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Jingwen Yan

MINING BRAIN IMAGING AND GENETICS DATA VIA STRUCTURED

SPARSE LEARNING

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by gradual

loss of brain functions, usually preceded by memory impairments. It has been widely

affecting aging Americans over 65 old and listed as 6th leading cause of death. More

importantly, unlike other diseases, loss of brain function in AD progression usually

leads to the significant decline in self-care abilities. And this will undoubtedly exert

a lot of pressure on family members, friends, communities and the whole society

due to the time-consuming daily care and high health care expenditures. In the

past decade, while deaths attributed to the number one cause, heart disease, has

decreased 16 percent, deaths attributed to AD has increased 68 percent. And all of

these situations will continue to deteriorate as the population ages during the next

several decades.

To prevent such health care crisis, substantial efforts have been made to help cure,

slow or stop the progression of the disease. The massive data generated through these

efforts, like multimodal neuroimaging scans as well as next generation sequences,

provides unprecedented opportunities for researchers to look into the deep side of the

disease, with more confidence and precision. While plenty of efforts have been made to

pull in those existing machine learning and statistical models, the correlated structure

and high dimensionality of imaging and genetics data are generally ignored or avoided

through targeted analysis. Therefore their performances on imaging genetics study

are quite limited and still have plenty to be improved.
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The primary contribution of this work lies in the development of novel prior

knowledge-guided regression and association models, and their applications in var-

ious neurobiological problems, such as identification of cognitive performance related

imaging biomarkers and imaging genetics associations. In summary, this work has

achieved the following research goals: (1) Explore the multimodal imaging biomarkers

toward various cognitive functions using group-guided learning algorithms, (2) Devel-

opment and application of novel network structure guided sparse regression model,

(3) Development and application of novel network structure guided sparse multi-

variate association model, and (4) Promotion of the computation efficiency through

parallelization strategies.

Huanmei Wu, PhD, Chair
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Chapter 1

INTRODUCTION

1.1 DATA MINING IN ALZHEIMER RESEARCH

As one of the most common brain dementia, Alzheimer’s disease (AD) is a neurode-

generative disorder characterized by gradual loss of brain functions, usually preceded

by memory impairments. Based on the latest report [60], AD has been widely affect-

ing aging Americans over 65 years old and has been officially listed as the 6th leading

cause of death. Due to the significant decline of self-care abilities during disease, it is

not only the patients who suffer, but also the family members, friends, communities

and the whole society due to time-consuming daily care and high health care expen-

ditures needed. In the past decade, while deaths attributed to the number one cause,

heart disease, has decreased 16 percent, deaths attributed to Alzheimer’s disease has

increased 68 percent. And all of these situations will continue to deteriorate as the

population ages during the next several decades. In pursuit of prevention of such

health care crisis, substantial efforts have been made to help cure, slow or stop the

progression of the disease. And the massive data generated through these efforts, like

multimodal brain imaging scans as well as genome sequences, provides us an unprece-

dented opportunity to look into the deep side of the disease, with more confidence

and precision.

Recently, machine learning and statistical methods have been vastly pulled into

AD research area to help advance the pattern mining out of the data ocean and

to further facilitate the understanding of the underlying disease mechanism. The

majority of the applications fall into three categories: (1) Disease status classification,
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(2) Predictive analysis of disease progression, and (3) Associative analysis to explore

the genetic mechanism of various quantitative traits (QTs). While substantial efforts

have been made to directly apply the existing models, there are certain limitations

worth our attention. Since all those models are not originally designed for disease

study, direct application may be problematic due to the special correlation structure of

data sets as well as the skyrocketing dimensionality. Detailed review of previous work

can be found in Chapter 2. In this thesis, we particularly focus on the development

of novel computational models that best fit the needs of disease study and their

applications in prediction analysis as well as association analysis.

1.2 CONTRIBUTION

In this thesis, we harness the opportunities of developing knowledge guided sparse

learning frameworks to take the best advantage of the massive sophisticated data sets

to realize their full potential and address the challenges of dimensionality, scalabil-

ity, diversity, heterogeneity and ultimate pattern interpretability. With the growing

multimodal brain imaging, genetics, proteomics, and clinical outcome data in AD re-

search area [75], exploring effective imaging biomarkers for various cognitive function

changes and further examining their underlying genetic variations through imaging

genetics study would be a promising test bed for exploration, application and val-

idation of the proposed methods. Continuous phenotypic measures from imaging

data, fluid biomarkers, and cognitive status have great potential to serve as useful

intermediate traits on the chain of causality from genes to symptoms. Upon these

datasets, this work is dedicated to developing efficient and effective strategies for inte-

grative analysis of high dimensional heterogeneous imaging, multi-omics and clinical

2



data. More specifically, the proposed methods are designed, developed, accelerated

and finally applied to solve the problems in the following two areas: (1) Biomarker

discovery, and (2) Genetic mechanism exploration (Fig. 1.1).

1.2.1 BIOMARKER DISCOVERY

The first part of this thesis focuses on developing novel mathematical models to

examine the predictive power of multi-resolution and multimodal measures, and to

explore the role of prior knowledge in improving the predictive performances.

Multi-resolution measures: When performing a specific task such as ‘moving

fingers’, only a few brain regions get activated. If so, averaged measures of brain

regions, widely used in existing predictive studies, will possibly smooth out those

activation signals. Similarly as undesirable is the huge computation cost of high reso-

lution voxel-level measures. Therefore, we introduced the intermediate level measures,

where each brain region was further partitioned into small patches using clustering

algorithms. This strategy was applied to cortical thickness measures, which were

further used to predict the memory performances through a new regression model.

With the assumption that only a few brain regions participate in the memory specific

tasks, spatial information of patches was incorporated to limit the number of selected

brain regions. This work reveals more localized brain markers and their improved

performance in prediction analysis.

Multimodal measures: Brain imaging measures are now of great diversity from

multiple perspectives: functional and structural changes in the brain, cerebrospinal

fluid, blood plasma, etc. While prior work mostly focused on examining them individ-

ually for potential AD markers, it is of more interest to see whether these multimodal

3



datasets could complement each other and offer improved prediction power. We ex-

amined several multimodal measures from the existing database: cortical thickness,

volume, gray matter density, and CSF proteomic measures. The combination of

the cortical thickness, volume and CSF proteomic data was found to have the best

prediction performance against all the other combinations, indicating possible com-

plementary information between imaging and proteomic measures and suggesting the

necessity of further efforts in multimodal studies.

Prior knowledge in learning models: Prior spatial information, normally

modeled as group structure, has already been well studied. In this work, we exploited

other prior correlation structures within brain that take the form of networks, by

proposing a new sparse learning model, network guided `2,1 norm (NG-L21). Under

this framework, two prior correlation structures were examined regarding their power

to improve the prediction performance of multimodal imaging phenotypes toward

memory performances: (1) correlation structure based on imaging measures, and

(2) correlation structure based on gene co-expression profiles. These work confirmed

the importance of prior knowledge in leading the model to yield better prediction

performance and more meaningful biomarker patterns.

1.2.2 GENETIC MECHANISM EXPLORATION

While genotype data, such as single nucleotide polymorphisms (SNPs), store the

most deep-inside signals, multimodal brain scans, blood plasma, and CSF measures

capture phenotypic outcomes that are respectively and partially explained by relevant

genetic variations. But how the underlying genetic variations (such as SNPs) affect

the external phenotypes remains a mystery.
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Genome wide association study (GWAS) of quantitative-traits (QTs) is widely

applied by exhaustively examining the correlation between all possible pairs between

genotypic and phenotypic measures, without embracing those complicated multiple-

SNP-multiple-QT relationships. To address this issue, we proposed two models:

Structure-aware Sparse Canonical Correlation Analysis (S2CCA) and Knowledge-

Guided Sparse Canonical Correlation Analysis (KG-SCCA), together with a new effi-

cient iterative algorithm. Both of them were validated against other existing models

based on synthetic datasets. KG-SCCA was further applied to relate the apolipopro-

tein E (APOE, a major AD risk gene) SNPs with amyloid deposition in brain regions,

and yielded promising results. This is the first work reporting the localized amyloid

deposition related to APOE SNPs.

1.2.3 DATA INTENSIVE COMPUTING

High dimensionality of the raw imaging and genomics data has greatly held back

the application of machine learning methods. Designing highly scalable algorithms

to take these thousands of millions data is not easy and requires long-term effort

to accomplish. Fortunately big data science opens another door for vast scientists

struggling with explosive data. Our initial efforts to promote the usage of these

new models into large datasets application by taking advantage of the parallelization

strategies have been made by coupling Math Kernel Library (MKL) with Xeon Phi

co-processor on Stampede supercomputer in Texas Advanced Computing Center. For

serial tasks, this framework consistently provides at least two-fold speedups without

any code change, which sheds light on the potential brain-wide and genome-wide

applications.
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Figure 1.1: Overview of the dissertation work

1.3 ORGANIZATION

The chapters of the thesis are organized as shown in Fig. 1.2. Chapter 1 gives an

brief overview of machine learning in Alzheimer’s disease study and a summary of

contributions. In Chapter 2, we will review those existing data mining techniques,

their applications and limitations in Alzheimer research. Chapter 3 and Chapter 4

are for disease biomarker discovery, in which we will evaluate G-SMuRFS through a

multi-resolution study and further propose a network guided multivariate predictive

model to explore multimodal imaging biomarkers. In Chapter 5 and Chapter 6, we

will discuss the association studies and propose two novel structure-guided sparse

canonical correlation analysis models, based on which we explore the complex multi-

phenotype-multi-genotype relationships. Chapter 7 describes our initial efforts in

data intensive computing. In Chapter 8, we will summarize our work and discuss

some potential future directions.
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Chapter 2

PREVIOUS WORK

In this chapter we will review existing machine learning models and further discuss

their applications as well as limitations in disease study. Throughout this section, we

write matrices as boldface uppercase letters and vectors as boldface lowercase letters.

Given a matrix M = (mij), its i-th row and j-th column are denoted as mi and mj

respectively. The Frobenius norm and the `2,1-norm (also called as `1,2-norm) of a ma-

trix are defined as ||M||F =
√∑

i ||mi||22 and ||M||2,1 =
∑

i

√∑
jm

2
ij =

∑
i ||mi||2,

respectively. Let {x1, · · · ,xn} ⊆ <d be imaging measures and {y1, · · · ,yn} ⊆ <c

be cognitive outcomes (regression analysis) or genetic variation measurements (asso-

ciation analysis), where n is the number of samples, d is the number of X features

(feature dimensionality) and c is the number of Y features (tasks or variations). Let

X = [x1, . . . ,xn] and Y = [y1, . . . ,yn].

2.1 BIOMARKER DISCOVERY

With the advances in neuroimaging and genetic sequencing technology, imaging and

genetics data have explosively grown in the last decades, including structural magnetic

resonance imaging (MRI), functional MRI, positron emission tomography (PET), etc.

And these developments are of great significance for enabling multi-perspective view

of brain structures and activities. First accompanied are the predictive analyses that

mostly utilize the multiple modal imaging or proteomic measures as predictors to

classify the disease status, mostly between healthy controls and AD patients [8, 17,

26,52,85].
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However, it is argued later that this simple grouping strategy may not reveal the

true stratification [51]. Due to the dynamic longitudinal process of AD, health control

subjects may convert to mild cognitive impairment (MCI, a prodromal stage of AD)

beyond the study follow up. Thus including these marginal subjects into the a specific

group will more or less smooth out the features and limit the ultimate predictive

power towards various tasks. On the contrary, continuous imaging measurements

and cognitive outcomes keep a better track of the disease progressing procedure, and

therefore may provide a more informative insight of the underlying mechanism.

Based on that, enormous efforts have been made recently to evaluate the predictive

power of sparse learning methods in the neuroimaging field. Earlier studies preferred

regression analysis focused on predicting selected cognitive scores one at a time using

statistical learning approaches such as stepwise regression [66] and relevance vector

regression [58]. Yet for one patient there usually are many cognitive scores grouped

by different categories. Scores falling into the same category, like episodic memory,

mostly correlate with each other, and ignoring this relationship will inevitably lead to

suboptimal results. Also considering multiple scores together with their correlation

structures will to some extent help with the noise suppression.

In [69], Wan et al. examined the effect of brain volume and thickness measures

on cognitive changes measured by three different sets of scores using sparse Bayesian

learning, which implicitly considered the correlation among brain imaging measures.

And their recent work extended this model to consider the non-linearity correlation

[68]. Other similar studies include [72, 73]. Besides structural imaging, functional

imaging is also quite popular as potential predictive measures. Unlike structural

imaging, functional imaging focuses on capturing physiological activities by employing

9



medical image modalities that very often use tracers or probes to reflect the real

intensity of certain chemical compounds, like amyloid plaques (one of the hallmarks of

AD). Example studies include [34] using functional imaging measures of visual tasks

to predict the object sizes through incorporating the spatial information. In [27],

Grosenick et al. developed a novel model based on elastic net and graphnet [86] to

estimate the predictive power of functional imaging toward the behaviors, with both

spatial and temporal correlation considered. Other similar studies include [42,63].

In the following we briefly go through some typical regression models that have

been developed or applied in previous studies, and discuss their prediction capabili-

ties as well as limitations. To investigate the correlation between imaging measures

and cognitive outcomes, linear and ridge regression models are two standard meth-

ods. Linear regression (Eq. (2.1)), also known as least square fitting, seeks to find

a straight line through all data points in such a way with the sum of squared resid-

uals as small as possible. Despite its easy and fast implementation, the inflation

and general instability, when features outnumber observations, become a big concern

with application to AD research. Millions of imaging voxels as well as their highly

correlated structure will inevitably lead to the overfitting problems and very unstable

patterns [30,36].

min
W
||WTX−Y||2F . (2.1)

To address this issue, ridge regression [30] was proposed to perform extra shrink-

age where large coefficients will be penalized. One more regularization term, the

Frobenius norm of trained weights, is applied to achieve that goal and helps ascertain

10



the numerical stability simultaneously (Eq. (2.2)).

min
W
||WTX−Y||2F + γ||W||22 . (2.2)

where the entry wij of weight matrix W measures the relative importance of the

i-th predictor in predicting the j-th response, and γ > 0 is a tradeoff parameter.

Yet regression weights brought by the Frobenius norm are typically non-sparse,

which makes the results hard to interpret and unsuitable for biomarker discovery. To

produce sparse solutions, the following traditional Lasso model (Eq. (2.3)) [41] can

be used:

min
W
||WTX−Y||2F + γ||W||1 . (2.3)

[22] proposed least angle regression selection (LARS) and its solution paths in-

dicate that the lasso are piecewise linear, which gives the lasso tremendous com-

putational advantages when compared with other methods. However, it is mostly

considered to make selections based on the strength of individual features, rather

than the strength of general groups of features. Due to its intrinsic sparsity prop-

erty, only one out of the many correlated subset features will be selected (mostly at

random) and reparameterization will lead to a different set of features selected. This

unstable pattern identification is quite undesirable, which makes the final results con-

fusing for interpretation. Group lasso [82] was one of the two approaches that were

proposed to address this concern. Unlike traditional Lasso model, group lasso applies

`2-norm to features within each group (as a prior) to ascertain within-group similari-

ties, accompanied by the `1-norm imposed across the groups to achieve group sparsity
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(Eq. (2.4)). In particular, its performance in application to small sample size with

large input variables is also guaranteed [82], which is extremely desirable in disease

research.

min
W

n∑
i=1

||WTX−Y||F + γ

k∑
i=1

√ ∑
j∈G(i)

w2
j . (2.4)

Another well-known approach is elastic net (Eq. (2.5)) [86], in which less sparse

pattern was pursued implicitly through seeking a tradeoff between group and individ-

ual sparsity. `1-norm and `2-norm of Lasso and Ridge regression are linearly combined

to form the new regularized regularization term, with attempt to find a balance point

in between, where the highly correlated features will be taken out together and global

sparsity is still guaranteed. With this balancing strategy, it has been proved that elas-

tic net can keep consistent prediction performance as well as stable feature selection

ability even when the number of features increases [19].

min
W
||WTX−Y||2F + γ1||W||1 + γ2||W||2. (2.5)

However, it is worth noticing that, in all the above methods, multi-task learning is

equivalent to applying them to each outcome variable independently. The correlation

and colinearity among the outcome variables are generally not taken into account. As

a result, despite the fact that the outcome variables are highly correlated, the features

selected by the above Lasso based models could only be relevant to some outcomes

(i.e., regression weights 6= 0) but not to others (i.e., regression weights = 0).

`2,1-norm (Eq. (2.6)), motivated by ridge and Lasso, is a multivariate regression

model proposed as follows.
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min
W
||WTX−Y||2F + γ||W||2,1. (2.6)

where ||W||2,1 =
∑d

i=1 ||wi||2. `2,1-norm is one of the advanced techniques that

address both the outcome correlation and sparsity issues, by enforcing the `2-norm

across the tasks and the `1-norm across the features. While the `2-norm ascertains

the similarity pattern across the correlated tasks, the `1-norm guarantees the sparsity

across the features. Although early studies proposed `2,0-norm [41] to achieve similar

function, `2,1-norm has global solution with faster convergency [43] and also yields

comparable results as the `2,0-norm. Thus, in this work we will focus on the `2,1-norm

based sparse representations.

In many cases, various brain structures may be responsible for different functions.

Therefore it would be much more meaningful to include the structural information in

the regression models. Also direct application of conventional sparse models such as

`2,1-norm are more likely to yield scattered patterns, due to the lack of proper handling

of spatial correlation and prior anatomical knowledge. With the same motivation as

group lasso and elastic net, a recent research introduced an extension of `2,1-norm

to incorporate the prior group structures of input variables. This new extension, G-

SMuRFS (Group-Sparse Multi-task Regression and Feature Selection) [71] takes into

account the group information in the regression procedure. The new regularization

term was applied in G-SMuRFS to consider both the group sparsity through the

G2,1-norm and the individual biomarker sparsity for joint learning via an `2,1-norm

regularization [46]. In the objective function Eq. (2.7), the second term helps to

couple all the regression coefficients of grouped features across all tasks together and
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the third term penalizes all regression coefficients of each individual feature as a whole

to select features shared by multiple learning tasks.

min
W

n∑
i=1

||WTX−Y||F + γ1||W||G2,1 + γ2||W||2,1 . (2.7)

where ||W||G2,1 =
∑k

i=1

√∑
j∈G(i) ||wj||22 is the G2,1-norm.

Since G-SMuRFS has demonstrated very promising performances in a previous

study [71] using genotypes to predict AD related imaging measures, in Chapter 3

we will examine its power through a multi-resolution imaging study and compare its

performance with existing models. In Chapter 4, we will extend our efforts to develop

a more general sparse regression model NG-L21, with prior knowledge incorporated

in the network format, and then G-SMuRFS can be viewed as a special case of NG-

L21. This new model will be evaluated though examining the prediction power of

multimodal measures toward various correlated cognitive outcomes.

2.2 GENETIC MECHANISM EXPLORATION

While biomarker discovery depends on regression analysis and usually attempts to

explore the predictive biomarkers toward a specific task/task set, genetic mechanism

exploration is usually a more symmetric strategy, where both datasets are treated

equally. It alternatively seeks the sophisticated multiple-to-multiple relationship

rather than multiple-to-one in regression analysis. One example is brain imaging

genetics study, an emerging field in pursuit of system level explanation of the dis-

ease through integrating imaging and genetics data to reveal the effect of genetics

variations on diverse imaging phenotypes. Such analysis can not only discover AD
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biomarkers to help with the early diagnosis, but also hold great promise to unveil the

disease-modifying genetic mechanisms.

Early imaging genetics research examined the pair-wise correlation and treated

all phenotype and genotype features separately [55]. Recently more complicated

association models have been gradually introduced into the imaging genetics field

[14], particularly the sparse canonical correlation analysis (SCCA), which is originally

derived from traditional canonical correlation analysis (CCA) framework. It is a bi-

multivariate model that was designed to find the linear transformation of imaging and

genetic data, which can yield the highest correlation coefficients between transformed

vectors. Compared to CCA, SCCA usually has an extra Lasso penalty term for both

canonical loadings of imaging and genetic features, and can solve the non-sparsity

problem and the curse of high-dimensional features [76].

However, the highly correlated brain imaging and genetic data imposes great chal-

lenges to association study, just as it does to regression analysis. It has become an

essential concern to enable the extraction of grouped features, rather than random

selection out of them. Many advanced learning strategies have been dedicated to

address this issue, like joint multi-task [72, 73, 84, 85] and structured sparse learn-

ing [69], but most of them still ended up with over simplified structures. While the

group structure, spatial and temporal correlation have been proved to be important

prior knowledge, it is also worth noticing that human brain is a very complicated

organ, with regions wiring together to perform certain functions. With the emerging

interest in human connectome, it will be of more interest to examine the effect of

multiple brain networks on the AD biomarker discovery and imaging genetics asso-

ciations. Another issue exists that most solutions of SCCA-based algorithms assume
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the independence over all features [38, 40], which will make their covariance matrix

an identity. Obviously, this assumption could hardly hold for imaging and genetic

data, due to the regional structure of brain and the linkage disequilibrium (LD) block

structure in the genome. Therefore new solutions are needed before they could be

applied to the imaging genetics study.

Another limitation worth noticing is the limited scalability shared by existing

methods. Due to rapid advances of the data generation technology in both imaging

and sequencing areas, researchers are experiencing a data explosion like never before,

with millions of voxels, trillions of gene variations and more on their way. Accompa-

nied with the escalating data volume is the unprecedented computational challenge.

Besides the extremely expensive computational cost, the highly inter-correlated struc-

tures among features should as well deserve our attention.

Similarly as in regression analysis, many advanced association models are derived

from very basic concepts. In the following we briefly go through those typical associ-

ation models and discuss their capabilities as well as limitations.

CCA is a classical bi-multivariate method that has been applied to imaging ge-

netics fields. Compared to regression analysis, CCA provides a more “symmetric”

solution by seeking linear combinations of variables in X and variables in Y so that

Xu and Yv can achieve maximal correlation, and can be formulated as:

max
u,v

uTXTYv s.t. uTXTXu = 1,vTYTYv = 1 (2.8)

Here u and v are canonical loadings or weights of imaging and genetic measures

respectively. However, CCA requires the number of observations n to exceed the

16



combined dimension of X and Y variables. And like many machine learning algo-

rithms, overfitting problems could arise in CCA when the features outnumber the

participants. In addition, CCA outcome usually spread nontrivial effects across all

the features, due to the lack of proper regularization, rather than a few significant

ones and makes the final pattern difficult to interpret.

To address these issues, SCCA was proposed in [77] by introducing penalty terms,

P1(u) ≤ c1 and P2(v) ≤ c2, to regularize the weights, as shown in (Eq. (2.9)).

max
u,v

uTXTYv

s.t. ||Xu||22 = 1, ||Yv||22 = 1, P1(u) ≤ c1, P2(v) ≤ c2

(2.9)

Here the objective function is bi-linear in u and v: when u is fixed, it is linear in

v and vice versa. But due to the `2 equality, with u or v fixed, the constraints are

not convex. This can be solved by reformulating the `2 equality into inequality as

||Xu||22 ≤ 1 and ||Yv||22 ≤ 1. For easy computation, (Eq. (2.9)) is commonly rewritten

in its Lagrangian form.

max
u,v

uTXTYv− γ1

2
||Xu||22 −

γ2

2
||Yv||22 − β1P1(u)− β2P2(v) (2.10)

[77] and [78] explored two penalty forms, `1 penalty and the chain structured

fused Lasso penalty. `1 penalty imposes sparsity on both u and v, and assumes

that each canonical correlation involves only a few features from X and Y. The fused

Lasso penalty promotes the smoothness of weight vectors, and encourages neighboring

features to be selected together.

For imaging and genetics data, neighboring information is usually not as informa-
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tive as the group and network structure. Due to the crucial role of prior structure

information in the high dimensional data, other groups later come up with more

SCCA extensions to incorporate more realistic imaging structures with group- and

network-guided penalties [10,12]. Based on the assumption that a real imaging genetic

signal typically involves a small number of SNPs and brain regions, SCCA has also

been applied in several imaging genetic studies by imposing the Lasso regularization

term to yield sparse results [15, 38, 67]. Yet the popular solution of existing SCCA-

based algorithms are designed using the soft thresholding technique, which requires

the input data X and Y to have an orthonormal design XTX = I and YTY = I (see

Section 10 in [61]), indicating that all the features should be independent from each

other. In this case, `2 penalty term will be greatly simplified and then the solution

could be sought in the unit ball. But unfortunately this assumption can hardly hold

for either the imaging or genetic data (e.g., functional brain networks and LD blocks

in the genome). And such failure to acknowledge the intrinsic covariance structure in

the input data will inevitably limit the capability of yielding optimal results.

One possible solution is to orthogonalize the input data through principal com-

ponent analysis (PCA) before running SCCA. However, we aim to identify relevant

imaging and genetic markers, and thus prefer a sparse model. The combined PCA and

SCCA strategy cannot achieve this goal, since PCA loadings on the original imaging

and genetic markers are non-sparse. In this work, we will develop more advanced

association models on top of SCCA, with additional penalty terms included to help

incorporate the prior knowledge into the learning procedure. Their performance will

be evaluated through associating imaging and genetics data with guidance of various

brain structures and transcriptome knowledge derived from independent datasets.
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Chapter 3

LOCALIZED CORTICAL BIOMARKERS FOR PREDICTING

COGNITIVE OUTCOMES USING GROUP `2,1-NORM

Despite the two well-known hallmarks of AD: beta-amyloid plaques and neurofib-

rillary tangles, various cognitive tests remain the most common clinical routine for

diagnosis. Compared with the binary disease status, AD-relevant cognitive outcomes,

a continuous quantitative trait, may be more informative for revealing the underly-

ing disease mechanisms. And biomarkers identified from cognitive outcomes should

be more representative than those from binary status. In this chapter, we present

a framework, which combines clustering strategy and brain structure guided sparse

regression model, to help identify localized cortical regions responsible for the changes

of correlated cognitive outcomes.

3.1 BACKGROUND

In most existing studies, summary statistics of each region of interest (ROI) (e.g.,

average intensity) have been widely used as input features. Although voxel-based

image measures or vertex-based surface measures could provide more detailed mor-

phometric information than ROI summary statistics, direct application of conven-

tional regression models to these measures may be inadequate to yield biologically

meaningful results. For example, standard linear or ridge regression model typically

produces non-sparse results that are not ideal for biomarker discovery. Conventional

sparse models such as Lasso [61] are likely to yield scattered patterns hard to in-

terpret, due to the lacking of proper handling of the spatial correlation and prior
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anatomical knowledge in these models. To address this issue, we propose to employ a

new sparse multi-task learning model called G-SMuRFS [71] for identifying effective

surface biomarkers that can predict cognitive outcomes. We demonstrate its effec-

tiveness by examining the predictive power of detailed cortical thickness measures

towards three types of cognitive scores (ADAS, MMSE and RAVLT) in the ADNI

cohort.

Enormous efforts have been made to evaluate the power of sparse learning meth-

ods in the neuroimaging field, such as identifying structural [3, 8, 52, 68, 69, 72] or

functional [27, 34, 42, 63] imaging biomarkers associated with other imaging modal-

ity [3], cognitive scores [34, 63, 68, 69, 72], behavior [27, 42], as well as diagnostic con-

ditions [8, 52]. However, using detailed cortical surface measures to predict cognitive

outcomes is an under-explored area. In this study, we attempt to explore a novel appli-

cation of G-SMuRFS to the identification of detailed surface-based cortical biomarkers

that are relevant to cognitive outcomes. G-SMuRFS proposes a group-level `2,1-norm

strategy to achieve three goals: (1) group relevant surface features together in an

anatomically meaningful manner (i.e., ROI information is incorporated) and use this

prior knowledge to guide the learning process (i.e., spatial correlation within each

ROI is addressed); (2) take into account the correlation among cognitive outcomes

for building a more appropriate predictive model (i.e., multiple correlated cognitive

scores are predicted together); and (3) optimize the selection of cognition-relevant

surface biomarkers while maintaining high prediction accuracy. The high dimension-

ality of the vertex-based cortical surface data (e.g., 327,684 vertices in our study)

introduces major computational challenges. To address this issue, we introduce a

down-sampling technique to merge neighboring vertices into small surface patches to
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reduce the computational cost while preserving detailed surface information. Our

overarching goal is to examine and validate the predictive power of these detailed

cortical thickness measures towards cognitive outcomes while considering the group

structures defined by anatomically meaningful ROIs. The results may provide im-

portant information about potential surrogate biomarkers for early detection and/or

therapeutic trials in AD.

3.2 MATERIALS AND METHODS

3.2.1 NEUROIMAGING AND COGNITION DATA

All the data used in the preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) [75]. One goal

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information,

we refer interested readers to www.adni-info.org.

We downloaded the baseline 1.5 T magnetic resonance imaging (MRI) scans, de-

mographic information, and baseline diagnosis for all the ADNI Phase 1 (ADNI-1)

participants. We also downloaded three types of baseline cognitive scores: Alzheimer’s

Disease Assessment Scale (ADAS), Mini-Mental State Examination (MMSE), and

Rey Auditory Verbal Learning Test (RAVLT). For each participant, FreeSurfer V4, an

automatic brain segmentation and cortical parcellation tool, was applied to automat-

ically label cortical and subcortical tissue classes [18,24] and to extract surface-based
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Table 3.1: Thickness measures at surface locations from the following 34 pairs of
bilateral FreeSurfer cortical regions (68 ROIs in total) were analyzed in this study.

ID ROI Name ID ROI Name
1 banks of the superior temporal sulcus 18 pars opercularis
2 caudal anterior cingulate 19 pars orbitalis
3 caudal middle frontal gyri 20 pars triangularis
4 corpus collosum 21 pericalcarine gyri
5 cuneus 22 postcentral gyri
6 entorhinal cortex 23 posterior cingulate
7 fusiform gyri 24 precentral gyri
8 inferior parietal gyri 25 precuneus
9 inferior temporal gyri 26 rostral anterior cingulate
10 isthmus cingulate 27 rostral middle frontal gyri
11 lateral occipital gyri 28 superior frontal gyri
12 lateral orbitofrontal gyri 29 superior parietal gyri
13 lingual gyri 30 superior temporal gyri
14 medial orbitofrontal 31 supramarginal gyri
15 middle temporal gyri 32 frontal pole
16 parahippocampal gyri 33 temporal pole
17 paracentral lobule 34 transverse temporal pole

thickness measures. We focused our study on examining the thickness measures from

surface locations labeled with any of the 34 FreeSurfer cortical ROIs (shown in Table

3.1) in both hemispheres. The measures from surface locations labeled with “un-

known” were excluded in this study. Following a previous imaging genetics study [55],

in this work, we concentrated our analyses on the Caucasian subjects determined by

population stratification analysis using the ADNI genetics data [53]. 718 out of 745

Caucasian participants with no missing MRI morphometric and the cognitive out-

come information were included in the study. The 718 participants were categorized

by three baseline diagnostic groups: healthy control (HC, n=197), mild cognitive

impairments (MCI, n=349), and Alzheimer’s disease patients (AD, n=172). Demo-

graphics information of these subjects can be found in Table 6.1. All the imaging

and cognitive outcome measurements were adjusted for age, gender, education and

handedness, while intracranial volume was applied as an extra covariate for imaging

measurements.
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Table 3.2: Participant characteristics

Category HC MCI AD
Number of Subjects 197 349 172
Gender (M/F) 107/90 224/125 94/78
Handedness (R/L) 183/14 316/33 160/12
Baseline Age (years, mean±SD) 76.2±5.0 75.0±7.3 75.6±7.5
Education (years, mean±SD) 16.2±2.7 15.7±3.0 14.9±3.1

3.2.2 G-SMURFS

As mentioned in Chapter 2, G-SMuRFS is a multivariate sparse regression model

with the capability of incorporating group structure as prior knowledge. Initially mo-

tivated by sparse learning, such as Lasso [61] and group Lasso [82], G-SMuRFS has

a new regularization term to consider both the group sparsity through the G2,1-norm

and the individual biomarker sparsity for joint learning via an `2,1-norm regulariza-

tion [46]. In the objective function Eq. (3.1), while the second term couples all the

regression coefficients of a group of features across all the c tasks together, the third

term penalizes all c regression coefficient of each individual feature as whole to select

features across multiple learning tasks.

min
W

n∑
i=1

||WTX−Y||F + γ1||W||G2,1 + γ2||W||2,1 . (3.1)

Solution of the objective function Eq. (3.1) can be obtained through an iterative

optimization procedure. By setting the derivative with respect to W to zero, W can

be solved as in Eq. (3.2).

W = (XXT + γ1D + γ2D̃)−1XYT , (3.2)

where D is a block diagonal matrix with the k-th diagonal block as 1
2‖Wk‖F

Ik, Ik

is an identity matrix with size of mk, mk is the total feature numbers included in
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group k, D̃ is a diagonal matrix with the i-th diagonal element as 1
2‖wi‖2 . Detailed

optimization procedure and algorithm can be found in [71].

Generally, the advantage of this model is three-fold: (1) It addresses the highly

correlated nature of the cortical vertices within each surface ROI. (2) It takes into

account the correlation of multiple scores of the same cognitive function test. (3) It

achieves both the global biomarker sparsity as well as ROI group sparsity.

3.3 EXPERIMENTAL RESULTS AND DISCUSSION

3.3.1 EXPERIMENTAL SETTING

In this study, we examined all the cortical thickness measures across 34 pairs of bi-

lateral cortical surface ROIs (68 ROIs in total) (Table 3.1) regarding their power

for predicting the ADAS, MMSE and RAVLT cognitive scores. Our cortical surface

data, generated by FreeSurfer, contains 327,684 vertices per surface. For the effi-

ciency purpose, we completed a preprocessing step to down-sample 327,684 vertex-

based thickness measures to 3,133 surface-patch-based measures using the following

approach. First, we randomly selected cortical surface data from 50 HC participants.

Second, for each ROI (say, with m vertices), we performed the k-mean clustering

using this pre-selected HC subset to partition the ROI into roughly m/100 surface

patches, where each patch was formed by a set of neighboring vertices with similar

thickness. As a result, 3,133 patches were defined on the cortical surface. Third, ex-

cluding 320 patches from the region labeled as “unknown”, we got 2813 patches from

the ROIs shown in Table 3.1. Finally, we applied this patch scheme to the entire data

set. The cortical thickness measures of all vertices within one patch were averaged to
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represent the patch-level thickness measure. These 2813 patch-level measures were

used as predictors in our regression analysis.

The response variables in the multivariate multiple regression analysis included

the following five cognitive scores: ADAS-cog total score (ADAS), MMSE score

(MMSE), RAVLT total score (TOTAL), RAVLT 30 minutes delay score (T30), and

RAVLT recognition score (RECOG). To provide an unbiased estimate of the predic-

tion performance of each method tested in the experiments, we employed five-fold

cross-validation, where each fold contained a similar portion of AD, MCI and HC

participants. We calculated the following two metrics to compare the prediction per-

formance across different methods: (1) Root Mean Square Error (RMSE) between

the actual and predicted scores of all the test subjects; and (2) Pearson Correlation

Coefficient (CC) between the actual and predicted scores of all the test subjects.

In our experiments, we compared G-SMuRFS with four competing multivariate

regression methods: (1) `2,1-norm, (2) Partial Least Square (PLS), (3) ridge, and

(4) linear regression. Parameters for these models were optimally tuned using a

nested cross-validation strategy on the training data, with search grid in the range

of [5 × 10−3, 5 × 103]. For these regression analyses, the input data included 2,813

surface patch-level thickness measures as predictors and cognitive scores as response

variables. We also performed univariate surface-based analysis using SurfStat [16] to

cross check whether univariate and multivariate methods could yield similar patterns.

3.3.2 RESULTS AND DISCUSSION

Prediction performance, measured by RMSE and CC, of the cortical thickness mea-

surement under five different regression models is shown in Table 3.3. The prediction
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Figure 3.1: Scatter plots of actual (on y-axis) and predicted (by G-SMuRFS, on x-
axis) cognitive scores. Note that the actual cognitive scores are pre-adjusted and thus
may have negative values. The testing samples across five cross-validation trials were
pulled together to calculate the correlation coefficients (CC) and the p values. Thus,
the CCs shown here are slightly different from the CCs shown in Table 3.3 that were
calculated separately for each cross-validation trial.

performances using those features selected by G-SMuRFS and `2,1-norm are higher

(i.e., lower RMSE and higher CC) than those of linear, ridge and PLS regression mod-

els. In particular, G-SMuRFS significantly outperforms PLS and linear regression on

predicting all five scores, and ridge regression on predicting MMSE and RAVLT-

RECOG. Prediction performances of G-SMuRFS and `2,1-norm are similar. Fig. 3.1

shows scatter plots of actual and predicted (by G-SMuRFS) cognitive scores.

Fig. 3.2 shows the histogram of regression weights associated with all the cortical

measures for each method, in an example cross-validation trial. While, in ridge and

linear regression models, most surface measures share relatively similar impact on

26



−0.1 0 0.1
0

20

40

60

80

100

Z
oo

m
 in

 to
 [0

,1
00

]

−0.1 0 0.1
0

1000

2000

3000
(a) G−SMuRFS

−0.1 0 0.1
0

20

40

60

80

100

−0.1 0 0.1
0

1000

2000

3000
(b) L2,1 Norm

−0.1 0 0.1
0

20

40

60

80

100

−0.1 0 0.1
0

1000

2000

3000
(c) PLS

−0.1 0 0.1
0

20

40

60

80

100

−0.1 0 0.1
0

1000

2000

3000
(d) Ridge

−0.1 0 0.1
0

20

40

60

80

100

−0.1 0 0.1
0

1000

2000

3000
(e) Linear

Figure 3.2: Histogram of regression weights of all cortical measures for predicting the
RAVLT TOTAL score in an example cross-validation trial. Shown from left to right
are the results of (a) G-SMuRFS, (b) `2,1-norm, (c) PLS, (d) ridge regression, and (e)
linear regression. The top row shows the complete histograms, and the bottom row
shows the zoom in view of the partial histograms for y ∈ [0, 100].

the prediction performance, G-SMuRFS and `2,1-norm present a much better spar-

sity across all the cortical measures. Besides the sparsity at the cortical patch level,

we also examined the group sparsity of all five models at the ROI level. Fig. 3.3 shows

the histogram of “high impact” (i.e., top 50) cortical markers against each of the 34

pairs of bilateral ROIs for (a) G-SMuRFS, (b) `2,1-norm, (c) PLS, (d) ridge regression,

and (e) linear regression respectively. It is shown that high impact biomarkers identi-

fied through `2,1-norm, ridge regression, and linear regression scattered across a large

portion of cortical surface regions, making the result hard to interpret. G-SMuRFS

yielded sparse patterns at the ROI level that have the potential for identifying rel-

evant biomarkers. Although PLS also yielded sparse patterns, the predictive power

of its top 50 markers (RMSE=1.045, CC=0.377) is lower than that of G-SMuRFS’s

(RMSE=0.938, CC=0.46).
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Figure 3.3: Number of “high impact” (i.e., top 50) cortical markers for predicting
the RAVLT TOTAL score, in an example cross-validation trial, is plotted against the
corresponding ROI (34 ROIs in total). The x axis shows the ROI IDs (see Table
3.1 for the corresponding ROI names). The y axis shows the number of top markers
in the left hemisphere ROI (top row) or the right hemisphere ROI (bottom row).
Shown from left to right are the results of (a) G-SMuRFS, (b) `2,1-norm, (c) PLS, (d)
ridge regression, and (e) linear regression. The cross-validation performance using
these top 50 markers, measured by root mean square error (RMSE) and correlation
coefficient (CC) between the actual and predicted RAVLT TOTAL scores of all the
test subjects, is shown in each panel.

Fig. 3.4 shows example G-SMuRFS regression weights that were averaged over the

five cross-validation trials and were then mapped back onto the cortical surface. Our

multi-task regression experiment was performed to identify thickness measures for

jointly predicting ADAS, MMSE, RAVLT TOTAL, RAVLT RECOG, and RAVLT

T30 scores. The weight maps for ADAS (Fig. 3.4a), MMSE (Fig. 3.4b), TOTAL

(Fig. 3.4c), RECOG (Fig. 3.4d), and T30 (not shown) are very similar to one another

except that the ADAS pattern is in the opposition direction. Thickness measures from

left and right entorihnal cortex, left middle temporal gyri, left inferior parietal gyri,

right medial orbitofrontal gyri, and right precunes are positively correlated to the
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Figure 3.4: Example G-SMuRFS regression weights are color-coded and mapped onto
the cortical surface. The red color indicates regions where the thickness is positively
correlated with the corresponding cognitive score ((a) ADAS, (b) MMSE, (c) RAVLT-
TOTAL, or (d) RAVLT-RECOG), and the blue color indicates regions where the
thickness is negatively correlated with the score.

MMSE and RAVLT scores, and negatively correlated to ADAS. The measures from

left fusiform are correlated to ADAS, MMSE, TOTAL and T30, and the measures

from right middle temporal gyri are correlated to ADAS, MMSE, and RECOG. These

patterns identified by our multivariate G-SMuRFS regression analysis match well

with the weight map patterns computed by the univariate SurfStat analysis shown in

Fig. 3.5.

The ROIs identified in this work are either related to AD or in accordance with

findings in similar prior studies. For example, entorihnal cortex (part of medial

temporal cortex) and precuneus are among the cortical signature of AD studied in
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(a) 

(c) 

(b) 

(d) 

Figure 3.5: Example SurfStat t-statistic map: t-statistics are color-coded and mapped
onto the cortical surface.

[4,20,68,69,72] performed similar regression studies for predicting cognitive outcomes

using MRI measures. However, they examined only summary statistics (volume,

thickness, or gray matter density) of both cortical and subcortical ROIs instead of

detailed cortical thickness measures. The mean thickness of entorihnal cortex was

found to be correlated with ADAS [?]wan2014), MMSE [68] and RAVLT [68, 72]

scores. The mean thickness of inferior parietal gyri was found to be correlated with

ADAS [68]and RAVLT [72] scores. The mean thickness of middle temporal gyri

was found to be correlated with RAVLT scores [69]. Partly due to the detailed

cortical analysis, this work identified some additional ROIs associated with the studied

cognitive scores. Replication of these results in independent samples will remain of

critical importance for confirmation. The computational cost of G-SMuRFS was
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similar to that of the `2,1-norm model but more expensive than linear, ridge and PLS

regressions. We implemented all the regression models using Matlab. For one cross-

validation trial in our experiments, G-SMuRFS and `2,1-norm took 75-77 seconds

while linear took 48 seconds, and ridge and PLS took ≤ 2 seconds. One interesting

future direction is to develop more efficient implementation of G-SMuRFS and make

it applicable to the analysis of larger scale data sets. To sum up, our empirical

results are very encouraging and have demonstrated the promise of the G-SMuRFS

method in the application of relating cortical morphology to cognitive outcomes: (1)

G-SMuRFS regression model outperformed linear, ridge and PLS regression models,

and performed similarly to the multi-task `2,1-norm model in terms of overall RMSE

and CC (Table 3.3). (2) The biomarkers identified by the G-SMuRFS method were

sparser at the patch level than linear regression and ridge regression, and yielded a

more stable performance for predicting cognitive scores. (3) Both G-SMuRFS and

`2,1-norm methods yielded sparse results at the vertex level (Fig. 3.2), however the

G-SMuRFS model presented a sparser pattern at the ROI level (Fig. 3.3) than the

`2,1-norm model. Taking into account the spatial information makes the best use of

the detailed surface information, yet leading to a clustered group level result instead,

which is more visible and interpretable.

3.4 CONCLUSION

We have investigated the power of detailed cortical thickness measurements for pre-

dicting ADAS, MMSE and RAVLT cognitive scores using the data from the ADNI

cohort. We have proposed to employ a newly developed sparse multi-task learning al-

gorithm called G-SMuRFS, and have observed the following strengths of this approach
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that could greatly improve the prediction performance: (1) seamless integration of

anatomical knowledge in the learning process by coupling cortical measures from the

same ROI together; (2) sparsity at both patch level and ROI level; and (3) multitask

learning scheme for addressing correlation among response variables.

Compared to Linear, ridge, PLS, or `2,1-norm regression, combining the group `2,1-

norm in the regularization term has not only helped select the potential biomarkers

in a few ROIs, but also improved overall predictive power. Its application to multi-

modal imaging data would be promising future directions for biomarker discovery

and better mechanistic understanding in AD research. Exploration of other imaging

modalities as well as the combination of multiple modalities warrants further investi-

gation. Further effort may be made to include more complicated prior structure, like

multiple layer groups or networks, to guide the learning procedure. Another possible

future topic could be to investigate whether nonlinear models can help improve the

prediction rates as well as derive biologically meaningful results.
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Chapter 4

JOINT IDENTIFICATION OF IMAGING AND PROTEOMICS

BIOMARKERS USING NG-L21

While G-SMuRFS does present a better performance with its capability of incorpo-

rating prior brain structures, it only considers spatial correlation within brain regions.

But human brain functions more as a complex network rather than simple grouping

of ROIs. In this chapter, we propose a novel sparse regression model to take the brain

network as prior and evaluate its performance by examining the prediction power of

multimodal measurements toward cognitive outcomes.

4.1 BACKGROUND

The study of Alzheimer’s disease (AD) is experiencing an important shift from disease

categories to AD-relevant outcomes for better identification of biomarkers for early

detection. One particular example is the extension from disease status to cognitive

outcomes. Although beta-amyloid plaques and neurofibrillary tangles are two major

hallmarks of AD [74], various cognitive tests remain the most common way to help

with clinical diagnosis. Exploring the relationship between multimodal biomarker

measurements and cognitive outcomes has become an important research topic.

Earlier studies have been performed on single modality data, such as magnetic res-

onance imaging (MRI), positron emission tomography (PET), or cerebrospinal fluid

(CSF) biomarkers. Recent efforts have turned to multimodal data and reported im-

proved performance (e.g., MRI, FDG-PET and CSF biomarkers were jointly studied

in [65]). Since multiple modalities are not completely isolated, there exist inter-
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correlations among them. Existing multimodal methods typically employ a simple

strategy to bundle these data together, and thus ignore or oversimplify their relation-

ships(e.g. [79]).

To address this issue, we propose a new network-guided sparse learning model em-

bracing both the complementary information and inter-relationships between modali-

ties. The proposed model is applied to evaluate the predictive power of MRI and CSF

proteomic measurements towards cognitive outcomes. The empirical results demon-

strate significant improvements over the state-of-the-arts competing models, and also

yield stable multimodal biomarkers across cross-validation trials.

4.2 METHODS

We write matrices as boldface uppercase letters and vectors as boldface lowercase

letters. Given a matrix M = (mij), its i-th row and j-th column are denoted as mi

and mj respectively. The Frobenius norm and `2,1-norm (also called as `1,2-norm) of a

matrix are defined as ||M||F =
√∑

i ||mi||22 and ||M||2,1 =
∑

i

√∑
jm

2
ij =

∑
i ||mi||2,

respectively.

We focus on multi-task learning paradigm, where MRI and CSF measures are

used to predict one or more cognitive outcomes. Let {x1, · · · ,xn} ⊆ <d be MRI and

CSF measures and {y1, · · · ,yn} ⊆ <c cognitive outcomes, where n is the number of

samples, d is the number of predictors (feature dimensionality) and c is the number

of response variables (tasks). Let X = [x1, . . . ,xn] and Y = [y1, . . . ,yn].

The `2,1 norm [44] is a multi-task version of traditional lasso. While lasso only

focuses on the feature level sparsity, The `2,1 norm is proposed to couple multiple
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1 2 3 4 5 

1 1 -0.4 0.2 0.8 0.1 

2 -0.4 1 0.2 0.9 -0.3 

3 0.2 0.2 1 0.3 0.5 

4 0.8 0.9 0.3 1 0.7 

5 0.1 -0.3 0.5 0.7 1 

1 2 3 4 5 

0 0.9 0 -0.9 0 

0.4 0.4 0 0 0 

… 

0 0.3 0 0 0.3 

0 0.2 -0.2 0 0 

Figure 4.1: Each row in network matrix N (Right) corresponds to an element in
correlation matrix R (Left).

tasks together in addition to the original sparsity property:

min
W
||WTX−Y||2F + γ||W||2,1 . (4.1)

Yet in this model the rows of W are equally treated, which ignores the structures

among predictors. Group-Sparse Multi-task Regression and Feature Selection (G-

SMuRFS) method [70] was proposed to exploit the structures within and between

the predictors and response variables. It assumes 1) a partition scheme exists among

predictors, and 2) predictors within one partition should have similar weights. G-

SMuRFS can be thought of as a multi-task version of group lasso.

In practice, the relationship among predictors may not be as simple as a straight-

forward partition as used in G-SMuRFS. Many studies have shown that the human

brain can be modeled as a complex network. To model these complicated structures

among predictors, we propose a new Network-Guided `2,1 Sparse Learning (NG-L21)

model as follows.

Let R be the predictor correlation matrix with Rij indicating correlation between
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predictors i and j. Given a threshold t, we can construct a network by connecting

predictors with high positive and negative correlations (i.e., |Rij| ≥ t). We hypoth-

esize that positively (negatively) correlated predictors share positively (negatively)

similar weights across tasks.

Therefore, we try to minimize

∑
1≤i<j≤d & |Rij|≥t

||Wi − sign(Rij)Wj||2F . (4.2)

Since the selection of a proper threshold may be trivial, we also propose a threshold-

free or weighted method as follows:

∑
1≤i<j≤d

Rij||Wi − sign(Rij)Wj||2F . (4.3)

Here sign(Rij) deals with positive and negative correlations while Rij itself is applied

to reduce the constraint impact on the less correlated pairs. Thus, the whole regu-

larization term can be reformatted as ||NW||2F , in which N is a neighboring matrix

transformed from the symmetric correlation matrix R. In N, each row corresponds

to one element in the correlation matrix R (Fig. 4.1). For each pair of predictors i, j,

we create a row in N with i-th entry as −Rij, j-th entry as −Rijsign(Rij) and all the

other entries as zeros. The intuition is that the weight difference between two cor-

related predictors should be minimized, which is reflected by the new regularization

term of ||NW||2F . Also by including the weight, the more correlated a feature pair is,

the more constraint the pair is imposed by. We call this model NG-L21. Although this

model is similar to graph-guided fusion [35] and group weighted fusion [25], neither
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of the prior models explored the correlation of predictors and multi-task responses

together. The final objective function is formulated as:

min
W
||WTX−Y||2F + γ1||NW||2F + γ2||W||2,1 , (4.4)

where N is a sparse matrix where each row indicates a neighborhood relationship

(i.e., edge) in the predictor network.

Well known to be non-derivable, `1-norm can be easily solved by approximate

lasso where an extremely small value is added to enable the smoothness. Eq. (4.4)

can then be solved by simply taking the derivative w.r.t W and setting it to 0:

XXTW −XYT + γ1D1W + γ2D2W = 0, (4.5)

where D1 = NTN, a matrix with each row integrating all neighboring relations. For

the i-th row, it is the sum of all the rows in N whose i-th element is nonzero. D2 is

a diagonal matrix with the i-th diagonal element as 1
2‖wi‖2 . We have

W = (XXT + γ1D1 + γ2D2)−1XYT , (4.6)

where W can be efficiently obtained by solving (XXT + γ1D1 + γ2D2)W = XYT .

Following [70], an efficient iterative algorithm based on Eq. (4.6) can be developed as

follows (Algorithm 1), and can be shown to converge to the global optimum.
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Input: X, Y
Initialize W1 ∈ Rd×c, t = 1 ;
while not converge do

1. Calculate the diagonal matrices D
(t)
2 , where the i-th diagonal element of

D
(t)
2 is 1

2‖wi
t‖2

;

2. W(t+1) = (XXT + γ1D1 + γ2D
(t)
2 )−1XYT ;

3. t = t+ 1 ;

end

Output: W(t) ∈ Rd×c.

Algorithm 1: NG-L21 algorithm

4.3 RESULTS

4.3.1 DATA AND EXPERIMENTAL SETTING

The MRI, CSF proteomic, and cognitive data were downloaded from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database. One goal of ADNI has been to

test whether serial MRI, PET, other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of mild cognitive

impairment (MCI) and early AD [1]. For up-to-date information, see www.adni-

info.org.

This study (N=204) included 66 AD, 57 MCI and 81 healthy control (HC) partic-

ipants (Table 6.1). For each baseline MRI scan, FreeSurfer (FS) V4 was employed to

extract 73 cortical thickness measures and 26 volume measures. 82 CSF proteomic

analytes, evaluated by Rules Based Medicine, Inc. (RBM) proteomic panel [48] and

surviving quality control process, were also included in this work. The 99 imaging

measures and 82 proteomic analytes were used to predict a set of cognitive scores [1]:

Rey Auditory Verbal Learning Test (RAVLT, 5 scores shown in Table 4.2 as joint

outcomes). Using the regression weights from HC participants, all the MRI, CSF,
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Table 4.1: Participant characteristics (all
from ADNI-1).

Category AD MCI HC

Number 66 57 81
Gender(M/F) 37/29 36/21 42/39
Handness(R/L) 63/3 55/2 77/4
Age(mean±std) 75.14±7.66 74.59±7.42 76.24±5.35
Education 15.04±2.97 15.79±2.88 15.86±2.85

Table 4.2: RAVLT scores.

Score ID Description

TOTAL Total score of the first 5 learning trials
TOT6 Trial 6 total number of words recalled
TOTB List B total number of words recalled
T30 30 minute delay number of words recalled
RECOG 30 minute delay recognition score

and cognitive measures were pre-adjusted for the baseline age, gender, education, and

handedness, with intracranial volume as an additional covariate for MRI only.

4.3.2 EXPERIMENTAL RESULTS

We denote the weighted network model as NG-L21w, and the thresholded one as NG-

L21t. For comparing performances between these two models and competing methods

(i.e., Linear, Ridge, elastic net and L21), regression analysis was conducted jointly

on all five RAVLT scores. Based on the assumption that FS and CSF measures

could provide complementary information, we performed 18 experiments based on

six different methods and three datasets (FS, CSF, FS+CSF). In each experiment,

Pearson’s correlation coefficients (CCs) between the actual and predicted cognitive

scores were computed to measure the prediction performances. Using 10-fold cross-

validation, parameters were estimated and average CCs over 10 trials were reported.

In our experiments, CSF proteomic analytes were found to have limited prediction

power by itself (typically CC< 0.4). But combining CSF and FS yielded improved re-

sults than using FS alone (Table 4.3), indicating possible complementary information
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Table 4.3: Average correlation coefficient between predicted and actual scores over
10 cross-validation trials: FS results (top panel) and FS+CSF results (bottom panel)
are shown.

TOTAL T30 RECOG TOT6 TOTB

NG-L21w 0.6084 0.5395 0.55 0.5337 0.4888
NG-L21t 0.5879 0.5173 0.5497 0.5052 0.4775
L21 0.574 0.5007 0.5227 0.4915 0.4771
ElasticNet 0.6032 0.4971 0.5462 0.5061 0.4953
Ridge 0.5996 0.5365 0.5316 0.5335 0.4828
Linear 0.4015 0.3505 0.3778 0.3141 0.2041

NG-L21w 0.6314 0.523 0.5885 0.5872 0.4991
NG-L21t 0.6312 0.5223 0.5908 0.5883 0.4954
L21 0.6207 0.5178 0.575 0.5744 0.4858
ElasticNet 0.6293 0.5154 0.5691 0.5397 0.5002
Ridge 0.6428 0.5445 0.5595 0.5935 0.4936
Linear 0.1935 0.0826 0.0944 0.1632 0.0374

provided by the two modalities. Both NG-L21 models outperformed the other meth-

ods in most cases. Ridge obtained comparable and sometimes better performances

than NG-L21; but Ridge’s root mean square error (not shown due to space limit)

tended to be higher than NG-L21.

Fig. 4.2(a) and Fig. 4.2(b) show the regression weights in heatmap and brain

respectively. Ridge produced non-sparse patterns, and made the results less inter-

pretable. Both NG-L21 and L21 identified a small number of imaging markers, in-

cluding AmygVol, EntCtx, and HippVol, which were known to be related to RAVLT

scores. NG-L21w achieved similar or slightly better performance than NG-L21t. This

indicates that the NG-L21 performance is mainly determined by the correlations of

high values and small weights (those were included in NG-L21w but excluded in NG-

L21t) have just modest effect on improving the performance. In addition, we also

compared NG-L21 with G-SMuRFS using symmetric information as grouping strat-

egy. Generally they achieved similar performance, but tuned parameters of `2,1-norm

in G-SMuRFS shrunk to almost 0, and led to non-sparse results.
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Fig. 4.2(c) shows regression coefficients of CSF proteomic markers for all RAVLT

scores. Due to their highly correlated structure, the coefficients across these scores are

similar for the top proteomic markers. Some known AD-risk proteins (e.g., APOE,

ApoC-III, CD40, FRTN) are detected for all these scores. For example, FRTN (fer-

ettin) is the main iron-storage protein capable of containing thousands of iron atoms.

Recently it has been reported that ferritin from AD patients has higher aluminum

than that of controls [57]. And the irregular iron accumulative and disrupted iron

metabolism have also been previously identified to be related with brain disorders.

Detailed analysis of these identified proteomic markers warrants further investigation.

4.4 CONCLUSION

We proposed a new network-guided sparse learning framework, NG-L21, aiming to

flexibly incorporate and model structure among predictors. Unlike traditional meth-

ods, this model could provide advantages in several folds: 1) explicitly incorporat-

ing the relationships among predictors in a more general way, 2) using data-driven

patterns without any predefined parameters, 3) effectively identifying biomarkers in-

fluencing multiple responses, and 4) selection of correlated markers together rather

than picking only one of them to improve the stability. With the application to

the ADNI multimodal data (predicting memory scores from MRI and CSF pro-

teomic measures), NG-L21 demonstrated improved prediction performance over the

state-of-the-art competing methods, and identified stable and meaningful multimodal

biomarkers. Combining MRI and CSF proteomic data yielded enhanced prediction

performance than each single modality.
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Figure 4.2: Heat maps of regression weights (average over 10-fold cross-validation)
for predicting RAVLT scores using FS + CSF measures. (a) FS weights from NG-
L21w, L21, and Ridge respectively. Results from left (L) and right (R) sides are
shown in a pair of panels. For each panel, 5 columns show results for TOTAL, T30,
RECOG, TOT6, and TOTB respectively. The measures shown in the first seven
row are unilateral, and the remaining ones are bilateral. (b) FS weights from NG-
L21w mapped onto brain. (c) CSF weights from NG-L21w: 5 columns correspond to
TOTAL, T30, RECOG, TOT6, and TOTB respectively.
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Chapter 5

STRUCTURE-AWARE SCCA IN IMAGING GENETICS

ASSOCIATION ANALYSIS

While regression analysis helps to discover the predictive biomarkers toward a specific

task/task set, association study treats both datasets more symmetrically and alter-

natively seeks the sophisticated multivariate relationship among multimodal mea-

surements. Brain imaging genetics is one typical example, which aims to identify

associations between genetic factors such as single nucleotide polymorphisms (SNPs)

and quantitative traits (QTs) extracted from neuroimaging data. This chapter and

the following Chapter 6 will discuss the association modeling based on various prior

knowledge.

5.1 BACKGROUND

Unlike traditional univariate analyses [55] that aim to discover single-SNP-single-QT

associations or regression analyses [29] for joint effect of multiple SNPs on one or a

few QTs, bi-multivariate analyses [14,39,56,64] have been recently applied to exam-

ine complex multi-SNP-multi-QT associations. SCCA is one typical bi-multivariate

association model which can help yield sparse patterns in both imaging and genetic

features for easy interpretation. But as we discussed earlier in Chapter 2, most exist-

ing SCCA algorithms are dependent on the soft threshold strategy for final solution,

and assume the independence among data features. This assumption clearly does

not hold in either imaging or genetic data, and therefore will inevitably limit the

performance of the algorithm.
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To overcome this limitation and still preserve the sparse patterns, we propose a

novel structure-aware SCCA (denoted as S2CCA) algorithm for brain imaging genet-

ics applications to achieve the following two goals: (1) our algorithm is not based

on the soft threshold framework and eliminates the independence assumption for the

input data; (2) our model can incorporate group-like structure (e.g., voxels in an

ROI, or SNPs in an LD block) to yield more stable and biologically more meaningful

results than conventional SCCA model. We perform an empirical comparison be-

tween the proposed S2CCA algorithm and a widely used SCCA implementation in

the PMD software package (http://cran.r-project.org/web/packages/PMA/) [77] us-

ing both synthetical and real imaging genetic data. The empirical results demonstrate

that the proposed S2CCA algorithm can yield improved prediction performances and

biologically meaningful findings.

5.2 STRUCTURE-AWARE SCCA (S2CCA)

We denote vectors as boldface lowercase letters and matrices as boldface uppercase

ones. For a given matrix M = (mij), we denote its i -th row and j -th column to

mi and mj respectively. Let X = {x1, ...,xn}T ⊆ Rp be the SNP data and Y =

{y1, ...,yn}T ⊆ Rq be the imaging QT data, where n is the number of participants, p

and q are the numbers of SNPs and QTs, respectively. CCA seeks linear combinations

of variables in X and variables in Y, which are maximally correlated between Xu

and Yv, that is:

max
u,v

uTXTYv s.t. uTXTXu = 1,vTYTYv = 1 (5.1)
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where u and v are canonical vectors or weights. Two major weaknesses of CCA are

that it requires the number of observations n to exceed the combined dimension of

X and Y and that it produces nonsparse u and v which are difficult to interpret.

SCCA removes these weaknesses by maximizing the correlation between Xu and Yv

subject to the weight vector constraints P1(u) ≤ c1 and P2(v) ≤ c2. The penalized

matrix decomposition (PMD) toolkit [77] provided a widely used SCCA implemen-

tation, where the L1 penalty P (A) =
∑p

k=1 |A(k)| was used for both P1 and P2. As

mentioned earlier, similar to most SCCA methods, PMD employed the soft threshold

strategy for solving the L1 penalty term, which required the input data to have an or-

thonormal design XTX = I and YTY = I (see Section 10 in [62]). This independence

assumption usually does not hold in imaging genetic data (e.g., correlated voxels in

an ROI, correlated SNPs in an LD block), and thus inevitably limits the capability

of identifying meaningful imaging genetic associations.

To overcome this limitation, we propose a novel structure-aware SCCA (denoted

as S2CCA) algorithm to not only eliminate the independence assumption for the

input data, but also incorporate group-like structure in the model. Instead of using

L1, we define a group L1 constraint on P1 and P2 as follows:

P1 = ||u||G = γ1

K1∑
k1=1

√ ∑
i∈πk1

u2
i = γ1

K1∑
k1=1

||uk1 ||2,

P2 = ||v||G = γ2

K2∑
k2=1

√ ∑
i∈πk2

v2
i = γ2

K2∑
k2=1

||vk2 ||2.

(5.2)

In Eq. (2), SNPs are partitioned into K1 groups Π1 = {πk1}K1
k1=1, such that {ui}

mk1
i=1 ∈

πk1 , and mk1 is the number of SNPs in πk1 ; and imaging QTs are partitioned into K2

groups Π2 = {πk2}K2
k2=1, such that {vi}

mk2
i=1 ∈ πk2 , and mk2 is the number of QTs in
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πk2 . || · ||G is the constraint for the group structure. In this work, we partition voxels

using AAL ROIs and SNPs using LD blocks.

Now the S2CCA objective function can be formally written as follows:

max
u,v

uTXTYv− γ1

K1∑
k1=1

||uk1 ||2 − γ2

K2∑
k2=1

||vk2 ||2 (5.3)

s.t. uTXTXu = 1, vTYTYv = 1,

Using Lagrange multipliers, Eq. (5.3) can be transformed as follows:

max
u,v

uTXTYv− γ1||u||G − γ2||v||G − β1||Xu||22 − β2||Yv||22 (5.4)

Taking the derivative about u and v and setting them to zero, we have

XTYv− γ1D1u− β1X
TXu = 0, (5.5)

YTXu− γ2D2v− β2Y
TYv = 0, (5.6)

where D1 is the block diagonal matrix of the k1-th diagonal block as 1
2||uk1 ||2

, and D2

is the block diagonal matrix of the k2-th diagonal block as 1
2||vk2 ||2

.

With v fixed, we can use an approach similar to G-SMuRFS [70] to solve for

u. With u fixed, we can do the same to solve for v. We propose Algorithm 2 to

alternatively compute u and v until the result converges. We use max{|δ| | δ ∈

(ut+1 − ut)} < 10−5 and max{|δ| | δ ∈ (vt+1 − vt)} < 10−5 as stop criterion, and

nested cross-validation to automatically tune parameters γ1, γ2, β1 and β2.
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Input: X = {x1, ...,xn}T , Y = {y1, ...,yn}T
t = 1, Initialize ut ∈ Rp×1, vt ∈ Rq×1;
while not converge do

1. Calculate the block diagonal matrix D1t , where the k1-th diagonal is
1

2||uk1
t ||2

;

2. ut+1 = (β1X
TX + γ1D1t)

−1XTYvt;

Scale ut+1 so that uTt+1X
TXut+1 = 1;

3. Calculate the block diagonal matrix D2t , where the k2-th diagonal is
1

2||vk2
t ||2

;

4. vt+1 = (β2Y
TY + γ2D2t)

−1YTXut+1;

Scale vt+1 so that vTt+1Y
TYvt+1 = 1;

5. t = t+ 1.
end
Output: ut ∈ Rp×1, vt ∈ Rq×1.

Algorithm 2: S2CCA algorithm

5.3 EXPERIMENTAL RESULTS

5.3.1 RESULTS ON SIMULATION DATA

We first performed a comparative study between S2CCA and PMD using simulated

data. The following procedure is used to generate two synthetic datasets X and Y,

both with n = 1000 and p = q = 50: (1) We created a random positive definite non-

overlapping group structured covariance matrix M. (2) Data set Y with covariance

structure M was calculated through Cholesky decomposition. (3) We repeated the

above two steps to generate another data set X. (4) Canonical loadings u and v were

set based on the group structures of X and Y respectively, where all the variables

within the group share the same weight. For simplicity, we selected only one group

in Y to be associated with 4 groups in X. (5) The portion of the specified group in

Y were replaced based on the u, v, X and the assigned correlation. We generated 7

pairs of X and Y with correlations ranging from 0.45 to 0.99. The canonical loadings

and group structure remained the same across all the synthetic data sets.
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Table 5.1: Five-fold cross-validation performance on synthetic data: mean±std is
shown for estimated correlation coefficients and AUC of the test data using the trained
model. P-value of paired t-test between S2CCA and PMD results is also shown.

True Correlation Coefficient (CC) Area under ROC (AUC)

CC S2CCA PMD p S2CCA:u PMD:u p S2CCA:v PMD:v p

0.445 0.42±0.05 0.27±0.08 7E-4 1.00±0 0.68±0.02 4E-6 1.00±0 0.84±0.02 4E-5
0.526 0.48±0.04 0.32±0.11 4E-3 1.00±0 0.66±0.01 3E-7 1.00±0 0.87±0.06 3E-3
0.594 0.56±0.07 0.39±0.12 2E-3 1.00±0 0.64±0.01 3E-7 1.00±0 0.81±0.05 7E-4
0.697 0.67±0.01 0.47±0.07 2E-3 0.94±0.02 0.66±0.03 6E-5 1.00±0 0.85±0.04 3E-4
0.814 0.80±0.04 0.49±0.06 7E-5 0.98±0.02 0.63±0.01 1E-6 1.00±0 0.83±0.04 5E-4
0.906 0.90±0.01 0.56±0.06 9E-5 1.00±0 0.66±0.01 4E-7 1.00±0 0.82±0.04 4E-4
1.000 0.99±0.00 0.65±0.04 2E-5 1.00±0 0.66±0.01 3E-7 1.00±0 0.86±0.07 4E-3

We applied S2CCA and PMD to all seven data sets. The regularization parame-

ters were optimally tuned using a grid search from 10−5 to 105 through nested 5-fold

cross-validation. The true and estimated u and v values are shown in Fig. 5.1. Due

to different normalization strategies, the weights yielded through S2CCA and PMD

showed different scales. Yet the overall profile of the estimated u and v values from

S2CCA kept consistent with the ground truth across the entire range of tested corre-

lation strengths (from 0.45 to 0.99), while PMD only identified an incomplete portion

of all the signals. Furthermore, we also examined the correlation in the test set com-

puted using the learned CCA models from the training data for both methods. The

left part of Table 5.1 demonstrated that S2CCA outperformed PMD consistently and

significantly, and it could accurately reveal the embedded true correlation even in the

test data. The right part of Table 5.1 demonstrated the sensitivity and specificity

performance using area under ROC (AUC), where S2CCA also significantly outper-

formed PMD no matter whether the correlation was weak or strong. From the above

results, it can also be observed that S2CCA could identify the correlations and signal

locations not only more accurately but also more stably.
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Figure 5.1: 5-fold trained weights of u and v. Ground truth of u and v are shown in
the most left two panels. S2CCA results (top row) and PMD results (bottom row) are
shown in the remaining panels, corresponding to true correlation coefficients (CCs)
ranging from 0.45 to 0.99. For each panel pair, the five estimated u values are shown
on the left panel, and the five estimated v values are shown on the right panel.

5.3.2 RESULTS ON REAL NEUROIMAGING GENETICS DATA

S2CCA and PMD were also compared using real neuroimaging and SNP data. The

magnetic resonance imaging (MRI) and SNP data were downloaded from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database. One goal of ADNI has been to

test whether serial MRI, positron emission tomography, other biological markers, and

clinical and neuropsychological assessment can be combined to measure the progres-

sion of mild cognitive impairment (MCI) and early AD. For up-to-date information,

see www.adni-info.org.

This study included 176 AD, 363 MCI and 304 healthy control (HC) non-Hispanic

Caucasian participants (Table 5.2). Structural MRI scans were processed with voxel-

based morphometry (VBM) in SPM8 [2, 49]. Briefly, scans were aligned to a T1-

weighted template image, segmented into gray matter (GM), white matter (WM)
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Table 5.2: Participant characteristics.

HC MCI AD
Num 304 363 176
Gender(M/F) 111/193 235/128 95/81
Handedness(R/L) 190/14 329/34 166/10
Age (mean±std) 76.07±4.99 74.88±7.37 75.60±7.50
Education (mean±std) 16.15±2.73 15.72±2.30 14.84±3.12

and cerebrospinal fluid (CSF) maps, normalized to MNI space, and smoothed with

an 8mm FWHM kernel. Rather than using ROI summary statistics, in this study we

subsampled the whole brain and examined correlations between the voxels (GM den-

sity measures) and SNPs. Totally 465 voxels spanning all brain ROIs were extracted.

All SNPs within LD block of APOE e4 were extracted from an imputed genetic data

set containing only SNPs in Illumina 610Q and/or OmniExpress arrays after basic

quality control. As a result, four SNPs (rs429358, rs439401, rs445925, rs534007)

from this LD block were included in this study. Using the regression weights derived

from the healthy control participants, VBM and genetic measures are pre-adjusted

for removing the effects of the baseline age, gender, education, and handedness.

Both S2CCA and PMD were evaluated on the normalized VBM and SNP measure-

ments. Five-fold nested cross-validation were applied to search optimal parameters.

Table 5.3 shows 5-fold cross-validation results, indicating that S2CCA significantly

and consistently outperformed PMD in terms of identifying high correlations from the

training data and replicating those in the testing data. Shown in Fig. 5.2(a) is the

canonical loadings trained from 5-fold cross-validation, suggesting relevant imaging

and genetic markers. Although the S2CCA model did not explicitly impose sparsity

on individual voxels, it was still able to discover a very small number of relevant ROIs

for easy interpretation due to the imposed group sparsity. The strongest imaging sig-

nals came from right hippocampus, which were inversely correlated with APOE e4
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allele rs429358. In contrast, PMD identified many more ROIs than S2CCA (Fig. 5.2

(a-b)), making results hard to interpret. In addition, comparing the results from

5 cross-validation trials, S2CCA yielded a more stable and consistent pattern than

PMD. It is reassuring that S2CCA identified a well-known correlation between hip-

pocampal morphometry and APOE in an AD cohort, which shows the promise of

S2CCA to correctly identify biologically meaningful imaging genetic associations.

Table 5.3: Five-fold cross validation results on real data: the CCA models learned
from the training data were used to estimate the correlation coefficients between
canonical components for both training and testing sets. P-values of paired t-tests
were obtained for comparing S2CCA and PMD results.

Correlation S2CCA PMD
p-valuecoefficients F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

Training 0.28 0.27 0.27 0.27 0.27 0.26 0.26 0.26 0.26 0.24 0.016
Testing 0.21 0.24 0.28 0.23 0.26 0.20 0.21 0.21 0.20 0.24 0.017

5.4 CONCLUSION

Most existing SCCA algorithms (e.g., [14, 39, 45, 64, 77]) are designed using the soft

threshold strategy, which assumes that the features in the data are independent from

each other. This independence assumption usually does not hold in imaging genetic

data, and thus limits the capability of yielding optimal results. We have proposed a

novel structure-aware sparse canonical correlation analysis (S2CCA) algorithm, which

not only removes the above independence assumption, but also can take into consid-

eration the group-like structure in the data. We have compared S2CCA with PMD

(a widely used SCCA implementation) on both synthetic data and real imaging ge-

netic data. The promising empirical results demonstrated that S2CCA significantly

outperformed PMD in both cases. In addition, S2CCA could accurately recover the

53



Axial Coronal Sagittal(L) Sagittal(R) 

L 

L R 

R 

S
2

C
C

A
 

S
2

C
C

A
 

P
M

D
 

P
M

D
 

Voxels from Right Hippocampus 

4 APOE SNPs 465 voxels across the entire brain 

u  v  

(a
) 

5
-f

o
ld

 c
a

n
o

n
ic

a
l 

lo
a

d
in

g
s 

(b
) 

B
ra

in
 m

a
p

 o
f 

a
v
e

ra
g

e
 v

  

Figure 5.2: Comparison between S2CCA and PMD on identified canonical vectors in
cross-validation trials: (a) 5-fold canonical loadings of u and v on 4 APOE SNPs and
465 VBM measures; (b) mapping the average of imaging canonical loadings v of 5
cross-validation trials onto the brain.

true signals from the synthetic data, as well as yield improved canonical correlation

performances and biologically meaningful findings from real data. This study is an

initial attempt to remove the feature independence assumption many existing SCCA

methods have. Since joint multivariate modeling of imaging genetic data is computa-

tionally and statistically challenging, we have downsampled our data via a targeted

APOE analysis to reduce computational burden and overfitting risk. The S2CCA

sparsity has been designed to reduce model complexity and further overcome overfit-

ting. Future directions include evaluating S2CCA using more realistic settings and

expanding S2CCA to address efficiency and scalability.

54



Chapter 6

TRANSCRIPTOME-GUIDED AMYLOID IMAGING GENETICS VIA

KG-SCCA

While S2CCA does proved itself with a better performance with its capability of

incorporating prior brain structures, its power is still quite limited since its prior is

only limited to group structure. Human brain is well known to function more like

a complex network system rather than a simple grouping of ROIs. In this chap-

ter, we propose a new knowledge-guided SCCA algorithm (KG-SCCA) to overcome

this limitation by incorporating valuable prior knowledge in a more flexible network

format. The proposed KG-SCCA method is able to model two types of prior knowl-

edge: one as a group structure (e.g., LD blocks among SNPs) and the other as a

network structure (e.g., gene co-expression network among brain regions). The new

model incorporates these prior structures by introducing new regularization terms to

encourage similarity between grouped or connected features. A new algorithm is de-

signed to solve the KG-SCCA model without imposing the independence constraint

on the input features. We demonstrate the effectiveness of our algorithm with both

synthetic and real data. For real data, using an Alzheimer’s disease (AD) cohort,

we examine the imaging genetic associations between all SNPs in the APOE gene

(i.e., top AD gene) and amyloid deposition measures among cortical regions (i.e.,

a major AD hallmark). In comparison with a widely used SCCA implementation

in the PMA software package (http://cran.r-project.org/web/packages/PMA/) [77],

KG-SCCA produces improved cross-validation performances as well as biologically

meaningful results.
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Table 6.1: Participant characteristics.

Subjects AD MCI HC

Number 28 343 196
Gender(M/F) 18/10 203/140 102/94
Handedness(R/L) 23/5 309/34 178/18
Age(mean±std) 75.23±10.66 71.92±7.47 74.77±5.39
Education(mean±std) 15.61±2.74 15.99±2.75 16.46±2.65

6.1 MATERIALS AND DATA SOURCES

To demonstrate the proposed KG-SCCA algorithm, we apply it to an amyloid imaging

genetic analysis in the study of AD. Deposition of amyloid-β in the cerebral cortex is

a major hallmark in AD pathogenesis. Our prior studies [47,59] performed univariate

genetic association analyses of amyloid measures in a few candidate cortical regions

of interest (ROIs), and identified several promising hits including rs429358 in APOE,

rs509208 in BCHE, and rs7551288 in DHCR24. In this work, using the proposed KG-

SCCA algorithm, we perform a bi-multivariate analysis to examine the association

between all the available SNPs (58 in total) in the APOE gene (i.e., the top genetic

risk factor for late onset AD) and 78 ROIs across the entire cortex. We employ two

types of prior knowledge in this analysis: (1) a group structure is imposed to the SNP

data using the LD block information (see Fig. 6.4), and (2) a network structure is

imposed to the amyloid imaging data by computing an amyloid pathway-based gene

co-expression network in the brain using Allen Human Brain Atlas [83]. Below, we

first describe our amyloid imaging and genotyping data, and then discuss our method

for creating the amyloid pathway-based gene co-expression network in the brain.
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6.1.1 IMAGING AND GENOTYPING DATA

The proposed algorithm, KG-SCCA, was empirically evaluated using the amyloid

imaging and genotyping data obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.usc.edu). One goal of ADNI has been to

test whether serial magnetic resonance imaging (MRI), positron emission tomogra-

phy (PET), other biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive impairment (MCI)

and early AD. For up-to-date information, see www.adni-info.org. Pre-processed

[18F]Florbetapir PET scans (i.e., amyloid imaging data) were downloaded from LONI

(adni.loni.usc.edu). Before downloading, images were averaged, aligned to a standard

space, re-sampled to a standard image and voxel size, smoothed to a uniform reso-

lution and normalized to a cerebellar gray matter (GM) reference region resulting in

standardized uptake value ratio (SUVR) images as previously described [33]. After

downloading, the images were aligned to each participant’s same visit MRI scan and

normalized to the Montreal Neurological Institute (MNI) space as 2x2x2mm voxels

using parameters from the MRI segmentation. ROI level amyloid measurements were

further extracted based on the MarsBaR AAL atlas. Genotype data of both ADNI-1

and ADNI-2/GO phases were also obtained from LONI (adni.loni.usc.edu). All the

APOE SNPs were extracted based on the quality controlled and imputed data com-

bining two phases together. Only SNPs available in Illumina 610Quad and/or Om-

niExpress arrays were included in the analysis. As a result, we had 58 SNPs located

within 10 LD blocks (see Fig. 6.4) computed using HaploView [5]. 568 non-Hispanic

Caucasian participants with both complete amyloid measurements and APOE SNPs
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were studied, including 28 AD, 343 MCI and 196 healthy control (HC) subjects (Ta-

ble 6.1). Using the regression weights derived from the HC participants, amyloid and

SNP measures were preadjusted for removing the effects of the baseline age, gender,

education, and handedness.

6.1.2 AMYLOID PATHWAY-BASED GENE CO-EXPRESSION NET-

WORK IN THE BRAIN

Since we examine cortical amyloid deposition in relation to genetic variation, we

hypothesize that amyloid pathway-based gene co-expression profiles among cortical

ROIs may provide valuable information in search for APOE -related amyloid distri-

bution pattern in the cortex. Thus, we employed the brain transcriptome data from

the Allen Human Brain Atlas (AHBA) [83], coupled with 15 candidate genes from

amyloid pathways studied in [59], to create such a brain network.

Gene expression profiles across the whole human brain were downloaded from

Allen Institute for Brain Science. One of their goals is to advance the research and

knowledge about neurobiological conditions, with extensive mapping of whole-genome

gene expression throughout the brain. Among various organisms, AHBA is one of the

projects seeking to combine the genomics with the neuroanatomy to better under-

stand the connection between genes and brain functioning. Gene expression profiles

in 8 health human brains have been released, including 2 full brains and 6 right

hemispheres. Details can be found in www.brain-map.org.

Brain-wide expression data of all 15 amyloid-related candidate genes, reported

in [59], were extracted from AHBA to construct the brain network. Since an early

report indicated that individuals share as much as 95 percent gene expression pro-
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Figure 6.1: Amyloid pathway-based gene co-expression networks among 78 AAL cor-
tical ROIs constructed from AHBA using different statistics (see different rows) for
two individuals and their combination.

file [83], in this study, we only included two full brains (H0351-2201 and H0351-2002)

to construct the co-expression network. First all the brain samples (∼900) in AHBA

were mapped to MarSBAR AAL atlas which included 116 brain ROIs. According

to [47], cortical ROIs are typically believed to hold the amyloid signals whereas other

ROIs hold similar amyloid measures across individuals. Thus 39 pairs of bilateral

cortical ROIs (78 in total), from frontal lobe, cingulate, parietal lobe, temporal lobe,

occiptal lobe, insula and sensory-motor cortex, were included in our analysis. Corre-

59



Figure 6.2: Network visualization by thresholding the connectivity matrix shown in
the lower right corner of Fig. 6.1, where edges correspond to matrix entries with values
≥ 0.5 or ≤ −0.5. The circle is symmetric (left measures on left and right measures on
right), from top to bottom are frontal lobe, cingulate, parietal lobe, temporal lobe,
occiptal lobe, insula, and sensory-motor cortex.

lation among ∼900 brain locations were first calculated based on the gene expression

profile of 15 amyloid candidate genes. Due to many-to-one mapping from the brain lo-

cations to AAL ROIs, for each ROI, there are more than one connections, represented

by correlations between two brain locations. Therefore we calculated ROI-level corre-

lations of two individuals in five ways: minimum, maximum, mean, standard deviation

and median. In addition, the ROI correlation structure based on the combination of

both individuals was also generated in the same way for comparison (see Figure. 6.1).

Clearly, for all five statistics, the pattern remains highly consistent across individu-
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als and their combination. For simplicity, in the subsequent analysis, we adopt the

brain connectivity matrix generated from the combination sample using the median

statistics (i.e., the panel in the lower right corner of Figure. 6.1). Figure. 6.2 shows a

network visualization of this matrix, where edges correspond to matrix entries with

values ≥ 0.5 or ≤ −0.5.

6.2 METHODS

Now we present our KG-SCCA algorithm. We denote vectors as boldface lowercase

letters and matrices as boldface uppercase ones. For a given matrix M = (mij), we

denote its i -th row and j -th column as mi and mj respectively. Let X = {x1, ..., xn} ⊆

Rp be the genotype data (SNP) and Y = {y1, ..., yn} ⊆ Rq be the imaging QT data,

where n is the number of participants, p and q are the numbers of SNPs and QTs,

respectively.

CCA seeks linear transformations of variables X and Y to achieve the maximal

correlation between Xu and Yv, which can be formulated as:

max
u,v

uTXTYv s.t. uTXTXu = 1,vTYTYv = 1 (6.1)

where u and v are canonical loadings or weights, reflecting the significance of each

feature in the identified canonical correlation.

Similar to many machine learning algorithms, overfitting could arise in CCA when

the features outnumber the participants. In addition, CCA outcomes could spread

nontrivial effects across all the features rather than only a few significant ones, making

the results difficult to interpret. To address these issues, SCCA was proposed in [77]
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by introducing penalty terms, P1(u) ≤ c1 and P2(v) ≤ c2, to regularize the weights,

as shown in Eq. (6.2).

max
u,v

uTXTYv

s.t. ||Xu||22 = 1, ||Yv||22 = 1, P1(u) ≤ c1, P2(v) ≤ c2

(6.2)

Here the objective function is bi-linear in u and v: when u is fixed, it is linear in

v and vice versa. But due to the L2 equality, with u or v fixed, the constraints are

not convex. This can be solved by reformulating the L2 equality into inequality as

||Xu||22 ≤ 1 and ||Yv||22 ≤ 1. For easy computation, Eq. (6.2) is commonly rewritten

in its Lagrangian form.

max
u,v

uTXTYv− γ1

2
||Xu||22 −

γ2

2
||Yv||22 − β1P1(u)− β2P2(v) (6.3)

[77] and [78] explored two penalty forms, L1 penalty and the chain structured

fused Lasso penalty. L1 penalty imposes sparsity on both u and v, and assumes

that each canonical correlation involves only a few features from X and Y. The fused

Lasso penalty promotes the smoothness of weight vectors, and encourages neighboring

features to be selected together. To incorporate other structures, group- and network-

guided penalties were introduced [11,13]. As mentioned earlier, most of these methods

were designed using the soft thresholding technique, which was first proposed to solve

Lasso problem when the features were independent from each other [62]. This condi-

tion does not hold in imaging genetics data. Thus direct application of those methods

into imaging genetics studies limits the capability of yielding optimal solutions. Be-

low, we first present our KG-SCCA model and then present an effective KG-SCCA
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algorithm without using the soft thresholding strategy.

Brain has been studied as a complicated network. The SNP data have structures

like LD blocks. Given these prior knowledge, we propose the following KG-SCCA

model by introducing two penalty terms for genetic loadings u and imaging loading

v respectively.

P1 = ||u||G = β1

K1∑
k1=1

√ ∑
i∈πk1

u2
i + θ1||u||1

= β1

K1∑
k1=1

||uk1 ||2 + θ1||u||1,

(6.4)

P2 = ||v||N = β2

∑
(i,j)∈E
i<j

τ(wij)||vi − sign(wij)vj ||22 + θ2||v||1

= β2||Cv||22 + θ2||v||1.

In penalty P1(u), SNPs are partitioned into K1 groups Π1 = {πk1}K1
k1=1, such

that {ui}
mk1
i=1 ∈ πk1 , and mk1 is the number of SNPs in πk1 . While the group term

β1

K1∑
k1=1

||uk1||2 helps select all the SNPs in relevant LD blocks, L1 penalty manages to

suppress those non-signals within selected LD blocks. The P1(u) penalty is essentially

the group Lasso penalty applied to the CCA framework.

Penalty P2(v) applies the network-guided constraint to encourage the joint se-

lection of “connected” features (i.e., their connectivity matrix entry having a high

weight) as well as uses L1 to impose global sparsity. E is the set of all possible imag-

ing QT pairs and |E| is the total number of QT pairs. C ∈ R|E|×q is defined as follows.

The row of C is indexed by all pairs (i, j) ∈ {(i, j)|i ∈ {1, ..., q} , j ∈ {1, ...q} , i<j},

C(i,j),i = wij and C(i,j),j = sign(wij)wij. τ(wij) provide the fusion effect that promotes

similarity between vi and vj of related features. In this paper we use τ(wij) = w2
ij.

With sign(wij) we can have positively related features being pulled together and on
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the other hand the negatively related features being fused with opposite direction.

Thus, for strongly connected features with a large fusion effect, they tend to be jointly

selected or jointly not selected.

In this work, as mentioned earlier, we formed the group structure for the SNP data

by partitioning them using LD blocks generated by HaploView [5]. We formed the net-

work structure for the amyloid imaging data by constructing amyloid pathway-based

gene co-expression network using AHBA. Since the model could be easily extended

to estimate multiple canonical variables, we only focus on creating the first pair of

canonical variables in this paper.

We now present our algorithm to solve this model without using soft thresholding

approach. By fixing u and v respectively, we will have two convex problems shown

in Eq. (6.5).

max
u

uTXTYv− γ1

2
||Xu||22 − β1

K1∑
k1=1

||uk1||2 − θ1||u||1

max
v

uTXTYv− γ2

2
||Yv||22 −

β2

2
||Cv||22 − θ2||v||1

(6.5)

Let B1 = 1
γ1
Yv and B2 = 1

γ2
Xu, the above problems can be reformulated to Eq. (6.6):

min
u

1

2
||Xu−B1||22 +

β1

γ1

K1∑
k1=1

||uk1||2 +
θ1

γ1

||u||1

min
v

1

2
||Yv −B2||22 +

β2

2γ2

||Cv||22 +
θ2

γ2

||v||1

(6.6)

Here, while u can be solved by the G-SMuRFS method proposed in [70], opti-

mization of v can be achieved by the network-guided L2,1 regression method proposed

in [80]. In both solutions, a smooth approximation has been estimated for group L2,1
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Input: X, Y
X = {x1, ..., xn}, Y = {y1, ..., yn}, group and network structures
t = 1, Initialize ut ∈ Rp×1, vt ∈ Rq×1;
while not converge do

1. Calculate B1t = 1
γ1
Yvt;

2. Calculate the block diagonal matrix D1t and D2t;

3. ut+1 = (XTX + β1
γ1
D1t + θ1

γ1
D2t)

−1XTB1t;

4. Scale ut+1 so that uTt+1X
TXut+1 = 1;

5. Calculate B2t = 1
γ2
Xut+1;

6. Calculate the block diagonal matrix D4t;

7. vt+1 = (YTY + β2
γ2
D3 + θ2

γ2
D4t)

−1YTB2t;

8. Scale vt+1 so that vTt+1Y
TYvt+1 = 1;

9. t = t+ 1.
end
Output: ut ∈ Rp×1, vt ∈ Rq×1.

Algorithm 3: KG-SCCA algorithm

and L1 terms by including an extremely small value. The solution for u and v in

each iteration step is as follows:

u = (XTX +
β1

γ1

D1 +
θ1

γ1

D2)−1XTB1,

v = (YTY +
β2

γ2

D3 +
θ2

γ2

D4)−1YTB2,

(6.7)

where D1 is a block diagonal matrix with the k-th diagonal block as 1
‖uk‖F

Ik; Ik is

an identity matrix with size of mk; mk is the total feature number in group k; D2 is

a diagonal matrix with the i-th diagonal element as 1
‖ui‖2 ; D3 = CTC is a matrix in

which each row integrates all the neighboring relationships (e.g., for the i-th row, it

is the sum of all the rows in α whose i-th element is not zero); and D4 is a diagonal

matrix with the i-th diagonal element as 1
‖vi‖2 . Algorithm 3 summarizes the KG-

SCCA optimization procedure. Further details on how to solve for two objectives in

Eq. (6.6) are available in [70] and [80] respectively.

In this algorithm, six parameters γ1, γ2, β1, β2, θ1, θ2 need to be tuned to control
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Table 6.2: Five-fold cross-validation performance on synthetic data: mean±std is
shown for estimated correlation coefficients and AUC of the test data using the trained
model. P-value of paired t-test between KG-SCCA and PMA results are also shown.

True Correlation Coefficients (CC) Area under ROC (AUC)

CC KG-SCCA PMA p KG-SCCA:u PMA:u p KG-SCCA:v PMA:v

0.60 0.56±0.12 0.31±0.14 2.19E-03 0.83±0.08 0.64±0.02 3.36E-03 1.0±0.00 1.0±0.00
0.64 0.56±0.1 0.51±0.12 2.32E-02 0.96±0.04 0.65±0.01 2.20E-05 1.0±0.00 1.0±0.00
0.70 0.64±0.1 0.53±0.1 1.27E-05 0.99±0.01 0.62±0. 6.21E-08 1.0±0.00 1.0±0.00
0.77 0.7±0.14 0.6±0.14 6.62E-03 0.99±0.01 0.62±0. 9.67E-09 1.0±0.00 1.0±0.00
0.85 0.76±0.08 0.65±0.1 1.02E-04 0.98±0.03 0.63±0.01 4.57E-06 1.0±0.00 1.0±0.00
0.95 0.87±0.04 0.67±0.09 1.19E-03 1.00±0.00 0.63±0.01 1.39E-08 1.0±0.00 1.0±0.00
1.00 0.92±0.04 0.71±0.06 2.46E-04 1.00±0.00 0.64±0.01 4.02E-08 1.0±0.00 1.0±0.00

both the global sparsity and structured group or network constraints. [13] studied

a similar problem and found that their results were quite insensitive to γ1, γ2 set-

tings. Following their observation, we set γ1 and γ2 to 1 for simplicity. Nested cross-

validation can be used for parameter selection but will be extremely time consuming

for the remaining 4 parameters. Thus, we followed the strategy proposed in [39]:

Parameters β1, β2 controlling structural constraints were first tuned without consid-

ering sparsity constraints. Then based on the obtained optimal β1, β2, another nested

cross-validation was performed to acquire the optimal θ1, θ2.

6.3 EXPERIMENTAL RESULTS AND DISCUSSIONS

We performed comparative studies between the proposed KG-SCCA algorithm and a

widely used SCCA implementation in the PMA package (http://cran.r-project.org/web/packages/PMA/)

[77]. For PMA experiments, the SCCA parameters were automatically tuned using a

permutation scheme provided in PMA. Below we report our empirical results using

both synthetic data and real imaging genetics data.
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Figure 6.3: Five-fold trained weights of u and v. Ground truth of u and v are shown
in the most left two panels. KG-SCCA results (top row) and PMA results (bottom
row) are shown in the remaining panels, corresponding to true correlation coefficients
(CCs) ranging from 0.6 to 1.0. For each panel pair, the five estimated u values are
shown on the left panel, and the five estimated v values are shown on the right panel.

6.3.1 RESULTS ON SIMULATION DATA

Since it is hard to manually construct a data set with a network structure, we sim-

ulated group structures for both datasets and then converted them into network

structures for one dataset by connecting all the pairs within each group. Synthetic

data (n = 200,p = 200,q = 150) with diagonal block structure was generated with

the following procedure: 1) Random positive definite covariance matrix M with non-

overlapping group structure were created, where correlations range from 0.6 to 1

within group and are set to 0 between groups. 2) Data set X with covariance struc-

ture M was calculated through Cholesky decomposition. 3) Repeat Steps 1 and 2 to

generate another dataset Y. 4) With assigned canonical loadings of X, we calculated

the first component Xu. 5) Given a desired correlation between components, we cal-

culated the second component Yv. 6) For simplicity, in this paper, only one group

in Y was assigned to have signals. Therefore, based on predefined canonical loadings

of Y and component Yv, final obtained group signals, added with some white noises
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(Signal to Noise Ratio (SNR) =0.5), will replace the data in original dataset Y. By

repeating this procedure we generated 7 datasets with correlation levels from 0.6 to 1.

The canonical loadings and group structure remained the same across all the datasets.

KG-SCCA and PMA have been both tested on all 7 datasets. All the regulariza-

tion parameters were optimally tuned using a grid search from 10−2 to 102 through

nested 5-fold cross-validation. The true and estimated canonical loadings for both X

and Y were shown in Fig. 6.3. Due to the difference in normalization and optimiza-

tion procedure, the weights yielded by KG-SCCA and PMA showed different scales.

Yet the overall profile of the estimated u and v values from KG-SCCA kept consistent

with the ground truth across the entire range of tested correlation strengths (from 0.6

to 1.0), whereas PMA was only capable of identifying an incomplete portion of all the

signals. Furthermore, we also examined the correlation in the test set computed using

the learned models from the training data for both methods. The left part of Table 6.2

demonstrated that KG-SCCA outperformed PMA consistently and significantly, and

it could accurately reveal the embedded true correlation even in the test data. The

right part of Table 6.2 demonstrated the sensitivity and specificity performance using

area under ROC (AUC), where KG-SCCA also significantly outperformed PMA no

matter whether the correlation was weak or strong in u. Since v is relatively simple

structured, both KG-SCCA and PMA can restore the signals without any loss. From

the above results, it is also observed that KG-SCCA could identify the correlations

and signal locations not only more accurately but also more stably.
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Table 6.3: Five-fold cross validation results on real data: the models learned from
the training data were used to estimate the correlation coefficients between canonical
components for both training and testing sets. P-values of paired t-tests were obtained
for comparing KG-SCCA and PMA results.

Method
Train Test

f1 f2 f3 f4 f5 mean f1 f2 f3 f4 f5 mean

K
G

-S
C

C
A exp1 0.471 0.448 0.475 0.451 0.46 0.461 0.431 0.515 0.401 0.417 0.459 0.445

exp2 0.476 0.453 0.454 0.476 0.461 0.464 0.402 0.505 0.503 0.401 0.458 0.454
exp3 0.476 0.474 0.474 0.468 0.402 0.459 0.408 0.393 0.413 0.435 0.565 0.443
exp4 0.468 0.466 0.459 0.46 0.466 0.464 0.441 0.409 0.47 0.476 0.445 0.448
exp5 0.49 0.502 0.434 0.449 0.447 0.464 0.35 0.297 0.584 0.527 0.528 0.457

P
M

A

exp1 0.439 0.418 0.438 0.438 0.426 0.432 0.368 0.45 0.398 0.379 0.439 0.407
exp2 0.444 0.416 0.425 0.436 0.432 0.431 0.354 0.463 0.449 0.399 0.416 0.416
exp3 0.442 0.445 0.439 0.427 0.398 0.43 0.382 0.341 0.382 0.432 0.544 0.416
exp4 0.434 0.44 0.425 0.427 0.431 0.432 0.414 0.363 0.445 0.438 0.415 0.415
exp5 0.459 0.462 0.406 0.416 0.411 0.431 0.288 0.287 0.517 0.486 0.501 0.416

pvalue 3.08E-6 pvalue 8.07E-5

6.3.2 RESULTS ON REAL IMAGING GENETIC DATA

Both KG-SCCA and PMA have been performed on real amyloid imaging and APOE

genetics data. Similar to previous analysis, 5-fold nested cross-validation was applied

to optimally tune the parameters. Five experiments were performed with five differ-

ent partitions to eliminate the bias. For each single experiment, the same partition

was used for both KG-SCCA and PMA. Table 6.3 shows both the training and test

performances of KG-SCCA and PMA in all 5 folds of 5 experiments. Both methods

demonstrated stable results across five trials. KG-SCCA was observed to outperform

the PMA in every single experiment on both training and test performance. Paired

t-test was performed to compare the performance across five experiments, and KG-

SCCA outperformed PMA significantly in both training (p=3.08E-6) and test cases

(p=8.07E-5). We also tested two simplified KG-SCCA models: one with only the

penalty term for the LD structure and the other with only the penalty term for the

network structure. Interestingly, both performed similarly to the original KG-SCCA,

and significantly outperformed PMA.

Fig. 6.4 demonstrates the canonical loadings trained from 5-fold cross-validation in
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Figure 6.4: Five-fold trained weights of u (top panel) and v (bottom panel). KG-
SCCA results and PMA results are shown for each panel. For each of KG-SCCA and
PMA imaging results (i.e., the bottom panel), the top and bottom rows correspond
to left and right hemispheres respectively.

one experiment, suggesting relevant genetic (top panel) and imaging (bottom panel)

markers. Although LD block constraints were imposed on relevant SNP markers,

L1 penalty managed to exclude irrelevant signals. Only APOE e4 SNP (rs429358)

was identified to be associated with amyloid accumulations in the brain. PMA also

achieved a similar pattern as KG-SCCA, but including a few additional SNPs from

multiple LD blocks. The bottom panel of Fig. 6.4 shows the canonical loading for

the imaging data. Both methods identified similar imaging patterns, which are in

accordance with prior findings [47]. Fig. 6.5 shows a brain map of canonical loadings

generated by KG-SCCA.
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Figure 6.5: Mapping canonical loading generated by KG-SCCA onto the brain.

6.4 CONCLUSION

We have performed a brain imaging genetics study to explore the relationship be-

tween brain-wide amyloid accumulation and genetic variations in the APOE gene.

Since most existing SCCA algorithms are solved using the soft thresholding technique,

which assumes independence among data features, direct application of such methods

into brain imaging genetics study cannot yield optimal results due to the correlated

imaging and genetic features. We proposed a novel knowledge-guided sparse canonical

correlation analysis (KG-SCCA) algorithm, which not only removes the above inde-

pendence assumption, but also can model both the group-like and network-like prior

knowledge for improved results. It was compared with a widely used SCCA imple-

mentation (PMA) on both synthetic and real data. The empirical results showed that

KG-SCCA significantly outperformed PMA in both cases. Furthermore, KG-SCCA

accurately recovered the true signals from the synthetic data, and yielded improved

performances and biologically meaningful findings from real data. This study is an

initial attempt to remove the feature independence assumption many existing SCCA

methods have. The empirical studies designed here are targeted to identify relatively

clean and simple multi-SNP-multi-QT correlations. Given only 58 SNPs analyzed

71



here, this work is not a demonstration of a genome-wide analysis. Comparison with

other complex SCCA models, building scalable KG-SCCA models, and applications

to more complex imaging genetic tasks warrant further investigation.
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Chapter 7

DATA INTENSIVE COMPUTING IN BRAIN IMAGING GENETICS

STUDY

Although S2CCA and KG-SCCA proposed earlier have yielded promising results, the

efficiency and scalability of their implementations still remain as a big concern given

the modest sizes of the data sets analyzed in these studies. In particular, a standard

practice to evaluate the significance of the results is to use permutation for computing

a p-value [77]. This requires to run the same test on permuted data sets many times,

and a large N (e.g., ≥ 1,000) is often needed to provide a reasonable estimate of

the empirical null distribution. For example, in our experiments, it takes more than

1,200 hours to run an N=1,000 SCCA permutation test for analyzing an imaging

genetic data set with 1,000 participants, 3,200 SNPs and 10,000 voxels. With priors

included, S2CCA and KG-SCCA will take even longer. Therefore it is an urgent need

to develop new concepts and enabling tools and offer a more efficient solution.

Recent development of hardware and software enables massive parallelism with

existing domain-specific analysis with minimal to no modification. In this chapter we

develop and evaluate a set of acceleration strategies to speed up a widely used SCCA

implementation, which is provided by the PMD1 software package [77]. Using several

simulated imaging genetics data sets, we perform an empirical comparison between

the existing solution and the accelerated one that combines parallel data strategy

and the offload model for Intel Many Integrated Core (MIC).The empirical results

demonstrate that our approach can achieve 2-fold speedup for SCCA algorithm.

1http://cran.r-project.org/web/packages/PMA/
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7.1 SCCA FOR IMAGING GENETICS

We denote vectors as boldface lowercase letters and matrices as boldface uppercase

ones. For a given matrix M = (mij), we denote its i -th row and j -th column to

mi and mj respectively. Let X = {x1, ..., xn} ⊆ Rp be the SNP data and Y =

{y1, ..., yn} ⊆ Rq be the imaging QT data, where n is the number of participants, p

and q are the number of SNPs and QTs, respectively.

As mentioned in Chapter 2, CCA seeks linear combinations of variables in X and

variables in Y, which are maximally correlated between Xu and Yv, that is:

arg max
u,v

n∑
i=1

uTXTYv (7.1)

subject to uTXTXu = 1,vTYTYv = 1

where u and v are canonical vectors or weights.

Two major weaknesses of CCA are that it requires the number of observations n

to exceed the combined dimension of X and Y and that it produces nonsparse u and

v which are difficult to interpret. SCCA removes these weaknesses by maximizing the

correlation between Xu and Yv subject to the weight vector constraints P1(u) ≤ c1

and P2(v) ≤ c2. The penalized matrix decomposition (PMD) toolkit [77] provided a

widely used SCCA implementation, where the L1 penalty P (A) =
∑p

k=1 |A(k)| was

used for both P1 and P2.

For simplicity, this algorithm assumed XTX = I and YTY = I, and implemented
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SCCA by alternately performing the following two steps until convergence.

1. u← arg max
u

uTXTYv,

subject to ‖u‖2 ≤ 1, P1(u) ≤ c1

2. v← arg max
v

uTXTYv,

subject to ‖v‖2 ≤ 1, P2(v) ≤ c2

where P1 and P2 are the L1 penalty functions to yield u and v sparse. The first

update takes the form

u← S(XTYv,∆)

‖S(XTYv,∆)‖2

,

where S(x,∆) = sgn(x)(|x| − ∆)+ is the soft thresholding operator and ∆ ≥ 0 is

chosen so that P1(u) = c1. The second update takes a similar form by swapping (1)

X and Y, (2) u and v, (3) P1 and P2, and (4) c1 and c2.

7.2 ACCELERATING SCCA AT XSEDE

Although R is adopted as a “high productivity” language in SCCA, high performance

has not been a development goal of R. Designed as a computing language with high

level expressiveness, R lacks much of the fine grained control and basic constructs

to support highly efficient code development. For example, most features in the

existing SCCA are implemented as single thread processes. As mentioned before,

a typical standard practice to evaluate the significance of the SCCA results often

require us to run the same SCCA test on permuted data sets many times, and a large
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N (e.g., ≥1,000) is often needed to provide a reasonable estimate of the empirical

null distribution. In addition, cross-validation is often used to optimally tune the

two SCCA parameters. For example, using a 10-fold cross-validation coupled with an

11-by-11 grid search strategy (i.e., 11 possible values for each of the two parameters),

we need to run SCCA 10×11×11 = 1, 210 times. All these will significantly increase

the computational needs and workload of existing SCCA solutions.

In this section, we propose and evaluate approaches to accelerate SCCA imple-

mented in R. The computation of SCCA involve significant amount of linear algebra

and matrix computation. Our basic idea of the acceleration is to offload the computa-

tionally intensive calls to optimized mathematical library (e.g., the Intel Math Kernel

Library, or MKL). While MKL can automatically manages the computing details, we

can pursue even better performance improvement by distributing the work across the

compute host and the many-integrate-core (MIC).

Figure 7.1: Adopting offload model on Stampede cluster at XSEDE: a SCCA program
running on the host can “offload” work by directing the MIC to execute a specified
block of code. The host also directs the exchange of data between host and MIC.
Ideally, the host stays active while the MIC coprocessor does its assigned work.

76



7.2.1 AVAILABLE ACCELERATION STRATEGIES

LINKING R AND OPTIMIZED MATHEMATICAL LIBRARIES

R can be linked to other shared mathematics libraries to speed up many basic compu-

tation tasks. One option for linear algebra computation is to use Intel Math Kernel

Library (MKL) [32]. MKL includes a wealth of routines to accelerate application

performance and reduce development time such as highly vectorized and threaded

linear algebra, fast fourier transforms (FFT), vector math and statistics functions.

Furthermore, the MKL has been optimized to utilize multiple processing cores, wider

vector units and more varied architectures available in a high end system. Different

from using parallel packages, MKL can provide parallelism transparently and speed

up programs with supported math routines without changing code. It has been re-

ported that the compiling R with MKL can provide three times improvements out of

box [28].

EXPLOITING ACCELERATOR CARDS

Significant efforts have been made in developing accelerator cards that can easily

increase the parallel processing potential in recent years. General purpose graphic

processing units (GPGPU ) extends parallel functions and technologies traditionally

embedded in graphic processing units to handle more generic computations. Com-

putational solutions can utilize the parallel features provided by GPU through pro-

graming interface such as OPENCL and CUDA. Most recently, the Intel Xeon Phi

SE10P Co-processor (Xeon Phi) integrate 60 processing cores and 8GB memory in a

single card. A critical advantage of the Xeon Phi co-processor is that, unlike GPU-
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based co-processors, the processing cores run the Intel x86 instruction set (with 64-bit

extensions), allowing the use of familiar programming models, software, and tools. In

addition to allowing the host system to offload computing workload partially to the

Xeon Phi, it also can run a compatible program independently.

7.2.2 ACCELERATING SCCA WITH MKL AND OFFLOAD MODEL

Our first objective is to investigate the benefit of using MIC and offload model on MIC

at XSEDE resources. We first tested using the R-25 benchmark script2. The testing

script includes fifteen common computational tasks grouped into three categories:

Matrix Calculation, Matrix functionc and Programmation. The twelve tasks are listed

in Table 7.1. The test was performed in a high performance compute environment, we

used the Texas Advanced Computing Center Stampede cluster. Stampede provides

several different techniques for achieving higher performance computations which

include using its Xeon Phi accelerators and/or NVIDIA Kepler 20 GPUs for large

matrix calculations. In this test, each compute node has two Intel Xeon E5-2680

processors each of which has eight computing cores running @2.7GHz. There is 32GB

DDR3 memory in each node for the host CPUs. The Xeon Phi SE10P Coprocessor

installed on each compute node has 61 cores with 8GB GDDR5 dedicated memory

connected by an x16 PCIe bus. The NVIDIA K20 GPUs on each node have 5GB of

on-board GDDR5. All compute nodes are running CentOS 6.3. For this study we

used the stock R 3.01 package compiled with the Intel compilers (v.13) and built with

Math Kernel Library (MKL v.11).

Based on our observation of significant performance improvement of benchmark

2http://r.research.att.com/benchmarks/
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Table 7.1: Translation of benchmark number to R-25 benchmark description for all
R-25 plots.

# R25 Benchmark Task Description
1 Creation, transp., deformation of a 2500

× 2500 matrix (sec)
2 2400 × 2400 normal distributed random

matrix
3 Sorting of 7,000,000 random values
4 2800 × 2800 cross-product matrix
5 FFT over 2,400,000 random values
6 Eigenvalues of a 640 × 640 random matrix
7 Determinant of a 2500× 2500 random ma-

trix
8 3,500,000 Fibonacci numbers calculation

(vector calc)
9 Creation of a 3000 × 3000 Hilbert matrix

(matrix calc)
10 Grand common divisors of 400,000 pairs

(recursion)
11 Creation of a 500 × 500 Toeplitz matrix

(loops)
12 Escoufier’s method on a 45 × 45 matrix

(mixed)

0

2
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8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

baseline

MIC offload model (70%)

Figure 7.2: Basic vectorized and matrixed operations can be obtained significant
speed-up with MLK and offload on MIC.
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version of R computation using MKL and offload model (see e.g., Figure 7.2), we

compile SCCA to run with the same acceleration strategy and on the same resources.

By choosing work-sharing at the 30% host (16 threads) 70% coprocessor (240 threads)

sweet spot (see e.g., [23]), we achieve consistent 2-fold speedup when running SCCA

algorithm over various input sizes. We note that this acceleration or speedup involves

NO code changes or further code optimizations for SCCA implementation in R (e.g.,

vectorization , which could potentially improve the performance even better.)

7.3 SCCA FOR LARGE BRAIN IMAGING GENETICS DATA

In our experiments, we created several simulated imaging genetics data sets of dif-

ferent sizes and used these synthetic data to perform comparative study. Although

SCCA’s performance can be improved with our aforementioned massively parallelism

strategy, the scalability of applying SCCA to large brain imaging genetics data has

not been completely explored yet. As mentioned before, an N=1,000 permutation test

for evaluating the significance of an SCCA result (i.e., calculating a p-value) requires

to run SCCA test on permuted data sets 1,000 times. A 10-fold cross-validation

method with an 11-by-11 grid to optimally search for two SCCA parameters requires

to run SCCA 1,210 times. If one wants to not only tune the parameters using cross-

validation but also calculate a p-value using cross-validation, the total number of

SCCA tests could be more than 1 millioin (i.e., 1, 000 × 1, 210). In cases like this,

the processing tasks are beyond the computing capability of a local workstation, and

explicit parallelization strategies are often desired when we scale to large data sets or

complicated computational tasks.
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7.3.1 SIMULATED IMAGING GENETICS DATA

To evaluate the performances of the existing and accelerated SCCA implementations,

we developed a method to create realistic imaging genetics data with known underly-

ing correlation structures. First, the synthetic genotype data was generated through

FREGENE genome simulator ( [9,31]), which is aimed to simulate sequence-like data

over large genomic regions in large diploid populations. In this study, we generated

N=1,000 diploid individuals over 20,000 generations with a 10 Mb genome with the

average mutation rate as 2.5 × 10−8 per site per generation. Among all acquired

SNPs, 3,274 SNPs with minor allele frequency (MAF) greater than 0.05 were ex-

tracted and included in our analysis. Figure 7.3 shows the correlation structure of

the simulated genotype data. We formed four SNP data sets (i.e., g500, g1000, g2000,

and g3274) by taking the first 500, 1,000, 2,000, and 3,274 SNPs from the entire data,

respectively. The inset shows an enlarged view of the first four linkage disequilibrium

blocks, to which we introduced the imaging genetic association discussed below (see

also Figure 7.7(a-b)).

To create simulated imaging data, we assume that the image consists of multiple

regions of interest (ROIs) and the image voxel values within each ROI are highly cor-

related with each other. Thus, we created a random positive definite non-overlapping

group structured covariance matrix M, where each group (of voxels) corresponds

to an ROI. After that, we employed Cholesky decomposition to obtain the back-

ground imaging data (i.e., N=1,000 images) with covariance structure M. Since the

background imaging data was randomly drawn from a Gaussian distribution with a

specified structure. Therefore it was reasonable to assume there was no relationship
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                                                                              g3274                                       g2000                    g1000 g500 

Block1 

Figure 7.3: Correlation structure of the simulated genotype data. We formed four
SNP data sets (i.e., g500, g1000, g2000, and g3274) by taking the first 500, 1,000,
2,000, and 3,274 SNPs from the entire data, respectively. The inset shows an enlarged
view of the first four linkage disequilibrium blocks, to which we introduced the imaging
genetic association (see also Figure 7.7(a-b)).

between the simulated genotype data and the background imaging data. We created

three sets of phenotypic imaging data (i.e., p1000, p5000, and p10000), consisting of

1,000, 5,000 and 10,000 voxels respectively.

The imaging genetic association was introduced using the following steps. (1) The

Haploview software ( [6,7]) was used to identify the linkage disequilibrium (LD) block

information of the simulated SNP data and partition SNPs into groups (i.e., each LD

block forms a group, see Figure 7.3 inset for the first four LD blocks). (2) Canonical

loadings u and v were set based on the group structures of X and Y respectively,

where all the variables within a group share the same weights. In this initial study,

for simplicity, we selected only one group in Y (i.e., imaging data) to be associated

with 4 groups in X (i.e., SNP data). (3) The portion of the specified group in Y were

replaced based on the u, v, X and the assigned correlation.
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Figure 7.4 shows six example images. Each consists of 5 ROIs. The intensity

values within each ROI are the same. All the image voxels except those in these

ROIs are white noises. The imaging genetic association (with correlation coefficient

equal to 1) exists only between ROI1 and the first four LD blocks in the SNP data

(see also Figure 7.3 and Figure 7.7(a-b)). Figure 7.7(a-b) shows the details of this

imaging genetic association by plotting the canonical vectors for both imaging and

genetic data.

ROI1 

ROI3 

ROI5 

ROI2 

ROI4 

Figure 7.4: Example image data. Each image consists of 5 ROIs. The intensity values
within each ROI are the same. All the image voxels except those in these ROIs are
white noises. The imaging genetic association exists only between ROI1 and the first
four LD blocks in the SNP data (see also Figure 7.3 and Figure 7.7(a-b)).

7.3.2 SCALING TO LARGE DATASETSWITH DATA PARALLEL STRAT-

EGY

There are nearly 30 packages that are related in enabling parallelism listed in CRAN

task view for high performance computing. Among them, some are designed to pro-

vide explicit parallelism where users control the parallelization (such as Rmpi and

snow); some are specially designed to provide implicit parallelism so that the system

can abstract parallelization away (such as multicore); others are high level wrapper
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(a)

(b)

(c)

Figure 7.5: Comparison of SCCA speed-up for different combinations of the genotype
data sets (g500, g1000, g2000, and g3274) and phenotype data sets (p1000, p5000,
and p10000): a consistent 2-fold speedup has been achieved in all the situations.
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for other packages and intended to ease the use of parallelism, such as snowfall and

foreach. Here we only reviewed some of the major packages that are directly related

to our investigation. Rmpi is one of the earliest parallel package developed for R

and is still used today and is built upon by other packages [81]. Rmpi provides an

interface between R and Message Passing Interface and can link to an existing MPI

implementation. The users need to link the R package with a MPI library installed

separately, then the package enables users to use mpi-like code in R scripts. The pack-

age also includes parallel implementations of apply-like functions. The snow package

utilizes Rmpi and several other existing parallel packages to expand the parallel sup-

port through a simple interface [50]. There are also several packages for exploiting

parallelism within a single compute node. Fork is based on the system processing

management interface to generate additional threads for computations [81]. Pnmath

uses the OPENMP to implement many common mathematic functions to run in par-

allel. R/parallel provides support for running loops in parallel using a master-slave

model [37]. multicore package has been developed for utilize multiple cores available

on the system. In addition, there are projects related with big data but not directly

compared here, e.g. pbdR, Rhadoop etc. For a more comprehensive reviews of the

parallel packages, interested reader can refer [21,54].

Our experiments included running the existing and accelerated SCCA implemen-

tations over multiple genotype data sets (i.e., g500, g1000, g2000, and g3274) and

phenotypes data sets (i.e., p1000, p5000, and p10000). The experiment can be basi-

cally considered a 4 × 3 grid, with each cell analyzing the relationship between the

simulated genotype data and the imaging data. Our basic solution was to couple the

SCCA acceleration supported by MKL and Intel Xeon Phi processor with explicit
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Table 7.2: A set of 4 × 3 experiments running SCCA analytics over combinations
of 4 genotype data sets (g500, g1000, g2000, and g3274) and 3 phenotype data sets
(p1000, p5000, and p10000). The table lists the processing time required to run each
of the 12 experiments, in a serial fashion that costs a total processing time of 25804.48
seconds (or around 7.5 hours).

p1000 p5000 p10000

g500 215.026 842.058 1621.942
g1000 644.073 2088.001 3835.77
g2000 947.037 2448.248 4234.645
g3274 1403.307 2878.28 4646.093

Total 25804.48

Table 7.3: The aforementioned 4 × 3 experiments running improved SCCA analytics
with data parallel approach. The table lists the processing time required to run each
of the 12 experiments with SCCA employing MKL and offload model on MIC,in an
embarrassingly parallel model that reduces the total processing time down to 2232.2
seconds (or around half hour).

p1000 p5000 p10000

g500 100.408 418.441 799.086
g1000 264.943 968.705 1782.067
g2000 413.804 1109.941 1945.346
g3274 600.598 1275.952 2082.772

Total 2232.2

parallel packages. We processed the 4 × 3 task grid in parallel using Snowfall pack-

age. Table 7.2 shows the individual running time of each cell as well as the estimated

total running time as the sum of all 12 cells (7.5 hours). Using Snowfall package

(sfLapply) with MKL and offload model on each compute node, we could accelerate

our analysis tasks by distributing the 12 task cell to multiple compute nodes. Table

7.3 shows the improvement: each individual cell task obtained its own 2-fold speedup,

and more importantly, since these were all executed and process in parallel, we could

reduce the total processing time down to 0.5 hour, or a 15-fold speedup. Figure 7.5

shows a graphical representation of the performance comparison.
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Figure 7.6: Correlation coefficients

The accelerated implementation yielded the same SCCA result as the existing

implementation for each combination of the genotype and phenotype data. Figure 7.6

shows the resulting correlation coefficients for all the cases, which are very close to

the ground truth value of 1. Figure 7.7(c-d) shows the identified canonical vectors for

analyzing g500 and p1000. Compared with the ground truth shown in Figure 7.7(a-

b), SCCA identified most of the signals but ignored some. It is currently an active

research topic to develop improved SCCA algorithms that can yield more accurate

results. Accelerating these new SCCA algorithms is an interesting future direction to

pursue.

7.4 CONCLUSION

We have presented a set of massively parallel strategies to accelerate a widely used

sparse canonical correlation analysis (SCCA) implementation provided by the PMD

software package. In particular, we have exploited parallel packages of R, optimized
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Figure 7.7: (a-b) Ground truth of canonical vectors u for genotype data (p=500, 1000,
2000, or 3274) and v for phenotype data (q=1000, 5000, or 10000). See Figure 7.3 for
block1-block4 and Figure 7.4 for ROI1. (c-d) Canonical vectors u and v identified by
applying SCCA to g500 and p1000 (i.e., p=500 and q=1000). Note that the canonical
vectors discovered by SCCA had a different scale from the ground truth, since SCCA
applied a normalization step to the data before performing the actual analysis.

mathematical libraries, and the automatic offload model for Intel Many Integrated

Core (MIC) architecture to accelerate SCCA. We have created several simulated imag-

ing genetics data sets of different sizes and used these synthetic data to perform

comparative study. Our performance evaluation demonstrates that a 2-fold speedup

can be achieved by the proposed acceleration. These preliminary results show that

by combining data parallel strategy and the offload model for MIC we could signif-

icantly reduce the knowledge discovery timelines involving applying SCCA on large

brain imaging genetics data.
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Chapter 8

CONCLUSIONS

In this final chapter, we summarize the contributions of this thesis and discuss ideas

for future work.

8.1 SUMMARY

In this thesis, we study prior knowledge guided regression and association modeling

techniques as well as their application in disease biomarker discovery and genetics

mechanism study. While traditional methodologies often ignore the highly correlated

nature of current biomedical datasets, the main contributions of this thesis involve

extensions and applications of existing predictive and associative models, and are

summarized as follows. All the research work conducted has been widely recognized

and published in several premier journals and conference proceedings (9 as first author

and 9 as co-author), listed as in curriculum vitae section.

Biomarker discovery: Based on a newly developed sparse multi-task learning

algorithm called G-SMuRFS, this thesis first investigated the power of intermediate

level cortical thickness measures toward the cognitive outcomes. Compared to tra-

ditional ROI level measurements, this work performed the k-mean clustering within

each ROI to collect the up-scaled yet still computationally affordable measures. And

prediction analysis based on these intermediate measures gave us a better under-

standing of localized brain signals that are related to cognitive outcomes.

After that, considering the complexity of human brain, we further proposed a

new network-guided multivariate model NG-L21 to flexibly model prior structure
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among predictors. Unlike traditional methods, this model could provide advantages

in several folds: (1) explicitly incorporating the relationships among predictors in a

more general way, (2) using data-driven patterns without any predefined parameters,

(3) effectively identifying biomarkers influencing multiple responses, and (4) selection

of correlated markers together rather than picking only one of them to improve the

stability. With the application to the ADNI multimodal data (predicting memory

scores from MRI and CSF proteomic measures), NG-L21 demonstrated improved

prediction performance over the state-of-the-art competing methods, with stable and

meaningful multimodal biomarkers.

Genetic mechanism exploration: To investigate the complex imaging genetics

associations, we proposed two structure-aware sparse association models: (1) group

structure guided SCCA (S2CCA), and (2) knowledge guided SCCA (KG-SCCA).

In S2CCA, we not only removed the independence assumption, but also took

into consideration the group-like structure in the data features. With comparison to

traditional SCCA, S2CCA was validated with significantly better performance than

SCCA on both synthetic and real datasets. In addition, S2CCA could accurately

recover the true signals from the synthetic data with improved canonical correlation

performances and biologically meaningful findings from real data. This study is the

first attempt to remove the feature independence assumption in many existing SCCA

based methods.

KG-SCCA is generally an extension of S2CCA, where prior knowledge of brain can

be included as a more flexible network format, and S2CCA becomes a special case

of KG-SCCA. Based on this model, we performed a brain imaging genetics study

to explore the relationship between brain-wide amyloid accumulation and genetic
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variations in APOE gene, where transcriptome information was utilized to build the

prior co-expression brain network. On both synthetic and real datasets, KG-SCCA

significantly outperformed traditional methods. Similarly as in S2CCA, we found that

network prior knowledge can also better recover the true signals from the synthetic

data, with more biologically meaningful findings identified from real data.

Finally, to better promote the application of these advanced models in high dimen-

sional datasets, we made our initial efforts to introduce the parallelization framework.

In particular, we exploited parallel packages of R, optimized mathematical libraries,

and the automatic offload model for Intel Many Integrated Core (MIC) architecture

to accelerate the traditional SCCA. Based on several simulated imaging genetics data

sets of different sizes, we observed at least 2-fold speedup for most tasks through

the proposed acceleration. And together with parallel strategy, we could significantly

reduce the knowledge discovery timeline for application of advanced models to large

brain imaging genetics data.

8.2 FUTURE DIRECTIONS OF RESEARCH

This thesis provides a basis for us to continue to pursue research in the area of predic-

tive modeling and association analysis, which, we believe, has a host of fundamental

problems yet to be solved, especially for large scale and highly correlated biomedical

datasets like brain imaging and genome sequencing data. In this section, we de-

scribe a few promising future directions of research that are enabled by the approach

presented in this thesis.

Sparse learning models with dynamic data structures: This thesis has well

exploited the structured sparse modeling in both predictive and associative analysis.
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But one problem exists that there are usually more than one prior structures for even

one single data modality. For example, brain network can be constructed either based

on correlation or gene co-expression patterns, or many other ways. It still remains

unknown how these prior structures make the impact on the prediction procedure

and therefore explicit incorporation of one specific structure may not be the optimal

solution. Future efforts will be made to further explore and compare more complicated

data structures hidden in large-scale, dynamic, longitudinal and heterogeneous data,

and to examine their potential role in guiding the learning procedure. Also, it is also

of great interest to examine whether the predictive power of one type of measures

would be boosted by specific prior knowledge. Another direction worth our effort is

to develop some new sparse learning models that can automatically learn the hidden

structures rather than taking them as priors.

High-order imaging and genetic features: Despite substantial effort that

has been made in AD study, there is very limited progress in discovery of novel

biomarkers and underlying mechanisms. we believe that additional signals may not

be directly represented by these raw measures, but rather reside within them. With

the expanding data pool with growing varieties, we are now able to capture novel

features and seek another path to the underlying disease mechanisms. Instead of

using those imaging and genomic data as it is, it would be of more interest to perform

feature extraction analyses through existing tools. These high-order features will not

only provide more deep insights but also enable and promote the expansion of many

other research areas, such as previously mentioned predictive, associative study and

GWAS of quantitative-traits.

Big data analytics: As shown in Chapter 7, big data framework holds great
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promise to promote the application of machine learning in various biomedical prob-

lems. While many existing studies are still subject to the curse of dimensionality when

attempting to expand the search space to the genome wide and brain wide scales, an-

other future work worth our efforts will be big data analytics. While Map/Reduce

framework can facilitate the parallelization of codes and large scale genetic interac-

tion analyses, Giraph framework, designed specifically for graph and network analysis,

will help promote our high-order feature exploration from high dimensional brain net-

works with millions of edges. Since data-intensive, computation-intensive and large

network analysis challenges generally exist in most computational biology and neuro-

science problems, such pipeline will be generally applicable and thus such effort will

be appreciated.
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