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ABSTRACT

Scott, Derek Douglas Ph.D., Purdue University, May 2014. An Investigation of Parity
and Time-Reversal Symmetry Breaking in Tight-Binding Lattices. Major Professor:
Yogesh N. Joglekar.

More than a decade ago, it was shown that non-Hermitian Hamiltonians with

combined parity (P) and time-reversal (T ) symmetry exhibit real eigenvalues over a

range of parameters. Since then, the field of PT symmetry has seen rapid progress

on both the theoretical and experimental fronts. These effective Hamiltonians are

excellent candidates for describing open quantum systems with balanced gain and

loss. Nature seems to be replete with examples of PT -symmetric systems; in fact,

recent experimental investigations have observed the effects of PT symmetry breaking

in systems as diverse as coupled mechanical pendula, coupled optical waveguides, and

coupled electrical circuits.

Recently, PT -symmetric Hamiltonians for tight-binding lattice models have been

extensively investigated. Lattice models, in general, have been widely used in physics

due to their analytical and numerical tractability. Perhaps one of the best systems for

experimentally observing the effects of PT symmetry breaking in a one-dimensional

lattice with tunable hopping is an array of evanescently-coupled optical waveguides.

The tunneling between adjacent waveguides is tuned by adjusting the width of the

barrier between them, and the imaginary part of the local refractive index provides

the loss or gain in the respective waveguide. Calculating the time evolution of a wave

packet on a lattice is relatively straightforward in the tight-binding model, allowing

us to make predictions about the behavior of light propagating down an array of

PT -symmetric waveguides.
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In this thesis, I investigate the the strength of the PT -symmetric phase (the

region over which the eigenvalues are purely real) in lattices with a variety of PT -

symmetric potentials. In Chapter 1, I begin with a brief review of the postulates

of quantum mechanics, followed by an outline of the fundamental principles of PT -

symmetric systems. Chapter 2 focuses on one-dimensional uniform lattices with a

pair of PT -symmetric impurities in the case of open boundary conditions. I find that

the PT phase is algebraically fragile except in the case of closest impurities, where the

PT phase remains nonzero. In Chapter 3, I examine the case of periodic boundary

conditions in uniform lattices, finding that the PT phase is not only nonzero, but

also independent of the impurity spacing on the lattice. In addition, I explore the

time evolution of a single-particle wave packet initially localized at a site. I find that

in the case of periodic boundary conditions, the wave packet undergoes a preferential

clockwise or counterclockwise motion around the ring. This behavior is quantified by a

discrete momentum operator which assumes a maximum value at the PT -symmetry-

breaking threshold.

In Chapter 4, I investigate nonuniform lattices where the parity-symmetric hop-

ping between neighboring sites can be tuned. I find that the PT phase remains

strong in the case of closest impurities and fragile elsewhere. Chapter 5 explores the

effects of the competition between localized and extended PT potentials on a lattice.

I show that when the short-range impurities are maximally separated on the lattice,

the PT phase is strengthened by adding short-range loss in the broad-loss region.

Consequently, I predict that a broken PT symmetry can be restored by increasing

the strength of the short-range impurities. Lastly, Chapter 6 summarizes my salient

results and discusses areas which can be further developed in future research.
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1. INTRODUCTION

The more important fundamental laws and facts of physical science have

all been discovered, and these are now so firmly established that the pos-

sibility of their ever being supplanted in consequence of new discoveries

is exceedingly remote . . . Our future discoveries must be looked for in the

sixth place of decimals. –Albert A. Michelson, 1894.

The twentieth century undoubtedly belonged to the field of quantum mechanics.

From the atomic bomb to the modern cellular telephone, there is hardly any facet of

society that quantum mechanics has not had a hand in shaping. This is due to the

fact that quantum theory has been remarkably successful in explaining experimental

results, and predicting various non-trivial and counterintuitive phenomena. In con-

trast to the determinism of classical mechanics, quantum mechanics is a probabilistic

theory in nature. We no longer speak of particles traveling on sharply-defined tra-

jectories in space and time. Instead, we are relegated to assigning probabilities to

specific outcomes. The axioms characterizing quantum mechanics are predominantly

physical constraints, such as requiring a real energy spectrum, an energy spectrum

that is bounded from below, and a unitary (probability conserving) time evolution.

There exists another axiom, less transparent perhaps, which requires that physical

observables correspond to Hermitian operators [1, 2]. An operator A is said to be

Hermitian with respect to the standard inner product∫ (
A†ψ

)∗
ψdx =

∫
ψ∗Aψdx, (1.1)

when A = A†. This single axiom has significant implications regarding the energy

spectrum and energy eigenvectors of the system.
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Consider a Hamiltonian H and an energy eigenvector |ψn〉 (given in Dirac nota-

tion), such that H|ψn〉 = En|ψn〉. By the condition of Hermiticity, it must follow

that

(〈ψn|H|ψn〉)† = 〈ψn|H|ψn〉,

(En〈n|n〉)† = En〈n|n〉, (1.2)

En = E∗n.

So Hermiticity guarantees real energy spectra. We can also make an important state-

ment regarding the eigenvectors of the system. Consider the two eigenvalue equations

〈ψm|H|ψn〉 = En〈ψm|ψn〉 and 〈ψn|H|ψm〉 = Em〈ψn|ψm〉. By subtracting the Hermi-

tian adjoint of the second equation from the first, we arrive at the important condition

(En − Em)〈ψm|ψn〉 = 0. (1.3)

This implies that, provided the eigenvalues En and Em are non-degenerate, the energy

eigenvectors are orthogonal. In the case that En and Em are degenerate, we can al-

ways construct orthogonal eigenvectors in the subspace spanned by the corresponding

eigenvectors. Lastly, we recall that the time evolution operator in quantum mechan-

ics for a time-independent Hamiltonian is given by U(t) = exp(−iHt/~) [3], where

~ = h/2π is the scaled Planck constant. The Hermiticity of the Hamiltonian ensures

a unitary time evolution U(t)U †(t) = U †(t)U(t) = exp(−iHt/~) exp(+iHt/~) = 1,

and by extension, conservation of probability. So we see that the seemingly abstract

Hermiticity requirement for the Hamiltonian guarantees that two of the fundamental

axioms of quantum mechanics are satisfied.

More than a decade ago, Bender and coworkers showed that a class of continuum

non-Hermitian Hamiltonians, possessing a combined parity (P) and time-reversal (T )

symmetry (i.e. PT HPT = H), exhibits real energy spectra over a range of parame-

ters [4, 5]. Since their discovery, PT -symmetric Hamiltonians have been extensively

explored [6–11]. Traditionally, the parameter space over which the spectrum of the

Hamiltonian is real (so that its eigenfunctions are simultaneous eigenfunctions of the
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combined PT operation) is called the region of unbroken symmetry. Broken PT

symmetry occurs when the Hamiltonian H and PT no longer share simultaneous

eigenfunctions, although [H,PT ] = 0 still holds; consequently, the eigenvalues may

be complex in this region.

We now outline the principles of PT -symmetric quantum mechanics. The parity

operator P , in both classical and quantum mechanics, is responsible for spatial inver-

sion. It is often used to check for chirality, or handedness, of the system – a specific

chirality will appear as its mirror image after space reflection. Since P is a linear

operator, it must satisfy the condition

P(a|φ〉+ b|ψ〉) = aP|φ〉+ bP|ψ〉. (1.4)

The action of P will look different depending on the form of the Hamiltonian, but in

the continuum case expressed in terms of position x and momentum p its action is

given by x→ −x and p→ −p. We note that in the preceding example, the action of

P was a coordinate inversion about the origin x = 0. This is not strictly necessary;

we can choose any reference point about which to consider spatial inversion (e.g.

H = p2 + (x+ 1)2 − 1 is P-symmetric about x = −1).

The time-reversal operator T is responsible for the reversal of motion. In classical

mechanics, this would correspond to the reversal of a particle’s trajectory. In the case

of quantum mechanics, however, we must use more caution. Unlike parity, T is an

antilinear operator satisfying

T (a|φ〉+ b|ψ〉) = a∗T |φ〉+ b∗T |ψ〉. (1.5)

The action of T on the quantum mechanical position and momentum operators x and

p is x → x and p → −p, but we must also include complex conjugation T iT = −i

due to the antilinearity condition. In addition to preserving the canonical commuta-

tion relation [x, p] = i~, the antilinearity requirement for T is necessary on physical

grounds. If T were a linear operator, it can be shown that T and the Hamiltonian

H would then anticommute (i.e. −HT = T H) [3]. If we now consider an energy



4

eigenvector |ψn〉 with a corresponding energy eigenvalue En, we would have, because

of the anticommutator

HT |ψn〉 = −T H|ψn〉 = (−En)T |ψn〉. (1.6)

This means that the time-reversed state T |ψn〉 is an eigenvector of the Hamiltonian

with energy eigenvalues −En. This would violate the fundamental axiom of quantum

mechanics requiring a lower bound on the energy spectrum. Even in the case of a free

particle, it is well known that the energy spectrum is always positive semidefinite since

there is no state with lower energy than a particle at rest. Therefore, in order for time-

reversal to be a physical symmetry, complex conjugation (and hence, antilinearity)

must be required.

An arbitrary operatorA is said to possess unbroken PT symmetry when [A,PT ] =

0 and it shares simultaneous eigenfunctions with the PT operator – the PT sym-

metry is broken otherwise. We now consider a non-Hermitian Hamiltonian H with

unbroken PT symmetry. If |φn〉 is an eigenvector of H (H|φn〉 = En|φn〉), it must

also be true that PT |φn〉 = λ|φn〉. Therefore, it follows that

PT (PT |φn〉) = PT (λ|φn〉),

P(T P)T |φn〉 = λ∗PT |φn〉,

P(PT )T |φn〉 = λ∗(λ|φn〉), (1.7)

P2T 2|φn〉 = |λ|2|φn〉,

|φn〉 = |λ|2|φn〉,
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where we have used the fact that the individual P and T operators commute. Since

the eigenvalue λ is a pure phase (λ = eiα), we can choose the phase angle α such that

PT |φn〉 = |φn〉. It follows that

PT (H|φn〉) = PT (En|φn〉),

H(PT |φn〉) = E∗n(PT |φn〉),

H|φn〉 = E∗n|φn〉, (1.8)

En|φn〉 = E∗n|φn〉,

En = E∗n.

We see that when H and PT share simultaneous eigenfunctions we are guaranteed

real energy spectra. We remind the reader that the fact that [H,PT ] = 0 does

not automatically imply H and PT share simultaneous eigenfunctions since T is an

antilinear operator. This can be easily seen since

PT (H|φn〉) = PT (En|φn〉), (1.9)

H(PT |φn〉) = E∗n(PT |φn〉),

and we do not know a priori that the energy eigenvalues are real En = E∗n, thus we

cannot draw the conclusion that PT |φn〉 ∝ |φn〉. The question remains, then, when

are the eigenvalues real? In general, one cannot tell by inspection alone what values

of the parameters in the Hamiltonian will give real energy spectra – the parameter

space must be investigated analytically or (more often) numerically.

To illustrate these ideas, consider a simple 2× 2 non-Hermitian Hamiltonian,

H =

 iγ −J

−J −iγ

 , (1.10)

where J, γ ∈ R+. The Hamiltonian H is clearly non-Hermitian since H† = H∗ 6= H.

The energy eigenvalues are given by E± = ±
√
J2 − γ2 and are shown in Fig. 1.1.

The top panel shows the real part of the two energy eigenvalues E± as a function

of γ (given in units of J). When γ < J , the eigenvalues are purely real, and the
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Fig. 1.1. Top Panel: Real part of the eigenvalues E± as a function of
γ. For γ < J the eigenvalues are purely real, hence the PT symmetry
is unbroken. The real parts of the eigenvalues begin to converge,
however, as γ increases towards J . At the PT -symmetry-breaking
threshold (γ = J), the eigenvalues become degenerate. Bottom Panel:
For γ > J the PT symmetry is broken, and the eigenvalues are purely
imaginary.

PT symmetry is unbroken. As γ increases towards J , the two eigenvalues begin

to converge until they become degenerate at the PT -symmetry-breaking threshold

γ = J . The bottom panel in Fig. 1.1 shows that for γ > J the PT symmetry is

broken, and the eigenvalues are purely imaginary.

To determine the corresponding eigenvectors of H, we must take into consideration

whether we are in the region γ ≤ J or γ > J . In the case of γ ≤ J , the normalized

eigenvectors are given by

e+ =
1√
2

 J

iγ−
√
J2−γ2

1

 and e− =
1√
2

 J

iγ+
√
J2−γ2

1

 . (1.11)

When γ = 0, H is clearly Hermitian, and we recover the orthonormality property of

the eigenvectors as expected. As gamma is increased through γ ≤ J , the eigenvectors

are no longer orthonormal, but they still remain linearly independent and, therefore,
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span the relevant space. At the PT -symmetry-breaking threshold γ = J , where

the two energy eigenvalues E± converge, the eigenvectors are parallel, reflecting the

degeneracy of the system. For γ > J , we must take caution when normalizing the

eigenvectors and checking for orthonormality since the quantity
√
J2 − γ2 is purely

imaginary. The normalized eigenvectors in this case are given by

e+ =

(
2γ2−J2−2γ

√
γ2−J2

2γ2−2γ
√
γ2−J2

)1/2
 J

iγ−i
√
γ2−J2

1

 ,

e− =

(
2γ2−J2+2γ

√
γ2−J2

2γ2+2γ
√
γ2−J2

)1/2
 J

iγ+i
√
γ2−J2

1

 .

(1.12)

The inner product e†+ · e− = J/γ, indicating that, while not orthonormal, the eigen-

vectors are linearly independent. Fig. 1.2 shows what happens to the amplitude of

the excited-state eigenvector over the transition from broken to unbroken PT sym-

metry. The top panel shows the eigenvector amplitude at the PT -symmetry-breaking

1 2
0

0.2

0.4

0.6

0.8

1

Site Index n

|e
+
(n

)|

1 2
0

0.2

0.4

0.6

0.8

1

Site Index n

|e
+
(n

)|

Fig. 1.2. Top Panel: Shows the amplitude |e+(n)| of the excited-state
eigenvector for γ = J at the PT -symmetry-breaking threshold. The
PT symmetry is still unbroken and hence the amplitude is symmetric
in this region. Bottom Panel: For γ = 1.1J , the broken PT symmetry
is manifest as an asymmetry in the eigenvector amplitude.
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threshold γ = J , when the eigenvalues are still purely real. The unbroken PT sym-

metry is seen in the equal weights of the amplitude on the first and second index

sites. In the bottom panel, the PT symmetry is broken since γ = 1.1J , and the

resulting eigenvector amplitudes are now asymmetric. We also point out that the left

eigenvectors of the Hamiltonian H are not equal to the adjoint of the right eigen-

vectors, as is the case for a Hermitian Hamiltonian. Broken PT symmetry also has

dramatic consequences for the time evolution of a system. The presence of complex

eigenvalues implies an exponential increase or decay (depending upon the sign) in

intensity since the time-evolved state will involve terms with coefficients of the form

U(t) = exp(−iEnt/~).

Lattice models, including tight-binding lattices, have been a cornerstone of the-

oretical explorations due to their analytical and numerical tractability [12]. In re-

cent years, sophisticated optical-lattice systems have increasingly permitted the ex-

perimental exploration of lattice models [13, 14], although these models are largely

based on Hermitian Hamiltonians. Recently, lattice models with non-Hermitian,

PT -symmetric Hamiltonians, and their experimental realizations in optical waveg-

uides [15,16], large-scale temporal lattices [17], and coupled resistor-inductor-capacitor

(RLC) circuits with balanced loss and gain [18], have become a focal point of research.

In this thesis, we investigate the PT -symmetric phase in lattice models with both

position-dependent and position-independent, parity-symmetric tunneling functions

in the presence of PT -symmetric impurities located at arbitrary (P-symmetric) po-

sitions on the lattice. In addition, we explore the degrees and signatures of PT

symmetry breaking in the time evolution of a single-particle wave packet initially lo-

calized at a site. The outline of this thesis is as follows. In Chapter 2, we review the

features of the tight-binding lattice model in the absence of impurities, followed by an

investigation of the PT -symmetric phase in a one-dimensional lattice with uniform

tunneling and two on-site PT potentials for open boundary conditions. Chapter 3

considers uniform PT -symmetric rings, where we explore the time evolution of a wave

packet initially localized to a single site of the lattice. We also study the development
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of chiral motion in a wave packet across the PT phase boundary, and quantify this

behavior by a discrete momentum operator. In Chapter 4, we investigate nonuniform

lattices where the parity-symmetric hopping between neighboring sites can be tuned.

We find that the PT phase remains strong in the case of closest impurities and frag-

ile elsewhere. Chapter 5 explores the effects of competition between localized and

extended PT potentials on a lattice. We show that when the short-range impuri-

ties are maximally separated on the lattice, the PT phase is strengthened by adding

short-range loss in the broad-loss region. Consequently, we predict that a broken PT

symmetry can be restored by increasing the strength of the short-range impurities.

Lastly, Chapter 6 summarizes our salient results and discusses areas which can be

further developed in future research.
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2. ROBUST AND FRAGILE PT -SYMMETRIC PHASES

IN UNIFORM LATTICES

Evanescently-coupled optical waveguides [19] have provided a unique realization of

a one-dimensional lattice with tunable tunneling amplitudes [20], disorder [21], and

non-Hermitian, on-site, impurity potentials [22]. The evanescent coupling between

adjacent waveguides in the array implies that the light traveling in a given waveg-

uide can only tunnel to its nearest neighbor. These systems are ideal candidates

for experimental investigations of PT symmetry breaking phenomena in lattice mod-

els [15,16,23]. In these systems, the tunneling is controlled by adjusting the separation

between adjacent waveguides and the complex, on-site potential is determined by the

local refractive index. The number of waveguides in a typical array is N ∼ 10− 100,

and the experimental realizations correspond to a lattice with open boundary condi-

tions. The tight-binding model, used widely in the field of condensed matter physics,

is well suited for modeling such systems. The behavior of light traveling between

adjacent waveguides is now described by a particle hopping on a lattice between

nearest-neighbor sites. We begin this chapter by reviewing the properties of the

tight-binding lattice in the absence of any impurities.

2.1 The Tight-Binding Model

The Hermitian Hamiltonian describing a particle hopping on a one-dimensional,

N -site tight-binding lattice with open boundary conditions is given by

H = −t0
N−1∑
i=1

(
a†i+1ai + a†iai+1

)
, (2.1)

where a†k(ak) is the creation (annihilation) operator for a state localized on the kth

site, and t0 > 0 is the tunneling amplitude between adjacent sites. A general single-
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particle eigenfunction of the Hamiltonian can be written as |ψk〉 =
∑N

n=1 ψ
k
n|n〉. The

requirement that H|ψk〉 = Ek|ψk〉 leads to

−t0
N−1∑
i=1

(
a†i+1ai + a†iai+1

) N∑
j=1

ψkj |j〉 = Ek

N∑
j=1

ψkj |j〉 (2.2)

Since ai|j〉 = δi,j|0〉, this becomes

−t0
N−1∑
i=1

N∑
j=1

ψkj (δi,j|i+ 1〉+ δi+1,j|i〉) = Ek

N∑
j=1

ψkj |j〉. (2.3)

Further simplification, along with acting on both sides of the equation from the left

with 〈n|, gives

−t0
(
ψkn+1 + ψkn−1

)
= Ekψ

k
n. (2.4)

The coefficients ψkn are given by the Bethe ansatz as ψkn = A sin(kn) + B cos(kn),

and upon substitution into Eqn. (2.4) we arrive at the well-known Ek = −2t0 cos(k)

energy band structure. Dirichlet boundary conditions require that the wavefunction

vanish on sites {0, N + 1}, restricting the eigenfunction coefficients to a sinusoidal

form (B = 0) and giving N distinct values for the quasimomentum k = απ/(N + 1),

where α = 1, . . . , N . With these results in mind, we now add to the lattice two on-site

PT -symmetric potentials.

The non-Hermitian, PT -symmetric potential V added to Eqn. (2.1) is given by

V = iγ(a†mam − a
†
m̄am̄). (2.5)

The two impurities (+iγ,−iγ) are located on mirror-symmetric sites (m, m̄) with

1 ≤ m ≤ N/2 and m̄ = N + 1 − m. A representation of the lattice is shown in

Fig. 2.1. Note that the action of the parity operator for the lattice model is given

by Pa†nP = a†n̄, and the action of the antilinear time-reversal operator is given by

T iT = −i. Since the potential term V is odd under individual P and T operations,

the Hamiltonian is PT symmetric. As in the case of the clean lattice, we can write
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Fig. 2.1. A representation of an N -site tight-binding lattice where a
particle is free to hop between nearest-neighbor sites in the presence
of two PT -symmetric impurities. The gain impurity +iγ is located at
site m, while the loss impurity −iγ is located at the mirror-symmetric
site m̄ = N + 1−m. We only consider open boundary conditions in
this chapter (i.e. the wavefunction vanishes on sites {0, N + 1}).

the general single-particle eigenfunction |ψk〉 =
∑N

n=1 ψ
k
n|n〉, where the coefficients ψkn

now have the form

ψkn =


A sin(kn), n ≤ m,

P sin(kn) +Q cos(kn), m < n < m̄,

B sin(kn̄), n ≥ m̄.

(2.6)

Note that the coefficients are sinusoidal in the regions n ≤ m and n ≥ m since the

wavefunction must vanish at sites {0, N + 1}. By considering the eigenvalue equation

at points n = {m,m+1} and their reflection counterparts n = {m̄,N−m}, we arrive

at four equations governing the quasimomenta k, namely

−t0{P sin[k(m+ 1)] + Q cos[k(m+ 1)] + A sin[k(m− 1)]} (2.7)

+ iγA sin(km) = −2t0 cos(k)A sin(km)

−t0{P sin[k(m+ 2)] + Q cos[k(m+ 2)] + A sin(km)} (2.8)

= −2t0 cos(k){P sin[k(m+ 1)] +Q cos[k(m+ 1)]}

−t0{B sin(km) + P sin[k(m̄− 1)] +Q cos[k(m̄− 1)]} (2.9)

− iγB sin(km) = −2t0 cos(k)B sin(km)

−t0{B sin(km) + P sin[k(m̄− 2)] +Q cos[k(m̄− 2)]} (2.10)

− iγB sin(km) = −2t0 cos(k)(P sin[k(m̄− 1)] +Q cos[k(m̄− 1)])



13

We cast these equations in matrix form and require the resulting 4 × 4 coefficient

matrix to have determinant zero to ensure a non-trivial solution for {A,B, P,Q}.

Ultimately, we find that the quasimomenta k obey the equation

M(k) =

{
sin2[k(m+ 1)] +

(
γ2

t20

)
sin2(km)

}
× sin[k(N − 2m+ 1)] + sin2(km)

× sin[k(N − 2m− 1)]− 2 sin(km)

× sin[k(m+ 1)] sin[k(N − 2m)] = 0. (2.11)

The PT symmetry is unbroken provided that Eqn. (2.11) has N real solutions. When

γ = 0, the N distinct solutions are given by the well-known results for a tight-binding

lattice with open boundary conditions, kα = απ/(N + 1), where α = 1, . . . , N . Since

M(π− k) = (−1)NM(k), if k0 is a solution of Eqn. (2.11), then so is (π− k0). It also

follows that when N is odd, k = π/2 is a solution irrespective of the value of γ and

that the corresponding eigenvector has zero energy. When m = 1, Eqn. (2.11) reduces

to the criterion for quasimomentum obtained in Ref. [24]; in that case, as γ/t0 → 1,

the two central kα ∼ π/2 become degenerate, the PT symmetry is spontaneously

broken, and the system develops N−2 real and two complex (conjugate) eigenvalues.

Fig. 2.2(a) shows the typical plot of quasimomentum values k(γ)/π as a function

of γ for a lattice with N = 20 sites and the first impurity at m = 4 (solid red) or

m = 8 (dashed blue). Since the plot is symmetric about k = π/2, we focus only on

the left half k/π ≤ 0.5 and note that since N is even, there is no solution present

at k = π/2. As the impurity potential γ is increased, the adjacent quasimomenta

and the corresponding energy levels become degenerate, leading to the PT symmetry

breaking [24, 25]. We see that the critical potential for m = 4 is greater than that

for m = 8, γPT (µ = 0.2) > γPT (µ = 0.4), where µ = m/N is the relative position

of the first impurity. In contrast with the m = 1 case, the two levels that become

degenerate occur in a pair, with one near the origin k ∼ π/(N + 1) and the other

near the zone boundary k ∼ Nπ/(N + 1). Therefore, when γ(µ) = γPT (µ) + 0+,

there are four complex eigenvalues. We can define the “degree of PT symmetry
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Fig. 2.2. (a) The allowed values of quasimomenta k/π as a function
impurity strength (γ/t0)2 for a lattice with N = 20 sites and the first
impurity at m = 4 (solid red) or m = 8 (dashed blue). Because of the
PT -symmetric requirement, the plot is symmetric about k = π/2.
PT symmetry breaking occurs when the two adjacent quasimomenta
k1 ∼ π/(N + 1) and k2 ∼ 2π/(N + 1) become degenerate as (γ/t0)2

increases. (b) The critical potential strength γPT (µ)/t0 as a function
of the lattice size N for different positions m = µN of the on-site
potential. We see that γPT (µ) vanishes as N →∞; therefore, the PT -
symmetric phase is algebraically fragile except when the impurities are
the closest or the farthest.
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breaking” as the fraction of eigenvalues that become complex. For a general m, as γ

is increased beyond γPT , we find that a total of 2m complex eigenvalues emerge and

thus the degree of PT symmetry breaking is given by 2µ ≤ 1. Fig. 2.2(b) shows the

typical evolution of critical potential strength γPT (µ) with N , for µ = {0.2, 0.25, 0.4},

obtained by numerically solving Eqn. (2.11). The scaling suggests that the critical

potential strength for the infinite lattice approaches zero, γPT (µ) ∝ 1/N → 0. We

define the PT -symmetric phase as robust (fragile) provided the critical impurity

strength γPT (N), below which all eigenvalues are real, is nonzero (zero) in the limit

N → ∞. Thus, the PT -symmetric phase, which exists in the region 0 ≤ γ ≤ γPT ,

is algebraically fragile. This result can be qualitatively understood as follows: in

the limit N � 1 and m � 1 with m/N = µ, Eqn. (2.11) can be approximated by

γ2 sin[(1−2µ)kN ] = 0. If γ 6= 0, this equation has only N(1−2µ) < N real solutions,

and hence the PT symmetry is broken. We emphasize that this argument is invalid

when µ→ 0 and the corresponding critical potential is given by γPT (µ) = t0 [24]. It

is also invalid when µ → 1/2, when the impurities are closest to each other and, as

we discuss below, the critical γPT (µ) is nonzero when N →∞.

2.2 Closest Impurities and the Even-Odd Effect

We now consider the case of closest impurities. Note that due to the PT -

symmetric requirement, when N is even the impurities are nearest neighbors with

m = N/2, whereas when N is odd the impurities are next-to-nearest neighbors with

m = (N − 1)/2. We will first focus on the case with an even N . In this case, the

condition M(k) = 0 from Eqn. (2.11) reduces to the following equation

t20 sin2

[
k

(
N

2
+ 1

)]
= (t20 − γ2) sin2

(
kN

2

)
. (2.12)

When γ = 0 Eqn. (2.12) has N distinct solutions given by kα = απ/(N + 1). As

γ increases the adjacent kα approach each other and when γ = t0, Eqn. (2.12) has

N/2 doubly degenerate solutions given by kn = 2nπ/(N+2), where n = 1, . . . , (N/2).

When γ > t0, it is clear that Eqn. (2.12) has no real solutions. Thus the PT symmetry
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Fig. 2.3. Allowed quasimomenta k(γ)/π for a lattice with N = 21 (red
line) and N = 13 (dashed blue line) sites as a function of potential
strength (γ/t0)2 when the impurities are closest to each other. As
N →∞, we find that the critical potential strength γPT → t0/2.

is maximally broken and all N eigenvalues simultaneously become complex. When

N is odd, the impurities are at sites N0 ± 1, where N0 = (N + 1)/2 is the site at the

center of the lattice. The equation M(k) = 0 then reduces to

cos(k)

{
sin2(kN0) +

(
γ2

t20

)
sin2[k(N0 − 1)]

}
= sin(kN0) sin[k(N0 − 1)]. (2.13)

This equation has all real solutions provided γ/t0 ≤ 1/(2 cos kd), where π/(N + 1) <

kd < 2π/(N + 1) corresponds to the first degenerate quasimomentum. Therefore, we

find that as the γ is increased from zero the PT symmetry breaks at γPT = t0/2 in

the limit N → ∞ when adjacent kα near the origin become degenerate. Hence, for

γ = γPT + 0+, there are four complex eigenvalues. On the other hand, Eqn. (2.13)

has only one real solution, k = π/2, when γ/t0 > 1/(2 cos kD), where kD ≤ π/2

is the degenerate quasimomentum closest to the zone center k = π/2. Hence, the

number of complex eigenvalues increases monotonically and when γ > t0/(2 cos kD) ∼
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t0(N + 1)/3π, it saturates to 2m = N − 1. Fig. 2.3 shows the quasimomenta kα(γ)

for a lattice with N = 13 and N = 21 sites obtained from Eqn. (2.13) and confirms

these results. Since the PT -symmetric nature of the potential dictates the minimum

distance between the impurities when N is odd or even, the phase diagram of the

lattice is sensitive to it even as N →∞.

2.3 Numerical Results

We start this section with numerical results for the critical potential strength

γPT (µ) as a function of the relative impurity site location 0 < µ = m/N ≤ 1/2

obtained by numerical diagonalization of the Hamiltonian for various lattice sizes N ,

even and odd. The left panel in Fig. 2.4 shows that, for an even N , apart from

the finite-size effects that are prominent near µ = 1/4 and are also present in so-

lutions to Eqn. (2.11), the critical potential strength γPT (µ) is vanishingly small

except at µ = 1/N and µ = 0.5. In both special cases γPT = t0. The right panel

in the same figure shows results for odd N . When µ = 1/N we recover the result
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Fig. 2.4. (a) γPT /t0 vs. µ = m/N ≤ 1/2 for an even-N lattice. As N
increases γPT (µ) decreases, except when the impurities are farthest
(µ = 1/N) or the closest (µ = 1/2). At the endpoints γPT = t0 is
independent of N . (b) The results are similar except for when the
impurities are the closest, in which case γPT = t0/2 as N →∞.
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γPT = t0
√

1 + 2/(N − 1) [24]. As in the case with even N , we find that the γPT (µ)

is suppressed with increasing N everywhere except when µ = 0.5− 1/(2N) or equiv-

alently m = (N − 1)/2. These results are consistent with those obtained through

the analytical treatment earlier. We now briefly explore the change in a typical di-

mensionless eigenfunction ψk(n) as a function of impurity potential γ in the case of

nearest-neighbor impurities (even N). In the PT -symmetric phase, an eigenfunction

is given by ψ<(n) = A sin(kn) for n ≤ N/2 and ψ>(n) = B sin(kn̄) for n > N/2, where

k is a quasimomentum that satisfies Eqn. (2.12). Using the eigenfunction constraints

and Eqn. (2.12) it follows that

B = A

{
sin[k(1 +N/2)]

sin(kN/2)
+ i

γ

t0

}
= A exp(iθγ), (2.14)

where the angle θγ satisfies tan θγ = γ sin(kN/2)/t0 sin[k(1+N/2)]. Fig. 2.5 shows the

amplitude |ψk(n)| and the phase Φ(n) of the ground-state wave function of a lattice

with N = 20 sites and nearest neighbor impurities. The top (blue) panel shows that

when γ = γPT = t0, the wave function amplitude is even about the center of the lattice

and the phase is given by θγ = π/2, as is expected from Eqn. (2.14). The bottom

(red) panel shows that when γ = 1.01t0 > γPT , the broken PT symmetry is reflected

in the asymmetrical wave-function amplitudes and in the position-dependent phase

factor Φ(n). These are generic features of the broken PT symmetry phase. We also

note that in the continuum limit, the eigenfunction ψk(x) becomes discontinuous at

the center of the lattice while the probability amplitude |ψk(x)| remains continuous.

2.4 Conclusions

We have investigated the phase diagram of an N -site one-dimensional lattice with

a pair of complex PT -symmetric impurities located at sites {m, m̄} within it. A

remarkable feature of such a Hamiltonian is that in the PT -symmetric region, its

spectrum remains confined within the energy band ±2t0 of the model in the absence

of impurities; as the impurity potential γ is increased, the level spacing between

adjacent energy levels decreases. Our results show that the PT -symmetric phase of
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Fig. 2.5. The top (blue) panel shows the amplitude |ψk(n)| (left)
and the phase Φ(n)/π (right) of the dimensionless ground-state wave
function of a PT -symmetric lattice with N = 20 sites and nearest-
neighbor impurities with strength γ = γPT = t0. As is expected of a
PT -symmetric state, the amplitude is even around the center of the
lattice, and the effect of a nonzero γ is manifest in the discontinuous
change in the phase, with Φ(n) = 0 for n ≤ N/2 and Φ(n) = π/2 for
n > N/2, consistent with Eqn. (2.12). The bottom (red) panel shows
the same state when γ/t0 = 1.01 and the PT symmetry is sponta-
neously broken. The broken symmetry is manifest in the asymmetrical
wave function amplitude (left) and a position-dependent phase Φ(n).

such a lattice is algebraically fragile except when the impurities are farthest from

each other or are closest to each other. In the latter case, we find that the PT -

symmetric phase survives when γ ≤ γPT = t0 (even N) or γ ≤ γPT = t0/2 (odd N).

We note that such a lattice offers tremendous tunability due to its variable critical

impurity strength γPT (µ) for a finite N , and the corresponding variable fraction of

complex eigenvalues 2µ, which translates into the number of dissipative channels

in both classical [16] and quantum systems. Thus, a physical realization of such a
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model [26] may offer the ability to engineer the level spacings and the dissipation

in this system. In Chapter 3, we will show how the results for a one-dimensional

lattice differ substantially from those of a PT -symmetric ring. In particular, we see

how periodic boundary conditions lead to an insensitivity to impurity location on the

critical impurity strength, in stark contrast to the results for a chain.
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3. PT SYMMETRY BREAKING IN UNIFORM RINGS

In this chapter, we explore the effects of PT symmetry breaking in a ring-lattice

with of a pair of non-Hermitian impurities ±iγ. Note that because of the periodic

boundary conditions (PBCs) of a ring (i.e. site 1 coincides with site N + 1), such a

pair of impurities represents PT -symmetric impurities irrespective of the individual

impurity locations; in other words, for given impurity locations, a parity operator can

be defined such that the impurity Hamiltonian becomes PT symmetric. The lattice

is characterized by two tunneling amplitudes that are uniform along the two paths

that connect the impurities but may be different from each other.

3.1 The Modified Tight-Binding Model

We start with a one-dimensional lattice with N sites and PBCs. Without loss

of generality, we take the gain and loss impurities (iγ,−iγ) at positions (1, d) where

2 ≤ d ≤ N . The Hamiltonian for this lattice is given by HPT = H0 + V , where the

Hermitian tunneling Hamiltonian H0 is given by

H0 = −
N∑
i=1

t(i)(a†i+1ai + a†iai+1), (3.1)

t(i) =

tb > 0, 1 ≤ i < d,

t0 > 0, d ≤ i ≤ N.

(3.2)

Here t(j) is the tunneling amplitude between adjacent sites j and j+ 1, a†j (aj) is the

creation (annihilation) operator for a single-particle state |j〉 localized at site j, and

PBCs imply that a†N+1 = a†1. A representation of the lattice is shown in Fig. 3.1. The

PT -symmetric, non-Hermitian potential is given by

V = iγ(a†1a1 − a
†
dad) 6= V †. (3.3)
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Fig. 3.1. A representation of an N -site tight-binding ring where a
particle is free to hop between nearest-neighbor sites in the presence
of two PT -symmetric impurities. The gain impurity +iγ is located at
site 1, while the loss impurity −iγ is located at site d. The tunneling
between sites 1 and d is uniform and given by tb, while outside this
region it is given by t0. A ring implies periodic boundary conditions,
meaning that the sites {1, N + 1} coincide.

When γ = 0, the energy spectrum of the Hamiltonian HPT is given by E(k, k′) =

−2t0 cos(k) = −2tb cos(k′) and is bounded by 2 max(t0, tb). When t0 ≥ tb, the N

eigenmomenta correspond to purely real k values and k′ values that are either real

or purely imaginary; when t0 ≤ tb, the situation is reversed [27]. When γ 6= 0, since

the tunneling amplitudes along the two paths between the gain and loss impurities

are constant, an arbitrary eigenfunction |ψ〉 =
∑

j f(j)|j〉 with energy E(k, k′) can

be expressed using the Bethe ansatz as [24, 27]

f(n) =

A sin(k′n) +B cos(k′n), 1 ≤ n ≤ d,

P sin(kn) +Q cos(kn), d+ 1 ≤ n ≤ N.

(3.4)
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To obtain the dimensionless quasimomentum k (or, equivalently, k′), we consider

the eigenvalue equations at impurity locations and their neighboring sites,

t0[P sin(kN) +Q cos(kN)] + tb[A sin(2k′) +B cos(2k′)] (3.5)

= −(E − iγ)[A sin(k′) +B cos(k′)]

t0{P sin[k(N − 1)] +Q cos[k(N − 1)] + A sin(k′) +B cos(k′)} (3.6)

= −E[P sin(kN) +Q cos(kN)]

tb{A sin[k′(d− 1)] +B cos[k′(d− 1)]} + t0{P sin[k(d+ 1)] (3.7)

+Q cos[k(d+ 1)]} = −(E + iγ)[A sin(k′d) +B cos(k′d)]

tb{P sin[k(d+ 2)] +Q cos[k(d+ 2)] + A sin(k′d) +B cos(k′d)} (3.8)

= −E{P sin[k(d+ 1)] +Q cos[k(d+ 1)]}

As in Chapter 2, we cast these four equations in matrix form and require the

resulting 4 × 4 coefficient matrix to have determinant zero to ensure a non-trivial

solution for {A,B, P,Q}. The resulting characteristic equation for the quasimomenta

is then given by

M(k, k′) ≡ t20 sin[k′(d− 1)] sin[k(N − d− 1)]

+t2b sin[k′(d+ 1)] sin[k(N − d+ 1)]

−2tbt0{sin(k′d) sin[k(N − d)] + sin(k′) sin(k)}

+γ2 sin[k′(d− 1)] sin[k(N − d+ 1)] = 0. (3.9)

It is easy to check the following properties of the quasimomenta that follow from

Eqn. (3.9). When t0 ≥ tb, the real quasimomenta k are constrained by −π < k ≤ π.

Then the states with quasimomenta k and −k are degenerate except when k = 0, π,

provided the corresponding k′ is purely real. If k0 is a real quasimomentum, then

π−k0 is also a quasimomentum if and only if N is even; when t0 ≤ tb, the situation is

reversed. Thus in contrast with an open lattice, the spectrum of a lattice with PBCs

has a particle-hole symmetric spectrum if and only if N is even. Fig. 3.2 shows the

numerically-obtained typical phase diagram for the critical impurity strength γPT as
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Fig. 3.2. Typical PT phase diagram of a lattice with PBCs. These
results are for a lattice with N = 40, t0 = 1, and impurities ±iγ
at sites (1, d) for different values of the sink position d and different
tb ≤ t0; we get identical results for odd N or tb > t0. Remarkably,
the critical impurity strength γPT (µ) = |t0− tb| is independent of the
distance µ between the impurities; for small N ≤ 10, this is not true.
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a function of the fractional distance between impurities µ = (d − 1)/N . Note that

since there are two paths from the source iγ to the sink −iγ, we restrict the fractional

distance to 0 ≤ µ ≤ 1/2. These results are obtained for a lattice with N = 40, t0 = 1,

and tb ≤ t0. We obtain identical results for odd N and different values of tunneling

amplitudes including tb > t0 when the impurity strength γ is measured in units of

max(t0, tb). We also find that the weak µ dependence of the critical impurity strength

γPT /max(t0, tb) vanishes as N increases.

This remarkable phase diagram predicts that in a lattice with PBCs, the critical

impurity strength γPT (µ) is independent of the interimpurity distance µ and is given

by γPT = |tb − t0|. It implies that the fragile PT -symmetric phase in an open lattice

with constant tunneling [25, 28] is stabilized and strengthened by PBCs and that

the critical impurity strength γPT can be easily tuned by an appropriate choice of

tunneling amplitudes.

To gain insight into the insensitivity of γPT (µ) to the interimpurity distance µ for

large N � 1, let us consider Eqn. (3.9) in the limit 1� d� N ,

sin(k′µN) sin[k(1− µ)N ]

sin(k′) sin(k)
=

2t0tb
[(t0 − tb)2 + γ2]

(3.10)

We remind the reader that, similar to the characteristic Eqn. (3.9), Eqn. (3.10) rep-

resents two distinct equations based on when k′ is purely real or purely imaginary

[27]. Since we have chosen, without loss of generality, tb ≤ t0, k is always purely real.

Thus, investigating the graphical solutions of Eqn. (3.10) requires some care. As γ

increases, we find that two adjacent quasimomenta near k ∼ π/2 become degenerate

and then complex, leading to PT symmetry breaking. Note that when k ∼ π/2, the

eigenenergy is low, E(k, k′) = −2t0 cos(k) ≤ min(t0, tb), and thus the corresponding

eigenmomentum k′ = arccos(E/tb) ∼ π/2 is purely real. Therefore, to determine

the PT -breaking threshold γPT (µ), we only focus on these quasimomenta; a graph-

ical solution in this vicinity then shows that γPT is independent of the fractional

interimpurity distance µ.
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3.2 Wave Function and Momentum Evolution

Now we consider the real- and reciprocal-space time evolution of a wave packet

that is initially localized on a single site. In an optical-waveguide realization of a

PT -symmetric system, this initial state is most easily achievable. In such a sys-

tem, the wave function |ψ(t)〉 represents single-transverse-mode electric fields in each

waveguide, their classical dynamics are identical to that of a quantum particle on a

tight-binding lattice [19], and the time evolution is not unitary since, based on its

engineering, a waveguide can absorb or emit light, thus violating unitarity [15,16,23].

For an arbitrary, normalized initial state |ψ(0)〉, the wave function at time t is given

by |ψ(t)〉 = exp(−iHPT t/~)|ψ(0)〉, and the time evolution operator exp(−iHPT t/~)

is not unitary since the Hamiltonian HPT is not Hermitian. We denote the site-

and time-dependent real-space intensity by IR(j, t) = |〈j|ψ(t)〉|2, where j = 1, . . . , N

denotes the site index, and use IM(u, t) = |〈u|ψ(t)〉|2 to denote the reciprocal-space

intensity where the discrete index u = 1, . . . , N corresponds to the reciprocal-space

index pu = π(2u/N − 1) with −π < pu ≤ π.

The left-hand column in Fig. 3.3 shows the typical evolution of real-space intensity

with increasing impurity strength. For a detailed description of how these plots are

generally calculated, see Appendix B. These results are for a lattice with N = 32,

t0 = 0.5, tb = 1.0, the source and sink at sites 1 and d = 16, respectively, and the initial

wave packet localized at site m0 = 8. The vertical axis in each panel indicates the

site index, and the horizontal axis denotes time measured in units of 2π~/max(t0, tb).

When γ = 0 (top panel), the wave packet diffuses, suffering a change in speed at

the impurity locations consistent with the change in the tunneling amplitude. This

amounts to a statement of the conservation of momentum. In the central panel, the

slope of the orange lines overlaid in each of the two tunneling regions gives the speed

of the wave packet in the respective region. We then multiply each speed by the

appropriate effective mass (meff = ~2/(2ta2)), where t is the tunneling parameter

in the relevant region and a is the lattice spacing. We find that p1 = 0.89~2/a
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Fig. 3.3. Left: Evolution of real-space intensity IR(j, t) with increas-
ing γ ≥ 0 in an N = 32 lattice with impurities ±iγ at sites 1 and 16,
t0 = 0.5, tb = 1.0, and the initial wave packet localized at site m0 = 8.
When γ = 0 the wave picket diffuses without preferential chirality. As
γ increases towards γPT (center panel) and beyond (bottom panel),
the wave function evolution becomes chiral. Recall that due to PBCs,
the bottom-most lattice site in each panel is connected with the top-
most lattice site. Right: The corresponding reciprocal-space intensity
IM(u, t). The vertical axis corresponds to the reciprocal-space index
−π < pu ≤ π. As γ increases, we see that the reciprocal-space inten-
sity develops a clear peak at a finite, positive value of pu, consistent
with the real-space motion of the wave packet in the left column.
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and p2 = 0.94~2/a, which within the error due to visual inspection, indicates that

the momentum is indeed conserved. As γ increases towards γPT (center panel) and

beyond (bottom panel), the wave packet evolution acquires a chirality and the overall

intensity also increases from its γ = 0 value. In an open lattice, there is only one

path from the source to the sink: in contrast, a lattice with PBCs has two such

paths. Physically, the chirality implies that, on average, the path with the higher

tunneling amplitude is preferred over the other only when γ > 0. Note that this does

not represent a preferential flow from source to the sink – the wave packet motion

continues past the sink to the source again – but, rather, the handedness of the motion

in the position-time plane [29]. We also emphasize that when γ = 0 (top panel), on

average, both paths are equally preferred. These results are robust, independent of

the initial location m0 of the wave packet, the distance (d−1) between the impurities,

and the lattice tunneling parameters.

The right-hand column in Fig. 3.3 provides a complementary view with the cor-

responding evolution of the reciprocal-space intensity IM(u, t). The vertical axis in

each panel corresponds to the reciprocal-space index pu ∈ (−π, π]. The top panel

shows that when γ = 0, as the wave packet diffuses, its average momentum is 0. As γ

approaches γPT (center panel) and beyond (bottom panel), we see that the reciprocal-

space intensity develops a pronounced peak at a finite, positive value, consistent with

the preferential flow shown in the left-hand column. In addition, results at longer

times, T ∼ 10N � N , show that the reciprocal-space intensity distribution for γ > 0

reaches a steady state.

To quantify this effect and to dissociate it from the exponentially increasing net

intensity IR(t) =
∑

j IR(j, t) that occurs for γ > γPT [30], we develop a dimensionless,

discrete momentum operator on the lattice with PBCs (i.e. the lattice analog of
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p = −i~∂x). We begin by recalling the proof demonstrating that the momentum p is

a Hermitian operator, namely

〈f |p|g〉 = 〈f |
(∫

dx|x〉〈x|
)
p

(∫
dx′|x′〉〈x′|

)
g〉

=

∫
dx

∫
dx′〈f |x〉〈x|p|x′〉〈x′|g〉

=

∫
dx

∫
dx′f ∗(x)[−i~∂xδx,x′ ]g(x′)

= −i~
∫
dxf ∗(x)∂xg(x) (3.11)

And upon integrating by parts we get

〈f |p|g〉 = −i~f ∗(x)g(x)
∣∣
boundary

+ i~
∫
dxg(x)∂xf

∗(x)

= −i~f ∗(x)g(x)
∣∣
boundary

+

∫
dxg(x)(−i~∂xf(x))∗

= −i~f ∗(x)g(x)
∣∣
boundary

+

{∫
dxg∗(x)(−i~∂xf(x))

}∗
= −i~g∗(x)g(x)

∣∣
boundary

+ (〈g|p|f〉)∗ (3.12)

At this point, the boundary term is usually set to zero since the wave function vanishes

at the boundaries, but we leave it intact to compare with the discrete case. Since

the derivative takes the form of a finite difference in the discrete case, the question

arises whether to use the forward difference 〈f |p|g〉 ≡ −i~
∑N

k=1 f
∗(k)(gk+1−gk) or the

backward difference 〈f |p|g〉 ≡ −i~
∑N+1

k=2 f
∗(k)(gk−gk−1) = −i~

∑N
k=1 f

∗
k+1(gk+1−gk).

We opt to use their average, and check whether the result is Hermitian:

〈f |p|g〉 ≡ −i~
2

N∑
k=1

(
f ∗k + f ∗k+1

)
(gk+1 − gk) (3.13)

So we must verify that 〈f |p|g〉 = (〈g|p|f〉)∗. By definition, we have

(〈g|p|f〉)∗ =

{
−i~

2

N∑
k=1

(
g∗k + g∗k+1

)
(fk+1 − fk)

}∗
, (3.14)

and upon expanding we get

(〈g|p|f〉)∗ =
i~
2

N∑
k=1

(f ∗k+1gk+1 − f ∗kgk + f ∗k+1gk − f ∗kgk+1). (3.15)
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We reorder the summations and group the boundary terms together as

(〈g|p|f〉)∗ = −i~(f ∗1 g1 − f ∗N+1gN+1)− i~
2

N∑
k=1

(f ∗k+1gk+1 − f ∗k+1gk + f ∗kgk+1 − f ∗kgk),

= −i~(f ∗1 g1 − f ∗N+1gN+1)− i~
2

N∑
k=1

(
f ∗k + f ∗k+1

)
(gk+1 − gk) (3.16)

So we finally arrive at the expression

〈f |p|g〉 = i~(f ∗1 g1 − f ∗N+1gN+1) + (〈g|p|f〉)∗ (3.17)

Because of the PBCs, f1 = fN+1, therefore the boundary terms cancel and the discrete

momentum operator is Hermitian. So the final expression for the discrete momentum

operator (considering the time evolution), is given by

〈f(t)|p|g(t)〉 = −i~
2

N∑
j=1

(f ∗j+1 + f ∗j )(gj+1 − gj)√
〈f |f〉〈g|g〉

, (3.18)

where |f(t)〉 =
∑

j fj(t)|j〉, |g(t)〉 =
∑

j gj(t)|j〉, and the normalization factor in the

denominator is necessary due to the non unitary time evolution. As suggested by the

right-hand column in Fig. 3.3, the momentum expectation value pf (t) = 〈f(t)|p|f(t)〉

in a given state oscillates about 0 when γ = 0 and reaches a steady-state value

p(γ) ≡
∫ T

0
p(t′)dt′/T when γ > 0. Since |pf (t)| ≤ 1 for any initial state and time, the

magnitude of p(γ) is bounded by unity.

Fig. 3.4 shows the typical evolution of the dimensionless, steady-state momentum

p(γ) across the PT -symmetry-breaking threshold for different locations of the loss

impurity. These results are for a lattice with N = 32, t0 = 0.5, tb = 1, and thus,

γPT /max(t0, tb) = 0.5. The initial location of the wave packet is m0 = 10, and we

have used normalized time T = 500 to numerically obtain the average. When γ = 0,

p(γ) = 0, and at small γ, we see that the p(γ) increases linearly with γ; the slope of

this line increases monotonically with d. We find that the steady-state momentum

reaches a universal value, p = 1, at the PT -breaking point and decreases linearly for

γ ≥ γPT . Thus, although the total intensity increases exponentially with time, the

momentum, which captures the handedness of motion of the wave packet, decreases
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Fig. 3.4. Dependence of the steady-state momentm p(γ) as a func-
tion of the impurity strength γ for different locations d of the loss
impurity −iγ; the gain impurity iγ is located at site 1. The initial
wave function is localized at site m0 = 10. The momentum p(γ)
varies linearly with γ at small γ/γPT � 1. It reaches a universal,
maximum value, p = 1, at the PT -symmetry-breaking threshold. For
γ/γPT � 1, the steady-state momentum decreases, although the net
intensity increases exponentially with time.
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for γ > γPT . The maximal value of p(γ) at the threshold γ = γPT is a robust feature,

observed universally in tight-binding lattices with a single pair of PT -symmetric

impurities, irrespective of the tunneling profile, the distance between the impurities,

and the initial location of the wave packet.

3.3 Conclusions

In this section, we have investigated the PT phase diagram and signatures of

PT -symmetry breaking in a lattice with PBCs. We have presented a model of a

lattice with PBCs and two uniform tunneling amplitudes and shown that the PT -

symmetric region for such a model is robust, insensitive to the distance between the

loss and gain impurities, and widely tunable in size. We have shown that in such

a lattice with PBCs, where there are two different paths from the source to the

sink, the motion of a wave packet acquires a chirality when the impurity strength

is nonzero. We have predicted that the PT -symmetry breaking in such a lattice is

signaled by a universal, maximal value for the steady-state momentum that quantifies

this effect. Note that the chirality at an exceptional point – where eigenvalues of a

non-Hermitian Hamiltonian become degenerate and corresponding eigenvectors are

linearly dependent – has been discussed in the literature [29, 31, 32]. Traditionally,

the investigation of signatures of PT -symmetry breaking has focused on the depen-

dence of the intensity profile IR(j, t), or the net intensity, on time and the impurity

strength. These quantities vary smoothly across the phase boundary [30,33]. In this

section, we have shown that the momentum, on the other hand, shows a peak with

a universal value at the PT -symmetry-breaking threshold. Such a measurement will

require the knowledge of relative phases of the wave function values at adjacent sites,

p(γ) ∝
∑

j Im(f ∗j fj+1), and therefore is more complex than site-dependent intensity

measurements [15,16,19,21,23]. Two-dimensional lattices of coupled waveguides have

been experimentally explored [34,35]. Thus, creating a one-dimensional system with

PBCs – a finite (square) lattice with only the boundary waveguides and no interior
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waveguides – seems feasible. Our results show that the maximal, universal value of

p(γ) is achieved at the PT -symmetry-breaking threshold. A deeper understanding of

this result and its relation, if any, to the exceptional point [32] remain open questions.
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4. BROKEN PT SYMMETRY IN NONUNIFORM

LATTICES

In this chapter, we consider lattice models with a site-dependent (P-symmetric) hop-

ping with both open and periodic boundary conditions, comparing the results in this

case with constant-hopping lattices.

4.1 Nonuniform Tunneling Model

In this chapter, we investigate the robustness of the PT -symmetric phase, and the

degrees of PT symmetry breaking in an N -site lattice with a site-dependent hopping

function

tα(k) = t0[k(N − k)]α/2 (4.1)

and a pair of PT -symmetric impurities ±iγ at positions (m, m̄), respectively, where

m̄ = N + 1−m is the mirror-symmetric counterpart of site m. With coupled optical

waveguides in mind [15,16,23], we explore the signatures of PT symmetry breaking in

the evolution of single-particle properties across the PT -symmetric phase boundary.

We begin with the Hamiltonian for a one-dimensional lattice:

Hα = −
N−1∑
k=1

tα(k)(a†k+1ak + a†kak+1) + iγ(a†mam − a
†
m̄am̄), (4.2)

where a†k(ak) is the creation (annihilation) operator for a state localized at site k, and

1 < m < N/2 is the position of the first impurity. We recall that, for a constant

hopping model, as γ/t0 is increased, the maximum number of complex eigenvalues is

given by 2m = 2µN ≤ N . This process is always sequential: the number of complex

eigenvalues increases by two or four as γ increases; the sole exception is the case

with nearest-neighbor impurities, m = N/2, where all eigenvalues simultaneously

become complex across the PT -symmetric threshold [28]. In the following, we obtain



35

æ

æ

æ

æ

æ

æ
æ
æ
ææ
ææ
æææææ

æææææææ
æ
ææææææææææææææææ

ææ
ææ
æ
æ

æ

æ

æ

à

à
àà
à
àà
à
ààà

à
ààààààààà

à

à
à
àà
à

à

à

à

à

à

à

à

à
à
à

à
à

à

àà

à

à

à
àà

à

à

à

ì

ì
ì

ìì
ì
ìì
ì
ìì
ìì

ì
ì
ì

ì
ììììì

ììì
ì
ì

ìì
ìì
ì

ì

ììììì

ì

ì

ì
ì

ì

ì

ì

ì
ì
ì

ì

ì

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

Μ

Γ
�D
Α

ì Α = 2, N = 100

à Α = 1, N = 100

æ Α = 0, N = 100

(a)

æ

æ

æ

æ

æ

æ

à

à

à

à

à

à
à

ì

ì

ì

ì

ì

ì

0.001 0.002 0.005 0.010 0.020 0.050

0.01

0.02

0.05

0.10

0.20

0.50

Μ

Γ
P

T
�D
Α

ì Μ = 1�2 Hx10L

à Μ = 1�4

æ Μ = 1�N

(b)

Fig. 4.1. (a) Typical phase diagram of the Hamiltonian Hα as a func-
tion of impurity strength γ/∆α and impurity position µ = m/N for
a N = 100 site lattice. The region in the (γ/∆α, µ) plane below each
curve represents the PT -symmetric phase; it is robust at µ = 1/2.
The results are similar for odd N , except that the critical strength
when the impurities are closest is γPT = ∆α/2. (b) Power-law scal-
ing of γPT (µ)/∆α vs 1/N for an α = 1 lattice. Note the logarithmic
scale. For farthest impurities (µ = 1/N), γPT ∼ N−1/2 (blue). For
an intermediate position µ = 1/4, γPT ∼ N−1/3 (black). For clos-
est impurities, the approach to the asymptotic limit is the fastest
[γPT (N) − γPT (N → ∞)](×10) ∼ 1/N, (red). Thus, the “fragile”
phase of an α > 0 lattice is significantly stronger than its α = 0
counterpart.

α-dependent generalizations of results. When α > 0, the bandwidth of a clean lattice

scales as ∆
′
α(N) ∼ Nα; to be consistent with the α = 0 case, we use γ/∆α as the

dimensionless measure of the impurity strength where ∆α = ∆
′
α/4. The left-hand

panel in Fig. 4.1 shows the typical phase diagram for an even lattice (N = 100) in the

(γ/∆α, µ) plane as a function of the hopping exponent α ≥ 0. The PT -symmetric

threshold, below which all eigenvalues are real, decreases with increasing distance

between the impurities, d = 1 +N(1− 2µ), but approaches a universal critical values

γPT /∆α = 1 when the impurities are the closest, µ = 0.5. When N is odd (not

shown), the fragile nature of the PT -symmetric phase is maintained, but the critical

strength for closest impurities, µ = 0.5(1 − 1/N), is reduced by a factor of two,
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γPT = ∆α/2. In both cases, when α > 0, the critical impurity strengths γPT (µ) for

a generic µ are appreciable compared to their respective universal values at µ ≈ 1/2.

Thus, the robust nature of the PT -symmetric phase at µ = 1/N and its extremely

fragile nature at generic values of µ are anomalous features of a lattice with constant

hopping (α = 0, blue circles) [28].

The right-hand panel in Fig. 4.1 shows typical power-law scaling of the critical

impurity strength γPT (µ) vs 1/N for µ = {1/N, 1/4, 1/2} in a lattice with α =

1. When the impurities are farthest, µ = 1/N , the dimensionless critical impurity

strength vanishes as γPT (N) ∼ N−1/2 (blue circles); when µ = 1/4, it vanishes as

γPT (N) ∼ N−1/3 (black squares); and when µ = 1/2, it approaches the nonzero

critical value as γPT (N)− γPT (N → ∞) ∼ N−1 (red stars). Note that these results

are in stark contrast with the α = 0 case where γPT (N) ∼ N−1 for all generic µ [28].

Thus, although the PT -symmetric phase of a nonuniform lattice for a generic impurity

position is, in principle, algebraically fragile, the critical impurity strength is still

appreciably large for experimentally relevant numbers (of waveguides); γPT (N)/∆α ∼

0.5− 0.3 for N ≤ 100.

Next, we consider the emergence of complex eigenvalues [36]. For a tight-binding

Hamiltonian with a purely imaginary potential, if E is an eigenvalue, then so are −E

and E∗ [37]. For a given impurity position m, the first (four) complex eigenvalues

emerge as two adjacent energy levels (−E,−E + δ) become degenerate, as do their

positive counterparts. Thus, as the fractional impurity position µ changes from the

edge of the lattice (µ = 1/N) to its center (µ ≈ 1/2), the position of the first complex

eigenvalue moves from the center of the energy band, E = 0, to its edges, E ∼ ±2∆α.

For a given µ, when the impurity strength γ/∆α increases, we find that the maximum

number of complex eigenvalues is still given by 2µN = 2m ≤ N , and that the

process is sequential except in an even lattice at µ = 1/2 [28]. Fig. 4.2 shows this

generic even-odd effect for the case of closest impurities in a lattice with α = 2. For

N = 20, µ = 0.500 (red squares), when γ/∆α = 1.08, just above the even-lattice PT -

symmetry-breaking threshold, we see that all N eigenvalues simultaneously become
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Fig. 4.2. Degrees of PT symmetry breaking for an α = 2 lattice with
closest impurities in the odd case (N = 21, µ = 0.476, blue circles)
and the even case (N = 20, µ = 0.500, red squares). The complex
eigenvalues are scaled by half-bandwidth 2∆α and are obtained for
impurity strengths just above their respective PT -symmetry-breaking
thresholds; γ/∆α = 0.63 for N = 21 and γ/∆α = 1.08 for N = 20.
When N is odd (blue circles), we see that four eigenvalues, near the
top and the bottom of the energy band, become complex while the
remaining (N − 4) remain real; when N is even (red squares), all
N eigenvalues simultaneously develop finite imaginary parts. This
contrast becomes large for N � 1.

complex; on the other hand, for N = 21, µ = 0.476 (blue circles), when γ/∆α = 0.63,

just above the odd-lattice PT -symmetry-breaking threshold, four eigenvalues near the

band edges become complex and the rest remain real. This difference has dramatic

consequences.
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4.2 Signatures of PT Symmetry Breaking

We now explore the signatures of sequential, or simultaneous, PT symmetry

breaking in the time evolution of a single-particle wave packet. It is straightforward to

obtain the site- and time-dependent intensity |〈k|ψ(t)〉|2 where |ψ(t)〉 = G(t)|ψ(0)〉,

and G(t) = exp(−iHαt) is the time-evolution operator (~ = 1) and |ψ(0)〉 denotes

the initial state. We note that since the Hamiltonain Hα is not Hermitian, G(t) is not

a unitary operator. With an open (quantum) system in mind, we use the standard

inner product to obtain the time-dependent intensity; therefore, the maximum inten-

sity at a site, for a normalized initial state, can exceed unity [38]. Fig. 4.3 shows the

evolution of the site- and time-dependent intensity across the PT -symmetric phase

boundary for a particle initially localized on the first site shown by the black circle

in each panel, 〈k|ψ(0)〉 = δk,1, in an α = 2 lattice. The vertical axis in each panel

represents the site index. The horizontal axes in all panels have the same scale, and

represent time in units of Tα = 1/∆α. The top two panels show the predicted inten-

sity profile for an odd lattice (N = 21) with closest PT -symmetric impurities ±iγ, at

positions (10, 12). The top panel shows intensity oscillations that occur as the particle

bounces from one end of the lattice to the other while encountering the (gain and loss)

impurities with strength γ/∆α = 0.626 at the center. When γ/∆α = 0.627 (second

panel) the PT symmetry is broken with four complex eigenvalues (see Fig. 4.2). The

second panel shows that, over the time-scale shown in Fig. 4.3, the intensity distri-

bution does not change significantly. The bottom two panels are for an even lattice

(N = 20) with impurities at positions (10, 11). The third panel shows the intensity

oscillations that occur in the PT -symmetric phase when γ/∆α = 1.070. When the

impurity strength exceeds the critical value, γ/∆α = 1.074 (bottom panel), all N

eigenvalues become complex, thus maximally breaking the PT symmetry. This prop-

erty is manifest in the predicted intensity profile in the bottom panel. Note that we

have scaled the color-bar on the bottom two panels to a an identical range to simplify
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Fig. 4.3. Time evolution of the intensity for a particle initially local-
ized on the first site in an α = 2 lattice. The vertical axis in each
panel represents the site index, and the horizontal axis represents time
in units of Tα = 1/∆α. The top two panels are for an odd lattice,
N = 21, with impurities at sites (10, 12). We see only a small change
in the intensity profile as γ/∆α is increased from 0.626 (first panel)
to 0.627 (second panel). The bottom two panels are for an even lat-
tice, N = 20, with impurities at positions (10, 11). We see a marked
contrast in the intensity profile when γ/∆α is increased from 1.070
(third panel) to 1.074 (fourth panel), when all N eigenvalues become
complex.

comparison while maintaing the visibility of structures in the intensity profile; the

maximum intensity in the bottom-most panel is ∼ 104.

In this section, we have explored the robustness of the PT -symmetric phase, as

well as the degree and signatures of its breaking in a nonuniform lattice with a pair
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of imaginary PT -symmetric impurities. We have shown that, when the hopping

is maximum near the center of the lattice, α > 0, the PT -symmetric phase lasts

over an appreciable range of impurity strength and is robust when the impurities are

closest to each other. The nature of the PT -symmetry-breaking transition at the

robust point in even and odd lattices is different: when N � 1 is even, all eigenvalues

simultaneously become complex, whereas when N � 1 is odd, only four of the initially

do. We have predicted that this difference leads to clear signatures in the intensity

profile. In these calculations, we have ignored on-site disorder effects that, in coupled

optical waveguides, arise due to variation in the real part of the refractive index. The

effect of disorder on the critical impurity strength, as well as the interplay between

a disorder that tends to localize the particle to its initial position, and an imaginary

potential that tends to localize the particle at the impurity location, will deepen

our understanding of these lattice models. Our results suggest that PT symmetry

breaking in a nonuniform lattice with N � 1 sites will be accompanied by remarkable

phonomena, such as the even-odd effect predicted here, with no counterparts in the

N = 2 system [4].

4.3 Nonuniform Rings

The Hamiltonian for a PT -symmetric ring is given by

H(λ) = Hα + λtR

(
a†1aN + a†Na1

)
, (4.3)

where we choose the tunneling between the end points of the open lattice, sites 1 and

N , as tR = tα(1) = tα(N) and the scale-factor 0 ≤ λ ≤ 1 allows us to continuously

extrapolate from an open lattice to a PT -symmetric ring. Before discussing the

results for a ring λ > 0, we briefly recall the results for an open lattice and establish

the terminology [33]. In the PT -symmetric phase, the eigenvalue spectrum of an N -

site is non-degenerate and symmetric about zero, and the eigenfunctions for energies

±ε are related to each other. The bandwidth ∆
′
α of the energy spectrum scales as

∆
′
α ∼ Nα for α ≥ 0 and ∆

′
α ∼ N−|α|/2 for α < 0 because the bandwidth is determined
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Fig. 4.4. (a) The energy spectra for a Hamiltonian with N = 500 and
α = {−1, 0, 1, 2}, where the energy is normalized by the bandwidth.
(b) Shows the difference between energy spectra for a ring and an open
lattice for an N = 30 lattice. When α > 0 the spectral differences are
most pronounced near the center of the band. For α < 0, the spectral
differences are greatest at the band edge and represent the changes
that occur in eigenstates localized at the two ends of the open lattice.
These results show that the energy spectrum of a PT -symmetric ring
is different from that of an open lattice for experimentally relevant
lattice sizes.

by the largest tunneling amplitude. We use quarter-bandwidth, ∆α ≡ ∆
′
α/4 as the

energy scale and note that when α = 0, the threshold impurity strength is given by

γPT /∆α = 0 = 1.

Note that although the distinction between an open lattice and a ring is expected

to vanish [39] in the limit N →∞, for small N the differences between the two can be

substantial. As an extreme case, let us consider a uniform 3-site lattice with nearest-

neighbor tunneling t0. The non-degenerate, particle-hole symmetric spectrum of such

an open lattice is given by E = {−
√

2t0, 0,
√

2t0}. On the other hand, the spectrum

of a three-site ring is given by E = {−2t0, t0, t0} and is, in general, asymmetric about

zero and degenerate.

The left-hand panel in Fig. 4.4 shows typical spectra for Hamiltonian (4.3) with

N = 500 and α = {−1, 0, 1, 2}. The energy is normalized by its maximum value

and since N � 1, the spectrum is virtually identical for an open lattice and a ring.
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When α = 0 (black line), we obtain the expected cosine spectrum, for α = 1 (green

line) and α = 2 (red line), the spectrum is quasilinear, and when α = −1 (blue line),

the spectrum band-edges represent eigenstates localized at the end of the lattice that

are generically present when α < 0 [40]. The right-hand panel in Fig. 4.4 shows the

difference between energies ∆E = Ering − Elattice of a ring and an open lattice

for a lattice with N = 30 sites and α = {−1, 0, 1}. We find that for α > 0 the

difference is greatest near the center of the band, whereas for α < 0 the spectral

difference is greatest at the band edges. This is expected since the localized edge-states

that exist for α < 0 are most influenced by the introduction of periodic boundary

conditions. The spectral differences vanish with increasing N but remain pertinent

for experimentally relevant lattice sizes [19–21].

We now discuss the numerically obtained PT -symmetric phase diagram for the

Hamiltonian H(λ) as a function of increasing loss and gain impurity strength γ,

fractional location of the gain impurity, µ = m/N ≤ 1/2, and the dimensionless scale

factor λ that extrapolates between an open lattice (λ = 0) and a ring (λ = 1). The

PT -symmetric phase is called robust if the critical impurity strength measured in

units of the energy scale, γPT /∆α(N) is nonzero as N → ∞; it is called fragile if

γPT /∆α(N) → 0 as N → ∞. In an open lattice µ = 1/N corresponds to farthest

impurities whereas in a ring, farthest impurities correspond to µ ∼ 1/4. We note

that in an open lattice, when α > 0 the critical values of impurity strength γPT (µ)

decreases as the distance between the impurities increases whereas for α < 0, the

PT -symmetric phase is vanishingly small for almost all values of impurity location

µ [33]. Fig. 4.5 shows the typical evolution of the PT -symmetric phase diagram in

the (γ/∆α, µ) plane as a function of the scale parameter λ. These results are for a

lattice with N = 30 sites, and α = 1 (left-hand panel) and α = 2 (right-hand panel).

For λ = 0 (black circles), the PT -symmetric phase is robust when the loss and gain

impurities are closest to each other, µ = 1/2. Then the critical impurity strength is

given by γPT /∆α(N) = 1 when N is even and γPT /∆α(N) = 1/2 when N is odd [33].

For λ > 0, we see that the critical impurity strength γPT is, in general, suppressed
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Fig. 4.5. (a) The PT phase diagram as a function of impurity strength
γ/∆α and fractional impurity position µ = m/N for an N = 30-
site lattice with α = 1. For γ > γPT , the eigenvalues of the non-
Hermitian Hamiltonian in Eqn. (4.3) become complex. (b) Shows the
corresponding results for the α = 2 lattice. In both cases, the PT -
symmetric phase is maximally robust at µ = 1/2 for an open lattice,
λ = 0 (black circles). As λ is increased, thus increasing the tunneling
between sites 1 and N , the critical impurity strength γPT (µ) remains
essentially unchanged from its open lattice value for λ ≤ 0.5. As λ is
increased further (red squares, green diamonds), the PT -symmetric
phase in the ring (λ = 1, blue triangles) is weakened for all impurity
positions. Thus, a minor change in the Hamiltonian (4.3) leads to a
suppression of the critical impurity strength γPT (µ) even when the
impurity location is far away from this change.

relative to its value for an open lattice for all values of impurity positions µ. Thus,

the PT -symmetric phase in a ring with non-uniform tunneling is weaker than its

counterpart in an open lattice. However, results in Fig. 4.5 also show that the critical

impurity strength γPT is still an appreciable fraction of its value in an open lattice.

The left have panel shows that for a lattice with α = 1, the critical impurity strength

γPT (µ) is strongly suppressed except for a few specific values of µ; this feature is

robust irrespective of N and is related to the exactly linear spectrum of an α = 1

open lattice [38, 41]. The right-hand panel shows that for an α = 2 lattice, with a

nonlinear spectrum, the critical impurity strength reaches a plateau γPT /∆α ∼ 0.3

for most impurity locations µ ≥ 0.2. As λ is increased from 0 (red squares, green
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diamonds) to 1 (blue triangles) the PT -symmetric Hamiltonian (4.3) is perturbed

only slightly. The tunneling introduced between sites 1 and N , λtα(1) = λtα(N), is

the smallest among all links for α > 0. However, it has a dramatic effect on γPT even

when the loss and gain impurities ±iγ are away from this tunneling link, µ ≥ 0.1.

When α < 0, the tunneling introduced between sites 1 and N is the largest among

all links and is proportional to the bandwidth ∆α(N) ∼ N−|α|/2. Therefore, we can

expect that the fragile PT -symmetric phase in an open lattice will be strengthened

in a ring. Fig. 4.6 shows the PT -symmetric phase diagram for an N = 30, α = −1

lattice. When λ = 0 (black circles), we obtain the extremely fragile phase diagram

of an open lattice. As the tunneling is increased from λ = 0.2 (red squares), λ = 0.7

(green diamonds) to λ = 1.0 (blue triangles), we see that the PT -symmetric phase in

a ring is substantially strengthened for all impurity positions. Since PT -symmetric

rings (λ = 1) with α > 0 and α < 0 can be mapped onto each other with an

appropriate redefinition of the impurity location µ, the critical impurity strength

γPT (µ) decreases with µ when α < 0 (see Fig. 4.6) whereas it increases with µ for

α > 0 (see Fig. 4.5). We note that in a ring with constant tunneling, accessible to

analytical treatment, the critical impurity threshold is zero [42]. These numerical

results show that in a ring with non-uniform tunneling tα(i) there is a large region,

below the blue-triangle-curve in Fig. 4.5 and Fig. 4.6, where the PT symmetry is

exact.

4.4 Chirality Across the PT -Symmetric Phase Boundary

The time evolution of a wave packet that is initially localized to a single site

has been traditionally used to probe the degrees and signatures of PT symmetry

breaking in coupled optical waveguides [16, 43]. In these systems, the wave func-

tion |ψ(t)〉 denotes the single-transverse-mode electric field in each waveguide [19],

the PT -symmetric impurities which absorb or emit the corresponding electromag-

netic radiation are engineered, and the time evolution of an initially normalized wave
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Fig. 4.6. PT -symmetric phase diagram for anN = 30 lattice with α =
−1, as a function of the scale-factor λ that determines the tunneling
between sites 1 andN and extrapolates from an open lattice (λ = 0) to
a ring (λ = 1). When λ = 0 (black circles), the PT -symmetric phase
is fragile everywhere except when the impurities are closest, µ = 1/2.
For λ > 0, the dimensionless critical impurity strength γPT/∆α is
significantly enhanced for all impurity locations µ, and, in contrast
with the α > 0 case, γPT (µ) for the ring decreases with increasing
µ. These results are expected since the tunneling perturbation λtα(1)
scales as the bandwidth for α < 0 whereas for α > 0, Fig. 4.5, the
perturbation scales as ∆α/N

α/2.
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packet is given by |ψ(t)〉 = exp(−iH(λ)t/~)|ψ(0)〉. The time-evolution operator

exp(−iH(λ)t/~) is not unitary irrespective of whether the PT symmetry is exact or

broken; therefore, in general, the net intensity I(t) =
∑

j I(j, t) is not one, where

I(j, t) = |〈j|ψ(t)〉|2 denotes the site- and time-dependent intensity. This violation of

unitarity is determined by the parity of number of lattice sitesN [33], and the localized

or extended nature of eigenstates [44]. In all cases, however, the net intensity increases

monotonically across and exponentially past the PT -symmetric threshold [30].

The typical time evolution of an initially localized state shows that apart from

spreading across different sites, the wave packet undergoes a preferential clockwise or

anti-clockwise motion around the ring. As in Chapter 3, we quantify this tendency,

chirality, by a dimensionless, Hermitian, discrete-momentum operator on a ring [42],

pψ(t) = 〈ψ(t)|p|ψ(t)〉 = −i~
2

N∑
j=1

(f ∗j+1 + f ∗j )(fj+1 − fj)
|〈ψ(t)|ψ(t)〉|

, (4.4)

where |ψ(t)〉 =
∑

j fj(t)|j〉 is a time-evolved wave function, and the normalization

factor in the denominator is required due to its non-unitary time evolution. Note

that due to the Cauchy-Schwartz inequality, the dimensionless momentum satisfies

−1 ≤ pψ(t) ≤ 1.

When the Hamiltonian is Hermitian and the initial state is localized to a single site,

the momentum pψ(t) symmetrically oscillates about zero. As the impurity strength

approaches the threshold value, γ → γPT (µ, α), pψ(t) remains constant over long

time intervals T ∼ 100N � N where the time interval T is measured in units of

2π~/∆α [33]. We use the time-averaged momentum to denote this steady-state value,

pψ(γ) =
∫ T

0
pψ(t′)dt′/T , and choose the time interval T such that the steady-state

value pψ(γ) is independent of it.

Fig. 4.7 shows the evolution of the dimensionless momentum pψ(γ) across the PT -

symmetric phase boundary for an N = 20 ring with tunneling functions α = 1 (left-

hand panel) and α = 2 (right-hand panel). The initial positions of the wave packet

are at m0 = 1 (blue circles dotted line) and m0 = 11 (red squares solid line). Note

that when µ = m/N = 0.1, the threshold impurity strength γPT (µ)/∆α for α = 1
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Fig. 4.7. Evolution of the dimensionless, average momentum pψ(γ) for
N = 20 lattice with gain impurity +iγ at position m = 2 (µ = 0.1),
and initial wave packet locations m0 = 1 (blue circles dotted line) and
m0 = 11 (red squares solid line). The left-hand panel corresponds
to tunneling profile with α = 1, whereas the right-hand panel has
results for α = 2. When γ = 0 the average momentum of the wave
packet is zero. For small γ, first-order perturbation theory implies
that pψ(γ) ∝ γ with a slope that is dependent upon the initial state.
In each case, the momentum shows a maximum at the threshold γ =
γPT and decreases monotonically on both sides of it [42], although the
net intensity increases exponentially beyond the threshold [30].

and α = 2 differ by an order of magnitude (see Fig. 4.5). In all cases, the average

momentum is zero when γ = 0. Remarkably, in all cases, pψ(γ) reaches the same

maximum possible value (of unity) at the PT -symmetric threshold and decreases

monotonically beyond it even though the net intensity I(t) increases exponentially

past the threshold.

At this point, it is worthwhile to recall the corresponding results for a PT -

symmetric ring with two (constant) tunnelings between the loss and gain impurities.

In that case, the threshold strength γPT (m) is independent of the impurity location m,
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the sign of the momentum pψ(γ) is determined by the path with the higher tunneling

amplitude, and it reaches a universal maximum value of one at the threshold [33].
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Fig. 4.8. Dimensionless momentum results for an N = 22, α = 1 ring
with initial wave packet at locations m0 = 1 (blue circles dotted line)
and m0 = 11 (red squares solid line). The left-hand panel has gain
impurity at m = 8 (µ = 0.364) whereas the right-panel has gain im-
purity at location m = 7 (µ = 0.318). Due to the position-dependent
tunneling Hamiltonian, analytical investigation of momentum depen-
dence on gain impurity location m is not possible. These numerical
results show that the sign and the maximum value of the momentum
at the threshold are both dependent upon m, but not on the initial
wave packet location m0.

Fig. 4.8 shows that for a ring with non-uniform, position-dependent tunneling

profile tα, the behavior of the steady-state momentum is not as straightforward.

Both panels present results for an N = 22 ring with α = 1 and two initial wave

packet locations, m0 = 1 (blue circles dotted line) and m0 = 11 (red squares solid

line). The left-hand panel has the gain impurity at location m = 8 (µ = 0.364)

and it shows that the sign of the steady-state momentum is now negative. The

right-hand panel has gain impurity at location m = 7 (µ = 0.318) and it shows

that the maximum value attained by the steady-state momentum is not-unity. These
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results imply that, contrary to the two-tunneling ring, sign of the momentum and

the maximum value it attains at the threshold are both dependent upon the impurity

location. We emphasize, however, that these results are independent of the initial

wave packet location, and the qualitative behavior of pψ(γ) across the PT -symmetric

threshold is identical in all cases.

4.5 Conclusions

In this section, we have numerically explored the PT -symmetric phase diagram for

a finite, nonuniform PT -symmetric lattice as a function of its boundary conditions.

We have shown that for experimentally relevant lattice sizes, the differences between

properties of an open lattice and a ring are nontrivial, particularly for tunneling

profiles tα(k) with α < 0. Generically, we found that for α > 0, the PT -symmetric

phase is a ring is weaker than its counterpart in an open lattice. In contrast, when

α < 0 the PT -symmetric phase in a ring is substantially strengthened. Since for

α < 0 the tunneling perturbation that is required to change an open lattice into a

ring is comparable to the bandwidth of the open lattice, the strengthening of the

PT -symmetric phase is reasonable.

We have shown that the PT symmetry breaking is accompanied by a qualitatively

universal behavior of dimensionless, average momentum pψ(γ): the momentum is

zero when γ = 0, increases linearly with γ, and its magnitude reaches a maximum at

the PT breaking threshold, accompanied by monotonic decay on both sides of the

threshold. We have also found that, in contrast with the two-tunneling model [42],

here, the sign of the momentum and its maximum value at the threshold are dependent

upon the impurity locations, but not on the initial wave packet location.

These numerical results raise several questions. For an open lattice, the location

of the pair of eigenvalues that become degenerate and then complex is uniquely de-

termined by the impurity location µ irrespective of the value of α [33]; no such claim

seems possible for the PT symmetry breaking in a ring. The universal presence of
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the peak in |pψ(γ)| at the threshold γ = γPT (µ, α) suggests that it may be driven

by the exceptional point at the threshold where two eigenvalues become degenerate

and the corresponding eigenvectors become parallel [32]. However, lacking analytical

methods for the non-uniform tunneling ring, a systematic numerical investigation of

the dependence of the sign and the maximum value of the chirality remains an open

problem. In the next chapter, we will study the effects of competing PT potentials

on a lattice and compare the results to their counterparts in the continuum limit.
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5. COMPETING PT POTENTIALS ON A LATTICE

In this Chapter we explore the effects of competition between localized and extended

PT potentials on a lattice. Our starting point, as before, is the one-dimensional,

tight-binding chain having N lattice sites, site-to-site distance a, and a tunneling

t0 > 0 between adjacent sites under open boundary conditions. Again, the Hermitian

tunneling Hamiltonian is given by

H0 = −t0
N−1∑
i=1

(
a†i+1ai + a†iai+1

)
, (5.1)

The localized potentials take the form of two on-site impurities (+iγ,−iγ) located at

mirror-symmetric positions (m, m̄), where m̄ = N + 1−m. The short-range impurity

potential term, then, is given by

V = iγ
(
a†mam − a

†
m̄am̄

)
. (5.2)

The PT phase digram for localized potentials on a lattice has been extensively ex-

plored [24, 26, 28]. One of the salient features of this system is that the position of

the localized impurities along the lattice allows for tunability in where the PT break-

ing occurs in the energy band. When the impurities are closest the eigenvalues at

the outermost band edges become degenerate, indicating the the PT symmetry has

been broken. Alternatively, when the impurities are maximally separated, the PT

breaking occurs at the center of the band.

The extended potential takes the form of a series of PT -symmetric on-site poten-

tials with amplitudes prescribed by

Vα(k) = iγsgn(k −Nc)|k −Nc|αa†kak, (5.3)

where Nc = (N + 1)/2 is the central lattice site, and there is only a site at the center

for odd N . We numerically determine that the PT -symmetric threshold γPT (α,N),
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Fig. 5.1. (a) Dependence of the threshold γPT (α,N) on the potential
exponent α and the lattice size N . Note the logarithmic scale. (b)
Unitless continuum potential strength vs α. The results are consis-
tent with those determined by Znojil [45] for α = 0 (∼ 4.48) and
Serbyn [46] for α = 1 (∼ 12.31).
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below which all eigenvalues of the Hamiltonian are purely real, decreases with in-

creasing N and α according to the expression

γPT (α,N) = Γα

(
2

N

)α+2

, (5.4)

where Γα is closely related to the PT -symmetric threshold in the continuum coun-

terpart to the lattice.

5.1 Continuum Limit Considerations

We now compare the lattice case to its counterpart in the continuum limit, namely

a line with −L ≤ x ≤ L. So we have N →∞, a→ 0 such that the product Na = 2L

remains finite; likewise, the lattice site index k goes over to the continuum position

x = (k−nc)a, which ranges from−L ≤ x ≤ L for 1 ≤ k ≤ N . We recall that a particle

hopping on a tight-binding lattice, with band structure Ek = −2J cos(2πk/(N + 1)),

translates into a particle with effective mass m given by ~2/2m = lima→0 Ja
2. The

potential in Eqn. (5.3) becomes, in the thermodynamic limit, Vα(x) = iΓ̄sgn(x)|x|α,

where |x| ≤ L and Γ̄ = lima→0 γ/a
α has units of Energy / Lengthα.

When α = 2n+ 1, the Schrödinger equation with the PT potential becomes

− ~2

2m
∂2
xψq(x) + iΓ̄xαψq(x) = Eqψq(x) (5.5)

with the boundary conditions ψq(±L) = 0. When comparing the lattice and contin-

uum potentials (γ and Γ̄, respectively), we see that γ/(~2/2m) = Γ̄(2/N)(α+2). Since

γPT scales as (2/N)α+2, this implies that the PT -symmetric threshold in the contin-

uum limit Γ̄PT remains finite. This finite threshold has been calculated for the α = 0

case [45] and the α = 1 case [46], and the results are consistent with those calculated

numerically in Fig. 5.1(b).

5.2 Competing PT Potentials

We now investigate how competition between the two localized PT impurities

and the extended PT potentials on the lattice affects the PT phase diagram. We
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are the closest, we recover the naive expectation of two parallel lines.
When the impurities are the farthest, however, we see a re-entrant
phase behavior.
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begin by considering the linear PT potential in the presence of two localized PT

potentials. Fig. 5.2 shows the PT phase diagram for a N = 21-site lattice with

two localized PT potentials located at parity-symmetric positions in the presence of

an extended linear (α = 1) PT potential. The vertical axis represents the critical

linear potential strength ΓL (in units of the critical strength in the absence of the two

localized potentials) while the horizontal axis denotes the critical short-range impurity

strength γS (also in units of the critical strength in the absence of the linear potential).

The näıve expectation for the phase diagram would be the direct sum of the linear and

localized potentials (γPT = γS + ΓL) which is in good agreement with what is found

in the case when the localized impurities are the closest (m = 10, red dots). As we

move the localized impurities farther apart on the lattice, we begin to see a deviation

from this behavior (m = 5, black dots) especially in the first and third quadrants.

Remarkably, when the short-range potentials are maximally separated on the lattice

we see a dramatically different behavior (m = 1, blue dots). This robust PT phase

suggests that it is possible to transition continuously from a region of broken PT

symmetry to a region of unbroken PT symmetry by increasing the localized loss

in the broad loss region. To illustrate that this is a generic phenomenon, Fig. 5.3

shows similar PT phase diagrams for different values of α which also exhibit a robust

PT -symmetric phase when the localized impurities are maximally separated.

5.3 Wave Packet Dynamics

We have shown previously that, for a fixed value of the linear potential strength

ΓL, we can move continuously along the PT phase diagram from a region of broken

PT symmetry to a region of unbroken PT symmetry by tuning the strength of the

two on-site PT potentials. We now explore the effects of this PT phase transition

on the time-evolution of a single-particle wave packet on the lattice. For an initial

state |ψ(0)〉, the time-evolved state is given by |ψ(t)〉 = G(t)|ψ(0)〉, where G(t) =

exp[−iHt/~] is determined numerically.
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Fig. 5.3. PT phase diagrams for a N = 21-site lattice with two
localized PT potentials located at parity-symmetric positions in the
presence of an extended potential for different values of the exponent
α. We see that the re-entrant phase behavior is a generic phenomenon.

Figure 5.4 shows the site- and time-dependent intensity profile for a particle ini-

tially localized on the first site of a N = 21 lattice with competing short-range and

linear potentials. The vertical axis in each panel represents the site index, while the

horizontal axis denotes normalized time. In each panel, the short-range loss (gain) is

located on site m = 1 (m = 21), and the loss end of the linear potential begins at

site m = 1 and increases through site m = 21. For the top panel, the linear poten-

tial strength ΓL = 1.05ΓLPT while the short-range impurity strength γS = 0.25γSPT .

Since the PT symmetry is broken in this region (shown in figure 5.2), we see the

exponential growth in intensity due to the emergence of complex eigenvalues. In the

bottom panel, the linear potential strength remains fixed at ΓL = 1.05ΓLPT , while

the short-range impurity strength is increased to γS = 0.75γSPT . Now that we have
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transitioned to a region of unbroken PT symmetry, we no longer see an exponential

growth in intensity since the spectrum is entirely real.

We conclude this chapter by investigating the case of two competing extended

sinusoidal potentials on the lattice. The potential term in the Hamiltonian is now of

the form

Vα(k) = {iγ1 sin[2πβ1(k −Nc)] + iγ2 sin[2πβ2(k −Nc)]} a†kak, (5.6)

where 0 ≤ β1, β2 ≤ 1. Fig. 5.5(a) shows the PT phase diagram in the (γ1, γ2) plane

for a N = 40 lattice. We see even in the case of two competing sinusoidal potentials,

the re-entrant PT phase is still present, indicating that re-entrant phase is truly a

generic phenomenon. Fig. 5.5(b) shows the time evolution of a wave packet initially

localized at site m0 = 1. The top panel gives the time evolution for γ1 = 0.4γ1PT
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Fig. 5.4. (a) PT phase diagram for a N = 21 lattice with an extended
linear (α = 1) potential and two localized potentials. We see that it
is possible to transition from a region of broken PT symmetry to a
region of unbroken PT symmetry by increasing the strength of the
localized loss. (b) Site- and time- dependent intensity profile for a
single-particle wave packet traveling along the lattice. The top panel
shows the exponential increase in the intensity due to a broken PT
symmetry. In the bottom panel, the PT symmetry is restored by
moving horizontally along the phase diagram in (a).
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and γ2 = 1.044γ2PT in a region of broken PT symmetry. As expected, the intensity

diverges exponentially with time. Moving horizontally on the PT phase diagram

along the line γ2 = 1.044γ2PT , we arrive at the point γ1 = 0.8γ1PT in a region of

unbroken PT symmetry – reflected by the bottom panel in Fig. 5.5(b).

5.4 Conclusions

In this chapter, we have explored the competition between localized and extended

PT potentials on a lattice. We found that the fragile PT phase for the extended

potential in lattice case translated to a finite PT threshold in the continuum limit.

The most surprising result was from the phase diagram for the competing potentials.

We determined that an increase in strength of the short-range PT impurities resulted
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Fig. 5.5. (a) PT phase diagram for a N = 40 lattice with competing
sinusoidal potentials. We again see that it is possible to transition
from a region of broken PT symmetry to a region of unbroken PT
symmetry by increasing the strength of one of the sinusoidal poten-
tials. (b) Site- and time- dependent intensity profile for a single-
particle wave packet traveling along the lattice. The top panel shows
the exponential increase in the intensity due to a broken PT symme-
try. In the bottom panel, the PT symmetry is restored by moving
horizontally along the phase diagram in (a).
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in a re-entrant PT phase. That is, increasing localized loss in the broad-loss region

actually served to restore the broken PT symmetry. This effect had significant con-

sequences for the dynamics of a single-particle wave packet. The re-entrant phase

meant that it was possible to transition between a region of broken PT symmetry to

a region of unbroken PT symmetry, as evidenced by the change from an exponentially

increasing wave packet intensity to a steady intensity.
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6. SUMMARY

In this thesis, we have investigated the consequences of PT symmetry breaking in

tight-binding lattice systems. In Chapter 2, we explored the PT phase diagram for

an N -site lattice with uniform Hermitian tunneling in the presence of two on-site

PT −symmetric impurities. We found that the PT phase was robust for the case

of either closest or farthest impurities (with open boundary conditions) and fragile

elsewhere. Also, we calculated the change in a typical dimensionless eigenfunction as

a function of the impurity potential γ in the case of nearest-neighbor impurities across

the PT phase boundary. We found that a spontaneously broken PT symmetry is

manifest in the asymmetrical wave function amplitude.

In Chapter 3 we numerically investigated the PT phase diagram for a lattice with

periodic boundary conditions and uniform tunneling. For a PT -symmetric ring with

two tunnelings, the PT phase was found to be robust irrespective of the impurity

locations on the ring. We have also shown that in a ring, where there are two paths

from the source to the sink, the motion of a wave packet acquires a chirality when

the impurity strength is nonzero. We quantified this effect via a discrete momentum

operator and found a maximal value for the steady-state momentum.

In Chapter 4, we explored the signatures of broken PT symmetry in lattices with

nonuniform tunneling profiles. We demonstrated that for experimentally relevant

lattice sizes, the differences between an open chain and a ring are significant. Specif-

ically, we found that for α > 0, the PT -symmetric phase in a ring is weaker than its

counterpart in a lattice with open boundary conditions. Moreover, we found that, in

contrast with the two-tunneling model in Chapter 2, the sign of the momentum and

its maximum value at the PT threshold are dependent upon the impurity locations,

but not on the initial wave packet location.
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Finally, we examined the competition between localized and extended PT po-

tentials on a lattice. In the case where the localized potentials were the farthest, we

found a remarkable re-entrant PT -symmetric phase. This indicated that the addition

of localized loss to a broad-loss region actually served to strengthen the PT phase.

This re-entrant phase also has dramatic consequences on the time evolution of a wave

packet. The re-entrant phase meant that it was possible to transition between a re-

gion of broken PT symmetry to a region of unbroken PT symmetry, as evidenced

by the change from an exponentially increasing wave packet intensity to a steady

intensity.

In summary, there is a great deal of rich physics to be explored in the field of PT

symmetry. It is truly remarkable how broadly applicable effective PT Hamiltonians

are to describing the dynamics of a diverse range of systems. We would like to briefly

mention, however, the potential challenges of describing PT -symmetric systems in

terms of equilibrium statistical mechanics and the resulting counterintuitive implica-

tions. The partition function Z(β) =
∑

n e
−βEn , where β = 1/kT , is a monotonically

decreasing function of β for the systems traditionally dealt with in statistical me-

chanics. This monotonic behavior implies that the thermodynamic quantities derived

from the partition function (e.g. specific heat) will also exhibit a monotonic behav-

ior in temperature. For instance, we expect that as we continually add energy to a

system in, say, the solid phase, it will transition to the liquid and gas phases with

increasing temperature. This raises some interesting questions for PT -symmetric

systems which are inherently not in equilibrium, particularly above the PT phase

boundary. As shown previously, at the PT phase boundary the energy spectrum be-

comes complex, implying that partition function will begin to exhibit an oscillatory

behavior. This would mean that, in the case of the specific heat, we could continually

increase the temperature of the system, yet perpetually oscillate between two phases.

Results such as this do not resonate with our physical intuition, so it raises important

questions as to whether or not PT -symmetric systems can be adequately treated by

equilibrium statistical mechanics.
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This thesis has dealt exclusively with one-dimensional PT lattices described by

the (linear) Schrödinger equation. One avenue of future interest would be to examine

nonlinear effects on the dynamics of wave packet behavior on the lattice. These non-

linear effects would become especially relevant at the PT -symmetry-breaking thresh-

old and beyond when the wave packet intensity increases exponentially. Due to its

formal equivalence to the paraxial diffraction equation for light in a waveguide [16],

we believe that the nonlinear Schrödinger equation (NLSE),

i
∂ψ

∂t
+ P

∂2ψ

∂x2
+Qψ +R|ψ|2ψ = 0, (6.1)

would be a prime candidate for exploring nonlinear behavior. The coefficients P , Q,

and R depend upon the particular problem of interest, as do the physical meanings

of the variables t and x. While prohibitive to analytical treatment, the NLSE can

certainly allow us to calculate the time evolution of the system; given the state ψ(t0),

we can use Eqn. (6.1) to determine the state at a later time ψ(t0 + ε) and therefore

iteratively determine the state ψ(t) at all later times t. Soliton solutions to Eq. (6.1)

are of particular interest. A soliton is a solitary wave, localized in spatial extent, with

remarkable stability properties. Solitons are intrinsically nonlinear phenomena that

derive their stability from a delicate balance of competing dispersive and nonlinear

influences. Soliton solutions are ubiquitous in physics, appearing in the Korteweg-de

Vries equation for shallow water waves, electrical lines, fiber optics, blood pressure

waves, coupled pendulua, and a host of other diverse areas [47]. Intriguing questions

arise as to the existence of solitonic solutions to Eqn. (6.1) but with the addition of

PT -symmetric impurities. If they do exist, what would their interaction look like

on the lattice? By answering these questions, further insight could be gained into

how and when PT -symmetric Hamiltonians can be used to effectively model various

systems in condensed matter physics.
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A. APPENDIX

This Matlab code calculates the discrete momentum up to and across the PT phase

boundary on a ring with two on-site PT impurities.

% Code for a ring with two hoppings. The first impurity is at

%position 1 and the other changes position from 2 to N. Note

%that this code is more general than the two code twohoppingsPBC

%where the impurity positions are at m and mbar.

c lear ;

t i c ;

N=32; % number of sites.

tR =0.5; % "left chain tunneling".

tL=1.; % "right chain tunneling".

d=32; % second impurity location

H= zeros(N);

for m=1:N-1

i f (m<d)

H(m,m+1)=-tR;

e l se

H(m,m+1)=-tL;

end

H(m+1,m)=H(m,m+1);

end

% define the tunneling between sites 1 and N

H(N,1)=-tL;

H(1,N)=H(N,1);

clean= eig (H);

energyscale =(max(clean)-min(clean ))/4;
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timescale =2*pi/energyscale;

w=1;

gammaPT =0.5;

pmax= zeros (16 ,2);

for gamma=[0:0.1:1.1 ,0.95 ,0.99 ,1.01 ,1.05]

% insert impurities

H(1 ,1)=1i*gamma*gammaPT;

H(d,d)= conj(H(1 ,1));

[V,D]= eig (H);

error=max(imag(diag(D)));

% define time evolution for a given gamma.

T=500; % number of time steps for the time evolution.

psi= zeros(N,T);

momentum= zeros(T,1);

psi0= zeros(N,1);

m0=10; % initial position of the wavepacket.

psi0(m0 ,1)=1.;

for k=1:T

t=(k-1)* timescale;

U=diag(exp(-1i*diag(D)*t));

psi(:,k)=V*(U/V)*psi0;

% This routine calculates the average momentum value for a PBC lattice.

% Note that we also obtain the norm since an initially normalized state

% may not remain normalized when H is not Hermitian.

temp =0;
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norm=0;

for q=1:N-1

temp=temp+imag(conj(psi(q+1,k))*psi(q,k));

norm=norm+abs(psi(q,k))^2;

end

temp=temp+imag(conj(psi(1,k))*psi(N,k));

norm=norm+abs(psi(N,k))^2;

momentum(k)=-temp/norm;

end

averagemomentum=sum(momentum )/T;

pmax(w,1)=gamma;

pmax(w,2)= averagemomentum;

w=w+1;

end

[y,ix]= sort (pmax (: ,1));

newpmax (:,1)=y;

newpmax (:,2)= pmax(ix(:) ,2);

plot (newpmax (:,1), newpmax (: ,2))

hold on

toc;



70

B. APPENDIX

This Matlab code calculates the time evolution of a wave packet originally located on

a single site on a lattice with tunable hopping.

% This code calculates the time evolution across the PT−symmetry
%breaking boundary for a lattice with site−dependent tunneling

%and tunable boundary conditions. It also obtains the Fourier

%transform of the time−evolved wavefunction, and instantenous

%expectation value of the discrete momentum to characterize the

%chiral transport in the ring.

c lear ;

t i c ;

N=20; % number of lattice sites. Use power−of−two for FFT.

m=10; % position of the first PT−impurity.
mbar=N+1-m; % position of the other PT−impurity.
lambda =0; % boundary condition scaling parameter

alpha =0; % set the two tunneling parameters.

gamma=1.01;% define and characterize the clean Hamiltonian.

H= zeros(N);

for k=[1:N-1]

H(k,k+1)=- sqrt (k*(N-k))^ alpha;

H(k+1,k)=H(k,k+1);

end

H(N,1)=- lambda* sqrt (1*(N -1))^ alpha;

H(1,N)=H(N,1);
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clean= eig (H);

energyscale =(max(clean)-min(clean ))/4;

timescale =1./ energyscale;

% put in the impurities.

H(m,m)=1i*gamma;

H(mbar ,mbar)= conj(H(m,m));

[V,D]= eig (H);

error=max(imag(diag(D)));

test=abs(det(V));

angle(V(: ,1))

bar(abs(V(: ,1)))

eigenprob=abs( f f t (V));

% define time evolution for a given gamma.

T=3000; % number of time steps for the time evolution.

psi= zeros(N,T);

psikspace= zeros(N,T);

momentum= zeros(T,1);

energy= zeros(T,1);

intensity= zeros(T,2);

psi0= zeros(N,1);

m1=1;

psi0(m1 ,1)=1.;

for k=1:T

t=(k-1)* timescale;

U=diag(exp(-1i*diag(D)*t));

psi(:,k)=V*(U/V)*psi0;

% obtain the spatial fourier transform of the wavefunction.

psikspace(:,k)= f f t (psi(:,k));
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% This routine calculates the average momentum value for a

%PBC lattice. Note that we also obtain the norm since an

%initially normalized state may not remain normalized when H

%is not Hermitian.

temp =0;

norm=0;

for q=1:N-1

temp=temp+imag(conj(psi(q+1,k))*psi(q,k));

norm=norm+abs(psi(q,k))^2;

end

temp=temp+imag(conj(psi(1,k))*psi(N,k));

norm=norm+abs(psi(N,k))^2;

intensity(k,2)=norm;

intensity(k,1)=k;

momentum(k)=-temp/norm;

end

plot (intensity (:,1), intensity (: ,2))

meanint=mean(intensity (: ,2));

standev= std(intensity (: ,2));

averagemomentum=sum(momentum )/T;

probxspace=abs(psi ).^2;

probkspace=abs(psikspace ).^2;

phasekspace=angle(psikspace );

probp=abs(momentum );

maxpsispace= max(probxspace );

toc;
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C. APPENDIX

This Matlab code calculates and plots the PT phase diagram for a sine potential

competing with two on-site potentials.

c lear ;

t i c ;

N=21; % number of sites.

m=1; % position of the first PT−impurity.
mbar=N+1-m; % position of the other PT−impurity.
t0=1; % constant hopping parameter

tolerance =1.e-8;

u=2;

% define and characterize the clean Hamiltonian.

H= zeros(N);

for k=[1:N-1]

H(k,k+1)=-t0;

H(k+1,k)=-t0;

end

clean= eig (H); % eigenvalues of the clean Hamiltonian.

bandwidth=max(clean)-min(clean);

escale=bandwidth /4;

increment =0.0001* escale; % governs the increment by which

%gamma is increased.

% Determine critical gamma for on−site potentials when linear

%potential is zero.

nonherm =0;

gammas =0;
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while(nonherm <tolerance)

gammas=gammas+increment;

H(m,m)=-1i*gammas;

H(mbar ,mbar)= conj(H(m,m));

[V,D]= eig (H);

nonherm=max(imag(diag(D)))/max( rea l (diag(D)));

end

gammasPT=gammas -increment;

%Determine critical gamma for linear potential when on−site
%potentials are zero.

nonherm =0;

gamma=0;

while(nonherm <tolerance)

gamma=gamma+increment;

for k=[1:N]

H(k,k)=1i*gamma* s in (u*pi *(k-(N+1)/2)/N);

end

[V,D]= eig (H);

nonherm=max(imag(diag(D)))/max( rea l (diag(D)));

end

gammaPT=gamma-increment;

%Quadrant 1 − Gain−Gain Region − Horizontal Sweep

jmax =40;

increment3=gammaPT /1000;

resultsQ1H= zeros(jmax +1 ,2);

for j=[0: jmax]
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H= zeros(N);

for k=[1:N-1]

H(k,k+1)=-t0;

H(k+1,k)=-t0;

end

gammaL =0;

nonherm =0;

H(m,m)=-1i*j/jmax*gammasPT;

H(mbar ,mbar)= conj(H(m,m));

while(nonherm <tolerance)

gammaL=gammaL+increment3;

for k=[1:N]

H(k,k)=H(k,k)+1i*increment3* s in (u*pi *(k-(N+1)/2)/N);

end

[V,D]= eig (H);

nonherm=max(imag(diag(D)))/max( rea l (diag(D)));

end

gammaLPT=gammaL -increment3;

resultsQ1H(j+1 ,1)=j/jmax;

resultsQ1H(j+1 ,2)= gammaLPT/gammaPT;

end

plot (resultsQ1H (:,1), resultsQ1H (:,2),’.’)

hold on

%Quadrant 1 − Gain−Gain Region − Vertical Sweep

increment2=gammasPT /1000;

resultsQ1V= zeros(jmax +1 ,2);

for j=[0: jmax]

gammaO =0;

nonherm =0;
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for k=[1:N]

H(k,k)=1i*j*( gammaPT/jmax)* s in (u*pi *(k-(N+1)/2)/N);

end

while(nonherm <tolerance)

gammaO=gammaO+increment2;

H(m,m)=H(m,m)-1i*increment2;

H(mbar ,mbar)= conj(H(m,m));

[V,D]= eig (H);

nonherm=max(imag(diag(D)))/max( rea l (diag(D)));

end

gammaOPT=gammaO -increment2;

resultsQ1V(j+1 ,1)= gammaOPT/gammasPT;

resultsQ1V(j+1 ,2)=(j/jmax);

end

plot (resultsQ1V (:,1), resultsQ1V (:,2),’.’)

%Quadrant 2 − Gain−Loss Region − Horizontal Sweep

increment3=gammaPT /1000;

resultsQ2H= zeros(jmax +1 ,2);

for j=[0: jmax]

H= zeros(N);

for k=[1:N-1]

H(k,k+1)=-t0;

H(k+1,k)=-t0;

end

gammaL =0;

nonherm =0;

H(m,m)=1i*j/jmax*gammasPT;

H(mbar ,mbar)= conj(H(m,m));
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while(nonherm <tolerance)

gammaL=gammaL+increment3;

for k=[1:N]

H(k,k)=H(k,k)+1i*increment3* s in (u*pi *(k-(N+1)/2)/N);

end

[V,D]= eig (H);

nonherm=max(imag(diag(D)))/max( rea l (diag(D)));

end

gammaLPT=gammaL -increment3;

resultsQ2H(j+1,1)=-j/jmax;

resultsQ2H(j+1 ,2)= gammaLPT/gammaPT;

end

plot (resultsQ2H (:,1), resultsQ2H (:,2),’.’)

%Quadrant 2 − Gain−Loss Region − Vertical Sweep

increment2=gammasPT /1000;

resultsQ2V= zeros(jmax +1 ,2);

for j=[0: jmax]

gammaL =0;

nonherm =0;

for k=[1:N]

H(k,k)=1i*j*gammaPT/jmax* s in (u*pi *(k-(N+1)/2)/N);

end

while(nonherm <tolerance)

gammaL=gammaL -increment2;

H(m,m)=H(m,m)+1i*increment2;

H(mbar ,mbar)= conj(H(m,m));

[V,D]= eig (H);

nonherm=max(imag(diag(D)))/max( rea l (diag(D)));

end
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gammaLPT=gammaL+increment2;

resultsQ2V(j+1 ,1)= gammaLPT/gammasPT;

resultsQ2V(j+1 ,2)=j/jmax;

end

plot (resultsQ2V (:,1), resultsQ2V (:,2),’.’)

%Quadrant 3 − Loss−Loss Region − Horizontal Sweep

increment3=gammaPT /1000;

resultsQ3H= zeros(jmax +1 ,2);

for j=[0: jmax]

H= zeros(N);

for k=[1:N-1]

H(k,k+1)=-t0;

H(k+1,k)=-t0;

end

gammaL =0;

nonherm =0;

H(m,m)=1i*j/jmax*gammasPT;

H(mbar ,mbar)= conj(H(m,m));

while(nonherm <tolerance)

gammaL=gammaL -increment3;

for k=[1:N]

H(k,k)=H(k,k)-1i*increment3* s in (u*pi *(k-(N+1)/2)/N);

end

[V,D]= eig (H);

nonherm=max(imag(diag(D)))/max( rea l (diag(D)));

end

gammaLPT=gammaL+increment3;

resultsQ3H(j+1,1)=-j/jmax;

resultsQ3H(j+1 ,2)= gammaLPT/gammaPT;
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end

plot (resultsQ3H (:,1), resultsQ3H (:,2),’.’)

%Quadrant 3 − Loss−Loss Region − Vertical Sweep

increment2=gammasPT /1000;

resultsQ3V= zeros(jmax +1 ,2);

for j=[0: jmax]

gammaL =0;

nonherm =0;

for k=[1:N]

H(k,k)=-1i*j*gammaPT/jmax* s in (u*pi *(k-(N+1)/2)/N);

end

while(nonherm <tolerance)

gammaL=gammaL -increment2;

H(m,m)=H(m,m)+1i*increment2;

H(mbar ,mbar)= conj(H(m,m));

[V,D]= eig (H);

nonherm=max(imag(diag(D)))/max( rea l (diag(D)));

end

gammaLPT=gammaL+increment2;

resultsQ3V(j+1 ,1)= gammaLPT/gammasPT;

resultsQ3V(j+1,2)=-j/jmax;

end

plot (resultsQ3V (:,1), resultsQ3V (:,2),’.’)

%Quadrant 4 − Loss−Gain Region − Horizontal Sweep

increment3=gammaPT /1000;

resultsQ4H= zeros(jmax +1 ,2);

for j=[0: jmax]
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H= zeros(N);

for k=[1:N-1]

H(k,k+1)=-t0;

H(k+1,k)=H(k,k+1);

end

gammaL =0;

nonherm =0;

H(m,m)=-1i*j/jmax*gammasPT;

H(mbar ,mbar)= conj(H(m,m));

while(nonherm <tolerance)

gammaL=gammaL -increment3;

for k=[1:N]

H(k,k)=H(k,k)-1i*increment3* s in (u*pi *(k-(N+1)/2)/N);

end

[V,D]= eig (H);

nonherm=max(imag(diag(D)))/max( rea l (diag(D)));

end

gammaLPT=gammaL+increment3;

resultsQ4H(j+1 ,1)=j/jmax;

resultsQ4H(j+1 ,2)= gammaLPT/gammaPT;

end

plot (resultsQ4H (:,1), resultsQ4H (:,2),’.’)

%Quadrant 4 − Loss−Gain Region − Vertical Sweep

increment2=gammasPT /1000;

resultsQ4V= zeros(jmax +1 ,2);

for j=[0: jmax]

gammaL =0;

nonherm =0;

for k=[1:N]
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H(k,k)=-1i*j*gammaPT/jmax* s in (u*pi *(k-(N+1)/2)/N);

end

while(nonherm <tolerance)

gammaL=gammaL+increment2;

H(m,m)=H(m,m)-1i*increment2;

H(mbar ,mbar)= conj(H(m,m));

[V,D]= eig (H);

nonherm=max(imag(diag(D)))/max( rea l (diag(D)));

end

gammaLPT=gammaL+increment2;

resultsQ4V(j+1 ,1)= gammaLPT/gammasPT;

resultsQ4V(j+1,2)=-j/jmax;

end

plot (resultsQ4V (:,1), resultsQ4V (:,2),’.’)

toc;



VITA



82

VITA

Derek Douglas Scott

EDUCATION:

• Doctor of Philosophy, Physics, Expected: May 2014

Purdue University, Indianapolis, IN

DISSERTATION: An Investigation of Parity and Time-Reversal Symmetry

Breaking In Tight-Binding Lattices

• Master of Science, Physics, December 2008

Indiana University, Bloomington, IN

• Bachelor of Science (Honors), Physics, May 2007

Purdue University, Indianapolis, IN

TEACHING EXPERIENCE:

• Recitation Instructor, Laboratory Instructor, Recitation Mentor

Indiana University–Purdue University Indianapolis, Indianapolis, IN 2009 –

2013

PUBLICATIONS:

1. Y. N. Joglekar, D. D. Scott, and A. Saxena, “PT -symmetry breaking with

divergent potentials: lattice and continuum cases”, submitted to Phys. Rev. A,

currently at arxiv.org/abs/1403.4204 (2014)

2. C. H. Liang, D. D. Scott, and Y. N. Joglekar, “PT restoration via increased

loss and gain in the PT -symmetric Aubry-André model”, Phys. Rev. A, 89,
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