pumping efficiency. Both
pump and probe were derived from the same laser.
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Figure 6.9. Cell temperature was 40◦ C, probe power of 100μW and
a pump power of 4mW. The dashed pulse is the probe transmission
completely off resonance. The dotted pulse is the probe transmission
with optical pumping turned on. The solid line is the probe absorption
with optical pumping turned off. The horizontal line is an aid to the eye.

Next, we have to choose which cell works best for our experiment. We do this

by using the optical pumping setup. Optical pumping does not ensure that atoms

stay in the pumped ground state |F = 3〉 forever. Collisions with walls and other Cs

atoms due to thermal motion can repopulate the ground state |F = 4〉. For small

time intervals after optical pumping, the |F = 4〉 is depopulated. By measuring how

long it takes for the |F = 4〉 to repopulate, we can obtain a rough idea about the spin

coherence time. If the spin coherence is long lived, then for an appropriate probe

pulse width, the intensity should decay proportional to the spin coherence time. For
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short spin coherence, the decay profile of the probe pulse should be much steeper.

In the extreme case of rapid destruction of coherence, the decay profile gets washed

out and can only be seen for extremely short pulse widths. The decay profile of the

probe pulse to a simple exponential decay model. In the data shown, the decay tail

is fitted to a simple exponential, i.e N(t) = N0e
− t

τ . The time constant measured for

the paraffin cell was measured to about 659.6 μs as shown in figure 6.10 and about

122μs for the buffer gas cell as shown in figure 6.11. We could not obtain reliable

results for the bare cell at the same pulse width. In other words, the spin relaxation

is definitely worse for a bare cell. With the Ne cell the output signal was very noisy

and the temperature of the cell had to be increased to a minimum of 70◦C to obtain

a large number density of atoms because the partial pressure of Cs was affected by

the presence of the buffer gas. Our results were in line with an earlier investigation

by Manz et al., who also reported noisy signals when employing buffer gas cells [64].

Based on these results, we choose the paraffin cell as our main experimental cell.
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Figure 6.10. Paraffin cell spin relaxation. Cell temperature was 43◦ C,
probe power of 150μW and a pump power of 4mW. The pump was locked
to the F=4→F’=4 crossover transition in an unshielded cell and pulsed
by an AOM. The probe was derived from the same laser but controlled
by a separate AOM.
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Figure 6.11. Buffer gas cell spin relaxation.Cell temperature was 43◦ C,
probe power of 150μW and a pump power of 4mW. The pump was locked
to the F=4→F’=4 crossover transition in an unshielded cell and pulsed
by an AOM. The probe was derived from the same laser but controlled
by a separate AOM.
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We now proceed to the main experiment to generate atomic coherence in Cs vapor

by the technique of Phillips et al., [56]. The objective is to generate an atomic spin

wave by coherent transfer of quantum state of light to the ensemble of Cs atoms under

conditions of EIT. This technique relies on the fact that in EIT, a strong control field

dictates the propagation of a weak probe field through a resonant atomic medium and

in the process generates strong coupling between the probe photons and the atomic

spins. By adiabatically decreasing the control field amplitude, the group velocity is

reduced and it is possible to convert the probe pulse entirely to a spin wave. This

process is reversible and was theoretically described by the so called Polariton, which

is a quasi-particle made up of atomic and photonic excitations [71].

The setup is as shown in figure 6.13. To observe atomic coherence, we need three

pulses. An optical pumping pulse (|F = 4〉), a probe pulse (|F = 3〉) and a recovery

(or read) pulse (|F = 4〉). The optical pumping and read pulses are derived from

the same laser. Figure 6.12 represents the pulse sequence from phase locked signal

generators that drive the AOMs and the chopper for our experiment. The yellow

pulse of width of 1μs is the signal that drives the AOM generating the probe pulse,

the magenta pulse is the signal that drives the optical chopper and represents both

the optical pump and the EIT control based on before the overlap with the probe

and when it overlaps with the probe respectively3. The blue signal is used to drive

the AOM controlling the recovery pulse. It derived from the same laser as the optical

pump.

All three pulses were synced based on the TTL (transistor-transistor logic) out of

the optical chopper. The chopper frequency drifted, but since the AOM derived pulses

(from two SRS DS345 signal generators) were locked to it, it did not matter. First, the

probe field was scanned till a stable EIT peak was observed. We then zoomed in on the

resonance by decreasing the frequency scan of the probe laser. Once we established

maximum transmission (given by the DC level of the EIT signal) we engaged the

servo lock of the probe laser system. The control field and probe fields are pulsed

3The 300ns time delay shown in the figure has no bearing on the actual overlap of the light pulses
as the chopper does not generate a sharp cut-off.
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by Acousto-Optic Modulators (AOM) and their pulses are carefully overlapped by

adjusting the relative phase of the signal generators driving the AOMs. When control

laser is then turned off, we expected the part of the probe field to be converted to

atomic coherence. One of the main constraints on the efficient generation of a large

spin wave is decoherence between the ground states of the lambda system. Coherence

can be destroyed by many mechanisms such as depolarizing atom-atom and atom-

cell wall collisions , external magnetic field gradients and atoms escaping out of the

optical beam path [86]. We employed a passive three layer magnetic shield to minimize

external field gradients and used a paraffin coated Cs cell to minimize atom-wall, spin

depolarizing collisions [87, 88]. We addressed the issue of atoms escaping the laser

beams by increasing the spot size of the control laser to 1cm. Any further increase in

spot size resulted in a decrease in intensity of the control beam.

Figure 6.12. TTL pulse train direct from the signal generators. Optical
pump (pink), probe(yellow), recovery(blue). The optical pump and the
probe overlap in the experiment due to the decay tail of the chopper.
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Figure 6.13. Setup for generating atomic coherence by pulsed EIT.
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6.1.2.1. Discussion and Results

Novikova et al., [89] provided a prescription for optimizing generation of atomic

coherence in the context of light storage. We list those conditions and discuss our

results.

The first condition was to ensure that the bandwidth of the probe pulse was less

than the so called EIT window. The EIT window can be defined as the FWHM of the

EIT transmission signal. In our case, from figure 6.7, the window is 7.187 MHz. Our

probe pulse had a duration of 1μs and hence this condition is met. We can calculate

the Rabi frequency of our laser as it is proportional to the width of the EIT window.

The equation is given as [90]

B ∝ | Ωc |2
γ

, (6.6)

Where Ωc is the control laser Rabi frequency and γ = 2π×5.22MHz is the decay rate

of the excited state of the Cs D2 line. Using these numbers we estimate the control

laser Rabi frequency to be more than 1.59 MHz. This is just an estimate as we do

not have perfect EIT, i.e., the probe is not fully transmitted and this indicates loss

due to absorption.

The next condition given in [89] dictates that the probe pulse be delayed by at

least one temporal width of the original pulse. The group velocity delay can be

calculated as

τ =
3

8Bπ
Nλ2L, (6.7)

where τ is the group delay, L is the length of the vapor cell, N is the number density

of atoms, λ is the wavelength of light employed and B is the EIT bandwidth. From

our data, B = 1.59MHz, N = 2 × 1015atoms/cm3, L = 10cm and λ = 852nm and

therefore we obtain τ = 10.89μs. To further characterize the EIT window, we defined

the EIT contrast as the ratio of the maximum height of the signal to the floor of

the signal [87]. As more atoms participate in EIT, the contrast increases as shown in

figure 6.14. As the temperature increases, the atoms acquire higher thermal velocities
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and move out of the laser beams. Also, collisions are expected to broaden the width

of the EIT resonance. We plot the relative widths in figure 6.15.
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Figure 6.14. EIT contrast.
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Figure 6.15. EIT width.
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We repeated the experiments for a variety of control and probe field powers but

could not observe stored atomic coherence. At this point, we are unable to provide

evidence or replicate the results of the slow light experiments by Phillips et al., [56].

The signal that we observed (figure 6.16) was inconclusive because it was not repeat-

able under different experimental conditions of pulse widths, temperatures, control

laser power etc. Figures 6.17 to 6.20 show data obtained on one particular day.

Thus we are reluctant to conclusively state that we have the ability to generate a

large atomic spin wave. Hence we conclude that further optimization needs to be

done.
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Figure 6.16. Inconclusive result for generation of atomic coherence. Op-
tical pump and recovery pulse (pink), TTL trigger (blue), Total Signal
(yellow).
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Figure 6.17. Inconclusive result for generation of atomic coherence. Op-
tical pump and recovery pulse (pink), TTL trigger (blue), Total Signal
(yellow).
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Figure 6.18. Inconclusive result for generation of atomic coherence. Op-
tical pump and recovery pulse (pink), TTL trigger (blue), Total Signal
(yellow).
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Figure 6.19. Inconclusive result for generation of atomic coherence. Op-
tical pump and recovery pulse (pink), TTL trigger (blue), Total Signal
(yellow).
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Figure 6.20. Inconclusive result for generation of atomic coherence. Op-
tical pump and recovery pulse (pink), TTL trigger (blue), Total Signal
(yellow).
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There are many possible reasons not to have observed consistent regeneration of

the probe despite satisfying the conditions of pulse bandwidth, group velocity control

and maintaining an appropriate EIT window. First, to our knowledge, most slow light

experiments have used Zeeman levels instead of bare hyperfine levels as we have. This

leads us to believe that maintaining phase coherence between the |F = 3〉 and |F = 4〉
lasers is citical. Of the groups who have employed bare hyperfine levels, they used

a single laser and generated both control and probe beams by using an EOM at the

hyperfine splitting frequency (6GHz for Rb and 9.1GHz for Cs). This ensures almost

perfect laser phase coherence. Another possible issue could be our choice of the D2

line instead of the D1 line because D1 line is less cluttered by Zeeman transitions than

the D2 line. Our choice was dictated by the lack of availability of high power single

mode 894nm lasers. Perhaps passive magnetic shielding is insufficient and active

magnetic shielding is also necessary. We do not have access to calibrating equipment

to our magnetic shield at the location of the setup and have relied on the numbers for

isolation effectiveness provided by the manufacturer. It could also be possible that

periodic degaussing of the chamber is necessary. Our lasers had a long term linewidth

of about 4MHz and given the fact that we did observe CW EIT signals leads us to

believe that the servo lock control is working and should not be an issue. However,

the commercial tapered amplified based control laser did exhibit power fluctuations

and further investigation is necessary to characterize this.

A few changes to make would be to switch to a Zeeman setup, which ensures the

laser phase coherence condition. However, this could entail a complete revamping of

the laser locking setup to a dichroic atomic vapor lock design and requires extensive

and expensive calibration of magnetic fields and design of high current active magnetic

field control electronics. Another approach would be to ensure phase coherence by

generating the control and pump beams shifted by 9.1GHz from the same laser by

using a high frequency EOM. This is also an expensive investment and the electronics

down the chain tend to be more complicated. Yet another option would be to try the

same experiment on the simpler structure of the D1 line. However, if phase coherence
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is the limitation, we end up back to square one. To summarize, more work needs

to be done whichever path is taken and hopefully, modifications to the setup in the

future will generate more conclusive results.
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A. Laser Diode System Mechanical Design

Experiments in atomic physics need a source of light which is coherent, single lon-

gitudinal mode, has a narrow linewidth, is tunable and is stable in frequency. Free

running lasers do not satisfy all these requirements simultaneously. These require-

ments are realized by a simple and cost effective setup known as the Extended Cavity

Diode Laser (ECDL) system. In an ECDL, the laser linewidth is narrowed by op-

tical feedback and frequency stability is achieved by both passive (controlling the

injection current, temperature regulation) and active (electronic feedback) means. I

am indebted to Prof. R. Scholten at the university of Melbourne and Prof. Vas-

ant Natarajan at the Indian Institute of Science for providing design prototypes and

technical feedback for our diode laser systems.

A.1 Design 1

Laser linewidth narrowing is achieved by optical feedback by sending the 0th order

mode into the laser diode. In order to do this the grating (Newport,holographic 1800

lines/mm) has to be positioned at the correct angle.

mλ = 2d sinα

d = 1800× 103lines/mm

λ = 850× 10−9m

⇒ sinα = 50◦ (A.1)

We cut a commercially available 3-axis mirror mount and mounted it on a large

thermal block. The common theme in case of any ECDL design is mechanical stability

and thermal stability. To satisfy this, we used a 4×3×3 inch thick block of Aluminum.
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Aluminum is easy to machine and has good thermal conductivity. We specifically

chose grade 6061 Aluminum. This is particular grade of Al is used in aircraft bodies

and in race cars. It has very good thermal properties and is particularly conducive

to machining. Next, the commercial Newport mount had to be cut to accommodate

the grating mount and the ECDL tube and finally everything was assembled along

with the micrometers.

The Piezo receptacle is an essential part because there is a lot of pressure being

applied by the ball joint of the micrometer on the PZT material. It could lead to

early mechanical failure of the device, if there was no protective sheathing.
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(a) Modified mirror mount. (b) 1-Diffraction grating, 2-Modified
mirror mount,3-Piezo receptacle,4-LD
collimation tube and thermistor,5-TEC.

Figure A.1. Laser design based on Prof. R. Scholten’s design at the uni-
versity of Melbourne.
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Figure A.2. Laser power vs intensity curve after the threshold was opti-
mized.



140

A.2 Design 2

In design 2 , everything was machined and no commercial mounts were used. This

is a standard design being used in commercial laser systems. This design is based on

double flexure mounts for the laser. The advantage of this design over the first was

that it was very easy to align the laser as the grating holder is fully adjustable and

there are multiple ways to adjust the feedback into the laser. An important point to

note is that brass was to make the O-ring holding the LD, as it has superior thermal

properties. As it will be seen later, this is necessary because of the placement of the

TEC element is different in both designs. After assembly, the system looked as shown

in figure A.3.

(a) 1-Thermal Block, 2-Grating mount,3-Piezo,4-Grating,5-
LD mount and collimating lens,6-TEC.

Figure A.3. Design 2 fully assembled.
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B. Electronics Design

Presented below are circuit schematics of a a balanced photodetector based on the

OPT101 monolithic amplifier, photodiode chip and the servo lock circuit. The servo

lock circuit shown in figures B.3, B.4 was adapted from Fox and Hollberg’s paper [91].

Figure B.1. Balanced Photodetector PCB.
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Figure B.2. Balanced Photodetector.
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Figure B.3. Schematic for the servo lock circuit.The design was done using
a free version of EAGLE CAD from Cadsoft Inc.
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Figure B.4. PCB layout for the servo lock circuit.
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Figure B.5. The assembled servo lock circuit.
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C. Laser Frequency Stabilization

There are many ways to stabilize the frequency of a laser. Common techniques are

saturation spectroscopy, locking to a high finesse cavity, frequency and wavelength

modulation spectroscopy, modulation transfer spectroscopy and techniques that use

the dichroism of atomic vapor via magnetic interactions. Our lasers were stabilized

by frequency modulation spectroscopy (FMS) as dictated by the availability of instru-

mentation. The basic idea in FMS is to add radio-frequency sidebands to the laser

before it interacts with the atomic vapor. If the interaction is resonant, it generates

a signal that varies as the modulation frequency. The signal can then be detected

coherently by phase sensitive techniques. The idea is to perform the detection at a

frequency that is away from common technical noise sources.

The basic arrangement for our setup is as shown in figures C.1, C.2. The optical

arrangement is exactly the same as for saturation spectroscopy. We tap off about

3 mW power from the laser by means of a half-wave plate (HWP) and a polarizing

beamsplitter cube (PBS). The tapped off light is split by a 50:50 PBS to generate

probe and saturating beams. The probe beam is sent through an electro optic mod-

ulator (New Focus 4002, resonant, 7MHz EOM) attenuated to about 500μW and the

saturation beam overlaps almost perfectly with the probe beam inside the cell. After

exiting the cell, part of the probe beam is tapped off by a microscope coverslip and

sent to a home-made Si photodiode (PD) to monitor saturation spectroscopy signals.

The rest of the probe is detected by another homemade detector (based on the EG&G

FFD100 Si PIN Photodiode). The photocurrent contains information about the fre-

quency dependent response of the Cs atoms to the phase modulated probe light. The

output from the fast PD (RF) is sent into a double balanced mixer (Mini circuits

ZAD Series). An SRS DS345 provides a 7 MHz sine wave input, which is split by a

50:50 RF power splitter (Minicircuits ZSC-2-1) from one one half of the power is fed
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into the mixer and the other half to the EOM. The intermediate frequency output

after mixing (IF) was amplified (Mini-circuits ZFL500 series) before being sent into

the Pre-amp and low pass filter setup. While the amplifier is not absolutely necessary,

we found that pre-amplifying the signal before low pass filtering generated cleaner

error signals. This amplified IF was sent into the B-Channel of an SRS560 Pre-amp

and low pass filter. On the A channel, we connected a DC offset leveler which con-

sisted of a potentiometer connected to a 9V battery. The pre-amp subtracted this

offset and we eventually obtain our error signal at a zero baseline. Before the final

error signal was obtained, we engaged the low pass loop filter on the Pre-Amp and

set the cut off frequency to either 100 kHz or 300 kHz. The output signal has both

high and low frequency components. These signals are first attenuated by passive

variable attenuators and are then sent to servo. Attenuators are necessary because

it is possible to saturate the servo at times and it provides a useful way to check the

robustness of the locking as a function of signal strength input to the servo. The home

made servo system is basically two integrators. The servo has two subsystems which

selectively integrates fast and slow frequency components respectively. The fast and

slow integrated signals show dispersion like features figure C.3. This completes the

feedback loop.
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Figure C.1. Optical arrangement for FM Spectroscopy.
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Figure C.2. Electronics for FM Spectroscopy.
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Figure C.3. The peaks are dispersion like signals from FM spectroscopy.
Also shown are saturation spectroscopy peaks in a doppler well and the
piezo ramp that provides the trigger for the display. Note that the baseline
is not flat and this is inherent to FMS. The background can be removed by
chopping the saturation beam.

To lock the laser, we first turn on the ramp signal for the PZT and scan the

laser frequency to obtain saturation spectroscopy signals. We then engage the locking

electronics at unity gain and attenuate servo inputs by more than 80 dB. This ensures

a “loose” lock. Then we zoom in on the desired hyperfine transition, simultaneously

observing the flattening of the error signal. Once we zoom in on one particular feature,

we disengage the attenuators to “tighten” the lock. The final step is to fully turn

off the ramp signal. At this point we are locked on top of the transition. The FM

technique does not require dithering the laser current signal that is characteristic of

side-lock techniques. We made a rough measurement of the laser linewidth based on

the fluctuations in the error signal, which was calibrating by sending the light into a

standard FP-cavity and generating a PZY voltage vs., frequency plot. We measured

the linewidth to be about 1.3 MHz over a period of minutes.
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D. C++ Code

1 /�

2 �Ti t l e : Ca l cu l a t i on o f Quantum Fluc tuat i ons in a Nonl inear ←↩

I n t e r f e r ome t e r with Harmonic Generation

3 �Author : Prashant Sr in iva san

4 �Vers ion : Re lease

5 �Date : September 2012

6 � I n s t i t u t i o n : Dept o f Physics , IUPUI

7 �Cred i t s : I am high ly indebted to Edwin Tham and the authors o f ←↩

the ode int l i b r a r y ( http :// headmyshoulder . g ithub . com/odeint−←↩

v2/ feedback . html )

8 �/

9 #include <iostream>

10 #include < i t e r a t o r>

11 #include <algor ithm>

12 #include <boost /numeric / ode int . hpp>

13 #include <cmath>

14 #include <vector>

15 #include <f stream>

16 #include <iomanip>

17 #include <s t d i o . h>

18 #include <time . h>

19

20 using namespace std ;

21 using namespace boost : : numeric : : odeint ;

22 typedef std : : vector< double > state_type ;
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23 // typede f b u l i r s c h s t o e r d e n s e o u t <s t a t e t yp e > ←↩

dens e s t eppe r type ;

24 // typede f runge ku t t a f eh lb e r g78 < s t a t e t yp e > s t eppe r type ;

25 // typede f b u l i r s c h s t o e r < s t a t e t yp e > s t eppe r type ;

26 typedef controlled_runge_kutta< runge_kutta_cash_karp54< ←↩

state_type > > stepper_type ;

27 // typede f c on t r o l l ed runge ku t t a< runge kutta dopr i5< s t a t e t yp e←↩

> > dop r i s t eppe r t ype ;

28 // typede f dense output runge kutta< dop r i s t eppe r t ype > ←↩

dens e s t eppe r type ;

29

30 class NLI_class {
31 private :

32 double gamma ;

33 double th_initial ;

34 double delta ;

35 public :

36 NLI_class ( double g , double theta_initial , double d ) : gamma (←↩

g ) , th_initial ( theta_initial ) , delta (d ) {} // , d e l t a (d) , ←↩

double d

37

38 void operator ( ) ( state_type &u , state_type &du , double z ) ←↩

{
39

40 du [ 0 ] = (u [ 0 ] � u [ 0 ] −1 .0 ) �cos (u [1 ]+ th_initial+delta ) ;

41 du [ 1 ] = gamma � ((2.0/(1−u [ 0 ] � u [ 0 ] ) ) −1.0/(u [ 0 ] � u [ 0 ] ) ) ;

42 du [ 2 ] = gamma � (2.0/(1−u [ 0 ] � u [ 0 ] ) ) ;

43 du [ 3 ] = gamma � ( 1 . 0 / ( u [ 0 ] � u [ 0 ] ) ) ;

44

45 du [ 4 ]=( u [ 0 ] � u [ 4 ] � cos (u [1 ]+ delta+th_initial )+sqrt ( 2 . 0 ) �←↩

sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 2 ] � cos (u [1 ]+ delta+th_initial )+←↩
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sqrt ( 2 . 0 ) �sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 6 ] � sin (u [1 ]+ delta+←↩

th_initial )+u [ 8 ] � ( ( gamma/(1.0−u [ 0 ] � u [ 0 ] ) )− u [ 0 ] � sin (←↩

u [1 ]+ delta+th_initial ) ) ) ;

46 du [ 5 ]=( u [ 0 ] � u [ 5 ] � cos (u [1 ]+ delta+th_initial )+sqrt ( 2 . 0 ) �←↩

sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 3 ] � cos (u [1 ]+ delta+th_initial )+←↩

sqrt ( 2 . 0 ) �sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 7 ] � sin (u [1 ]+ delta+←↩

th_initial )+u [ 9 ] � ( ( gamma/(1.0−u [ 0 ] � u [ 0 ] ) )− u [ 0 ] � sin (←↩

u [1 ]+ delta+th_initial ) ) ) ;

47 du [ 6 ]=( u [ 0 ] � u [ 6 ] � cos (u [1 ]+ delta+th_initial )+sqrt ( 2 . 0 ) �←↩

sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 4 ] � cos (u [1 ]+ delta+th_initial )+←↩

sqrt ( 2 . 0 ) �sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 8 ] � sin (u [1 ]+ delta+←↩

th_initial )+u [ 1 0 ] � ( ( gamma/(1.0−u [ 0 ] � u [ 0 ] ) )− u [ 0 ] � sin←↩

(u [1 ]+ delta+th_initial ) ) ) ;

48 du [ 7 ]=( u [ 0 ] � u [ 7 ] � cos (u [1 ]+ delta+th_initial )+sqrt ( 2 . 0 ) �←↩

sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 5 ] � cos (u [1 ]+ delta+th_initial )+←↩

sqrt ( 2 . 0 ) �sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 9 ] � sin (u [1 ]+ delta+←↩

th_initial )+u [ 1 1 ] � ( ( gamma/(1.0−u [ 0 ] � u [ 0 ] ) )− u [ 0 ] � sin←↩

(u [1 ]+ delta+th_initial ) ) ) ;

49 du [8]=(−u [ 0 ] � u [ 8 ] � cos (u [1 ]+ delta+th_initial )+sqrt ( 2 . 0 ) �←↩

sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 6 ] � cos (u [1 ]+ delta+th_initial )−←↩

sqrt ( 2 . 0 ) �sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 2 ] � sin (u [1 ]+ delta+←↩

th_initial )+u [ 4 ] � ( (−gamma/(1.0−u [ 0 ] � u [ 0 ] ) )− u [ 0 ] � sin←↩

(u [1 ]+ delta+th_initial ) ) ) ;

50 du [9]=(−u [ 0 ] � u [ 9 ] � cos (u [1 ]+ delta+th_initial )+sqrt ( 2 . 0 ) �←↩

sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 7 ] � cos (u [1 ]+ delta+th_initial )−←↩

sqrt ( 2 . 0 ) �sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 3 ] � sin (u [1 ]+ delta+←↩

th_initial )+u [ 5 ] � ( (−gamma/(1.0−u [ 0 ] � u [ 0 ] ) )− u [ 0 ] � sin←↩

(u [1 ]+ delta+th_initial ) ) ) ;

51 du [10]=(−u [ 0 ] � u [ 1 0 ] � cos (u [1 ]+ delta+th_initial )+sqrt ( 2 . 0 )←↩

�sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 8 ] � cos (u [1 ]+ delta+th_initial )←↩

−sqrt ( 2 . 0 ) �sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 4 ] � sin (u [1 ]+ delta+←↩
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th_initial )+u [ 6 ] � ( (−gamma/(1.0−u [ 0 ] � u [ 0 ] ) )− u [ 0 ] � sin←↩

(u [1 ]+ delta+th_initial ) ) ) ;

52 du [11]=(−u [ 0 ] � u [ 1 1 ] � cos (u [1 ]+ delta+th_initial )+sqrt ( 2 . 0 )←↩

�sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 9 ] � cos (u [1 ]+ delta+th_initial )←↩

−sqrt ( 2 . 0 ) �sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 5 ] � sin (u [1 ]+ delta+←↩

th_initial )+u [ 7 ] � ( (−gamma/(1.0−u [ 0 ] � u [ 0 ] ) )− u [ 0 ] � sin←↩

(u [1 ]+ delta+th_initial ) ) ) ;

53 du [ 1 2 ]= ( ( ( gamma�u [ 1 6 ] ) /(u [ 0 ] � u [ 0 ] ) )−sqrt ( 2 . 0 ) �sqrt (1.0−u←↩

[ 0 ] � u [ 0 ] ) �u [ 4 ] � cos (u [1 ]+ delta+th_initial )+sqrt ( 2 . 0 ) �←↩

sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 8 ] � sin (u [1 ]+ delta+th_initial ) ) ;

54 du [ 1 3 ]= ( ( ( gamma�u [ 1 7 ] ) /(u [ 0 ] � u [ 0 ] ) )−sqrt ( 2 . 0 ) �sqrt (1.0−u←↩

[ 0 ] � u [ 0 ] ) �u [ 5 ] � cos (u [1 ]+ delta+th_initial )+sqrt ( 2 . 0 ) �←↩

sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 9 ] � sin (u [1 ]+ delta+th_initial ) ) ;

55 du [ 1 4 ]= ( ( ( gamma�u [ 1 8 ] ) /(u [ 0 ] � u [ 0 ] ) )−sqrt ( 2 . 0 ) �sqrt (1.0−u←↩

[ 0 ] � u [ 0 ] ) �u [ 6 ] � cos (u [1 ]+ delta+th_initial )+sqrt ( 2 . 0 ) �←↩

sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 0 ] � sin (u [1 ]+ delta+th_initial ) )←↩

;

56 du [ 15 ]=( ( ( gamma�u [ 1 9 ] ) /(u [ 0 ] � u [ 0 ] ) )−sqrt ( 2 . 0 ) �sqrt (1.0−←↩

u [ 0 ] � u [ 0 ] ) �u [ 7 ] � cos (u [1 ]+ delta+th_initial )+sqrt ( 2 . 0 ) �←↩

sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 1 ] � sin (u [1 ]+ delta+th_initial ) )←↩

;

57 du [ 16 ]=( ((−gamma�u [ 1 2 ] ) /(u [ 0 ] � u [ 0 ] ) )−sqrt ( 2 . 0 ) �sqrt←↩

(1.0−u [ 0 ] � u [ 0 ] ) �u [ 8 ] � cos (u [1 ]+ delta+th_initial )−sqrt←↩

( 2 . 0 ) �sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 4 ] � sin (u [1 ]+ delta+←↩

th_initial ) ) ;

58 du [ 17 ]=( ((−gamma�u [ 1 3 ] ) /(u [ 0 ] � u [ 0 ] ) )−sqrt ( 2 . 0 ) �sqrt←↩

(1.0−u [ 0 ] � u [ 0 ] ) �u [ 9 ] � cos (u [1 ]+ delta+th_initial )−sqrt←↩

( 2 . 0 ) �sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 5 ] � sin (u [1 ]+ delta+←↩

th_initial ) ) ;

59 du [ 18 ]=( ((−gamma�u [ 1 4 ] ) /(u [ 0 ] � u [ 0 ] ) )−sqrt ( 2 . 0 ) �sqrt←↩

(1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 0 ] � cos (u [1 ]+ delta+th_initial )−sqrt←↩
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( 2 . 0 ) �sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 6 ] � sin (u [1 ]+ delta+←↩

th_initial ) ) ;

60 du [ 19 ]=( ((−gamma�u [ 1 5 ] ) /(u [ 0 ] � u [ 0 ] ) )−sqrt ( 2 . 0 ) �sqrt←↩

(1.0−u [ 0 ] � u [ 0 ] ) �u [ 1 1 ] � cos (u [1 ]+ delta+th_initial )−sqrt←↩

( 2 . 0 ) �sqrt (1.0−u [ 0 ] � u [ 0 ] ) �u [ 7 ] � sin (u [1 ]+ delta+←↩

th_initial ) ) ;

61

62

63 }
64 } ;
65

66 struct streaming_observer {
67

68 std : : ostream &m_out ;

69 streaming_observer ( std : : ostream &out ) : m_out ( out ) {}
70

71 void operator ( ) ( const state_type &x , double t ) const

72 {
73 m_out << t ;

74 for ( size_t i=0 ; i < x . size ( ) ; ++i )

75 m_out << "\t" << x [ i ] ;

76 m_out << "\n" ;

77 }
78 } ;
79 inline void save ( state_type& v , string filename )

80 {
81 ofstream output ( filename ) ;

82 for ( int i=0;i<v . size ( ) ;++i ) {
83 output << setprecision (64) << v [ i ] << endl ;

84 }
85 }
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86

87 int main ( ) {
88 // c l o c k t s t a r t = c l o ck ( ) ; //Uncomment i f program execut ion ←↩

time i s d e s i r ed .

89

90 state_type x ( 20 ) ;

91 state_type Gamma ;

92 state_type delta ;

93 const double pi=acos (−1.0) ;

94 const int delta_n=1000;

95 const double delta_step=(2�pi ) /delta_n ;

96 const double dz = 1e−15;

97 const double zeta =0.5;

98 const double theta_initial=0.00;

99 const double u20=tanh ( zeta ) ;

100 const double u10=1.0/cosh ( zeta ) ;

101 // double ab s e r r o r = 1 .0 e−10;

102 // double r e l e r r o r = 1 .0 e−10;

103 double d=0.0;

104 double G=0.0;

105

106 for ( int i=0;i<=delta_n ; i++){
107 //When i =0, the d=0.0 and G=0.0 are pushed in to the vec to r .

108 delta . push_back (d ) ;

109 Gamma . push_back (G ) ;

110 // Compute de l t a and Gamma

111 d=d+delta_step ;

112 G=−u10�u10�u20�sin ( theta_initial+d ) ;
113 }
114

115 save ( delta , "delta.csv" ) ;
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116 save ( Gamma , "Gamma.csv" ) ;

117

118 //Numeric I n t e g r a t i on

119 for ( unsigned i = 0 ; i < Gamma . size ( ) ; ++i ) {
120

121 x [ 0 ] = u20 ; x [ 1 ] = 0 . 0 ; x [ 2 ] = 0 . 0 ; x [ 3 ] = 0 . 0 ;

122 x [ 4 ] = 1 . 0 ; x [5 ]= 0 . 0 ; x [6 ]= 0 . 0 ; x [7 ]= 0 . 0 ;

123 x [8 ]= 0 . 0 ; x [9 ]= 1 . 0 ; x [10 ]= 0 . 0 ; x [11 ]= 0 . 0 ;

124 x [12 ]= 0 . 0 ; x [13 ]= 0 . 0 ; x [14 ]= 1 . 0 ; x [15 ]= 0 . 0 ;

125 x [16 ]= 0 . 0 ; x [17 ]= 0 . 0 ; x [18 ]= 0 . 0 ; x [19 ]= 1 . 0 ;

126

127

128 NLI_class nli_obj ( Gamma [ i ] , theta_initial , delta [ i ] ) ;

129

130 /�Use t h i s f o r Stoer Method , RK4 Cash . Uncomment the ←↩

appropr ia t e func t i on c a l l �/

131 integrate_adaptive ( stepper_type ( ) , nli_obj , x , 0 . 0 , ←↩

zeta , dz , streaming_observer ( std : : cout ) ) ;

132 // i n t e g r a t e adap t i v e ( runge kutta4< vector<double > >() , ←↩

n l i o b j , x , ze ta , ze ta , dz , s t r eaming obse rve r ( std : :←↩

cout ) ) ;

133

134 /�Use these f o r dopr i dense output , s t o e r d en s e ←↩

methods . Uncomment as need be . Error bounds need ←↩

to be uncommented as we l l . �/

135 // i n t e g r a t e c o n s t ( den s e s t eppe r type ( ) , n l i o b j , x , ←↩

0 .0 , ze ta , dz , s t r eaming obse rve r ( std : : cout ) ) ;

136 // i n t e g r a t e adap t i v e ( s t eppe r type ( d e f a u l t e r r o r c h e c k e r<←↩

double >( ab s e r r o r , r e l e r r o r ) ) , n l i o b j , x , ←↩

0 .0 , ze ta , dz , s t r eaming obse rve r ( std : : cout ) ) ;

137 }
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138

139 // p r i n t f (”Time e lapsed : %f \n” , ( ( double ) c l o ck ( ) − s t a r t ) / ←↩

CLOCKS PER SEC) ; //Uncomment t h i s to get the program run time←↩

.

140 // system (”PAUSE”) ; //Uncomment t h i s i f need be .

141 }
142

143 /�

144 �Ti t l e : Sor t ing program

145 �Author : Prashant Sr in iva san

146 �Vers ion : Re lease

147 �Date : September 2012

148 � I n s t i t u t i o n : Dept o f Physics , IUPUI

149 � I n s t r u c t i o n s : Take the EXE generated by the main s imu la t i on and←↩

in the windows prompt type ”EXE name”>data . txt . The s o r t i s ←↩

performed on the data . txt f i l e .

150 �/

151

152 #include <s t r i ng>

153 #include <f stream>

154 #include<iostream>

155 using namespace std ;

156

157 void sort ( std : : string const& in_fn , std : : string const& out_fn )

158 {
159 std : : ifstream is ( in_fn ) ;

160 std : : ofstream os ( out_fn ) ;

161

162 std : : string line ;

163 std : : string previous_line="4" ;

164 while ( std : : getline (is , line ) ) {
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165 if ( line . size ( ) && std : : stod ( line ) == 0.0 && previous_line ←↩

!= "4" ) {
166 os << previous_line << �\n� ;

167 }
168 previous_line=line ;

169

170 }
171 }
172

173 int main ( )

174 {
175

176 sort ("C:/data.txt" ,"C:/sorted.txt" ) ;

177 }
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