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ABSTRACT 

A subpopulation of tumor cells known as ovarian cancer initiating cells (OCICs) have been 

shown to be the cells that propagate the tumor phenotype in ovarian cancer. Studies have showed 

that a very small population (100) of these cells is sufficient to induce a tumor phenotype; while 

a large quantity of tumor cells (5 X 105) are required to induce such a phenotype. In this study 

we studied the functional changes in genes expressed in the OCIC phenotype which were 

important for such efficient propagation of cancers. To enable this analysis, we generated mRNA 

expression and DNA methylation profiles of OCICs and compared them with those of tumor and 

normal ovarian surface epithelial cells. We identified four pathways which regulated most of the 

observed changes and were predicted to be important factors in distinguishing the OCICs from 

tumors and normal cells. The gene signatures for these pathways were analyzed by unsupervised 

clustering in order to determine the similarities of OCICs with respect to tumor and normal 

samples. We further believed that the OCICs can be used as indicators towards the genesis and 

progression of early events in the ovarian cancers. In light of this, we considered two hypotheses 

which are currently addressing the genesis of ovarian cancer. The first hypothesis proposed 

ovarian surface epithelial cells to be cells of origin of the ovarian cancer while the other 

proposed the fallopian tube cells to be contributing the cell of origin for these cancers. It is also 

believed that these two cells can be reciprocal cells of origin for the cancer phenotype. In order 

to test these hypotheses, we integrated the in-house dataset with a public domain fallopian tube 

gene expression data. The integration of the results obtained from these analyses provided better 

understanding of the early events in ovarian carcinogenesis. 
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Chapter 1 INTRODUCTION 

Ovarian Cancer 
 Ovarian cancer is the most lethal gynecological neoplasm, with more than 

100,000 cancer deaths among women worldwide each year, making it as the fifth leading 

cause of cancer deaths among woman (Bowtell, 2010). Moreover, the poor 5-year 

survival (30-40%) results from the high percentage of cases diagnosed at an advanced 

stage and is largely due to the fact that most of them are inoperable when first discovered 

and respond poorly to therapy(Auersperg, Wong, Choi, Kang, & Leung, 2001; Landen, 

Birrer, & Sood, 2008). 

Ovarian cancers according to National Cancer Institute (NCI) are categorized into 

4 stages depending on how far the disease has spread. Stage I means that the cancer has 

been expressed on the ovary only, Stage II the cancer has spread to the pelvis, at Stage III 

the cancer has spread to the abdomen and finally Stage IV is when the cancer has spread 

outside the abdomen. Depending at which stage the disease is diagnosed the survival rate 

will improve dramatically. If the diagnosis is made in the early stages of the disease 

(Stage I) and the patient gets treatment before the cancer spreads outside the ovary, then a 

5 year survival rate of 94% can be achieved. The early physical symptoms of ovarian 

cancer in Stage I and II are common to other benign diseases such as low back pain, 

pelvic discomfort, loss of appetite and others. These are mild symptoms not specific to 

ovarian cancer which makes the early detection harder. The need for a screening test that 

will detect ovarian cancer at the early stages of the disease is clear from these facts. The 

disease prevalence in post-menopause women is 40 in 100000 which leads to strict 
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specificity requirements from a screening test to avoid having too many false positives 

and thus fewer women going through unnecessary operations and treatment. 

Classes of Ovarian Cancer 
Ovarian cancers have been mainly classified into 2 types: Type 1 and Type 2. 

Type 1 tumors include endo-metrioid, mucinous and low grade serous cancers 

which are usually low grade and slowly developing. They show a high frequency of Ras 

pathway mutations and generally lack TP53 mutations. They are shown to have a 

relatively normal karyotype and are often poorly responsive to platinum-based therapy. 

Type 2 tumors are rapidly progressing high-grade serous carcinomas without a 

well defined premalignant lesion. They are strongly associated with TP53 mutations and 

rarely have Ras mutations. This subtype accounts for about 60% to 80% of the cancer 

cases and is the most aggressive. Among these cases, less than 25% are detected at an 

early stage (stages I and II). As Type 2 tumors  account for the bulk of high-grade serous 

ovarian cancer, the terms Type 2 and high-grade are largely equivalent(Bowtell, 2010; 

Levanon, Crum, & Drapkin, 2008). This thesis focuses on the High-grade or Type-2 

serous ovarian cancer (HG-SOC). 

Diagnosis of Ovarian Cancer 
Early diagnosis is of utmost importance for the successful treatment, and survival 

from, ovarian cancer. However, in most of the cases, ovarian cancer is diagnosed at an 

advanced stage when the probability of survival is very less. The prospect of early 

diagnosis is also impeded by several other aspects of the disease. First, in contrast to 

many other malignant diseases the cell of origin of ovarian cancer and the early events of 

ovarian carcinogenesis, have not been clearly identified (Dubeau, 2008). Second, current 
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methods of examination of the ovaries can only be made by invasive diagnostic means, 

that is, via a pelvic examination, including the palpation of the ovaries, and with varying 

success, by ultrasound. In addition, proteins such as CA125 and other tumor markers 

have proved inefficient due to inherent low sensitivity. Methylation markers, however, 

potentially represent a potent new tool for early detection. Aberrant methylation is 

thought to be one of the earliest molecular changes in carcinogenesis (A. P. Bird & 

Wolffe, 1999), and as such can be applied for the detection of early-stage or potentially 

premalignant disease. 

Role of Cancer Stem Cells 
It has been suggested that tumor re-growth, as well as chemotherapy resistance 

and metastasis, are dependent on a small sub-population of cancer cells within the tumor 

that are thought to represent cancer stem cells (CSCs). A defining hallmark of stem cells, 

in both normal and malignant tissue, is the ability to self-renew but simultaneously give 

rise to daughter cells that are committed to differentiation into phenotypes that often 

cross lineages. To achieve this, stem cells can undergo an asymmetric cell division 

whereby they segregate cell fate determinants into only one of the two daughter cells 

(Knoblich, 2008). In adult mammals, stem cells have been characterized for a number of 

tissues, including the blood system, central nervous system, muscle, colon, breast, and 

bone/cartilage. 

For cancer stem cells in solid tumors, much can be learned from studies of 

hematopoietic stem cells (HSC) for which it has been shown that the transplantation of a 

single cell into a myeloablated recipient can reconstitute the entire blood system. This 

definitive HSC gives rise to a hierarchy of pluripotent progenitors that become 
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progressively restricted in their differentiation potential. Leukemia is thought to originate 

either from HSCs that acquired genetic or epigenetic changes and became partially 

differentiated and tumorigenic, or from progenitors that acquired the capacity to self-

renew (Passegue, Jamieson, Ailles, & Weissman, 2003). The existence of stem cells for 

certain types of leukemia is strongly supported by lentiviral tagging of human acute 

myelogenous leukemia cells and the observation of individual clones present in NOD–

SCID mice after serial transplantation of the tagged cells (Hope, Jin, & Dick, 2004). 

Studies of leukemia stem cells also indicated great phenotypic plasticity depending on the 

stage of tumor growth, tumor microenvironment, and external factors such as stress 

created by radio-or chemotherapy (Passegue, et al., 2003).The presence of CSCs in solid 

tumors has been proposed for human cancers including breast (Al-Hajj, Wicha, Benito-

Hernandez, Morrison, & Clarke, 2003), brain (Galli et al., 2004), colon (O'Brien, Pollett, 

Gallinger, & Dick, 2007), head and neck (Prince et al., 2007), pancreatic (Ophorst et al., 

2007), prostate (Collins, Berry, Hyde, Stower, & Maitland, 2005), ovarian (Baba et al., 

2009; Bapat, Mali, Koppikar, & Kurrey, 2005; Zhang et al., 2008), and skin cancer (Fang 

et al., 2005). The characteristics of solid tumor stem cells have been defined as ‘‘a small 

subset of cancer cells within a cancer that constitute a reservoir of self-sustaining cells 

with the exclusive ability to self-renew and to cause the heterogeneous lineages of cancer 

cells that comprise the tumor’’ (Clarke et al., 2006). Several cell surface markers, 

including CD24, CD44, CD133, CD166, EpCAM, or dye efflux assays have been used to 

sort populations of putative cancer stem cells from primary tumor cultures or cell 

suspensions obtained from tumor biopsies. After transplantation into immunodeficient 

mice, tumors form from several hundred marker-positive cells, whereas for marker 
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negative cells orders of magnitudes higher numbers are needed to achieve the same 

frequency of tumor formation (Gupta, Chaffer, & Weinberg, 2009). Recently, using an 

improved xenotransplantation technique, a study with human melanoma cells showed 

tumor formation after inoculation of one tumor cell (Quintana et al., 2008) and thereby an 

important step towards the proof of CSC existence was made (Strauss et al., 2011). 

Epigenetics 
The epigenome provides a mechanism of cellular memory and is key in regulating 

and deciphering stages of normal and abnormal cellular development, including phases of 

growth, differentiation, senescence, aging and immortalization during carcinogenesis 

(Feinberg & Tycko, 2004). The components of the epigenome, DNA methylation, post-

translational histone and other protein modifications, nucleosome positioning and 

noncoding RNAs (specifically microRNA [miR] expression), act in concert to exert their 

cellular effects (Sharma, Kelly, & Jones, 2010). 

Epigenetics is defined as the study of heritable changes in gene regulation without 

a change in the DNA sequence or the sequence of proteins associated with DNA. Histone 

modifications and DNA methylations are the most studied epigenetic changes in cancer 

biology. DNA methylation primarily occurs in the CpG dinucleotides and is often altered 

in the cancer cells. Both hypomethylation and hypermethylation contribute to 

tumorigenesis. Gene-specific hypermethylation is observed in many different types of 

cancers and is often seen responsible for the silencing of tumor suppressor genes (Jones 

& Laird, 1999). On the other hand, hypomethylation is responsible for the development 

of genomic instability mostly by the activation of oncogenes or loss of imprinting which 
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is frequently observed in cancer (Feinberg & Tycko, 2004; Liu, Wylie, Andrews, & 

Tollefsbol, 2003). 

Histone modifications are also important in cancer biology and are responsible for 

major changes in chromatin structure affecting the accessibility of DNA to the 

transcription factors which regulate gene expression. Mainly, histone acetylation has been 

known to increase the gene expression affecting from the uncoiling of the chromatin thus 

making the DNA accessible to the transcription factors. On the other hand histone 

deacetylation leads to coiling of the chromatin structure thus preventing gene expression 

as the DNA is rendered inaccessible to the transcription factors(Verdone, Caserta, & Di 

Mauro, 2005). Other types of histone modifications like histone methylation show varied 

effects and all these alterations together seen in cancer have major role in the initiation of 

cancer and its progression to potentially malignant cells (Lehrmann, Pritchard, & Harel-

Bellan, 2002). However, for this study we focus mainly on DNA methylation and its role 

in cancer which will be discussed in detail further. 

DNA Methylation 
DNA methylation is an addition of a methyl group to the C-5 position of a 

cytosine residue, usually in the context of CpG dinucleotides (A. Bird, 2002; Das & 

Singal, 2004).  As the only known mammalian modification of DNA itself (Robertson, 

2005), DNA methylation is essential for parental imprinting, embryonic development, 

gene regulation, and chromosomal stability (Bartolomei & Tilghman, 1997; Herman, 

1999; Jaenisch, Beard, Lee, Marahrens, & Panning, 1998; Li, Bestor, & Jaenisch, 1992).  

The link between DNA methylation and cancer dates back to 1983, when various 

investigators found that cancer cells possess an inverse methylation pattern to that of 
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normal cells (Feinberg & Tycko, 2004).  In normal cells, the genome is overall 

hypermethylated, especially in repetitive genomic elements (A. Bird, 2002), while small 

stretches of CG-rich promoter regions, “CpG islands” (CGI), remain largely 

unmethylated (Baylin, 2005).  In tumor cells, however, global DNA hypomethylation is 

observed while CGI, by contrast, acquire hypermethylation (Jones & Baylin, 2002).  This 

aberrant CGI hypermethylation typically leads to silencing of associated coding 

sequences, providing an alternative to mutation or deletion for the inactivation of tumor 

suppressor genes (Luczak & Jagodzinski, 2006; Nephew & Huang, 2003).  DNA 

methylation is catalyzed by a group of DNA methyltransferases (DNMTs): DNMT1, 

DNMT2, DNMT3A and DNMT3B (Pradhan & Esteve, 2003).  DNMT1 primarily 

maintains pre-existing genomic methylation patterns, methylating hemimethylated DNA 

during DNA replication (Bestor, Laudano, Mattaliano, & Ingram, 1988).  DNMT3A and 

DNMT3B, by contrast, are mainly responsible for de novo methylation, methylating both 

unmethylated and hemimethylated DNA with equal efficiency (Okano, Takebayashi, 

Okumura, & Li, 1999; Xie et al., 1999).  The function of DNMT2 is little known, but has 

recently been reported to be a methyltransferase that uses tRNA as a substrate (Goll et al., 

2006). 

Despite the role of promoter CGI methylation in tumorigenesis, recent studies 

indicate that it may also play a prominent role in the complexity of cancer drug resistance 

(Fojo & Bates, 2003).  One extensively studied example is the DNA mismatch repair 

enzyme human Mut-L homologue (hMLH1).  As a key component in the mismatch repair 

system, hMLH1 recognizes drug-DNA adducts and initiates drug-induced apoptosis 

(Vaisman et al., 1998).  Epigenetic silencing of hMLH1 by methylation leads to 
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diminished apoptosis response to bulky drug-DNA adducts, and therefore is one 

contributing factor to drug-resistance development (Balch et al., 2005; Siddik, 2003).  

Besides hMLH1, several other chemotherapy responsive genes are also deregulated 

during the acquisition of chemoresistance (Fraser et al., 2003; Grossman & Altieri, 2001; 

Pommier, Sordet, Antony, Hayward, & Kohn, 2004). 

Recently, the technological advancements have enabled quantitative assessments 

of thousands of loci for DNA methylation status, thus providing an opportunity to study 

the epigenetic signature of a cell. This rich source of information can be used to better 

understand the steps of carcinogenesis and their cells of origin. Further it can be used to 

identify appropriate model systems for further studies and also to identify potential 

biomarkers detection, classification and monitoring or the disease (Houshdaran et al., 

2010).  

Techniques in DNA methylation studies 
DNA methylation has been historically studied in a locus-targeted manner. 

However, with the advent of highthroughput platforms, large-scale structure of genomic 

methylation patterns is available through genome-wide scans. Two high-throughput 

platforms that have been popularly used include the Illumina Infinium Human 

Methylation27 array and the Illumina GoldenGate array. Both arrays are based on 

genotyping bisulfite (BS)-converted DNA. DNA samples are treated with a methylation 

kit that converts unmethylated cytosines to uracils, whereas methylated cytosines are 

protected and remain cytosine. Therefore, whether the base at a given locus is converted 

or not provides information on its original methylation status. The results of the array, the 

methylation status of the interrogated CpG site is a sequence of β-values, one for each 



9 
 

locus, calculated as the average of approximately 30 replicates (with approximately 30 

beads per site per sample) of the quantity max(M, 0)/(max(U,0)1max(M,0)1100). Here U 

is the fluorescent signal from an unmethylated allele on a single bead, M is that from a 

methylated allele. A maximum between signal intensity and 0 is chosen to compensate 

for negative signals due to background subtraction. The constant 100 is to regularize b-

values when both M and U values are small (Bibikova et al., 2006). 

As explained earlier, β-value ranges continuously from 0 (unmethylated) to 1 

(completely methylated) and reflects the methylation level of each CpG site. It can be 

thought of as a ratio of the methylated (or unmethylated) probe intensity and the overall 

intensity (sum of methylated and unmethylated probe intensities). According to the 

notation used by Illumina methylation assay, Beta-value for an ith interrogated CpG site is 

defined as: 

 

where yi,menty and yi,unmenty are the intensities measured by the ith methylated and 

unmethylated probes, respectively. To avoid negative values after background 

adjustment, any negative values will be reset to 0. Illumina recommends adding a 

constant (stated earlier) offset α (by default, α = 100) to the denominator to regularize 

Beta value when both methylated and unmethylated probe intensities are low. The Beta-

value statistic results in a number between 0 and 1, or 0 and 100%. Under ideal 

conditions, a value of zero indicates that all copies of the CpG site in the sample were 

completely unmethylated (no methylated molecules were measured) and a value of one 

indicates that every copy of the site was methylated (Du et al., 2010). 

http://www.biomedcentral.com/render/render.asp?equation=1471-2105-11-587-i1
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Recently, tremendous amounts of DNA methylation data have been generated 

from high- throughput DNA methylation platforms. Currently, to select differentially 

methylated loci, researchers mainly apply either parametric methods such as regression-

based methods or t-test or nonparametric methods such as rank sum test. Many studies 

have shown that β-values generated by BeadStudio with Illumina arrays usually have a 

heavy tail close to zero which represents unmethylated and a bump close to one which 

represents completely methylated. One such study by Shuang Wang (Wang, 2011) 

studied these patterns and proposed statistical approaches for analyzing the methylation 

data. This study used a β-value threshold of 0.5 to differentiate between unmethylated 

and completely methylated loci, with those above β-value of 0.5 considered as 

completely methylated and the loci below as unmehtylated. They further proposed a 

method to select differentially methylated loci between ovarian cancer cases and age-

matched healthy controls using Illumina Infinium Human Methylation27 Beadchip 

(Teschendorff et al., 2010) and identified some methylation loci that are missed by the 

existing method.  
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Chapter 2 BACKGROUND 

Predictions for the Cell of origin in Ovarian Cancer 
It has been thought that serous ovarian cancer (SOC) arise from ovarian surface 

epithelium or intra-ovarian inclusion cysts. This theory has recently been challenged by 

the identification of tubal intraepithelial carcinoma (TIC) in woman with BRCA1 or 

BRCA2 mutations found in the distal end of fallopian tube which is proposed as probable 

precursors of advanced HG-SOC. The gene signatures of fallopian tube epithelium and 

HG-SOC are found to be similar and the coexistence of TIC with similar TP53 mutations 

support the theory that fallopian tube is an important site for the initiation of high-grade 

serous ovarian cancer (HG-SOC). However, the contribution of fallopian sites to the 

genesis of HG-SOC is unclear at present. The wide-spread growth of tumor tissue in 

advanced cancers usually obscures the primary site of origin. Even though the primary 

tumor seems to originate from the ovary, the theory suggests that the fallopian tube may 

have provided the originating cell supposedly through entrapment in the ovary 

(endosalpingiosis)(Bowtell, 2010). 

Ovarian Cancer Initiating Cells 
  In a previous study, Zhang et. al isolated and characterized ovarian cancer 

initiating cells (OCICs) using primary human ovarian tumors. These OCICs were seen to 

be fully capable of reestablishing their original tumor phenotype in vivo. These cells 

could be isolated using antibodies against CD44 and CD117. These could propagate 

tumors in animals and fulfilled the current cancer stem cell criteria including self-

renewal, small minority of total tumor population, reproducible tumor phenotype, 

multipotent differentiation into nontumorigenic cells and having distinct cell surface 

antigenic phenotype, permitting consistent isolation.  
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This study further investigated the tumorigenic potential of CD44+CD117+ cells (Cells 

having these markers) compared to that of CD44-CD117- (Cells without the markers). 

They observed that as few as 100 cells with the markers were required to result tumor 

formation in mice, whereas 5 X 105 cells without the markers were required to develop 

the tumor. 

These cells have been thought to provide a better insight into the genesis of the 

ovarian cancer. The speculated origin for the OCICs is the ovarian surface epithelium 

(OSE). This is based on the fact that like OCICs, OSE are also known to express CD44 

and CD117 surface markers. However, based on the histology and gene expression 

patterns, the ovarian cancers are hypothesized to be derived from fallopian Tube 

epithelial cells. This is because the ovarian tumors are known to become epithelial during 

tumor progression. On the other hand, OSE are known to retain capacity to undergo 

epithelial-to-mesenchymal transition required for postovulatory repair mechanism. It is 

thought that the comprehensive studies of epigenetic patterns (Histone modifications & 

DNA Methylation) in OCICs will lead to better understanding of the early events in 

ovarian cancer(Zhang, et al., 2008). 

Epithelial – Mesenchymal Transition 
The changes observed in the cell phenotypes between epithelial and mesenchymal 

states are defined as epithelial – mesenchymal (EMT) and mesenchymal – epithelial 

(MET) transitions. They have been known to play a key role in the process of embryonic 

development and also have recently known to be important for the pathogenesis of 

various cancers. EMT is a complex program through which an epithelial cell loses its 

characteristic differentiated phenotype by the accompanied loss of functions like cell-cell 
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adhesion, lack of motility, planar and apical-basal polarity. It in-turn acquires 

mesenchymal characteristics like motility, invasiveness and increased resistance to 

apoptosis.  

 

Figure 1: Epithelial-to-Mesenchymal Transition and the Mesenchymal-to-Epithelial 
Transition in Ovarian Cancer (Polyak & Weinberg, 2009) 

EMT has been known to be the important factor in the metastatic dissemination, 

invasiveness and resistance to therapy. On the other hand MET is the reversal of EMT 

and is observed after the dissemination and is responsible for the formation of metastases 

in remote locations. However, unlike embryogenesis, these programs in cancer are mostly 

irreversible events as they are caused due to somatic mutations (Polyak & Weinberg, 

2009). 

TGF-β Signature 
The Transforming growth factor-β (TGF- β) family of cytokines has been known 

to induce the process of EMT during the embryonic development, various diseases and 

cancer pathogenesis. However, recently TG1F- β has been shown to play a critical role in 

the regulation of breast cancer stem cell phenotypes. It has known to induce EMTs 
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through multiple signaling mechanisms which include phosphorylation by the receptors 

of SMAD transcription factors and proteins present in the cytoplasm, regulating cell 

polarity and formation of tight junctions. In the mammary epithelial cells, it is known that 

TGF- β type II receptor directly phosphorylates SMAD2, SMAD3 and protein regulation 

cell polarity PAR6A. The phosphorylation of this protein (PAR6A) reduces the apical-

basal polarity and consequently the tight junctions between adjacent epithelial cells are 

dissolved. TGF- β is also known to affect the activities of various other EMT-inducing 

pathways like Notch, Wnt and integrin signaling which act together to induce EMT 

programs (Polyak & Weinberg, 2009). 

DNA Methylation Studies in Ovarian Cancer 
There have been various molecular approaches to identify tumor markers for the 

diagnosis and prognosis of ovarian cancer including complementary DNA microarrays. 

DNA methylation studies have been mostly investigating the methylation patterns based 

on supervised and unsupervised cluster analysis for identifications of different 

phenotypes and genes specific to them. Houshdaran et. al studied the methylation profiles 

of ovarian epithelial tumors and ovarian cell lines. They used Illumina GoldenGate 

platform with 1505 CpG sites representing 808 genes for studying 15 ovarian cell lines 

and 27 primary tumors. They considered measurements with a detection p-value less than 

0.05 to have signal intensity significantly above background. They masked the data 

points with a detection p-value greater than 0.05 as “NA” considered them to be 

representing the beta values with non-significant detection of DNA methylation 

compared to background. Further, to identify the loci with significantly different levels of 

DNA methylation in cell lines compared to tumors, they restricted the analysis to 1,110 
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CpG sites whose beta-values were variable across samples. For this they considered those 

CpG sites which had minimum beta-value greater than 0.2, ratio of maximum beta-value 

to minimum beta-value greater than or equal to 2 and, 1 or fewer missing beta-values. 

They further performed two-sampled t-test for the 15 cell lines with 27 tumors and 

adjusting the p-values from the t-test for multiple comparisons by controlling the FDR. In 

the process, they identified 489 CpG sites representing 337 genes that varied significantly 

in the DNA-methylation at FDR less than 1%. They further identified that most of these 

i.e. 445 of 489 were highly methylated in cell lines compared to tumors. From this study 

they indicated the difference in DNA methylation profiles between ovarian cancers cell 

lines and tumors this emphasizing the cautiousness required in using the cell lines as 

models for tumors in further molecular studies. They also identified the different 

methylation patterns in the histological subtypes of ovarian cancer viz. Serous, 

Endometroid and Clear Cell carcinomas(Houshdaran, et al., 2010). 

Another study by Michaelson-Cohen et. al used a genome-wide approach for 

identifying de novo methylated genes in epithelial ovarian cancer. They used methyl-

DNA Immunoprecipitation and CpG Island microarrays for studying methylation patterns 

for 4 epithelial ovarian serous carcinoma and 2 normal ovarian tissue samples. After 

comparing these tissue types they identified 2583 islands that were constitutively 

methylated in most tissue types and 2484 (96%) of them were also methylated in the 

normal ovary. They further identified 16,962 unmethylated CpG Islands in normal ovary 

and found that 376 (2.16%) of these were methylated in ovarian cancer thus stating them 

as de novo methylated. Also, out of the 6,498 CpG islands that were methylated in 

normal ovary, 582 (9%) underwent demethylation in ovarian cancer. This implies that 
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these 582 islands were previously methylated in normal and underwent demethylation in 

cancer. However this study emphasized an unclear biological significance of the later 

group in tumorigenesis. It was also observed that the large number of normally 

methylated islands on the inactivated X chromosome underwent demethylation in ovarian 

cancer. This study thus provided a new perspective on methylation in ovarian cancer in a 

genome-wide approach. It also illustrated the way genes were silenced by methylation of 

CpG island and that the silenced genes played significant roles in the cell differentiation 

and functioning thus indicating potential biomarkers for diagnosis, prognosis and 

treatment of cancer(Michaelson-Cohen et al., 2011). 

The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort to 

accelerate our understanding of the molecular basis of cancer through the application of 

genome analysis technologies, including large-scale genome sequencing. TCGA is a joint 

effort of the National Cancer Institute (NCI) and the National Human Genome Research 

Institute (NHGRI), two of the 27 Institutes and Centers of the National Institutes of 

Health, U.S. Department of Health and Human Services. TCGA undertakes 

comprehensive genomic characterization and analysis of each cancer and makes the data 

freely available to the cancer community through its data portal. It examine up to 500 

samples for each tumor type thus providing statistical power to generate comprehensive 

genomic profiles of each cancer required for identification the best targets for drug 

development. For the entire sample types, both the normal and cancerous tissues are 

collected which allows identification of genomic changes that play roles in development 

of that particular cancer. Ovarian serous cystadenocarcinoma is the cancer being studied 

by TCGA and is a type of epithelial ovarian cancer which accounts for about 90 percent 
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of all ovarian cancers. The study mainly aims to determine gene expression patterns 

which are linked to differences in patient survival, to establish whether certain gene 

changes are linked to response to therapy and define the role of copy number variation 

(abnormal duplications or deletions) in cancer development. One of the findings of this 

study report is the identification of 4 subtypes of high grade serous ovarian cancer using 

583 tumor samples. These subtypes include immunoreactive, differentiated, proliferative 

and mesenchymal. These were obtained by performing an integrated analysis of mRNA, 

miRNA expression and DNA methylation data from TCGA("Integrated genomic 

analyses of ovarian carcinoma," 2011).  
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Significance of studying OCICs 
Ovarian cancer initiating cells have yet to be studied for specific changes in the 

expression patterns of genes and their corresponding methylation patterns. The study of 

changes in the pathways regulated by these genes will give us an insight in the 

progression and proliferation of ovarian cancer. Also these cells can be used as models 

for the studies on the genesis of ovarian cancer and also for testing the various 

hypotheses concerning the cell of origin. The inclusion of these cells for the comparison 

studies of tumors with fallopian epithelial cells and ovarian surface epithelial cells can 

help in determining the earlier events in the development of ovarian cancer. 
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Chapter 3 Hypotheses 
Based on this information we formulated two hypotheses which will be tested by the 

studies in this thesis 

1. Comparison of ovarian cancer initiating cells (“OCIC”) gene expression and DNA 

methylation profile to normal ovarian surface epithelium (“nOSE”) and bulk 

population tumor cells (“tumor”) can provide insight into specific 

pathways/processes involved in the initiation and progression of ovarian cancer 

(HG-SOC). 

2. Comparison of gene expression signature concordances of ovarian cancer-

initiating cells (OCICs) and various fallopian cancers/tissue and ovarian 

cancer/tissue can provide insight into the cell(s)-of-origin of high-grade serous 

ovarian cancer (HG-SOC). 
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Chapter 4 METHODS 

Approach  
In order to evaluate the proposed hypothesis, we formulated specific workflows 

for each separately. As these analyses required preprocessing of the raw datasets, they 

had to undergo various rigorous quality control steps which will be explained in the 

future sections. For the comparison of ovarian cancer initiating cells with tumors and 

normal cells, we developed a systematic workflow shown in Figure 1. Here we analyzed 

differentially expressed and methylated genes for similarly altered gene ontology 

pathways and also verified them by performing gene set enrichment analysis (GSEA) in 

case of expression datasets. 

 

Figure 2: Analysis of Ovarian Cancer Initiating Cells using the gene expression and 

DNA methylation Datasets. 
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After determining the similarly altered pathways between these datasets, we set 

out to identify relevant gene signatures which will be efficient in indicating the difference 

in the three phenotypes. Using the information on these pathways and combining them 

with information from the literature, we identified these gene signatures. Further, we 

performed unsupervised cluster analysis for the two datasets separately for the genes in 

the signatures to get an indication of the differences in the signature patterns among the 

three phenotypes. 

For the comparisons of ovarian cancer initiating cells with the fallopian tube 

datasets, we employed a separate workflow. This was mainly due to the fact that the 

fallopian tube data was obtained from a public domain source (Tone et al., 2008) which 

was obtained using a different platform and had to be integrated with the in-house 

ovarian cancer initiating cell data. This process included steps for the integration and 

removal of the platform bias induced due to the use of different platforms between the 

two datasets. This process has been explained in detail in the later sections. The overall 

approach for testing the second hypothesis can be seen in the Figure-2. 
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Figure 3: Comparison of Ovarian cancer initiating cells with Fallopian Tube cells. 

After the integration of the two datasets, the comparison was performed using the 

gene signatures identified in the first hypothesis to identify the similarities and 

differences between the tumors compared to the fallopian epithelial cells and the ovarian 

surface epithelial cells and also to observe the classification of OCICs with respect to 

these phenotypes. 

Data Collection 
The identification and collection of high quality datasets was of utmost 

importance for correct evaluation of the proposed hypotheses. The samples used in this 

study were taken mainly from three sources. One of these sets belonged to the samples 

prepared at Indiana University from the Nephew lab consisting of Ovarian cancer 

initiating cells and ovarian surface epithelium, here indicated as in-house dataset; the 

other belonged to a study by Tone et. al which studied the Fallopian Tube epithelium and 

Fallopian Tumors. The third data set was obtained from the data made available by The 
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Cancer Genome Atlas consortium for ovarian tumors. The details of these data sets will 

be explained here. 

In-house Dataset 
The tumor samples were obtained from patients with stage III serous 

adenocarcinomas. These samples were minced, suspended in DMEM/F12 medium 

(Invitrogen), and mixed with 300 units/mL of both collagenase (Invitrogen) and 

hyaluronidase (Calbiochem), which was followed by overnight incubation (37oC, 5% 

CO2). These enzymatically disaggregated suspensions were then filtered (40-µm cell 

stainer) and washed twice with PBS, and RBCs were removed by Histopaque-1077 

(Sigma). As a result, single tumor cells were obtained which were placed under stem cell 

conditions by re-suspension in serum-free DMEM/F12 supplemented with 5 µg/mL 

insulin (Sigma), 20 ng/mL human recombinant epidermal growth factor (EGF; 

Invitrogen), 10 ng/mL basic fibroblast growth factor (bFGF; Invitrogen), and 0.4% 

bovine serum albumin (BSA; Sigma), which was followed by culturing in Ultra Low 

Attachment plates (Corning) and subsequent organization into spheres (Zhang, et al., 

2008). 

The ovarian cancers initiating cells were obtained by fluorescence-activated cell 

sorting tumors. This was carried out by disassociating small pieces of tumors into single 

cells followed by washing and removing RBCs. Cells were then suspended in 2% 

BSA/PBS and labeled with anti-CD44, anti-CD117, and secondary antibodies which 

were phycoerythrin-labeled and FITC-labeled respectively. The isolation of CD44+, 

CD117+, or CD44+CD117+ cells was performed using FACSAria flow cytometer and 

analysed by WinMDI. The cells were sorted twice to assess the OCIC enrichment and 

purity. Further, the normal ovarian surface epithelial cells were obtained from consented 
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individuals who showed no signs of ovarian cancer.  These methods were all performed 

at Indiana University in the Nephew lab and are also explained in a previous study by 

Zhang et.al (Zhang, et al., 2008). 

The samples belonging to the three phenotypes explained above i.e. Tumor, 

Ovarian Cancer Initiating Cells and normal Ovarian Surface Epithelium were further 

used for generating high-throughput Gene Expression and Methylation data. RNA was 

obtained from these samples using the standard Qiagen RNeasy purification kits. The 

RNA extracted from three samples each for Tumor and OCIC (tumor and OCIC from 

each patient i.e. 3 patients) where as five samples for normal OSE were selected for 

generating the gene expression data using the Affymetrix gene-1.0-st arrays. The 

standard procedures for the quality and quantity assessments from Affymetrix were 

followed. The intensity data obtained from these arrays was further processed for dye-

bias and normalization techniques explained in further sections. Further tumor and OCIC 

samples from the same three patients used for gene expression studies were used for 

obtaining DNA methylation profiles. Methylation data was also obtained for two normal 

Ovarian Surface Epithelium samples. The genomic DNA was obtained using standard 

Qiagen DNeasy purification kits and was subject to sodium bisulfide conversion, labeled 

with fluorescent dyes and then hybridized to Illumina HumalMethylation 27K bead 

arrays. The methods and reagents for the sodium bisulfide conversion and array 

hybridization were performed based on the standard Illumina protocols. The methylation 

intensity data obtained was further processed for dye bias and normalization techniques 

explained in further sections. 
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Public Domain Data 

Fallopian Tube Datasets 
The data was obtained from a study conducted by Tone et. al (Tone, et al., 2008). 

The study collected samples for normal fallopian tube epithelial cells (FTEn) from 

individuals who did not show adnexal malignancy or family history and also did not test 

positive for BRCA1/2 mutations. They further collected samples for thirteen serous 

carcinoma samples (SerCa) out of these, six samples showed tubal (FTSerCa) and seven 

showed ovarian (OVSerCa) origin. RNA from the study cases was obtained using 

NuGEN Biotin Ovation kit (NuGEN Technologies). Further the RNA was subject to 

cDNA synthesis which was amplified and purified, enzymatically fragmented and labeled 

with biotin. The quality and quantity was assessed based on the Affymetrix standard 

protocols and then the purified labeled cDNA product was hybridized to Affymetrix 

GeneChip U133A Plus 2.0 arrays. The raw data intensities were deposited in National 

Center for Biotechnology Information Gene Expression Omnibus resource under the 

accession number GSE10971. This data was obtained from GEO for the further analysis 

in this thesis. The obtained raw data was integrated with the in-house data followed by 

multiple normalization steps explained in later sections. 

The Cancer Genome Atlas Dataset 
The samples in TCGA are collected from newly diagnosed patients with ovarian 

serous adenocarcinoma who were undergoing surgical resection and had received no 

prior treatment for their disease including chemotherapy or radiotherapy. DNA and RNA 

were isolated from the tissue using an AllPrep DNA/RNA mini kit (Qiagen). The datasets 

used in this thesis are the raw data from TCGA representing a total of 584 samples that 

were used for obtaining gene expression genome wide expression data whereas 534 
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samples were used for obtaining DNA methylation profiles. The gene expression profiles 

were obtained by using Affymetrix HT Human Genome U133 Arrays. The DNA 

methylation profiles were obtained by using Illumina HumanMethylation 27k Arrays 

similar to the platform used for the in-house dataset. These datasets were further subject 

to integration with the in-house datasets followed by multiple normalization procedures 

in order to assess the quality of the in-house dataset. This will be explained in the later 

sections. 

Quality Analyses 

Gene Expression 
As explained earlier, the in-house dataset used the Affymetrix gene-1.0-ST arrays 

for obtaining the gene expression profiles for the tumor, OCIC and normal OSE 

phenotypes. A number of normalization approaches were considered for the 

normalization of the raw data. MAS5 algorithm from Affymetrix adjusts the perfect 

match (PM) probes by effectively subtracting the signal found on the mismatch (MM) 

probes. This subtraction is done carefully to avoid producing negative signals and to 

minimize the effect of outliers. However in the case of Affymetrix gene-1.0-st arrays, it 

does not report the information for mismatch (MM) probes, instead all the probes in this 

array are considered perfect match (PM) which gives it the ability of genome wide 

coverage. Thus, Robust Multichip Average (RMA) approach is suitable as it does not 

involve an implicit subtraction of the MM probe values. Instead, RMA looks at the 

distribution of the PM probe values and fits a combination of two distributions, a "noise" 

distribution that is normally distributed, and a "signal" distribution that is distributed like 

an exponential distribution. The normalized values are estimated through the expected 

value of the signal distribution. The raw data was thus normalized using the default RMA 
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algorithm which involves RMA background correction, Quantile normalization and 

summarization of the intensities by the Median Polish method were performed. The 

summarized signals were then log base 2 transformed for each probe set. 

The normalized datasets for in-house samples were further evaluated using 

principal component analysis (PCA) using Partek. The PCA indicated that the samples 

representing the same phenotype were well correlated with each other and at the same 

time, the three phenotypes were well divergent from each other. This can be seen in 

Figure-3. 

 

Figure 4: Principal Component analysis of gene expression profiles for the in-house 

dataset. 

 

The integration of the fallopian tube dataset that used the Affymetrix Human 

Genome U133 Plus 2.0 Arrays however involved many subsequent steps. After the RMA 

normalization and the steps described above, the integration step involved the mapping of 

probes between the two platforms. This was achieved using the sequence matching 
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information retrieved from Affymetrix depicting the similarity of probes between the two 

platforms. Only that probe match information was used which was classified as good 

match by Affymertix (The sequence matching between the two probes showed percent 

identity greater than 90%). The integration retained 85.89% of the total genes present in 

both the platforms. The distribution of data after the integration of the two platforms was 

plotted and can be seen in the Figure-4. 

 

Figure 5: Plot showing the distribution of the data after the integration of the 

Fallopian Tube data (1 to 37) and in-house (38 to 48). 

A clear indication of the presence of a platform bias could be seen from the 

integrated data. In order to normalize for this platform bias we employed series of 

statistical and biological validation filters. In order to normalize the datasets statistically 

we first employed Median normalization in order to center the intensities from the two 

arrays on a common median. Further assuming that the two arrays have common 
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distribution of intensities, we employed quantile normalization. The distribution achieved 

after each of these normalizations can be seen in Figure-5 and Figure-6 respectively. 

 

Figure 6: Plot showing the distribution of the integrated data after median 

normalization showing Fallopian Tube data (1 to 37) and in-house (38 to 48). 
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Figure 7: Plot showing the distribution of the integrated data after Quantile 

normalization showing Fallopian Tube data (1 to 37) and in-house (38 to 48). 

The data obtained after quantile normalization seemed to be evenly distributed 

across the samples for both the arrays. However, to confirm the removal of platform bias 

from the further analysis, we increased the stringency by applying a biological filter. In 

order to do this, we determined the ovarian serous carcinoma (OVSerCa) samples from 

fallopian tube dataset and the Tumors form in-house dataset belonged to the same 

phenotype i.e. high-grade serous ovarian carcinoma (HG-SOC). Based on this fact, 

biologically, there should be no differentially expressed probes between these two 

samples and the ones which are differentially expressed can be considered as a platform 

bias and should not be included in further analysis. Taking this into consideration, we 

performed a differential expression analysis on the quantile normalized data for the 

OVSerCa and in-house Tumor phenotypes. This was done using a two sided Student’s T-



31 
 

test. The probes having a p-value less than 0.05 were considered significantly 

differentially expressed and were removed from the further analysis. The remaining 

probes represented 50% of the total genes originally covered by the two platforms. 

However, a Gene Ontology analysis on the 50% genes removed from further analysis 

indicated most of the enriched biological process were involved in development of 

differentiation processes which can be thought of mostly the properties of housekeeping 

genes. The remaining 50% of the genes in that were included in the dataset can be said to 

be the important indicators of the differences in the phenotypes in the progression of 

cancer. 

In order to test the consistency of this approach, we used similar normalization 

steps described above to integrate the in-house tumors with 584 TCGA tumor samples 

which also match the biological phenotype being ovarian serous adenocarcinoma. After 

the integration and subsequent normalization procedures, we performed unsupervised 

hierarchical clustering (using Multi-Experiment Viewer) separately for the in-house data 

integrated with fallopian tube dataset and for the in-house data integrated with the 584 

TCGA tumors. The clustering patterns obtained for the two comparisons can be seen in 

the Figure-7 and Figure-8 respectively. 
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Figure 8: Unsupervised cluster analysis for the in-house data and fallopian tube 

dataset. 

 

Figure 9: Unsupervised cluster analysis for the in-house data and 584 TCGA 

Tumors. 

From the above clustering patterns observed for the two separate analyses, we can 

see that as the tumors consistently cluster together with the tumors from the public 

domain datasets, OCICs are seen to cluster consistently with normal OSE cells. This 

indicated that even though this stringent normalization approach removes significant 



33 
 

amount of genes from further analysis, the remaining genes will be significant and 

efficient as indicators for differentiation between phenotypes. 

DNA Methylation 
The studies of the methylation profiles were performed using the Illumina 

HumanMethylation 27k platform. This platform provides the intensities in the methylated 

and unmethylated channels based on the methylation content in the CpG islands. This 

data was further normalized using the standard normalization algorithms proposed by 

Illumina using the normalization functions in the Methylumi Package in R programming 

language (Du, Kibbe, & Lin, 2008). The normalization itself is carried out in a number of 

steps. The data is first normalized for dye bias, followed by median normalization by 

inspecting the median intensities in methylated and unmethylated channels at very low 

and very high beta values. Finally, a new beta value is calculated as a ratio of methylation 

intensity and the sum of the intensities in the methylated and unmethylated channels. This 

beta value ranges from 0 to 1, where the values closer to 0 indicate unmethylated CpG 

islands while the values closer to 1 indicate methylation in the CpG islands. The 

biological interpretation can be thought of as the value of 0 will indicate both the alleles 

are unmethylated, a value of 0.5 will indicate that one of the alleles is methylated and 

value closer to 1 indicates both the alleles are methylated. The distribution of the beta 

values for the Tumor samples can be seen in the Figure-9. 
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Figure 10: Distribution of Beta values for the Tumor samples. 

The normalized datasets for in-house samples were further evaluated using 

principal component analysis (PCA) using Partek. The PCA indicated that the samples 

representing the same phenotype were well correlated with each other and at the same 

time, the three phenotypes were well divergent from each other. This can be seen in 

Figure-10. 
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Figure 11: Principal Component Analysis of the Methylation data representing 

three phenotypes.  

In the case of TCGA methylation datasets, studies were carried out using the same 

platform used here and similar normalization approach was used for these datasets. The 

TCGA included methylation profiles for 534 ovarian serous carcinoma tumors which 

were integrated by matching with the probes from the in-house dataset. In order to test 

whether the profiles for in-house tumors represented the ovarian serous carcinoma 

phenotype, an unsupervised cluster analysis was performed for this integrated data. This 

can be seen in the Figure-11. 
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Figure 12: Unsupervised hierarchical clustering of in-house dataset with TCGA 

dataset. 

It was seen that the ovarian tumor methylation profiles for in-house tumors 

clustered with TCGA tumors indicating that the in-house tumors clearly represent the 

ovarian serous carcinoma phenotype. Moreover, it was observed that the OCIC and 

normal OSE showed completely distinct methylation profile compared to the tumors. 

Statistical Analyses 
Various statistical approaches were used for both the methylation and gene 

expression data in further analyses. These included differential comparisons between the 

samples, Gene ontology analysis, Gene set enrichment analysis, unsupervised 

hierarchical clustering analysis. The details on each of these techniques will be explained 

here. 

Differential Analysis 
Differential analysis was carried out for both the DNA methylation and gene 

expression datasets. However, the stringency criteria differed for each of these datasets 

based on the nature of the data. The normalized gene expression data was used for the 
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comparisons of differential expression using two sided Student’s T-test over each 

comparison i.e. OCIC Vs nOSE, OCIC Vs Tumor and Tumor Vs nOSE. For each of the 

comparison fold change values were calculated separately from the raw data. Genes were 

then filtered using a T-test p-value where probes with p-value less than 0.01 were 

selected, then followed by twofold change cutoff, where the previously filtered genes 

were scanned for the genes which had a fold change difference of greater than 2. A 

similar analysis was carried out for the methylation data with the inclusion of another 

filter which checked the methylation status for the pair in the comparison. For this filter, 

a beta cutoff of 0.5 was used (determined based on the information from the literature and 

the distribution of beta intensities in the samples), where all the beta values above 0.5 

were considered hypermethylated and those below 0.5 were considered unmethylated. 

For the differential methylation analysis it was confirmed that if one of the pairs of 

intensities in the comparison is hypermethylated then the other should be unmethylated 

and vice versa. 

Gene Ontology (GO) and Gene set enrichment analysis (GSEA) 
The gene ontology analysis was mostly carried out on the datasets that were 

selected for further functional analysis in the various approaches. On the other hand gene 

set enrichment analysis was carried out in order to test the enrichment of the gene sets 

and individual genes in that particular gene set that were selected for further studies. The 

GO analysis was mainly carried out using default GO settings used in DAVID functional 

annotation tool (Huang da, Sherman, & Lempicki, 2009). The gene set enrichment 

analysis was carried out using GSEA tool from the Broad institute (Subramanian et al., 

2005). 
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Unsupervised Hierarchical Clustering 
The unsupervised hierarchical clustering has been extensively used in this thesis. 

All the clustering results were obtained by using MultiExperiment Viewer (MeV) a tool 

that is part of the TM4 Microarray Software Suite (Saeed et al., 2006). In hierarchical 

clustering, genes with similar expression patterns are grouped together and are connected 

by a series of branches, which is called clustering tree (or dendrogram). Experiments with 

similar expression profiles are also grouped together using the same method. Here we 

used Pearson correlation coefficient to measure the similarity between gene and sample 

profiles.  A Pearson correlation coefficient indicates the relationship between two ordered 

sets of gene expression data for several different conditions.  It indicates both how the 

two sets are related and the strength of that relationship.  For example, if gene A 

increases over time and gene B decreases proportionally, their correlation value will be -

1.0 because they are perfectly divergent.  If the two sets were not perfectly divergent, but 

still diverged, the correlation would remain negative, but would be greater than -1.0.  In 

contrast, if genes A and B increase proportionally over time, then their correlation will be 

1.0.  If genes A and B have absolutely no relationship to each other whatsoever, their 

correlation will be 0. Once we have a table of correlation values between all the genes, 

clustering is performed with the genes having high correlation values grouped together. 

By retracing the order in which the genes were progressively joined into clusters and by 

knowing the correlation value of each step, we can map out which genes are related to 

each other closely and which genes are related only distantly.  This is represented 

graphically as the tree and the scale represents the Pearson correlation coefficient for the 

genes.  
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Chapter 5 RESULTS 

Gene Expression 
Based on the differential expression analysis of gene expression data explained 

earlier, the filtered genes were classified into groups which were specific to each of the 

particular phenotypes. A clustering showing these groups can be seen in the Figure-12. 

 

Figure 13: Gene Expression Clustering of the filtered genes. 

The genes specific to each of the phenotypes were further studied for the 

enrichment of specific biological pathways by performing GO analysis. The genes 

identified in the specific pathways determined from the GO analysis were further used as 
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gene sets for determining their enrichment on the gene expression data using the gene set 

enrichment analysis approach on the OCIC compared to rest of the phenotypes. 

 

Figure 14: Gene Ontologies for genes specifically up-regulated in each of the 

phenotype. 

The gene ontologies enriched in each of the phenotype were obtained based on 

the gene specifically up-regulated in each of the tumor, OCIC or normal OSE 

phenotypes. The ontology terms indicated in red indicate the processes that were found to 

be unique to that phenotype. These were considered relevant for further analysis 

approaches. The main terms representing the OCIC specific phenotype were related to 

Cell cycle and DNA repair processes. For the Tumor specific genes, the enrichment was 

observed mostly for the terms related to immune-response, whereas in case of normal 

OSE, most of the processes belonged to the basic signaling pathways. The genes 
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belonging to the pathways that were considered relevant from the gene ontology analysis 

were further tested for the enrichment of the gene sets using GSEA. 

 

Figure 15: GSEA for the gene sets related to GO enriched processes carried out on 

entire dataset for the comparison of OCIC with Rest of the phenotypes. 

The GSEA revealed the pathways and gene sets identified unique for OCIC were 

indeed enriched significantly in the OCICs compared to the tumor and normal OSE 

phenotypes. It was seen that the gene sets related to Cell Cycle, Cell differentiation and 

Hypoxia pathways were significantly enriched in OCICs. 

DNA Methylation 
In order to identify the pathways altered specifically in each phenotype especially 

due to the alteration in the methylation patterns in the three phenotypes, genes that were 
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hypermethylated specifically in these phenotypes were selected. We considered genes 

with beta intensities greater than 0.5 to be hypermethylated, thus filtering out the genes 

that showed unmethylation i.e. beta intensity less than the above define threshold. 

 

Figure 16: Genes hypermethylated in each phenotype. The genes indicated in 

shaded regions can be considered specific to that phenotype and were used for 

further analysis. 

The above filtering provided a list of genes for each phenotype indicated in 

Figure-15. It was observed that a total of 5581 genes were hypermethylated in OCICs out 

of which 1021 genes belonged specifically to OCICs. In case of Tumors, 5,736 genes 

were found to be hypermethylated out of which 819 genes were specifically methylated 

in tumors. Whereas, out of 4,645 genes that were hypermethylated in normal OSE, only 

281 were seen to be specifically hypermethylated in this phenotype. These specifically 

hypermethylated genes in each phenotype were subjected to further gene ontology 

analysis to identify altered pathways. 
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Figure 17: Gene Ontology analysis for specifically hypermethylated genes in each 

phenotype. 

From the gene ontology analysis it was found that the most of the cell 

development related pathways were hypermethylated in OCICs which can correspond to 

silencing of their genes and functions. In the case of tumor specific genes, it was seen that 

most of the immune response and mesenchymal to epithelial transition related pathways 

were hypermethylated. Also in the case of genes specifically hypermethylated in normal 

OSE, most of the processes related to cell cycle and DNA repair pathways were seen to 

be hypermethylated and hence can be thought of as silenced. 

Determination of Signature Pathways 
Based on the biological processes that were enriched in the expression and 

methylation analyses explained above, we determined the processes that contributed to 

various signature pathways that were known to be related to or contributing in the 
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development of tumor phenotypes in various cancers. The genes belonging to these 

signature pathways were instrumental in differentiating between the different tumor 

phenotypes and the cell types known to promote cancer phenotypes. We determined four 

important signatures from literature that were known to be related to ovarian cancers that 

are known to show enrichment of the identified gene ontologies and involved in cancer 

progression. 

• Epithelial to mesenchymal transition. 

• TGF-beta signaling pathway. 

• WNT signaling pathway. 

• Notch signaling pathway. 

The details about these pathways and their results for the expression and methylation 

datasets are explained further. 

Epithelial – Mesenchymal Transition Signature 
As explained earlier, EMT is the process by which an epithelial cell becomes 

more mesenchymal (Valcourt, Kowanetz, Niimi, Heldin, & Moustakas, 2005). The 

signature was obtained from a recent study conducted by Taube et al. on human breast 

cancer cells (Human mammary epithelial cells or HMLE) (Taube et al., 2010). The EMT 

core signature was obtained by inducing HMLE cells to express genes like GSC, Snail, 

Twist and TGF-β1 or the knock down of the expression of gene E-cadherin (These genes 

have been known to be responsible to induce an EMT process in cells eventually 

converting the epithelial cells to mesenchymal phenotype.). The resulting set of gene 

expression changes between the two phenotypes was defined as the EMT core signature. 

This signature included 159 down-regulated and 87 up-regulated genes (showing atleast 
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2-fold change) which was obtained from all of the EMT inducing signals discussed 

above. The study also indicated that the use of the total mRNA isolated from entire 

tumors may preclude the detection of cells that have undergone EMT as only a small 

proportion of the neoplastic cells in each tumor may exhibit the EMT phenotype. It is 

also indicated that FOXC1 gene expression correlated with a poor survival among the 

breast cancer patients. 

Unsupervised Cluster analysis  
An unsupervised cluster analysis was performed for each of the signature datasets 

of EMT i.e. the clustering was performed on up-regulated and down-regulated genes 

separately. The clustering was performed for both gene expression and DNA methylation 

data. It showed a clear distinction between the normal OSE and tumor phenotypes. The 

normal OSE showed a clear adherence to the mesenchymal phenotype such that most of 

the genes that were included in the up-regulated signature were also up-regulated in 

normal OSE and vice versa (for down-regulated signature). On the other hand, tumor 

showed a clear epithelial phenotype as most of the up-regulated signature genes were 

down-regulated in tumor and vice versa (for down-regulated signatures). In case of 

OCIC, they clustered with normal OSE for both the signature gene sets suggesting an 

inclination toward mesenchymal phenotype. The clustering patterns for both the 

signatures can be seen in Figures 18 and 19. In the case of methylation intensities, the 

clustering patterns for both the signature gene sets showed similarities in the tumor and 

normal patterns but OCICs seemed to have a great difference in the methylation patterns 

as more genes were methylated in OCICs compared to tumors and normal cells. 
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Figure 18: Unsupervised Clustering of Expression and Methylation intensities for 

genes Up-regulated in EMT signature. 
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Figure 19: Unsupervised Clustering of Expression and Methylation intensities for 

genes Down-regulated in EMT signature. 
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TGF-β Signature 
As explained TGF- β is known to be a precursor pathway for the induction of 

EMT. The TGF- β signature studied here was obtained from a recent study by Valcourt et 

al. (Valcourt, et al., 2005). This study was carried out on mouse mammary epithelial cells 

which were stimulated for a considerable amount of time with TGF- β1, to induce the 

EMT programs, consequently inducing a mesenchymal phenotype. The treated cells and 

the normal epithelial cells were compared for the gene expression patterns and the genes 

differentially expressed between the two phenotypes were selected. It was seen that 344 

independent genes were regulated by TGF- β1 out of which, 205 (60%) were shown to be 

up-regulated and 139 (40%) were down-regulated in the EMT induced cells compared to 

normal epithelial cells. These gene sets were used for the further analysis. 

Unsupervised Cluster Analysis 
An unsupervised cluster analysis involving the gene expression and methylation 

data was carried out for both the up-regulated and down-regulated gene signatures. The 

clustering showed that the tumors and OCICs showed similar clustering patterns 

however, the correlation of the similarities were low in both the clustering of up-

regulated and down-regulated genes. In both the cases, the normal OSE cells showed 

agreement with the mesenchymal phenotype as the genes up-regulated in the signature 

were also up-regulated in normal OSE and those that were down-regulated were also 

down-regulated in normal. The methylation profiles for the clustering analysis in both the 

signature gene sets showed methylation patterns fairly similar for tumor and normal OSE, 

whereas the patterns observed for OCICs greatly diverged from the tumor and normal 

with the number of methylated genes being more in OCICs. 
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Figure 20: Unsupervised Clustering of Expression and Methylation intensities for 

genes Up-regulated in TGF-beta signature 



50 
 

 

Figure 21: Unsupervised Clustering of Expression and Methylation intensities for 

genes Down-regulated in TGF-beta signature 
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The expression patterns of TGF- β were further studied by looking at the genes 

differentially expressed in the tumor and OCIC phenotypes compared to normal OSE. 

The genes were selected based on the differential expression criteria (explained in 

methods section) and also the fold change. This analysis was performed on the genes 

represented in the TGF-beta signaling pathway annotated in the KEGG database. The 

details of this analysis can be seen in Figures 22 and 23. It was seen in case of tumors that 

most of the genes in the upstream of the signaling pathway were down-regulated whereas 

most of the genes contributing in Apoptosis and Cell Cycle were showed to be up-

regulated. A similar expression pattern was seen for OCICs where some of the genes in 

the upstream of the signaling pathway were up-regulated. The major difference between 

the tumors and OCICs was that TGF- β was up-regulated in OCIC where as it was down-

regulated in tumors. 
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Figure 22: Differential analysis for TGF-beta signaling pathway for OCIC 

compared to normal OSE. 
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Figure 23: Differential analysis for TGF-beta signaling pathway for Tumor 

compared to normal OSE. 

As TGF-beta regulated wide range of functions like proliferation, apoptosis, 

differentiation and especially migration, the results obtained in this analysis suggests that 

the TGF-beta signaling pathway seems to be active in OCIC where as it is inactive in 

tumor cells. This indicates the OCICs being more predisposed to the properties like 

migration compared to tumor. 

Methylation Signature 
Another signature gene set which showed enrichment for biological processes related to 

TGF-β and EMT signaling was obtained by Matsumura et al. The signature included the 
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genes proposed in the study to be commonly methylated in cancer. This signature 

indicated the biological and clinical relevance of DNA methylation in ovarian cancer 

(Matsumura et al., 2011). 

Signature 
This signature was obtained form a study of ovarian cancer data. The signature 

contained 378 genes that were identified by growing cultures in the presence or absence 

of DNMT inhibitors. It was found that the signature included many TGF-beta related 

genes and the study suggested that the age related epigenetic modifications lead to 

suppression of TGF-beta pathway. This was stated based on the hierarchical clustering 

that was performed on the 378 genes and the corresponding generation of clusters that 

were strongly correlated with TGF-beta pathway activity shown to be discriminate 

patients based on age. The cells in the cultures were treated with DNA-hypermethylating 

agents like 5-aza-2’-deoxycytidine (decitabine or 5-Aza-dc) or 5-azacytidine (5-Azac), 

followed by gene expression microarray analysis in order to detect genes likely to have 

been silenced by DNA methylation in cancer. The gene ontologies enriched in this set 

included adhesion, cell-migration, angiogenesis and immune-response which are all 

relevant to the functions of TGF-beta super family pathway. 

Unsupervised Hierarchical Clustering  
An unsupervised hierarchical clustering analysis was performed on the 378 genes 

found to be commonly methylated in ovarian cancer. From the analysis shown in Figure-

24 it was seen that majority of the signature genes were methylated and silenced in OCIC 

compared to Tumor and normal OSE. Consistent with the clustering patterns observed in 

previous analysis, methylation patterns for tumors were similar to normal, whereas 
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OCICs showed a great divergence form the two phenotypes with more number of genes 

seen to be methylated. 

 

Figure 24: Unsupervised Clustering of genes commonly methylated in cancer. 
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Wnt signaling pathway 
The Wnt proteins are secreted morphogens that are mainly required for basic 

developmental processes, such as cell-fate specification, progenitor-cell proliferation and 

the control of asymmetric cell division, in many different species and organs. According 

to the KEGG annotation, there are at least three different Wnt pathways: the canonical 

pathway, the planar cell polarity (PCP) pathway and the Wnt/Ca2+ pathway. In the 

canonical Wnt pathway, the major effect of Wnt ligand binding to its receptor is the 

stabilization of cytoplasmic beta-catenin through inhibition of the beta-catenin 

degradation complex. Beta-catenin is then free to enter the nucleus and activate Wnt-

regulated genes through its interaction with TCF (T-cell factor) family transcription 

factors and concomitant recruitment of coactivators. Planar cell polarity (PCP) signaling 

leads to the activation of the small GTPases RHOA (RAS homologue gene-family 

member A) and RAC1, which activate the stress kinase JNK (Jun N-terminal kinase) and 

ROCK (RHO-associated coiled-coil-containing protein kinase 1) and leads to 

remodelling of the cytoskeleton and changes in cell adhesion and motility. WNT-Ca2+ 

signalling is mediated through G proteins and phospholipases and leads to transient 

increases in cytoplasmic free calcium that subsequently activate the kinase PKC (protein 

kinase C) and CAMKII (calcium calmodulin mediated kinase II) and the phosphatase 

calcineurin. 

Unsupervised Cluster Analysis 
The signature gene set for Wnt signaling pathway was retrieved from MSigDB 

which is a database hosted by Broad Institute (Subramanian, et al., 2005). The gene set 

included a total of 89 genes which were shown to be integral genes in the Wnt signaling 

pathway. A hierarchical clustering of both the DNA methylation and gene expression 
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intensities revealed that most of the genes were similarly expressed in tumors and OCICs. 

The OCIC samples clustered with tumor samples with a very significant correlation of 

greater than 0.7 signifies the close similarities in the expression patterns in the two 

phenotypes. The methylation patterns observed in this signature is consistent with 

previous analysis suggesting more methylation observed in genes belonging to OCIC 

compared to tumor and normal OSE cells, whereas the later phenotypes show less 

differences in the methylation patterns. OCIC on the other hand showed great divergence 

in the methylation patterns compared to the other two phenotypes. 
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Figure 25: Unsupervised clustering of the genes from WNT signaling pathway from 

KEGG. 

The expression patterns of Wnt signaling pathway were further studied using 

differential expression in the genes belonging to tumor and OCIC phenotypes compared 

to normal OSE. The genes were selected based on the differential expression criteria 
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(explained in methods section) and also the fold change. The details of this analysis can 

be seen in Figures 26 and 27. Consistent with the unsupervised analysis, the differential 

expression patterns showed similar gene expression patterns in the Tumor and OCIC cells 

with some differences in the expression of few downstream genes. Some of these genes 

which regulate cell cycle process were upregulated in OCIC but down-regulated in 

Tumors. 

 

Figure 26: Differential analysis for Wnt signaling pathway for OCIC compared to 

normal OSE. 
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Figure 27: Differential analysis for Wnt signaling pathway for Tumor compared to 

normal OSE. 

Based on the differential analysis it could be said that the Wnt signaling pathway 

being responsible for many of the basic developmental processes is downregulated in 

both the tumor and OCIC phenotypes. This suggests that the OCIC share the expression 

patterns found in the tumor cells with an addition of the upregulation of genes responsible 

for cell cycle and cell proliferation.   

Notch Signaling Pathway 
The Notch signaling pathway is an evolutionarily conserved, intercellular 

signaling mechanism essential for proper embryonic development in all metazoan 
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organisms in the animal kingdom. According to the KEGG annotation, the Notch proteins 

(Notch1-Notch4 in vertebrates) are single-pass receptors that are activated by the Delta 

(or Delta-like) and Jagged/Serrate families of membrane-bound ligands. They are 

transported to the plasma membrane as cleaved, but otherwise intact polypeptides. 

Interaction with ligand leads to two additional proteolytic cleavages that liberate the 

Notch intracellular domain (NICD) from the plasma membrane. The NICD translocates 

to the nucleus, where it forms a complex with the DNA binding protein CSL, displacing a 

histone deacetylase (HDAc)-co-repressor (CoR) complex from CSL. Components of an 

activation complex, such as MAML1 and histone acetyltransferases (HATs), are recruited 

to the NICD-CSL complex, leading to the transcriptional activation of Notch target 

genes. 

Unsupervised Cluster Analysis 
The signature gene set for Notch signaling pathway was retrieved from MSigDB 

(Subramanian, et al., 2005). The gene set included a total of 47 genes which were shown 

to be integral genes in the Notch signaling pathway. A hierarchical clustering of both the 

DNA methylation and gene expression intensities revealed that most of the genes were 

similarly expressed in tumors and OCICs. The OCIC samples clustered with tumor 

samples with a very significant correlation of greater than 0.8 which signifies the close 

similarities in the expression patterns in the two phenotypes. The methylation patterns 

observed in this signature is consistent with previous analysis suggesting more 

methylation observed in genes belonging to OCIC compared to tumor and normal OSE, 

whereas the later phenotypes show less differences in the methylation patterns. OCIC on 

the other hand showed great divergence in the methylation patterns compared to the other 

two phenotypes. 
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Figure 28: Unsupervised clustering of the genes from Notch signaling pathway from 

KEGG. 

The expression patterns of Notch signaling pathway were further studied using 

differential expression in the genes belonging to tumor and OCIC phenotypes compared 

to normal OSE. The genes were selected based on the differential expression criteria 

(explained in methods section) and also the fold change. The details of this analysis can 

be seen in Figures 29 and 30. Consistent with the unsupervised analysis, the differential 



63 
 

expression patterns showed similar gene expression patterns in the Tumor and OCIC cells 

with some differences in the expression of few up-stream genes.  

 

Figure 29: Differential analysis for Notch signaling pathway for OCIC compared to 

normal OSE. 

 

Figure 30: Differential analysis for Notch signaling pathway for Tumor compared to 

normal OSE. 
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It was seen that the Notch gene which regulates normal gene regulation through 

MAPK signaling pathway was seen to be significantly down-regulated in OCIC which 

was not evident in tumor as the change in the gene expression for tumor was not 

significant for Notch gene. On the other hand, the Fringe genes which are important for 

the working of the Notch signaling was seen to be upregulated in OCIC but down-

regulated in Tumors. As the OCICs cluster closely with tumors, and as the notch 

signaling is known to be responsible for intercellular communication which is usually 

disrupted in cancer, the analysis suggests the similar disruption in the cellular 

communication can be prevalent in OCICs. 

Comparison with Fallopian Tube Datasets 
As explained earlier, the public domain fallopian tube dataset included three main 

phenotypes, Fallopian Tube Epithelial Normal Cells (FTEn), Fallopian Tube Serous 

Carcinoma (FTSerCa) and Ovarian Cancer Serous Carcinoma (OVSerCa). The tumors 

from the in-house dataset were matched and integrated with the OVSerCa phenotype as 

stated earlier. The integrated datasets were further used for unsupervised hierarchical 

clustering and differential expression analysis which will be discussed here. The 

integrated dataset was tested with the similar gene signatures determined in the earlier 

analysis with intent to compare the expression patterns of OCICs as precursor of Tumors 

with Fallopian Tube cells and in the process speculate on the genesis of ovarian cancer 

based on the similarities in expression patterns of OCIC with either normal OSE or 

Fallopian tube epithelium. 

Epithelial – Mesenchymal Transition Signature 
The signature for EMT which was used earlier with two datasets; up-regulated 

and down-regulated was again used for this analysis. Out of a total of 91 up-regulated 
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signature genes, the integrated dataset contained information for 63 genes, whereas out of 

the 159 down-regulated genes, the data was available for 82 genes. 

 

Figure 31: Unsupervised clustering of the up-regulated genes from the EMT 

signature. 
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Figure 32: Unsupervised clustering of the down-regulated genes from the EMT 

signature. 

As observed in the earlier analysis of EMT signature, it was seen that OCICs 

show a mesenchymal phenotype where as Tumors show an epithelial phenotype. This can 

be seen from the above clustering patterns, the OCICs cluster closely with nOSE cells 
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where most of the down regulated genes in the signature are seen to be down regulated in 

these two phenotypes and the upregulated genes in the signature seen to be upregulated. 

This is consistent with the fact that biologically normal OSE cells are known to be 

mesenchymal showing the EMT process to be active. On the other hand, the Tumors 

cluster closely with the normal Fallopian tube epithelial cells which show all the 

epithelial properties where EMT processes are inactive. The tumors thus can be said to 

show an epithelial phenotype. Further, the normal OSE and Fallopian tube cells are 

highly divergent form each other clustering significantly away from each other, showing 

distinct gene expression patterns.  

TGF-beta Signaling Pathway Signature 
As stated earlier, TGF-beta signaling regulated wide range of cellular functions 

such as cell proliferation, apoptosis, cell differentiation and migration. In order to study 

the similarities between tumors and Fallopian tube epithelial cells, we studied the TGF-

beta signature from MSigDB which provides all the genes in the TGF-beta pathway 

annotated in KEGG database. The signature included 86 genes which were known to play 

an important part in the TGF-beta signaling pathway. Out of these genes, intensity 

information was available for 47 genes in the integrated dataset. 
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Figure 33: Unsupervised clustering of the genes from the TGF-beta signature. 

Consistent with the TGF-beta signature studied earlier, we observed that the 

OCICs cluster together with tumors and in this case also with normal fallopian tube 

epithelial samples. This suggests that the TGF-beta signaling patterns observed in tumors 

and OCICs were more similar to those in fallopian epithelial cells than the ovarian 

surface epithelial cells. The expression patterns of normal OSE were again vastly 

different to normal Fallopian tube epithelial calls. The signature was further studied by 

performing differential analysis between the Tumors and OCICs compared to the 

fallopian tube epithelial cells. The details of this analysis for the TGF-beta signaling 

pathway are illustrated in the Figures 35 and 35. 
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Figure 34: Differential analysis for TGF-beta signaling pathway for OCIC 

compared to normal Fallopian Tube epithelial cells. 
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Figure 35: Differential analysis for TGF-beta signaling pathway for Tumor 

compared to normal Fallopian Tube epithelial cells. 

It was observed that most of the genes regulating the TGF-beta signaling pathway 

were upregulated in both the Tumor and OCICs compared to fallopian tube epithelium. 

This analysis confirmed that the genes involved in the TGF-beta pathway showed similar 

expression patterns for both the OCICs and Tumors compared to the fallopian tube 

epithelial cells showing an upregulation of the TGF-beta signaling pathway. 

Wnt signaling pathway 
The signature genes representing the Wnt pathway that were explained in the 

earlier analysis were again used in this analysis for the comparison of OCICs with the 
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fallopian tube epithelial cells. As stated earlier, Wnt pathway regulates many basic 

developmental processes like cell-fate specification, progenitor cell proliferation and the 

control of asymmetric cell division, the inactivation of this pathway is a signature of the 

tumor phenotypes which lead to asymmetric regulation of the above pathways leading to 

cancer. The comparison of this signature with the Fallopian tube samples will indicate 

their similarities to the epithelial phenotype. The clustering of OCIC and Tumors 

compared to the fallopian tube and ovarian surface epithelial cells can be seen in Figure-

36. It was seen that the expression data was available for only 75 genes in the integrated 

data out of the total 151 genes in the signature. 
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Figure 36: Unsupervised clustering of the genes from the WNT Signature. 

The clustering patterns of OCICs were shown to be more similar to the tumors 

where, both tumors and OCICs clustered with epithelial cells compared to the normal 

OSE cells. This signature thus indicates the similarities in the Tumors and epithelial cells 

with the OCICs. This was further tested using differential expression analysis on this 

signature. The differentially expressed genes between the tumor and OCIC compared to 
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Fallopian epithelial cells can be seen in Figures 37 and 38. The comparison will indicate 

the similarities and differences of the expression patterns in OCICs and Tumors. 

 

Figure 37: Differential analysis for Wnt signaling pathway for OCICs compared to 

normal Fallopian Tube epithelial cells. 
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Figure 38: Differential analysis for Wnt signaling pathway for Tumor compared to 

normal Fallopian Tube epithelial cells. 

The differential expression analysis revealed that the expression patterns for 

OCICs and Tumors are very similar compared to Fallopian Tube epithelial cells. It was 

seen that Wnt genes were mostly down-regulated in OCICs and Tumors which is similar 

to the results for the comparison with the normal OSE cells. It was also seen that 

consistent with the previous analysis, some of the cell cycle regulating genes were down 

regulated in tumor but were up-regulated in OCICs. Overall, the expression patterns 

found in the differential comparisons of the comparisons with the Fallopian tube and 

normal OSE showed similar expression patterns for both phenotypes. 
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Notch Signaling Pathway 
The signature genes representing the Notch signaling pathway that were explained 

in the earlier analysis were again used in this analysis for the comparison with the 

fallopian tube epithelial cells. As stated, Notch pathway regulates many important 

processes like inter-cell communication, cell differentiation and cell fate decisions; the 

inactivation of this pathway is a signature of the tumor phenotypes which lead to 

asymmetric regulation of the above pathways leading to cancer. The comparison of this 

signature with the Fallopian tube samples will indicate their similarities to the epithelial 

phenotype. The clustering of OCIC and Tumors compared to the fallopian tube and 

ovarian surface epithelial cells can be seen in Figure-39. It was seen that the expression 

data was available for only 24 genes in the integrated data out of the total 47 genes in the 

signature. 

 

Figure 39: Unsupervised clustering of the genes from the Notch Signature. 

Even though the numbers of genes were less in this signature, the clustering 

patterns of OCICs were shown to be more similar to the tumors where, both tumors and 

OCICs clustered with epithelial cells compared to the normal OSE cells with a greater 



76 
 

than 0.8 correlation. This signature thus indicates the similarities in the Tumors and 

epithelial cells with the OCICs. This was further tested using differential expression 

analysis on this signature. The differentially expressed genes between the tumor and 

OCIC compared to Fallopian epithelial cells can be seen in Figures 40 and 41. The 

comparison will also indicate the similarities and differences of the expression patterns in 

OCICs and Tumors. 

 

Figure 40: Differential analysis for Notch signaling pathway for OCICs compared to 

normal Fallopian Tube epithelial cells. 
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Figure 41: Differential analysis for Notch signaling pathway for Tumor compared to 

normal Fallopian Tube epithelial cells. 

The differential expression analysis revealed that the expression patterns for 

OCICs and Tumors are very similar compared to Fallopian Tube epithelial cells. It was 

seen that Notch genes were mostly up-regulated in OCICs and Tumors which is contrary 

to the results for the comparison with the normal OSE cells where Notch was down-

regulated. These expression patterns found in the differential comparisons with the 

Fallopian tube and normal OSE suggest that the Notch pathway is active in tumors and 

OCICs with respect to the epithelial cells but its activation is not at the levels of the 

mesenchymal cells, thus suggesting them to be intermediates between the mesenchymal 

and epithelial phenotypes. 
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Chapter 6 DISCUSSION 

Role of ovarian cancer initiating cells in cancer development and 
progression 

Recently a subpopulation of tumor cells known as ovarian cancer initiating cells 

(OCICs) have been shown to be the cells that propagate the tumor phenotype in ovarian 

cancer. The studies have showed that a very small population (100 cells) of these cells are 

sufficient to induce a tumor phenotype, while a large quantity of cells (5 X 105) cell are 

required to induce such a phenotype in xenotransplanted mouse. In this thesis we studied 

the functional changes in genes present in the OCIC phenotype which were important for 

such efficient propagation of cancers. To enable such analysis, we generated mRNA 

expression and DNA methylation profiles of OCICs and compared them with those of 

Tumor and normal ovarian surface epithelial cells. From these analyses and also from 

various studies in literature which analyzed similar cells in other cancers, we determined 

four pathways which regulated most of the observed changes and were predicted to be 

important factors in distinguishing the OCICs from Tumors and normal cells. We 

identified gene signatures from the literature which were regulated by these pathways and 

performed unsupervised cluster analysis on these signatures in order to determine the 

similarities of OCICs with respect to tumor and normal samples. 

These analyses gave us a better understanding of the OCICs. We determined that 

even though OCICs have been isolated from the Tumor cells, they show distinct gene 

expression and DNA methylation profiles. These cells were found to be an intermediate 

subtype between the mesenchymal and epithelial phenotypes. They were shown to retain 

some of the EMT signature gene profiles form normal ovarian surface epithelial cells 

which showed OCICs to be mesenchymal by clustering them with the mesenchymal 
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normal OSE cells. On the other hand, for the cancer related pathways like TGF-beta, Wnt 

and Notch, the OCIC cells shared expression profiles with tumor cells, thus making them 

altered cells similar to tumors. The OCICs consistently showed methylation profiles 

distinct from the tumors and normal OSE cells for all the signatures. They also showed 

significantly more genes to be hypermethylated than the other two phenotypes for all the 

signatures thus indicating a scope of using the genes from these signatures as DNA 

methylation markers. 

The down-regulation of the tumor suppressor pathways in OCICs could explain 

their ability to propagate tumors. On the other hand, the mesenchymal properties allow 

them to migrate and form metastases. These properties are symbolic of a cancer 

phenotype. On the contrary, even though the tumor cells showed down regulation of 

tumor suppressor pathways which can enable them to propagate the tumors, they showed 

an epithelial phenotype. This epithelial phenotype of the tumors eliminates the possibility 

of these cells to migrate and in turn forming metastases. The analysis suggests that the 

OCICs are the small populations of tumors that retain the mesenchymal or migratory 

characteristics while the other tumor cells lack this property. 

Insight in the genesis of ovarian cancer 
We believed that the OCICs can be used as indicators towards the genesis and 

progression of early events in the ovarian cancers. In light of this, we considered two 

hypotheses which are currently addressing the genesis of ovarian cancer. The first 

hypothesis proposed ovarian surface epithelial cells to be cells of origin of the ovarian 

cancer while the other proposed the Fallopian Tube cells to be contributing the cell of 

origin for these cancers. It is also believed that these two cells can be reciprocal cells of 
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origin for the cancer phenotype (Landen, et al., 2008). In order to test these hypotheses, 

we integrated the in-house dataset with a public domain Fallopian tube gene expression 

data. 

The comparison of the OCICs with the fallopian tube cells revealed that as the 

tumors become more epithelial during their proliferation, most of the tumor related 

pathways show expression patterns which are similar to the epithelial cells for tumors and 

also for OCICs. The exception to this pattern is the EMT signature which indicated that 

the OCICs are closer to the normal OSE cells showing a mesenchymal phenotype for 

both. The interesting fact consistent for all the comparisons was that the normal OSE 

were shown to be highly divergent form fallopian epithelial cells for all the signatures. 

The analysis thus gives an indication of normal OSE cells to be the cells of origin 

as OCIC being the precursors of tumors, can be thought to retain the mesenchymal 

properties from OSE cells. It also suggests that the fallopian tube epithelial cells and 

normal OSE have completely different expression profiles and cannot be thought as 

reciprocal cells of origin, in fact the gene expression patterns suggest that they are 

mutually exclusive cells. Also, the reason for the OCICs clustering with the tumors and 

also with fallopian epithelial cells for the cancer related signatures can be due to the fact 

that the tumors are known to show an epithelial phenotype after they proliferate form the 

OCICs and their similarities in the expression patterns with OCICs can be indicative of 

the initiation of the development of the epithelial phenotype in the later. 

Proposed Model of Ovarian Carcinogenesis 
There has been a constant rise in the knowledge of the early events in ovarian 

cancer, which has led to a better understanding of the genesis and progression of tumors 
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in ovarian cancer. However, we propose that in a comprehensive model of ovarian 

cancer, the ovarian cancer initiating cell (OCIC) is the vital component which originated 

due to prolonged physicochemical effects on ovarian surface epithelial cells. These 

ovarian surface epithelial cells known to possess mesenchymal properties (to carry out 

postovulatory functions) conserve the mesenchymal property after their transformation to 

the malignant ovarian cancer initiating cells. The malignant properties of these cells are 

reflected by the down-regulation of various tumor suppressor pathways like TGF-beta, 

Wnt and Notch signaling pathway. During the transformation of ovarian surface 

epithelium to OCICs, many genes belonging to the tumor suppressor pathways undergo 

DNA methylation enabling the down-regulation of these pathways. These malignant 

cancer initiating cells proliferate into tumors which are differentiated cells possessing 

most of the epithelial properties and conserve the malignant properties i.e. down-

regulation of tumor suppressor pathways. The methylation subsequently is removed to 

some extent during the proliferation and differentiation of OCICs into tumor cells. The 

OCICs having inherited the mesenchymal properties will eventually migrate to distant 

sites and proliferate thus creating metastatic tumors.  

Future implications 
It is believed that standard chemotherapy procedures fail to target the tumor 

progenitor cells like ovarian cancer initiating cells. The main reason for this is that they 

express normal stem cell phenotypes like low mitotic index, enhanced DNA repair and 

expression of membrane efflux transporters (Zhang, et al., 2008). The potential DNA 

methylation markers identified in this thesis by the hypermethylation observed in the 

genes from the signature pathways like EMT, TGF-beta, Wnt and Notch can be used to 
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target and eliminate OCICs in the future therapies. The further characterization of these 

progenitors and their comprehensive studies for chromatin or Histone modifications and 

changes in miRNA expression patterns will provide us with a greater understanding in 

the alterations of these key pathways in ovarian cancer and will allow development of 

better methods for early detection of this highly elusive disease. 
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