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Xiaohui Yao

MINING HIGH-LEVEL BRAIN IMAGING GENETIC ASSOCIATIONS

Imaging genetics is an emerging research field in neurodegenerative diseases. It stud-

ies the influence of genetic variants on brain structure and function. Genome-wide

association studies (GWAS) of brain imaging has identified a few independent risk loci

for individual imaging quantitative trait (iQT), which however display only modest

effect size and explain limited heritability. This thesis focuses on mining high-level

imaging genetic associations and their applications on neurodegenerative diseases.

This thesis first presents a novel network-based GWAS framework for identifying

functional modules, by employing a two-step strategy in a top-down manner. It first

integrates tissue-specific network with GWAS of corresponding phenotype in regres-

sion models in addition to classification, to re-prioritize genome-wide associations.

Then it detects densely connected and disease-relevant modules based on interac-

tions among top reprioritizations. The discovered modules hold both phenotypical

specificity and densely interaction. We applied it to an amygdala imaging genetics

analysis in the study of Alzheimer’s disease (AD). The proposed framework effec-

tively detects densely interacted modules; and the reprioritizations achieve highest

concordance with AD genes.

We then present an extension of the above framework, named GWAS top-neighbor-

based (tnGWAS); and compare it with previous approaches. This tnGWAS extracts

densely connected modules from top GWAS findings, based on the hypothesis that

relevant modules consist of top GWAS findings and their close neighbors. It is applied

to a hippocampus imaging genetics analysis in AD research, and yields the densest

interactions among top candidate genes. Experimental results demonstrate that pre-
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cise context does help explore collective effects of genes with functional interactions

specific to the studied phenotype.

In the second part, a novel imaging genetic enrichment analysis (IGEA) paradigm

is proposed for discovering complex associations among genetic modules and brain

circuits. In addition to genetic modules, brain regions of interest also grouped to play

role. We expand the scope of one-dimensional enrichment analysis into imaging ge-

netics. This framework jointly considers meaningful gene sets (GS) and brain circuits

(BC), and examines whether given GS-BC module is enriched in gene-iQT findings.

We conduct the proof-of-concept study and demonstrate its performance by applying

to a brain-wide imaging genetics study of AD.

Huanmei Wu, PhD, Chair

viii



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1

1.1 Imaging Genetics in Neurodegenerative Disease . . . . . . . . . . . . 1

1.2 Univariate Imaging Genetic Association . . . . . . . . . . . . . . . . . 2

1.3 High-level Imaging Genetic Association . . . . . . . . . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Tissue-specific Network-based GWAS Framework for Module

Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Imaging Genetics Enrichment Analysis Paradigm . . . . . . . 8

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 2 RELATED WORK 10

2.1 Network-based Functional Module Identification . . . . . . . . . . . . 10

2.2 Tissue-specific Functional Interaction Network and Application . . . . 13

2.3 Gene Set Enrichment Analysis . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Over-representation Enrichment Analysis . . . . . . . . . . . . 15

2.3.2 Rank-based Enrichment Analysis . . . . . . . . . . . . . . . . 16

CHAPTER 3 TISSUE-SPECIFIC NETWORK-BASED GWAS FOR IDENTI-

FYING FUNCTIONAL INTERACTION MODULES: A MACHINE LEARN-

ING BASED FRAMEWORK 19

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Imaging Data, Genotyping Data and GWAS . . . . . . . . . . 23

3.2.2 Amygdala-specific Functional Interaction Network . . . . . . . 24

ix



3.2.3 Alzheimer’s Disease Risk Genes . . . . . . . . . . . . . . . . . 25

3.2.4 Module Identification Method . . . . . . . . . . . . . . . . . . 25

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 GWAS of Amygdala iQTs . . . . . . . . . . . . . . . . . . . . 35

3.3.2 NetWAS Re-prioritization . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Comparison of Gene-based Association Approaches . . . . . . 39

3.3.4 Amygdala-relevant Top Predictions . . . . . . . . . . . . . . . 41

3.3.5 Amygdala-relevant Modules . . . . . . . . . . . . . . . . . . . 43

3.3.6 Functional Annotation of the Identified Modules . . . . . . . . 44

3.3.7 Module Visualization and Extension . . . . . . . . . . . . . . 47

3.4 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 49

CHAPTER 4 TISSUE-SPECIFIC NETWORK-BASED GWAS FOR IDENTI-

FYING FUNCTIONAL INTERACTION MODULES: A GWAS TOP NEIGH-

BOR BASED FRAMEWORK 52

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Imaging Data, Genotyping Data and GWAS . . . . . . . . . . 53

4.2.2 Hippocampus Functional Interaction Network . . . . . . . . . 54

4.2.3 Alzheimer’s Disease Documented Genes . . . . . . . . . . . . . 54

4.2.4 tnGWAS Module Identification Framework . . . . . . . . . . . 54

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 GWAS of Hippocampus iQT . . . . . . . . . . . . . . . . . . . 57

4.3.2 Machine Learning based Re-prioritization . . . . . . . . . . . . 58

4.3.3 Hippocampus-relevant Top Predictions . . . . . . . . . . . . . 59

x



4.3.4 Hippocampus-relevant Modules . . . . . . . . . . . . . . . . . 59

4.4 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 62

CHAPTER 5 TWO-DIMENSIONAL ENRICHMENT ANALYSIS PARADIGM

FOR MINING HIGH-LEVEL IMAGING GENETIC ASSOCIATIONS 64

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Materials and Data Sources . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Brain Wide Genome Wide Association Study (BWGWAS) . . 68

5.2.2 Constructing GS-BC Modules using AHBA . . . . . . . . . . 69

5.2.3 Imaging Genetic Enrichment Analysis (IGEA) . . . . . . . . . 72

5.2.4 Evaluation of the Identified GS-BC Modules . . . . . . . . . . 75

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Significant GS-BC Modules . . . . . . . . . . . . . . . . . . . 78

5.3.2 Pathway Analysis of Identified GS-BC Modules . . . . . . . . 80

5.4 Discussions and conclusions . . . . . . . . . . . . . . . . . . . . . . . 82

CHAPTER 6 CONCLUSIONS 87

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Future Directions of Research . . . . . . . . . . . . . . . . . . . . . . 89

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

CURRICULUM VITAE

xi



LIST OF TABLES

3.1 Participant characteristics: HC = Healthy Control; SMC = Significant

Memory Concern; EMCI = Early Mild Cognitive Complaint; LMCI =

Late Mild Cognitive Complaint; AD = Alzheimer’s Disease . . . . . . . . 23

3.2 Modules identified by Ridge-based NetWAS . . . . . . . . . . . . . . . . 43

3.3 OMIM diseases enriched by the identified modules . . . . . . . . . . . . . 46

3.4 Functional annotation of extended Module 04 . . . . . . . . . . . . . . . 48

4.1 Details of the identied modules from Ridge. . . . . . . . . . . . . . . . . 62

5.1 Participant characteristics: HC = Healthy Control; SMC = Significant

Memory Concern; EMCI = Early Mild Cognitive Complaint; LMCI =

Late Mild Cognitive Complaint; AD = Alzheimer’s Disease . . . . . . . . 68

5.2 Twenty-five significantly enriched GS-BC modules from IGEA. See also

Section 5.3.2 and Fig. 5.3 for details about relevant GSs and BCs respectively 76

5.3 Top enriched OMIM diseases of identified GSs . . . . . . . . . . . . . . . 79

5.4 Top enriched GO terms of GSs from identified GS-BC modules . . . . . . 83

xii



LIST OF FIGURES

1.1 Overview and organization of the dissertation work . . . . . . . . . . . . 6

3.1 The workflow for identifying functional interaction modules from the tissue-

specific network using GWAS findings . . . . . . . . . . . . . . . . . . . 26

3.2 Manhattan plot of the FDG-PET imaging measure in the left amygdala.

The x-axis corresponds to the genomic coordinates, and y-axis corresponds

to negative logarithm of the association p-value for each SNP. Each dot

on the Manhattan plot signifies a SNP . . . . . . . . . . . . . . . . . . . 36

3.3 Performance evaluation of re-prioritization results. (A-B): ROC curves

with AUC results on left and right amygdalas, respectively, to measure the

concordance between the GWAS/NetWAS findings and the documented

AD genes. For each analysis on permuted GWAS, the mean and standard

deviation of AUCs together with one example ROC are shown. (C-D):

Mean interaction measures among top N findings (N ranging from 50 to

3000) on left and right amygdalas, respectively . . . . . . . . . . . . . . . 38

3.4 Comparison of four gene-based association approaches including 1st small-

est p, 2nd smallest p, VEGAS and GATES. ROC curves with AUC results

of four gene-level p-value approaches on left amygdala, to measure the

concordance between the GWAS/NetWAS findings and the documented

AD genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xiii



3.5 Comparison of top 50 findings by three NetWAS re-prioritization methods

(Ridge, SVR and SVM) and the original GWAS. (A) and (B) represent

results on left and right amygdalas, respectively. Heatmaps show the com-

plete interaction matrix of top predictions. Circular networks show inter-

actions between genes after filtering weak connections. Nodes in circular

network are colored by their ranking in the original GWAS . . . . . . . . 42

3.6 KEGG pathway enrichment of the identified modules. The x-axis corre-

sponds to the module ID, and y-axis corresponds to the KEGG pathway.

Each cell shows -log(p) of enrichment significance of a KEGG pathway by

a module. A marked cell represents a significant enrichment (corrected

p-value ≤0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Gene Ontology Biological Process enrichment of the identified modules.

Left column shows module IDs, and right column shows top enriched GO-

BP terms. Links between modules and GO-BP terms represent significant

enrichment findings (corrected p-value <0.05) . . . . . . . . . . . . . . . 45

3.8 Visualization of Module 04 and its extension. (A) shows the interaction

network of genes in Module 04, where color of links represents the rela-

tionship confidence from GIANT. Two genes from Module 04 are excluded

as they cannot be matched to GIANT database. (B) shows the extended

network using genes in Module 04 as seeds, with large nodes indicating

genes from Module 04 and small nodes indicating extended nodes, where

only links with interaction degree ≥ 0.2 are shown . . . . . . . . . . . . . 47

xiv



4.1 Manhattan plot of the FDG measure in the hippocampal region. Blue

line indicates suggestive association threshold 5E-5 while red line indicates

genome-wide significant threshold 5E-7 . . . . . . . . . . . . . . . . . . . 57

4.2 Performance evaluation of re-prioritized results. (A) Mean interaction

measures among topN findings (N ranging from 50 to 3000) of three meth-

ods on hippocampus. (B) ROC curves with AUC results on hippocampus,

to measure the concordance between the GWAS/NetWAS findings and the

documented AD genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Comparison of top 124 findings from tnGWAS, Ridge, SVM and original

GWAS. Heatmaps show the complete interaction matrix of top predic-

tions. Circular networks show interactions after filtering weak connections.

Nodes in circular network are colored based on their ranks in original

GWAS result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Functional annotation of modules from Ridge . . . . . . . . . . . . . . . 61

5.1 Overview of the proposed Imaging Genetic Enrichment Analysis frame-

work. (A) Perform SNP-level GWAS of brain wide imaging measures. (B)

Map SNP-level GWAS p-values to gene-based p-values. (C) Construct

gene-ROI expression matrix from AHBA data. (D) Construct GS-BC

modules by performing two-dimensional hierarchical clustering, and then

filter out biclusters with an average correlation below a user-given thresh-

old. (E) Perform IGEA by mapping gene-based p-values to the identified

GS-BC modules. (F) For each enriched GS-BC module, examine the GS

using GO terms, KEGG pathways, and OMIM disease databases, and

visualize the identified BC by mapping to brain . . . . . . . . . . . . . . 67

xv



5.2 Manhattan plot of imaging quantitative genome wide association for AD

individuals based on precuneus (right) measurement from amyloid imaging

data. The x-axis represents the chromosomes and the y-axis represents

−log10(p), where p is the gene-based significance . . . . . . . . . . . . . . 69

5.3 Eight unique brain circuits (BCs) identified from IGEA. ROIs belonging

to each BC are colored in red . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Brain maps of four brain circuits (BCs) identified from IGEA . . . . . . 77

5.5 Results of KEGG pathway enrichment for identified GSs. The x-axis rep-

resents unique GS ID, and y-axis represents −log10(p) of enrichment signif-

icance of KEGG pathways. Marked cell represents significant enrichment

(p-value <0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xvi



Chapter 1

INTRODUCTION

Imaging genetics is an emerging research field focusing on investigating influence of

genetic variants on brain imaging phenotypes; and has identified a number of suscep-

tible loci for neurodegenerative diseases. In this thesis, we present novel frameworks

for mining high-level imaging genetic associations with their applications in brain

disorders. In this chapter, we first briefly introduce imaging genetics with its research

progresses and effects in brain degeneration disease, and discuss the advantages and

limitations of present strategies and approaches employed in this research field, and

then sketch the methods proposed in this thesis.

1.1 IMAGING GENETICS IN NEURODEGENERATIVE DISEASE

Recent advances in acquiring high-dimensional brain imaging and genome-wide data

have provided new opportunities to assess the influence of genetic variations on neu-

rodegenerative diseases, where the phenotype is quantitative brain imaging measure-

ment instead of categorical disease status. Imaging genetics integrates brain imaging

and molecular genetic data to improve the understanding of disease pathologies, from

individual effect to complex interplay of genes and brain regions.

In the study of complex neurodegenerative diseases, evidences have shown that

the pathological changes begin to develop years or even decades before the earliest

clinical symptoms emerge [58]. This extended presymptomatic stage may provide

essential information regarding to disease progression, as the earliest signs of disease

may occur in brain and can be measured before noticeable symptoms developed. Us-
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ing Alzheimer’s disease as example, a number of biomarkers have been identified and

measured for indicating and predicting the disease progression, including brain imag-

ing, proteins (beta-amyloid and tau) in cerebrospinal fluid (CSF), proteins in blood,

genetic risk profiling (e.g., APP, APOE allele ε4). Among the various biomarkers,

brain imaging-including functional and structural imaging-has provided promising

evidences for differentiating disease stagings from normal aging [79].

It is critical to understand the genetic architecture underlying complex neurode-

generative diseases. Over the past few decades, genetic analysis has played an increas-

ing important role in human disease research [53]. In addition to using categorical

disease status as phenotype, genetic association analysis of quantitative phenotypes

has shown distinct advantages in statistical power and heritability explanation, espe-

cially the usage of iQTs due to its prominent performance on disease differentiation

and prediction [79].

As a synthetic approach, imaging genetics has provided promising evidences for

better understanding the underlying genetic and neurobiological mechanisms in brain

disorders and their progression. In following, we review and discuss diverse strategies

involved in imaging genetics from univariate association to high-level association, with

their applications and significant findings in the study of AD as representative.

1.2 UNIVARIATE IMAGING GENETIC ASSOCIATION

Univariate analysis is widely employed in genetic association studies [79]. In imaging

genetic association analysis, univariate strategy has been employed to evaluate the

association of one or more independent genetic variants with single iQT.

GWAS, as a well-known implementation of univariate analysis, has been per-
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formed in a few neurodegenerative studies to identify genetic markers such as single

nucleotide polymorphisms (SNPs) that are susceptible to neuroimaging QTs [78].

For example, Potkin et al. [67] investigated the genome-wide genetic association on

hippocampal volume in healthy control (HC) and AD patients, and identified 21

genes/chromosomal regions including CAND1, EFNA5, and MAGI2. Stein et al. [86]

performed a GWAS on bilateral temporal lobe volume and identify 2 associations

including rs10845840 from GRIN2B and rs2456930. Shen et al. [81] performed a

brain-wide ROI level GWAS for investigating genome-wide associations with grey

matter (GM) density, volume, and cortical thickness in HC and AD participants, and

confirmed the associations of several known AD genes (e.g., APOE, TOMM40 ) with

multiple brain regions. Stein et al. [85] proposed voxelwise GWAS (vGWAS), a mas-

sive GWAS to explore the relation between 448,293 SNPs with each of 31,622 brain

voxels, and suggested several AD genes for further investigation including CSMD2

and CADPS2.

In addition to the genome-wide analysis, targeted or candidate genetic association

analysis of brain iQTs has also been widely investigated to increase statistical power

and improve biological interpretation. For example, the associations of APOE with

multiple magnetic resonance imaging (MRI) phenotypes have been largely examined

due to it is the most risk genetic factor for AD [5,16,36,75]. Biffi et al. [8] investigated

the association of AD candidate SNPs with AD related MRI measures, and confirmed

the influence of four genes (APOE, CLU, CR1 and PICALM ) on multiple regions

including hippocampal volume, amygdala volume and several others.

Most imaging genetic analyses focus on the univariate approach. This strategy

can be simply implemented and is straightforward to interpret the identified single-
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variant-single-iQT associations. Univariate strategy treats both genetic variants and

brain iQTs as independent, which however is always not the case. Genetic vari-

ants often collectively influence susceptibility to a single or multiple iQTs, as well

as one variant can affect multiple traits which is named as pleiotropy. These inter-

linked information may provide more significant insights into the underlying biological

mechanisms of complex diseases. To address this issue and get more efficient use of

the data, high-level imaging genetic association analysis has been proposed and is

discussed in the following section.

1.3 HIGH-LEVEL IMAGING GENETIC ASSOCIATION

High-level association analysis has been demonstrated that can yield biologically

meaningful findings by integrating prior knowledge (e.g., pathways) into a set of

significant findings [72]. In the imaging domain, brain connectome studies have sug-

gested that brain ROIs do not always have functions by each own, but functional or

structural grouped to play role [10, 11, 21, 23, 44–46, 54, 80, 89–91, 93]. In the genetics

domain, genes also do not perform functions individually, but always interact with

others to make combined effect on complex diseases or traits. The set of functional

interacted genes then forms genetic pathways or network modules.

Currently, most high-level association approaches focus on the genetics domain,

where prior knowledge is from gene ontology (GO), functional annotation databases,

genetic interaction networks and so on. Existing high-level imaging genetic association

analysis can be classified into two categories: enrichment analysis and module iden-

tification analysis. Enrichment analysis assesses if genes from the same pathway or

functional network module aggregate effects of multiple mutations to collectively con-
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fer a significant susceptibility to complex diseases and traits, even when constituent

genes/SNPs show only low or moderate effect sizes [70, 87]. Module identification

strategy integrates GWAS data with prior knowledge (i.e., pathway, network) to con-

struct and identify functional interacted modules that are related to specific diseases

or phenotypes [3, 31,33,38,96,97].

High-level association analysis has demonstrated its efficiency for identifying and

evaluating the interactive and cumulative effects of groups of genes and brain ROIs.

However, most strategies either focus on only genetics domain, or ignore the context

of human tissues which is essential for understanding the precise function of genes.

Given the high-level imaging and genetics architectures, it is critical and challenging

to understand their complex associations which may improve the understanding of

underlying mechanisms of neurodegenerative diseases. Using prior knowledge from

both imaging and genetics domains, functional annotation of brain circuits and genetic

modules may be able to shed light on the fundamental pathology of neurodegenerative

disorders.

1.4 CONTRIBUTIONS

Accordingly, the goal of this thesis is to develop and apply novel computational mod-

els for mining the high-level imaging genetic associations by integrating data-driven

GWAS findings with multi-omics data and biological pathways and networks as prior

knowledge. We apply proposed models in imaging genetics data from Alzheimer’s

Disease Neuroimaging Initiative (ADNI) as test beds to demonstrate their perfor-

mances. We summarize the work in this dissertation as follows and present more

details in the following chapters (Fig. 1.1).
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Figure 1.1: Overview and organization of the dissertation work
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1.4.1 TISSUE-SPECIFIC NETWORK-BASED GWAS FRAMEWORK

FOR MODULE IDENTIFICATION

In the first part of this thesis, two novel top-down network-based GWAS frameworks

are proposed for constructing disease-relevant functional genetic modules that are

specific to corresponding brain region. The precise functions of genes are highly

related to their tissue context, and human diseases often arise from the disordered

interplay of tissue-specific processes. However, current integrative analysis of GWAS

always uses tissue-free interaction networks such as human protein-protein interaction

(PPI) network without taking tissue specificity into account. Another limitation of

existing approaches is that their efficiencies could be suboptimal when a large-scale

network is present, because they employ a bottom-up strategy which needs to explore

a large number of candidate modules for extracting significantly enriched ones.

To address above challenges, we develop two module identification frameworks:

(i) a machine learning based approach that introduces regression models into tissue-

specific network to re-prioritize GWAS results, and then construct modules from

reprioritization results; and (ii) a GWAS top-neighbor-based (tnGWAS) module iden-

tification approach that extracts densely connected modules from top GWAS findings.

The top-down strategy promises GWAS-enrichment and dense connection of candi-

date modules and increases the efficiency by limiting to explore small number of

candidates. We applied these frameworks to the AD data to demonstrate their per-

formances and help better understand mechanisms behind phenotype-specific genetic

functional interactions.
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1.4.2 IMAGING GENETICS ENRICHMENT ANALYSIS PARADIGM

Enrichment analysis has been widely applied in the genome-wide association findings,

where genetic modules are examined for significant associations with a phenotype to

help increase statistical power. Present enrichment analyses of neuroimaging pheno-

types use biological pathways and networks as prior knowledge, typically ignore the

interrelated structure between brain iQTs, and are insufficient to provide biological

insight into the mechanisms of complex diseases that could involve multiple SNPs

and multiple iQTs.

In the second part of this thesis, we expand the scope of one-dimensional ge-

netic enrichment analysis into two-dimensional brain imaging genetic study. Given

the high-dimensionality of both imaging and genetic data, we present an imaging ge-

netic enrichment analysis (IGEA), a new enrichment analysis paradigm that jointly

considers meaningful gene sets and brain circuits and examines whether any given

GS-BC module is enriched in a list of gene-iQT findings. This work demonstrates its

additional power for extracting biological insights on neurogenomic associations at a

systems biological level.

1.5 ORGANIZATION

The rest of this dissertation is organized as follows (also see Fig. 1.1). Chapter 2

reviews existing functional annotation methods applied in system biology, includ-

ing genetic module identification approaches and module enrichment analysis strate-

gies, and discusses their applications and limitations. Chapter 3 and Chapter 4

present two novel tissue-specific network-based GWAS module identification frame-
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works, the machine learning-based and the tnGWAS approaches, and evaluate their

performances in Alzheimer research by integrating GWAS results of disease-relevant

ROIs and prior functional interaction network knowledge. In Chapter 5, we propose

a two-dimensional IGEA paradigm and conduct a proof-of-concept study. We apply

the novel enrichment framework in the AD research, where the high-level imaging

genetic associations are explored based on brain-wide genome-wide association study

(BWGWAS) results. In Chapter 6, we summarize the work of this dissertation and

discuss some future directions.
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Chapter 2

RELATED WORK

Higher level genetic association analysis has been demonstrated that can yield biolog-

ically meaningful findings and help functional genetic annotation by integrating prior

knowledge (e.g., pathways, networks) into a set of genetic findings. In this chapter,

we review genetic functional annotation strategies from two directions: functional

module identification and gene set enrichment analysis. In the first part, we start

from giving a brief introduction about the concept of network-based genetic func-

tional module identification in systems biology, and then discuss the existing meth-

ods along with their applications, advantages and limitations. We then introduce a

most recently presented genome-wide interaction network resource, the tissue-specific

functional network, along with a GWAS reprioritization application named NetWAS.

In the second part of this section, we discuss two classes of one-dimensional gene set

enrichment tests and their applications for functional annotation in complex diseases,

categorized by whether using background information. In this dissertation, we write

matrices and vectors as bold uppercase and lowercase letters respectively. Given a

matrix M = [mij], we denote its i-th row as mi and j-th column as mj. Given two

column vectors a and b, we use corr(a,b) to denote their correlation coefficient.

2.1 NETWORK-BASED FUNCTIONAL MODULE IDENTIFICATION

Network-based GWAS aims to identify functional modules from biological networks

that are enriched by top GWAS findings. Although GWAS of brain imaging phe-

notypes have discovered and confirmed a number of factors susceptible for neurode-
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generative disorders, a large fraction of phenotype variances still remain unexplained

by these individual significant associations. The missing heritability results from a

few aspects, among which genetic interactions of functional network modules and

pathways account for a quite large proportion.

Accordingly, a number of efforts have been made to identify functional genetic

modules, for better understanding underlying genetic architecture of complex dis-

eases. Using ordinary genetic interaction networks as prior knowledge, recent inte-

grative analysis of GWAS results have examined the cumulative effects of multiple

variants, and shown promising performances on providing additional explanation for

phenotype variances. These network-based GWAS approaches typically start from as-

signing GWAS statistics onto a user-specified genetic interaction network, then search

for modules across the whole network to identify those can be enriched by GWAS top

findings. As GWAS statistics are SNP-level p-values, they are firstly mapped to gene-

level to facilitate the network node weights assigning. As such, the extracted modules

would be relevant to corresponding GWAS phenotypes.

One example study is dense module GWAS (dmGWAS) [38] that applies dense

module searching (DMS) strategy on human PPI to locally maximize the proportion

of significant genes (i.e., genes with low p-values) in the GWAS results. In dmGWAS,

the human PPI is downloaded from Protein Interaction Network Analysis platform

(PINA) [98] which is constructed from six public PPI databases. SNP p-values from

GWAS results are assigned as gene weights, which are then loaded into human PPI to

obtain weighted PPI network. Then each gene would be selected as a seed, from which

it expands to construct candidate modules by adding genes that could increase the

proportion of low p-values. Therefore, the expanding process and module evaluation
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step would be performed for times, same as the number of network nodes. A follow up

work, EW dmGWAS [97], boosts the power for identifying disease-relevant modules

by incorporating gene differential expression information as edge weights into the

dmGWAS framework. Experimental results of two approaches on breast cancer and

schizophrenia demonstrate the promising of both methods for discovering disease-

relevant genetic community, and illustrate the informative complement provided by

gene expression data to network-based GWAS integration analysis.

Another representative algorithm is network interface miner for multigeneic inter-

actions (NIMMI) [3], where phenotype-relevant modules are constructed from high-

scored genes and their scores are computed by combining GWAS p-values with node

weights calculated based on their network connectivity. Specifically, NIMMI uses

VEGAS [56] to assign GWAS SNP-level p-values as gene-level p-values, and down-

loads human PPI from the Biological General Repository for Interaction Datasets

(BioGRID) database (http://www.thebiogrid.org/). It then builds biological net-

works weighted by connectivity, which is estimated using a modification of the Google

PageRank algorithm [25]. These weights are then combined with GWAS statistics to

construct network modules. The performance of NIMMI is evaluated by being ap-

plied onto three GWAS datasets, where a few of phenotype-relevant network modules

could be constructed.

The integrative protein-interaction-network-based pathway analysis (iPINBPA)

method is also a network-based GWAS approach [96] and is an extension of the

original PINBPA [6]. First, this approach uses VEGAS [56] to calculate gene-level

p-values from GWAS SNP-level results. The PPI network employed in iPINBPA is

from a manually curated human protein interaction network (available from: http:
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//www.imsgenetics.org/). The iPINBPA method starts from a seed and expands

the module by adding one neighbor at a time to reach an aggregate score meeting a

given statistical significance.

There are also several other network-based GWAS analysis approaches have been

implemented for improving genetic functional annotation [76]. These methods are

useful for identifying genetic modules relevant to complex diseases or phenotypes,

however, have limitations. First, all these approaches employ a bottom-up strategy

that examine a large number of candidate modules in order to identify the GWAS

enriched ones, such that their efficiencies could become suboptimal when large-scale

networks are present. Second, these approaches are using tissue-free human PPI net-

works as prior knowledge, without taking any tissue specificity into consideration. To

overcome above limitations, we design two novel frameworks that take both efficiency

and tissue-specificity into account, and present them in Chapter 3 and Chapter 4.

2.2 TISSUE-SPECIFIC FUNCTIONAL INTERACTION NETWORK

AND APPLICATION

The precise functions of genes are highly related to their tissue context; and heritable

diseases often result from tissue-specific pathology [28]. This is because disordered

genetic expressions and functions caused by germline mutations occur in only certain

tissues, although these variants present across all tissues [43]. As such, understanding

the tissue-specific genetic underpinnings would promote the elucidation of molecular

mechanisms underlying disease pathological processes.

Recently, tissue-specific genome-wide functional interaction networks have been

constructed by integrating a large number of data sources and tissue-specific knowl-
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edge, in order to identify the changing functions of genes across various tissues [28].

The weights of interactions of all gene-gene pairs are calculated for each tissue; and

there are total 114 tissue-specific networks constructed, of which more than twenty are

brain tissues or related to neurodegenerative diseases, like hippocampus, amygdala,

frontal lobe and so on.

NetWAS, a novel statistical approach, has been developed by Greene et al. [28]

that integrates tissue-specific genome-scale network as prior knowledge to guide the

re-prioritization of GWAS statistics. Based on the hypothesis that disease risk genes

would be enriched among the nominally significant ones, NetWAS employs topologi-

cal information of tissue-specific genetic network to construct support vector machine

(SVM) classifier to guide the re-rank of GWAS results. Specifically, The SVM-based

method has been then applied to analyze hippocampus volume in AD and demon-

strated that tissue-specific network could provide helpful context for improving the

understanding of complex human diseases [84]. Note that SVM classification requires

a pre-defined threshold to partition GWAS p-values into significant and nonsignif-

icant groups, and important information embedded in the continuous spectrum of

these p-values got lost during the procedures.

With the above observation, in this thesis, we develop novel top-down network-

based GWAS frameworks and achieve two goals at one time: (i) introduce regression

models in addition to classification model in NetWAS for re-prioritizing GWAS results

with network information; (ii) expand the re-prioritization to module identification

for discovering tissue-specific genetic modules. We describe the details in Chapter 3

and Chapter 4.
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2.3 GENE SET ENRICHMENT ANALYSIS

Given a set of candidate genes, enrichment analysis examines if they are functional

associated together with disease phenotypes, or share common biological functions,

pathways, regulations and so on [57, 87]. Enrichment analysis has been widely ap-

plied in the GWAS and its expanded module identification analysis, where gene sets

corresponding to biological pathways are examined for significant associations with a

phenotype or complex disease. This high-level association analysis has been demon-

strated that can increase statistical power and improve biological interpretation by

integrating prior knowledge (e.g., pathways) into discovered gene set. Prior knowl-

edge employed in enrichment analysis could be from existing functional annotation

databases like gene ontology (GO) [1], KEGG pathway database [40] and so on.

A number of enrichment analysis methods have been proposed to functionally

annotate the identified gene sets; and can be classified into two types based on different

hypotheses: over-representation analysis and rank-based analysis. Below we briefly

introduce both strategies with their applications in complex disease studies, and then

discuss their limitations for implementing in imaging genetics study.

2.3.1 OVER-REPRESENTATION ENRICHMENT ANALYSIS

Over-representation test is to evaluate if a known class of functional gene set (e.g.,

genetic pathway) is over-represented in a set of candidate genes (e.g., GWAS signif-

icant findings). In this strategy, a threshold is needed to define the list of candidate

genes. This strategy can be formulated as an independence test problem; and a few of

statistical distributions have been applied to implement it, including hypergeometric

test (Fisher’s exact test), binomial test, χ2 test and others [19,26].
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Here we formulate the over-representation enrichment analysis using a hypergeo-

metric test (Fisher’s exact test) for illustration. Assume there are a total of N genes

included in the analysis, of which n = |L| genes in the set L are significant ones,

m = |T | genes are from a given pathway T , and k out of n significant genes are from

the pathway T . According to hypergeometric distribution, the over-representation

p-value of having k or more genes from T in L can be calculated from the sum of the

probabilities of a random set of n genes having k, k + 1, . . . , n genes from T :

p-valueenrich = Pr(|L ∩ T | ≥ k) =
∑

i≥k

(
m
i

)
×
(
N−m
n−i

)(
N
n

) . (2.1)

Here, we use Pr(·) to denote the probability function.

The enrichment p-value estimated from hypergeometric test depends on the total

number of involved genes, that is, the value of N . It is hard to calculate hyper-

geometric distribution when N is large. But this problem can be solved through

approximated by a binomial distribution. Imagine that when N is large, sampling a

gene set of size n without replacement has no discernible effect on the total N genes.

As such the probability that a randomly selected gene will be significant is essentially

constant and has the value n/N . Accordingly, the hypergeometric distribution can

be approximated by a binomial distribution when N is large.

2.3.2 RANK-BASED ENRICHMENT ANALYSIS

To overcome the limitation of over-representation approach which requires threshold

to define significant genes, rank-based strategy has been proposed to take all genes

into account. A successful example tool is gene set enrichment analysis (GSEA) [87],

which was developed for gene expression analysis and was then extended to GWAS.
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The GSEA evaluates the association of studied disease or phenotypes, by examining

whether genes from a pathway tend to distributed in the top (or bottom) of the

ranked GWAS results. We briefly describe the implementation of GSEA in below.

Given the ranked list of genes L with association statistics (e.g., gene-level p-

values from GWAS), the enrichment score (ES) of a known pathway S is calculated

using a Kolmogorov-Smirnov (KS) approach with weight 1. That is, by walking down

the list L, a running-sum statistic is increased when encountering a gene in S, and

is decreased when encountering a gene not in S. The ES is then provided by the

maximum deviation from zero of the running sum. Permutation is performed to

evaluate the statistical significance of ES.

The rank-based analysis has been applied in the AD-related GWAS and success-

fully confirmed a few GWAS findings with a few AD-relevant pathways [71]. Besides

of the advantage we mentioned above that without requiring a user-defined thresh-

old, the phenotype-based permutation of rank-based approach can keep the corre-

lation structure among genes, and thus provides a more reasonable assessment of

significance than permuting genes. However, there are also several limitations for

rank-based strategy. First, both rank-based and over-representation tests consider

pathways independently, which however often overlap with one another. Because of

this, a pathway may be significantly enriched due to the common genes it shares with

a real enriched pathway. Second, rank-based methods take into account the ranks of

genes but ignore the strength of associations. Some modifications have been proposed

to improve this problem by adding weights to ranked genes based on their associa-

tion strengths [57]. Third, the computational efficiency of rank-based analysis would

decrease dramatically when the number of permutation largely increases.
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Both types of enrichment analysis methods are applicable only to one-dimensional

data, that is, genetic findings associated with each single QT. In imaging genetics,

the ultimate goal is to discover high-level associations between meaningful GSs and

BCs, which typically include multiple genes and multiple iQTs. It remains a major

challenge to understand and interpret a set of significant genes and iQTs without any

unifying biological theme. In this work, we develop a novel enrichment paradigm for

mining two-dimensional imaging genetic associations and revealing complex relation-

ships among them, by integrating multi-omics data including whole brain genomics,

transcriptomics, and neuroanatomics data.
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Chapter 3

TISSUE-SPECIFIC NETWORK-BASED GWAS FOR IDENTIFYING

FUNCTIONAL INTERACTION MODULES: A MACHINE

LEARNING BASED FRAMEWORK

Network-based GWAS methods have been implemented for identifying functional

modules from biological networks that are enriched by top GWAS findings. Although

gene functions are relevant to tissue context, most existing methods analyze tissue-

free networks without reflecting phenotypic specificity. Tissue-specific genome-wide

functional interaction network has been constructed for reflecting the changing func-

tional roles of genes across tissues. In this chapter, we present a novel framework,

that integrates tissue-specific network with corresponding GWAS data to construct

phenotype- or disease-relevant genetic modules, to help improve the understanding

of genetic architecture of complex diseases.

3.1 BACKGROUND

GWAS has been performed to identify genetic markers such as SNPs that are asso-

ciated with common human diseases. In brain imaging genetics, an emerging field

that studies how genetic variation influences brain structure and function, GWAS

also has discovered genes susceptible to brain iQTs [47, 78, 79]. Each identified iQT

locus (iQTL), however, often has a small effect size and is hard to be individually

interpreted. These iQTLs can potentially interact with one another to jointly have an

impact on QTs. To address this challenge, integrative analysis of GWAS data with

prior-knowledge has gained recent attention to test collective effect of multiple genes
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on targeted phenotypes. Using biological networks and pathways as prior knowledge,

construction and identification of functionally interacted network modules have been

performed to discover phenotype-relevant network modules enriched by the GWAS

findings. This promising strategy can potentially enhance the statistical power of the

GWAS and help biological interpretation [3, 31, 33,38,97].

Existing module identification studies typically search for disease- or QT-relevant

modules by mapping GWAS statistics onto a functional interaction network. Af-

ter that, candidate modules are formed across the entire network and evaluated on

whether they are enriched by the GWAS findings. A successful example is dense mod-

ule GWAS (dmGWAS) [38], which first loads gene-level p-values onto human protein-

protein interaction network as node weights, then applies dense module searching

strategy to identify modules that locally maximize the proportion of genes with small

enough p-values. Network interface miner for multigenic interactions (NIMMI) is an-

other network-based GWAS approach [3], where phenotype-relevant modules are con-

structed from high-scored genes and their scores are computed by combining GWAS

p-values with node weights calculated based on their network connectivity. The

integrative protein-interaction-network-based pathway analysis (iPINBPA) method

is also a network-based GWAS approach [96] and is an extension of the original

PINBPA [6]. It starts from a seed and expands the module by adding one neighbor

at a time to reach an aggregate score meeting a given statistical significance. Note

that all these approaches employ a bottom-up strategy that examines a large number

of candidate modules in order to identify enriched ones, and their efficiencies could

become suboptimal when large-scale networks are present.

Almost all the network-based GWAS are using tissue-free interaction networks
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such as the human PPI network without taking tissue specificity into consideration.

The precise functions of genes are highly related to their tissue context, and human

diseases often result from the disordered interplay of tissue-specific processes [28].

Recently, tissue-specific genome-wide functional interaction networks have been con-

structed in order to identify the changing functional roles of genes across tissues [28].

One application of tissue-specific networks is to re-prioritize disease-gene associations

by constructing a support vector machine (SVM) classifier to re-rank GWAS results

based on tissue-specific network information. This strategy is named as NetWAS,

and has been applied to analyze hippocampal volume in AD and demonstrated that

tissue-specific networks could provide helpful context for understanding complex hu-

man diseases [84]. Note that SVM classification requires a pre-defined threshold to

partition GWAS p-values into significant and nonsignificant groups, and important

information embedded in the continuous spectrum of these p-values get lost during the

procedure.

With the above observations, we expand the NetWAS work into a new frame-

work to achieve two goals at one time: (1) introduce regression models in addition

to classification models for re-prioritizing GWAS results with network information;

(2) use the re-prioritized results to identify GWAS-enriched network modules. In

short, we propose an innovative phenotype-relevant module identification method by

integrating GWAS data and tissue-specific network with effective machine learning

models. First, in addition to traditional NetWAS using SVM, we re-prioritize GWAS

results by constructing two regression models (support vector regression and ridge

regression) using tissue-specific functional interaction network as features and contin-

uous GWAS p-values as responses. We then extract densely connected modules from
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top NetWAS findings based on their functional interactions. Finally, GWAS findings

are used to test the enrichment significance on these candidate modules to identify

phenotype-relevant ones.

Compared with traditional GWAS-based module identification methods and SVM-

based NetWAS, the novelty of the proposed new framework is threefold : (1) Our

framework expands the NetWAS scope from re-prioritizing GWAS findings to mod-

ule identification. (2) Our framework introduces regression models into NetWAS to

embrace the complete coverage of the continuous p-value spectrum. (3) Our frame-

work offers a more efficient, top-down strategy to identify phenotype-relevant network

modules, given that the top findings from NetWAS are designed to be both GWAS-

enriched and densely connected.

To show the effectiveness of the proposed framework, we compare support vector

regression (SVR) and ridge regression (Ridge) with SVM to illustrate that continu-

ous GWAS p-values supply more valuable information than binary significant/non-

significant labels. We also compare the NetWAS re-prioritized results with original

GWAS findings to show that the former is more densely connected than the latter.

Identified modules are further tested for functional association by KEGG pathway,

Gene Ontology Biological Process, and Online Mendelian Inheritance in Man (OMIM)

disease databases, to demonstrate that tissue-specific networks may provide helpful

context for understanding the mechanisms behind complex diseases.

3.2 MATERIALS AND METHODS

To demonstrate the proposed NetWAS-based method for identifying phenotype-relevant

functional interaction modules, we apply it to the amygdala imaging genetic analysis
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Table 3.1: Participant characteristics: HC = Healthy Control; SMC = Significant
Memory Concern; EMCI = Early Mild Cognitive Complaint; LMCI = Late Mild
Cognitive Complaint; AD = Alzheimer’s Disease.

Subject HC SMC EMCI LMCI AD
Number 244 86 280 247 132
Gender (M/F) 124/120 34/52 159/121 146/101 79/53
Age(mean±sd) 74.02±5.72 71.86±5.61 71.16±7.29 72.31±7.63 73.32±7.34
Education(mean±sd) 16.44±2.66 16.85±2.63 16.06±2.66 16.24±2.81 16.19±2.72

in the study of AD. The amygdala is located in the medial temporal lobe region of

the brain and has been implicated in emotional processes, survival instincts, and as-

pects of memory, especially for emotional components. Analyses on amygdala have

indicated that it is prominently related to AD and its progression [22,63,68] and has

been used to assist the clinical diagnosis of AD [88]. Studies on fluorodeoxyglucose

[18F]FDG-PET have demonstrated different usage patterns of glucose metabolism in

amygdala between AD and healthy control subjects [39].

3.2.1 IMAGING DATA, GENOTYPING DATA AND GWAS

The imaging and genotyping data used for GWAS were obtained from the ADNI

database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of mild cognitive

impairment (MCI) and early AD. For up-to-date information, see www.adni-info.org.

Preprocessed [18F]FDG-PET scans were downloaded from the LONI website (see

adni.loni.usc.edu), then aligned to each participant’s same visit scan and normal-

ized to the Montreal Neurological Institute (MNI) space as 2 × 2 × 2 mm voxels.
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FDG measurements of amygdala (left and right) were further extracted based on the

MarsBaR AAL atlas. Genotype data of both ADNI-1 and ADNI-GO/2 phases were

also obtained from LONI, and quality controlled, imputed and combined as described

in [42]. 989 non-Hispanic Caucasian participants (Table 3.1) with complete baseline

FDG amygdala measurements were studied.

Associations between amygdala measures and SNPs (allelic dosage) were examined

by performing GWAS using PLINK [69], where a linear regression model with sex,

age and education as covariates was employed. To facilitate the subsequent network-

based analysis, a gene-level p-value was determined as the 2nd smallest p-value of all

SNPs located in ±20K bp of the gene [60]. In addition, 10 GWAS permutations were

performed to illustrate that only the original GWAS data yielded promising findings.

3.2.2 AMYGDALA-SPECIFIC FUNCTIONAL INTERACTION NET-

WORK

Genome-wide functional interaction networks for specific human tissues and cell types

had been generated to specialize protein functions and interactions of specific human

tissues by integrating a collection of data sets covering thousands of experiments

contained in more than 14,000 distinct publications [28]. The genome-scale maps

provided a detailed portrait of protein functional interactions in specific human tissues

and cell lineages ranging from B lymphocytes to the whole brain. Amygdala-specific

interaction network was downloaded from the Genome-scale Integrated Analysis of

gene Networks in Tissues (GIANT) website (http://giant.princeton.edu/). A

functional interaction network was extracted after mapping to GWAS results. The

weights range from 0 to 1, where larger measures represent stronger interactions.
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3.2.3 ALZHEIMER’S DISEASE RISK GENES

A list of documented AD risk genes were collected to evaluate the re-prioritization

results from multiple machine learning models. Here we integrated totally 66 AD-

relevant genes collected from three resources: 24 susceptibility genes from a large

meta-analysis of AD [47], 15 AD-relevant genes from Online Mendelian Inheritance

in Man Disease database (OMIM), and 40 significant candidates from the AlzGene

database (http://www.alzgene.org/).

The following is a detailed list of genes we included: A2M, ABCA7, ACE, AD10,

AD5, AD6, AD8, ADAM10, APBB2, APOE, APP, ARID5B, BIN1, BLMH, CALHM1,

CASS4, CCR2, CD2AP, CD33, CELF1, CH25H, CHRNB2, CLU, CR1, CST3,

DAPK1, DSG2, ECE1, ENTPD7, EPHA1, FERMT2, GAB2, GAPDHS, GRN,

HFE, HLA-DRB1, HLA-DRB5, IDE, IL1A, IL1B, IL33, INPP5D, LDLR, MEF2C,

MPO, MS4A6A, MTHFR, NEDD9, NME8, NOS3, PACIP1, PGBD1, PICALM,

PLAU, PRNP, PTK2B, RIN3, SLC24A4, SORCS1, SORL1, TF, TFAM, THRA,

TNF, TNK1 and ZCWPW1.

3.2.4 MODULE IDENTIFICATION METHOD

Our proposed phenotype-relevant module identification method is a top-down ap-

proach integrating tissue-specific functional interaction network and GWAS results.

We hypothesize that GWAS significant findings are enriched among nominally signif-

icant and functional-relevant genes. Below, we describe the details of the proposed

method. See Fig. 3.1 for the workflow.
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Figure 3.1: The workflow for identifying functional interaction modules from the
tissue-specific network using GWAS findings.

NETWAS RE-PRIORITIZATION OF GWAS RESULTS

Following [84], we re-prioritized GWAS results by integrating the amygdala-specific

functional interaction network using SVM-based NetWAS. Briefly, the functional net-

work connectivity matrix was used as feature data and significant/non-significant

status based on the nominal p < 0.01 was used as class label.

In addition to SVM, we trained two separate regression models, SVR and Ridge.

In both models, we used the functional network connectivity matrix as feature data

and continuous GWAS p-values as responses. SVR, different from SVM, does not

require a pre-defined threshold to convert p-values to a binary variable indicating

significant/non-significant status. SVR is designed to find a hyperplane that has a

deviation of at most ε from the actual data. Ridge is a widely used linear regression

approach using the L2-norm based regularization to stabilize the result.

To train SVM, SVR and Ridge models, we first selected a set of genes with p-
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value < 0.01, denoted as A, then randomly partitioned the remaining genes (i.e.,

p-value ≥ 0.01) into five equal groups B(t), t = 1, . . . , 5. We combined A with each

B(t) to construct gene set C(t) for model training. That is, gene-level p-values of C(t)

were used as responses (positive/negative labels for SVM), while interactions between

genes from C(t) and all genes from the functional network were used as features. In

experiments, we employed −log(p) values instead of original p-values as regression re-

sponse. For the prediction part, the features are the entire interaction network across

all genes. Five models M (t), t=1, . . . , 5 were trained for each method ∈ {SVM, SVR,

Ridge} and then applied to predict the responses for all genes. Finally, genes were

re-prioritized based on their mean predictions (SVR and Ridge) or distances from hy-

perplane (SVM) across five sets of results. See following for detailed implementation.

Now we describe the three machine learning algorithms used in this chapter for

NetWAS re-prioritization of the GWAS findings: SVM, SVR and Ridge. We denote

vectors as boldface lowercase letters and matrices as boldface uppercase ones. Let X=

(x1, . . . ,xn)T ∈ (0, 1]n×m be the predictor matrix, y = (y1, . . . , yn)T be the response

vector (yi is categorical for classification and continuous for regression), where n is

the number of data samples and m is the number of features.

Given input predictors X and responses y, the Support Vector Machine (SVM)

[12] seeks to find a hyperplane with maximum margin between classes for accurate

classification:

minimize
1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0,

(3.1)

where ‖·‖ denotes the Euclidean norm of a vector, C is a hyperparameter that balances

the weights between the regularization term and classification error, and wTxi+b = 0
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is the separating plane. The dual formulation of problem (3.1) is

maximize
α1,...,αn

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj

subject to
n∑
i=1

αiyi = 0, and 0 ≤ αi ≤ C ∀i.
(3.2)

Those with αi > 0 are support vectors.

Support Vector Regression (SVR) [82] uses the same principle as the SVM.

The SVR tries to find a linear function of which the predicted value is deviated from

the actual value by at most ε > 0 for all the training data (up to additional errors

for outliers) and at the same time minimizes the Euclidian norm of the regression

coefficients:

minimize
1

2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i )

subject to yi −wTxi − b ≤ ε+ ξi

−yi + wTxi + b ≤ ε+ ξ∗i

ξi ≥ 0, ξ∗i ≥ 0.

(3.3)

where ε is a hyperparameter that controls the precision of prediction, and ξi, ξ
∗
i are

the slack variables that are introduced to relax the inequality constraints for outliers.

The dual formulation of problem (3.3) is

maximize
α1,...,αn

− 1

2

n∑
i=1

n∑
j=1

(αi − α∗i )
(
αj − α∗j

)
xT
i xj

− ε
n∑
i=1

(αi + α∗i ) +
n∑
i=1

yi (αi − α∗i )

subject to
n∑
i=1

(αi − α∗i ) = 0, and 0 ≤ αi, α
∗
i ≤ C ∀i.

(3.4)
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The SVM and SVR algorithms are implemented in R in the ‘kernlab’ package [4],

which is used in this work.

Ridge Regression, also known as L2-regularized linear least squares regression,

is designed for minimizing a weighted average of the sum of squared residuals and

sum of squared regression coefficients:

minimize
1

2n

n∑
i=1

(yi − b− xT
i w)2 +

λ

2
‖w‖2 . (3.5)

In the ‘glmnet’ package, which is used in this work, the coordinate descent algorithm

[24] is used to solve problem (3.5).

As stated in Section 3.2.2, the amygdala-specific functional network can be formu-

lated as a symmetric matrix of interactions among all n genes, that is, S ∈ (0, 1]n×n.

GWAS of amygdala imaging phenotype yielded a list of p-values p = (p1, . . . , pn)T ∈

(0, 1)n. In the experiments, we employed negative log transformation of p-values in-

stead of original p-values as responses in regression models. Thus, y=(y1, . . . , yn)T ∈

Rn
+ were used as regression responses where yi=−log10(pi).

To train the above three models, we firstly selected a set of nominally signifi-

cant genes with p-value < 0.01, denoted as A = {a1, . . . , a|A|}, and then randomly

partitioned the remaining genes (i.e., p-value ≥ 0.01) into five equal groups without

overlap B(t) = {bt1, . . . , bt|B(t)|}, t = 1, . . . , 5, with |B1| = · · · = |B5|. We combined

nominally significant gene set A with each non-significant gene set B(t) to construct

set C(t) =A∪B(t) for model training. Of note, this five-fold strategy was employed in

our previous work [84] to balance the positive and negative samples in the training

data. Gene-level association statistics of set C(t) were applied as responses, while
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functional interactions between all genes and genes in C(t) were extracted as predic-

tors. Thus, y(t) = (ya1 , . . . , ya|A| , ybt1 , . . . , ybt|B(t)|)
T (positive/negative labels for SVM)

were responses, and functional interactions between all genes and genes in C(t) were

extracted as predictors X(t) =(xa1 , . . . ,xa|A| ,xbt1 , . . . ,xbt|B(t)|)
T ∈ (0, 1](|A|+|B

(t)|)×n. For

each method ∈ {SVM, SVR, Ridge}, five models M (t), t= 1 . . . 5, were trained and

then used to do predictions for all the genes. In other words, model M (t) was con-

structed based on training data X(t) and y(t) and then applied to the full interaction

matrix S to obtain predictions for all the n genes, from which ŷ(t) - the list of predic-

tions (SVR and Ridge) or distances from hyperplane (SVM) - were obtained. Finally,

genes were re-prioritized based on the mean predictions (SVR and Ridge) or distances

from hyperplane (SVM) across five sets of results, namely, ŷ= 1
5

∑5
t=1 ŷ(t).

To demonstrate the effectiveness of the patterns discovered from the real data,

we also trained these models on permuted GWAS results using the same strategy.

We used the area under the receiver operating characteristic (ROC) curve (AUC)

to compare the re-prioritization performance obtained from the original GWAS data

with those from permuted GWAS data. Similar to [84], ROC curves and AUCs were

calculated using 66 documented AD candidates as gold standard positives to illustrate

the concordance of gene-level results from these methods with the known AD risk

genes. Specifically, the aforementioned 66 AD genes were defined as positives while

all the other genes are defined as negatives for calculating AUC to see the distribution

of AD risk genes in our re-prioritization results. Genes were re-ordered according to

their re-prioritization values, from highest to lowest related to the studied phenotype.

After labeling each gene in the re-prioritization list as positive or negative according

to whether it is in the 66 AD genes, we calculated the true positive rate (TPR) and
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false positive rate (FPR) by selecting each gene as a cutting point from the highest

to the lowest. The ROC curve could then be created by integrating the TPR/FPR

values of all the genes, and thus the AUC value could be calculated based on the

ROC curve. We hypothesize that the NetWAS re-prioritization findings match the

known AD genes better than the original GWAS findings, which should yield a larger

AUC value. In addition, mean statistics of functional interaction measures among

top genes were used to evaluate the degree of functional interactions among these

re-ranked top genes.

In this work, we hypothesize that integration of functional interaction network

can better identify disease- or phenotype-relevant genes. To evaluate this hypoth-

esis, the documented AD genes are used as “ground truth” to check whether our

re-prioritization results are better than the original GWAS. Of note, this evaluation

step is not a part of our module identification framework. Without using the “ground

truth” information, we can still identify phenotype-relevant modules using the pro-

posed method. In this case, replication in independent cohorts is a necessary future

step to confirm the identified network modules.

IDENTIFICATION OF GWAS-ENRICHED MODULES

The goal of the NetWAS re-prioritization is twofold: (1) The original GWAS gene

ranking is used to supervise the training of the classification and regression models

and ensure that the top genes in the re-prioritization remain GWAS-enriched; (2)

tissue-specific functional interaction connectivity matrix is used as data to train the

models and encourage genes with similar interactions to be re-prioritized with similar

ranks. Thus NetWAS is designed to yield top gene findings that are both GWAS-
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enriched and densely connected; and these top genes become the candidates for us to

identify GWAS-enriched network modules.

We performed clustering on these top genes to first identify candidate modules.

Since one gene could play roles in multiple pathways or functional modules, we applied

the Link Clustering algorithm [2] to detect communities as groups of links rather

than nodes. The resulting candidate modules consisted of only top NetWAS genes

and could overlap each other. After that, top GWAS findings were used to test each

candidate module. Only those modules significantly enriched by the GWAS results

were identified as phenotype-relevant ones. See following for details.

Given a set of candidate modules which were extracted from top NetWAS re-

prioritizations, enrichment analysis was performed to test the phenotype-relevance of

these modules using top GWAS findings. We applied the hypergeometric test to assess

whether a candidate module is significantly enriched by the top GWAS findings.

Using left amygdala as an example, we obtained all n GWAS findings from imaging

genetic association analysis, and selected a set of nt genes with the smallest p-values

(denoted as T). We also had a set of m genes (denoted as D) from a given candidate

module, of which k genes were from top GWAS findings T. Using hypergeometric

test for independence as stated in Eq. (2.1), the enrichment p-value for the given

candidate module was calculated as:

p-valueenrich = Pr(|T ∩ D| ≥ k) =
∑

i≥k

(
m
i

)
×
(
n−m
nt−i

)(
n
nt

) . (3.6)

Enrichment p-values from Eq. (3.6) were then corrected for the number of candidate

modules using the Bonferroni method.
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As mentioned earlier, many existing network-based GWAS approaches employ a

bottom-up strategy that examines a large number of candidate modules in order to

identify enriched ones, and their efficiencies could become suboptimal when large-scale

networks are present. Our module identification approach proposed above overcomes

this limitation. On one hand, it examines only a small number of candidate modules

generated from clustering the top NetWAS findings. On the other hand, the NetWAS

strategy is designed to yield promising candidate modules with strong potential to be

densely connected and phenotype-relevant.

COMPARISON OF GENE-BASED ASSOCIATION APPROACHES

We employed the 2nd smallest SNP p-value as gene-level p-value to facilitate the

GWAS re-prioritization. This is an efficient approach stated in [60] to summarize the

information in multiple SNPs, to evade spurious associations of using the 1st smallest

SNP p-value which could be a random association generated by chance.

The reason why we applied the 2nd smallest SNP p-value strategy instead of

using VEGAS (the one employed in [84] and [28]) is that running VEGAS on ∼5

million SNPs is very time consuming and has huge memory requirement. To facilitate

performance evaluation for the 2nd smallest SNP p-value approach, we created a new

genotype data set consisting of 565,374 SNPs, which was imputed to the Illumina

OmniExpress platform (most of ADNI-2 data collected using this platform). 989 non-

Hispanic Caucasian participants (the same as those studied in the above analysis) with

FDG-PET amygdala measurements were included. Using this data set, we performed

additional analyses to compare the performances of four different gene-level p-value

methods: 2nd smallest p-value, 1st smallest p-value, VEGAS and GATES [49].
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We firstly performed GWAS to examine associations among 565,374 SNPs and

FDG imaging measures in the left amygdala. We then applied four methods to

map or combine SNP-level p-values to obtain gene-level p-values. To compare their

performances, we performed the ROC analysis and used the AUC to illustrate the

concordance of gene-level results from these methods with AD risk genes. Moreover,

we employed these four lists of gene-level p-values as responses to Ridge regression-

based NetWAS, and used AUC to assess their re-prioritization performances.

FUNCTIONAL EVALUATION AND VISUALIZATION

To determine the functional relevance of the identified modules, we tested whether

genes from each module were overrepresented for specific neurobiological functions,

signaling pathways or complex neurodegenerative diseases. We performed three types

of functional annotation analyses using KEGG pathway, Gene Ontology Biological

Process (GO-BP), and OMIM disease database respectively. For identified modules,

they could be visualized directly or extended to include neighboring genes in the

tissue-specific functional interaction network. We selected one example module and

visualized it as well as its extension using GIANT (http://giant.princeton.edu/)

to show its dense functional interactions.

3.3 EXPERIMENTAL RESULTS

We applied our NetWAS-based module identification framework, using amygdala-

specific functional interaction network, to the GWAS findings of the FDG-PET mea-

sures in the left and right amygdala regions in an AD study. We compared the

performances of different machine learning models, as well as those using the original
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and permuted GWAS results. We evaluated the functional relevance of the identified

modules and discussed their relationships with neurobiological or neurodegenerative

funtions and diseases. Below we report and discuss our results.

3.3.1 GWAS OF AMYGDALA IQTS

GWAS were performed to examine genetic associations between 5,574,300 SNPs and

FDG-PET measures in the left and right amygdalas. Using p ≤ 5E-8 as the threshold,

nine SNPs were identified to be significantly associated with the average FDG-PET

measure in the left amygdala (see Fig. 3.2 for the Manhattan plot), including two

within the APOE gene (rs429358 with p = 1.99E-11, rs769449 with p = 3.28E-09),

one within the SDK1 gene (rs148359108 with p = 2.02E-09), one between the APOE

and APOC1 gene (rs10414043 with p = 8.56E-09), and five within the APOC1 gene

(rs7256200 with p = 8.56E-09, rs12721051 with p =1.11E-08, rs56131196 with p =

1.11E-08, rs4420638 with p = 1.11E-08 and rs73052335 with p = 3.50E-08). No

significant findings were identified on the right side.

After mapping the 2nd smallest SNP-level p-values to genes [60] using hg19 gene

annotation, gene-based p-values were obtained for 24,766 genes and transcripts. Us-

ing p ≤ (0.05/24,766) = 2.02E-6 as the threshold, the APOC1, APOE, PVRL2,

TOMM40, and APOC1P1 genes were identified to be significantly associated with the

average FDG-PET measure in the left amygdala. Note that PVRL2 and APOC1P1

were identified since some of significant SNPs were within ±20K bp of their bound-

aries.

All the findings except SDK1 are either from or proximal to the APOE region,

which is the best known genetic risk region in AD. SDK1, which is located in 7p22.2
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Figure 3.2: Manhattan plot of the FDG-PET imaging measure in the left amygdala.
The x-axis corresponds to the genomic coordinates, and y-axis corresponds to negative
logarithm of the association p-value for each SNP. Each dot on the Manhattan plot
signifies a SNP.

and encodes protein sidekick-1 (a member of the immunoglobulin superfamily), shows

an association with the average FDG-PET measure of left amygdala, including a sig-

nificant hit at the SNP level (rs148359108 with p = 2.02E-09), and a nearly significant

one at the gene level (p = 3.35E-06). SDK1 was shown to specifically phosphory-

late 14-3-3ζ at serine 58 [29], where the latter played an important role in amygdala

cell death [37]. SDK1 also showed high expression in medial amygdala relative to

other tissues from the Allen Brain Atlas Adult Mouse Brain Tissue Gene Expression

Profiles dataset (http://www.brain-map.org/). The connection between SDK1 and

AD-related amyloid and glucose metabolism markers in the amygdala region warrants

further investigation.

3.3.2 NETWAS RE-PRIORITIZATION

Amygdala-specific functional interaction network among 25,825 nodes was down-

loaded from GIANT, with interaction weights ranging from 0 to 1. There were to-
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tal 20,168 nodes used in our analysis after matching GWAS genes and transcripts

with those from the network. After preprocessing, we obtained an amygdala-specific

genome-wide functional interaction matrix with size of 20, 168× 20, 168 and two lists

of 20,168 gene-level p-values for left and right amygdala iQTs respectively. In ad-

dition, GWAS were performed 10 times on permuted data for each of the bilateral

amygdala measures. The same procedure was applied to the permuted data as the

real data, in order to demonstrate that only the GWAS findings from the real data

can contribute useful information and yield promising results.

Five sets of regression predictions by SVR and Ridge or classification decision

values by SVM (i.e., distances from the separating hyperplane) were obtained from

running these machine learning models using functional interaction connectivity ma-

trix as the feature data and the GWAS results as regression responses or classification

labels. For each model, genes were re-prioritized based on their average regression

predictions or classification decision values across five experiments, on both original

and permuted GWAS results.

As we hypothesized, top predictions would conserve both strong functional inter-

action and high phenotype-relevance (i.e., AD-relevance in this work, given amygdala

FDG-PET measures as promising AD biomarkers). We compared the re-prioritization

performances of three machine learning models and GWAS using both original and

permuted data.

Fig. 3.3(A,B) show the ROC curves and the AUC performances. For the original

data, the re-prioritization results of all three NetWAS models demonstrated much

higher concordance with documented AD risk genes than the GWAS findings. This

indicates that integration of tissue-specific functional interaction network with GWAS
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Concordance between GWAS/NetWAS findings and the documented AD genes (shown as ROC curve)
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Figure 3.3: Performance evaluation of re-prioritization results. (A-B): ROC curves
with AUC results on left and right amygdalas, respectively, to measure the concor-
dance between the GWAS/NetWAS findings and the documented AD genes. For
each analysis on permuted GWAS, the mean and standard deviation of AUCs to-
gether with one example ROC are shown. (C-D): Mean interaction measures among
top N findings (N ranging from 50 to 3000) on left and right amygdalas, respectively.
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can promote the identification of phenotype-relevant genes. For the permuted data,

where the mean and standard deviation of AUCs together with one example ROC

are shown for each model, no high concordance with AD genes was achieved by either

GWAS or any NetWAS model. This suggests that the NetWAS procedure is not

biased and only real data can yield meaningful findings. In addition, original GWAS

and permuted GWAS obtained similar AUCs, showing the limited power of GWAS

alone on the detection of disease risk markers. Ridge, although showing similar AUC

with SVR and SVM, gained higher true positive rate and lower false positive rate at

the beginning of the ROC. That is, Ridge gained higher concordance when taking

look at top re-prioritized results.

Fig. 3.3(C,D) show the mean functional interaction of the top findings. We used

a series of thresholds from top 50 to top 3000 (of note, ∼ 3000 genes with p-value

< 0.01 were identified for either left or right amygdala) to extract different scales of

top genes as well as their interaction matrix. NetWAS approaches, no matter whether

using original or permuted data, clearly demonstrated denser interactions among top

findings than GWAS. This confirms our hypothesis that NetWAS yields more densely

connected top findings.

3.3.3 COMPARISON OF GENE-BASED ASSOCIATION APPROACHES

Fig. 3.4 shows the ROC curves and AUCs of four gene-based association methods on

both original GWAS results and Ridge-based NetWAS re-prioritizations given its out-

standing performance. The 1st and 2nd smallest SNP p-value approaches outperform

the VEGAS and GATES on either GWAS results or NetWAS re-prioritizations; in

particular the 2nd smallest SNP p-value approach obtains the best concordance with
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Comparison of gene-based association approaches
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Figure 3.4: Comparison of four gene-based association approaches including 1st small-
est p, 2nd smallest p, VEGAS and GATES. ROC curves with AUC results of four
gene-level p-value approaches on left amygdala, to measure the concordance between
the GWAS/NetWAS findings and the documented AD genes.
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66 AD genes. These results might be partially attributed to that most of the docu-

mented AD genes were discovered from the GWAS analyses based on the SNP-level

significance instead of the gene-level significance. In addition, Ridge-based NetWAS

demonstrates much higher AUCs than the GWAS findings on all four gene-based

association approaches, showing additional evidence for the power of integration of

functional interaction network with GWAS.

3.3.4 AMYGDALA-RELEVANT TOP PREDICTIONS

We investigated top 50 re-prioritized genes obtained from three machine learning

models, and compared their functional interactions in detail. Fig. 3.5(A,B) show

heatmaps of interaction relationships among top genes and interaction networks based

on different thresholds for left and right amygdalas, respectively. Taking left amygdala

as example, each row shows results from different methods: Ridge, SVR, SVM, and

GWAS. Heatmaps show interaction matrices using the data from amygdala functional

network without any filtering. Two interaction networks among top 50 genes after

filtering out weak interactions using different scales (here using weights ≥ 0.1 and 0.2

as thresholds) are shown. In interaction networks, nodes are colored by their ranks

in the original GWAS.

Both heatmaps and networks show much denser interactions among top 50 find-

ings from three models than original GWAS under any scale of filtering. That facili-

tates the promise of our proposed method for comprehensively examining the disease-

relevant genes and interactions between them. Ridge, compared with SVR and SVM,

yielded much higher interactions (network density across multiple scales) and also

obtained more GWAS top genes (more nodes are colored by top GWAS findings).
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Figure 3.5: Comparison of top 50 findings by three NetWAS re-prioritization methods
(Ridge, SVR and SVM) and the original GWAS. (A) and (B) represent results on left
and right amygdalas, respectively. Heamaps show the complete interaction matrix
of top predictions. Circular networks show interactions between genes after filtering
weak connections. Nodes in circular network are colored by their ranking in the
original GWAS.
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Table 3.2: Modules identified by Ridge-based NetWAS.

Ridge Module ID # of genes
GWAS Enrichment
p-value (corrected)

Left Amygdala

Module 01 18 4.58E-05
Module 02 18 3.61E-03
Module 03 47 2.21E-05
Module 04 12 1.57E-03

Right Amygdala Module 05 50 2.49E-09

This, combined with statistics summary from Fig. 3.3, indicates the outstanding per-

formance of Ridge.

3.3.5 AMYGDALA-RELEVANT MODULES

The results shown above demonstrate the phenotype-relevance and dense functional

interactions of the top findings obtained from integrating amygdala-specific interac-

tion network and amygdala FDG GWAS result. We identified candidate network

modules based on the interaction matrix of these top findings to make sure that they

conserved high within-module connectivity. We analyzed top 50 findings from Ridge-

based NetWAS given its prominent performance. In candidate module identification,

only interactions with weights ≥ 0.1 were considered while weak connections were

removed. We identified five modules: four from left amygdala, and one from right

amygdala. All five modules were significantly enriched by top 50 GWAS findings.

Table 3.2 shows details of these modules.

In this work, we applied our method on only top 50 predictions and used a rel-

atively stringent selection of GWAS significant findings (top 50) to test phenotype-

relevance of the candidate modules. In practice, we could include more top predic-

tions into module identification to obtain more candidate modules and also take a
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Figure 3.6: KEGG pathway enrichment of the identified modules. The x-axis corre-
sponds to the module ID, and y-axis corresponds to the KEGG pathway. Each cell
shows -log(p) of enrichment significance of a KEGG pathway by a module. A marked
cell represents a significant enrichment (corrected p-value ≤0.05).

larger number of GWAS top findings into enrichment analysis to relax the phenotype-

relevance.

3.3.6 FUNCTIONAL ANNOTATION OF THE IDENTIFIED MODULES

Functional annotation was performed to further investigate functional relevance of the

identified modules. We performed pathway enrichment analysis from three aspects:

(1) functional pathways, (2) biological processes, and (3) diseases, based on KEGG

pathway, GO-BP terms and OMIM disease databases, respectively.

Fig. 3.6 shows the KEGG pathway enrichment results mapped to 19 categories.
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Figure 3.7: Gene Ontology Biological Process enrichment of the identified modules.
Left column shows module IDs, and right column shows top enriched GO-BP terms.
Links between modules and GO-BP terms represent significant enrichment findings
(corrected p-value <0.05).

From the results, two modules from left amygdala and one module from right amyg-

dala have a number of significant functional enrichments, while the other two modules

of left amygdala do not have obvious KEGG functional enrichment. Several enriched

pathways are directly related to the neurodegenerative disease and its development,

e.g., Alzheimer’s disease enriched in Modules 03 and 04 and Huntington’s disease en-

riched in Module 04. A number of pathways from three large categories are enriched

by one or more modules, and these categories are endocrine system, nervous system,

and signal transduction. These major categories have been studied and shown close

relation to AD. For example, the endocrine and the nervous system were highly re-

lated as hormones played a role in maintaining brain homeostasis at the senile age

which might help explain the gender difference in AD [9, 55, 65]. Signal transduc-

tion like calcium signaling pathway (Modules 04 and 05) playing key role in short-
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Table 3.3: OMIM diseases enriched by the identified modules.

Module ID OMIM Disease
p value

(corrected)

Module 01
Myocardial infarction 1.5E-02
Macular degeneration 1.5E-02
Alzheimer’s disease 1.5E-02

Module 02 Prostate cancer 1.8E-02
Module 04 Autism 4.5E-02

and long-term synaptic plasticity, had shown abnormality in many neurodegenerative

disorders like Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis

(ALS), Huntington’s disease and so on [7]. Neuroinflammation emerged as an impor-

tant component of AD pathology recently, and immune system indicated a crucial

role in the progression of AD [30]. Platelet activation, enriched in Modules 04 and

05, had been studied about its involvement in neuroinflammatory diseases such as

AD through enzymatic activities to generate amyloid-β peptides [27].

Fig. 3.7 shows top GO-BP enriched terms for all five modules. As Modules 03-05

had significantly enriched a large number of GO-BP terms, only top 20 of each mod-

ule were selected. Here only GO-BP terms that are significantly enriched (corrected

p-value < 0.05) by >1 module are listed and linked with corresponding modules. Here

we observe that a large number of GO-BP terms are related to neurological system

process (e.g., cognition, learning), behavior (e.g., learning or memory), nervous sys-

tem development (e.g., positive regulation of neuron projection development), and

signal (e.g., regulation of synaptic transmissions). All of these have direct or indirect

relationships with neurodegenerative diseases or phenotypes.

OMIM disease enrichment analysis results are shown in Table 3.3, where three

modules (Modules 01, 02, and 04) are significantly enriched by various types of dis-
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Figure 3.8: Visualization of Module 04 and its extension. (A) shows the interaction
network of genes in Module 04, where color of links represents the relationship con-
fidence from GIANT. Two genes from Module 04 are excluded as they cannot be
matched to GIANT database. (B) shows the extended network using genes in Mod-
ule 04 as seeds, with large nodes indicating genes from Module 04 and small nodes
indicating extended nodes, where only links with interaction degree ≥ 0.2 are shown.

eases including heart disease (Myocardial infarction), cancer (Prostate cancer), men-

tal disorders (Autism), eye disease (Macular degeneration), and neurodegenerative

diseases (Alzheimer’s disease). A number of studies suggested that there exist con-

nections between heart diseases and dementia including AD [30,50]. Epidemiological

studies had shown a reciprocal inverse relationships between cancer and neurodegen-

eration according to abnormal cell growth and cell loss in common [61,74].

3.3.7 MODULE VISUALIZATION AND EXTENSION

Given the identified phenotype-relevant modules, we visualized functional interactions

among genes as a network and extended the module by including genes having close

connections with elements inside the module. We show Module 04 as an example

given its small size as well as functional enrichment performance. Fig. 3.8(A) and
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Table 3.4: Functional annotation of extended Module 04

DataBase Pathways/Biological processes/Diseases
p-value

(corrected)

GO-BP

Adult behavior 1.93E-02
Cognition 3.14E-02
Intraspecies interaction between organisms 1.31E-02
Learning 1.12E-02
Learning or memory 1.12E-02
Multi-organism behavior 1.44E-02
Single-organism behavior 2.84E-02
Social behavior 1.20E-02
Vocalization behavior 9.64E-03

KEGG

Adrenergic signaling in cardiomyocytes 1.71E-02
Chagas disease (American trypanosomiasis) 3.86E-02
Cholinergic synapse 1.10E-02
Circadian entrainment 3.69E-02
Dopaminergic synapse 1.51E-02
Estrogen signaling pathway 3.72E-02
Gastric acid secretion 2.47E-02
GnRH signaling pathway 3.30E-02
Inositol phosphate metabolism 1.63E-02
Insulin secretion 2.77E-02
Long-term potentiation 1.88E-02
Melanogenesis 3.68E-02
Pancreatic secretion 3.65E-02
Phosphatidylinositol signaling system 2.92E-02
Salivary secretion 3.24E-02

OMIM

Autism spectrum disorder 1.07E-02
Autistic disorder 1.61E-02
Developmental disorder of mental health 2.70E-02
Pervasive developmental disorder 1.20E-02
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Fig. 3.8(B) respectively show Module 04 and an expanded version of Module 04 by

including additional genes with minimum relationship confidence 0.2 using GIANT.

Functional annotation of the expanded version of Module 04 has been tested and

shown in Table 3.4.

3.4 DISCUSSIONS AND CONCLUSIONS

We have proposed a top-down module identification method by integrating tissue-

specific functional interaction network with imaging GWAS results in machine learn-

ing models to detect phenotype-relevant modules for better mechanistic understand-

ing of complex diseases. At the global level, machine learning models were applied

to re-prioritize genes which facilitates the detection of genes with both phenotype-

relevance and dense interactions. After that, candidate modules were extracted using

link community clustering algorithm. At the local level, each candidate module was

tested for enrichment significance using top GWAS findings. This study is among the

first to incorporate tissue-specific context with GWAS data to understand underlying

functional relevance in a precise way.

Our strategy is different from previous network module identification methods that

define and examine candidate modules by forming sub-networks based on individual

genes (e.g., genes with promising p-values or high scores). We start from the whole

interaction network to re-rank genes so that the top findings are not only densely

connected and but also enriched by highly scored genes. Machine learning methods

can facilitate the re-prioritization using network data as features. This step makes

use of both the functional network information and GWAS discoveries to ensure the

phenotype-relevance and dense connection of the top re-prioritized genes. The second
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step is designed simply for assigning an enrichment score to each candidate module

so that modules not enriched by GWAS findings can be filtered out. We treat the

whole process as a single discovery step. In order to validate the findings, replication

analysis in independent cohorts should be performed.

As to the NetWAS comparison among three machine learning based models on

our data, Ridge performed better than SVR, and SVR generally outperformed SVM.

This suggests that continuous GWAS p-values supply more valuable information than

binary significant/non-significant labels. Re-prioritization results show the strength

of the NetWAS framework from another perspective that top predictions hold denser

interactions and are matched to more disease risk genes than GWAS findings. Our

experimental results on permuted data also suggest that the NetWAS procedure is

not biased and only original data can yield meaningful findings.

Given that we only have one tissue-specific network available for the studied phe-

notype, we are limited on validating the stability of the findings. In the future, if

multiple tissue-specific interaction networks can be obtained independently for a stud-

ied tissue, stability study can be performed to check whether similar network modules

can be identified from multiple networks.

In conclusion, we have proposed a top-down module identification method by

integrating tissue-specific functional network with imaging GWAS results. We have

demonstrated its effectiveness using real data from an imaging genetics study in

AD. Modules identified from our method conserve both dense interactions and high

phenotype-relevance, showing the promise of the proposed method. This work can be

further expanded towards several future directions. For example, one direction is to

compare the proposed method with other existing module identification strategies to
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further evaluate its performance. Another direction is to apply this method to other

tissues and brain regions for revealing tissue-specific genetic mechanisms for complex

brain disorders.
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Chapter 4

TISSUE-SPECIFIC NETWORK-BASED GWAS FOR IDENTIFYING

FUNCTIONAL INTERACTION MODULES: A GWAS TOP

NEIGHBOR BASED FRAMEWORK

In this chapter, we develop a GWAS top-neighbor-based module identification frame-

work and compared it with Ridge and SVM based approaches proposed in Chapter

3. Modules conserving both tissue specificity and GWAS discoveries are identified,

showing the promise of the proposal method for providing additional insight on the

molecular mechanism of neurodegenerative diseases.

4.1 BACKGROUND

As introduced in Chapter 2, most network-based GWAS of QTS are using tissue-free

biological networks such as human PPI network, without considering tissue specificity.

We have developed a machine learning-based module identification framework and

applied to amygdala imaging genetics study in Chapter 3. The experiment results

prove the benefits from tissue-specific functional network, as well as the top-down

strategy.

In this chapter, we propose a new GWAS top-neighbor-based searching approach

for module identification, and compare with the machine learning-based approaches.

This tnGWAS strategy extracts densely connected modules from top GWAS findings,

based on the hypothesis that relevant modules consist of top GWAS findings and their

close neighbors. Of note, machine learning-based methods (e.g., SVM and Ridge)

provide re-prioritized gene findings, while tnGWAS does not. We demonstrate the
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effectiveness of the proposed framework by applying it to a hippocampal imaging

genetics analysis in the study of AD. We also applied the machine learning-based

framework to confirm its re-prioritization and module identification performance using

a new data set.

4.2 MATERIALS AND METHODS

To demonstrate the implementation of tnGWAS and machine learning-based ap-

proaches on imaging QT-relevant module identification, we apply them to hippocam-

pal imaging GWAS in AD. Studies with [18F]FDG-PET have demonstrated that AD

is associated with reduced use of glucose metabolism in hippocampus [35, 59]. We

propose to identify imaging QT-relevant modules, by integrating a hippocampus-

specific functional interaction network and GWAS results of hippocampal FDG-PET

measures.

4.2.1 IMAGING DATA, GENOTYPING DATA AND GWAS

Imaging data were obtained from the ADNI (adni.loni.usc.edu). Preprocessed

FDG-PET scans were downloaded from LONI, and [18F]FDG-PET measurements of

hippocampus were extracted based on the MarsBaR AAL atlas. Genotype data were

also obtained from LONI, of which 989 non-Hispanic Caucasian participants (Ta-

ble 3.1) with complete baseline FDG-PET hippocampus measurements were studied.

The detail of genotype data preprocessing have been described in Section 3.2.1. As-

sociation between the average FDG-PET measure in the hippocampal region at the

baseline and 5,574,300 SNPs was examined by GWAS using PLINK [69]. To fa-

cilitate the subsequent network-based analysis, a gene-level p-value was determined
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as the 2nd smallest p-value of all SNPs located in ±20K bp of the gene [60], given

the performance of this gene-based association approach illustrated in Chapter 3. A

number of 17,881 protein-coding gene p-values were obtained. The number of genes

included in this analysis is less than previous analysis (Study of Chapter 3) which is

20,168, as only protein-coding genes are considered in this study.

4.2.2 HIPPOCAMPUS FUNCTIONAL INTERACTION NETWORK

A hippocampus-specific functional interaction network was downloaded from GIANT

(http://giant.princeton.edu/). Interactions among 17,881 protein-coding genes

was extracted after mapping to GWAS results. The weights of interactions range

from 0 to 1, where larger measures represent higher interactions.

4.2.3 ALZHEIMER’S DISEASE DOCUMENTED GENES

A list of 66 documented AD risk genes were collected to evaluate the re-prioritization

results from three resources: 24 susceptibility genes from a large meta-analysis of

AD [47], 15 AD-relevant genes from the Online Mendelian Inheritance in Man Dis-

ease database (OMIM), and 40 significant candidates from AlzGene database (http:

//www.alzgene.org/). The detail of documented AD genes can be found in Sec-

tion 3.2.3.

4.2.4 TNGWAS MODULE IDENTIFICATION FRAMEWORK

GWAS top-neighbor-based module identification approach was proposed and com-

pared with previously developed machine learning-based strategy. Below we describe

details of tnGWAS as well as briefly recall the machine learning-based ones.
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MACHINE LEARNING BASED GWAS RE-PRIORITIZATION

Following [28], we trained an SVM model using hippocampus-specific network con-

nectivity as features and significant or nonsignificant status based on nominal p =

0.01 as labels to re-prioritize GWAS results. In addition to SVM, we trained a Ridge

model using also the network data as features while real p-values as responses. Dif-

ferent from classification which required a pre-defined threshold, regression approach

utilizes more information from continuous p-values.

We trained SVM and Ridge models using interactions between a subset of genes

C and all genes as features, and gene-level p-values of C as responses (positive or

negative labels for SVM). To balance the training data, set C was constructed from

combination of significant gene set A and one third of randomly selected nonsignifi-

cant gene set B, where p = 0.01 was used as nominal significance. In our experiment,

we employed z-scores instead of p-values due to their normal distribution. Genes

were re-prioritized according to their predictions (Ridge) or distances from separat-

ing hyperplane (SVM). Re-prioritized results offered a more flexible way to analyze

functional associations at different scales.

To demonstrate the performance of re-prioritization, we accessed the mean in-

teractions and the AUC of re-prioritized genes from Ridge and SVM with original

GWAS using 66 documented AD candidates as gold standard positive.

TNGWAS

Starting from a set of significant GWAS findings, tnGWAS includes their immediate

neighbors in the result. It hypothesizes that QT-relevant functional modules con-

sist of top GWAS findings and their close neighbors. We extracted the interaction
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matrix containing connectivity measures between significant GWAS findings and all

the genes, and identified genes highly interacted with ≥ 1 significant genes. In the

experiment, we applied gene p-value ≤ 1e-7 to select significant GWAS findings, and

interaction weight ≥ 0.3 to define high connectivity. This yielded 4 significant genes

and 120 highly interacted neighbors. In practice, we can include more top predictions

and take more GWAS top neighbors to obtain a larger number of candidate modules.

IDENTIFICATION OF GWAS ENRICHED MODULES

Machine learning based approaches were designed to yield top gene findings not only

enriched by GWAS results but also densely connected; while tnGWAS was to identify

top GWAS findings together with their immediate neighbors. For module identifi-

cation, both framework offered a list of candidates for us to detect GWAS-enriched

modules. We clustered top genes from above to firstly identify candidate modules.

Since one gene could perform functions in multiple pathways, we employed the Link

Clustering algorithm [2] on top genes to detect communities as clusters of links in-

stead of nodes. The resulting candidate modules could be overlapping. Top GWAS

findings were used to assess the enrichment of candidate module, while significantly

enriched ones were identified as phenotype-relevant modules.

Different from previous bottom-up methods, these top-down strategies examine

only a small number of candidate modules that were both highly connected and

GWAS enriched, and thus help increase statistical power.

56



Chromosome

-l
o

g1
0
(p

)

APOE
APOC1

TOMM40

Mean FDG of Hippocampus

Figure 4.1: Manhattan plot of the FDG measure in the hippocampal region. Blue line
indicates suggestive association threshold 5E-5 while red line indicates genome-wide
significant threshold 5E-7.

FUNCTIONAL ANNOTATION

To assess functional relevance of the identified modules, we tested their over-representation

on specific neurobiological functions and signalling pathways. We analyzed functional

annotation using KEGG pathways and GO-BP terms.

4.3 EXPERIMENTAL RESULTS

4.3.1 GWAS OF HIPPOCAMPUS IQT

GWAS was performed to examine genetic associations between SNPs and the hip-

pocampal FDG-PET measure. Four SNPs were identified as significant using p ≤

5E-7 (see Fig. 4.1 for the Manhattan plot), including two within APOE, one within

TOMM40 and one within APOC1. After mapping to 17,881 protein coding regions,

four genes were identified to be significant associations: APOC1, APOE, PVRL2 and

TOMM40.
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Figure 4.2: Performance evaluation of re-prioritized results. (A) Mean interaction
measures among top N findings (N ranging from 50 to 3000) of three methods on
hippocampus. (B) ROC curves with AUC results on hippocampus, to measure the
concordance between the GWAS/NetWAS findings and the documented AD genes.

4.3.2 MACHINE LEARNING BASED RE-PRIORITIZATION

As mentioned earlier, top predictions from machine learning based re-prioritization

would conserve both densely functional interaction and strong phenotype-relevance.

Since tnGWAS did not assign ranks to top neighbors, we compared top predictions

from Ridge, SVM with original GWAS to access their re-prioritization performance.

Mean statistics of functional interactions and AUC were assessed on different scales

of top predictions and shown in Fig. 4.2.

From Fig. 4.2(A), both Ridge and SVM yielded much stronger connectivity than

GWAS. Dense interaction among top predictions demonstrated the advantage of

network-based integration. From Fig. 4.2(B), Ridge and SVM gained higher AUC

than original GWAS, indicating the AD-relevance of top predictions by these new

approaches. These support the idea that strong relationships exist between gene

and phenotype, and that functionally-relevant genes are more likely to be inter-

58



acted [14, 20, 64]. Ridge performed better than SVM in both evaluations, suggest-

ing that continuous p-values do provide more valuable information than significance

status. Combined with results from Chapter 3, we confirmed the outstanding re-

prioritization performance of Ridge-based NetWAS.

4.3.3 HIPPOCAMPUS-RELEVANT TOP PREDICTIONS

We compared the functional connectivity of top findings among tnGWAS, two ma-

chine learning-based methods (Ridge and SVM), and original GWAS. For a fair com-

parison, we focused on top 124 findings, since 124 is the number of top findings from

tnGWAS (see section 4.2.4). Fig. 4.3 showed the heatmaps of connectivity and inter-

action networks using different thresholds where genes were colored by their original

GWAS ranks.

Both heatmaps and networks demonstrate much denser interactions yielded by

Ridge, SVM and tnGWAS than original GWAS. tnGWAS, due to including immediate

neighbors, gained the densest interaction. Top predictions from Ridge and SVM are

also densely connected. In addition, they contain more top GWAS findings than

tnGWAS (i.e., more nodes were colored by top GWAS findings). These observations

reflect the different hypotheses behind the two strategies described earlier. Machine

learning-based approaches seem to perform better as a whole as they integrate GWAS

results and the tissue-specific network in a better fashion.

4.3.4 HIPPOCAMPUS-RELEVANT MODULES

We focus on top 124 predictions from Ridge given its top performance among four

approaches. We preprocessed the functional connectivity network among these 124
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Table 4.1: Details of the identified modules from Ridge.

Ridge Module ID # of genes
GWAS Enrichment
p-value (corrected)

Hippocampus

Module 01 21 2.68E-03
Module 02 89 4.84E-04
Module 03 26 7.85E-05
Module 04 11 4.21E-02
Module 05 22 3.10E-03
Module 06 11 4.21E-02

genes to keep interactions with weights ≥ 0.2, and performed link clustering on this

network. 21 modules were identified as candidates after removing those with < 10

genes. 6 out of 21 were significantly enriched by top 50 GWAS findings; see Table 4.1.

Functional annotation was applied to further examine functional relevance of iden-

tified modules. Fig. 4.4 shows (A) the KEGG pathway and (B) GO-BP enrichment

results. All modules except Module 03 have significantly enriched pathways, some of

which are related to neurodegenerative diseases (e.g., signal transduction like calcium

signaling pathway had shown abnormality in many neurodegenerative disorders like

AD [7]). Fig. 4.4(B) shows GO-BP terms that are significantly enriched by more than

2 modules. We could also find a large number of BP terms related to neurological sys-

tem process (e.g., cognition), behavior (e.g., learning or memory), neurological system

process (e.g., neuromuscular process), all of which had direct or indirect relationships

with neurodegenerative diseases.

4.4 DISCUSSIONS AND CONCLUSIONS

We have proposed two top-down module identification frameworks: machine learning-

based and GWAS top-neighbor-based. Both approaches integrate tissue specific func-

tional interaction network with GWAS data to identify phenotype-relevant modules.
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Different from previous network-based module identification strategies, we start our

search from the whole network to extract GWAS-relevant and highly interacted ones.

Machine learning based approaches re-prioritize GWAS results, which can facilitate

various relevant analyses. Subsequent GWAS enrichment assessment implies both

tissue and GWAS specificity of the identified modules. Possible future directions in-

clude: (1) extending tnGWAS to re-rank identified top-neighbors using their GWAS

statistics and interactions; and (2) applications to other tissues and omics data.
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Chapter 5

TWO-DIMENSIONAL ENRICHMENT ANALYSIS PARADIGM FOR

MINING HIGH-LEVEL IMAGING GENETIC ASSOCIATIONS

Enrichment analysis has been widely applied in the GWAS, where gene sets cor-

responding to biological pathways are examined for significant associations with a

phenotype to help increase statistical power and improve biological interpretation.

In this work, we expand the scope of enrichment analysis into brain imaging genet-

ics, an emerging field that studies how genetic variation influences brain structure

and function measured by neuroimaging QT. Given the high dimensionality of both

imaging and genetic data, we propose to study Imaging Genetic Enrichment Analysis

(IGEA), a new enrichment analysis paradigm that jointly considers meaningful GS

and BC and examines whether any given GS-BC pair is enriched in a list of gene-iQT

findings. Using gene expression data from Allen Human Brain Atlas and imaging

genetics data from Alzheimer’s Disease Neuroimaging Initiative as test beds, in this

chapter, we present an IGEA framework and conduct a proof-of-concept study. This

empirical study identifies 25 significant high-level two-dimensional imaging genetics

modules. Many of these modules are relevant to a variety of neurobiological path-

ways or neurodegenerative diseases, showing the promise of the proposal framework

for providing insight into the mechanism of complex diseases.

5.1 BACKGROUND

Brain imaging genetics is an emerging field that studies how genetic variation influ-

ences brain structure and function. GWAS has been performed to identify genetic
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markers such as SNPs that are associated with brain iQTs [77, 79]. Using biolog-

ical pathways and networks as prior knowledge, enrichment analysis has also been

performed to discover pathways or network modules enriched by GWAS findings to

enhance statistical power and help biological interpretation [31]. For example, nu-

merous studies on complex diseases have demonstrated that genes functioning in

the same pathway can influence iQTs collectively even when constituent SNPs do

not show significant association individually [72]. Enrichment analysis can also help

identify relevant pathways and improve mechanistic understanding of underlying neu-

robiology [32,48,62,71].

In the genetic domain, enrichment analysis has been widely studied in gene ex-

pression data analysis to test the functional relevance of differential expressed genes;

and has recently been modified to analyze GWAS data to assess the collective effects

of a set of significant GWAS findings. GWAS-based enrichment analysis first maps

SNP-level scores to gene-based scores, and then test whether a pre-defined gene set S

(e.g., a pathway) is enriched in a set of significant genes L (e.g., GWAS findings). As

we introduced in Chapter 2, two strategies are often used in genetic enrichment anal-

ysis to compute the enrichment significance: over-representation test [17, 18, 41, 92]

and rank-based test [87]. Over-representation approaches aim to solve an indepen-

dence test problem (e.g., χ2 test, hypergeometric test, or binomial z-test) by treating

genes as significant if their scores exceed a threshold. Rank-based methods take

into account the score of each gene to determine if the members of S are randomly

distributed throughout L.

In brain imaging genetics, the above enrichment analysis methods are applicable

only to genetic findings associated with each single iQT. Our ultimate goal is to
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discover high-level associations between meaningful gene sets and brain circuits, which

typically include multiple genes and multiple iQTs. To achieve this goal, we propose

to study Imaging Genetic Enrichment Analysis (IGEA), a new enrichment analysis

paradigm that jointly considers sets of interest (i.e., GS and BC) in both genetic and

imaging domains and examines whether any given GS-BC pair is enriched in a list of

gene-iQT findings.

Using whole brain whole genome gene expression data from Allen Human Brain

Atlas (AHBA) and imaging genetics data from ADNI as test beds, we present a novel

IGEA framework and conduct a proof-of-concept study to explore high-level imaging

genetic associations based on brain-wide genome-wide association study (BWGWAS)

results. For consistency purpose, in this study, we use GS to indicate a set of genes

and BC to indicate a set of ROIs in the brain. The proposed framework consists

of the following steps (see also Figure 5.1): (1) conduct BWGWAS on ADNI amy-

loid imaging genetics data to identify SNP-iQT and gene-iQT associations, (2) use

brain-wide-genome-wide expression data from AHBA to construct meaningful GS-

BC modules, (3) perform IGEA to identify GS-BC modules significantly enriched

by gene-iQT associations using an over-representative strategy, and (4) visualize and

interpret the identified GS-BC modules.

5.2 MATERIALS AND DATA SOURCES

To demonstrate the proposed IGEA framework for identifying two-dimensional imag-

ing genetic modules, we apply it to the brain-wide amyloid imaging genetic analysis

in the study of AD. “Amyloid cascade hypothesis” has been considered the leading

pathogenesis of AD for decades where brain amyloid deposition is thought to be hap-
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Figure 5.1: Overview of the proposed Imaging Genetic Enrichment Analysis frame-
work. (A) Perform SNP-level GWAS of brain wide imaging measures. (B) Map
SNP-level GWAS p-values to gene-based p-values. (C) Construct gene-ROI expres-
sion matrix from AHBA data. (D) Construct GS-BC modules by performing two-
dimensional hierarchical clustering, and then filter out biclusters with an average
correlation below a user-given threshold. (E) Perform IGEA by mapping gene-based
p-values to the identified GS-BC modules. (F) For each enriched GS-BC module,
examine the GS using GO terms, KEGG pathways, and OMIM disease databases,
and visualize the identified BC by mapping to brain.
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Table 5.1: Participant characteristics: HC = Healthy Control; SMC = Significant
Memory Concern; EMCI = Early Mild Cognitive Complaint; LMCI = Late Mild
Cognitive Complaint; AD = Alzheimer’s Disease.

Subject HC SMC EMCI LMCI AD
Number 231 90 288 196 175
Gender (M/F) 119/112 36/54 163/125 114/82 105/70
Age(mean±sd) 76.18±6.64 72.49±5.72 71.67±7.25 73.85±8.49 75.26±7.76
Education(mean±sd) 16.43±2.67 16.80±2.61 16.12±2.63 16.35±2.80 15.86±2.73

pened over years before the early symptom of AD [52, 73], and can be measured by

brain imaging methods.

5.2.1 BRAIN WIDE GENOME WIDE ASSOCIATION STUDY (BWG-

WAS)

The imaging and genotyping data used for BWGWAS were obtained from the ADNI

database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical and neuropsycho-

logical assessment can be combined to measure the progression of MCI and early AD.

For up-to-date information, see www.adni-info.org.

Preprocessed [18F]Florbetapir PET scans (i.e., amyloid imaging data) were down-

loaded from adni.loni.usc.edu, then aligned to the corresponding MRI scans and

normalized to the MNI space as 2 × 2 × 2 mm voxels. ROI level amyloid measure-

ments were further extracted based on the MarsBaR AAL atlas. Genotype data of

both ADNI-1 and ADNI-GO/2 phases were also downloaded, and then quality con-

trolled, imputed and combined as described in [42]. A total of 980 non-Hispanic

Caucasian participants (Table 5.1) with both complete amyloid measurements and
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Figure 5.2: Manhattan plot of imaging quantitative genome wide association for AD
individuals based on precuneus (right) measurement from amyloid imaging data. The
x-axis represents the chromosomes and the y-axis represents −log10(p), where p is the
gene-based significance.

genome-wide data were studied. Associations between 105 (out of a total 116) base-

line amyloid measures and 5,574,300 SNPs were examined by performing SNP-based

GWAS using PLINK [69] with sex, age and education as covariates. To facilitate the

subsequent enrichment analysis, a gene-based p-value was determined as the smallest

p-value of all SNPs located in ±20K bp of the gene [60].

5.2.2 CONSTRUCTING GS-BC MODULES USING AHBA

There are many types of prior knowledge that can be used to define meaningful GS

and BC entities. In the genomic domain, the prior knowledge could be based on

Gene Ontology or functional annotation databases; in the imaging domain, the prior

knowledge could be neuroanatomic ontology or brain databases. In this work, to

demonstrate the proposed IGEA framework, we use gene expression data from the

Allen Human Brain Atlas (AHBA, Allen Institute for Brain Science, Seattle, WA;
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available from http://www.brain-map.org/) to extract GS and BC modules such that

genes within a GS share similar expression profiles and so do ROIs within a BC. We

hypothesize that, given these similar co-expression patterns across genes and ROIs,

each GS-BC pair forms an interesting high level imaging genetic entity that may

be related to certain biological function and can serve as a valuable candidate for

two-dimensional IGEA.

The AHBA includes genome-wide microarray-based expression covering the en-

tire brain through systematic sampling of regional tissue. Expression profiles for eight

health human brains have been released, including two full brains and six right hemi-

spheres. One goal of AHBA is to combine genomics with the neuroanatomy to better

understand the connections between genes and brain functioning. As an early report

indicated that individuals share as much as 95% gene expression profile [100], in this

study, we only included one full brain (H0351.2001) to construct GS-BC modules.

First all the brain samples (∼ 900) were mapped to MarsBaR AAL atlas, which in-

cluded 116 brain ROIs. Due to many-to-one mapping from brain samples to AAL

ROIs, there are > 1 samples for each ROI. Following [99], samples located in the same

ROI were merged using the mean statistics. Probes were then merged to genes using

the same strategy. Finally the preprocessed gene-ROI profiles were normalized for

each ROI. As a result, the expression matrix contained 16,076 genes over 105 ROIs.

We use E to denote this expression matrix, where ei is the expression level of

gene i across all the 105 ROIs in E, and ej is the expression profile of ROI j across

all the 16,076 genes in E. Given two genes i1 and i2, we use the Pearson correlation

coefficient to define their dissimilarity dgene(i1, i2) as follows:
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dgene(i1, i2) = 1/2× (1− corr((ei1)T , (ei2)T )). (5.1)

Similarly, given two ROIs j1 and j2, we define their dissimilarity droi(j1, j2) as follows:

droi(j1, j2) = 1/2× (1− corr(ej1 , ej2)). (5.2)

We performed a two-dimensional clustering analysis on E to identify interesting

GS-BC modules. First, we calculated the distance matrices for both genes and ROIs,

using Eq. (5.1) and Eq. (5.2), respectively. Next, two dendrograms were constructed

by applying hierarchical clustering to two distance matrices separately, using the

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) algorithm [83].

After that, in the genomic domain, as most enrichment analyses placed constraints

on genetic pathways of sizes from 10 to 200 [72], we cut the dendrogram at half of

its height to build genetic clusters (i.e., GSs) whose sizes are mostly within the above

range. Finally, in the imaging domain, we also employed the same parameter to

construct ROI clusters (i.e., BCs).

Let X be a GS-BC module with n genes and m ROIs, where xi is the expression

level of gene i across all the m ROIs in X, and xj is the expression profile of ROI

j across all the n genes in X. For each pair of genes in X, i.e., ((xi1)T , (xi2)T ), we

calculate its correlation coefficient. For each pair of ROIs in X, i.e., (xj1 ,xj2), we also

calculate its correlation coefficient. After that, we transform each of these correlation

coefficients, say c, to Fisher’s z-statistic z(c) using the following Eq. (5.3):

z(c) =
1

2
log

(
1 + c

1− c

)
. (5.3)
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We then define zgene(X), the gene-based average Fisher’s z-statistics of correlation

coefficient of X, as follows:

zgene(X)=
2

n(n− 1)

∑
0<i1<i2≤n

z(corr((xi1)T,(xi2)T )). (5.4)

Similarly, we define zroi(X), the ROI-based average Fisher’s z-statistics of corre-

lation coefficient of X, as follows:

zroi(X) =
2

m(m− 1)

∑
0<j1<j2≤m

z(corr(xj1 ,xj2)). (5.5)

Based on these average gene-based and ROI-based z-statistics, respectively, we

select the top 20% of all the GS-BC modules and include those in our subsequent

analyses, to ensure our studied modules have comparatively high co-expression pro-

files. Thus, in this work, we focus on the analysis of the following three types of

GS-BC modules with top z-statistics:

1. Gene-based : These are the modules with relatively high co-expression profiles

between genes, i.e., zgene(X) is ranked in the top 20% of all the zgene scores.

2. ROI-based : These are the modules with relatively high co-expression profiles

between ROIs, i.e., zroi(X) is ranked in the top 20% of all the zroi scores.

3. Gene&ROI-based : Both (1) and (2) hold.

5.2.3 IMAGING GENETIC ENRICHMENT ANALYSIS (IGEA)

Pathway enrichment analysis has been extensively employed to genomic domain to

analyze the genetic findings associated with a specific iQT. In this study, our goal is to
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identify high level associations between gene sets and brain circuits, which typically

include multiple genes and multiple iQTs.

In this study, we propose the over-representative-based IGEA by extending the

existing threshold-based enrichment analysis. SNP-level findings have been mapped

to gene-level findings in Section 5.2.1. The GWAS findings are a list L of N =

NG × NB gene-iQT associations, where we have a set Gd of NG = |Gd| genes and a

set Bd of NB = |Bd| iQTs in our analysis. From Section 5.2.2, GS-BC modules have

been constructed, where either relevant genes share similar expression profiles across

relevant ROIs, or relevant ROIs share similar expression profiles across relevant genes,

or both. Given an interesting GS-BC module with gene set Gk and iQT set Bk, IGEA

aims to determine whether the target GS-BC module T = {(g, b)|g ∈ Gd ∩ Gk, b ∈

Bd ∩Bk} is enriched in L.

Now we describe our threshold-based IGEA method. We have N gene-iQT pairs

from GWAS. Out of these, n = |A| pairs (the set A) are significant ones with GWAS

p-value passed a certain threshold. We also have m = |P | (the set P ) gene-iQT

pairs from a given GS-BC module, and k significant pairs are from P . Using Fisher’s

exact test for independence, the enrichment p-value for the given GS-BC module is

calculated as:

p-value = Pr(|A ∩ P | ≥ k) =
∑

i≥k

(
m
i

)
×
(
N−m
n−i

)(
N
n

) . (5.6)

Here, Pr(·) is the probability function.
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5.2.4 EVALUATION OF THE IDENTIFIED GS-BC MODULES

For evaluation purpose, we tested the statistical significance of the IGEA results.

We hypothesize that the gene-iQT associations from BWGWAS of the original data

should be overrepresented in certain GS-BC modules, and the BWGWAS results on

permuted data should not be enriched in a similar number of GS-BC modules. We

performed the IGEA analysis on n = 50 permuted BWGWAS results, and estimated

the p-value for the number of significant GS-BC modules discovered from the original

data using a t-distribution with n− 1 degrees of freedom.

Given a BWGWAS result R, let Prop(R) be the proportion of modules which are

significantly enriched by R. Let Rorig be the original BWGWAS result, and Rperm(i)

be the i-th permuted BWGWAS result. Let S = {Prop(Rperm(i)) | 1 ≤ i ≤ n} be

the set of these proportion values for all the permuted results. Then the p-value is

estimated using Eq. (5.7).

p-value=Pr

(
Tn−1 ≥

Prop(Rorig)− µperm√
1 + 1/n× σperm

)
. (5.7)

where Tn−1 is the t-distribution with n− 1 degrees of freedom, µperm is the sample

mean of S and σperm is the sample standard deviation of S.

To determine the functional relevance of the enriched GS-BC modules, we also

tested whether genes from each module are over-represented for specific neurobi-

ological functions, signaling pathways or complex neurodegenerative diseases. We

performed pathway enrichment tests using GO terms, KEGG pathways, and OMIM

disease database.
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Table 5.2: Twenty-five significantly enriched GS-BC modules from IGEA. See also
Section 5.3.2 and Fig. 5.3 for details about relevant GSs and BCs respectively.

Module
ID

Top 20%
CoExpa

BC
ID

# of
ROIs

GS
ID

# of
genes

p-value
(Gb)

p-value
(Rc)

p-value
(G&Rd)

01 Rc BC07 8 GS01 81 - 2.61E-06 -

02
G, R,
G&Rd BC02 4 GS02 168 9.06E-06 9.06E-06 9.06E-06

03 Gb BC03 11 GS02 168 2.54E-11 - -

04
G, R,
G&R

BC04 5 GS02 168 1.44E-06 1.44E-06 1.44E-06

05 G BC05 14 GS02 168 6.42E-06 - -
06 R BC06 13 GS02 168 - 5.91E-07 -
07 R BC08 23 GS02 168 - 5.65E-22 -

08
G, R,
G&R

BC01 4 GS03 55 1.38E-06 1.38E-06 1.38E-06

09 G BC02 4 GS03 55 4.39E-13 - -
10 R BC04 5 GS03 55 - 1.41E-15 -
11 G BC05 14 GS03 55 1.01E-14 - -
12 R BC06 13 GS03 55 - 1.72E-08 -
13 R BC07 8 GS03 55 - 2.40E-21 -
14 R BC07 8 GS04 66 - 4.00E-07 -

15
G, R,
G&R

BC01 4 GS05 19 3.83E-05 3.83E-05 3.83E-05

16
G, R,
G&R

BC02 4 GS05 19 6.88E-09 6.88E-09 6.88E-09

17
G, R,
G&R

BC04 5 GS05 19 2.64E-10 2.64E-10 2.64E-10

18 R BC06 13 GS05 19 - 2.26E-11 -

19
G, R,
G&R

BC07 8 GS05 19 1.54E-14 1.54E-14 1.54E-14

20
G, R,
G&R

BC02 4 GS06 28 4.87E-08 4.87E-08 4.87E-08

21 G BC02 4 GS07 24 7.69E-05 - -
22 G&R BC01 4 GS08 33 - - 1.97E-04
23 G BC02 4 GS08 33 1.11E-07 - -
24 R BC04 5 GS08 33 - 7.39E-09 -
25 G BC02 4 GS09 111 4.07E-05 - -

aTo indicate whether the top 20% modules are selected based on the gene-based, ROI-based
or gene&ROI-based strategy.
bG: Gene-based.
cR: ROI-based.
dG&R: Gene&ROI-based.
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Figure 5.4: Brain maps of four brain circuits (BCs) identified from IGEA.
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5.3 EXPERIMENTAL RESULTS

5.3.1 SIGNIFICANT GS-BC MODULES

By performing hierarchical clustering on both genetic and imaging domains, 171 out

of 216 genetic clusters (only those with size ranging from 10 to 200) and 9 imaging

clusters (with size ranging from 4 to 23, no clusters are excluded) were identified. 1,539

GS-BC modules were generated by combining each pair of genetic and ROI clusters.

Two sets of 308 (20% of 1,539) modules were selected according to gene-based and

ROI-based z-statistics, respectively. Among them, 90 modules were among top 20% in

both gene-based and ROI-based ranking results. We used a moderate size thresholds

for the selection, to avoid the exclusion of potentially interesting candidates.

For the BWGWAS results, we obtained 16, 076 × 105 = 1, 687, 980 gene-iQT

associations after mapping SNP-based p-values to genes. Out of these, 1,402 gene-

iQT associations passed the BWGWAS p-value of 1.0e-5. Fig. 5.2 shows the gene-

based GWAS result of an example iQT (i.e., the average amyloid deposition in the

right precuneus). Precuneus amyloid concentration has been demonstrated to be

associated with disordered activity in AD [34].

Three sets of constructed GS-BC modules (308, 308, and 90 with top z-statistics

using gene-based, ROI-based and gene&ROI-based strategies respectively, see Sec-

tion 5.2.2) were tested separately for whether they could be enriched by BWGWAS

results using IGEA. Across three sets, totally 25 modules turned out to be signif-

icant after Bonferroni correction (see Table 5.2), of which 15, 17, and 9 are from

gene-based, ROI-based, and both gene&ROI-based categories, respectively. We also

tested the significance of the number of identified GS-BC modules. Compared to the
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Table 5.3: Top enriched OMIM diseases of identified GSs.

GS ID # of gene OMIM Disease p-value

GS01 81
Encephalopathy 4.2e-2*

Dementia 3.6e-2*

GS02 168
Encephalopathy 5.0e-2
Breast cancer 9.5e-2

GS03 55
Leukemia 2.7e-2*

Alzheimer’s disease 8.9e-2
GS04 66 Hypertension 5.0e-2

GS05 19
Anomalies 2.4e-2*

Alzheimer’s disease 4.5e-2*

GS06 28 Ectodermal dysplasia 2.0e-2*

GS07 24
Hypertension 3.4e-2*

Spinocerebellar ataxia 4.3e-2*

GS08 33 Glycogen storage disease 1.6e-2*

GS09 111 Immunodeficiency 1.4e-2*

*Significantly enriched.

permuted BWGWAS results, the analysis on the original data yielded a significantly

larger number of enriched GS-BC modules with estimated p-values of 7.6e-25, 1.2e-9,

and 1.8e-25, corresponding to gene-based, ROI-based, and gene&ROI-based strate-

gies respectively, indicating that imaging genetic associations existed in these enriched

GS-BC modules.

Across all 25 identified modules, there are 9 and 8 unique GS and BC entities

respectively. Fig. 5.3 shows the 8 unique identified BCs with corresponding ROI

names, and Fig. 5.4 maps four of those onto the brain. For example, BC03 and BC04

include structures that are major spots for amyloid accumulation in AD (e.g., cingu-

lum, precuneus). BC05 involves structures responsible for motivated behaviors (e.g.,

caudate, pallidum, putamen) and sensory information processing (e.g., thalamus).

BC08 involves various frontal regions responsible for executive functions. Details of

all 25 modules are listed in Table 5.2. We can find that some modules share common

gene sets with different brain circuits, and some share the same brain circuits with

79



different gene sets. This illustrates the complex associations among multiple genes

and multiple brain ROIs.

5.3.2 PATHWAY ANALYSIS OF IDENTIFIED GS-BC MODULES

To explore and analyze functional relevance of our identified GS-BC modules, we per-

formed pathway enrichment analysis from three aspects including GO terms, func-

tional pathways and diseases using GO terms, KEGG pathways and OMIM diseases

databases, respectively.

Fig. 5.5 shows the KEGG pathway enrichment results which were mapped to 15

categories. From the results, most identified GSs had a number of significant func-

tional enrichments. Several of them were directly related to the neurodegenerative

disease and its development, e.g., Alzheimer’s disease enriched in GS05 and Parkin-

son’s diease enriched in GS01. Another major part of them were also related to the

neurodegenerative diseases and their development. For instance, caffeine as the most

widely used psychoactive substance, its metabolism (from GS09 located in Module

25) can affect brain metabolism and has potential benefits on Parkinson’s Disease

treatment [66]. There are also several enriched pathways related to oxidative stress,

which is a critical factor for a range of neurodegenerative disorders. For example,

glycolysis and gluconeogenesis (from GS02 located in Modules 02-07) are associated

with hypoxia, ischemia, and AD [13]. Gap junctions (from GS03 located in Modules

08-13) can couple various kinds of cells in the central nervous system (CNS) which

play an important role in maintaining normal function. Signaling transduction like

calcium signaling pathway (from GS03 located in Modules 08-13) playing key role in

short- and long-term synaptic plasticity, has shown abnormality in many neurode-
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generative disorders including Alzheimer’s Disease, Parkinson’s disease, amyotrophic

lateral sclerosis (ALS), Huntington’s disease, spinocerebellar ataxias (SCA) and so

on [7].

Table 5.3 shows the OMIM disease enrichment results. Several neurodegeneration-

related and age-related diseases and complex disorders were enriched in various gene

sets, such as Alzheimer’s disease from GS03 and GS05, Encephalopathy from GS01

and GS02, and Anomalies from GS05. Besides neurodegeneration diseases and dis-

orders, several cancer-related entities be detected including breast cancer from GS02

and leukemia from GS03. These findings provided potential evidence for the studies

that focused on investigating the relationship between cancer and neurodegeneration,

with abnormal cell growth and cell loss in common.

GO enrichment result indicates the relationship between identified GSs and GO

terms from three categories including biological process (BP), cellular component

(CC), and molecular function (MF) (http://geneontology.org/). For the GO en-

richment of all 9 gene sets, 163 various GO terms were significantly enriched. Top

enriched terms were selected and grouped to 7 categories including behavior, cell

communication, mitochondrion, metabolic process, neurological system process, re-

sponse to stimulus, and signal transduction, as shown in Table 5.4. A large number

of these terms have direct or indirect relationships with neurodegenerative diseases

or phenotypes.

5.4 DISCUSSIONS AND CONCLUSIONS

We have presented a two-dimensional imaging genetic enrichment analysis (IGEA)

framework to explore the high level imaging genetic associations by integrating whole
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Table 5.4: Top enriched GO terms of GSs from identified GS-BC modules.

Group
GS
ID

# of
genes

GO Category
Corrected
p-value

Behavior GS03 55
Behavior 2.2E-2
Learning or memory 4.4E-2

Cell Commu-
nication

GS01 81
Regulation of synaptic transmission 2.7E-6
Neuron-neuron Synaptic transmission 2.9E-3

GS03 55 Synaptic transmission 1.7E-4

Metabolic
Process

GS05 19
Fat-soluble vitamin metabolic process 4.3E-2
Organic hydroxy compound biosyn-
thetic process

4.8E-2

GS06 28 Regulation of translational termination 2.8E-2

Mitochondrion GS02 168
Mitochondrial membrane part 2.5E-3
Mitochondrial respiratory chain com-
plex I

4.9E-3

Neurological
System Pro-
cess

GS03 55
Associative learning 1.1E-2
Learning 4.5E-6

GS09 111

Detection of chemical stimulus involved
in sensory perception 1.1E-4
Olfactory receptor activity 1.9E-5

Response To
Stimulus

GS03 55
Response to amphetamine 2.0E-3
Visual behavior 4.5E-3

GS05 19
Response to cholesterol 3.6E-2
Response to sterol 3.7E-2

GS09 111 Detection of chemical stimulus 1.6E-4

Signal Trans-
duction

GS01 81 Glutamate receptor signaling pathway 7.3E-4

GS03 55

Adenylate cyclase-activating dopamine
receptor signaling pathway 3.1E-3
Dopamine receptor signaling pathway 1.4E-2

GS05 19
Transmembrane receptor protein ki-
nase activity

4.4E-2

GS09 111 Olfactory receptor activity 1.9E-5
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brain genomic, transcriptomic and neuroanatomic data. Traditional pathway enrich-

ment analysis focused on investigating genetic findings of a single phenotype one at

a time, and relationships among iQTs could be ignored. Such approach could be

inadequate to provide insights into the mechanisms of complex diseases that involve

multiple genes and multiple iQTs. In this chapter, we have proposed a novel enrich-

ment analysis paradigm IGEA to detect high level associations between gene sets and

brain circuits. By jointly considering the complex relationships between interlinked

genetic markers and correlated brain imaging phenotypes, IGEA provides additional

power for extracting biological insights on neurogenomic associations at a systems

biology level and new insights into the complex associations among multiple genes

and multiple ROIs, which can be treated as candidates to examine mechanisms of AD

more specifically. Take module GS03-BC05 for instance which is significantly enriched

in GWAS findings, several ROIs (e.g. caudate, pallidum, and putamen) from BC05

have been indicated responsible for motivated behaviors [15], meanwhile both KEGG

and GO functional enrichment results of GS03 show high relevance to behavior and

normal function maintaining (see Figure 5.5 and Table 5.4).

The real power of IGEA, however, can be affected by several aspects. First,

the constructed GS-BC modules should reflect the real relationships among genes

as well as brain ROIs. Thus it is crucial to define meaningful gene sets and brain

circuits. In our analysis, GSs and BCs were separately extracted from AHBA brain-

wide expression data based on hierarchical clustering, which were then combined to

provide GS-BC modules. This strategy was based on the idea that interlinked genetic

markers (or brain ROIs) would conserve similar expression pattern, that is, would be

highly co-expressed. Second, the statistical measure of enrichment evaluation can be
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based on different strategies. We adopted hypergeometric test in our experiment to

estimate the over-representation of our defined GS-BC modules to the list of gene-iQT

pair.

Based on these two considerations, our proposed paradigma can be further im-

proved. From our GS-BC module construction, GSs (or BCs) are clustered together

based on their co-expression pattern across all the ROIs in the whole brain (or across

all the genes in the genome). Although statistical measures was calculated using

Fisher’s z-transformation to restrict our analyses on only highly co-expressed mod-

ules from our bi-clustering results, we could be missing other highly co-expressed

GSs (or BCs) if they only had similar expression patterns on a small set of ROIs

(or genes). In other words, our module construction strategy considered the global

expression pattern but ignored the local ones. It is worth further investigation to try

other reasonable strategies by applying prior knowledges such as pre-defined genetic

pathways/networks or brain circuits, or by using different co-clustering algorithms

(e.g., [95]) to take into consideration of relevant local expression patterns.

Hypergeometric test requires a pre-defined threshold to determine the list of gene-

iQT pairs. Another limitation is that it considers only the count of significant gene-

iQT pairs, but ignores the strength of gene-iQT associations. There are a number of

rank-based enrichment analysis methods (e.g. GSEA [87]) that can be employed in

our two-dimensional enrichment analysis to overcome these disadvantages. Another

issue is that we used the smallest SNP-level p-value within the gene to represent

the gene-based p-value. Therefore, another possible future direction is to explore

other set-based methods for calculating gene-based p-values such as VEGAS [51],

GATES [49] and so on. Besides, from mathematical perspective, associating GS-BC
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modules and gene-iQT findings can be seen as a similarity discovery over two matrices

that would be addressed from machine learning perspectives like the study proposed

by Wang et al. [94].
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Chapter 6

CONCLUSIONS

In this final chapter, we summarize the contributions of this thesis and discuss direc-

tions for future work.

6.1 SUMMARY

In this thesis, we investigate high-level imaging genetic association strategies and

their applications in neurodegenerative disease for discovering disease-relevant mod-

ules. Existing approaches focus on only genetic domains, as well as overlook the

tissue-context of genetic functional interactions. The main contributions of this thesis

involve designing novel models for understanding high-level imaging genetic associa-

tions, and are summarized as follows:

Module identification: Network analysis of genomics data has been applied as

complementary approach to GWAS and has promoted the understanding of molec-

ular mechanisms for complex diseases and phenotypes. In this work, we propose

NetWAS-based module identification framework with following threefold novelties:

(i) expands the NetWAS scope from GWAS re-prioritization to module identification;

(ii) introduces regression models into NetWAS to embrace the complete coverage of

the continuous p-value spectrum; and (iii) offers a more efficient, top-down strategy to

identify phenotype-relevant network modules, given that the top findings from Net-

WAS are designed to be both GWAS-enriched and densely connected. This proposed

module identification strategy is among the first to incorporate tissue context with

GWAS data to understand underpinning genetic functional interaction in a precise
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way. It is applied to a real amygdala imaging genetics analysis in the study of AD.

The constructed modules from this approach yield both strong tissue-specific interac-

tions and disease-relevances, confirm the hypothesis that GWAS significant findings

are enriched among nominally significant and functional interacted genes.

We further extend the above hypothesis and propose the tnGWAS to include

immediate neighbors of top GWAS findings as disease-relevant candidates. The tnG-

WAS extracts densely connected modules from top GWAS findings, based on the

hypothesis that relevant modules consist of top GWAS findings and their close neigh-

bors. It is applied to a real hippocampal imaging genetics analysis in the study of AD,

and yield the densest interaction among top candidate genes. Experimental results

from both NetWAS-based and tnGWAS approaches demonstrate that precise context

helps explore the collective effects of genes with biologically meaningful interactions

specific to the studied diseases and phenotypes.

Imaging genetics enrichment analysis: In the second part of this thesis,

we focus on the functional annotation of interested modules. Traditional enrichment

analysis annotates biological functions for only gene sets. It is inadequate for imaging

genetic analysis, where functional or structural interactions present among both genes

and brain iQTs. We propose IGEA, a new enrichment paradigm that expands the

scope of one-dimensional genetic enrichment analysis into brain imaging genetics.

This integrative framework jointly investigates multi-omics data to form meaningful

GSs and BCs, and examine whether any given GS-BC module is enriched in a list

of gene-iQT findings. We demonstrate the power of proposed IGEA for providing

additional insights on neurogenomic associations by applying it to BWGWAS of AD,

where whole brain genomic, transcriptomic, and neuroanatomic data are integrated.
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6.2 FUTURE DIRECTIONS OF RESEARCH

This thesis provides us a basis to continue to pursue the research in the area of high-

level imaging genetic association analysis, which, we believe, has a host of fundamental

problems yet to be solved, especially for large scale and heterogeneous multi-omics

data covering both imaging and genetics domains. In this section, we discuss a few

promising future research directions as follows.

Kernel-based module identification: In our proposed module identification

frameworks, genetic interactions from functional network have been used as features

to construct regression models. However, the interaction network can be directly

used as kernel matrix to construct machine learning models. Instead of using the

interaction network as features, the kernel function maps input data (i.e. features)

into a high-dimensional space, which essentially represents the topological distance

of inputs. Currently, the challenge is the raw interaction matrix is not or even not

approximate positive semi-definite, which is the sufficient condition for a matrix to

be a kernel. Given above observations, future efforts will be made to further ex-

plore the topological information embedded in tissue-specific networks. It is also of

great interest to compare the performance of these two types of usage of network

information.

Multiple-network analysis: We have used individual tissue-specific network as

prior knowledge to discover disease- or phenotype-relevant genetic modules and have

shown their promising performances. There are a number of tissue-specific networks

have been constructed, among which quite a few are related to brain tissues. As

introduced in Chapter 1, brain ROIs do not always have functions by each own, but
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are always functional or structural grouped to play role. Through taking brain re-

gion functional relationships or brain region-specific networks similarity into account,

the integration analysis of multiple networks with multiple corresponding GWAS

results can be expected to shed more light on discovering functional modules. In fu-

ture, we propose to expand our one-dimensional tissue-specific module identification

framework to two-dimensional, for extracting multi-gene-multi-ROI modules which

conserve significances across multiple ROI-specific networks analysis.

In addition, there are multi-omics data are available and multi-layered networks

have been constructed including genetic, transcriptomic, proteomic, metabolic and so

on. These networks can help reflect the conserving or complementary functional roles

of biological components. These give us numerous opportunities to integrate different

types of networks to construct modules and compare the modules obtained from

multi-layer networks, to gain more comprehensive understanding of human complex

diseases.

Efficient rank-based IGEA: In our proposed two-dimensional enrichment anal-

ysis, we employ hypergeometric test to evaluate the enrichment significance of con-

structed GS-BC modules. Over-representation strategy requires a pre-defined thresh-

old to determine the list of gene–iQT pairs. Another limitation is that it considers

only the count of significant gene–iQT pairs, but ignores the strength of gene–iQT as-

sociations. Rank-based approaches have been proposed and applied in genetic enrich-

ment analysis, and can be expanded in our two-dimensional framework to overcome

these limitations. However, due to the high dimensionality of both brain wide and

genome wide scales as well as the computational efficiency of rank-based enrichment,

it cannot be directly applied into two-dimensional enrichment framework. Given the
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advantages of high performance computational frameworks and computing resources

such as Map/Reduce, GPU programming, it will be appreciated to give a more scal-

able and efficient parameterization framework to facilitate the advanced enrichment

analysis.

Bi-clustering for IGEA: In IGEA framework, we have applied hierarchical clus-

tering to construct candidate two-dimensional GS-BC modules which have no overlaps

with each other. In practice, both genetic and imaging modules are not independent

but always overlap with one another. Bi-clustering approach and its extended ap-

proaches have been proposed for gene expression analysis, and have efficiently detected

overlapped bi-dimensional clusters. However, these approaches cannot be directly ap-

plied in our brain-wide-gene-wide expression data, as we hypothesize that the modules

hold both high-expression and local pattern. In the following work, we will develop

novel bi-clustering method by adding additional constrains to detect candidate GS-

BC modules which satisfy above conditions. The candidate modules would hold more

biological meanings, which is essential for the next-step enrichment analysis.

The availability of large-scale biological data has greatly promoted the develop-

ment of data-driven research, increased our knowledge on system biology and ben-

efited the prediction of underlying biological processes. In imaging genetics, multi-

omics data have been collected and provide us more opportunities as well as new

challenges for understanding neurodegenerative diseases in a more comprehensive

manner. Overall, our ultimate goal is to develop advanced computational biological

methods to integrate the multi-omics and high-dimensional data, for helping provide

more insights on the prediagnosis, preclinic and prevention of complex diseases.
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