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ABSTRACT

Thompson, Clinton Edward Ph.D., Purdue University, May 2014. Quantum Physics
Inspired Optical Effects in Evanescently Coupled Waveguides . Major Professor:
Gautam Vemuri.

The tight-binding model that has been used for many years in condensed matter

physics, due to its analytic and numerical tractability, has recently been used to

describe light propagating through an array of evanescently coupled waveguides. This

dissertation presents analytic and numerical simulation results of light propagating

in a waveguide array. The first result presented is that photonic transport can be

achieved in an array where the propagation constant is linearly increasing across the

array. For an input at the center waveguide, the breathing modes of the system are

observed, while for a phase displaced, asymmetric input, phase-controlled photonic

transport is predicted. For an array with a waveguide-dependent, parity-symmetric

coupling constant, the wave packet dynamics are predicted to be tunable. In addition

to modifying the propagation constant, the coupling between waveguides can also be

modified, and the quantum correlations are sensitive to the form of the tunneling

function.

In addition to modifying the waveguide array parameters in a structured manner,

they can be randomized as to mimic the insertion of impurities during the fabrication

process. When the refractive indices are randomized and real, the amount of light that

localizes to the initial waveguide is found to be dependent on the initial waveguide

when the waveguide coupling is non-uniform. In addition, when the variance of the

refractive indices is small, light localizes in the initial waveguide as well as the parity-

symmetric waveguide. In addition to real valued disorder, complex valued disorder

can be introduced into the array through the imaginary component of the refractive



xiv

index. It is shown that the two-particle correlation function is qualitatively similar

to the case when the waveguide coupling is real and random, as both cases preserve

the symmetry of the eigenvalues. Lastly, different input fields have been used to

investigate the quantum statistical aspects of Anderson localization. It is found that

the fluctuations in the output intensity are enhanced and the entropy of the system

is reduced when disorder is present in the waveguides.
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1. INTRODUCTION

The tight-binding model has been used extensively in condensed matter physics since

its introduction in 1954, due to its numerical and analytical tractability [1]. It assumes

that the electron is tightly bound to an atom on the lattice and has limited interactions

with the surrounding atoms through tunneling from atom to atom [2]. In recent

years, arrays of evanescently coupled waveguides have become a paradigm for the

realization of the one-dimensional tight-binding model. Historically, light and matter

have been considered two different entities. The use of a condensed matter model

to describe light is a result of the advent of technology that is used to fabricate the

waveguides. The propagation constant is determined by the height and the width of

the waveguide while distance between the centers of adjacent waveguides determine

the coupling constant. The on-site potential for the particle is analogous to the

propagation constant and the tunneling amplitude is analogous the coupling constant

for light.

One process that is used to fabricate the waveguides is the use of molecular beam

epitaxy. It works by depositing mono-atomic layers of atoms onto a substrate until

a desired thickness of the material is achieved. The composition of the material is

altered, as the material is deposited in such a manner as to form three distinct layers

as shown in Figure 1.1. Experimentally, aluminum gallium arsenide has been used

for the waveguides as 1.5 microns is below half the band gap of the middle layer that

has 18% aluminum and additionally, this minimizes the loss of light. The bottom

layer is the thickest, as it prevents light from interacting with the substrate on which

the material is deposited. Another experimental consideration is the application of a

capping layer of gallium arsenide to prevent the array from oxidizing. The shape of

the waveguides are created during the lithography and etching process [3].
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Fig. 1.1. Schematic of an array of evanescently coupled optical waveg-
uides. The array is typically comprised of three layers that are de-
posited via molecular beam epitaxy. This allows mono-atomic control
of the thickness in addition to the relative composition of each layer.
The propagation constant, βj , is determined by the height h and the
width w of the waveguide while distance d between the centers of ad-
jacent waveguides determine the coupling constant, Cj. The speed
along a particular waveguide is constant as the index of refraction is
time invariant when the intensity of the input light is sufficiently low
enough that nonlinear effects are fully suppressed. The on-site poten-
tial for the particle is analogous to the propagation constant and the
tunneling amplitude is analogous the coupling constant for light. The
arrows represent the input at waveguides m and n, where the relative
phase between the two inputs is ϕ.
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As a result of having full control over the experimental parameters, the light

propagating along a single waveguide can be described by the paraxial approximation

of the Helmholtz equation and the coupling between adjacent waveguides can be

described using coupled mode theory [4]. The longitudinal component of the paraxial

equation that describes the spatial evolution of light propagating through an array of

single-mode evanescently coupled waveguides is

i
dEj

dz
= βjEj + Cj(Ej+1 + Ej−1) (1.1)

where Ej is the complex magnitude of the electric field in the jth waveguide, βj is

the propagation constant, and Cj is the coupling constant between waveguides j and

j + 1. Note that both βj and Cj are determined by the geometry a single waveguide

as

βj =

√

(ω

c

)2

− k2j (1.2)

and

Cj = (n2
j+1 − n2

b)
k20
2βj

∫ ∫

uj+1(x, y)uj(x, y)dxdy (1.3)

where ω is the angular frequency of the incident light, c is the speed of light in vacuum,

uj is the cross-sectional profile for the electric field in waveguide j, and kj is the cutoff

wavenumber in the waveguide that characterizes the propagating mode [5, 6]. Note

that nj+1 and nb are refractive indices for waveguide j + 1 and the barrier between

adjacent waveguides, respectively.

The tight-binding Hamiltonian, in secod quantized form, that describes the time

evolution of a a particle on a lattice is [2]

H = ~

N
∑

j=1

[

Vja
†
jaj + Tj(a

†
j+1aj + a†jaj+1)

]

(1.4)

where Vj is the on-site potential, Tj is the tunneling amplitude between sites j and

j+1, and a†j (aj) is the creation (annihilation) operator for the jth site. The Heisenberg

equation, which describes the evolution of the particle’s wavefunction, is

i
daj
dt

= [aj , H ] = Vjaj + Tj(aj+1 + aj−1) (1.5)
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and is isomorphic to Eq. (1.1) where the coupling, Cj, for light is analogous to the

particle tunneling, Tj, while the propagation constant, βj, is analogous to the on-

site potential, Vj. As a result of this isomorphism, one can observe quantum and

condensed matter phenomena in a fully classical system as the intensity distribution,

Ij = |Ej|2, is identical to probability distribution Pj = a†jaj.

One advantage to using light is that the intensity distribution can be measured

directly while probability distribution of a particle on a lattice is measured indirectly,

typically through the conductance of the material [7]. Another advantage is that the

phenomena can be observed over a length of a few centimeters for light instead of a

few microns for electrons [8]. Silberberg and co-workers have shown that adjusting the

incident angle of the input light controls the diffraction of the light in the array, and

this allows for a diffractionless array [3]. In addition, photons do not have a Coulomb

interaction and the decoherence noise in the arrays is negligible [9]. For an electron

on a tight-binding lattice, the system would need to be as cold as possible to ensure

that the decoherence time from the phonons is maximized [7]. Additionally, one

can sample the entire energy band using photons, as a photon injected into a single

waveguide can be described by a linear combination of all the energy eigenstates.

However, for electrons, only the electrons with energies near the Fermi energy can

be sampled as they are easiest to promote (demote) from the valance (conduction)

band to the conduction (valance) band [10]. Lastly, waveguide arrays allow for the

investigation of boundary effects as the number of waveguides in an array N . 100

wheress for an electron on a lattice, the number of lattice sites is N > 109 [2].

Waveguide arrays can also be used to explore wave packet dynamics that are de-

scribed by Hamiltonians that are non-Hermitian but PT -symmetric. Traditionally,

it has been thought that for the Hamiltonian to describe a quantum mechanical sys-

tem, it has to be Hermitian, as it guarantees both real eigenvalues and probability

conservation. However, Bender and co-workers have shown that for real eigenval-

ues, the Hamiltonian does not necessarily have to be Hermitian, provided it is PT -

symmetric [11]. The parity operator P performs a parity inversion, (r,p) → (−r,−p)
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and if H(r,p) = H(−r,−p), the Hamiltonian is parity-symmetric. Note that r is the

position vector and p is the momentum vector. The time-reversal operator, T , re-

verses the motion of a particle, r(t) → r(−t) and p(t) → −p(−t). Applying the

time-reversal operator to a Hamiltonian H results in H(r,p) → H∗(r,−p) as the

time-reversal operator also changes sign of the complex part of the Hamiltonian [12].

They have shown that as long as a Hamiltonian remains unchanged after applying

both P and T operators, it can have real eigenvalues [13].When the eigenvalues be-

come complex, the PT -symmetric phase breaks and this has been experimentally

observed in waveguide arrays.

This non-Hermiticity is introduced through gain and loss that can be experimen-

tally accessed through the imaginary component of the index of refraction. The

imaginary component of the propagation constant is then Im[βj ] = iγj where posi-

tive (negative) values of γj correspond to gain (loss), respectively. To maintain the

PT -symmetry, the gain and loss has to be balanced in the array and the gain has to

be below the PT -symmetric threshold, |γj| < γc. Guo and co-workers have been able

to achieve this by using a two-channel array comprised of aluminum gallium arsenide

with chromium deposited on one of the waveguides. The use of chromium introduces

loss into the waveguide on which it was deposited, and results in an array with loss

in one channel while the other channel remains unchanged. As this is an unbalanced

system in terms of gain and loss, they have noticed that more light went to the un-

changed waveguide when the rate of loss was increased [14]. Rüter and co-workers

have been able to achieve a two-channel array where the gain and loss is balanced,

using iron doped lithium niobate where the loss is introduced in one channel through

the iron, and the gain is introduced by pumping the lithium niobate in the other

channel. They have noticed that the light oscillates between the two waveguides

when eigenvalues are purely real. Also, they have observed that increasing the gain,

such that the PT -symmetric phase is broken, results in the light going to the gain

channel and the intensity growing exponentially [15].
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In addition to PT -symmetry breaking, many other quantum and condensed mat-

ter phenomena have been predicted and/or observed in waveguide arrays. It has been

shown that light propagating through an array of evanescently coupled waveguides is

an implementation of a quantum random walk [16, 17]. A quantum random walk is

the quantum analog of classical random walk in that the person or object starts with

some initial state and this state evolves after flipping a coin and moving accordingly.

They differ in that the current state for a quantum random walk is a superposition

of all possible states. The two types of random walks have identical outcomes for the

first two trials, but start to differ from each other after the third [18].

Another phenomenon that has been experimentally observed in a waveguide array

is a classical analog of the quantum Zeno effect. The Zeno effect is the successive

observations of the system that prevents the quantum state from decaying. Biagioni

and co-workers have been able to observe the classical analog by creating a semi-

infinite array. They have found that more light remains in the initial waveguide when

compared to a uniform array [19]. In addition to the Zeno effect, an optical analog

of Zener tunneling has been observed in waveguide arrays [20]. Zener tunneling is

the resulting interband transition of an electron when a constant force is applied in

the presence of a lattice [21]. A photonic analog of the Aharonov-Bohm effect has

also been observed in waveguide arrays [22]. The Aharonov-Bohm effect shows the

importance of the electromagnetic potentials in quantum mechanics [23].

In addition, waveguide arrays allow for the observation of phenomena that are

difficult to observe in an electronic system. One such phenomenon is a photonic

analog of the Dirac zitterbewegung, which has been predicted to occur in an array

where the propagation constant is periodically modulated across the array [24]. The

Dirac zitterbewegung is the oscillatory solution to the Dirac equation for a relativistic

electron that is a result of the interference between positive and negative energy

states [25]. It is advantageous to use light to study the Dirac zitterbewegung as the

amplitude of the electron is on the order of its Compton wavelength [26]. Another

phenomenon where it is advantageous to use waveguide arrays is Bloch oscillations.
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Bloch oscillations are the oscillations of the electron that result from a constant

tranverse force being applied to it in a periodic potential [27]. These have been

achieved in waveguide arrays by placing a constant temperature gradient across the

array, which mimics the force [28]. In addition, they are hard to observe in electronic

systems, because of both the scattering of the electrons by the phonons and Zener

tunneling [2].

Another advantage of using light is the nonlinear response of the system to the

intensity of the incident light. Using this nonlinearity, there have been predictions

and observations that are described by a discrete nonlinear Schröndinger equation of

the form

i
dEj

dz
= βjEj + Cj(Ej+1 + Ej−1) + η|Ej|2Ej (1.6)

where η is the Kerr coeffecient describing the nonlinear response of the array [29–31].

Morandotti and co-workers have observed discrete solitons that exhibit dynamics that

are not present in continuous systems. They have found that by not centering the

incident light on a waveguide, the soliton can acquire transverse momentum and

therefore, propagate both longitudinally and transversely through the array [31]. In

addition to solitons, Bludov and co-workers have predicted the occurrence of rogue

waves in the waveguide array. They have numerically found that by non-uniformly

exciting all of the waveguides with a smooth intensity profile, a rogue wave will occur

in the central waveguide [32]. X-waves, which are similar to rogue waves, are another

type of wave that has been observed in a nonlinear waveguide. The signature of this

type of wave is that intensity peaks in the central waveguide and is maximized when

an x-structure is formed in the intensity evolution [33].

This dissertation focuses on the evolution of light inside an array that can be de-

scribed by the tight-binding model. In Chapter 2, a model for how phase-controlled

photonic transport can be achieved in a waveguide array is discussed. The analytical

treatment of this model is described in terms of light propagating through an infinite

waveguide array. Comparisons are made of this model with the model for directed

transport with atoms, and the similarities and differences are discussed in detail.
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Chapter 3 presents the wave packet dynamics for light propagating through an array

that has a non-uniform but parity-symmetric coupling between adjacent waveguides.

It is shown how the wave packet dynamics are tuned through the coupling as the cou-

pling modifies the eigenvalue spectrum for the array. These wave packet dynamics

are then compared to the case when the coupling between adjacent waveguides is uni-

form. The effect of disorder in the medium on the wave packet evolution is discussed

in Chapter 4. One important aspect that is discussed is how the light localizes as a

function of disorder for non-uniform coupling between adjacent waveguides. In addi-

tion, the effects of disorder on the eigenvalue spectrum and the quantum statistics of

the output light for different input fields on the eigenvalue spectrum are explored. A

summary of the work presented in this dissertation is provided in Chapter 5. Finally,

the computer program used to perform the numerical calculations is provided in the

Appendix.
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2. PHASE-CONTROLLED PHOTONIC TRANSPORT

Directed transport in the absence of a force has been studied extensively after Smolu-

chowski proposed a gedanken experiment for perpetual motion in 1912 [34]. This

directed motion is called ratchet motion after the ratchet tool. The ratchet tool con-

sists of a gear that is free to rotate clockwise and counterclockwise while the pawl

allows rotation in only one direction as Figure 2.1 shows. Richard Feynman showed

that Smoluchowski’s gedanken experiment violates thermodynamics and therefore, it

is not possible to achieve perpetual motion. Feynman used an example of a weather

vane in a box containing a gas that is connected to a ratchet and pawl that is meant

to perform work on a system. He argued that gas molecules would bombard the vane

from all directions and when the pawl is in the up position, the wheel could turn in

either direction due to the variability of the molecular velocities. Therefore, the gear

is equally likely to turn in either direction and the net result is that the gear does not

rotate if the entire system is at the same temperature. For this system to perform net

work, work must be done on the system to ensure that it does not achieve thermal

equilibrium [35]. This has led to the concept of Brownian motors, which can extract

energy from non-equilibrium sources [36].

The ratchet motion that Brownian motors display is a result of both an asymmetric

potential and the presence of an external noise. Magnasco has shown that if a particle

is in an asymmetrical potential in the absence of noise, the particle has zero net drift

speed. However, if a particle is subject to an external noise while in this asymmetric

potential, it has a non-zero drift speed [37]. An example of an asymmetrical potential

that has been used for the ratchet motion is a saw-tooth potential that is shown in

Figure 2.2

One such system that displays ratchet motion is a biological motor such as a

protein motor. A protein motor accelerates the conversion of adenosine triphosphate
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Fig. 2.1. Schematic of a gear and pawl that comprise a ratchet.
The gear is free to rotate clockwise and counter-clockwise while the
pawl allows rotation in only one direction. Note that for this figure,
counter-clockwise rotation is allowed, denoted by the green arrow, and
clockwise rotation is not allowed, denoted by the red arrow
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Fig. 2.2. An example of a how ratchet motion is obtained in a saw-
tooth potential. The saw-tooth potential is asymmetrical such that
when it is on, the particles will collect in its minimum that is offset
from the center of the adjacent peaks. This allows the particles to
move in the presence of noise when the potential is off while turning
on the potential results in the some of the particles now being in the
minimum immediately to the left of the initial minimum. Flashing
the potential on and off will result in a net drift of particles to the
left.
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(ATP) to adenosine diphosphate (ADP). Energy is released during the conversion

and this energy is used to make the biopolymer move. These protein motors are

responsible for intracellur transport as well as muscle action [38]. In addition to

protein motors, there are devices that utilize this ratchet motion. One such device

is a deoxyribonucleic acid (DNA) pump that can be used for genotyping. Bader and

co-workers have been able to achieve this by inter-locking two platinum electrodes

on a silicon substrate. By applying a voltage across the electrodes when a solution

containing DNA molecules is injected into the device, the two electrodes create a

saw-tooth potential. The ratchet effect is achieved by flashing the potential on and

off. They have found that the diffusion constant for the DNA molecules depends both

on the size of the system and the separation of the two electrodes [39].

In addition to classical systems, the ratchet motion has also been observed in

quantum systems. The ratchet motion that arises in quantum systems does not need

the presence of external noise to exhibit ratchet motion, unlike classical systems [40].

Cold atoms have been used to observe ratchet motion in a quantum system when

the optical fields is detuned far from resonance. Salger and co-workers have created

a rubidium Bose-Einstein condensate (BEC) and then exposed it to an asymmetric

flashing potential. Figure 2.3 shows an example of an asymmetrical potential that

can be used to achieve directed transport of electrons. When the potential is on, the

electrons localize at the minima of the potential. As a result, the wavefunctions for the

electrons are centered on the minima and are narrow, while the volume of the electron

clouds are reduced as the electrons are localized to the minima. When the potential

is turned off, the electron clouds expand as well as the electrons’ wavefunctions as

potential is no longer confining the electrons to its minima. When the potential is

turned back on, the electrons now have a non-zero probability to be found in the

minima that are to the left of their initial positions, denoted by the yellow part of

the distribution when the potential is off. The net result of flashing the potential on

and off is a net drift of particles to the left in this case.
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Fig. 2.3. A rachet results from the asymmetry of the potential and
initial density distribution. If the potential (black) and the distribu-
tion (blue) are symmetric (a), there is no net motion of the particles
(gray and black circles). However, if the potential is not symmetrical
with respect to the distribution (b), there is a net flow of particles to
the left; following [41].
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In addition to BECs, Linke and co-workers have been able to observe ratchet mo-

tion in semiconductor heterostructures using quantum confinement of the electrons.

The currents that arise result from the low energy and high energy electrons flow-

ing in opposite directions. Confining electrons to asymmetric conducting channels

whose width is comparable to the Compton wavelength of the electron and applying

a source-drain voltage, results in a rocking ratchet for the electrons [42].

This chapter presents a proposed model for photonic transport in an array of

evanescently coupled waveguides that utilizes a linearly varying refractive index across

the array, and the excitation of two adjacent waveguides. This type of input allows

for effects that are not seen when a single waveguide or many waveguides are excited

simultaneously. By altering the relative phase between the adjacent inputs, a ratchet

motion can be achieved. In addition, the direction of transport for the photons can be

altered towards either the increasing refractive index or the decreasing refractive index

side. This ratchet effect and control over of the direction of transport is a consequence

of quantum interference arising from the relative phase difference between the two

inputs.

The results are reminiscent of the quantum ratchet that has been studied theo-

retically and experimentally in BECs [43]. The distinction between the ratchet like

behavior proposed here, versus the BEC ratchet, is that the directed motion of light

in a preferred direction arises from interference due to the phase-displaced inputs.

Therefore, while classical ratchets usually rely on an asymmetric potential with a

symmetric input, the model presented here has a symmetric potential and an asym-

metric input.

2.1 Theoretical Model

In this section, photonic transport through an array of uniformly coupled waveg-

uides, as shown in Figure 2.4, is of interest. In addition to the array having uniform

coupling between adjacent waveguides, the propagation constant is linearly increasing
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across the array, which is analogous to applying a DC electric field across the lattice

for an electron in a periodic potential. The Hamiltonian for this system is

H = ~

∑

j

jβa†jaj + ~C
∑

j

(a†j+1aj + a†j−1aj) (2.1)

where the individual waveguides in the array are labeled by the index j, and j = 0 is

the center waveguide as show in Figure 2.4. The difference in propagation constants

for adjacent waveguides is β, C is the coupling between adjacent waveguides, and a†j

(aj) is the creation (annihilation) operator.

Fig. 2.4. A large waveguide array with the input fields shown.

The operators are described by the Heisenberg equations,

daj
dz

= −ijβaj − iC(aj+1 + aj−1) (2.2)
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and with use of Fourier relations

aj =
1√
2π

∫ π

−π

ã(k)eikjdk (2.3)

ã(k) =
1√
2π

∑

j

aje
−ikj, (2.4)

Eq. (2.2) can be written in Fourier space as

dã(k)

dz
= −2iCã(k) cos k − iβ

(

∂

∂(−ik)

)

ã(k). (2.5)

As a result of the linearity of the operators, the annihilation operator for waveguide

j can be written in terms of an input-output relation

aj(z) =
∑

l

Gj,l(z)al(z = 0) (2.6)

where Gj,l is the Green’s function that is given by [44]

Gj,l(z) = exp

[

iβz +
i(j − l)(βz − π)

2

]

Jl−j

[

4C

β
sin

(

βz

2

)]

(2.7)

where J is the Bessel function of the first kind, l is the input location, z is the

propagation distance, and j is the waveguide index. Peschel and co-workers obtained

Eq. (2.7) by solving Eq. (2.5) using the assumption that the array is infinite, taking

the Fourier transform, and then applying the initial conditions [28].

For a single photon input at the center waveguide, l = 0, the intensity as a function

of propagation distance is

Ij = |Gj,0|2 = J2
j

[

4C

β
sin

(

βz

2

)]

. (2.8)

Note that the argument of the Bessel function is periodic, which results in the intensity

evolution exhibiting the breathing modes of the system, see Figure 2.5. The period of

the Bessel function is 4π/β and the spread of the wave packet is controlled through

the ratio C/β. Figure 2.5(a) shows that for C/β = 4 the wavepacket reaches the

edges of the array and eventually delocalizes. When C/β = 1.5, the breathing modes

of the system are visible as the wavepacket does not reach edges of the array, as it is
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confined to a central region of the array consisting of approximately nine waveguides.

In addition, the period of the breathing modes is approximately 10 coupling lengths,

see Figure 2.5(b). For C/β = 1, Figure 2.5(c) shows that the wavepacket is confined

to a central region of the array consisting of approximately five waveguides and the

period of the breathing modes is approximately 7 coupling lengths. Therefore the

distance over which the breathing modes of the system are visible is dependent on the

ratio C/β as the reflections at the boundaries generate interference that delocalizes

the wavepacket. The longer the wave packet remains in the central region of the

array, the longer the distance over which the breathing modes exist. To gain some

insight into these breathing modes, Bloch oscillations are now examined. They that

occur for an electron in a periodic potential in the presence of an external DC electric

field when the number of sites is infinite. The force that acts on the electron is

−eE = ~
dk
dt

where e is the charge of a proton and E is the amplitude of the applied

electric field. The position of the electron is oscillatory due to the presence of the

lattice, x(t) = −2C
eE

cos(aeEt
~

) where a is the distance between lattice sites and the

initial position is x(t = 0) = 0 [2]. If the lattice is not present, the electron uniformly

accelerates in one direction given by the DC electric field.

The input conditions on the field amplitude for this model are

aj(t = 0) = δj,0 + αδj,1e
iϕ (2.9)

where α is the amplitude of the adjacent input and ϕ is the relative phase difference

between the two inputs.Note that for the following analysis, α is assumed to be real.

The array index is assumed to run from j = −∞ to ∞ (see Figure 2.4), where j = 0 is

the middle waveguide. The |aj|2 plays the role of density distributions as the intensity

distribution is identical to the probability distribution. For photonic transport to be

achieved, analogous mean energy, 〈E〉 and mean momentum, 〈p〉 both have to be

linear in the propagation distance, z. The kinetic energy term in Eq. (2.5) involves

the first derivative of k. This can be explained by examining a system with a narrow

momentum distribution such as for a BEC. The first term in the expansion of p2

about the mean momentum is linear in p, which in coordinate space representation



18

Fig. 2.5. Intensity evolution as a function of normalized distance for
an array of N = 25 waveguides. The ratio of C/β is (a) 4, (b) 1.5,
and (c) 1. Note that the spread increases with C/β and the visibility
of the system’s breathing modes decrease with distance, because the
system is finite and the boundaries generate interference when the
light reflects off them. Thus, when the light is confined to the central
region of the array, the breathing modes are visible for a much longer
distance than for a wave packet that reaches the edges of the array.
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is −i~d/dx. As the potential term in Eq. (2.5) is symmetric, this is analogous to a

symmetrical potential in coordinate space that ratchet motion requires. Thus, Fourier

space is analogous to coordinate space and site space is analogous to momentum space.

This is advantageous as the natural space for the waveguide array is site space.

To study photonic transport, 〈j〉 and 〈j2〉 must be calculated, as these are anal-

ogous to the mean momentum and mean energy, respectively. The expectation

values for the mean site and mean energy are calculated as 〈j〉 =
∑∞

j=−∞ jIj and

〈j2〉 = ∑∞
j=−∞ j2Ij . The output intensity for the jth waveguide, Ij , is

Ij = |Gj,0|2 + |αGj,1|2 + αGj,0G
∗
j,1e

−iϕ + αG∗
j,0Gj,1e

iϕ

= |Jj
[

4C

β
sin

(

βz

2

)]

|2 + |αJ1−j

[

4C

β
sin

(

βz

2

)]

|2

− 2αJj

[

4C

β
sin

(

βz

2

)]

J1−j

[

4C

β
sin

(

βz

2

)]

× sin

(

βz

2
− ϕ

)

(2.10)

and this is identical to the probability of detecting a photon at waveguide j as a result

of the isomorphism that exists between the longitudinal component of the Helmholtz

equation and the Heisenberg equation for the annihilation operator, aj.

Using properties of the Bessel functions, the average site position is written as

∞
∑

j=−∞
jIj = |α|2 + 4αC

β
sin

(

βz

2

)

sin

(

βz

2
− ϕ

)

(2.11)

and a similar expression for the analog of the mean energy is given by

∞
∑

j=−∞
j2Ij = |α|2 + 4αC

β
sin

(

βz

2

)

sin

(

βz

2
− ϕ

)

+
1 + |α|2

2

(

4C

β
sin

(

βz

2

))2

. (2.12)

For small values of z, the average position, Eq. (2.11), is proportional to−α sin (ϕ)z,

which shows that the direction of transport for the photons is dependent on the rel-

ative phase of the inputs. The mean energy is also linear in z and the interference

term for the mean position is also present in the expression for the mean energy.
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This shows that ratchet-like motion of the light exists for small values of z when a

phase-displaced input is used. The asymmetry that is necessary for the ratchet mo-

tion exists in the overall Hamiltonian, though the intrawaveguide interaction term is

symmetric. The oscillatory solutions for both the mean momentum and mean energy

result from the fact that the potential is non-flashing as these oscillatory solutions are

not seen in systems that utilize a flashing potential as the flashing of the potential

prevents the particles’ direction of motion from changing.
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2.2 Results

This section describes the results showing photonic transport that can arise in a

waveguide array when phase-displaced inputs are utilized. For all results shown, the

inputs are at the j = 0 and j = 1 waveguides. The coupling length,1/C, is chosen as

the characteristic distance for the system. Figure 2.6 shows the intensity evolution

given by Eq. (2.10) for adjacent phase-displaced inputs. Note the asymmetry along

the j-axis, as this results from the phase-displaced inputs. The transport is now

noticeable as a relative phase difference, ϕ, controls which side of the j-axis has more

intensity. For values of ϕ between 0◦ and 180◦, the majority of the intensity remains

on the negative side of the j-axis while values between 180◦ and 360◦ remains on the

positive side.

Figure 2.7(a) shows the behavior of 〈j〉 as a function of the propagation distance

within a waveguide for ϕ = 37◦. Note that the profiles are oscillatory, indicating that

the direction of the transport within a waveguide is periodically alternating. However,

for very small values of z denoted by a black circle, the slope of the curve is negative,

indicating a deflection to the low index side of the array. When the relative phase is

taken to 217◦, as in Figure 2.7(b) the deflection of photons is now to the high index

side.

Figure 2.8(a) shows the behavior of energy as a function of propagation distance

and once again the profiles are oscillatory. When the phase is taken to 217◦, as in

Figure 2.8(b), both the momentum and energy show periodic oscillations, but the

deflection of photons is now to the high index side denoted by black circles. The

oscillatory motion of the beam results from the fact that the potential is non-flashing

as these oscillations are not seen in systems that utilize a flashing potential as the

flashing of the potential prevents the particles’ direction of motion from changing.

The novelty of this approach is that the direction of transport is controllable for

a constant, non-flashing potential. In addition, the potential is always present while

the potential used to obtained ratchet motion in a BEC is a flashing [43]. Note that
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Fig. 2.6. Output intensity distribution, Ij, as a function of z for
j = −12, ..., 12. The values of the parameters are β/C = 0.73 and
α = 1 with (a) ϕ = 37◦ and (b) ϕ = 217◦. The asymmetry in the
intensity evolution is a result of relative phase difference between the
two inputs.
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Fig. 2.7. Plots showing ratchet like behavior for the momentum. The
values of the parameters are α = 1, β/C = 0.73, with (a) ϕ = 37◦ and
(b) ϕ = 217◦. The black circle denotes the regions where the mean
momentum is linear in z.
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Fig. 2.8. Plots showing ratchet like behavior for the energy. The
values of the parameters are α = 1, β/C = 0.73, with (a) ϕ = 37◦

and (b) ϕ = 217◦. The black circle denote the regions where the mean
energy is linear in z.
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even though the model assumes an infinite array, the results are still valid with an

finite array, given that the wave packet does not interact with the boundaries.
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2.3 Conclusion

In conclusion, this chapter presented a description of a model achieving photonic

transport in an all-optical system. The model that has been presented in this chapter

utilized the tight-binding model and assumed that the propagation constant was

linearly increasing across an array with uniform waveguide coupling. In Fourier space,

the potential and kinetic energy terms are interchanged; therefore, the potential was

symmetric. This resulted in the Fourier space being analogous to coordinate space and

site space being analogous to momentum space. This was advantageous to studying

directed transport as this is the natural measurement space of the system.

For a single excited waveguide, the breathing modes of the system were visible

in the intensity evolution. This was analogous to applying a constant voltage across

a lattice for an electron and observing Bloch oscillations. Exciting adjacent waveg-

uides introduced the interference between the two inputs through the relative phase

and amplitude of the second input. Because of this interference, both the mean mo-

mentum and mean energy were linear in z for short propagation distances. Thus,

the key element in the model for obtaining photonic transport was exciting adjacent

waveguides and having a relative phase difference between the inputs.
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3. TUNABLE WAVEGUIDE ARRAYS

In the previous chapter, the linear propagation constant was linearly increased across

the array, as this was analogous to applying a constant transverse force to an electron

in a periodic potential. In addition applying a transverse force, one can modify the

effective mass, m∗, of the electron by modifying the coupling between lattice sites

as 1
m∗

∝ d2C(k)
dk2

. For waveguide arrays, this is easily done during the fabrication

process, as varying the distance between waveguides modifies the coupling between

adjacent waveguides. This chapter focuses on the wave packet dynamics in arrays

with non-uniform, position-dependent waveguide coupling profiles, as they have not

been extensively studied. One such position-dependent waveguide coupling profile

that has been examined is

Cn =
√
n (3.1)

where n is the waveguide index number and this waveguide coupling profile has been

used to examine Glauber-Fock lattices. Since the preferential direction for light to

tunnel is the same throughout the array, the light goes to the side with largest waveg-

uide index number [45]. In general, when the waveguide coupling is not parity-

symmetric, the light prefers to go to one side of the array over the other. The

parity-symmetry of the array implies mirror-symmetry about its center. One such

coupling function that is parity-symmetric is

Cα(j) = C[j(N − j)]α/2 (3.2)

where j is the waveguide index number, N is the total number of waveguides, and α

is the parameter that describes the coupling profile of the waveguides. The coupling

function Cα(j) describes the coupling of waveguides j and j+1. Joglekar and Saxena

showed that for α ≥ 0, the system has only extended states while for α < 0, the system

has both localized and extended states [46]. This form of the coupling profile has been
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experimentally achieved by Bellec and co-workers for α = 1 by having a separation

distance dj,j+1 ∼ − ln(
√

j(N − j))β−1 between adjacent waveguides, where β is the

linear propagation constant for each waveguide [47].

The shapes of the waveguide coupling profiles are shown in Figure 3.1. For α > 0,

the profile has a maximum at the center of the array while for α < 0, the profile

has a minimum at the center. This means that the light prefers to be at the center

of the array for values of α > 0 as the light tunnels in the direction of the greatest

waveguide coupling. For negative values of α, the light prefers to be at the edges of

the array as the coupling is the greatest at the edges. This α-dependent coupling

profile can be experimentally achieved by symmetrically increasing (decreasing) the

center-to-center distance between adjacent waveguides for negative (positive) values

of α. For α = 0, the coupling is uniform throughout, as there exists no preferential

direction for the light to tunnel and this is commonly referred to as a periodic array.
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Fig. 3.1. Coupling profile, Cα(j) = C[j(N−j)]α/2, as a function of the
waveguide index number, j, for α = 1 (red), α = (blue), and α = −1
(black). For α = 0, the coupling profile is constant as the waveguides
are uniformly coupled. For values of α > 0, the profile will have a
maximum at the center of the array while for α < 0, the profile will
have minimum at the center. The number of waveguides in the array
is N = 100.
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3.1 Tight-Binding Model

The tight-binding Hamiltonian describing the propagation of light in an array

whose waveguide coupling is described by Eq. (3.2) is

H = ~

∑

j

Cα(j)(a
†
j+1aj + a†jaj+1) (3.3)

where the linear propagation constant is the same for each waveguide and is set to

zero as it is irrelevant. The energy bandwidth of the system, ∆
(0)
α , is defined as the

energy difference between maximum energy, Emax and the minimum energy, Emin.

The inverse of the bandwidth is chosen as the characteristic time-scale for the system,

τα(N) = ~/∆α(N), as the wave packet dynamics occur on physically different time

scales for different values of α. Joglekar and Saxena showed that the bandwidth scales

as ∆α(N) ∼ ~CNα for α > 0 and ∆α ∼ ~CN−|α|/2 for α < 0 [46]. When N → ∞, the

coupling term for j = N
2
(j = 1) dominates Eq. (3.3) for α > 0 (α < 0). The value

of τα decreases inversely with α; therefore, values of α > 0 correspond to physically

short times, while values of α < 0 correspond to physically long times. Additionally,

α controls the shape of the energy spectrum, see Figure 3.2. The energy spectrum

is symmetric about En = 0 for each value of α. For α = 0 (green line), the energy

spectrum is given by En = 2C cos
(

nπ
N+1

)

, where the analogous Bloch momentum is

kn = nπ
(N+1)a

and a is the lattice constant. When α = 1 (red line), the energy spectrum

is linear and for α = 2 (blue line), the energy spectrum is nearly linear in shape. Note

when α = −1 (black line), there exist bound states at the edges of the array which

correspond to the energies that are near the ends of the energy spectrum [46].

3.2 Wave Packet Dynamics

To investigate how the shape of the energy spectrum influences the wave packet

dynamics, the time-dependent wave function is calculated as

|ψ(t)〉 = e−iHt

~ |j〉 (3.4)
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Fig. 3.2. Energy spectra for α = 2 (blue), α = 1 (red), α = 0
(green), and α = −1 (black). The energy spectrum for α = 0 is
En = 2~C cos(nπ/N+1) and is linear for α = 1. For α = 2, the energy
spectrum is nearly linear while for α = −1, the energy spectrum is
relatively flat in the middle and nearly vertical at the edges, which
correspond to bound states at the edges of the array. For any value
of α, the energy spectrum is symmetric about En = 0, which is a
consequence of the tight-binding model [2].

where j is the waveguide index number of the initial waveguide where a single photon

is injected, and probability to detect a photon at waveguide k is Pk = |〈k|ψ(t)〉|2.
Note that the probility distribution is identical to the intensity distribution of light in

the array. Figure 3.3 shows that for values of α < 0, there exists bound states at the

edges of the array as part of the wave packet localizes at the edges [46]. The initial

position is j = 5 and the array consists of 100 waveguides. Even though there are

bound states at the edges of the array, part of the light propagates towards the other

side of the array. This is a result of both bound states and extended states existing

in the system for α < 0. The rate of spread for the wave packet is α dependent, as for

α = −1 shown in Figure 3.3(a), part of the light is reflected off of the farthest edge

at approximately t = 530τα while for α = −2 and α = −3.31, the light has yet to
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reach the farthest edge when t = 800τα, as shown in Figures 3.3(b) and 3.3(c). This

results in the waveguide coupling decreasing with α as the Cα(j) → 0 as α → −∞,

which results in a decreasing rate of wave packet expansion.

Fig. 3.3. Wave packet evolution as a function of the normalized time,
t/τα, for (a) α = −1, (b) α = −2, and (c) α = −3.31. The number of
waveguides is 100 and the initial waveguide is j = 5. Note that there
exists bound states at the edges of the array for α < 0.

To investigate the spread of the wave packet further, the wavepaceket is now

initially at the center of the array. Figure 3.4(b) shows that for a periodic array,

the light reaches the edges of the array in the smallest amount of normalized time

due to the uniform coupling of the array, and delocalizes due to the interference

created by the reflections at the boundaries. For α = −1, the wave packet eventually

delocalizes as its energy spectrum is nonlinear, as shown in Figure 3.4(c). The rate

of delocalization is significantly smaller than for α = 0, as the waveguide coupling is

significantly smaller. Figure 3.4(a) shows that when α = 1, the wave packet undergoes

periodic reconstruction as its energy spectrum is linear with a spacing of ∆E = 2~C

between adjacent energy levels [46, 48]. This is analogous to a harmonic oscillator,

which has constant spacing between energy levels of ∆E = ~ω. This periodic wave
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packet reconstruction is a general result for any quantum system that has a linear

energy spectrum.

Fig. 3.4. Wave packet evolution as a function of the normalized time,
t/τα, for (a) α = 1, (b) α = 0, and (c) α = −1. The number of waveg-
uides is 100 and the initial waveguide is j = 50. Note that periodic
reconstruction for α = 1 is the result of the linear energy spectrum.
The wave packet reaches the edges of the array in the smallest amount
of normalized time for a periodic array, as the waveguide coupling is
uniform throughout. For α 6= 1, the wave packet eventually delocal-
izes as a result of the interference that is created by the reflections at
the edges of the array.

The location of where this periodic reconstruction occurs is dependent on the

location of the initial waveguide. Figure 3.5 shows that for a wave packet that is

initially at waveguide j, it reconstructs at waveguide N + 1 − j. For a initial posi-

tion of j = 5, the wave packet reconstructs at waveguide N + 1 − j = 96 and this

reconstruction alternates between these two waveguides, as shown in Figure 3.5(a).

This reconstruction occurs first at the parity-symmetric waveguide, N + 1 − j, and

then at the initial waveguide regardless of the initial position, as shown in Figures

3.5(b) and 3.5(c) with inputs at j = 23 and j = 37, respectively. The location of

the wave packet reconstruction is a result of the fraction of the wave packet that
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goes to the high waveguide index side and the fraction that goes to low index side

having the same path lengths. The periodic reconstruction is robust in the presence

of the boundaries of the array due to its linear energy spectrum, as the wave packet

reconstructs after it reflects back towards the center of the array. When α 6= 1, the

interference from the edges of the array delocalize the wave packet.

Fig. 3.5. Wave packet evolution as a function of the normalized time,
t/τα with α = 1. The number of waveguides in the array is N = 100
and the initial waveguide is (a) j = 5, (b) j = 23, and (c) j = 37.
The location of the wave packet reoconstruction alternates between
the initial waveguide j and its mirror-symmetric counterpart, N+1−j.
In addition, this periodic reconstruction is robust in a finite array and
the wave packet will not delocalize, unlike values of α 6= 1.

The effects of the boundaries for α = 0 can be seen in the expression for the prob-

ability amplitude Aj . For an infinite array, the probability amplitude for waveguide

j is

Aj(t) = ij−j0Jj−j0 (2Ct) (3.5)
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where j0 is the initial location in the array, J is the Bessel function of the first kind,

and the probability to detect light in waveguide j is Pj(t) = |Aj(t)|2 [4]. The presence
of a single edge is seen in the expression for a semi-infinite array

Aj(t) = ij−j0Jj−j0 (2Ct) + ij+j0Jj+j0 (2Cz) (3.6)

where the second term is due to the reflection at the edge [49]. When a second edge

is present, Makris and Christodoulides showed that the expression for the probability

amplitude can be obtained using the method of images [50].

The method of images for light propagating in a finite waveguide array is analogous

to an electron between two conducting planes that are grounded. To satisfy the

boundary conditions at the planes, an infinite number of image charges are paired in

such a manner as to satisfy these conditions. The boundary conditions for light are

that the electric fields at the edges of the array are zero, i.e. A0 = AN+1 = 0. This

results from the fact that the tight-binding model that describes the propagation of

the light, Eq. (3.3), is lossless. Figure 3.6 shows the configuration of images for an

array of N = 2 waveguides with a single input (green arrow) at the left waveguide.

As the signs of the charges alternate for the two conducting planes, the phases of the

fields alternate between 0 and π. The relative phases of the input and images are

denoted by the direction they are pointing. Arrows pointing up denote a phase of 0

while arrows pointing down denote a phase of π relative to the input. The black lines

represent the edges of the array where the fields are required to be zero. This method

is only valid in the space between the two black lines, which is advantageous as the

space between the lines is the physical waveguide array.

The probability amplitude for waveguide j is given by

Aj(t) = ij−j0Jj−j0(2Ct) + ij+j0Jj+j0(2Ct)

+

r=−1
∑

r=−∞

(

i−(2N+2)r [ij−j0Jj−j0−(2N+2)r(2Ct) + ij+j0Jj+j0−(2N+2)r(2Ct)]
)

+

r=∞
∑

r=1

(

i−(2N+2)r [ij−j0Jj−j0−(2N+2)r(2Ct) + ij+j0Jj+j0−(2N+2)r(2Ct)]
)

(3.7)
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Fig. 3.6. Configuration of image charges for a periodic infinite array.
The initial input is the green array and the images are the red arrows.
The array of interest consists of N = 2 waveguides and the black lines
correspond to the locations where the fields are required to be zero.

where r is the index of the image pair [50]. The third and fourth terms are a result of

the infinite number of images that are needed to ensure that the boundary conditions

are satisfied when a second edge is present. The number of terms that need to be kept

increase with the number of reflections from the edges of the array. The intensity due

to the interference that is created by the reflections, Iinterference, is given by

Iinterference =
N
∑

j=1

[

|Aj |2 −
r=∞
∑

r=−∞

(

J2
j−j0−(2N+2)r(2Ct) + J2

j+j0−(2N+2)r(2Ct)
)

]

(3.8)

where only the cross terms from Eq. (3.7) remain in Iinterference. The maximum value

is greater for an input at the edge than at the center of the array and interference

decreases until it reaches a steady state value of approximately 1
N
, as shown in Figure

3.7. This steady state value is independent of the initial location as the wave packet

is delocalized due to the reflections at the boundaries. In addition, this method of

images can be used with any array that has parity-symmetric waveguide coupling.

However, the analytic form of Aj changes with the form of the coupling function.

In addition to a single input, two waveguides can be simultaneously excited to

create a state of the form

|ψ〉 = 1√
2
(|j〉+ eiϕ|k〉) (3.9)

where j and k are waveguide index numbers where a single photon is injected into each

site, and ϕ is the relative phase between the two inputs. This leads to interference

patterns in the intensity evolution. Figure 3.8 shows intensity evolution for an initial
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Fig. 3.7. Iinterference versus N when the wave packet has reached a
steady state. The red squares are the calculated data points from
Eq. (3.8) and the black line represents Iinterference = 1

N
, which is

agreement with the results from Eq. (3.8). The number of image
pairs is 1, 500, Ct = 10, 000, and α = 0.

state of |ψ〉 = 1√
2
(|40〉+ |60〉) where the relative phase between the two inputs is zero.

Figure 3.8(a) shows that for α = 1, the windows where the interference pattern is

visible are periodic as a result of the periodic wave packet reconstruction that results

from the linear energy spectrum. For α 6= 1, the interference pattern is not visible at

long times due to the wave packet delocalizing because of the interference created by
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Fig. 3.8. Wave packet evolution as a function of the normalized time,
t/τα, for (a) α = 1, (b) α = 0, and (c) α = −1. The number of
waveguides is 100 and the initial state is |ψ〉 = 1√

2
(|40〉+ |60〉). Note

that interference pattern that is visible only remains visible for α = 1
as the wave packet delocalizes for α 6= 1.

the array boundaries, as shown in Figures 3.8(b) and 3.8(c). This results from the

energy spectrum being nonlinear for α 6= 1.

3.3 Two-Particle Correlations

In addition to the interference patterns that are visible in the intensity evolution

when two waveguides are initially excited, nontrivial quantum correlations are formed.

The correlation function that is of interest is the two-particle (number) correlation

defined as [51]

Γpq = 〈a†pa†qaqap〉. (3.10)

Silberberg and co-workers have experimentally explored these correlations in a peri-

odic lattice using Hanbury Brown-Twiss (HBT) intensity-intensity correlations mea-

surements [52]. These intensity-intensity correlation measurements were developed

in 1956 by Robert Hanbury Brown and Richard Q. Twiss as a way to measure the
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size of the star Sirius [53] and are heavily used in quantum optics [54]. For an array

of waveguides, the HBT correlation measurements give the probability of detecting a

photon at one waveguide while simultaneously detecting a second photon at another

waveguide when two photons are injected simultaneously into the array. The HBT

correlation measurements contain information about the quantum statistics of the

particle; therefore, they can be used to differentiate between fermions and bosons.

The correlation matrix that contains all the possible final states is

Γpq = |UpjUqk ± UpkUqj |2 (3.11)

where Upk is the unitary time-evolution operator and the initial waveguides are j

and k. Note that ± corresponds to bosons and fermions, respectively. Lahini and

co-workers have studied the quantum correlations extensively in a periodic lattice.

They found initial separation of the states has a dramatic affect on the quantum

correlations, which are encoded classical intensity-intensity correlations. The quan-

tum correlations assume that the light that is detected at wavaeguides j and k come

from different input whereas the classical correlations allow the possibility that the

light detected could come from the same input. Injecting two photons into the same

waveguide results in the quantum correlations being just the product of the probabil-

ity distributions. When the photons are in adjacent waveguides, they bunch together

and go to the same side of the array. However, when there is a waveguide separating

the initial waveguides, the photons are either both at the edges of the array or both at

the center of the array. This stark difference in quantum correlations is attributed to

the π/2 phase difference between adjacent waveguides. For two electrons at adjacent

lattice sites, they go to opposite sides of the lattice, and if there is a site separating

them, one goes to the edge while the other one stays in the central region of the

lattice. Thus, the type of particle produces a stark contrast in the two-particle cor-

relations even though the probability distributions for a single particle are identical

regardless of the type of particle [52].

When α = 1, there exist windows when both bosons and fermions are localized

near an edge when particles are initially at sites j = 1 and j = 2. Figure 3.9(a)
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Fig. 3.9. Two-particle quantum correlations for bosons that are ini-
tially at sites j = 1 and j = 2 at times of (a) t/τα = 50, (b) t/τα = 70,
(c) t/τα = 90, and (d) t/τα = 110. The waveguide array consists of
N = 100 waveguides and α = 1. The bosons are localized at all times
and the location of where the bosons localizes oscillates back and forth
between the lower left and upper right corners.

shows that when t/τα = 50 and the number of lattice sites is N = 100, the bosons

are localized near the initial positions of the particles due to the periodic wave packet

reconstruction. As the time evolves further, the two regions where the bosons localize

move towards the opposite edge of the array. In addition, as the regions move towards

the center of the array, they expand as a result of the spreading of the wave packet,

as shown in Figures 3.9(b)-(d). Figure 3.10(a) shows that for t/τα = 50, the fermions

localize near the initial positions. Note that a nodal region exists along the diagonal

that goes from the bottom left corner to the upper right corner as the two fermions

cannot be found at the same site due to the Pauli exclusion principle. Similar to the

case when the particles are bosons, the localized regions move towards the other edge

of the array and the area of the regions expands, as shown in Figures 3.10(b)-(d). In

addition, the correlations are periodic in time regardless of the quantum statistics of
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Fig. 3.10. Two-particle quantum correlations for fermions that are
initially at sites j = 1 and j = 2 at times of (a) t/τα = 50, (b)
t/τα = 70, (c) t/τα = 90, and (d) t/τα = 110. The waveguide array
consists of N = 100 waveguides and α = 1. The fermions are localized
at all times and the location of where the fermions localizes oscillates
back and forth between the lower left and upper right corners.

the particle as the wave packet undergoes periodic reconstruction that results from

the linear energy spectrum for α = 1.

For α = 2, the energy spectrum is nearly linear, see Figure 3.2, and even though

the wave packet dynamics are similar to the dynamics when α = 1, the quantum

correlations are very different. For two bosons at initially at sites, j = 1 and j = 2,

the wave packet attempts reconstruction multiple times, until the interference from

the boundaries delocalizes the wave packet. When the wave packet attempts the re-

construction a second time, the bosons are then localized near the initial sites. Figure

3.11(a) shows that a nodal region forms near the lower left hand corner separating

the two regions where the particles are localized when t/τα = 140. As time evolves,

this nodal region expands as the localized region that is farthest from the edge moves

toward the center of the array and expands, as shown in Figure 3.11(b)-(d). When

the particles are fermions, one localizes to the edge of the lattice while the other one
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Fig. 3.11. Two-particle quantum correlations for bosons that are ini-
tially at sites j = 1 and j = 2 at times of (a) t/τα = 140, (b)
t/τα = 175, (c) t/τα = 200, and (d) t/τα = 225. The energy spectrum
is nearly linear as α = 2 and the number of sites is N = 100. The
bosons are localized near there initial positions as the wave packet
attempts to reconstruct. The correlations show that a nodal region
forms and seperates two areas where the correlation matrix is non-
zero. As time evolves, the outer area and the nodal region both ex-
pand.

is in an extended state that is time-dependent, as shown in Figure 3.12(a). For a time

of t = 175τα, the span is approximately 20 sites, while for times of t/τα = 200 and

t = 225τα, the span is approximately 40 waveguides, as shown in Figures 3.12(b)-(d).

In addition to the span of the extended states being time-dependent, the separation

of the two fermions is also time-dependent as the separation increases with span of

the extended state.
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Fig. 3.12. Two-particle quantum correlations for fermions that are
initially at sites j = 1 and j = 2 at times of (a) t/τα = 140, (b)
t/τα = 175, (c) t/τα = 200, and (d) t/τα = 225. The energy spectrum
is linear as α = 1 and the number of site is N = 100. One fermion
localizes near an edge while the other fermion is in an extended state.
The range of this extended state as well as the area of localization are
both time-dependent.
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3.4 Conclusion

In this chapter, the evolution of light in a waveguide array with a waveguide

coupling profile of Cj = C(N(N − j))α/2 has been explored. This lead to wave packet

dynamics that have not been seen in traditional models as site-dependent waveguide

coupling models have not been extensively explored. The parameter α was used to

tune the wave packet dynamics as it controlled both the energy bandwidth, ∆α and

the shape of the energy spectrum.

Since the coupling strength varies with α, the inverse of the bandwidth was chosen

as the characteristic time scale of the system. For α = 0, the wave packet spread was

the greatest in terms of the normalized time as the waveguide coupling was uniform

throughout. When α = 1, the wave packet underwent periodic reconstruction, which

resulted from the linear energy spectrum of the system. This periodic reconstruction

alternated between the initial waveguide and its parity-symmetric counterpart. When

two waveguides were simultaneously excited and α = 1, the interference pattern that

was produced was also periodic. In addition, this periodic reconstruction was robust

as the wave packet did not delocalize due the interference as it did for α 6= 1.

Lastly, two-particle (number) correlation has been investigated for different values

of α for both fermions and bosons. The correlations were found to be sensitive to both

the shape of the energy spectrum and to the type of particle. For α = 1, windows

existed when both types of particles were localized near an edge and the area to which

they localize was periodic in time as the energy spectrum was linear. When α = 2,

the correlations for fermions and bosons had stark differences. For fermions, there

existed windows when one fermion was localized and the other was in an extended

state. However, the correlations showed a nodal region for bosons and this nodal

region separated two regions where the bosons localized.
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4. DISORDER INDUCED LOCALIZATION

For many years it was thought that the introduction of disorder, i.e. impurities, into

a metal would cause its conductivity to undergo a slow transition from a conductor to

an insulator following the Drude model [2]. The Drude model was introduced in 1900

by Paul Drude to explain electrical transport properties [55]. According to the Drude

model, the introduction of disorder into the metal decreases the electron’s mean free

time between collisions, which results in a lower conductance for the metal [2]. In 1958,

P. W. Anderson introduced a new model for how introduction of disorder changes the

electrical conduction. He proposed that for a critical amount of disorder, the metal

undergoes a sharp transition from a conductor to an insulator. For a disorder free

metal, the electron is free to move in any direction. With the introduction of disorder,

scatterers are present in the model. These scatterers create closed paths for the

electrons such that it will return to its initial position. The closed path and its time-

reversed counterpart constructively interfere and as the number of scatterers increase,

the probability for the electron to remain at its initial location increases. This results

in the conductivity of the metal decreasing as the electron starts to localize to its

initial position. Ioffe and Regel predicted that this transition occurs when the mean

free path length is smaller than the electron’s Compton wavelength [56]. Abraham

and co-workers showed that only when the number of dimensions for the material

exceeds two does the material undergo a true phase transition [57].

This localization, known as Anderson localization, is the result of the interference

from all possible scattering paths and is a wave phenomenon [23]. For an infinite one-

dimensional lattice, the electron localizes instantaneously for an infinitesimal amount

of disorder in the lattice. When the lattice is finite, the electron does not localize

instantaneously for a given disorder. This results from a finite number of scatterers

and a finite disorder strength. Increasing the number of scatterers or the disorder
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strength decreases the amount of time it takes the electron to localize [58]. The

two main assumptions Anderson made were that the particles are non-interacting

and that the disorder was time-invariant [59]. If the disorder is time dependent, the

localization breaks down and classical diffusion is achieved [60] and this has been

experimentally observed [61].

Anderson localization, a wave phenomenon, has been observed in a wide range of

systems and has been studied extensively in the last 50 years [62]. One such system

where Anderson localization has been experimentally observed is acoustic propagation

in water. Weaver and co-workers used two inhomogeneous parallel plates and a point

source to generate an acoustic wave; they found a concentration of energy around the

point source that is slow to decay [63]. In addition to acoustic systems, Anderson

localization has also been observed in ultracold atoms. Aspect and Inguscio observed

Anderson localization in a potassium-39 BEC by obtaining a speckle pattern of the

BEC. The disorder was introduced through the arrangement of the lasers that created

the optical lattice [64]. Another system that can exhibit Anderson localization is a

photonic crystal [65, 66].

In recent years, Lahini and co-workers observed Anderson localization in an array

of evanescently coupled waveguides where the waveguides are uniformly spaced. They

introduced disorder through the index of refraction for each waveguide by randomly

adding impurities during the fabrication process. This resulted in the linear propa-

gation constant being randomized and time-invariant. They experimentally achieved

averaging over different realizations by injecting light into the farthest waveguide to

left and recorded the output distribution. They then excited the adjacent waveguide

on the right and recorded the intensity distribution and they repeated this process

until every waveguide was individually excited. By averaging all of the output inten-

sity distributions together, they achieved a disorder averaged intensity profile. They

observed that as the disorder is increased in the array, the ballistic propagation of

the light is suppressed and light localizes to the initial waveguide [67].
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In addition to observing the intensity profile when the light undergoes localization,

they have also investigated the effects of disorder on the energy spectrum. They

used the Hanbury Brown-Twiss (HBT) correlations to gain information about the

symmetry of the energy spectrum. This results in the randomization of either the

propagation constant or the waveguide coupling as they produce similar intensity

distributions. They observed that oscillations in the HBT correlations correspond to

a symmetric energy spectrum. They found that randomizing the waveguide coupling

constant preserves the symmetry while randomizing the linear propagation constant

destroys this symmetry [68]. They have also investigated the dependence that the

HBT correlations have on the quantum statistics of particle when there is disorder

present as the probability profiles for both fermions and bosons are identical when a

single particle is on the lattice. They found that signatures of the quantum statistics

of particles survive the scattering from the disorder. The fermions exhibit a flat

interparticle distance probability while the interparticle probability is oscillatory for

bosons.

This chapter focuses on the effects that time-invariant disorder has on the evolu-

tion of a wave packet propagating through an array of evanescently coupled waveg-

uides. In particular, the evolution in an array with a non-uniform, parity-symmetric

waveguide coupling is of interest as the disorder free dynamics are tunable through

the coupling profile. Additionally, how non-Hermitian but PT -symmetric disorder

affects the symmetry of the energy spectrum is investigated. Lastly, the quantum

statistics of the output light are investigated for different input fields. The normal-

ized variance and the site-to-site correlations are of interest for the different input

fields.
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4.1 Tight-Binding Model

In this section, light propagating in an array of N single-mode, evanescently cou-

pled waveguides is described by a tight-binding Hamiltonian given by

Ĥ =
N
∑

j=1

βja
†
jaj +

N−1
∑

j=1

Cα(j)(a
†
j+1aj + a†jaj+1) (4.1)

where βj is the linear-propagation constant at site j, ~ = 1, and C(j) is the coupling

constant between waveguides j and j+1. The parity symmetric coupling function of

the form from the previous chapter

Cα(j) = C[j(N − j)]α/2. (4.2)

is chosen. The Hermitian disorder is introduced through random variations of the

linear propagation constant βj. The mean value of βj is irrelevant as long as it is

the same for each waveguide. Thus, it is set to zero. To investigate how the form

of the disorder distribution affects the rate of localization, the intensity profiles for a

uniform distribution of the form

P (βj) =







1
2∆

if βj ≤ ∆

0 if βj > ∆
(4.3)

and a Gaussian distribution of the form

P (βj) =
1√
2πσ2

exp

(−β2
j

2σ2

)

(4.4)

are compared for a given propagation time. Figure 4.1(a) shows the output intensity

profile for a propagation time of Ct = 20, α = 0, and no disorder present in the

array. The number of waveguides in the array is N = 100, with α = 0, and the

initial position in the array is j = 50. This shows that the light undergoes ballistic

propagation as the outer lobes of the profiles have the highest intensity and this is a

signature of a quantum random walk [18]. Figure 4.1(b) shows when ∆ = σ, more

light is localized to the initial waveguide for a Gaussian distribution (blue solid line)

described by Eq. (4.4), than for a uniform distribution (red dashes) described by
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Eq. (4.3). This results from disorder strength being unequal as the variance of the

uniform distribution, ∆2

3
, being a third of the variance for the Gaussian distribution,

σ2, if ∆ = σ. Figure 4.1(c) shows that they produce identical intensity profiles when

the disorder strength is the same as both distributions have equal variances, ∆2

3
= σ2.

Thus, the disorder induced localization is independent of the type of distribution

given that it has the same mean and variance.

Fig. 4.1. Mean intensity versus waveguide number for an input at
the 50th waveguide, a propagation time of Ct = 20, a waveguide ar-
ray consisting of N = 100 with α = 0, and the number of disorder
realizations Nr = 103. Note that panel (a) shows the ballistic prop-
agation that arises from the discrete nature of a disorder free array
and is a hallmark signature of a quantum random walk [18]. When
the variances of different distributions are unequal, a higher amount
of light localizes for the distribution with the larger variance as panel
(b) shows. The intensity profile for a rectangular distribution (red
dashes) with a variance of C2

3
is plotted against the intensity profile

a Gaussian distribution (blue solid line) with a variance of C2. The
variance for the Gaussian distribution is higher, which results in more
light remaining in the initial waveguide. When the variances for the
distributions are equal, the intensity profiles are indistinguishable as
panel (c) shows when both variances are 9C2. Note that the means
of both distributions are set to zero.
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As the mean and variance characterize a Gaussian distribution, it is the distribu-

tion that is used for the rest of the chapter unless noted otherwise and the random

disorder is generated using the Box-Mueller algorithm with zero mean and the desired

variance [69]. Note that as the coupling strength increases with α, a given amount

of physical disorder localizes a smaller amount of light as α increases. Therefore, the

disorder strength is normalized to the disorder free energy bandwidth, ∆
(0)
α . As men-

tioned in the previous chapter, ∆
(0)
α ∼ Nα for α ≥ 0 and ∆

(0)
α ∼ N−|α|/2 for α < 0. In

addition, the inverse of the bandwidth is chosen as the characteristic time-scale for

the system, τα(N) = 1
∆α(N)

, as the wave packet dynamics occur on physically different

time scales. The number of disorder realizations is varied to show that results are

independent of the number of realizations once a sufficient amount of averaging is

reached.

4.2 Wave Packet Evolution in the Presence of Disorder

This section begins by investigating the effect a non-uniform, parity-symmetric

coupling has on the localization of light inside the waveguide array. This is done by

calculating the α dependence of the fraction of the total light intensity that remains

in the initial waveguide for two different disorder strengths. In addition, the input

location of the light in the array is varied, as the relative coupling strength is position-

dependent. This allows for investigation into whether a global variable, such as the

energy bandwidth, or a local variable, such as the local coupling constant is the proper

choice for the disorder strength scale.

The top panel of Figure 4.2 shows the fraction of total intensity that remains in

the initial waveguide as a function of α for N = 100, initial waveguides j0 = 50 (blue

circles) and j0 = 15 (red squares), and disorder strength σ/∆
(0)
α = 3. When the initial

waveguide is near the center of the array, for α < 0, the localized fraction rapidly

saturates as |α| increases, whereas for α ≥ 0, the localized fraction is approximately

independent of α because relative coupling strength is nearly identical, Cα(50) ≈
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Fig. 4.2. The top panel shows the steady state intensity localized to
the initial waveguide as a function of α for an array with N = 100
waveguides and Nr = 106 disorder realizations. The input is j0 = 50
(blue circles) and j0 = 15 (red squares), and the disorder strength

is higher than the bandwidth σ/∆
(0)
α = 3. The localized fraction is

weakly dependent upon α as the relative coupling strength is nearly
identical, Cα(50) ≈ Cα(51). When the input is moved away from
the center, the relative coupling strength difference between adjacent
waveguides becomes more pronounced for α > 0. The fraction of the
total intensity that remains in the initial waveguide increases with α as
the relative coupling strength difference increases with α when α > 0.
The bottom panel shows corresponding results for an array with N =
37 waveguides, Nr = 105 disorder realizations, and a weaker disorder
σ/∆

(0)
α = 1. The localized fraction as a function of α depends acutely

on different initial input, j0 = 11 (blue squares) and j0 = 5 (red
squares), when the input locations are relatively close to the boundary.
Again, this results from relative coupling strength difference being
more pronounced between adjacent waveguides.
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Cα(51). When the initial waveguide is near the edge, j0 = 15, a clear dependence

of the localized fraction on the coupling exponent α is visible. The bottom panel

of Figure 4.2 shows the localized fraction as a function of α for a smaller disorder

strength σ/∆
(0)
α = 1, with a smaller number of waveguides N = 37 and different input

waveguide locations j0 = 11 (blue circles) and j0 = 5 (red squares). In general, the

α-dependence of the steady state localized fraction is sensitive to the proximity of the

initial waveguide to an edge of the array as the relative coupling strength difference is

more pronounced at the edges of the array. This result shows that the local variable

coupling constant Cα(j0) and not the clean-system energy bandwidth ∆
(0)
α , is the

proper scale for the disorder strength. When σ ≫ ∆
(0)
α , the localized intensity fraction

in the initial waveguide is independent of α as the disorder completely suppresses the

disorder free wave packet dynamics.

To examine the boundary effects when a weak disorder, σ/∆
(0)
α = 0.05 is present

in the array, the input location is near one edge of the array, j0 = 15, with N = 100

waveguides. In addition, the dependence of the disorder averaged intensity profile on

the value of α is of particular interest. Figure 4.3 shows that initially, the disorder

free wave packet dynamics are visible for t/τα as the scattering is insufficient to

completely suppress the spread. When α = 0, the light localizes in initial waveguide

with approximately twice the uniformly distributed intensity, where Ij0 = 0.02 and

Iunif = 1/N = 0.01, as shown in Figure 4.3(a). Figure 4.3(b) shows that when

α = 1, the wave packet attempts periodic reconstruction twice before it localizes.

Note that in contrast to the uniform array, the wave packet localizes in the initial

waveguide and its parity-symmetric waveguide. This two-channel localization is the

result of the competition between the destructive interference from the disorder and

the constructive interference from the reflections at the boundaries. This two-channel

localization is also present for α = 2 and is a generic feature of the coupling profile

having parity-symmetry, as shown in Figure 4.3(c). The relative intensities of the

two channels can be varied with the disorder strength and increasing the disorder

strength further results in the peak at the parity-symmetric waveguide vanishing.
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Fig. 4.3. α-dependent disorder averaged intensity I(j, t) for an input
at j0 = 15 in an array with N = 100 waveguides, a weak disorder
σ/∆

(0)
α = 0.05, and Nr = 106 disorder realizations. The horizontal

axis in each panel indicates time in units of the characteristic time,
τα. Panel (a) shows exponential localization with a single peak at
the initial waveguide when the array has uniform,α = 0, coupling.
Panels (b) and (c) show corresponding results for α = 1 and α = 2
respectively. In each case, the reconstruction attempts are followed
by emergence of steady state intensity profile I(j) that has two peaks,
one at the input waveguide j0 and the other at its parity-symmetric
counterpart, N + 1 − j0. The relative weights at the two peaks can
be tuned by the varying the weak disorder.
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This two-channel localization is achievable in an array with uniform coupling,

Cα(j) = C, by decreasing the size of the array as the interference from the boundaries

is approximately 1/N . Figures 4.4(a)-4.4(c) show the intensity evolution for an initial

position of j0 in an array with N = 20 waveguides that are uniformly coupled with

Nr = 2, 000 disorder realizations. When the disorder, σ = 0.04C, is much smaller

than the energy bandwidth, ∆(0) ≈ 4C, the light partially localizes in the initial

waveguide, j0, as well as in the parity-symmetric waveguide, N +1− j0. This results

from the constructive interference that results from reflecting multiple times off the

edges of the array as Figures 4.4(a) and 4.4(d) show. Increasing the disorder further

results in the amount of light in the parity-symmetric waveguide decreasing, as more

light localizes in the initial waveguide due to the increase in the scattering that the

light undergoes, see Figures 4.4(b)-4.4(d). Figure 4.5 shows the disorder averaged

intensity evolution in an array with α = −1 when a weak disorder is present in

the array, σ = 0.0125∆
(0)
α , and the number of disorder realizations is Nr = 1, 000. In

addition, when the array is free of disorder, bound states exists at the edges and these

bound states are suppressed by the interference from the disorder. Additionally, the

light localizes at the initial waveguide, j0 = 3, and its parity-symmetric counterpart,

N + 1− j0 = 18. This two channel localization is observable in any waveguide array

with parity-symmetric waveguide coupling when the disorder is weak, σ ≪ ∆
(0)
α .

To further investigate how the boundaries affect the wave packet evolution in the

presence of disorder, periodic boundary conditions are now applied to the waveguide

array such the light can tunnel directly from waveguide j = 1 to waveguide j = N ,

which is denoted by CN . Figures 4.6(a)-(c) show the intensity evolutions when the

waveguide coupling uniform throughout the array, CN = C. This is analogous to

the reflection coefficient at the array boundaries being zero, as the light is no longer

reflected towards center of the array when it reaches the edges of the array. The initial

location is j0 = 3 in an array with N = 20 waveguides. Figure 4.6(a) shows that for

a disorder of σ/C = 0.04, the light partially localizes at the initial waveguide, j0, and

the anti-podal waveguide, N
2
+ j0 with Nr = 1, 000 disorder realizations. The location
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Fig. 4.4. Disorder averaged intensity evolutions with N = 20 waveg-
uides for disorder strengths of (a) σ/C = 0.04, (b) σ/C = 0.2, and
(c) σ/C = 0.4. The initial state is |ψ(t = 0)〉 = |j0 = 3〉. Panel (d)
shows the steady state intensity profiles for σ/C = 0.4 (blue line),
σ/C = 0.2 (red line), and σ/C = 0.04 (black line). Note that will
localize in the initial waveguide, j0 = 3, and its parity-symmetric
waveguide, N +1− j0 = 18, due to the constructive interference from
the light reflecting off the edges of the array. As the disorder increases,
less light reaches the edges of the array and the amount of light that
is localized at the parity-symmetric waveguide decreases while the
amount that is localized to the initial waveguide increases. Note that
the total intensity is conserved at all times as the waveguide array is
assumed to be lossless.
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Fig. 4.5. Disorder averaged intensity evolution with α = −1 and
σ = 0.0125∆

(0)
α for an input at j0 = 3. Note that the light localizes

at the initial waveguide and the parity-symmetric waveguide N +1−
j0 = 18. This two channel localization results from the competition
between the constructive interference from the edges of the array and
the destruction interference from the disorder.

of this second peak results from the constructive interference between the two paths

that light will take to transverse the array as both paths have identical path lengths.

In addition, the interference pattern from the two paths remains visible for a weak

disorder, as shown in Figure 4.6(d). Increasing the disorder decreases the amount of

light that can propagate without scattering, which results in the intensity at the anti-

podal waveguide decreasing, as shown in Figures 4.6(b) and (c). If the array consists

of an odd number of waveguides, light only localizes in the initial waveguide as shown

in Figure 4.7, as two paths that the light can traverse to any other waveguide have

unequal path lengths.

For values of CN/C that are between zero and one, the edges of the array are par-

tially transmitting, the light localizes in four waveguides as a result of the constructive

interference from the reflected and transmitted light. Figures 4.8(a)-(c) show that the
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Fig. 4.6. Disorder averaged intensity evolutions with N = 20 waveg-
uides for disorder strengths of (a) σ/C = 0.04, (b) σ/C = 0.2, and
(c) σ/C = 0.4. The light localizes in the initial waveguide, j0 = 3,
and the anti-podal waveguide, N

2
+ j0 = 13, as a result of constructive

intference between the two possible paths that the light can travel.
Panel (d) shows the steady state intensity profile for σ/C = 0.04 (blue
line), σ/C = 0.2 (red line), and σ/C = 0.4 (black line). Note that as
the disorder increases, the amount of light that localizes in the ini-
tial waveguide increases and the amount of light that localizes at the
anti-podal waveguide decreases.
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Fig. 4.7. Top panel is the disorder averaged intensity evolution with
an array of N = 21 waveguides for disorder strengths of σ/C = 0.04.
Bottom panel is the steady state intensity profile showing that for an
array with an odd number of waveguides, light only localizes to the
initial waveguide as the two possible paths that light travels to any
other waveguide are not equidistant.
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relative intensities of the four waveguides can be tuned through CN with σ/C = 0.04

and Nr = 1, 500 disorder realizations. For a value of CN = 0.3C, there is a greater

amount of light that localizes in the initial waveguide and its parity-symmetric waveg-

uide than in the anti-podal waveguides, as shown Figure 4.8(a). Figure 4.8(b) shows

that increasing the value of CN increases the intensities at the anti-podal waveguides

while the intensities at the initial waveguide and its parity-symmetric waveguide re-

main unchanged. Increasing the value of CN further results in the intensities at the

parity-symmetric waveguide and its anti-podal waveguide decreasing. In addition,

intensity at the initial waveguide remains the same and the intensity at its anti-

podal waveguide decreases as shown in Figure 4.8(c). Note that light localizes to

four waveguides except when the initial position is the exact center of the array and

when the initial position is equidistant from the edge of the array and its center. The

center waveguide is also its parity-symmetric waveguide and its anti-podal waveguide

is j = 0 for an array where the waveguide index is j = 1, · · · , N . Therefore the

light partially localizes only in the initial waveguide. An input at a waveguide that is

equidistant from an array edge and the center of the array results in the light partially

localizing in the initial waveguide and its parity-symmetric waveguide. This results

from the fact that parity-symmetric waveguide is also an anti-podal waveguide.

So far, the primary interest of this chapter is evolution of a single particle that

is injected into a single waveguide. In addition to exciting a single waveguide, mul-

tiple waveguides can also be excited simultaneously. By simultaneously exciting two

waveguides, the light can produce interference patterns as well as non-trivial correla-

tions. Bromberg and co-workers have investigated quantum and classical correlations

when two photons are coupled either to the same waveguide or to adjacent waveg-

uides [70]. In addition to disorder-free arrays, the quantum correlations have been

studied in a disordered array by Lahini and co-workers [71]. The effects of disorder and

α-dependent energy spectrum on an input wave packet that is localized to two waveg-

uides with a relative phase θ between them are now explored. The phase θ determines

the time-evolved intensity I(j, t) in a clean array and for α = 1, the phase information
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Fig. 4.8. Disorder averaged intensity evolutions with N = 20 waveg-
uides for a disorder strengths of σ/C = 0.04 for an initial state of
|j0 = 3〉. The values for the coupling between waveguide j = N and
j = 1 are (a) CN = 0.3C, (b) CN = 0.6N , and (c) CN = 0.9C. Panel
(d) shows the steady state intensity profile for CN = 0.3C (blue line),
CN = 0.6C (red line), and CN = 0.9C (black line). Note that light
partially localizes in four waveguides due to the constructive interfer-
ence that arises from the light partially reflecting off the edges of the
array.
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can be extracted from intensity measurements in periodic windows in time. Figure

4.9 shows the interplay between the phase θ and weak disorder, and their effect on

the disorder-averaged steady state intensity profile for a non-uniform waveguide array

with N = 60, α = 1, and initial locations of p = 20 and q = N − p = 40.

The top panel shows the disorder-averaged intensity I(j, t) for θ = 0 (top), θ = π/2

(middle), and θ = π (bottom) with a weak disorder, σ/∆
(0)
α = 0.05, and Nr =

105. At short times t/τα < 300, the intensity shows clear signatures of θ-dependent

interference and wave packet reconstruction due to equidistant energy levels of a clean

α = 1 system. At large times t/τα ≥ 100, a steady state intensity profile with two

peaks at initial waveguides p = 20 and q = N − p = 40 emerges. The three intensity

profiles show that the phase information is encoded in the steady state intensity near

the center of the waveguide array. The bottom panel shows the steady state intensity

profile I(j) at time t/τα = 600 as a function of the phase θ. The profiles for θ = 0

(blue solid line) and θ = π (black dotted line) are marked by increased and suppressed

intensity at the center of the waveguide array respectively, compared to when θ = π/2

(red dashed line). Thus, the phase information, accessible only in certain periodic

time windows in clean system, is accessible from the disorder-averaged steady state

intensity profile. These results show that the steady state intensity I(j) depends

on the size of the array and relative phase θ between the two inputs, the coupling

function α, and the proximity of the input state with the boundaries.
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Fig. 4.9. Top panel shows intensity I(j, t) as a function of θ for an

array with N = 60 waveguides, disorder σ/∆
(0)
α = 0.05, and Nr =

105 disorder realizations. The initial input state is |ψ(0)〉 = (|20〉 +
eiθ|40〉)/

√
2. The top, middle, and bottom panels correspond to θ = 0,

θ = π/2 and θ = π respectively. The interference pattern at short
times t/τα < 100 is replaced by a steady state two peak intensity
profile at times t/τα ≥ 100. Bottom panel shows the corresponding
steady state intensity I(j) at t/τα = 600 as a function of phase θ.
The intensity near the waveguide array center shows enhancement
for θ = 0 (blue solid line) and suppression for θ = π (black dotted
line) when compared with the corresponding intensity for θ = π/2
(red dashed line). In addition, the peak intensity is twice the average
intensity Iave = 1/N ≈ 0.0167 for a single waveguide.
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4.3 Intensity Correlations in the Presence of Disorder: Hermitian Versus

Non-Hermitian Case

The previous section focused on localization due to a Gaussian, Hermitian dis-

order in the propagation constant. This results from the fact that the localization

intensity profile is independent of the disorder origin (propagation constant or cou-

pling constant) and disorder probability distribution as long as different distributions

have zero mean and the same variance. Information about the origin of the disor-

der can be extracted from the higher-order intensity correlations; this is because an

on-site disorder destroys the symmetry of the clean-system energy spectrum whereas

a coupling disorder preserves it [68]. This section focuses on the exploration of the

effects of a non-Hermitian, PT -symmetric, on-site disorder on the intensity-intensity

correlations. To this end, the Hamiltonian H is modified to include balanced gain

(i|γ|) and loss (−i|γ|) terms [15, 72, 73],

HPT = H +
N
∑

m=1

iγj(a
†
mam − a†m̄am̄) +

∑

m

Cα(j)(a
†
j+1aj + a†jaj+1) (4.5)

where 1 ≤ m ≤ N/2 is the position of gain waveguide and m̄ = N + 1 −m denotes

the index of the loss waveguide. The position-dependent coupling profile is given by

Eq.(4.2), Cα(j) = C[j(N − j)]α/2. Although HPT is not Hermitian, it has purely real

eigenvalues and relatively strong PT symmetric phase for α > 0 [74]. The values of

γm are random and uniformly distributed in such a manner as to preserve the PT -

symmetric phase of the system, which ensures the eigenvalues are purely real [75]. By

comparing and contrasting the intensity-intensity correlations due to diagonal PT -

symmetric disorder and an off-diagonal Hermitian disorder in the waveguide coupling,

information about how the impurities affect the energy spectrum is obtained. The

disorder in the waveguide coupling is introduced via C → C[1 + δ(j)] where the

distribution for the random, position-dependent change δ(j) is a uniform distribution

with zero mean and variance ς2. By confining the limits of the uniform distribution
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to weak disorder, this ensures that the scale-factor 1 + δ(j) is always positive. The

normalized, disorder-averaged, classical correlation matrix is defined as [68]

Γjk(t) =
〈I(j, t)I(k, t)〉
〈I(j, t)〉〈I(k, t)〉 (4.6)

where I(j, t) is the intensity profile which depends upon the initial positions j and

k. Note that 〈· · · 〉 indicates averaging over different disorder realizations. Since the

PT -symmetric Hamiltonian, Eq. (4.5), is not Hermitian, the corresponding time-

evolution operator is not unitary, and therefore the total intensity
∑

j I(j, t) may not

be conserved as this is an open system.

Traditionally, however, instead of the entire correlation matrix Γjk with N2/2

independent entries, one considers the interparticle probability function g(∆r) =

N−1
∑N

j=1 Γj,j+∆r
= g(−∆r) with N independent entries. This function is able to

distinguish between diagonal propagation disorder and off-diagonal coupling disor-

der [68]. The left-hand column in Figure 4.10 column shows the normalized two-

particle correlations for (a) on-site PT -symmetric disorder and (c) real valued, off-

diagonal disorder where α = 0. The stark differences in the normalized HBT cor-

relations are result of the system being open in panel (a) while for panel (c), the

system is closed. The right-hand column in Figure 4.10 shows correlation functions,

g(∆r), extracted from the steady state matrix Γjk for on-site PT -symmetric disor-

der, panel (b), and off-diagonal coupling disorder, panel (d). Note the oscillations in

the correlation function that are present in both cases. These oscillations indicate

that the energy spectrum is symmetric about is center. If the energy spectrum is

not symmetric about its center as in the case when on-site disorder is Hermitian, the

oscillations are not present. The similarity between the two correlation functions,

and their stark contrast with the corresponding correlation function for a Hermitian

on-site disorder [68], shows that the symmetry of the energy spectrum of a disordered

system, rather than the origin of the disorder, is instrumental in determining the

properties of g(∆r).
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Fig. 4.10. Left-hand column shows the disorder-averaged, steady
state, classical correlation matrix Γjk for a uniform array with N = 20

waveguides and a weak disorder σ = ς = 0.02∆
(0)
α ; the results are av-

eraged over Nr = 104 disorder realizations. The array is uniform,
α = 0, with N = 20 waveguides array with initial inputs at j = 9
and j = 10. The left-hand column in Figure 4.10 show the disorder-
averaged, steady state matrix Γjk for PT -symmetric, on-site disorder,
panel (a), and coupling disorder, panel (c). Panel (a) shows the matrix
for on-site, PT -symmetric, non-Hermitian disorder; panel (c) shows
the matrix for coupling, Hermitian disorder. The right-hand column
shows the correlation functions g(∆r) extracted from the steady state,
classical correlation matrix for on-site, PT -symmetric disorder, panel
(d), and off-diagonal, coupling disorder, panel (d). The similarity be-
tween the two results shows that the symmetry of the energy spectrum
is instrumental to the correlation function properties.
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4.4 Quantum Statistics of Anderson Localization

Lastly, the statistical aspects of Anderson localization of the output light for

different input fields are of interest. To investigate how the statistics of the input

fields affect the statistics of Anderson localization, a thermal field, coherent field,

and a single-mode squeezed field are used as the input fields as they obey different

statistics. The propagation of light inside the array is described by a tight-binding

Hamiltonian given by

Ĥ =

N
∑

j=1

βja
†
jaj +

N−1
∑

j=1

C(a†j+1aj + a†jaj+1) (4.7)

where βj is the linear propagation constant for waveguide j, ~ = 1, and the waveg-

uide coupling is uniform throughout. The disorder is introduced through the linear

propagation constant and it follows a Gaussian distribution where ∆2 is the variance

of the distribution and the mean is zero as it is the same throughout the array and is

therefore set to zero. The solutions to the Heisenberg equations for the operators aj

i
daj
dt

= βjaj + Cj(aj+1 + aj−1) (4.8)

can be written in terms of an input-output

aj(t) =
∑

l

Gj,l(t)al(t = 0) (4.9)

due to the linearity of the operators aj. The Green’s function G describes how the

input transforms to the output and it depends on the parameters C and βj and is

random in nature due to disorder in βj. Also, the Green’s function in Eq. (4.9)

depends on the propagation time, t, over which the light distribution evolves. All the

physical quantities at the output would require averaging of the Greens function and

its powers. The nature of the fields enters into Eq. (4.9) through the input al(t = 0).

One physical quantity that is measurable is the mean output intensity, Ij , at the

output of the j waveguide and it is given by

Ij =
〈

a†jaj

〉

=
∑

p

∑

q

〈G∗
j,pGj,q〉〈a†p(t = 0)aq(t = 0)〉 (4.10)



66

where the product of Green’s functions is averaged over the realizations of βj. For

light injected into a single waveguide j0 Eq. (4.10) simplifies to

Ij = 〈G∗
j,j0Gj,j0〉〈a†j0aj0〉 (4.11)

where |Gj,j0|2 is the probability to detect light in waveguide j. In addition to mean

output intensity, the fluctuations in the intensity at the output are also measurable.

In 1963, Glauber introduced the function g(2) defined by

g(2) =
〈a†2a2〉
〈a†a〉2 (4.12)

which is called the degree of second-order coherence and it quantifies the intensity

fluctuations [76]. Note that values of g(2) greater (smaller) than one correspond to

bunching (antibunching) and g(2) = 0 corresponds to perfectly coherent light [54].

Using Eq. (4.9), g(2) can be written in terms of the Greens function as

g(2) =
〈|Gl,0|4〉〈a†

2

0 a
2
0〉

〈G∗
l.0Gl,0〉2〈a†0a0〉2

(4.13)

Note that the quantum statistical quantity g(2) involves the averages of fourth powers

of the Greens function.

The measurable quantities introduced above requires the nature of the input fields.

For the input fields of interest, the quantities that are needed are given as follows:

for a coherent field,

〈

a†
2

o a
2
o

〉

= |αo|4 and
〈

a†oao
〉

= |αo|2 (4.14)

for a thermal field,

〈

a†
2

o a
2
o

〉

= 2n2
0 and

〈

a†oao
〉

= n0, (4.15)

and for a single-mode, squeezed field

〈

a†
2

o a
2
o

〉

= sinh2 r(1 + 3 sinh2 r) and
〈

a†oao
〉

= sinh2 r. (4.16)

In Eq. (4.16), r is the squeezing parameter. To compare final results for different input

fields, all fields have the same average photon number, i.e. n0 = |αo|2 = sinh2 r = 100.
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For the numerical results below, the array consists of 100 waveguides and the input

light is coupled into the 50th waveguide. The random disorder is generated using the

Box-Mueller algorithm [69]. The output intensity is computed from the expression

Ij =
〈

a†jaj

〉

where the angular brackets represent averaging over 1,000 realizations

of the disorder and the quantum mechanical average over the input fields.

Figure 4.11(a) shows the mean intensity as a function of the waveguide position

for all three input photon statistics when no disorder is present in the array. Increas-

ing the disorder to ∆/C = 1, suppresses the ballistic propagation and produces a

narrow output intensity distribution, as shown in Figure 4.11(b). As the disorder

increases further, the output field localizes faster due to increased scattering, until at

a disorder of about ∆/C = 3, all three output light patterns converge to a narrow

distribution centered around the input waveguide, as shown in Figure 4.11(c). This

characteristic property of Anderson localization has been used by Sapienza and co-

workers to enhance radiation-matter interactions [77]. Note that each figure has three

light distributions, but that the distributions for the three different field statistics are

indistinguishable as the Green’s functions control the probability to detect light at

each output waveguide and are independent of the type of input field as they are only

dependent on the parameters of the array and the propagation time.

Figure 4.12 shows the variance in the mean intensity of the output light at the 50th

waveguide for a Gaussian distribution for the disorder. It is seen that the variance in

the intensity increases with disorder, as the amount of light that is localized at the

initial waveguide increases. The variance is the largest for squeezed light, and least

for a coherent field, which reflects the different variances of the input fields. Note

that the magnitude of the variance in Figure 4.12 is sensitive to the mean number of

input photons; however, the qualitative trends in the variance are similar.

To gain some additional insight on the fluctuation behavior of Anderson local-

ization, the quantity, g∗(2) (ratio of variance to square of the mean; g∗(2) = g(2) - 1)

at the 50th waveguide for different input photon statistics is shown in Figure 4.13.

The mean photon number for all three inputs is 100. An interesting feature here
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Fig. 4.11. Mean intensity versus waveguide number for disorders of
(a) ∆/C = 0, (b) ∆/C = 1, and (c) ∆/C = 3. Each plot shows three
indistinguishable curves for the three different input photon statistics
(coherent, thermal and squeezed). Mean photon number for all three
input fields is 100 and Ct = 20.
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Fig. 4.12. Variance at the output of the 50th waveguide versus disorder
for a Gaussian disorder. Mean photon number for all three input fields
is 100. Data shown are for input photon statistics of coherent field
(black), thermal field (red) and single-mode, squeezed field (green).
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is the enhancement of g∗(2) by the disorder of the medium, which is a result of the

suppression of the disorder-free wave packet dynamics. Consider the case of single-

mode, squeezed light at the input. The normalized variance for the input light is 2,

whereas it increases to more than 6 for a very small disorder. For higher disorders,

i.e. after complete localization, g∗(2) is still higher than for zero disorder. A similar

enhancement of fluctuations is seen with thermal light, and to a smaller extent with

coherent light input. Figure 4.14 shows the variance in the mean intensity at the 50th

waveguide as a function of the squeezing parameter for a disorder, ∆/C = 3. For

small values of r, a situation that is similar to having two photons, the variance is

very small. However, with an increase in r, there is a rapid increase in the variance at

the waveguide at which the Anderson localization occurs. In addition to the disorder

enhancing the fluctuations of the output intensity, the disorder can also suppress the

fluctuations. Consider the case when the input is a two photon Fock state. The g(2)

function is the product of two ratios as shown in Eq. (4.13). The first ratio contains

the Green’s functions and provides information on the fluctuations that the disorder

induces, whereas the second ratio contains the information about the type of input

field. For coherent light, the second ratio is equal to 1 while for a two photon Fock

state, it is equal to 1
2
. Thus, the normalized variance for the Fock state is smaller

than for a coherent state. This result demonstrates an instance in which there is a

suppression of the fluctuations due to the disorder by the nonclassical sub-Poissonian

statistics of the input field.

In addition to the disorder enhancing the fluctuations of the output intensity, it

minimizes uncertainty in the system. A measure of the uncertainty of the system is

the entropy of the system [78]. The entropy of a classical system is defined as

S = −
∑

i

pi ln pi (4.17)

where pi is the probability for outcome i. For a system that is completely defined and

has no uncertainty, the entropy is zero as one outcome has pi = δij , where outcome j
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Fig. 4.13. Normalized variance versus disorder at 50thwaveguide for a
Gaussian disorder. Mean photon number for all three input fields is
100. Curves shown are for coherent fields (black), thermal fields (red)
and squeezed fields (green).
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Fig. 4.14. Variance in output intensity at 50th waveguide versus
squeezing parameter with ∆/C = 3.
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is the only possible outcome. For a quantum mechanical system, the entropy of the

system is given by the von Neumann entropy

S = −tr(ρ ln ρ) (4.18)

where ρ is the density matrix and tr denotes the trace. This definition of entropy

has the same characteristics as the classical entropy, Eq. (4.17), in that for a pure

state S = 0 and S is maximized when all possible states have equal probability [79].

The von Neumann entropy of a system that has undergone Anderson localization

has been previously studied by Jia and co-workers for three dimensional and integer

quantum hall systems [80]. The mean photon number is assumed to be one as then

the intensity is identical to the probability distribution, Pj(t) = |Gj,j0(t)|2. Therefore,
the disorder averaged von Neumann entropy is calculated as [80]

〈S(t)〉 = 〈
∑

j

(|Gj,j0(t)|2 ln(|Gj,j0(t)|2)− (1− |Gj,j0(t)|2) ln(1− |Gj,j0(t)|2))〉 (4.19)

where 〈· · · 〉 denotes averaging over the different realizations of disorder. Figure 4.15

shows the disorder averaged von Neumann entropy as a function of time and disorder

strength with an array consisting of N = 20 waveguides and the initial position is

j0 = 3. Notice that entropy goes through a maximum as the disorder increases, which

results from the suppression of the disorder-free wave packet dynamics.

To further probe the effect of input light statistics on the quantum statistical

aspects of Anderson localization, site-to-site correlations defined by

〈Il(t)Ip(t)〉 = 〈|Gl,j0(t)|2|Gp,j0(t)|2〉 < a†
2

j0
a2j0 > (4.20)

are calculated for the case where the input light is a single-mode, squeezed field with

a propagation time of Ct = 20 and an array consisting of N = 100 waveguides.

For small r and no disorder in the medium, Figure 4.16(a), the magnitudes of the

correlations are small, and it is apparent that in the absence of disorder, there is a good

probability for the output photons to be in waveguides from 10 to 90. With an increase

in the disorder, Figure 4.16(b) shows there is a superbunching of the photons into the
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Fig. 4.15. Disorder averaged von Neumann entropy as a function
of both normalized time and disorder. Note that for each disorder,
〈S(t) = 0〉 as the input is into a single waveguide located at j0 = 10 in
array of N = 20 waveguides. Note that the entropy reaches a steady
state when the wave packet reaches steady state. In addition, the
entropy goes through a maximum as the disorder increases signifying
that the suppression of the disorder-free wave packet dynamics.
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Fig. 4.16. Site-to-site correlation functions for (a) r = 0.2 and ∆/C =
0, (b) r = 0.2 and ∆/C = 1, and (c) r = 1 and ∆/C = 3.
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waveguide into which the input photons were launched, and a diminishing probability

for the photons to be found in adjacent waveguides. Of course, the magnitudes of

the correlations are still small, due to the small value of the squeezing parameter.

In Figure 4.16(c) is the shown the site-to-site correlations for r = 1 and a disorder,

∆/C = 3. The evidence for superbunching of the output photons is quite pronounced,

and there is negligible probability of the photons spreading more than about five

waveguides on either side of the 50th waveguide.

To examine the statistical aspects of the output light even further, probability of

the output light exiting the initial waveguide is investigated. As Figure 4.17 shows,

the probability distribution of output light averaged over 10,000 realizations with a

disorder of ∆/C = 3 does not follow Gaussian statistics. The probability distribution

for the output intensity is P (I) = 1
<I>

e(−I/<I>) if the light follows Gaussian statistics

as the probability of detecting n photons follows a Poisson distribution and when

N → ∞, the limiting form of Poisson distribution is a Gaussian distribution [81].

This departure from Gaussian statistics results from the multiplicative noise that is

in Eq. (4.8) as seen in the first term, βjaj. This departure from Gaussian statistics has

been experimentally observed for randomly positioned scatterers in waveguides [82].
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Fig. 4.17. Histogram shows the probability distribution for the output
intensity at the 50th waveguide when the input field is coherent with a
mean photon of 100. ∆/C = 3 and the medium’s disorder is Gaussian.
Black curve is the exponential distribution for the corresponding mean
intensity.
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4.5 Conclusion

This chapter explored the effects of disorder in waveguide arrays with non-uniform

tunneling and non-Hermitian, on-site, PT -symmetric disorder, by focusing on the

behavior of disorder-averaged, steady state intensity profile and intensity-intensity

correlations. It was found that the intensity profile I(j, t) was acutely sensitive to the

tunneling function Cα, the initial location of the input j0, the array size, and proximity

of the initial location to one of the edges. Additionally, it did not necessarily result

in an exponential localization profile that is well known in uniform waveguide arrays

[67]. In particular, it was found that when waveguide coupling was parity-symmetric

and input state was localized to waveguide m0, light localized in its parity-symmetric

waveguide N + 1−m0, as well as its initial waveguide m0.

The intensity peak at the parity-symmetric waveguide was the result of the compe-

tition between the interference that arose from the reflecting edges and the scattering

due to the disorder. The relative heights of the two peaks were tunable through both

the size of the array and the disorder strength as increasing the disorder strength sup-

pressed the peak at the parity-symmetric waveguide, as less light reached the edges

of the array. Additionally, the presence of this peak was independent of α and was

a general result for any waveguide array with parity-symmetric waveguide coupling.

For two inputs, the steady state intensity Ij encoded the phase-information from the

two inputs for a weak disorder. In all cases, a strong disorder σ/∆
(0)
α ≫ 1, resulted in

a localized intensity profile that was virtually identical to the initial intensity profile.

For a waveguide array with periodic boundary conditions, the wave packet evo-

lution was found to be tunable through the periodic boundary conditions. When

light was injected into a single waveguide and the edges of the array were partially

reflecting, the light localized to four waveguides and the relative amount of light in

the waveguides was tunable through the transmission of light at the edges for an array

with an even number of waveguides. If the array had a odd number of waveguides,
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light only localized to the initial waveguide as the path lengths for the two possible

paths for the light to traverse the array had unequal path lengths.

Although the localization intensity profile is insensitive to the origin of the dis-

order, on-site or off-diagonal, higher-order intensity correlations depend upon it; in

particular, Hermitian on-site and off-diagonal disorders lead to qualitatively different

interparticle distance probability function g(∆r) [68]. Here, it was shown that a Her-

mitian disorder in the tunneling rate, and a non-Hermitian, PT -symmetric, on-site

disorder result in nearly identical correlation functions. Thus, the behavior of g(∆r)

can be traced to the symmetry in the energy spectrum of a disordered Hamiltonian.

The last section of this chapter focused on how the statistics of the input fields

affected the statistical aspects of Anderson localization. The three input field used

were a thermal field, a coherent field and a single-mode, squeezed field. By numerically

solving the Heisenberg equation for the field operators, relevant quantum statistical

observables, such as the variance in the intensity fluctuations of localized light, site-

to-site correlations and the Glauber g(2) function are calculated. We also compared

the effect of the statistics associated with the disorder of the medium on Anderson

localization and the associated quantum statistics.

By calculating the variance in the intensity fluctuations at the waveguide into

which light localized, the fluctuations increased with disorder. The g∗(2) function,

the normalized variance, has a maximum for a finite disorder, before it tapers off

for higher disorders to a value that was still greater than that for zero disorder. In

addition, the entropy went through a maximum, which signified the suppression of

the disorder-free wave packet dynamics. The site-to-site correlations showed that the

probability of finding photons in waveguides that are adjacent to the one into which

the input light was coupled diminished with increasing disorder. For sufficiently high

disorder, superbunching of light occurred in the waveguide where the light localized

and the output light was Gaussian even if the input light was coherent due to the

multiplicative noise in the Heisenberg equation.
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5. SUMMARY

In this dissertation, the evolution of light inside an array of evanescently coupled

waveguides was investigated. In chapter 2, an all-optical model for phase-controlled

photonic was presented. Starting with the tight-binding Hamiltonian that described

the evolution of light inside the array, the propagation constant was linearly increased

across the array. For a single waveguide excitation, the breathing modes of the

system were visible. When adjacent waveguides were excited, the equations for 〈j〉
and 〈j2〉 are derived where j was the waveguide index number. These expressions

were reminiscent of the equations for the mean momentum and mean energy for a

system that exhibits ratchet motion. The model that described the ratchet motion

was in coordinate space while for the waveguide array, it was in Fourier space. Thus,

it required one to study the directed transport in site space, which was the natural

space to study waveguides. The key element in achieving the directed transport was

adjacent inputs that have a relative phase difference.

In chapter 3, the wave packet dynamics were investigated for an array with a

site-dependent, parity-symmetric waveguide coupling profile of the form Cα(j) =

[j(N − j)]α/2. It was found that the shape of the energy spectrum was controlled by

the parameter α. In addition, α also controlled the difference between the maximum

energy and minimum energy. For α = 1, the wave packet underwent periodic recon-

struction as the energy levels have equal spacing, which was similar to the quantum

harmonic oscillator. In addition, the phase information was visible in windows that

were periodic while for α 6= 1, the phase information vanished as the wave packet

delocalized due to the interference from the edges of the array. When α < 0, bound

states existed at the edges of the array. In addition to the intensity evolution, the

HBT correlations were also examined. They were found to be sensitive to the ex-

ponent of the coupling profile. For α = 1, the correlations showed that for particles
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at two adjacent sites, windows in time existed where the particles localized near an

edge regardless of the type of particle. In addition, the locations where the particles

localized oscillate in time because of the linear energy spectrum. When α = 2, the

correlations showed a distinction between fermions and bosons. For fermions, there

existed windows when one fermion localized while the other was in an extended state.

When particles were bosons, windows existed where they localized near one edge and

a nodal region formed. This nodal region separated the regions where the bosons lo-

calized and it widened as the probability for the bosons to localize towards the center

of the array increased.

Chapter 4 described the how disorder was introduced into the tight-binding model

and how light localized because of this disorder. The amount of light that local-

ized was independent of the type distribution for the disorder given that they have

identical values for the mean and the variance. In addition, the introduction of dis-

order through either the propagation constant or the waveguide coupling produced

similar light intensity profiles. When the waveguide array had a non-uniform but

parity-symmetric coupling profile, it was found that the amount of light localized

was dependent on the initial location due to the preferential direction for the tun-

neling. Additionally, it was found that the light localized to the initial waveguide

and its parity-symmetric counterpart when the disorder was weak for any value of

α. This resulted from the competition between the constructive interference from

the boundaries and the destructive interference from the disorder. When the array

had periodic boundary conditions, light localized at the initial waveguide and the

parity-symmetric waveguide as well as the anti-podal waveguides. In addition, the

coupling between waveguides j = N and j = 1 tuned the relative heights of the peaks

in the steady state intensity profile. When a non-Hermitian but parity-symmetric

disorder was introduced into the array, it was found that it preserved symmetry of

the energy spectrum as the Hamiltonian was PT -symmetric. Lastly, the quantum

statistics of the output intensity were investigated for a thermal field, coherent field,

and a single-mode, squeezed field. The normalized fluctuations in the output inten-
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sity increased with intensity as the system underwent a phase transition from a clean

system to a system with strong disorder. The entropy of the system indicated the

phase transition that took place as it went through a maximum. In addition to the

increased fluctuations, the site-to-site correlations showed that the light underwent

superbunching as it localized.
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U. Peschel, “Visual observation of zener tunneling,” Phys. Rev.Lett., vol. 96,
p. 023901, Jan 2006.

[21] C. Zener, “A theory of the electrical breakdown of solid dielectrics,” Proc. R.
Soc. Lond. A, vol. 145, no. 855, pp. 523–529, 1934.

[22] K. Fang, Z. Yu, and S. Fan, “Photonic aharonov-bohm effect based on dynamic
modulation,” Phys. Rev. Lett., vol. 108, no. 15, p. 153901, 2012.

[23] E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Pho-
tons. Cambridge University Press, 2007.

[24] S. Longhi, “Photonic analog of zitterbewegung in binary waveguide arrays,” Opt.
Lett., vol. 35, no. 2, pp. 235–237, 2010.

[25] H. M. Pilkuhn, Relativistic Quantum Mechanics. New York: Springer, 2003.

[26] K. Huang, “On the zitterbewegung of the dirac electron,” Am. J. Phys., vol. 20,
no. 8, pp. 479–484, 1952.
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APPENDIX

%fast - A fast program to simulate quantum walking

clear all, help fast; % Clear memory and print header

tic; % Start timer

%**************************************************************************

%* Open and read value for different values of D and alpha

fid = fopen(’delta.txt’,’r’); % Opens delta file for reading

VD = fscanf(fid, ’%g %g’, [1, inf]);% Reads in data as one row

fclose(fid); % Closes file

LD = length(VD); % Obtains total number of values for D

fid1 = fopen(’alpha.txt’,’r’); % Opens alpha file for reading

VD1 = fscanf(fid1, ’%g %g’,[1,inf]); % Reads in data as one row

fclose(fid1); %Closes file

AD = length(VD1); % Obtains number of values for alpha

%**************************************************************************

% Program Options

Bdistr = 3; % =1 for constant, =2 for Rectangular, =3 for Gaussian, =4 for

a linear ramp, =5 for PT symmetric impurities, =6 triangle form, =7 for periodic

potential, =8 for long-range correlated disorder

BStat = 2; % =1 if values of B are to be stored for statistical analysis, =2 otherwise

Cdistr = 1; % =1 for constant, =2 for Rectangular, =3 for Gaussian, =4 for parity

symmetry, =5 for Glauber-Fock lattice, =6 random parity symmetry

CStat = 2; % =1 if values of C are to be stored for statistical analysis, =2 otherwise

field = 2; % =1 for thermal, =2 for coherent, =3 for squeezed, and =4 for electron
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BWStat = 2; % =1 for bandwidth values to be stored for statistical analysis, =2

otherwise

NI = 1; % Number of particles input, 1 or 2

Timescale = 1; % =1 for normalized time scale, =2 for unnormalized time scale

ND = 1; % =1 for Normalized Disorder, =2 otherwise

PT = 2; % Type of particle, = 1 for bosons and =2 for fermions

NS = 2; % = 1 if a NOON state, 2 otherwise

STS = 2; % =1 to calculate site-to-site corr. =2 if not desired

QuCorr = 2; % =1 to calculate, =2 if calculation not desired

HBT = 2; % =1 to calculate, =2 if calculation not desired

NormHBT = 2; % =1 to normalize HBT, =2 otherwise

Ratchet = 2; % =1 for rachet data, =2 if not desired

HIST = 2; % =1 for intensity histogram, =2 if not desired

CalcG = 2; % =1 to sum over diagonals in HBT matrix, =2 otherwise

Entropy = 2; % =1 to calculate, =2 otherwise

Periodic = 2; % =1 for periodic boundary conditions, =2 for closed boundary

conditions

FFT = 2; % =1 to calculate FFT of intensity at initial site, =2 otherwise

IPR = 2; % =1 to calculate inverse population ratio, =2 otherwise

Movie = 2; % =1 to make movie on STS, =2 otherwise

%**************************************************************************

% Safety conditional to ensure proper flags are tripped

if(CalcG==1)

HBT=1;

NormHBT=1;

end

if(HBT==2)

NormHBT=2;

CalcG=2;
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end

if(Bdistr==1||Bdistr==6||Bdistr==7)

ND=2;

end

%**************************************************************************

% Initialize parameters (step size, coefficients, etc.)

frac = 5000; % Normalized propagation distance

npoints = 5000; % Number of points to record

CA = 1; % Tunneling rate between two adjacent sites

BA = 0; % Average value of beta, value does not change spread

N = 20; % Number of waveguides

NA = 1.e0; % Number of times to run program

if(Bdistr==2||Bdistr==3||Bdistr==5||Bdistr==8||Cdistr==2||Cdistr==3||Cdistr==6)

NA=1.e3; % # of realizations

end

nbar = 1.e0; % Average number of Photons

gamma = 1.e-1; % PT-symmetric potential

LB = 1; % Lower bound for PT-symmetric impurities

UB = floor(N/2); % Upper bound for PT-symmtric impurities

Dell= 0.01; % Defines range of distribution for random parity symmetric tunneling

rho = 0; % Used for long-range correlated disorder

CN = 1; % Coupling coefficient between waveguide N and waveguide 1

%r = asinh(sqrt(nbar)); % Squeezing parameter

%**************************************************************************

% Initial Position and phase difference

po1 = 3; % Position of first photon

po2 = 2; % Position of second photon

angle = 217; % Angle in degrees

phi = (angle/180)*pi; % Phase difference of two inputs
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rf = 1.e-2; % Slope of linear ramp for Bdistr and Cdistr

%**************************************************************************

% Initialize Global Storage vectors

G2=zeros(1,LD);

Var=zeros(1,LD);

S = zeros(npoints+1,LD);

if(BWStat==1)

BW=zeros(1,NA);

end

if(BStat==1)

BB=zeros(1,N);

end

if(CStat==1)

CC=zeros(1,NA*N);

end

if AD>LD

II=zeros(1,AD);

else

II=zeros(1,LD);

II1=zeros(1,LD);

end

if(FFT==1)

IFFT= zeros(1,npoints);

end

if(Ratchet==1)

guide = zeros(1,N);

end

%**************************************************************************

% Determine coefficients for field averages
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if(field == 1)

coeff1 = 2*(nbarˆ2);

coeff2 = nbar;

end

if(field == 2)

coeff1 = nbarˆ2;

coeff2 = nbar;

end

if(field==3)

coeff1 = (sinh(r)ˆ2)*(1+3*(sinh(r)ˆ2));

coeff2 = sinh(r)ˆ2;

end

if(field == 4)

coeff1 = 1;

coeff2 = 1;

end

if(field>4)

fprintf(’Intensities are incorrect\n’);
end

%**************************************************************************

% Repeat Program for Various Values of D

for qq=1:AD

for q=1:LD

De = VD(q);

alpha= VD1(qq);

% Create output files

%mytable1 = fopen([’6test.txt’],’wt’); % Labels output files with proper D value

if(HIST==1)
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mytable2 = fopen([num2str(alpha),’HIST’,num2str(De),’.txt’],’wt’); % Histogram

file

end

if(Ratchet==1)

mytable3 = fopen([num2str(angle),’Ratchetgamma’,’.txt’],’wt’); %Ratchet data

file

end

if(AD||LD>1)
% mytable4 = fopen([’Figure0’,’.txt’],’wt’);

end

if(Entropy==1)

%mytable5 = fopen(’ENTROPY.txt’,’wt’);

end

% Initialize storage vector

C = zeros(1,N); % Coupling Constants

B = zeros(1,N); % On-site Eigen values

A0 = zeros(N,1); % Initial state of first photon

AA0 = zeros(N,1); % Initial state of second photon

A = zeros(N,1); % Amplitude of states for first photon

A1 = zeros(N,N);

AA = zeros(N,1); % Amplitude of states for second photon

ave=zeros(1,N); % Initialize temporary storage vector

GPlot = zeros(1,N); % Initialize temporary storage vector

T = zeros(1,N); % Initialize temporary storage vector

M = zeros(1,N); % Initialize temporary storage vector

Y = zeros(1,N); % Initialize temporary storage vector

YPlot = zeros(1,N); % Initialize temporary storage vector

G = zeros(1,N); % Initialize temporary storage vector

R = zeros(1,npoints+1); % Initialize IPR vector
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Z = zeros(1,N); % Initialize temporary storage vector

Q = zeros(1,N); % Initialize temporary storage vector

QQ = zeros(1,N); % Initialize temporarty storage vector

PP = zeros(1,N); % Initialize temporary storage vector

PPP = zeros(1,N); % Initialize temporary storage vector

G1 = zeros(1,N); % Initialize temporary storage vector

I = zeros(1,N); %Initialize temporary storage vector

g = zeros(1,2*N-1);

S1 = zeros(1,N); % Initialize temporary storage vector

T1 = zeros(1,N); % Initialize temporary storage vector

A3 = zeros(1,N); % Initialize temporary storage vector

IP = zeros(1,N); % Initialize temporary storage vector

IP2 = zeros(1,N-2); % Initialize temporary storage vector

IPlot = zeros(N,N); % Initialize Correlation matrix

IPlot1 = zeros(N,N); % Initialize Correlation matrix for two photons

IPlot2 = zeros(N,N); % Initialize Correlation matrix for two photons

IPlot2A = zeros(N,N); % Initialize temporary storage vector

IJR = zeros(npoints,1); % Storage used for rachet effect examination

IJ = zeros(N,npoints+1);

VPP = zeros(1,N); % Variance vector for total intensity with two photons

VNPP = zeros(1,N); % Normalized variance vector for total intensity with two

photons

H = zeros(N,N); % Hamiltonian

guide = zeros(1,N);

gn = zeros(1,N);

Energy = zeros(1,npoints+1);

Momentum = zeros(1,npoints+1);

pos var = zeros(1,npoints+1);

time = zeros(npoints+1,1); % Used to record time for plotting ratchet
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hplot = zeros(1,NA); % Used for histogram

Intensity = zeros(npoints+1,1);

if(Movie==1)

STSPlot=zeros(N,N,npoints);

end

%******************************************************************

% Main Loop

for x=1:NA

t=0; % Start every run at t =0;

%Create Beta and couppling vectors

if (x<2||Bdistr==2||Bdistr==3||Bdistr==5)% Only recreate vectors if they are

random or this is first realization

for ii=1:N

a = rand(); % Uniformly Distributed

b = rand(); % Uniformly Distributed

if (Bdistr==1)

B(ii) = BA ; % Constant

end

if (Bdistr==2)

B(ii) = BA + De*(-1+(2*a)); % Rectangular distribution

end

if(Bdistr==3)

B(ii) = BA + De*sqrt(-2*log(a))*cos(2*pi*b);% Gaussian distribution

end

if(Bdistr==4)

B(ii)=rf*(-13+ii);

end

if(Bdistr==5)

a=rand();
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if(ii<=UB&&ii>=LB)

%B(ii)=sqrt(-1)*gamma*(-1+2*a);

%B(ii)=((-1)ˆii)*sqrt(-1)*gamma;

B(ii)=sqrt(-1)*sin(2*pi*ii/(N+1));

if(ii<=N/2)

B(N+1-ii)=-B(ii);

end

end

end

if(Bdistr==6)

if(ii<(N+1)/2)

B(ii)=-ii;

B(N+1-ii)=B(ii);

end

end

if(Bdistr==7)

B(ii)=cos(pi*(sqrt(5)+1)*ii);

end

if(Bdistr==8)

for k=1:N/2

B(ii)=(sqrt(kˆ(-rho)*(2*pi/N)ˆ(1-rho))*cos(2*pi*ii*k/N+2*pi*rand()))+B(ii);

end

end

if (Cdistr==1)

C(ii) = CA ; % Constant

end

if (Cdistr==2)

C(ii) = CA + De*(-1+(2*a)); % Rectangular distribution

end
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if(Cdistr==3)

C(ii) = CA + De*sqrt(-2*log(a))*cos(2*pi*b); % Gaussian distribution

end

if(Cdistr==4)

C(ii)=CA*((ii)*(N-ii))ˆ(0.5*alpha); % Non-hermitian mapping

C(N)=0;

end

if(Cdistr==5)

C(ii)=sqrt(ii); % Glauber-Fock lattice

end

if(Cdistr==6)

if(ii<=N/2)

CA = (1-Dell)+2*Dell*a;

C(ii)= CA*(ii*(N-ii))ˆ(0.5*alpha);

C(N-ii)=C(ii);

end

end

%Label waveguides for ratchet and apply linear gradient to beta

if(Ratchet==1)

guide(ii) = -13+ii;

end

end

end

%Boundary Conditions

A0(po1)=1;

if(NI==2)

AA0(po2)=1;

end

for j=1:N
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IJ(j,1)=((A0(j)+AA0(j))ˆ2)/(NI*NA)+IJ(j,1);

end

if(NI>2)

fprintf(’Incorrect number of particles input’)

break

end

%Put in break so that program terminates if distr >2

if(or(Bdistr,Cdistr)>7)

fprintf(’Bdistr or C distr >7\n’)
break

end

% Create disorder-free Hamiltonian

for i=1:N

for j=1:N

if (i==j)

H(i,j)= BA;

elseif(or(i+1==j,i-1==j))

CDF=C(i);

H(i,j)=CDF;

H(j,i)=CDF;

end

if(Periodic==1)

if(i==N)

theta = 0*pi;

H(1,i)=CN*CA*exp(sqrt(-1)*theta);

H(i,1)=CN*CA*exp(sqrt(-1)*theta);

end

end

end
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end

% Find eigenvalues and eigenvectors

[V,D] = eig(H);

bw0 = max(max(D))-min(min(D));

%A0=VV(15,:)’;

%Create Hamiltonian

if(ND==2)

for i=1:N

for j=1:N

if (i==j)

H(i,j)= B(i);

if(BStat==1)

BB(i)=B(i)/NA+BB(i);

end

else

H(i,j)= 0;

end

if(or(i+1==j,i-1==j))

H(i,j)=C(j);

H(j,i)=C(j);

end

end

end

% Apply periodic boundary conditions if desired

if(Periodic==1)

if(i==N)

theta = 0*pi;

H(1,i)=CN*CA*exp(sqrt(-1)*theta);

H(i,1)=CN*CA*exp(sqrt(-1)*theta);
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end

end

% Find proper eigenvectors

[V,D] = eig(H);

end

% Normalize disorder

if (ND==1)

De1=bw0*De;

for i=1:N

a = rand();

b = rand();

if (Bdistr==2)

B(i) = BA + De1*(-1+(2*a)); % Rectangular distribution

end

if(Bdistr==3)

B(i) = BA + De1*sqrt(-2*log(a))*cos(2*pi*b); % Gaussian distribution

end

if(Bdistr==5)

if(i<=UB&&i>=LB)

B(i)=sqrt(-1)*gamma*(-1+2*a)*De1;

%B(i)=sqrt(-1)*gamma;

if(i<=N/2)

B(N+1-i)=-1*B(i);

end

end

end

if(BStat==1)

BB(i)=B(i)/NA+1;

end
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end

for i=1:N

for j=1:N

if (i==j)

H(i,j)= B(i);

elseif(or(i+1==j,i-1==j))

H(i,j)=C(j);

H(j,i)=C(j);

end

end

% Apply periodic boundary conditions if desired

if(Periodic==1)

if(i==N)

theta=0*pi;

H(1,i)=CN*exp(sqrt(-1)*theta);

H(i,1)=CN*exp(sqrt(-1)*theta);

end

end

end

[V,D] = eig(H);

end

bw = max(diag(D))-min(diag(D));

if(BWStat==1)

BW(x)=bw;

end

if(x<2)

for i=1:N

Intensity(1) = ((abs(A0(i)+exp(sqrt(-1)*phi)*AA0(i))ˆ2))/NI+Intensity(1);

R(1)= (abs(A0(i))ˆ4)+R(1);
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if(Ratchet==1)

time(1)=0;

Momentum(1) = (abs(A0(i)+exp(sqrt(-1)*phi)*AA0(i))ˆ2)*guide(i)+Momentum(1);

Energy(1) = (abs(A0(i)+exp(sqrt(-1)*phi)*AA0(i))ˆ2)*((guide(i))ˆ2)+Momentum(1);

pos var(1) = Energy(1)-Momentum(1)ˆ2;

end

end

end

t=0; %Initialize time

for istep=1:npoints

if(Timescale==1)

dt =(1/bw0)*(frac/npoints);

t = (dt + t);

time(istep+1)= t;

end

if(Timescale==2)

dt = (frac/npoints);

t = dt + t;

time(istep+1)=t;

end

for i=1:N

for j=1:N

if(i==j)

A1(i,i)=exp(-1*sqrt(-1)*D(i,i)*t);

else

A1(i,j)=0;

end

end

end
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% Apply Evolution Operator

A=V*A1*V’*A0;

AA=V*A1*V’*AA0;

I=0;

for i=1:N

I=(abs(A(i)+exp(sqrt(-1)*phi)*AA(i))ˆ2)+I;

end

for i=1:N

Intensity(istep+1) = (abs(A(i)+exp(sqrt(-1)*phi)*AA(i))ˆ2)/(NI*NA)+Intensity(istep+1);

IJ(i,istep+1) = (abs(A(i)+exp(sqrt(-1)*phi)*AA(i))ˆ2)/(NA*NI*I)+IJ(i,istep+1);

IJR(istep)=IJR(istep)+(-51+i)*(abs(A(i)+exp(sqrt(-1)*phi)*AA(i))ˆ2);

if(IPR==1)

R(istep+1) = (abs(A(i))ˆ4)/NA+R(istep+1);

end

if(Movie==1)

for q=1:N

STSPlot(i,q,istep)=STSPlot(i,q,istep)+(coeff2ˆ2)*(abs(A(i)ˆ2)*(abs(A(q))ˆ2))/NA;

end

end

if(Ratchet==1)

Momentum(istep+1) = (abs(A(i)+exp(sqrt(-1)*phi)*AA(i))ˆ2)*guide(i)+Momentum(istep+1);

Energy(istep+1) = (abs(A(i)+exp(sqrt(-1)*phi)*AA(i))ˆ2)*((guide(i))ˆ2)+Energy(istep+1);

if(x==NA)

pos var(istep+1) = Energy(istep+1)-Momentum(istep+1)ˆ2;

end

end

end

if(Entropy==1);

for i=1:N
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if(IJ(j,istep+1)˜=1 && IJ(j,istep+1)˜=0)

S(istep+1,q)=S(istep+1,q)-(IJ(i,istep+1).*log(IJ(i,istep+1))-(1-IJ(i,istep+1)).*log(1-

IJ(i,istep+1)))/NA;

end

end

end

if(FFT==1)

IFFT(istep)=abs(A(po1))ˆ2;

end

end

if(STS==1)

for l=1:N

for p=1:N

IPlot(p,l)=IPlot(p,l)+(coeff2ˆ2)*(abs(A(p)ˆ2)*(abs(A(l))ˆ2))/NA;

end

end

end

if(QuCorr==1)

for l=1:N

for p=1:N

if (PT==1)

if(NS==2)

if(po1==po2)

IPlot1(p,l)=IPlot1(p,l)+0.5*(coeff2ˆ2)*(abs(A(p)*AA(l)+A(l)*AA(p))ˆ2)/NA; %

0.5 come from normalization of wavefunction for two bosons at same input

else

IPlot1(p,l)=IPlot1(p,l)+(coeff2ˆ2)*(abs(A(p)*AA(l)+A(l)*AA(p))ˆ2)/NA; % Sym-

metric for Bosons

end
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end

if(NS==1)

IPlot1(p,l)=IPlot1(p,l)+1*(abs(A(p)*AA(l)+exp(sqrt(-1)*phi)*A(l)*AA(p))ˆ2)/NA;

end

end

if(PT==2)

IPlot1(p,l)=IPlot1(p,l)+(coeff2ˆ2)*(abs(A(p)*AA(l)-A(l)*AA(p))ˆ2)/NA; % Anti-

symmetric for fermions

end

end

end

end

if(HBT==1)

for l=1:N

for p=1:N

IPlot2(p,l)= IPlot2(p,l)+((abs(A(p)*AA(l)+A(l)*AA(p))ˆ2)+(abs(A(p)*A(l))ˆ2)+(abs(AA(p)*AA(l))ˆ2))/(NA*NI*NI);

end

end

end

for n=1:N

G(n) = (abs(A(n)+exp(sqrt(-1)*phi)*AA(n))ˆ2)/(NA*NI)+G(n);% Put intensity

into storage vector

%G(n) = (abs(A(n))ˆ2)/NA+G(n);

M(n) = (abs(A(n)+exp(sqrt(-1)*phi)*AA(n))ˆ4)/NA+M(n); %Put inensity squared

into storage vector

G1(n) = (abs(AA(n))ˆ2)/NA+G1(n);% Put intensity into storage vector

IP(n) = IP(n) + (abs(A(n)+A1(n))ˆ2);

GPlot(n) = G(n)/coeff2;

end
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if(HIST==1)

hplot(x)= abs(A(N+1-po1));

end

for k=1:N

PP(k) = PP(k)/NA;

PPP(k) = PPP(k)/NA;

IP(k) = IP(k)/NA;

Y(k) = M(k)-(G(k)ˆ2); % Calculate the variance of each lattice point

YPlot(k) = Y(k)/(coeff2*coeff2);

IP2(k)= PP(k)/(PPP(k)ˆ2);

VPP(k) = PP(k)-(PPP(k)ˆ2);

VNPP(k) = VPP(k)/(PPP(k)ˆ2);

Z(k) = sqrt(Y(k)); % Calculate the standard deviation of each lattice point

end

for k=1:N

Q(k) = Y(k)/(G(k)ˆ2); % g2*

%I Var(I) g2*

%fprintf(mytable1, ’%g %g %g \n’,G(k),Y(k),Q(k)); % Print to file test.txt

end

end

if(NormHBT==1)

for p=1:N

for q=1:N

IPlot2A(p,q)=IPlot2(p,q)/(G(p)*G(q));

end

end

end

if(CalcG==1)

k=1;
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for dr=(-N+1):(N-1)

for p=1:N

if(p+dr<N+1&&p+dr>0)

g(k)=IPlot2A(p,p+dr);

end

end

%fprintf(mytable1, ’%g\n’,g(k));
k=k+1;

end

end

%end

if(Entropy==1)

%Ent(qq)=sum(S);

end

if (LD>1)

II(q)=G(N+1-po1);

II1(q)=G(po1);

elseif (AD >1)

II(qq)=G(po1);

end

%dlmwrite([num2str(field),’ctest’,num2str(D),’.txt’], IPlot)% Single photon cor-

relation

%dlmwrite([’6two’,num2str(0),’.txt’], IJ,’delimiter’,’\t’) ;% Intensity Evolution

if(STS==1)

dlmwrite([num2str(alpha),’STSCdelta’,num2str(De),’.txt’],IPlot,’delimiter’,’\t’); %
Site-to-site corr.

end

if(HBT==1)
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%dlmwrite([num2str(alpha),’HBTdelta’,num2str(De),’.txt’], IJR,’delimiter’,’\t’) %
HBT correlation

end

if(Ratchet==1)

for k=1:istep

fprintf(mytable3, ’%g %g %g \n’,time(k),Momentum(k),Energy(k)); % Print ratchet

file

end

fclose(mytable3);

end

if(HIST==1)

for k=1:NA

fprintf(mytable2, ’%g\n’,hplot(k)); % Print ratchet file

fclose(mytable2);

end

end

%dlmwrite([num2str(PT),’Time.txt’], time ,’delimiter’,’\t’)
%dlmwrite(’Zplot.txt’,Zplot)

if (LD >1 && rem(q,ceil(.1*LD))==0)

fprintf(’Finished %g out of %g delta values\n’,q,LD)

end

if (AD >1 && rem(qq,AD)==0)

fprintf(’Finished %g out of %g alpha values\n’,qq,AD)

end

end

end

if (Entropy==1)

% L=length(Ent);

%for i=1:L
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%fprintf(mytable5, ’%g\n’,Ent(i));
%end

end

if LD >1

%for p=1:LD

%fprintf(mytable4, ’%g\n’,II(p));
%end

end

if AD>1

for p=1:AD

fprintf(mytable4, ’%g\n’,II(p));
end

end

%**************************************************************************

% Calculate FFT

if(FFT==1)

NFFT = 2ˆnextpow2(npoints); % Next power of 2 from length L

Fs = 1/(dt); % Sampling frequeny

%* Creating temporary storage vectors

X=zeros(1,NFFT/2+1);

IIII=zeros(npoints,1);

%Subtract DC component from data

for i=1:npoints

IIII(i)=IFFT(1,i)-mean(IFFT(1,:));

end

%* Calculate the FFT

L = length(I);

Y = 2*abs(fft(IIII,NFFT))/L;

%* Calculate power spectrum
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for i=1:(NFFT/2+1)

X(i)=abs(Y(i));

end

%*Creating frequency vector

f = Fs/2*linspace(0,1,NFFT/2+1);

end

%**************************************************************************

% Make movie of STS

if(Movie==1)

figure(’Renderer’,’zbuffer’)

numframes=npoints;

M=moviein(numframes); % create the movie matrix

set(gca,’NextPlot’,’replacechildren’)

for i=1:numframes

surf(STSPlot(:,:,i));

%colorbar

caxis([0 1]);

axis([0, N+1, 0, N+1, 0, 1]);

M(i)=getframe;

end

%Create movie

movie(M,1,7.5);

%Export movie to AVI format

mov=movie2avi(M,’movie.avi’,’compression’,’none’,’fps’,10 );

mov=mov(M);

end

%**************************************************************************

%* Close output stream

%fclose(mytable1);
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if(Entropy==1)

% fclose(mytable5);

end

%fclose(mytable4);

% Print to file test.txt

%**************************************************************************

%Close g2 output file

%for q =1:LD

%fprintf(mytable4,’%g %g %g \n%’,VD(q),G2(q),Var(q)); % Print g2 to file

%end

%fclose(mytable4);

% Stop timer and display time elasped

toc;
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