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 Tagging programs are valuable sources of information about the population 

dynamics and fisheries interactions for a stock or population.  Information gained from 

these programs can be incorporated into stock assessments to reduce uncertainty in the 

current stock status.  Large scale tagging programs can provide important insights on the 

stock structure and the movements of individuals.  While tagging on the tropical tunas 

skipjack, Katsuwonus pelamis, yellowfin, Thunnus albacares, and bigeye tuna, T. obesus, 

has occurred in the Atlantic Ocean since the 1950s, these tagging studies have been small 

and localized in nature.  A spatially explicit Bayesian was used to analyze historical 

Atlantic conventional tag data and showed that the tagging data available provide 

information on regional movements within the Eastern Atlantic Ocean, but due to fewer 

tag releases and returns in the Western Atlantic, basin-wide parameters are not estimable.  

Catch and effort data suggest that these movements are seasonal.  A large scale tagging 

program is currently being implemented in the Atlantic Ocean by the International 

Commission for the Conservation of Atlantic Tunas (ICCAT).  A simulation framework 

was developed to model ICCAT’s Atlantic Ocean Tuna Tagging Program (AOTTP) and 

provide recommendations for the statistical design of the program.  This simulation 

framework was used to simulate the release of two types of electronic tags, data storage 

tags (DST) and popup satellite archival tags (PSATs) on yellowfin and bigeye tuna.  A 



 
 

Bayesian space-state model was used to estimate movement rates, fishing mortality, and 

natural mortality from the simulated electronic data and simulated conventional tags.  

Fishing and natural mortality parameter estimates were very similar from both types of 

electronic tags. For stock assessment models that incorporate age-specific mortality, 

tagging programs can be used to provide parameter estimates.  Using conventional tag 

data simulated using an age-specific fishing and natural mortality in a spatially-explicit 

simulation framework, a Bayesian space-state model was used to estimate mortality as 

age-specific parameters and age-constant parameters.  Model results indicated that when 

the underlying population dynamics have significant age structure, assuming natural and 

fishing mortality parameters were constant across age classes resulted in significantly 

biased parameter estimates.  Parameters were better estimated when allowed to vary with 

age.  Fishing mortality was estimated as region and age independent parameters which 

had significant variability, although it is expected that assuming a functional relationship 

between fishing mortalities at age would improve the accuracy and precision of the 

parameter estimates.  The simulations provided several recommendations to help the 

AOTTP meet the goals of the program. 
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CHAPTER 1: AN OVERVIEW OF THE ATLANTIC TROPICAL TUNA 
FISHERIES AND TAGGING PROGRAMS 
 
Fishing on tropical tunas 

Over 4.5 million tons of tuna are caught each year in the global fisheries, of which 

tropical tunas constitutes 3 million tons (FAO, 2012).  These tropical tunas, consisting of 

skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye 

tuna (T. obesus), are caught throughout all of the world’s oceans, between 50°N and 50°S 

(Pallares et al., 1998).  Approximately 60% of the tropical tuna catch is skipjack tuna, 

which are typically caught in surface gears such as purse seines and baitboats.  However, 

skipjack is generally sold to canneries which offer a low price per kilogram of fish 

(<1USD).  Bigeye tuna, while only contributing to 10% of the tropical tuna catch, 

accounts for 40% of the total value of tuna sold worldwide.  Bigeye tuna are typically 

caught on longline gear and many are sold to Japanese markets for sashimi and are worth 

>10USD per kilogram.  Juvenile bigeye tuna, however, are caught in surface gears like 

skipjack and yellowfin tuna, and sold to canneries (Fonteneau et al., 2004). Yellowfin 

tuna are caught in both the surface fisheries and longline fisheries and are generally sold 

to canneries when small and sold as tuna steaks when large (Anonymous, 2011).  The 

Pacific Ocean contributes the majority of the tuna catch, with approximately 78% of the 

total, while the Atlantic contributes only 10% of the total tuna catch.   

The tropical tuna fisheries have existed commercially since the 1950s in the 

global oceans, although recent changes in the fishing methods have caused a significant 

change in the species composition of the surface fisheries’ catch.  While the Atlantic 

Ocean only produces 10% of the world’s tropical tuna catch, the surface fisheries are an 

important component of many coastal countries’ economies (Million, 2013). In Cote 
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d’Ivoire, fish accounts for 50% of the animal protein consumed by the population and 

landings from the tropical tuna fishery contribute to the majority of the catch in the 

country (Amandè et al., 2016).   

The surface fisheries in the Atlantic Ocean were established in the early 1950s by 

French fisherman in Dakar followed by the development of the Ghanaian fleet in the 

1970s (Wise, 1987).  The catch at this time was primarily yellowfin tuna.  The majority 

of the tropical tuna catch in the Atlantic comes from the Eastern Atlantic, with the Gulf 

of Guinea the dominant fishing grounds (Anonymous, 2011).    In addition to these 

tropical fisheries, several seasonal baitboat fisheries were developed in Senegal, Madeira, 

the Azores Islands, and the Canary Islands.  These seasonal catches are likely due to 

seasonal migrations of the tuna throughout the Eastern Atlantic (Fonteneau et al., 2004).    

Tropical tunas, along with a variety of other fish species, naturally aggregate 

under floating objects like logs, seaweed, etc. which provide prey and protection from 

predators (Marsac et al., 2000). In the 1980s, fishermen in the Eastern Atlantic began 

deploying artificial fish aggregating devices (FADs) which were typically made of cheap 

materials but served to aggregate tunas to make them easier to catch (Dagorn et al., 

2013).  These FADs can be anchored or drifting and are typically constructed on bamboo 

strips interwoven with netting.  They are around 5-7 meters in length, 1-2 meters in 

width, and are fitted with radio devices so vessels can return to them (Bannerman and 

Bard, 2002).  Anchored FADs are used extensively around islands like those in the 

Caribbean (Reynal et al., 2008), while drifting FADs are primarily deployed in the 

Eastern Atlantic (Dempster and Taquet, 2004).  The use of FADs in the surface tuna 

fisheries exploded in the 1990s, and currently there are thousands of FADs used in the 
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worlds’ oceans.  The release of artificial FADs has increased the density of floating 

objects 2-40 times the density of natural floating objects (Dagorn et al., 2013).  In 2013 

the Spanish purse seine fleet alone deployed close to 6,000 new FADs in the tropical 

Atlantic (Delgado de Molina et al., 2014).   

FADs allow for a higher catch per unit effort for fisherman. Approximately 90% 

of all sets on FADs are successful; whereas only 50% of sets on free schools are 

successful (Fonteneau et al., 2000a).  The surface fisheries prior to the use of FADs 

caught primarily free schools of yellowfin and skipjack tuna, however, the amount of 

juvenile bigeye tuna caught in these fisheries has increased drastically since the 1990s 

with 90% of FAD sets containing bigeye tuna (Fonteneau et al., 2004). These changes, 

which have been observed in all oceans, may be worsening the impact of fishing on the 

stocks of the tropical tunas and on the ecosystem, as FADs attract other organisms that 

may also be impacted by fishing on FADs (Delgado de Molina et al., 2014).   

Another method of catching tropical tunas in the Atlantic is the use of baitboats at 

drifting FADs by fisherman out of Dakar (Fonteneau and Diouf, 1994; Hallier and 

Delgado de Molina, 2000).  This method allows the baitboat to maintain a school of fish 

underneath it and continuously fish from the school, often for months at a time. This has 

allowed baitboats in this area to greatly increase their catch per unit effort (Fonteneau and 

Diouf, 1994; Hallier and Delgado de Molina, 2000; Fonteneau et al., 2004). 

Yellowfin Tuna 

 Yellowfin tuna in the Atlantic are distributed in the subtropical and tropical 

surface waters between 45°N and 45°S. Juvenile yellowfin tuna tend to remain in the 

equatorial region and in the coastal areas.  Adults and pre-adults are often found in the 
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pelagic waters.  The largest fishery for yellowfin tuna are the purse seine fleets in the 

eastern Atlantic and Gulf of Guinea (Figure 1.1).  The total catch in 2010, the most 

recent stock assessment, was 100 000 tons (t), which is a 48% reduction in catch from the 

peak of 190 000t in 1990 (Anonymous, 2011).   

Catches by purse seiners account for 68% of the total Atlantic catch (Anonymous, 

2010a).  In general, large adult yellowfin tuna are caught in the first quarter and in free 

(non-associated) schools.  Small yellowfin tuna are caught throughout the rest of the year 

associated with FADs; these catches are often in cooperation with baitboat operations. 

The amount of catch on FADs versus free schools varies with each fleet.  Ghanaian purse 

seine catches are 80-85% on FADs while the European Union fleets tend to only fish on 

FADs 40-45% of the time.  In the western Atlantic, the Brazilian and Venezuelan purse 

seine fleets catch small amounts of adult yellowfin (Anonymous, 2010a). 

 Baitboats catch primarily juvenile yellowfin tuna in mixed species schools with 

similar sized skipjack tuna and juvenile bigeye tuna.  The largest baitboat catches are 

from the Ghanaian baitboat fleet and 70-80% of all baitboat catches are on FADs 

(Anonymous, 2010a).  In the western Atlantic, Brazil and Venezuela baitboats catch 

small yellowfin tuna associated with skipjack tuna. The longline fleets catch large 

(>100cm) adult yellowfin tuna throughout their distribution in the Atlantic Ocean.  They 

account for the smallest proportion of Atlantic catch (Anonymous, 2010a).  

Skipjack Tuna 

 Skipjack tuna are found throughout the tropical and subtropical waters of the 

Atlantic Ocean.  They are caught almost exclusively in the surface gears, baitboats and 

purse seines (Figure 1.2, Anonymous, 2014b).  Skipjack account for the highest catches 
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of tropical tuna in the Atlantic, with over 267 000t in 2012, a 42% increase in catch 

compared to the previous five years (Anonymous, 2014b).  Approximately 90% of the 

skipjack catch is on FADs and 85% of the catch is from the eastern Atlantic Ocean.  In 

the western Atlantic, skipjack are caught by the Brazilian baitboat fishery and the 

Venezuelan purse seine fishery, however these catches are typically <30,000t (Meneses 

de Lima et al., 2000, Anonymous, 2014b).   

Bigeye tuna 

 Bigeye tuna have the smallest reported catches in the Atlantic of the tropical 

tunas.  Catches in 2014 were 66 000t, less than half of those reported at their peak,      

135 000t in 1993. There have been significant increases in juvenile bigeye tuna which 

have been caught in the surface fisheries since FAD fishing became more predominant in 

the 1980s and 1990s.  In 2014, almost half of the catch was juvenile fish with baitboat 

fleets catching 2800t, purse seiners catching 23 000t and longline fleets catching 33 000t 

of bigeye tuna (Figure 1.3). 

Longline catches are almost exclusively large adult bigeye tuna over 100cm.   The 

Japan and Chinese Taipei fleets account for 46% of the longline catch (Anonymous, 

2016b).  The surface fisheries, baitboats and purse seiners, catch juvenile bigeye tuna 

(<100cm) in mixed species schools with skipjack and yellowfin tuna around FADs.  

While they are not a primary target, their catches can be significant and impact the future 

sustainability of the stock.  Bigeye tuna are also caught seasonally in temperate fisheries 

such as the Azores and Canary Islands by baitboats.  Bigeye tuna are not caught in large 

numbers in the surface fisheries in the western Atlantic (Anonymous, 2016b). 
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Stock Assessments 

Atlantic tuna and tuna-like species are currently managed by the International 

Commission for the Conservation of Atlantic Tunas (ICCAT), a regional fisheries 

management organization (RFMO) established in 1966.  It is made up of 50 contracting 

parties (countries) and four cooperating parties who contribute to the management of 

these species by contributing fisheries catch and effort data and scientific expertise for 

stock assessments.  The tropical tuna stocks are assessed approximately every five years 

to determine their status: if they are overfished and if overfishing is occurring. According 

to their most recent stock assessments, the yellowfin stock is overfished (Anonymous, 

2011), the skipjack stocks are not overfished and overfishing is not occurring 

(Anonymous, 2014b), and the bigeye stock is overfished and overfishing is occurring 

(Anonymous, 2016b).  However, these assessments contain high levels of uncertainty due 

to the limited information on key population parameters such as natural mortality, 

catchability, and migration/movement (Million, 2013).  The implementation of tagging 

programs in the Pacific and Indian Oceans has helped reduce the uncertainty associated 

with these parameters and the tagging data have been used in more recent stock 

assessments in these regions.  A similar incorporation of tagging data into the Atlantic 

Ocean stock assessments would likely decrease the uncertainty in the stock status of each 

of the tropical tunas. 

 

Tagging of Tropical Tunas 

Tagging programs have been undertaken by fishing nations since the 1950s in 

order to better understand the dynamics of tropical tunas.  In the Western Pacific Ocean 
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alone over 800 000 tuna have been tagged and released.  The South Pacific Commission 

Skipjack Survey and Assessment program aimed at assessing tuna movement around 

seamounts in the western Pacific (Sibert and Hampton, 2003).  A large scale Western 

Pacific Region Tuna Tagging Program tagged over 8 000 bigeye tuna, 98 000 skipjack 

tuna, and 40 000 yellowfin tuna (Sibert and Hampton, 2003).  Additionally, tagging 

projects in the Eastern Pacific using acoustic tags and conventional tags have been used 

around the Hawaiian Islands to observe the movement of yellowfin and bigeye tuna 

around anchored FADs (Itano and Holland, 2000).   

More recently, a large scale tuna tagging program in the Indian Ocean (Regional 

Tuna Tagging Project – Indian Ocean or RTTP-IO) took place from 2002 – 2009 tagging 

over 200 000 tropical tunas. This program consisted of tagging on baitboats primarily in 

the Western Indian Ocean.  To date, 16% of the tagged tunas have been recovered, the 

majority of which have been from purse seine vessels (Eveson et al., 2012).  In all 

tagging programs, a very small number of tag returns have been reported from longline 

fisheries (Leroy et al., 2015).   The RTTP-IO tagged 63 000 yellowfin tuna, 35 000 

bigeye tuna, and 100 000 skipjack tuna with the goal to improve the ability of the 

interested states to manage the tuna fisheries in the Indian Ocean.  This program was able 

to produce new insights into the growth and movement of tropical tunas in the Indian 

Ocean (Dortel et al., 2012).  

Atlantic Ocean Tagging Programs 

Several small tagging programs for tuna have taken place in the Atlantic Ocean.  

These include the International Skipjack Year Program (ISYP), Yellowfin Tuna Year 

Program (YFTYP), Bigeye Tuna Year Program (BETYP), and the Mattes de thons 
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Associées aux Canneurs (MAC) program in the eastern Atlantic.  In the western Atlantic 

tagging began in the 1950s when the US and South Africa began tagging tuna and has 

occurred almost every year since, involving different countries (Million, 2013).  The 

Cooperative Tagging Program from the Southeast Fisheries Science Center began tagging 

tuna and billfish in 1954 and has since tagged over 200 000 fish.  Overall, there have 

been 72 000 tropical tunas tagged in the Atlantic Ocean and 11 000 recoveries (Million, 

2013).   

The International Skipjack Year Program (ISYP) was executed in 1978-1982 by 

ICCAT with the goal of determining if catches of skipjack could be increased in the 

Atlantic Ocean (Anonymous, 1986).  During the program 35 000 skipjack were tagged 

and released, approximately 30 000 in the eastern Atlantic and 5 000 in the western 

Atlantic as well as several thousand yellowfin and bigeye tuna.  Both sonic tags and 

conventional tags were released on skipjack tuna (Anonymous, 1986).  This program had 

many goals including understanding skipjack stock structure, spawning areas, migration, 

mortality, growth, recruitment and catch per unit effort (CPUE).  Skipjack migration 

analyses were focused in the eastern Atlantic and were not quantitative. 

In response to low yellowfin catches in 1983-1984, ICCAT initiated the 

Yellowfin Tuna Year Program (YFTYP) to tag yellowfin tuna and analyze growth 

patterns, fishing mortality, size composition of catch, and aging of hard parts 

(Anonymous, 1991).  Three thousand yellowfin were tagged between 1986 and 1987 

were tagged and only 138 were recovered.  Approximately 400 large yellowfin tuna were 

tagged in the western Atlantic by US sport fishermen, the first time yellowfin larger than 

100cm were tagged in the Atlantic.  While too few tags were recovered to estimate 
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movement rates, researchers concluded that small yellowfin tuna did not make 

transatlantic movements while the large adult tuna did (Anonymous, 1991). 

The most recent major tropical tuna tagging program from ICCAT is the Bigeye 

Tuna Year Program (BETYP) which tagged bigeye tuna, skipjack tuna, and yellowfin 

tuna from 1999-2003 (Fisch, 2005).  During this program approximately 22 600 tuna 

were tagged in the Azores, Madeira, Canary Islands, Senegal, Ghana, São Tome, and 

Principe. Half of the tagged fish released were skipjack while yellowfin and bigeye tuna 

accounted for a quarter of the tags released.  Almost 4 000 tags were recovered, with 

bigeye tuna having the largest recovery rate (31.3%), followed by skipjack (13%) and 

yellowfin (7.7%).  During the BETYP 23 popup satellite tags (PSAT) and 19 data storage 

archival tags were also released (Fisch, 2005).  PSAT data were used to estimate diving 

depth and duration, diel movements, and water temperature limitations.  The program 

also collected DNA samples for stock structure analysis, data for growth studies, and 

injected tagged fish with antibiotics for validation of otolith aging studies.  Hallier (2005) 

described movements obtained from tag releases and recovery data, however no 

quantitative analysis was performed. 

The Mattes de thons Associées aux Canneurs (MAC) program was a program 

implemented by the French Institut de Recherche pour le Développement in 1996-2000 

(Hallier and Delgado de Molina, 2000; Hallier, 2005).  The tagging program focused on 

the associated school fishing technique based in the Dakar, Senegal baitboat fleet.  

During this program 10 000 fish were tagged: 3 000 bigeye, 6 700 skipjack, and 1 500 

yellowfin.  Approximately 3 000 fish were recovered, with the majority of the recoveries 
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bigeye tuna (57% recovery rate). The majority of the tag recoveries were within three 

months of release and few were outside the Senegal fishing area.  

In general, these tagging programs have taken place on baitboats and they have 

been used to evaluate growth, fishing techniques, movement and migration (Gaertner et 

al., 2006).  While the majority of recoveries in the RTTP-IO were on purse seine vessels, 

over 50% of tags returned in the Atlantic have been on baitboats (Hallier, 2005).  Most of 

the recoveries of yellowfin and skipjack tuna were within three years of their release; 

however bigeye tuna have been recaptured after longer times at liberty (Hallier, 2005). 

Atlantic Ocean Tuna Tagging Program 

A large scale tagging program has been implemented in the Atlantic Ocean 

(Atlantic Ocean Tuna Tagging Program or AOTTP) with tagging beginning in June 2016 

in order to address some of the data gaps in the stock assessments (Anonymous, 2013).  

The success of this program will depend upon the combination of having an appropriate 

methodological design, successfully implementing this design in the field, and 

collaborating with the fishing industry to ensure the accurate reporting of tags (Die et al., 

2013).    The chapters of this dissertation contributed to the improvement of the 

population dynamic models of the tropical tunas in the Atlantic and provided 

recommendations for the tagging operations of the AOTTP to ensure the program meets 

the stated goals. In order to provide recommendations to the AOTTP using a simulation 

study of the tagging program, models parameters were first estimated from tagging 

studies in the Atlantic, Indian, and Pacific Oceans.  Then two important methodological 

design questions were asked: Which of the two electronic tags, pop-up satellite archival 

or data storage tags, will provide the best information on movement rates and how does 
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the plan to tag exclusively from baitboats impact the estimates of population wide 

parameters due to the size-selectivity of the different gears.  

A spatially explicit simulation model was developed which was used to test the 

performance of current tagging design proposals to estimate parameters like fishing and 

natural mortality, conditional on the estimates of movement rates from electronic tagging.  

The chapters (i) investigated the success and results of historical tagging programs 

including large scale tagging programs in the Indian and Pacific Oceans as well as small 

scale tagging programs in the Atlantic Ocean; (ii) developed Bayesian priors for stock 

assessment parameters using tagging data from the Indian and Pacific Oceans; (iii) used 

data from historical tagging in the Atlantic Ocean to analyze the movements of tropical 

tunas; (iv) developed Bayesian priors for migration parameters for the tropical tunas in 

the Atlantic Ocean; (v) developed a spatially explicit model to investigate the impact of 

using two different kinds of electronic tags to provide movement rate priors for a 

conventional tagging model; and (vi) developed an age-structured spatially explicit 

simulation of a multi-species tagging operation to account for the size selectivity of 

fisheries involved in tagging and recapture programs and movement of tropical tunas into 

different regions and fisheries. 
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Figure 1.1. Cumulative Atlantic yellowfin tuna catches by gear from 1990-1999 (Left) 
and 2000-2009 (Right). Yellow indicates catch by purse seiners, red indicates catch by 
baitboats, blue indicates catch by longline, and gray indicates catch by other gears. 

 

Figure 1.2. Cumulative Atlantic skipjack tuna catches by gear from 1990-1999 (left) and 
2000-2009 (right).  Yellow indicates catch by purse seiners, red indicates catch by 
baitboats, blue indicates catch by longline, and gray indicates catch by other gears. 

 

Figure 1.3. Cumulative Atlantic bigeye tuna catches by gear from 1990-1999 (left) and 
2000-2009 (right).  Yellow indicates catch by purse seiners, red indicates catch by 
baitboats, blue indicates catch by longline, and gray indicates catch by other gears. 
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CHAPTER 2: A BAYESIAN MODEL TO ESTIMATE MOVEMENT RATES 
FROM HISTORICAL TAGGING DATA AND CATCH PER UNIT EFFORT 
DATA FOR ATLANTIC TROPICAL TUNAS 
 
Summary 

Movement rates of Atlantic tropical tunas, Thunnus obesus, T. albacares, and 

Katsuwonus pelamis, were estimated using a spatially structured Bayesian tagging model 

informed by conventional tagging data for from the International Commission for the 

Conservation of Atlantic Tuna (ICCAT) tagging database and relative abundance indices 

obtained by standardizing catch per unit effort data. Values estimated from previous 

studies in the Atlantic, Pacific, and Indian Oceans as well as recent stock assessments 

from ICCAT were used to develop informative lognormal priors for fishing mortality and 

informative beta priors for tag shedding rates and reporting rates.  Natural mortality 

parameters were given highly informative priors with means equal to values used at the 

most recent ICCAT stock assessments. Movement rates were given uninformative 

dirichlet priors. Bayesian posterior movement parameters were estimated using a three 

region model of the entire Atlantic for yellowfin tuna and a six-region model of the 

Eastern Atlantic for skipjack tuna and bigeye tuna.  Catch per unit effort data (CPUE) 

were standardized in each of the eight regions for each of the three species using a delta 

model. Migration parameters for yellowfin tuna showed less than 10% of the population 

within a region moving to a different region annually.  Individual bigeye tuna move 

frequently between regions, with net northward movement between the Gulf of Guinea 

and northeast Atlantic as well as non-directional movement within the Gulf of Guinea. 

The movements between the Gulf of Guinea and the northeast Atlantic are likely seasonal 

as indicated by the high CPUEs in these areas in the spring and early summer and low 
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CPUEs in the winter. Annual residency rates were low for the majority of the eight 

regions, with only the Senegal and Canary Islands regions with residency rates greater 

than 0.5. Skipjack tuna net movement tends to be towards the northwest Atlantic, to the 

Canary Islands and Senegal regions which have residency rates >90%. Similar to bigeye 

tuna, there are some non-directional movements of skipjack tuna within the Gulf of 

Guinea, although in general annual movement rates are lower and annual residency rates 

are higher for this species than for bigeye tuna. The CPUE patterns of skipjack tuna are 

similar to bigeye tuna, although this species enters the northern regions a month or two 

after bigeye tuna. Yellowfin tuna move into these northern regions latest in the year, 

when the surface waters are warmest.  This study is the first attempt to quantitatively 

estimate movement rates and the timing of the movement of tropical tunas. To improve 

the estimates of these movement rates additional tagging of these species in the Atlantic 

is necessary. 

 

Background 

Fishery assessments and the management strategies that they inform often make 

simple assumptions about fish movement. For tropical tunas a common assumption is 

that within the area of a fish stock, individual fish move in such a way that the location of 

where fish are harvested does not influence stock dynamics.   If fish move in a different 

way, stock assessments may be biased and fishery management strategies may not 

perform as planned.  The movement of tropical tunas, Thunnus albacares, T. obesus, and 

Katsuwonus pelamis, is poorly understood and probably complex. To understand such 

movement it is essential to first be able to observe or estimate movement of individual 
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fish, and second to understand how such movements relate to population abundance. 

While large numbers of tropical tunas have been tagged in the three major oceans, there 

is still large uncertainty in the magnitude and timing of these movements.  Previous work 

has described movements of tropical tunas in the Atlantic, Pacific, and Indian Oceans; 

however, large-scale movement rates have not been estimated quantitatively. This work 

will focus on the movements of tropical tunas in the Atlantic Ocean, estimating 

movement rates using data from tagging programs implemented in the Atlantic but also 

informed by tagging data in the Pacific and Indian Oceans. 

 The majority of the research that has been undertaken on tropical tuna 

movements have been small scale projects involving pop-up satellite tags, archival tags, 

or acoustic tags and these studies are typically focused on movements of tunas around 

fish aggregating devices (FADs), or seamounts, or regional movement patterns (Holland 

et al., 1990; Kleiber and Hampton, 1994; Dagorn et al., 2000; Itano and Holland, 2000; 

Schaefer and Fuller, 2002; Musyl et al., 2003; Girard et al., 2004; Matsumoto et al., 

2005; Dagorn et al., 2007; Schaefer et al., 2007; Arrizabalaga et al., 2008). Despite 

several large scale tagging programs for tropical tunas in the Pacific and Indian Oceans 

which have provided general descriptions of tropical tuna movement, movement rates 

have not yet been estimated (Fink and Bayliff, 1970; Williams, 1972; Fonteneau and 

Hallier, 2012; Motah et al., 2012).  However, these studies do provide estimates of tag 

shedding rates and reporting rates from fleets also found in the Atlantic which can be 

used to provide prior information for analyzing Atlantic Ocean tagging programs 

(Carruthers et al., 2014). Historical tagging studies in the Atlantic Ocean have described 

bigeye tuna and yellowfin tuna movements along the African coast; however, these 
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studies were primarily regional and often did not record many tag recoveries outside of 

the region of interest, which makes them limited in their applicability to the Atlantic 

tropical tuna stocks (Miyabe and Bard, 1986; Sibert et al., 1999; Hallier, 2005; 

Carruthers et al., 2010).  Studies in all three oceans describe a similar trend in movements 

for all three species: north and south movements seasonally, with limited east-west 

movements.   

Movement information from tagging data is often hindered by the short time-at-

liberty for tagged individuals.  Tagging studies have shown that approximately 70% of 

tag returns for tropical tunas in the Atlantic are within 30 days of tagging, which does not 

permit the animal to make extensive movements (Anonymous, 2013).  The movement 

information from these tagging studies have included time-at-liberty, total distance 

traveled, and general direction traveled but not estimates of the proportion of fish which 

move between regions in a year or season (Miyabe and Bard, 1986; Kleiber and 

Hampton, 1994; Hallier, 2003; Anonymous, 2013).  

Catch per unit effort (CPUE) data is often used as a relative index of abundance 

of a population over time.  Annual CPUE averages on a fleet by fleet basis can then be 

combined using a stock assessment model to give an estimate of abundance and stock 

status.  Alternatively, CPUE data can be analyzed to provide a monthly relative index of 

abundance which, when combined with the annual movement rate estimates, could 

provide indications of the seasonal timing of the estimated movements (Fonteneau and 

Marcille, 1993).  Additionally, the tagging data available are primarily representing 

juvenile tunas and including the CPUE indices will provide information on the 

movements of adult tuna.  Using CPUE as a relative index of abundance can have many 
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pitfalls, including index hyperstability or hyperdepletion, and CPUE can be biased by 

changes in targeting strategy or fishing efficiency over time (Maunder and Punt, 2004; 

Maunder et al., 2006; Carruthers et al., 2010).  For highly migratory species like tuna, 

where CPUE observations cannot always be obtained for the entire distribution of the 

stock often because of the expansion or contraction of the fishery over time, these indices 

need to be carefully calculated (Walters, 2003). However, aggregating multiple years 

together to look at patterns of abundance over the course of an average year may 

minimize many of these problems by averaging out the changes in the fishery over time. 

The relative change in CPUE over the course of a year should be constant even if the 

fishery changes significantly over the range of years analyzed, assuming that the fishery 

is relatively constant over the course of a single year. This method cannot differentiate 

between the arrival of new animals due to seasonal movements and the increase in CPUE 

due to recruitment; therefore indices in areas where recruitment occurs cannot be used to 

describe seasonal movement patterns.   

Spatially explicit stock assessment models, including Stock Synthesis 3 (SS3), 

Integrated tagging and Catch at Age analysis (ITCAAN), migratory catch-age analysis, 

and MULTIFAN-CL all require parameters that describe the movement of the species 

between user-defined areas (Quinn, IIet al., 1990; Fournier et al., 1998; Methot Jr and 

Wetzel, 2013; Goethel et al., 2014).  Due to the lack of such estimates, these models have 

seldom been used to assess the status of tropical tunas, although they have been shown to 

be useful in other species like sablefish, Pacific halibut, and albacore tuna (Quinn, II et 

al., 1990; Heifetz and Fujioka, 1991; Aires-da-Silva et al., 2009; Carruthers et al., 2011; 

Goethel et al., 2011; Goethel et al., 2014).   
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Aires-da-Silva et al. (2009) and Stewart (2007) applied Bayesian models to 

estimate movements of Atlantic blue sharks and English sole, respectively (Hilborn, 

1990; Xiao, 1996).  Schirripa (2011) used SS3, and de Bruyn et al. (2011) used 

MULTIFAN CL, both statistically integrated assessment models, with a simple three-

region structure that allowed the estimation of movement rates for Atlantic bigeye tuna.  

Both studies report that tagging data had some information on movement and spatial 

distribution, that influenced the assessment results, however, both also report that these 

data did not allow for precise estimates of movement rates across the spatial areas defined 

in their studies (Anonymous, 2011).    

The objective of this paper was to adapt these Bayesian models to estimate annual 

movement rates of the three species of tropical tuna between regions in the Atlantic 

Ocean, using historical conventional tagging and CPUE data from the International 

Commission for the Conservation of Atlantic Tunas (ICCAT) database.  CPUE data 

analyzed were from the ICCAT Task II catch/effort database from 1975-2005, the same 

time period from which the tagging data were collected (Anonymous, 2014d).   The 

results of these Bayesian movement models and CPUE standardizations were annual 

movement rate estimates for all three species along with seasonal patterns of movements 

into the more temperate areas of their distribution. 
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Methods 

Analysis of historical tagging data 

Data 

 Tagging data were obtained from the ICCAT conventional tagging database for 

each species (Anonymous, 2014e; Anonymous, 2014c; Anonymous, 2014a).  An initial 

analysis of the number of tags released each year was used to define release events for 

each of the species.  The ranges of years analyzed in the models were chosen to 

correspond with known tagging programs as well as to ensure that there were enough tag 

returns in each year to estimate movement rates. 

 Bigeye tuna tagging data included in this analysis corresponded to fish released 

from 1993-2003 and recovered from 1993-2005, which equates to a recovery period of up 

to three years after release in the model. This results in 8 345 tags released and 2 159 tags 

recovered and included in the analysis. One tag recovery made 10 years after release was 

not included in the model because only three years of recovery were modeled; 

additionally, tags recovered within 30 days of release were not included in the model.  

Due to the distribution of tags released and recovered, and the limited number of 

transatlantic recoveries, a regional model of the eastern Atlantic was used to model the 

movements of bigeye.  The area was divided into six regions which roughly correspond 

to the different fisheries and fleets which operate in the area based upon those proposed 

by Fonteneau et al. (2000a, Figure 2.1a).  These regions also correspond to biologically 

important areas for bigeye tuna, areas where bigeye may feed, reproduce, or recruit.  

These regions also correspond to the highest catches of bigeye in the surface fisheries, 

where the majority of tagged fish are released and recovered (ICCAT, 2013).    
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 Tagged yellowfin tuna were released from 1975 to 2003, corresponding to 17 309 

tags released and 1 399 tags recovered included in the analysis.  The model allowed for 

tags to be returned up to four years after their initial release, 1975-2007, which account 

for over 99.5% of the tags recovered during that time frame.  Tags which were recorded 

as returned but did not have release location and/or recovery location or were recovered 

within the first 30 days of release were not included in this analysis.  Due to the large 

numbers of tagged fish released in both the western and eastern Atlantic, a full-ocean 

model was deemed most appropriate (Figure 2.1b).  The ocean was divided into three 

regions. Region one consists of the northeast Atlantic north of 7°N and east of 35°W.  

This region included the entire Azores fishery. Region two consists of the southeast 

Atlantic south of 7°N and east of 32°W.  This region included the entire Gulf of Guinea 

and excludes the Brazilian fishing grounds.  Region three included the entire western 

Atlantic not included in regions one and two.  The Brazilian fishing grounds were 

combined with the Caribbean Sea and northwest Atlantic due to the limited number of tag 

releases and absence of tag recoveries in that area. 

Tagged skipjack tuna were released from 1980 to 2002, with 37 503 tags released 

and 5 374 tags recovered included in the model.  The model allowed for tagged fish to be 

returned for two years after the release event, 1980-2003, which accounted for 99.8% of 

the tag recovered.   Only tags with complete recovery information (both date and 

latitude/longitude data) and tags from fish which were recovered more than 30 days after 

release were included in the movement model.  Like the tagging data from bigeye tuna, 

the majority of tags were released in the eastern Atlantic (Figure 2.1c). Skipjack are 

believed to reproduce in the coastal areas of the Gulf of Guinea, then move into the 
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central gulf and Northwest African coast to feed (ICCAT, 2013). Ideally such movement 

behaviors should be reflected in the selection of regions for the skipjack model. The 

skipjack model uses the same six regions as the bigeye tuna model.  

Model 

A Bayesian model was used to fit the number of tags returned in each year and 

each region.  The model consisted of three parts, a population dynamics model, an 

observational model, and the likelihood.  The number of tags remaining in the population 

each year in each region was defined by the equation:   

 
𝐍𝐍𝐍𝐍𝐢,𝐲+𝟏,𝐤 =  �𝐍𝐍𝐍𝐍𝐢,𝐲,𝐬𝐞−(𝐌+𝛌+𝐅𝐲)𝐦𝐬,𝐤

𝐧

𝐬=𝟏

 
2.1 

 

 

where NTagi,y+1, s was the number of tagged fish remaining from tagging group i, in year 

y+1, in region s; M was natural mortality, λ was the type II tag shedding which accounts 

for the long term tag loss, Fy was the total fishing mortality for year y; and ms,k was the 

movement rate from region s to region k.  Natural mortality, fishing mortality, and tag 

shedding were all instantaneous rates across the year. Movements were assumed to occur 

once, at the beginning of each year before mortality occurs. The model allowed fish to 

move into other regions in the first year, thus the number of tagged fish in the first year 

was NTagi,y,k=Ti*ms,k, where T i was the number of tags released in tagging group  and 

the movement m from the release region s to region k occurs immediately after the tags 

were released.  The expected number of tags caught in each year and region was 

estimated using a Baranov catch equation: 

 
TRi,y,k =  �

Fy
M + λ + Fy

�Ntagi,y,k(1− e−�M+λ+Fy�)𝑅𝑘 2.2 
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where TRi,y,k was the expected number of tag returns from tagging group i, in year y, in 

region k, and Rk was the reporting rate in region k.   

 Informative priors were used for tag shedding, reporting rates, and fishing 

mortality (Table 2.1). Priors for type II tag shedding (instantaneous, long term tag loss) 

were defined as beta distributions for each of the three species separately with  means and 

standard deviations equal to the mean of the tag shedding parameters previously 

estimated in tagging programs throughout the Atlantic, Pacific, and Indian Ocean for each 

species, and the standard deviation of those means  (Bayliff and Mobrand, 1972; Kleiber 

et al., 1987; Hampton, 1997; Adam and Kirkwood, 2001; Gaertner and Hallier, 2004; 

Gaertner and Hallier, 2008). Priors for reporting rates for each species in each region 

were developed from previous tagging studies including the Atlantic Bigeye Tuna Year 

Program (BETYP, Carruthers and McAllister, 2010; Carruthers et al., 2014) and the 

Indian Ocean Region Tuna Tagging Program (IO-RTTP). These reporting rate priors were 

developed by identifying the fleets which target tropical tuna in the Atlantic and assigning 

them a reporting rate.  A fleet’s reporting rate was equal to the previously estimated 

reporting rate in the Atlantic or Indian Ocean tagging programs, for example the Japanese 

Longline or European purse seiners have previously estimated reporting rates. If there are 

no previously estimated reporting rates for a fleet, the mean reporting rate across all 

Oceans for that gear was used.  Reporting rate priors were estimated for each region and 

species. The prior mean reporting rate in each region was calculated as the mean of 

reporting rates for each gear and fleet combination weighted by its contribution to the 

total catch in each area.  The catch of each region by fleet and gear was compiled from 

the last 20 years of ICCAT Task II catch and effort data (Anonymous, 2014d).  For those 
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fleets without previous reporting rate estimates, the mean reporting rate for the gear was 

used.  The standard error of the reporting rate priors was the square root of the weighted 

variance of the mean reporting rates for each region and species.  In some runs, reporting 

rates were fixed at the prior mean value.    

Fishing mortality (F) priors were developed using estimated fishing mortality 

from ASPIC or Bayesian Surplus Production (BSP) models in previous stock assessments 

for each of the species.  Fishing mortality parameters were given a lognormal prior with 

the mean and variance set to the mean fishing mortality across all available ASPIC runs 

for each species from the most recent stock assessment and the variance of those means. 

Two hypotheses on fishing mortality were tested for yellowfin tuna, one in which F was 

constant throughout the entire period, and one which estimated a fishing mortality in five 

year increments, reflecting the dynamic nature of the surface fisheries catching these 

species.  This allowed the fishing mortality to increase with the increase in FAD fishing 

over time, which is presumed to have caused an increase in catchability by the purse 

seine and baitboat fleets (Fonteneau et al., 2000b).  Fishing mortality was assumed to be 

constant for bigeye tuna over the entire time period because all the data were post-1990, 

which corresponds to the start of significant fishing on FADs (Fonteneau et al., 2013).  

Skipjack fishing mortality was separated into two time periods, from 1980-1990 and 

post-1990. Uninformative dirichlet priors were used for movement rates, so that the 

number of parameters estimated is equal to the number of regions minus 1, due to the 

constraint ∑ 𝑚𝑠,𝑘 = 1𝑘
1 .  It was assumed that there was no movement out of the regions of 

interest, although this might not be a realistic assumption for BET and SKJ.   
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Natural mortality was given a highly informative prior due to the difficulty of 

estimating natural mortality, fishing mortality, and movement rates from a single source 

of data.  The means of these priors were the natural mortalities assumed in  the most 

recent ICCAT stock assessments, 0.8 for juvenile bigeye tuna (Anonymous, 2016b), 0.8 

for skipjack tuna (Anonymous, 2014b), and 0.7 for juvenile yellowfin tuna (Anonymous, 

2011). All priors were assumed to have a coefficient of variation equal to 0.01.  

A negative binomial likelihood was used; the over dispersion allowed by this 

likelihood represents the propensity for tunas to school (Michielsens et al., 2006).  The 

probability density function of the data x given the number of events, r and the 

probability of success, p was: 

𝑝�𝑥𝑖,𝑦,𝑘�𝑟, 𝑝𝑖,𝑦,𝑘� =  
Γ(𝑟 + 𝑥𝑖,𝑦,𝑘)𝑝𝑖,𝑦,𝑘

𝑟 (1 − 𝑝𝑖,𝑦,𝑘)𝑥𝑖,𝑦,𝑘

Γ(𝑟)Γ(𝑥𝑖,𝑦,𝑘 + 1)
 2.3  

 

where x i,y,k was the number of tags returned from tagging group i, year y, region k, r was 

the additional variance parameter, which had an uninformative gamma prior, and p i,y,k 

was calculated as r/(r+TRi,y,k) for tagging group i, year k, region k.  

Each model was run in JAGS 3.4.0 (Plummer, 2003) via R 2.15.2 (R Computing 

Team, 2014) for at least 500,000 Monte Carlo Markov Chain (MCMC) iterations with a 

burn in of 50,000 iterations with a thin of 10 or until convergence was reached.  The 

convergence of the MCMC to the stationary posterior distribution was evaluated by the 

Gelman-Rubin diagnostic, based on the ratio of inter-chain variance to intra-chain 

variance (Gelman and Rubin, 1992) as well as evaluating the trace plots of each 

estimated parameter. Model fit was evaluated with a Bayesian P value, which measures 
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the discrepancy between the observed data and the assumed model using simulated 

replicated data (Lunn et. al, 2013).  

CPUE Standardization 

Catch per unit effort was extracted from Task II catch and effort data for each 

species in each of the eight regions of interest between 1975 and 2005 (Anonymous, 

2014d). This database provides catch and effort data aggregated by month, year, fleet, 

effort type, and 5x5 degree square for all of the species monitored by ICCAT.  These 

regions are the same as those used for the bigeye tuna model with the addition of the 

Azores region and the separation of the North Sherbro region into the Sherbro and North 

Sherbro region (Figure 2.2), are used for all three species in the CPUE standardization to 

explore movement rates in the Eastern Atlantic Ocean, and are the regions in which the 

majority of the tropical tuna catch occurs.  The database was filtered such that reported 

effort was included in the analysis if at least one of the three species were captured in a 

record. This method was used to identify effort targeting the tropical tunas or catching 

them as bycatch and eliminate effort, primarily longline effort, which targeted one of the 

other species ICCAT manages.  The majority of the records removed corresponded to 

longline fleets which likely were targeting swordfish or albacore in the eight regions of 

interest. The final dataset analyzed consisted of over 75,000 entries with 30% of the 

bigeye entries zero catch, 25% of the yellowfin tuna entries zero catch, and 11% of the 

skipjack tuna entries zero catch. Therefore, a delta model was used to analyze the 

proportion positive and positive only catch and effort data records from the filtered 

ICCAT database (Lo et al., 1992).  
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Positive catches in each region were standardized using a generalized linear 

model of the log-transformed CPUE using a Gaussian density distribution and an identity 

link function with up to five explanatory categorical variables: year, month, type of 

effort, flag, and gear (Table 2.2).  No interactions were included in the model.  Year and 

month are factors with 23 and 12 levels, respectively.  Fleet is a factor with 35 levels, 

representing each of the flags which fish for tropical tunas in the Eastern Atlantic. Gear is 

a factor with three levels: purse seine, baitboat, and longline. Type of effort is a factor 

with 11 levels; these levels represent the different units of effort that are reported to 

ICCAT which are not always consistent within a gear or a fleet. For example, purse seine 

effort is reported as days at sea, fishing hours, fishing days, etc., and causes the scale of 

the CPUE to vary from <1 to thousands of kilograms per unit effort.  Inclusion of this 

factor allowed us to account for the large variability in scale within the CPUE data which 

was not due to changes in abundance.  The proportion positive data were analyzed using 

a generalized linear model using a binomial density distribution and a logit link function.  

A stepwise regression was used to determine the most parsimonious binomial and 

lognormal models for each region based upon the lowest Akaike Information Criterion 

(AIC) value and the number of factors included (Akaike, 1973).  In some cases the model 

with the lowest AIC included a variable which had too few observations to allow for an 

estimate of the least squares mean, in this case, the CPUE model with the lowest AIC 

which excluded this parameter was used to standardize the data. Generally these 

alternative CPUE models had ΔAIC values less than 5, which indicated that the  



27 
 

 

alternative model has good support for being the most parsimonious model and allows us 

to make the substitution with confidence that the results will not be impacted (McCarthy, 

2007).    

In total, 13 models were evaluated for use (Table 2.2).  The least square means 

are the means estimated from a linear model, they are adjusted to other terms in the 

model and which balances out the unequal number of observations in each factor level.  

They are less sensitive to missing data, making their use in CPUE standardization 

valuable (Searle et al., 1979).  Least square means were estimated for the month factor, 

which accounted for the other factors included in the model.  They were transformed 

back into natural scale using the lognormal bias correction factor for the positives only 

model and the binomial transformation for the proportion positives model. Monthly 

standardized CPUE was then obtained as the product, in natural scale, of the least square 

means of the proportion positives and the least square means of the positives.      

 

Results  

Historical tagging data analysis 

Parameter Estimates 

 All three movement models had difficulty estimating reporting rates along with 

fishing mortality and natural mortality.  When reporting rates were estimated, the 

region(s) with the fewest returns had an estimated reporting rate of zero and the model 

estimated large movement rates into that region thus predicting that none of them were 

recovered because of the low reporting.  Since there were tags recovered in every region, 

it is unlikely that reporting rates were zero in any region and we can assume that 
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movement estimates from these models are unlikely to be accurate.  The conventional 

tagging data did not contain enough information to estimate both movement rates and 

reporting rates. Unfortunately very little information on the reporting rates for each 

release event included in the models was available. When the mean of the prior was used 

as the fixed reporting rate, the movements were estimated with more precision (due to 

fewer parameters to estimate) and the estimates were likely to be a more accurate 

reflection of the information contained in the data. Therefore fixed reporting rates were 

the best method to estimate movement rates with the data currently available.  All models 

reported in the following used fixed reporting rates. 

The model selection criteria for yellowfin and skipjack preferred the movement 

models with a single fishing mortality; therefore results presented will be for the single 

fishing mortality estimate (Table 2.3). The movement models estimated similar fishing 

mortalities to those estimated in recent stock assessments for all three species in part 

because of the informative priors.   For bigeye fishing mortality the posterior mean was 

0.25 (CV=0.09, Appendix A), skipjack mean was estimated to be 0.1 (CV=0.01, 

Appendix A), and yellowfin mean fishing mortality was around 0.17 (CV=0.17, 

Appendix A).  Tag shedding rates were low for bigeye tuna but poorly estimated (0.1, 

CV=1.82).  Tag shedding for skipjack and yellowfin tuna were better estimated but very 

high compared to previous estimates of shedding: 0.79 (CV=0.12) for skipjack and 0.39 

(CV=0.19) for yellowfin (Gaertner & Hallier, 2008, Adam & Kirkwoor, 2001, Kleiber et 

al., 1987, Gaertner & Hallier, 2004, Hampton, 1997, Bayliff & Mobrand, 1972). 
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Bigeye tuna 

 Overall the movement model fitted the data well with a Bayesian p-value = 0.49; 

however it tended to underestimate annual tag returns (Figure 2.3) with residuals 

generally negative or around zero (Figure 2.4 and Appendix A).  Movement rate 

estimates suggested that there is a lot of exchange between the Gulf of Guinea and the 

north-east Atlantic although this appeared to be generally a northward movement of 

animals with much lower movement rates from the north to the Gulf of Guinea 

(Azores/Canary Islands, Figure 2.5).  Fish appeared to move between regions frequently 

within the Gulf of Guinea, with residency rates <0.5 in all the regions.  There were high 

residency rates in the Canary Islands and Senegal paired with movement rates >10% into 

those regions from many of the other regions.  The Azores had a very low residency rate, 

with only 11% (CV=0.91) of the fish released in the Azores recaptured in the Azores in 

subsequent years.  These movement rates, however, do not appear to be well estimated, 

with the majority of CVs >50% and even some >100%.   

Yellowfin tuna 

 In general, both yellowfin movement models fitted the data fairly well with 

Bayesian p-values of 0.7 and 0.71 for the single F and multiple F models, respectively.  

Model diagnostics preferred the movement model with a single fishing mortality over the 

one with multiple fishing mortalities, although the ΔDIC was fairly small, only 6.4 

(Table 2.3). The movement model generally overestimated returns except for the 

beginning of the time series when returns were generally underestimated (Figures 2.3 

and 2.4).   
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 Yellowfin tuna appeared to had very high residency rates in each of the three 

regions (>90%).  Movement rates from west to east were around 10% whereas movement 

rates from east to west were around 2%, while north and south movements between 

regions one and two appeared to be relatively equal (0.06 CV=0.52 and 0.08 CV=0.46, 

Figure 2.5).  Movement rates for yellowfin tuna were much better estimated than bigeye 

tuna, with the majority of the CV values <0.5 and only one equal to 100%. 

Skipjack tuna 

 Both skipjack movement models fitted the data somewhat poorly with the 

Bayesian p-value =0.8 for both but, model diagnostics preferred the movement model 

which estimated a single fishing mortality over two fishing mortalities (Table 2.4). The 

movement model fitted years with few tag returns between the two large tag release 

events well (Figure 2.3), but generally overestimated the number of tags returned when 

there are large tag release events, with large positive residuals (Figure 2.4).  The 

movement estimated from the model suggested a net northward movement from the Gulf 

of Guinea to northwest Africa, although the majority of this movement comes from the 

more western regions and not from the primarily coastal regions of Cote d’Ivoire and 

Cape Lopez (Figure 2.5).  Both the Canary Islands and Senegal had very high residency 

rates, 0.98 (CV=0.01) and 0.92 (CV=0.02), respectively.  The regions within the Gulf of 

Guinea had lower residency rates, excepting Cote d’Ivoire, which had a residency rate of 

0.86 (CV=0.04).  The movement rates within the Gulf of Guinea tended to be towards the 

north or into the Equatorial and Cape Lopez regions.  There was significant exchange 

between the Cape Lopez and Equatorial regions.  
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CPUE Standardization 

Model fitting 

The best lognormal and binomial model for many of the regions was the full 

model, including all five variables and an intercept, although in over half of the regions 

reduced models were the most parsimonious or were alternative models with a ΔAIC of 

less than 5 (Appendix A).  Some CPUE models dropped year as an explanatory variable, 

which would not be recommended if the purpose of the standardization was to evaluate 

trends over time (Maunder and Punt, 2004).  However, the interest here was the monthly 

trend, so year was allowed to be dropped if it was not statistically significant. Year was 

dropped for eight of the CPUE models, which supports the assumption that the seasonal 

trend in CPUE is stable over the time period analyzed. Since year did not explain a 

significant amount of the variability of the CPUE data for several of the regions, this 

justified the aggregation of years in the analysis for description of the monthly movement 

patterns. Model diagnostics and standardized monthly CPUE for all the three species in 

each of the eight regions can be found in Appendix A. In general all the models fit the 

data well.  

Bigeye tuna 

There were clear trends in monthly CPUE in the more temperate regions 

evaluated.  In the Azores, bigeye tuna were primarily caught in April through July, with 

CPUE peaking in June.  There were small catches in November and December, but no 

catch at all in January and February (Figure 2.6).  In the Canary Islands, there was some 

catch year round, but the primary fishing season was in March – June with a peak in 

May.  In Senegal/Cape Verde Islands, there were larger catches in July – February.  
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CPUE peaks in October and was at a minimum in May.  For the other four regions, 

catches were fairly constant throughout the year, with no trends in the CPUE. There is 

significant variability in the catches during the peak seasons in the Azores and Canary 

Islands, although the general trend of increased CPUE during these periods is clear 

(Appendix A). 

Yellowfin tuna 

Trends in CPUE for yellowfin tuna were much less pronounced than for skipjack 

and bigeye. There was not a lot of CPUE data in the Azores, although catches tended to 

peak in September.  In the Canary Islands, catches were larger in June through December 

with a peak in September (Figure 2.6). There were very low CPUE values in March 

through May. In Senegal, there was a slight increase in CPUE in July through December 

with a peak in September and October. For the other four regions, there was very little 

change in CPUE over the course of a year. 

Skipjack tuna 

Skipjack tuna CPUE also appeared to have seasonal trends in the more temperate 

regions, but trends were present in more regions than for bigeye (Figure 2.6). In the 

Azores, catches peaked in August but were elevated from June through November.  

Catches were very low (or zero) in December-May.  In the Canary Islands, skipjack were 

caught primarily in June through December.  CPUE peaked in July and August, with 

lower catches January through May and a minimum in March.   CPUE peaked in Senegal 

in May through June but was higher between April and October.  Generally CPUE was 

constant in November through March.  In North Sherbro, there was a general increase in 

CPUE over the course of the year, peaking in October and then decreasing to a minimum 
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in February.  CPUE peaked in December and January in Sherbro, with a minimum in 

March and peaks in April in Cote d’Ivoire and was relatively constant throughout the rest 

of the year.  There were no significant trends in CPUE in Cape Lopez and the Equatorial 

regions. 

 

Discussion 

 Short term recoveries of tagged animals pose a challenge for tagging models as 

they can bias parameter estimates by violating the assumption that the tagged population 

is fully mixed with the untagged population (Hoenig et al., 1998).  Short term recaptures 

can both positively bias fishing mortality and negatively bias movement rates.  These 

animals can be modeled using a non-mixed model to calculate separate fishing mortalities 

for newly tagged animals and previously tagged animals.  However, this method can be 

computationally intensive and can result in significantly increased standard errors 

(Hoenig et al., 1998). Another method of accounting for “trap-happy” individuals in a 

multiple capture-recapture program is to remove the first recovery event for the animals 

and calculate parameters for the subsequent recaptures or model the animals which are 

recaptured separately from those that are not recaptured.  Tags in this study are recovered 

at most once, however, they can be treated similarly to the “trap-happy” animals.  

Simulations by McGarvey and Matthews (2012) showed that when there is a single 

recapture event but many short-term recaptures, removing the early recaptures within the 

first few weeks of the study has very little impact of the estimate of total mortality 

precision and it can alleviate bias in the estimate of fishing mortality for the whole 

population.  Therefore, the removal of the tags recaptured within 30 days of their release 
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will not likely bias the estimates of fishing mortality since natural mortality has a highly 

informative prior and will allow for unbiased estimates of movement rates. 

Bigeye tuna 

Previous research has suggested bigeye tuna make more north-south movements 

in the Atlantic Ocean than east-west movements.  The current assumption about bigeye 

movements is that they are found north of Mauritania in July, with some fish continuing 

north towards the Canary Islands.  From November to December bigeye tuna migrate 

south to the Gulf of Guinea. There they remain until March-April when they return north 

to the Senegal fishing grounds (Hallier, 2005).  The large movement rates between the 

regions within the Gulf of Guinea and the northeast Atlantic estimated in the model are 

consistent with these previous descriptions of bigeye movements. Although the southern 

movements in November and December are not captured through the annual movement 

models, they are suggested by the CPUE models possibly because of larger numbers of 

tagged fish released in the Gulf of Guinea or due to high fishing mortality on fish tagged 

in the northern regions, which may be captured before they move, or are recaptured in the 

same region in the following year. The corresponding increases in the equatorial waters 

are likely confounded with recruitment signals. Furthermore, Carruthers et al. (2010) and 

Hallier et al. (2004) proposed that bigeye tuna move north and south along the North 

African coast and are generally dispersed throughout the Gulf of Guinea, a pattern that is 

seen in the low residency rates in the Gulf of Guinea regions and relatively equal 

exchange rates between them.  

The CPUE data are consistent with the descriptions of movement from the 

tagging model.  The CPUE data show the timing of the movement of bigeye into and out 
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of the northern regions. Based upon the CPUE data, bigeye tuna take advantage of their 

ability to withstand colder temperatures than skipjack and yellowfin and travel into the 

northern most regions first (Figure 2.7, Brill et al., 2005).  They appear to leave Senegal 

and the more southern regions in March, peak in May in the Canary Islands and reach the 

Azores in large numbers by June.  They leave the Azores by August.  They are caught in 

relatively large numbers during the rest of the year in Senegal.  The movements back 

south into the Gulf of Guinea occur in the fall, September-November, and they likely 

winter in the warmer tropical waters before returning north in the spring. These 

movements may be linked to prey competition between the tropical tunas.  

Yellowfin tuna 

Yellowfin tuna movements are perhaps the best understood among the tropical 

tunas as they have been tagged in greater numbers and for a longer time period than 

either skipjack or bigeye tunas.  The capture of fish in the west which had been tagged in 

the east and vice versa confirms significant transatlantic movements undertaken by these 

fish.  Model estimates derived from tagging data analyzed here do not reflect those 

movements, with very small movement rates between the three regions.  Movements 

north and south of the equator are limited but the exchange is fairly equal, as indicated by 

small movement rates between regions one and two.  These results do not support the 

movement patterns proposed by Zagaglia et al. (2004) and Carruthers et al. (2010) for 

yellowfin tuna.  

The movement model does estimate that approximately 9% (CV=0.33) of the fish 

tagged in the western Atlantic move to the eastern Atlantic, which is smaller than 

expected given that there are a number of tags recovered in the east which were tagged in 
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the west. Yellowfin are believed to concentrate in the eastern Atlantic between January 

and March for spawning followed by a transatlantic migration from east to west between 

March and May for spawning in June through September.  The fish return to the eastern 

Atlantic between October and December (Zagaglia et al., 2004).   This would suggest 

much larger east-west movement rates than those estimated in the model.  The annual 

estimates of movement rates may not capture the east to west and west to east movements 

that may occur within a single year, interpreting it as a high residency rate when fish 

released in a region are recaptured in that region in subsequent years. 

There are two possible explanations for this discrepancy: first, there is insufficient 

data to estimate seasonal movement rates from the model and second, the majority of 

tagged fish are juveniles which do not make transatlantic movements for spawning.  To 

make unbiased estimates of seasonal movement rates, tagging efforts should be evenly 

distributed throughout the year.  However, the historical tagging events are concentrated 

in the summer months, with 80% of the tags released in quarters two and three.  The 

majority of the tags that were recovered after a transatlantic migration were captured four 

or more years after they had been released.  The movements described by Zagaglia et al. 

(2004) and Carruthers et al. (2010) are for the breeding population of yellowfin, but the 

majority of the tagged population are small juvenile yellowfin tuna.  Yellowfin tuna 

mature around two years old and are believed to make their first transatlantic trip around 

age three. Since the majority of the tags recovered are within the first two years, tagged 

fish may be being recaptured before they have a chance to make these movements 

(Zagaglia et al., 2004).  
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This delay in transatlantic movements by tagged yellowfin tuna suggests that 

recovery operations must be maintained for many years after tagging in order to obtain 

long distance recoveries.  In general, recovery efforts, such as publicity campaigns and 

rewards for tag returns, are not maintained for more than a few years after the final 

tagging event, primarily due to the lack of funding appropriated to such efforts compared 

to tagging (Million, 2013).  Furthermore, the few tags released in the Southwest Atlantic 

(<10) and the lack of tag recoveries in this region prevent us from making any 

conclusions about movements of yellowfin from that area.  Additional tagging is required 

before this movement model can be used for a four region seasonal model of the Atlantic. 

The CPUE data were analyzed to investigate movements north and south along 

the North African Coast from the Gulf of Guinea, which will give insights on movements 

between regions one and two in the Bayesian model, but also smaller scale movements of 

yellowfin. Yellowfin tuna are rarely caught in the Azores as their waters are likely too 

cold and these fish tend to be more tropical than skipjack or bigeye tuna and remain in 

waters warmer than 24°C (Brill and Lutcavage, 2001).  However, they are caught in 

small numbers in the boreal fall.  Yellowfin tuna appear to take advantage of the warmer 

surface waters in the Canary Islands in the boreal summer and fall, with catches peaking 

in September and October, before returning further south to the Senegal area and beyond, 

where CPUEs are generally constant and water temperatures are greater than 24°C 

throughout the year.  They are not caught at all in these northern regions in February 

through May, suggesting they have left the Azores and Canary Islands in the coldest 

months.  The CPUE results suggest that more movement between region one (Canary 

Islands, Azores, and Senegal) and region two (Gulf of Guinea) occurs than is captured in 
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the tagging data.  This indicates the CPUE data is useful in providing additional 

information on the seasonal north and south movements of yellowfin tuna which is 

unavailable from the limited tagging data. 

Skipjack tuna 

 A previous tagging study in Senegal and Mauritania concluded that most skipjack 

tuna movements are local and they remain in the fishing area with north and south 

movements along the northwest African coast (Miyabe and Bard, 1986; Hallier, 2005). 

Fish which were tagged in the Gulf of Guinea were found to have relatively dispersed 

movements westward from the Cote d’Ivoire and Cape Lopez regions. The movement 

rates estimated in this model supports some of these descriptions of tuna movement, with 

large residency rates in the northwest regions and movement between into the Equatorial 

region from other Gulf of Guinea regions and significant exchanges with Cape Lopez. 

This model also shows significant movement from the Gulf of Guinea to the Canary 

Islands and Senegal regions.  The large residency rate in the Cote d’Ivoire may be 

reflective of a large fishing mortality in the area, where many of the fish are captured 

before they have the chance to move.  This region is known to be an important spawning 

ground for all three species and has a FAD fishery with large catches (Fonteneau and 

Marcille, 1993).  The high residency rate for skipjack in this region may also be due to 

the recapture of skipjack returning to the region for spawning which were tagged and 

released during previous spawning events.   

The movement model cannot differentiate between fish remaining in the area 

throughout the year and fish returning to an area annually but moving between regions 

throughout the year.  The current tagging data available are not informative enough to 
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make the movement model time steps seasonal rather than annual; 92% of the tags 

released for skipjack tuna are in the second and third quarters of the year, therefore there 

are not enough tag releases in quarters one and four to inform seasonal movement rate 

estimates.  However, the CPUE data can give us information of the seasonal movements 

of skipjack.  Skipjack tuna movements from CPUE data are similar to bigeye, although 

offset by a month or two.  Skipjack tuna appear to travel north from the equatorial areas 

and peak in May-June in Senegal, followed by July and August in the Canary Islands, 

and some skipjack appear to continue north to the Azores in the boreal fall, peaking in 

August-October.  These results suggest that the high residency rates in the Canary Islands 

and Senegal are most likely due to fish returning to the region each year, and not due to 

large numbers of fish remaining in the regions year round. 

The lack of tagging data for the first and fourth quarters of the year could have 

management implications for the equatorial regions where the CPUE data is not sufficient 

to evaluate trends in the residency of bigeye tuna.  ICCAT has recently expanded the 

moratorium on fishing on FADs in the Gulf of Guinea to extend from 5°N to 4°S and 

from the coast of Africa to 20°W in January and February (Anonymous, 2016d). This 

moratorium is an effort to reduce the catch of juvenile bigeye tuna, and the movement 

trends described above suggest that bigeye tuna do concentrate in the Gulf of Guinea 

during the first quarter.  However, the tagging database does not contain enough 

information to confirm this residency.  Of the 3 300 tags released on bigeye tuna in the 

moratorium region, only two were released in January and none in February.  Only 27 

tags were recovered in the region during January and February.  This lack of returns 

could be due to reduced fishing effort during this time of the year; however the FAD 
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moratorium was implemented after the end of the current study.  A concentrated effort to 

tag fish in this region during the first quarter of the year would be necessary to determine 

how effective this moratorium is at reducing juvenile bigeye tuna catch. 

Conclusions 

Movement rates estimated here generally agree with previously described 

movement patterns of tropical tuna in the Atlantic.  Most of the movement rates have 

large coefficients of variation, likely due to the small recovery rates for the three species.  

Bigeye tuna are known to be better adapted for colder water temperatures, therefore it is 

not surprising that they reach the northernmost regions first, followed by a month or two 

by skipjack, and then yellowfin reaching the northern most waters when they are at their 

warmest (Figure 2.6, Graham, 1974; Brill, 1994).   This pattern is clearly evident in the 

trends in CPUE between the three more temperate regions, the Azores, the Canary 

Islands, and Senegal. Juvenile bigeye tuna are believed to have prey preferences which 

overlap with similar sized yellowfin and skipjack tuna, targeting Vinciguerria numbaria 

in the Gulf of Guinea (Menard and Marchal, 2003) while also being fairly opportunistic 

in their prey choices (Lebourges-Dhaussy et al., 2000; Menard et al., 2006).  However, 

adult bigeye tuna feed near the deep scattering layer, much deeper in the water column 

than the other two tropical species (Vaske et al., 2012). It is believed that their 

movements are driven by the opportunity to feed in the more temperate regions where 

greater numbers of prey species are available as the water temperatures increase to those 

tolerated by the tropical tunas (Brill, 1994). Additional tagging efforts on these species 

will be valuable in estimating movement rates more precisely as well as additional 

studies on the seasonal distribution of their prey species.   
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The addition of catch and effort data to the tag-recapture model would likely also 

increase the accuracy of the movement estimates (Goethel et al., 2014).  These data were 

not included in this analysis due to several years of missing data in the ICCAT Task II 

database in some of the regions, specifically the Azores Islands and Canary Islands 

regions, in the 1990s.  Due to the CPUE data being aggregated over a large time period, 

these missing data are unlikely to impact the seasonal patterns observed from the CPUE 

data; however it does prevent these data from being incorporated into the Bayesian model 

to estimate fishing mortality.   

In this study, the large-scale annual movements of Atlantic tropical tunas from 

tagging data are estimated quantitatively for the first time and combined with 

standardized CPUE data to describe the seasonality of these movements. The Bayesian 

framework applied to the tagging data shows that movements of tropical tunas both 

throughout the entire Atlantic as well as between smaller areas in the eastern Atlantic can 

be estimated well with enough data.  The results presented here provide an estimate of 

annual movement rates, residency rates, and the timing of seasonal movements in the 

temperate limits of their distribution. The combination of the CPUE data provide 

information on the timing of the movement rates estimated from the annual movement 

model in the temperate regions of their distribution while the movement model allows us 

to estimate annual movements in the tropical regions where movement and recruitment 

are confounded in the CPUE data.  They corroborate previously hypothesized movement 

patterns for skipjack and bigeye, although some discrepancy remains with previous 

studies on yellowfin tuna. These results show significant exchange between regions 

within the Atlantic and suggest the need for spatially explicit stock assessment methods 
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into which these results can be incorporated and provide better estimates of the current 

stock status.  Finally, the large uncertainty that remains around many of the movement 

rate estimates indicates a clear need for additional tagging data for all three species as 

well as more specific information recorded for the tagging program, including tag 

shedding estimates and reporting rates, and more extended recovery efforts to ensure the 

transatlantic movements are captured adequately. It is encouraging to know that such 

studies are being conducted as part of the ICCAT Tropical Tuna tagging program which 

started in 2016 (Anonymous, 2016a). 
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Table 2.1. Mean and standard deviation of tagging model priors. 

 BET YFT SKJ  
Variable Mean Standard 

Deviation 
Mean Standard 

Deviation 
Mean Standard 

Deviation 
Distribution 

Fishing 
mortality 

0.22 0.07 0.21 0.09 0.1/ 
0.15  

0.01 Lognormal 

Natural 
Mortality 

0.8  0.004 0.7 0.007 0.8 0.008 Lognormal 

Reporting 
Rate 

      Beta 

Region 1 
(NE) 

-- -- 0.32 0.33 -- --  

Region 2 
(SE) 

-- -- 0.45 0.36 -- --  

Region 3 
(W) 

-- -- 0.34 0.29 -- --  

Azores 0.21 0.24 -- -- -- --  
Canary 
Islands 

0.09 0.19 -- -- 0.06 0.19  

Cape 
Lope 

0.32 0.32 -- -- 0.29 0.30  

Cote 
d'Ivoire 

0.31 0.26 -- -- 0.26 0.26  

Equator 0.29 0.25 -- -- 0.30 0.29  
N Sherbro 0.31 0.26 -- -- 0.34 0.32  

Senegal 0.23 0.23 -- -- 0.29 0.27  
Sherbro 0.36 0.29 -- -- 0.38 0.33  

Tag 
Shedding  

0.08 0.13 0.15 0.13 0.09 0.08  

Negative 
Binomial 
Variance 

10 100 10 100 10 100 Gamma 

 

 

  



44 
 

 

Table 2.2. List of Generalized Linear Models which were tested for log(CPUE) and the 
proportion positive in each region and species. 
 
Model Explanatory Variables 

1 Month 
2 Month + Effort 
3 Month + Effort + Fleet 
4 Month + Fleet 
5 Month + Gear 
6 Year + Month 
7 Year + Month + Effort 
8 Year + Month + Gear 
9 Year + Month + Fleet 

10 Year + Month + Effort + Fleet 
11 Year + Month + Effort + Gear 
12 Year + Month + Fleet + Gear 

Full Year + Month + Effort + Gear + Fleet 
 

Table 2.3. Model Selection Criteria for skipjack and yellowfin tuna to evaluate the model 
improvement if they were permitted to estimate different fishing mortalities for different 
time periods. 

Model ΔDIC 
SKJ - Single F 0 
SKJ - Multiple Fs 54 
YFT - Single F 0 
YFT - Multiple Fs 6.4 
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Figure 2.1. Maps of the fishing regions in the eastern Atlantic Ocean modeled for each 
species with tag releases (blue dots) and recoveries (red dots) and tracks of recovered fish 
(gray lines), and region names with corresponding numbers in parentheses: a.) The six 
region model for bigeye tuna; b.) The three region model for yellowfin tuna; c.) The six 
region model for skipjack tuna.  



46 
 

 

a.  

b.  

c.  
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Figure 2.2 Eight region model used to standardize CPUE data for all three species. 
 

Figure 2.3. Annual number of bigeye (top), yellowfin (center), and skipjack (bottom) 
tuna tag recoveries estimated by the model (blue line) and observed (red dots). 
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a.  

b.  

c.  
Figure 2.4. Plot of residuals of tag returns from a.) bigeye, b.) yellowfin, and c.) skipjack 
tuna models.  
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Figure 2.5. Map of estimated movement rates greater than 0.10 (arrows) and residency 
rates (circles) for each of the eight regions for the bigeye (top), yellowfin (center), and 
skipjack (bottom) tuna tagging data.  Table of movement rates and CV between each 
region are available in the supporting information. 
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a.   

b.  

c.  
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Figure 2.6. Normalized mean monthly CPUE values for each region specified in Figure 
2.2 by species. Blue squares = Bigeye tuna CPUE; Red circles = Skipjack tuna CPUE; 
Green triangles = Yellowfin tuna CPUE. 

 

 
 
Figure 2.7. Relative change of CPUE during the year.  Colors indicate relative change in 
CPUE, darkest colors indicate highest CPUEs for the region, medium colors indicate 
large to medium CPUEs, and lightest colors indicate small but present CPUEs, white 
colors indicate no CPUE estimate for that month. 
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CHAPTER 3: A COMPARISON OF DATA STORAGE TAGS AND POP-UP 
SATELLITE ARCHIVAL TAGS TO BE USED IN THE ATLANTIC OCEAN 
TUNA TAGGING PROGRAM 
 
Summary 

 Electronic tags are a valuable tool for gathering in situ data on the environment in 

which a tagged animal resides.  They can provide a variety of parameters such as salinity, 

light (giving rough location estimates), temperature, depth, and acceleration.  Two types 

of tags are often used for long term data collection on tropical tunas, internal archival 

data storage tags (DST) and pop up satellite archival tags (PSAT).  Both types of tags 

have advantages and disadvantages which must be considered when designing a tagging 

study.  The Atlantic Ocean Tuna Tagging Program (AOTTP) has a budget for electronic 

tagging and there has been significant debate on which type of tags should be used.  A 

simulation was developed to mimic the AOTTP and has been used to simulate releases of 

both types of tags.  A Bayesian space-state Cormack-Jolly-Seber model was then used to 

estimate movement rates from each type of electronic tagging data combined with data 

from conventional tags.  Results show that even when DST tag returns are low, a 10% 

recovery rate, the data provided improves fishing and natural mortality estimates of 

bigeye tuna while the PSATs perform slightly better for yellowfin tuna.  However, taking 

into account the advantages and disadvantages of each type of tag, the goals of the 

tagging program, and the probability that a 10% recovery rate is lower than the expected 

recovery rate for DSTs, the recommendation for the AOTTP is to use DSTs for their 

electronic tagging efforts. 
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Background 

Tagging studies have been employed in all three major oceans of the world to 

provide fishery-independent estimates of many important life-history parameters in stock 

assessments including migration, growth rates, and natural and fishing mortality (Holland 

et al., 2001).  The majority of the tagging of the tropical tunas has taken place in the 

Pacific and Indian Oceans, with both regions undertaking large-scale tagging projects 

(Million, 2013).  There have been over 800,000 tuna tagged in the Pacific Ocean and over 

200,000 tuna tagged in the Indian Ocean (Leroy et al., 2015).  However, none of the 

tagging projects undertaken have included a simulation of tagging events as part of the 

project design.  A simulation of tagging events is an important part of the project design 

as it provides details on what kinds of tags should be included, how tagging should be 

implemented, and how many tags should be released to answer the primary study 

questions most efficiently.  These simulations have not been implemented in the past 

because they require insight on how to most realistically parameterize the models, which 

is typically only available after a large-scale project has been undertaken.  Tropical tunas 

have a great deal of uncertainty in the essential parameters, especially migration and 

spawning population structure, because their migrations are much more complex than the 

migrations of their temperate counterparts (Leroy et al., 2015).   

 A large-scale tuna tagging program has recently begun in the Atlantic Ocean to 

decrease uncertainty in many of the important stock assessment parameters (Million, 

2013).  The International Commission for the Conservation of Atlantic Tunas (ICCAT) 

Standing Committee on Research and Statistics (SRCS) has secured funding for the 

project, with the goal to release around 100,000 yellowfin tuna, skipjack tuna, and bigeye 



55 
 

 

tuna with conventional dart tags as well as a number of yellowfin and bigeye tuna tagged 

with electronic tags.  A successful tagging program will allow for improved estimates of 

stock assessment parameters which, in turn, will allow for more accurate evaluations of 

the stock status for each of the three tropical tunas.  The success of any tagging program 

is dependent upon having an appropriate tagging design in order to meet the goals of the 

program, implementing the tagging design successfully, and ensuring cooperation with 

the fishing industry to accurately report the recovery of tags (Die et al., 2013).   

 Thanks to the information gathered in prior large-scale tuna tagging projects that 

have been undertaken in the Pacific and Indian Ocean and smaller tagging projects in the 

Atlantic Ocean, the use of a tagging simulation is a viable tool to help design the Atlantic 

Ocean Tuna Tagging Program (AOTTP).   Small scale tagging projects on tropical tunas 

in the Atlantic are especially informative for parameters such as reporting rates, tag 

shedding rates, and movement rates. All this information will be used to parameterize a 

simulation for the AOTTP, allowing for the development of a simulated tagging study to 

aid in the study design. The goals of the AOTTP are divisible into three components, 

scientific, management, and capacity building (Million, 2013).  The scientific goals of 

this program include the following: 

• Estimate the crucial assessment parameters for analytical models used in stock 
assessments, including age-specific natural and fishing mortality, exploitation 
rates, and age-,sex-, and area-specific estimates of gear vulnerability; 

• Estimate growth parameters by age; 
• Estimate movements of tropical tunas and confirm or adjust current 

assumptions of stock structure; 
• Evaluate the impact of FAD usage on the population dynamics of tropical 

tunas; 
• Evaluate interactions between fisheries.  
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While a simulation will not be able to account for all of the differences between the 

two types of tags (Leroy et al., 2015), we intend to provide insight on the costs and 

benefits of different electronic tags available and how they contribute to meeting the 

goals of estimating movement rates and confirming the stock structure of yellowfin and 

bigeye tuna. This model will also evaluate various tagging scenarios on their ability to 

accurately estimate natural and fishing mortality, and movement rates. Previous 

simulation work has suggested that movement rates and natural and fishing mortality 

cannot be estimated from conventional tagging alone (Calliart et al., 2014). Thus external 

estimates of movement rates are necessary and electronic tagging offers an excellent 

platform to estimate these rates for pelagic species.  The AOTTP has proposed to use 

either data storage tags (DSTs, also known as internal archival tags) and/or pop-up 

satellite archival tags (PSATs) to obtain estimates of movement rates of yellowfin and 

bigeye tuna.   

Data storage tags are implanted into the body cavity of a fish and have sensors that 

can record a variety of physiological and environmental parameters.  They can store data 

at short intervals of time, even as frequent as every minute.  DSTs often have one to three 

sensors, which can protrude from the body cavity, to measure pressure (for water depth), 

internal and water temperature, light level, salinity, earth’s magnetic field, compass 

heading, tilt angle, or detailed activity and behavior from accelerometers (Cooke et al., 

2013b; Thorstad et al., 2013).  DSTs must be recovered by a fisherman or scientists in 

order for the data to be downloaded from the tag.  In this way, DSTs are similar to 

conventional tags in that recovery of the data is subject to fishing and natural mortality 

and reporting rates. 
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Popup satellite archival tags are externally attached to the fish, usually near the base 

of the dorsal fin, and typically collect environmental parameters such as light, water 

temperature, pressure, salinity, oxygen concentration, and may contain an accelerometer 

to provide data on fish swimming behavior (Thorstad et al., 2013).  These data are then 

transmitted via the ARGOS satellite to scientists after a pre-programmed pop-off time.   

These tags, while much more expensive than DSTs, have the advantage that they do not 

rely on fishery returns to obtain the data.  There are several disadvantages to using 

PSATs over DSTs.  The data that is collected is generally much coarser in resolution, 

unless the tag is returned, and the duration of tag deployment is generally much shorter 

for PSAT tags compared to DSTs.   Further, PSAT tags are large and can only be placed 

on large fish, unlike DSTs which can be used in small fish (Cooke et al., 2013b; Thorstad 

et al., 2013; Jepsen et al., 2015).  Also, PSAT tags are typically approximately 2.5-3 

times more expensive than DSTs, so fewer tags may be released when budgets are fixed 

(Doug Bears, personal comm.). However, PSATs provide information on natural 

mortality and movements which are not dependent upon fishermen’s behavior 

(Donaldson et al., 2008). 

A tagging simulation model was developed by Matt Lauretta and Dan Goethel (in 

review); this model provides the opportunity to simulate both the conventional tagging 

and the electronic tagging activities proposed by the AOTTP and the expected data 

available at the conclusion of the program.  First, the Lauretta and Goethel model was 

used to generate simulated conventional tag returns and DST and PSAT data for Atlantic 

yellowfin and bigeye tuna.  Then the simulated electronic tag data were used in a 

Bayesian space state model to estimate movement rates.  Finally, the simulated 
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conventional tagging data were fitted in a space state modified Cormack-Jolly-Seber 

model to estimate fishing and natural mortalities using the movement rates estimated 

from the electronic tagging data as informative priors (Cormack 1964, Jolly 1965, Seber 

1965).  The sequential Bayesian space-state model allows for incorporating a diverse 

range of information sources, in this case electronic and conventional tags (Dortel et al., 

2012), allows for heterogeneity within the estimates of fishing and natural mortality, and 

provides a useful framework for analyzing tagging studies (Buckland et al., 2004; 

Gimenez et al., 2007; Patterson et al., 2008; Royle, 2008). 

 This simulation work will evaluate the performance of DSTs and PSATs within 

the framework of the AOTTP and their ability to provide informative data to meet the 

goals of this program to provide advice to the program coordinators. Further, it will 

provide a quantified comparison between the two types of tags which each have 

advantages and disadvantages and address many of the concerns which come with each 

type of tag. 

 

Methods 

Simulation Framework 

 Recaptured PSAT and DST tagging data were simulated using an age-structured 

tagging simulation model developed by Matt Lauretta and Daniel Goethel (in review) to 

provide monthly locations for each type of tag during the duration of their release.  

Yellowfin and bigeye tuna were tagged with 420 DSTs and 165 PSATs each.  The 

number of tags released were calculated based upon an estimate of the price of each type 

of tag (€3-3,500 for PSATs and €1-1,500 for DSTs) and the AOTTP electronic tagging 
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budget; approximately one million euros are available for tagging in the first two years of 

the program (Doug Bears, personal comm.). While prices for electronics tags can vary 

greatly, these provide an approximation for the true cost differences between the two 

tags.   

Simulated DSTs were released in a single release event equally distributed 

between the four regions (Figure 3.1) and were able to be recovered for up to two years, 

allowing for movements in every month including the first month.  Movement rates were 

modeled using the bulk-transfer method (Taylor et al., 2011), with the probability of a 

fish moving between regions each month equal to the discrete movement rate. 

Movements of individuals were independent from one another and fish movement in each 

year was only dependent upon the current location of the fish and does not depend upon 

previous movements (Eveson et al., 2012).  The simulation was parameterized so that 

every fish was recaptured and released alive each month during the two year time at 

liberty and did not experience mortality, which provided a full capture history with fish 

locations for each month. Then data were truncated using an individual based model 

which used a binomial random draw to determine if the fish survived and were recaptured 

in each month based upon the monthly fishing and natural mortality.  Finally, if an 

individual was recaptured, a binomial random draw was used to determine if the fish 

were reported using the reporting rate.  Once a fish was recaptured the fish could not be 

recaptured again and the capture history with annual locations was truncated at the month 

the fish was recaptured.  

The median number of tag returns obtained from 30 simulations were run were 

used in the estimation model. The parameters used to simulate the tagging study are in 
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Tables 3.1 (yellowfin) and 3.2 (bigeye). Fishing and natural mortalities were from the 

previous stock assessments (Anonymous 2011, 2014b, and 2016c) such that the average 

fishing mortality is the fishing mortality for the entire stock estimated in the most recent 

stock assessment for each species (Anonymous 2011, 2014b, and 2016c). Two different 

reporting rates were used to evaluate how a lower than expected number of DST returns 

might impact the parameter estimates: the mean conventional tag reporting rate estimated 

in Chapter Two (Table 2.1) from previous tagging studies for the gears which operate in 

each region and half of that reporting rate.  This resulted in reporting rates equal to 

0.9,0.8,0.9, and 0.4 for regions one through four for the first DST model run and 

0.45,0.4,0.45, and 0.2 for regions one through four for the second DST model run.   

165 Simulated PSATs were released for each species in a single release event 

equally distributed between the four regions and were programmed to popup after one 

year, also allowing for movements in every month including the first month. 

Assumptions about the independence of movements were the same as for DSTs.  Once 

the full capture history was produced from the simulation using the same parameters as 

the DSTs, the data were truncated to reflect the expected performance of PSATs.   Since 

PSATs do not require recovery for data transmission, the duration of data collection was 

simulated based upon the average time at large for PSAT tags provided for the 2015 

ICCAT Bluefin tuna stock assessment (Lauretta et al., 2015).  The month in which a 

PSAT popped off and began broadcasting data was drawn from a lognormal distribution 

with a mean of 3.2 months and a standard deviation of 0.98. This distribution accounted 

for both early pop offs due to technological or mechanical defects in the tag and mortality 
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of the individual (Whitlock et al., 2012).  It was assumed that there is 100% data 

recovery from the tags whenever they were released from the fish. 

Conventional tagging recapture data were simulated using the same tagging 

simulation model described for the DST model above using the reporting rates 0.8, 0.9, 

0.8, and 0.4 for the four regions.  Fishing mortality, natural mortality, and movement 

rates are the same as those used to simulate the electronic tags.  Fish were tagged on the 

first day of each year for 36 months, with an additional 24 months of recoveries after the 

last tagging event.  Fishing effort was assumed to be uniform throughout the entire year.  

Two hundred fifty tags were released in each region in each month, resulting in a total of 

36000 tags released for each species. 

Estimation Model 

The DST and conventional tag recapture data were analyzed using a combined 

Bayesian space-state Cormack-Jolly-Seber model (Gimenez et al., 2007; Royle, 2008; 

Eveson et al., 2012).  This space-state model had three components: two process models 

and observational models with likelihoods for the unobserved or partially observed 

individual survival state process and the movement between regions; and the 

observational model with the likelihood conditional on the state processes (Royle, 2008).  

By using this type of a model we can create an individual based model where the 

detection probabilities are dependent upon the individual’s state, in this case if the fish 

has survived and in which region the fish is located.  Explanations for all symbols 

(indices, data, and model parameters) used for this analysis are provided in Table 3.3.  

A combined model was used to simultaneously estimate movement rates, natural 

mortality, and fishing mortality from the combination of electronic tags and conventional 
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tags.  From the simulated data we had N=420 individual DST capture histories with T=24 

monthly sampling periods and N=36000 individual conventional tag capture histories 

with T=5 annual sampling periods.  The capture history for individual i first captured at 

time fi was the vector Ri,t for sampling periods t at fi through T.  The two state processes 

described the process of being alive after the first time step and the process of moving 

between regions. The survival state process was a vector describing if the animal is alive 

at time t based upon a Bernoulli process where the probability of being alive at time t was 

dependent upon the state (alive or dead) in time t-1 

where M was the natural mortality rate and Ai,t  is the alive vector so that if an animal 

is dead its probability of survival is zero, and if it is alive its probability of survival was  

e-M.   Tags which were not returned were known to be alive in the first time step but were 

unknown (NA) afterwards. It was assumed that all returned DST tags would provide 

perfect data on whether the animal was alive or dead in each time period (A). For the 

individuals with conventional tags, animals which were recovered provided perfect data 

on whether the animal was alive or dead, and the unobserved individual’s state was 

estimated using a Bernoulli likelihood.  Thus, the survival parameters could be estimated 

by a Bernoulli likelihood equal to: 

 
𝐿(𝑆|𝐴) = ��𝑆𝑖,𝑡−1𝐴𝑖,𝑡(1 − 𝑆𝑖,𝑡−1)1−𝐴𝑖,𝑡

𝑇

𝑡=1

𝑁

𝑖=1

 3.2 

where Ai,t was an ixt data vector of indicators if the individual i was alive (1) or dead (0) 

at time step t and Si,t-1 is the probability of surviving the previous time period.  

𝑆𝑖,𝑡 = 𝑒−𝑀 ∗ 𝐴𝑖,𝑡 

 
3.1 
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The movement state process was a matrix describing which region the individual was 

in at sampling period t where the location of the fish was assumed to be known for the 

individuals with electronic tags during all time periods at large, but were only known at 

release and the time period of recovery for the individuals with conventional tags.  The 

value of incorporating the DST data was that the calculations of the probability of a fish 

being in a region during a given time period was simpler than those calculations for the 

conventional tag data because the location of the fish in intermediate time periods was 

known while all possible movements for individuals with conventional tags had to be 

accounted for (Eveson et al., 2012). Movements for individual i in sampling period t 

were described by a categorical process with four possible outcomes where the location 

in the first time period was giving by the probability Pk,l for the movement rates for an 

individual i to move from the mark region k to one of other three regions l or to remain in 

the mark region and in subsequent time periods, the probability an individual to move 

from the region in the previous time period (mi,t-1) to one of the other three regions or to 

remain in the same region. The true positions in each time period were entered as data for 

both the electronic and conventional tags, so that the movement parameters could be 

estimated with the following likelihood:  

𝐿(𝑃𝑘,𝑙|𝑚𝑖,𝑡−1,𝑚𝑖,𝑡) = �𝑃𝑘

4

𝑘=1

 3.3 

 

m is an ixt data matrix giving the location of the individual i in time period t if the fish 

was observed or NA if the fish is not observed.   

The recapture observational model for the conventional tag and the DST tag 

recaptures and the DST tag recaptures was a Bernoulli process where the probability of 
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being detected, Ci,t, was conditional upon the individual being alive at sampling period t 

and in region k.  If Ai,t was 0 then the Ci,t was 0; an animal which was dead cannot be 

recovered.  If Ai,t was 1, then  

𝐶𝑖,𝑡 =  𝜃𝑘,𝑖,𝑡 ∗ 𝑟𝑘 3.4 

where 𝜃𝑘,𝑖,𝑡was the probability of recovering an individual i in region k in time period t 

and  𝑟𝑘 was the reporting rate in region k. The probability of recovering an individual θ in 

each region k is a function of the instantaneous fishing mortality rate F in region k 

𝜃𝑘 =  1 − 𝑒−𝐹𝑘 3.5 

The likelihood for the tag recapture data was equal to: 

𝐿(𝐶𝑘|𝑅) = ��𝐶𝑘𝑅𝑖,𝑗(1 − 𝐶𝑘)1−𝑅𝑖,𝑗
𝑇

𝑡=1

𝑁

𝑖=1

 3.6 

where Ck is the probability of being recaptured in region k and Ri,t is an ixt data 

matrix indicating whether the individual i is recaptured in the time period t with 1 

being recaptured and 0 otherwise. 

 

Natural and fishing mortality rate priors for the combined DST-conventional tag 

model were uninformative uniform priors with bounds at 0 and 10.  The prior for Pk,l was 

an uninformative dirichlet prior where alpha = 1 for each region.   

The combined PSAT and conventional tag model used the same model structure for 

the conventional tag return data as the DST and conventional tag models.  However, 

because PSAT returns did not depend upon fishing mortality and reporting rates as the 

data were transmitted independently from the fishery, the probability of the data being 

transmitted and the monthly location had to be modeled differently. The process of a tag 

popping off each month and transmitting data was modeled as a Bernoulli process where 
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the probability of the tagging data being transmitted U in a month has an uninformative 

beta prior.  The tag return data thus has a Bernoulli likelihood equal to: 

𝐿(𝑈|𝑅) = ��𝑈𝑅𝑖,𝑡(1 −𝑈)1−𝑅𝑖,𝑡
𝑇

𝑡=1

𝑁

𝑖=1

 3.7 

where U is the probability of a tag transmitting data in the month and R is an ixt data 

matrix indicating whether a tag has transmitted data (1) or not (0). This popup probability 

includes both the monthly natural mortality, which would cause a tag to pop-off, and 

premature tag shedding (Musyl et al., 2011; Whitlock et al., 2012).  Movement rates 

were estimated using equation 3.3, the same methods as the archival tags where the 

movement between regions is a categorical distribution based upon the release location in 

the first month or the location in the previous month for subsequent time periods.    All 

other assumptions and prior specifications are the same as those described for the DST-

conventional tag combined model.  

The estimation models were run using OpenBUGS version 3.2.2 rev 1063 (Gilks et 

al., 1994) for at least 25 000 Monte Carlo Markov Chain (MCMC) iterations with a burn 

in of 5 000 iterations or until convergence was reached, with a thin of 5 to reduce 

autocorrelation. The convergence of the MCMC to the stationary posterior distribution 

was evaluated by the Gelman-Rubin diagnostic, based on the ratio of inter-chain variance 

to intra-chain variance (Gelman & Rubin, 1992) as well as the trace plots of each 

estimated parameter. Results were analyzed using R 2.15.2 (R Computing Team, 2014). 

 

Results 

 The total number of DSTs returned for yellowfin tuna was 72 tags with an 

average time at large of 13.1 months and for bigeye tuna was 86 tags with an average 
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time at large of 13.3 months.  This represents a return rate of 17% and 20% for yellowfin 

and bigeye tuna, respectively.  The average time at large for PSATs for both species was 

3.4 months.   The return rate for yellowfin tuna conventional tags was 15% with 5 469 

tags returned and for bigeye tuna was 20% with 7,157 tags returned (Table 3.4). 

 Results for the yellowfin tuna models suggested that both types of electronic tags 

provide similar amounts of information and resulted in very similar parameter estimates 

for both fishing and natural mortality (Table 3.1). This held true even when return rates 

were only 10% instead of 17% (Appendix C).    Fishing mortality was underestimated by 

the models for all four regions, although the differences between the estimated parameter 

and the actual parameter used to populate the simulation were all less than 0.05, a small 

but significant difference between the two (Figure 3.2).  Natural mortality was 

overestimated with the difference between the actual parameter 0.6, and estimated 

parameter, 0.73, only 0.1 (Figure 3.3).  Movement rates are generally overestimated with 

both types of tags, although when movement rates are >0.01, the model produces 

reasonable estimates.  When movement rates are small the model significantly 

overestimates the parameter, however because these rates are so small it is possible that a 

single tag return could significantly change the parameter estimate, so the magnitude of 

the parameter estimates should be considered when evaluating the large biases associated 

with the estimates. 

 Results from the bigeye models are similar to the yellowfin models, where 

parameter estimates are the same for natural mortality and fishing mortality in regions 

one and three (Table 3.2). In region two, DST tags provided a less biased estimate of 

fishing mortality while PSAT tags provided a better estimate of fishing mortality in 
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region four.  Fishing mortality was underestimated for all four regions by both models, 

although the difference between the actual parameter and the estimated parameter are all 

small (Figure 3.4). Natural mortality was overestimated by both models, and like 

yellowfin tuna, the estimated was around 0.1 greater than the actual parameter (Figure 

3.5). Additionally, movement rate parameter estimate biases are much smaller for the 

DST models than the PSAT models, even for very small movement rates. 

 
Discussion 
 
 Discussions on whether data storage tags or pop up satellite archival tags are 

better for long term in situ data collection have taken place for almost as long as they 

have been available for use.  Both types of electronic tags have their advantages and 

disadvantages, and it sometimes appears that the best tag for a study is ultimately 

determined based upon the scientist’s preference.  This research provides a quantitative 

comparison of how using the two types of tags to estimate movement rates to informs 

fishing and natural mortality parameters differently in a spatially explicit model, taking 

into account some of the differences between the tags. The results appear to be 

inconclusive.  Yellowfin tuna results suggest results are so similar that either tag would 

likely produce satisfactory results in the AOTTP.  Bigeye tuna results show that the types 

of tags produce contrasting results in regions two and four, the two regions with the 

largest movement rates. The movement rates for yellowfin tuna are much smaller than 

those for bigeye tuna and may explain why incorporating electronic tags impacts the 

regions which have the largest movement rates for bigeye tuna.  It is expected that for 

fish that have higher movement rates (and subsequently lower residency rates) high 

quality, long term data on their movements would significantly improve the movement 
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rate estimates and subsequently the natural and fishing mortality estimates from the 

conventional tag model. The movement rates used in this study are based upon those 

estimated in Chapter two and expert advice from scientists involved in the development 

of the AOTTP (Caillart et al., 2014).  If the movement rates of these two species are 

larger, we would expect a much more significant influence of the type of electronic tags 

released on the fishing and natural mortality parameter estimates.  

 The DST model parameterization results in a recovery rate of approximately 20% 

and a mean time at liberty of just over thirteen months.  Previous DST studies on both 

tropical tunas and bluefin tunas have resulted in much higher recovery rates and longer 

times at liberty. The conventional tagging model even has a similar recovery rate, and it 

would be reasonable to assume a similar or even higher recovery rate for archival tags 

because they are recovered in the same manner as conventional tags and are often given a 

higher reward which may result in a higher reporting rate.  In previous studies on bluefin 

tuna, recovery rates for DSTs are 6-60% for tag returns with usable data (for many 

studies this means being at liberty for more than 90 days) with recovery rates between 7-

29% for tags at liberty for over a year (Block et al., 2005; Kitagawa et al., 2007; Walli et 

al., 2009; Boustany et al., 2010; Whitlock et al., 2012; Teo et al., 2013; Quílez-Badia et 

al., 2015).  Mean time at liberty for these recoveries are between one year and three 

years, all much longer than the mean time at liberty used in this model (Walli et al., 2009; 

Boustany et al., 2010). For yellowfin and bigeye tuna, the recovery rates have been 

between 16-53% in the Pacific Ocean, similar to bluefin tuna, although mean time at 

liberty is smaller for these species, around six months  
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(Schaefer and Fuller, 2002; Schaefer et al., 2007; Schaefer and Fuller, 2010; Schaefer et 

al., 2014; Schaefer et al., 2015), although these mean times at liberty include fish 

recovered less than 90 days after release, unlike those above for bluefin tuna.  In several 

of the studies, there are many fish at large for over a year, and the maximum time at 

liberty for bigeye is 1500 days, or over 4 years (Schaefer and Fuller, 2010), with several 

other fish at liberty for two-three years. However, when the models were run assuming a 

10% return rate for DST tags, estimated parameters were still similar to those estimated 

by the PSAT tag models (Appendix C).  This suggests that even if DST tags are returned 

at a lower rate than conventional tags, they provide sufficient information to inform the 

natural and fishing mortality parameter estimates. 

 Compared to previous tagging efforts with PSATs, our modeled parameters 

appear to be in line with the expected behavior of the tags. We assumed that PSATs had a 

100% recovery rate, so that regardless of when a tag pops off, the data is successfully 

transmitted in full to the ARGOS satellite and the scientists.  However, in most cases, 

transmission rates are less than 100%, on bluefin tuna studies they have been between 50-

90% (De Metrio et al., 2003; Stokesbury et al., 2004; Block et al., 2005; Stokesbury et 

al., 2007; Musyl et al., 2011; Quílez-Badia et al., 2015).  The mean time at liberty for 

PSATs in this study is also within the expected range from previous literature, ranging 

from 85 to 209 days (De Metrio et al., 2003; Stokesbury et al., 2007).   

 While this simulation work attempts to address several of the major difference 

between DSTs and PSATs, it is important to remember that it cannot account for all of 

the advantages and disadvantages between the two.  PSATs have several significant 

advantages over DSTs, specifically the ability to collect the data independent of tag 
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returns.  These tags collect significant external environmental data and transmit the 

summaries of the data via satellite.  If any tags are returned by fishermen due to their 

being easy to detect, more detailed data can be obtained and the tag could be reused 

(Thorstad et al., 2013; Jepsen et al., 2015).  It is also much easier to tag a fish with a 

PSAT than a DST; taggers require much less training and it takes less time.  Also, fish do 

not always need to be removed from the water to tag them, which reduces handling time 

(Cooke et al., 2013b; Jepsen et al., 2015).  Finally, it is possible to obtain estimates of 

natural mortality from PSATs and obtain data from fish which have died, which is not 

possible for archival tags which required recoveries from the fishery (Donaldson et al., 

2008; Thorstad et al., 2013).   

 However, there are significant disadvantages to using PSATs, which may be more 

important depending upon the goals of the tagging program.  First, PSATs are relatively 

large and limited to being used on large individuals (Thorstad et al., 2013).  The 

simulation model did not take size or age into account when tagging fish with electronic 

tags, although it may be useful to include age or size structure in future work.  In the 

AOTTP, it is expected that the majority of the fish tagged are less than 100cm due to 

tagging occurring on baitboats (Million, 2013).  These fish are too small for tagging with 

PSATs; therefore it would be necessary to tag the largest adult yellowfin and bigeye 

selectively during the tagging process. This may even require a separate tagging 

procedure to target these larger fish, which would increase the costs of the program. This 

means that the electronic tags will not provide information on the juvenile fish which the 

conventional tagging program will predominately tag.  Thus, assuming that the 

movements of juvenile tropical tuna are different than those of adult tropical tuna, the 
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information from the PSAT tagging cannot be combined with that from the conventional 

tagging data, rendering the use of the data limited for estimating stock assessment 

parameters.  Adult and juvenile movement may differ for both yellowfin tuna and bigeye 

tuna. Juvenile bigeye tuna remain close to the surface and associate with fish aggregating 

devices (FADs) in mixed species groups while adult bigeye tuna remain close to the 

thermocline and make periodic excursions into the mixed layer (ICCAT, 2013).  

Yellowfin show less drastic behavioral changes, although adults tend to make deeper 

dives than juveniles, and often form free swimming schools while juvenile yellowfin tuna 

are usually found in mixed species schools around FADs. 

 Another disadvantage to using PSATs is the possibility that the large tag may 

impact swimming behavior.  Because PSATs are often large and are external, fish may 

experience increased drag due to the positive buoyancy of the tag, which can be increased 

via biofouling (Thorstad et al., 2013).  This can increase the energy expenditure of the 

fish and/or injure the swimming muscles of the fish which can significantly reduce 

swimming performance.   This could disrupt, delay, or reduce migration for migrating 

species (Thorstad et al., 2013; Jepsen et al., 2015).  For the AOTTP, one of the uses of 

electronic tagging is to estimate movement rates since both yellowfin and bigeye tuna are 

highly migratory species.  Using an electronic tag which may significantly change an 

individual’s behaviors such that the movements of that individual are decreased, changed, 

or eliminated would mean that the data collected from those tags are not representative of 

the whole population and erroneous conclusions about the stock structure and fish 

movements may be drawn. 
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 PSATs are known to provide incomplete datasets, which can limit the usefulness 

of the data collected.  This can be either due to problems with transmitting the data to a 

satellite or early detachment of the tag.  While PSATs are not dependent upon fishermen 

to return the data, there can be many occurrences which cause significant holes in the 

data transmission.  Data transmission could be disrupted due to weather, surrounding 

topography, and short battery life of the tags (Cooke et al., 2013b; Thorstad et al., 2013).   

 Early tag pop-offs are addressed in the simulation for the PSATs and this is an 

important factor to take into account when deciding to use PSATs in a tagging study.  

Due to a variety of reasons, including battery failure, mechanical failure, mortality, 

biofouling, infection and tissue necrosis, expansion and contraction of the electronics, 

batteries, and pressure housing due to rapid vertical movements, shark predation, and 

human error, the majority of PSATs last between 10s and a few hundreds of days (Musyl 

et al., 2011; Jepsen et al., 2015).  Previous studies have reported that 54% of tags pop off  

6-9 months before its preprogrammed date (Teo et al., 2013)and it is estimated that 82% 

of all PSATs attached pop off early (Musyl et al., 2011).  Many of the occurrence that 

may cause premature pop-offs are a concern for bigeye and yellowfin tuna, specifically 

the problems due to rapid diving behavior, which is common for both species (Schaefer 

et al., 2009; Schaefer and Fuller, 2010). 

 Other disadvantages of using PSATs for the AOTTP include the possibility that 

the tag may grow out of a fast growing fish, which would be a problem when tagging 

young yellowfin and bigeye tuna (Thorstad et al., 2013; Jepsen et al., 2015).  Also, PSAT 

tags are very expensive while the AOTTP only has a limited budget for electronic tagging 

(Cooke et al., 2013b).  The simulation suggests that reasonable results can be obtained 
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using the entire AOTTP budget for PSATs, although the risk of significant tag loss which 

is not addressed in this study may decrease the usefulness of the PSAT data. 

 Data storage tags have several advantages over the use of PSATs for the AOTTP.  

DSTs have the capability to store higher resolution, continuous data than PSATs and can 

collect physiological data on the individual fish in addition to the environmental data 

(Ådlandsvik et al., 2007; Cooke et al., 2013b).  These tags are also much smaller than 

PSATs and can be put into much smaller fish (Thorstad et al., 2013).  This would allow 

the AOTTP to tag the small juvenile fish in addition to the large adult yellowfin and 

bigeye tuna providing data on all life stages of the fish.  This would allow for 

comparisons between the behaviors of the fish at each life stage and for the integration of 

the electronic data with the conventional tag data to provide robust estimates of important 

population parameters such as natural and fishing mortality. 

 Furthermore, DSTs do not impact the streamlined body shape of the fish, which 

means that unlike PSATs, they will not significantly impact swimming behavior 

(Thorstad et al., 2013).  While there can be short term impacts of the surgical 

implantation of the tags, including inflammation and behavioral changes, the long term 

effects are minimal once the incision heals (Jepsen et al., 2002).  This means that data 

collected from the recovered tags are likely to represent the entire population of fish. A 

disadvantage of using DSTs is that significant training is necessary to implant tags into 

the individual fish (Thorstad et al., 2013; Jepsen et al., 2015); however for the AOTTP, 

dedicated tagging teams are being used to tag fish, so these impacts will be minimal. 

 The major disadvantage to using DSTs is that data retrieval is dependent upon the 

tag being recaptured and reported by fishermen (Cooke et al., 2013b).  This means that 
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many more tags are required to be released in order to obtain high enough tag returns that 

data is informative.  Since previous studies have shown recovery rates higher than those 

used in the simulation, and the recovery rates of conventional tags in this simulation are 

over twice those used for the DSTs, we would expect that the use of DSTs in the AOTTP 

would provide informative data even with a lower than expected recovery rate.  Also, 

because the returns within a region are dependent upon fishery returns, it is possible that 

the tags which are recovered are from fish who are residents or who return to the area 

every year and fish which move outside of the fishery may be missed.  This would give 

an incomplete picture of the actual movements of the fish.  However, because the 

fisheries for both yellowfin and bigeye tuna cover a large portion of the Atlantic, this may 

not be a significant problem.  Inconsistent reporting rates in different regions may also 

impact the interpretation of DST data as more tags will be recovered from areas which 

have higher visibility of the recovery program.  Since the AOTTP is an Atlantic-wide 

endeavor, it is hoped that significant tag recovery efforts will occur in all regions 

(Million, 2013) which would reduce the impact of this problem and the alternative 

models run with 10% return rate for DST tags suggest that a reduced return rate will not 

impact the fishing and natural mortality parameters estimated from the conventional tag 

data. 

 Making the decision between DSTs and PSATs for a tagging study requires an in 

depth analysis and comparison between the two types of tags.  Many things must be taken 

into account when doing these comparisons, the size and species of the fish being tagged, 

the goals and expected outcomes of the tagging study, and the budgetary restrictions.  

The results of the simulation are within the expected range of recovery rates and amount 
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of information gathered for both tags. Taking into account the goals of the AOTTP, 

which includes long term data collection for the estimation of movement rates and 

confirmation of stock structure, the simulation results and the discussion of the 

advantages and disadvantages of the two different tags support the conclusion that either 

the DSTs or the PSATs would provide adequate information on movements to inform the 

conventional tag model. Whether it is best to release only one of the types of electronic 

tags or to release some of each is a discussion that would require taking into account the 

other goals of the AOTTP. However, this would require releasing fewer of each types of 

electronic tag, and reduced numbers of tags released was not evaluated by this research. It 

is vital to perform these kinds of analyses in order to maximize the success of an 

electronic tagging study. 
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Table 3.1.  Parameters used to populate the tagging model (Actual) and estimates, 
percent biases, and CVs for each of the electronic tagging models for yellowfin tuna. 
 
    PSAT Model DST Model 
  

Actual Estimate Percent 
Bias CV Estimate Percent 

Bias CV 

F Region 1 0.18 0.13 -27% 0.03 0.13 -27% 0.03 
F Region 2 0.21 0.16 -25% 0.05 0.16 -25% 0.05 
F Region 3 0.18 0.14 -24% 0.04 0.13 -25% 0.04 
F Region 4 0.08 0.06 -26% 0.07 0.06 -25% 0.07 
M 0.6 0.73 22% 0.02 0.73 22% 0.02 
P[1,1] 0.948 0.95 0% 0.00 0.95 0% 0.00 
P[1,2] 0.05 0.04 -14% 0.10 0.05 -7% 0.09 
P[1,3] 0.001 0.002 123% 0.44 0.002 126% 0.40 
P[1,4] 0.001 0.002 150% 0.66 0.006 498% 0.53 
P[2,1] 0.05 0.03 -36% 0.11 0.04 -28% 0.10 
P[2,2] 0.6 0.68 13% 0.03 0.68 14% 0.03 
P[2,3] 0.15 0.12 -20% 0.07 0.12 -19% 0.07 
P[2,4] 0.2 0.17 -15% 0.10 0.16 -20% 0.09 
P[3,1] 0.001 0.002 58% 0.49 0.002 64% 0.38 
P[3,2] 0.15 0.13 -16% 0.07 0.13 -17% 0.07 
P[3,3] 0.799 0.82 3% 0.01 0.84 5% 0.01 
P[3,4] 0.05 0.05 -2% 0.17 0.04 -24% 0.17 
P[4,1] 0.001 0.001 -23% 0.73 0.001 16% 0.50 
P[4,2] 0.2 0.19 -7% 0.06 0.18 -9% 0.06 
P[4,3] 0.05 0.04 -24% 0.12 0.03 -32% 0.12 
P[4,4] 0.749 0.78 3% 0.02 0.78 4% 0.02 
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Table 3.2. Parameters used to populate the tagging model (Actual) and estimates, percent 
biases, and CVs for each of the electronic tagging models for bigeye tuna. 
 
    PSAT Model DST Model  
  

Actual Estimate Percent 
Bias CV Estimate Percent 

Bias CV 

F Region 1 0.24 0.20 -17% 0.03 0.20 -19% 0.03 
F Region 2 0.24 0.20 -17% 0.04 0.24 -1% 0.03 
F Region 3 0.12 0.10 -20% 0.04 0.10 -19% 0.04 
F Region 4 0.12 0.11 -9% 0.05 0.05 -57% 0.05 
M 0.4 0.54 34% 0.02 0.53 32% 0.02 
P[1,1] 0.749 0.81 9% 0.01 0.80 7% 0.01 
P[1,2] 0.2 0.16 -22% 0.05 0.16 -20% 0.04 
P[1,3] 0.001 0.001 41% 0.57 0.003 196% 0.38 
P[1,4] 0.05 0.03 -44% 0.16 0.04 -28% 0.13 
P[2,1] 0.2 0.15 -27% 0.05 0.16 -18% 0.05 
P[2,2] 0.65 0.75 15% 0.02 0.72 10% 0.02 
P[2,3] 0.05 0.04 -26% 0.12 0.04 -19% 0.12 
P[2,4] 0.1 0.07 -29% 0.11 0.08 -21% 0.11 
P[3,1] 0.001 0.001 8% 0.50 0.002 108% 0.36 
P[3,2] 0.05 0.03 -45% 0.10 0.03 -45% 0.10 
P[3,3] 0.749 0.84 13% 0.01 0.82 10% 0.01 
P[3,4] 0.2 0.13 -36% 0.08 0.15 -27% 0.08 
P[4,1] 0.05 0.03 -38% 0.10 0.04 -28% 0.09 
P[4,2] 0.1 0.07 -27% 0.07 0.07 -27% 0.07 
P[4,3] 0.2 0.16 -22% 0.07 0.17 -16% 0.07 
P[4,4] 0.65 0.74 14% 0.02 0.72 11% 0.02 
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Table 3.3. List of indices, model variables, data, and model parameters used for this 
analysis. 

  

Symbol Description 
Indices  
N Number of tags released 
T Number of time periods 
i Individual 
t time period 
f Cohort 
k,l Regions 
Data  
Ai,t Indicator if the individual I is alive (1) or dead (0), unobserved (NA) in time 

period t 
Ri,t Indicator if the individual i is returned (1) or not (0) in time period t 
mi,t Location of individual I in time period t, 1-4 if observed, NA if not 
Model Parameters 
Si,t Probability of survival for individual I in time period t 
Ci,t Probability of detection for individual I in time period t 
θi,t Probability of recapture 
M Instantaneous fishing mortality 
Fk Instantaneous fishing mortality in region k  
rk Reporting Rate in region k 
Pk,l Movement rate from region k to region l 
U Probability for PSAT tag to popup and transmit data 
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Table 3.4.  Number of recovered conventional tags for each year, region, and species. 
 
YFT Region  
Year Recovered 1 2 3 4 Total 
1 183 217 187 36 623 
2 379 548 358 80 1365 
3 447 618 485 125 1675 
4 368 465 311 78 1222 
5 153 220 174 37 584 
Total 1530 2068 1515 356 5469 
      
BET Region  
Year Recovered 1 2 3 4 Total 
1 263 277 122 62 724 
2 575 644 307 145 1671 
3 739 813 379 204 2135 
4 577 621 309 166 1673 
5 291 364 205 94 954 
Total 2445 2719 1322 671 7157 
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Figure 3.1. Four region model used with region one the northeast Atlantic, region two 
the southeast Atlantic, region three the southwest Atlantic, and region four the northwest 
Atlantic.  
 

 

Figure 3.2. Yellowfin tuna fishing mortality posterior probabilities from the model using 
conventional tags combined with each of the electronic tags to estimate movement rate.  
Blue represents the DST model, red represents the PSAT model and the black line 
indicates the actual value used to populate the simulation. 
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Figure 3.3. Yellowfin tuna natural mortality posterior probabilities from the conventional 
tag model using each of the electronic tags to estimate movement rate.  Blue represents 
the DST model, red represents the PSAT model and the black line indicates the actual 
value used to populate the simulation. 
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Figure 3.4. Bigeye tuna fishing mortality posterior probabilities from the conventional 
tag model using each of the electronic tags to estimate movement rate.  Blue represents 
the DST model, red represents the PSAT model and the black line indicates the actual 
value used to populate the simulation. 
 

 
Figure 3.5. Bigeye tuna natural mortality posterior probabilities from the conventional 
tag model using each of the electronic tags to estimate movement rate.  Blue represents 
the DST model, red represents the PSAT model and the black line indicates the actual 
value used to populate the simulation. 



 
 

83 
 

CHAPTER 4: ESTIMATING AGE-SPECIFIC FISHING AND NATURAL 
MORTALITY PARAMETERS FROM A MODIFIED CORMACK-JOLLY-
SEBER SPACE STATE TAGGING MODEL FOR ATLANTIC TROPICAL 
TUNAS 
 
Summary 

A Bayesian space-state Cormack-Jolly-Seber model was used to estimate 

population parameters from simulated tagging data for Atlantic yellowfin, bigeye, and 

skipjack tuna.  The model estimated age-specific natural mortality and age- and region-

specific fishing mortality. The accuracy of these estimates was compared to the accuracy 

of estimates from a not age-specific model estimating a single natural mortality and a 

region-specific fishing mortality.  Uninformative lognormal priors were used for natural 

and fishing mortality rates while movement rates were assumed to be known from an 

external source and are not estimated within the model. Yellowfin tuna results indicated 

that the age-specific fishing mortality parameter estimates were less biased than the not 

age-specific fishing mortality estimates.  Yellowfin natural mortality parameter estimates 

are less biased when estimated using age-specific parameters from a Lorenzen curve 

rather than the not age-specific model.  For bigeye, estimating age-specific parameters 

did not improve the accuracy of the parameter estimates over not age-specific estimates 

for natural mortality.  The natural mortality estimated from the Lorenzen curve produced 

an appreciably positively biased parameter. However, fishing mortality estimates were 

improved when the parameters were age-specific. Skipjack tuna fishing mortality 

estimates were improved by estimating age-specific parameters, although the age specific 

fishing mortality parameters were highly variable in the accuracy of the parameter 

estimates with  biases between -100% to 100% while the not age-specific model 

produced fishing mortality estimates had biases between -100% and 300%. Future stock 
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assessments should consider incorporating age-specific parameters as information 

becomes more available and should evaluate them on a species by species basis, as they 

could significantly change the conclusions on stock status. 

 

Background 

Stock assessments have historically been run assuming there was no age-specific 

heterogeneity in natural mortality parameters for a stock.  With the development of more 

complex stock assessment models such as Stock Synthesis 3 and the processing power to 

run them, there have been attempts to incorporate age-specific natural mortality rates. 

Age specific fishing mortality rates are also estimated in catch-at-age models. It has long 

been understood that natural mortality changes over the course of a fish’s life, generally 

decreasing with age (Brodziak et al., 2011).  Similarly, many fisheries have size limits or 

target a specific portion due to gear selectivity of a population which causes different 

fishing mortalities upon different ages of fish.  Within tagging studies, survival and 

detection parameters are often estimated as constants across time or vary by year, but are 

rarely age-specific. The assumption in these tagging programs is that all ages are equally 

susceptible to tagging and recovery.  In fisheries which have significant age or size 

selectivity, this is not a valid assumption. 

The tagging program in the Atlantic tropical tuna fisheries has significant size 

selectivity in both the tagging process and the recapture process.  The majority of 

yellowfin (Thunnus albacares), skipjack (Katsuwonus pelamis), and bigeye (T. obesus) 

tuna are tagged on baitboats, which target small sized tuna.  The tuna tagged are typically 

between 30 and 60 cm fork length (FL), although larger tuna can be tagged from the US 
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rod and reel fishery in the northwestern Atlantic and the Azores baitboat fishery (Million, 

2013).  Recovered tuna vary in size based upon the fishery from which they are 

recovered.  The surface fisheries typically catch smaller tuna while the longline fishery 

typically catches large tuna.  The baitboat fishery primarily catches small tuna (30-60cm 

FL) around fish aggregating devices (FADs, Anonymous, 2013).  These include juvenile 

yellowfin and bigeye as well as small skipjack tuna.  The purse seine fishery catches 

similar sized tuna around FADs as baitboats, but also catches large adult yellowfin tuna 

in free schools. The longline fishery catches primarily large adult yellowfin and bigeye 

tuna with occasional skipjack as bycatch (Anonymous, 2013).  

The differences in abundance and the size selectivity between gears result in 

fishing mortality rates varying with size or age. Therefore in order to accurately estimate 

parameters from a tagging study, this size/age structure should be taken into account in 

addition to the age-specific natural mortality rates already beginning to be incorporated 

into stock assessments. The Atlantic Ocean Tuna Tagging Program (AOTTP) offers a 

good opportunity to evaluate the interaction between the three fisheries as well as provide 

estimates of the age-specific natural and fishing mortality rates for each species (Million, 

2013).  To evaluate the usefulness of the tagging program, a spatially-explicit age 

structured tagging simulation model was developed by Matt Lauretta and Dan Goethel (in 

review).  Using simulated data from the operating model, a space state modified 

Cormack-Jolly-Seber model was used to estimate fishing (as the probability of capture 

transformed to an instantaneous rate) and natural mortalities (as the apparent survival 

transformed to an instantaneous rate, assuming migration rates are known) from 

hypothetical populations of Atlantic yellowfin, skipjack, and bigeye tuna  
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(Cormack, 1964; Jolly, 1965; Seber, 1965).  The space-state model allows for 

heterogeneity within the estimates of these parameters, and provides a useful framework 

for analyzing tagging studies (Buckland et al., 2004; Gimenez et al., 2007; Patterson et 

al., 2008; Royle, 2008).   

This simulation work provides an example of how incorporating age-specific 

parameters may be useful to other tuna species stock assessments and tagging models by 

examining a suite of species which experience a range of selectivity-at-age patterns.  

There is very little overlap in the bigeye tuna selectivity-at-age between surface fisheries, 

which target exclusively juveniles, and longline fisheries, which target exclusively adults.  

There is much greater overlap in selectivity-at-age for yellowfin tuna between the surface 

and longline fisheries, as a result of the fact that purse seiners catch large adults in free 

schools in addition to the smaller juveniles caught on FADs and longliners catch adult 

yellowfin tuna as well. Skipjack tuna selectivity-at- age is fairly constant as it is targeted 

at all ages in the surface fisheries and not targeted in the longline fisheries. This paper 

simulation-tests a spatially-explicit tagging model to estimate age-specific fishing and 

natural mortality parameters that can be used to 1.) evaluate the improvement in 

parameter estimates from an age-structured model compared to a model where mortality 

is assumed constant across all ages, 2.) provide tagging study design advice for the 

upcoming AOTTP, and 3.) describe a framework to analyze the subsequent tagging data 

collected from the AOTTP.   
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Methods 

Simulation Framework 

Recapture data were simulated using a spatially-explicit age-structured tagging 

simulation model developed by Matt Lauretta and Daniel Goethel (in review) with four 

regions divided east and west by 32°W and north and south by 7°N (Figure 4.1).  The 

parameters used to simulate the tagging study are in Table 4.1. Explanations for all 

symbols (indices, data, and model parameters) used for this analysis are provided in 

Table 4.2. Fishing mortalities were developed by assigning fishing mortalities by the 

relative proportion at age, based upon the catch-at-age caught in each region from the 

previous stock assessments (Anonymous 2011, 2014b, and 2016c) so that ages with 

higher catches had higher fishing mortalities and the average fishing mortality in each 

region is the fishing mortality for the entire stock estimated in the most recent stock 

assessment for each species (Anonymous 2011, 2014b, and 2016c). Natural mortalities 

were specified using a Lorenzen (2005) scaled natural mortality assuming a reference 

natural mortality for each species of 0.5, 0.17, and 0.4 for yellowfin, bigeye, and skipjack 

tunas, respectively.  Natural mortality at age was specified such that Ma would equal Mr  

at age tmax:  

 Ma=Mr(
𝐿𝑟
𝐿𝑎

) 4.1 

where Lr is the length at the reference age r and La is the length of the fish at age a.  

Length at age was calculated using the growth curve for each species: for bigeye tuna, the 

Hallier et al. (2005) growth curve (Anonymous 2015); for yellowfin tuna, the Draganik 

& Pelczarski (1984) growth curve (Walter, et al. 2016); for skipjack, the Hallier and 
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Gaertner (2006) growth curve (Anonymous 2014). In addition, the simulation 

specifications used for creating these data are as following: 

• assumed 100% reporting rates and no tag loss nor tagging mortality 
• The model is spatially structured with four regions, divided by 35°W and 10°N.  

Region one is the northeast Atlantic, region two is the southeast Atlantic, region 
three is the southwest Atlantic, and region four is the northwest Atlantic. 

• Movement is constant across all ages and fish can move once per year starting in 
the year in which they were tagged 

• Six age classes were used for skipjack and yellowfin, with age five as the plus 
group and eight age classes were used for bigeye with age seven as the plus group  

• Fish were tagged on the first day of each year for three years, with an additional 
two years of recoveries after the last tagging event. 

• Fishing effort is assumed to be uniform throughout the entire year. 
• 3000 tags are released in each region in each year, resulting in a total of 36000 

tags released for each species.  
• Age class is assumed to be known for all fish released. 
• The median number of tag returns obtained from 30 simulations were run were 

used in the estimation model. 
 

Estimation Model 

The recapture data were then analyzed using a Bayesian space-state Cormack-Jolly-

Seber model where the survival and detection probabilities contain individual 

heterogeneity (Gimenez et al., 2007; Royle, 2008).  The individual heterogeneity in this 

case is the age of the fish, although additional factors could be included as appropriate. 

This space-state model had three components: two process models and observational 

models with likelihoods for the unobserved or partially observed individual survival state 

process and the movement between regions; and the observational model with the 

likelihood conditional on the state processes (Royle, 2008).  By using this type of a 

model we can create an individual based model where the survival and detection 

probabilities are age-specific and the detection probabilities are dependent upon the 

individual’s state, in this case if the fish has survived and in which region the fish is 
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located. Both natural mortality and fishing morality have the same structural form in the 

estimation model as in the simulation framework.  This ensures that the model could 

estimate unbiased age-specific parameters if the data are informative.  The only change 

between the operational and estimation models was when fishing and natural mortality 

were assumed to be constant across ages. 

From the simulation model we have N=36 000 individual capture histories with T=5 

sampling periods. The capture history for individual i first captured at time fi was the 

vector Ri,t for sampling periods t at fi through T.  The two state processes described the 

process of being alive after the first time step and the process of moving between regions. 

The survival state process was a vector describing if the animal is alive at time t based 

upon a Bernoulli process where the probability of being alive at time t was dependent 

upon the state (alive or dead) in time t-1 

where Ma was the natural mortality rate at age a calculated from size at age and 

Lorenzen scaling of the estimated reference mortality from equation 4.1 and Ai,t  is the 

alive vector so that if an animal is dead its probability of survival is zero, and if it is alive 

its probability of survival was  e-M. Animals which were recovered provided perfect data 

on whether the animal was alive or dead, and the unobserved individual’s state was 

estimated using a Bernoulli likelihood.  Thus, the survival parameters could be estimated 

by a Bernoulli likelihood equal to: 

 
𝐿(𝑆|𝐴,𝑎) = ��𝑆𝑖,𝑡−1𝐴𝑖,𝑡(1 − 𝑆𝑖,𝑡−1)1−𝐴𝑖,𝑡

𝑇

𝑡=1

𝑁

𝑖=1

 4.3 

𝑆𝑖,𝑡 = 𝑒−𝑀𝑎 ∗ 𝐴𝑖,𝑡 4.2 
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where Ai,t was an ixt data vector of indicators if the individual i was alive (1) or dead 

(0) at time step t and Si,t-1 is the probability of surviving the previous time period.  

The movement state process was a matrix describing which region the individual was 

in at sampling period t where the location of the fish was assumed to be known at release 

and the time period of recovery. It was modeled such that fish can move to another region 

within the first year and can move between regions once per year. Movements for 

individual i in sampling period t were described by a categorical process with four 

possible outcomes where the location in the first time period was giving by the 

probability Pk,l for the movement rates for an individual i to move from the mark region k 

to one of other three regions l or to remain in the mark region and in subsequent time 

periods, the probability an individual to move from the region in the previous time period 

(mi,t-1) to one of the other three regions or to remain in the same region. The true 

positions in the recapture and recovery time periods were entered as data, so that the 

movement parameters could be estimated with the following likelihood:  

𝐿(𝑃𝑘,𝑙|𝑚𝑖,𝑡−1,𝑚𝑖,𝑡) = �𝑃𝑘

4

𝑘=1

 4.4 

 

where m is an ixt data matrix giving the location of the individual i in time period t if the 

fish was observed or NA if the fish is not observed.   

The recapture observational model for the conventional tag and the DST tag 

recaptures and the DST tag recaptures was a Bernoulli process where the probability of 

being detected, Ci,t, was conditional upon the individual being alive at sampling period t 

and in region k.  If Ai,t was 0 then the Ci,t was 0; an animal which was dead cannot be 

recovered.  If Ai,t was 1, then  
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𝐶𝑖,𝑡 =  𝜃𝑘,𝑖,𝑡 ∗ 𝑟𝑘 4.5 

where 𝜃𝑘,𝑖,𝑡was the probability of recovering an individual i in region k in time period t 

and  𝑟𝑘 was the reporting rate in region k. Reporting rates were fixed. The probability of 

recovering an individual θ in each region k is a function of the instantaneous fishing 

mortality rate F in region k at age a: 

𝜃𝑘 =  1 − 𝑒−𝐹𝑘,𝑎 4.6 

Fishing mortality at age was estimated as independent parameters in order to evaluate if a 

tagging study could provide enough data to investigate the impacts of the fishery on 

individual age classes.  Previous simulation work has shown that independent age-

specific fishing and natural mortality parameters are well estimated from a tagging 

model, thus convergence was not expected to be a problem (Jiang et al., 2007). The 

likelihood for the tag recapture data was equal to: 

𝐿�𝐶𝑘,𝑎�𝑅� = ��𝐶𝑘,𝑎
𝑅𝑖,𝑗(1 − 𝐶𝑘,𝑎)1−𝑅𝑖,𝑗

𝑇

𝑡=1

𝑁

𝑖=1

 4.7 

where Ck,a was the probability of being recaptured in region k at age a and Ri,t was an ixt 

matrix indicating whether the individual i was recaptured in the time period t with 1 

being recaptured and 0 otherwise. 

A “not age-specific” model was also used to analyze the data from the simulation.  In 

this case the model structure was the same except the natural mortality and fishing 

mortality parameters are constant across age classes.  In both models, uninformative 

lognormal priors were used for natural mortality and fishing mortality.  While it would be 

possible to estimate P, tag shedding, and reporting rate using this model, previous 

simulation work has shown that these parameters are unable to be accurately estimated 



92 
 

 

without the addition of external data sources like double tagging or PSAT tagging (Die et 

al., 2013; Lauretta, 2013) and the objective of this work was to determine if it is possible 

to estimate age-specific mortalities from a conventional tagging study. Therefore, we 

assumed that these values are known and fixed in order to focus on the parameters of 

interest.  Estimated parameters were compared to the true values used in the simulation to 

create the data, with the parameters in the not age-specific model compared to the age 

specific parameters.   

The models were run using OpenBUGS version 3.2.2 rev 1063 (Gilks et al., 1994) for 

at least 25 000 Markov Chain Monte Carlo (MCMC) iterations with a burn in of 5 000 

iterations or until convergence was reached, with a thin of 5 to reduce autocorrelation. 

The convergence of the MCMC to the stationary posterior distribution was evaluated by 

the Gelman-Rubin diagnostic, based on the ratio of inter-chain variance to intra-chain 

variance (Gelman and Rubin, 1992) as well as by examining the trace plots of each 

estimated parameter. Results were analyzed using R 2.15.2 (R Computing Team, 2014; 

Appendix D). 

 

Results 

Using fishing mortalities in line with those reported from the most recent stock 

assessments and using reporting rates estimated in Chapter Two for the tagging study, the 

tag return rate for all the three species was 25% for yellowfin tuna, 27% for bigeye tuna, 

and 31% for skipjack tuna.  While these return rates seem high, the return rate for some 

historical tagging programs in the Atlantic are around 10-30% but can be up to 40-60% 

which includes tag retention and reporting rates much less than 100%, especially for 
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older fish (Hallier, 2000; Gaertner et al., 2004).  The number of tag returns for age one 

fish was the smallest, which is to be expected as they were necessarily recovered in the 

same year they were released and natural mortality rates were highest (Table 4.3).  The 

majority of tag returns occurred in regions one and two, regions with higher fishing 

mortality and more fishing on the younger age classes in the surface fisheries.    

The correlation between natural mortality and fishing mortality for all three 

species was very low for the age-specific models (Table 4.4).  The not age-specific 

models had correlations between the parameters but even these correlations are around 

10% for skipjack and yellowfin tuna and up to 25% for bigeye tuna. 

Yellowfin tuna 

Neither tagging model estimated natural mortality nor fishing mortality well 

(Table 4.5).  Natural mortality was overestimated for both the Lorenzen age-specific 

model and the not age-specific model, with exception of the age one fishing mortality for 

the not-age specific model, which was underestimated (Figure 4.2).  The natural 

mortality estimate was less biased when estimated with a Lorenzen curve than ages 4-6+ 

and more biased than ages 1-2 in the not age-specific model.   

Fishing mortality estimates were generally negatively biased for the age-specific 

model.  The not age-specific fishing mortality estimates were more biased than the not-

age specific models and had some large positively biased parameters (Figure 4.2). 

Region one age-specific parameters ranged were between 0 and -50% biased while the 

not age-specific parameters were between -75% and 100% biased. Region two age-

specific parameters were unbiased for ages 5 and 6+ but were positively biased, for the 

not age-specific parameters.  Region three had the best results for the age-specific 
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parameters, with ages 1-3 unbiased.  The parameter estimates for the not age-specific 

model were also better estimated for region three, although they were still more biased 

than the age-structured parameters.  Region four was not estimated well for either model, 

with very large positive biases for the ages 4-6+ age-specific parameters, and positive 

biases for all the not age-specific parameters. Parameters for young fish had a smaller 

coefficient of variance than the oldest aged fish, which had very broad posterior 

probability distributions.  

Bigeye tuna 

Parameter estimates were generally more biased for bigeye tuna not age-specific 

model than the age-specific model (Table 4.6).  Natural mortality was overestimated for 

both the Lorenzen age-structured model and the not age-specific model (Figure 4.4).  

Like yellowfin tuna, the age-specific natural mortality estimate was more biased than 

ages 1-4 and less biased than ages 5-8+ in the not age-specific model.   

The age-specific model estimated a much less biased fishing mortality parameter 

estimates than the not age-specific model.  All of the age-specific parameter estimates 

were less than 100% biased, most were less than 50% biased, and most of the ages 2-5 

were less than 25% biased (Figure 4.5).  The not age-specific estimates had a large range 

of biases from -50% to over 400% (Table 4.6). The older age classes (ages 5-7+) 

generally had larger variability compared to the younger age classes, except the age one 

fishing mortality estimates for regions three and four also had a large variability, likely 

due to fewer age one recoveries.   

 

 



95 
 

 

Skipjack tuna 

The Lorenzen age-structured model the not age-specific model produced 

positively biased fishing mortality parameter estimates for skipjack tuna (Table 4.7).  

Age-specific natural mortality was less biased than ages 4-6+ and more biased than ages 

1-2 from the not age-specific model, but both models produced parameter estimates over 

100% biased (Figure 4.6).  Fishing mortality parameters were generally negatively 

biased for regions one through three in the age-specific model and positively biased in 

region four.  Parameters in regions one through three were also better estimated than 

those in region four. Most parameter estimates in region four over 100% biased, while all 

the parameter estimates in regions one through three are less than n100% biased, and 

most less than 50% biased. The not age-specific model fishing mortality estimates were 

generally more biased than the age-specific model estimates (Figure 4.7) and some had 

percent biases over 200%. 

 

Discussion 

Incorporating age-specific natural mortality did not significantly improved the 

accuracy of the natural mortality estimate over estimating a not age-specific natural 

mortality for any of the species. Previous simulation work using a Brownie model had 

similar biases in the natural mortality estimates, even when fishing mortality estimates 

were relatively unbiased.  They hypothesized that these biases were due to the models 

being highly parameterized and large correlations between M and F (Polacheck et al., 

2006).  The high number of parameters may also explain the biases seen in the age-
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specific models and the higher correlations between M and F may explain the biases seen 

in the not age-specific models.  

Most fishing mortality estimates were improved by including age-specific 

parameters.  The lower reporting rate in region four clearly causes fishing mortality to be 

overestimated for all three species while the other three regions had relatively low biases 

in the parameter estimates.  This is important to any tagging study as the reporting rate 

clearly impacts the fishing mortality parameter estimates.  Hillary and Eveson (2014) also 

found that reporting rate assumption significantly changed the fishing and natural 

mortality estimates from skipjack tuna tagging data in the Indian Ocean, although the 

total mortality was relatively robust. This work also suggests that total mortality could be 

well estimated from tagging data, as our natural mortality parameters were overestimated 

and fishing mortality parameters were underestimated. Incorporating catch and effort data 

using an integrated model can reduce the biases in these estimates (Polacheck et al., 

2006; Hillary and Eveson, 2014).  

Because the total mortality Z on each species is a sum of the fishing and natural 

mortalities (Z=F+M), we would expect significant correlation between the two 

parameters.  However, the highest correlation between F and M was only 25% in the 

bigeye tuna models.  This may be because the two parameters are estimated from 

different data. Fishing mortality parameters were only estimated from the R matrix, 

which was a matrix of 0s and 1s describing if the fish was recovered and returned and 

was fully observed. The natural mortality parameters are estimated from both the 

observed and unobserved tags, therefore there is significantly more uncertainty in the 

parameter estimates due to the unobserved individuals, which could explain why fishing 
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and natural mortality are not as correlated as expected.  However, the results offer some 

important insights for planning and evaluating the results from future tagging programs. 

Our model assumes that age class at tagging was known without error and that the 

length at age was calculated from the growth curve by assuming there is no variation of 

age at length.  In reality, the majority of the data from the tagging program will not be 

aged, and only include length data in the initial release year from those released and in 

the final year of those recaptured.  However, the benefits of using a Bayesian process and 

including the Lorenzen scaled natural mortality rate are that the estimation model 

framework would allow for the estimation of the age with uncertainty and account for 

any variation in length at age within the model from the available length data (Zhang et 

al., 2009).  This uncertainty could be from differences in individual growth rates or 

measurement error in the length measurements. Including variation in growth parameters 

between individuals would allow for unbiased estimates of the population growth curve.  

Furthermore, if an aging study was included in the tagging program where the growth 

model parameters are estimated from an analysis of hard parts, these data could be 

included in the model to allow for the simultaneous estimation of the growth equation 

with the mortality estimates (Catalano and Allen, 2010).  This would allow for the use of 

this model in fisheries where the fishing mortality rates among fish of the same age may 

be different due to the size-selectivity of the fishery which is not currently accounted for 

in age-specific models.    

  For yellowfin tuna, allowing natural mortality to be estimated with an age 

specific parameter based upon a Lorenzen-scaled reference M significantly improved the 

parameter estimate for the oldest age classes.  This shows that the tagging data on 



98 
 

 

recovered fish contain enough information to estimate the underlying age structure, that 

when ignored, results in significantly biased parameter estimates, especially for those 

which have lower tag returns overall. The improved fishing mortality estimates in the 

age-structured model over the single-parameter model indicated that the age-structure 

was an important feature of the tagging model, and was significant enough that the model 

can estimate many of the age-specific parameters well even when they are assumed to be 

independent parameters. The relatively poor mortality estimates mortalities for age one 

fish are the result of the relatively few tag returns, probably due to the higher natural 

mortality and fishing mortalities of age one fish.  This suggests that in order to estimate 

mortalities for all ages well, the tags should be released so that the youngest fish have a 

slightly higher number of releases, ensuring enough tags are released to be recaptured in 

the first year and in subsequent years from fish tagged at age one because there are more 

fish remaining at large. The simulation releases equal numbers of tags for each of the first 

four age classes, so it may be useful to evaluate a simulation where the number of tags 

released in each age class is proportional to the total mortality with more tags placed on 

younger fish. Evaluating how the proportion of tagged fish in each age class may impact 

the ability to accurately estimate age-specific parameters could be important future work 

for providing additional recommendations to the design of the AOTTP.  

The other parameter estimates were informed both by older tagged fish recaptured 

in the first year of release and tagged fish from younger age classes being recaptured after 

at least a year at liberty.  Key to this method of tagging to be successful is to ensure that 

there are consistently long term recoveries.  This may be a challenge for the AOTTP to 

overcome because over 80% of the tags released in historical Atlantic tagging programs 
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are recaptured in the first few months post release (Ortiz, 2016).  One potential solution 

for ensuring long term recoveries could be to tag fish in areas with low fishing effort in 

addition to areas with higher fishing effort or to tag fish during periods of low fishing 

effort.  Hallier (2005) found that when tagging within the Dakar fishing area, tags which 

were released from January to May had higher times at liberty than those released in July 

through December.  July through December was also a period of high fishing effort when 

70% of the annual catch was made.  This would require more time and effort from the 

tagging operations as these are probably areas or time periods of lower abundance or 

more cryptic abundance.  

Since the fishing mortality estimates were improved when estimated as age-

specific parameters, age-structure should be included when analyzing yellowfin tag 

returns from the Atlantic Ocean Tuna Tagging Program. The various gears used in the 

yellowfin fishery have significant age/size selectivity rather than targeting the entire 

population.  The longline fishery targets large adult yellowfin almost exclusively, the 

baitboat fishery targets small juvenile yellowfin almost exclusively, and the purse seine 

fishery targets small juvenile yellowfin under FADs and adult yellowfin in free schools 

(Anonymous, 2011).  These fisheries are also fairly localized, where baitboat catch 

occurs primarily in the Eastern Atlantic, purse seine catch occurs primarily in the Eastern 

Tropical Atlantic and off the coast of Brazil, and the longline fishery occurs throughout 

the entire Atlantic. This makes the use of the four region model with different fishing 

mortality estimates useful because we could take into account the differing catch at age in 

each region. 
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For bigeye tuna, including age-specific fishing mortality parameters significantly 

improved the estimate over the not age-specific model.  The well estimated fishing 

mortality parameters may be because bigeye tuna have the smallest natural mortality rate 

which allow for more fish to survive to the next age class and be recovered.  Since 27% 

of the tags are recovered, there is enough information to estimate age-specific parameters.  

These recovery rates are higher than those expected from the AOTTP, since the Indian 

Ocean tagging program had recovery rates around 15% (Carruthers et al., 2014), but 

possible in the Atlantic Ocean, where tagging studies have return rates between 7-31% 

(Hallier, 2000; Fisch, 2005).  Also, the reporting rate assumptions significantly changes 

the number of tags expected and the resulting fishing mortality estimates.  Reporting rates 

can be fleet or even vessel specific, but on average the surface fisheries have historically 

had reporting rates between 80-90% and the longline fishery has had reporting rates 

<40% (Carruthers et al., 2014).  Since the majority of the tags returned in the Atlantic are 

expected to come from tuna caught in the purse seine and baitboat fleets, the reporting 

rates in regions one through three are expected for yellowfin tuna, skipjack tuna, and 

juvenile bigeye tuna.  However, since this is an age structured model, it is important to 

note that the reporting rates for older yellowfin tuna and especially adult bigeye tuna 

would be much smaller thus we would expect fewer returns in the oldest age classes 

caught on longlines, similar to the reporting rates in region four.  Since natural mortality 

was estimated as a function of age, fewer returns from the oldest age classes would likely 

have a minimal impact on the parameter estimates.  Fishing mortality was estimated as 

independent parameters, therefore the reduction in the number of adult returns would 

significantly impact the parameter estimates as observed in region four with the 
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positively biased and poorly estimated fishing mortalities.  Using a function to estimate 

fishing mortality, however, would reduce this impact and may be useful future research. 

The range of fishing mortalities used to simulate the bigeye tuna data was large 

allowing for the model to differentiate between the fishing mortality for each age class.  

The model may be able to produce well estimated age-specific fishing mortality 

parameters because the input values are different enough to allow the model to 

differentiate between them.  Whenever the age-specific model is run with age-specific 

fishing mortalities which were all within 0.05-0.25, the model does not estimate unbiased 

parameters (results not shown).   

Skipjack is perhaps the least likely to benefit from age-structured fishing 

mortality parameter estimates because skipjack are not caught by longline vessels except 

as occasional bycatch and are caught at all ages in the surface fisheries.  However, the 

model results showed that the fishing mortality estimates were improved by the age-

specific model.  The range of age-specific fishing mortalities used to populate the tagging 

simulation was large, however, so the model was able to differentiate between the 

different ages. 

The comparison between the age structured model and a not age-specific model 

shows that when the fishery is significantly age structured, such as the tropical tuna 

fisheries in general, a model with age specific fishing mortality generally produces less 

biased parameter estimates and reporting rates play an important role in providing 

unbiased fishing mortality parameter estimates.  However, a fully age structured model 

may not be necessary and a tagging model may be able to account for the different 

selectivities of the gears with fewer parameters than those used here.  Ensuring that the 
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true F parameters were different for each age allowed the model to estimate them 

independently, when within region age-parameters are too similar the model produced 

worse parameter estimates because the model was over parameterized.  This means that 

unless we are sure each age has a different fishing mortality, we should perhaps 

parameterize the model so that we are estimating parameters that reflect the true fishing 

pressure. For example for bigeye two fishing mortality parameters may be appropriate, 

one for the surface fisheries and one for the longline fisheries might produce more 

accurate fishing mortality estimates than a fully age structured model while still 

accounting for the changed targeting by gear with age.  The surface gears, purse seiners 

and baitboats, catch almost exclusively juvenile bigeye tuna, until they reach 

approximately three years of age. The longline vessels catch adult bigeye tuna over the 

age of three (ICCAT, 2013).  Using gear specific fishing mortality rates and grouping 

bigeye into two classes, juvenile and adult fish, when estimating parameters from the 

tagging model would still allow the model to capture the change in targeting between the 

surface gears and the longline gear while estimating fewer parameters than the fully age 

structured models.  

It is possible that an age structured fishing mortality isn’t necessary for skipjack 

tuna because they are targeted by the surface fisheries at all ages and caught only as 

bycatch in the longline fisheries.  It might be useful to use two different fishing 

mortalities for FAD caught and free school skipjack catches, as the free schools tend to 

be older individuals and FAD schools tend to be made up of young individuals.  For 

yellowfin tuna, an age structured fishing mortality might be best because the changes 

between different fleets are more gradual and tend to overlap, with both purse seiner and 



103 
 

 

longliners catching adult fish and both baitboat and purse seiners catching young fish.  

Fishery specific or FAD and free school specific fishing mortalities probably would not 

account for all the heterogeneity in selectivity yellowfin tuna experiences as it grows 

between different fisheries. Using gear specific or school targeting specific fishing  

mortalities would reduce the number of parameters estimated while maintaining the 

heterogeneity observed in the size-selectivity of the three gears for the three tropical 

tunas.   

The biases observed in the estimates of fishing and natural mortality were 

surprising because the model does produce unbiased estimates of a single parameter 

when all other parameters are fixed.  This means that model is not structurally biased.  

However, The model does produce relatively unbiased total mortality estimates, which is 

expected from a tagging model (Hillary and Eveson, 2014).  Other work estimating age-

specific mortality parameters using catch data and/or tagging data have had trouble 

estimating age-specific natural mortality well, even when fishing mortality was accurate.  

Clark (1999) found that using an erroneous natural mortality rate in a stock assessment 

model resulted in biased fishing mortality estimates, but age-specific selectivity could 

still be estimated well.  Other results suggest it is possible to separate the elements of 

natural and fishing mortality, however Aanes et al. (2007) had difficulties estimating the 

absolute value of natural mortality in their simulations using catch-at-age data.  Many 

have recommended the use of an integrated model to use both tagging data and catch at 

age data to estimate the mortality parameters (Polacheck et al., 2006).  The catch-at-age  
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data would necessarily be calculated for each region and the tagging data would be able 

to be used to estimate movement rates as it is used in many other integrated models 

(Hulson et al., 2011).  

Tropical tuna stock assessments have historically had few spatial components 

incorporated into the model structure (Anonymous, 2014b; Anonymous, 2016b).  

Recently, as scientists have recognized that these spatial components are an important 

part of tropical tuna population dynamics, attempts have been made to use spatially 

explicit models like Stock Synthesis 3 in the assessments.  The most recent bigeye tuna 

stock assessment used a three region model with the Atlantic Ocean divided into north, 

south, and central regions to reflect the “primary” central region with the highest catches 

and dominated by catch from the surface fisheries, and the north and south regions which 

are primarily longline fleets and have much smaller annual catches (Anonymous, 2016c). 

Tagging data was not used to estimate movements between these regions because they 

did not accurately describe movements between the three regions, primarily due to the 

lack of tagging in the south region (Anonymous, 2016c). Further, analyses of catch data 

show that there are significant differences in the catch composition of the surface 

fisheries targeting all three tropical tunas in the Eastern Atlantic (Fonteneau et al., 

2000a). Some of these differences can be attributed to fleets using different techniques in 

these areas such as cooperative FAD fishing in the Gulf of Guinea where baitboats and 

purse seiners cooperate to catch a school of fish associated with a FAD (Anonymous, 

2016b) compared to the technique used by baitboats in Senegal where the boat serves as a 

FAD and maintains a school of fish associated with it (Hallier and Delgado de Molina, 

2000). Some of these differences can also be attributed to the physiological and 
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biological differences between the three species which drive their annual movements and 

ontogenetic changes in habitat use such as the movement of bigeye tuna from the surface 

to the thermocline when they reach maturity (ICCAT, 2013). The estimation model 

showed that region- and age-specific fishing mortalities are estimable from tagging data.  

Instead of estimating a single fishing mortality for each stock, estimating region-specific 

fishing mortalities could identify regions where fishing effort should be decreased to 

reduce overfishing, or areas where fishing effort could be increased without overfishing 

the stock.  This could allow for a more regional management of the stock including 

evaluating the effectiveness of marine closures (Sippel et al., 2015), such as the two 

month closure to FAD fishing of an area of the Gulf of Guinea (Miller and Andersen, 

2008; Anonymous, 2016a). 

The model described above shows that age-specific parameters are likely an 

important feature of tagging models and can be estimated with reasonable accuracy, even 

when they are treated as independent parameters with a space-state model.  Incorporating 

a functional relationship between the age-specific natural mortalities for each species 

results in a fairly accurate parameter estimate for at least yellowfin and skipjack tuna, and 

increases the precision of the parameter estimates.  It is likely that a similar effect on 

precision would be expected if a functional relationship was used for fishing mortality 

such as a selectivity curve, or if fishing mortality was specified based upon the structure 

of the fisheries, which would also reduce the number of parameters estimated.  Based 

upon the model results, it is recommended that the AOTTP strive to tag fish of all sizes in 

order to ensure that the change in fishing mortality as the fish ages is captured in the 

subsequent data analysis.  Strategies should be discussed to reduce the number of short-
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term recaptures, including not tagging only during periods of high fishing effort where 

there is a high probability of a short term recovery (Hallier, 2005), and tagging within 

fishing area closures (Anonymous, 2016a) which are already implemented in the Gulf of 

Guinea and areas where fishing effort has historically been low. This is to ensure the data 

are informative enough to estimate the parameters related to the complexity inherent in 

the Atlantic tropical tuna fisheries. 
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Table 4.1. Parameters used to simulate a tagging study for yellowfin, skipjack, and bigeye tuna. 

Yellowfin          
  Age 1 Age 2 Age 3 Age 4 Age 5 Age 6+  
M  1.7 1.0 0.81 0.70 0.64 0.60   
F Region 1 0.15 0.25 0.35 0.5 0.65 0.75   
 Region 2 0.75 0.65 0.5 0.35 0.25 0.15   
 Region 3 0.45 0.4 0.35 0.3 0.25 0.2   
 Region 4 0.2 0.25 0.3 0.35 0.4 0.45   
Proportion Tagged 0.2 0.2 0.2 0.2 0.1 0.1   
          
P  Region 1 Region 2 Region 3 Region 4     
 Region 1 0.948 0.05 0.001 0.001     
 Region 2 0.05 0.6 0.15 0.2     
 Region 3 0.001 0.15 0.799 0.05     
 Region 4 0.001 0.2 0.05 0.749     
Reporting Rate 0.8 0.9 0.8 0.4     
          
Age-Length Function 𝐿𝑒𝐿𝐿𝐿ℎ𝑎𝑎𝑎 = 192.4(1 − 𝑒𝑥𝑝−0.37(𝑎𝑎𝑎+0.003)) Draganik and Pelczarski (1984) 
Bigeye          
  Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8+ 
M  0.68 0.44 0.35 0.30 0.26 0.24 0.23 0.21 
F Region 1 0.5 0.4 0.3 0.1 0.2 0.3 0.4 0.45 
 Region 2 0.5 0.45 0.4 0.3 0.25 0.2 0.15 0.1 
 Region 3 0.05 0.05 0.1 0.25 0.3 0.35 0.4 0.45 
 Region 4 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.45 
 
 

0.15 0.15 0.15 0.15 0.1 0.1 0.1 0.1 
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Proportion Tagged 
P  Region 1 Region 2 Region 3 Region 4     
 Region 1 0.749 0.2 0.001 0.05     
 Region 2 0.2 0.65 0.05 0.1     
 Region 3 0.001 0.05 0.749 0.2     
 Region 4 0.05 0.1 0.2 0.65     
Reporting Rate 0.8 0.9 0.8 0.4     
         
Age-Length Function 𝐿𝑒𝐿𝐿𝐿ℎ𝑎𝑎𝑎 = 217.3(1 − 𝑒𝑥𝑝−0.18(𝑎𝑎𝑎+0.709)) Hallier et al. (2004) 

 
Skipjack          
  Age 1 Age 2 Age 3 Age 4 Age 5 Age 6+  
M  1.8 1.0 0.75 0.63 0.55 0.51   
F Region 1 0.3 0.4 0.7 0.8 0.8 0.9   
 Region 2 0.5 0.8 1 0.8 0.5 0.4   
 Region 3 0.1 0.4 0.6 0.9 0.9 1   
 Region 4 0.1 0.2 0.3 0.2 0.1 0.1   
Proportion Tagged 0.2 0.2 0.2 0.2 0.1 0.1   
P  Region 1 Region 2 Region 3 Region 4     
 Region 1 0.848 0.15 0.001 0.001     
 Region 2 0.15 0.839 0.01 0.001     
 Region 3 0.001 0.01 0.889 0.1     
 Region 4 0.001 0.001 0.1 0.898     
Reporting Rate 0.8 0.9 0.8 0.4     
Age-Length Function 𝐿𝑒𝐿𝐿𝐿ℎ𝑎𝑎𝑎 = 97.3(1 − 𝑒𝑥𝑝−0.251(𝑎𝑎𝑎))  Hallier and Gaertner (2006) 
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Table 4.2. List of indices, model variables, data, and model parameters used for this 
analysis. 
 

 
 
  

Symbol Description 
Indices  
N Number of tags released 
T Number of time periods 
i Individual 
t time period 
f Cohort 
k, l Regions 
a Age-class 
Data  
Ai,t Indicator if the individual i is alive (1) or dead (0), unobserved (NA) in time 

period t 
Ri,t Indicator if the individual i is returned (1) or not (0) in time period t 
mi,t Location of individual i in time period t, 1-4 if observed, NA if not 
Model Parameters 
Si,t Probability of survival for individual i in time period t 
Ci,t Probability of detection for individual i in time period t 
θi,t Probability of recapture for individual i in time period t 
Ma Instantaneous fishing mortality at age a 
Mr Instantaneous fishing mortality at the reference age r 
Lr Length at reference age r 
La Length at age 
Fk,a Instantaneous fishing mortality in region k at age a 
rk Reporting Rate in region k 
Pk,l Annual movement rate from region k to region l 



110 
 

 

Table 4.3.  Number of tag returns for each species by age and region. 
Yellowfin Tuna 

 Region  
Age 1 2 3 4 Grand Total 

1 170 508 320 198 1196 
2 336 584 397 330 1647 
3 491 570 408 424 1893 
4 648 434 423 558 2063 
5 384 194 185 336 1099 

6+ 410 137 181 392 1120 
Grand Total 2439 2427 1914 2238 9018 
    Percent 

Returned 25% 

Bigeye Tuna 
 Region  
Age 1 2 3 4 Grand Total 

1 610 678 156 93 1537 
2 547 752 237 148 1684 
3 441 699 445 267 1852 
4 460 639 620 350 2069 
5 172 129 171 104 576 
6 169 102 195 100 566 
7 240 81 233 127 681 

8+ 252 76 224 152 704 
Grand Total 2891 3156 2281 1341 9669 
    Percent 

Returned 27% 

Skipjack Tuna 
 Region  
Age 1 2 3 4 Grand Total 

0 238 414 140 131 923 
1 507 692 488 283 1970 
2 731 891 727 378 2727 
3 770 856 929 289 2844 
4 459 338 485 119 1401 

5+ 471 311 538 114 1434 
Grand Total 3176 3502 3307 1314 11299 
    Percent 

Returned 31% 
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Table 4.4. Correlation matrix between natural mortality and fishing mortality parameters 
for the Lorenzen Models and the Not age-specific Models for each species.  
 Lorenzen M Models   Not age-specific 

Models 
 YFT BET SKJ   YFT BET SKJ 
[region, age] Mr Mr Mr   M M M 
F at age[1,1] -0.0008 0.029 -0.009  F Region 1 0.130 0.248 0.078 
F at age[1,2] 0.003 0.012 -0.035  F Region 2 0.078 0.156 0.102 
F at age[1,3] -0.005 -0.032 -0.031  F Region 3 0.124 0.228 0.099 
F at age[1,4] -0.008 0.034 0.037  F Region 4 0.118 0.100 0.107 
F at age[2,1] 0.016 0.052 0.052      
F at age[2,2] 0.032 -0.018 0.025      
F at age[2,3] 0.031 0.040 -0.003      
F at age[2,4] -0.007 0.009 -0.015      
F at age[3,1] 0.042 0.063 0.055      
F at age[3,2] 0.021 0.054 0.010      
F at age[3,3] 0.038 0.020 0.041      
F at age[3,4] 0.021 0.056 0.040      
F at age[4,1] 0.034 0.029 0.018      
F at age[4,2] 0.037 0.039 0.064      
F at age[4,3] 0.057 0.060 0.046      
F at age[4,4] 0.019 0.065 0.020      
F at age[5,1] 0.077 0.079 0.066      
F at age[5,2] 0.072 0.088 0.062      
F at age[5,3] 0.047 0.114 0.018      
F at age[5,4] 0.070 0.133 0.071      
F at age[6,1] 0.074 0.087 0.028      
F at age[6,2] 0.070 0.096 0.032      
F at age[6,3] 0.058 0.087 0.019      
F at age[6,4] 0.037 0.096 0.087      
F at age[7,1]  0.075       
F at age[7,2]  0.061       
F at age[7,3]  0.069       
F at age[7,4]  0.077       
F at age[8,1]  0.057       
F at age[8,2]  0.014       
F at age[8,3]  0.040       
F at age[8,4]  0.055       
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Table 4.5. Estimated parameters from the yellowfin tuna space state models.  The age 
structured parameter values from the simulation model (actual) were used to estimate the 
percent bias for both the age-specific and the not-age-specific space state model. 

Parameter Actual Value Estimated 
Mean 

Mean Percent 
Bias CV 

Age specific parameters    
F Region 1          Age 1 0.15 0.08 -81% 0.10 

Age 2 0.25 0.17 -78% 0.06 
Age 3 0.35 0.27 -61% 0.05 
Age 4 0.5 0.36 44% 0.05 
Age 5 0.65 0.54 -57% 0.05 

Age 6+ 0.75 0.59 -41% 0.05 
F Region 2 Age 1 0.75 0.33 -34% 0.06 

Age 2 0.65 0.40 -55% 0.05 
Age 3 0.5 0.37 -39% 0.05 
Age 4 0.35 0.27 -95% 0.06 
Age 5 0.25 0.24 -84% 0.07 

Age 6+ 0.15 0.15 -80% 0.09 
F Region 3 Age 1 0.2 0.20 -67% 0.06 

Age 2 0.25 0.25 -72% 0.06 
Age 3 0.3 0.27 -45% 0.05 
Age 4 0.35 0.23 -70% 0.06 
Age 5 0.4 0.22 -86% 0.07 

Age 6+ 0.45 0.19 -61% 0.08 
F Region 4 Age 1 0.45 0.24 -66% 0.09 

Age 2 0.4 0.41 -49% 0.07 
Age 3 0.35 0.50 26% 0.07 
Age 4 0.3 0.72 -28% 0.06 
Age 5 0.25 0.95 -24% 0.08 

Age 6+ 0.2 1.46 485% 0.11 

    
 Lorenzen Reference      

M  0.54 0.98 82% 0.01 

     Not Age Specific Parameters    
M                             Age 1 1.74 1.44 -17% 0.01 

Age 2 1.03 1.44 40% 0.01 
Age 3 0.81 1.44 78% 0.01 
Age 4 0.70 1.44 106% 0.01 
Age 5 0.64 1.44 125% 0.01 

Age 6+ 0.61 1.44 136% 0.01 
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     F region 1 Age 1 0.15 0.29 -27% 0.02 
Age 2 0.25 0.29 -63% 0.02 
Age 3 0.35 0.29 -58% 0.02 
Age 4 0.5 0.29 17% 0.02 
Age 5 0.65 0.29 -77% 0.02 

Age 6+ 0.75 0.29 -71% 0.02 
F region 2 Age 1 0.75 0.30 -40% 0.03 

Age 2 0.65 0.30 -67% 0.03 
Age 3 0.5 0.30 -50% 0.03 
Age 4 0.35 0.30 -94% 0.03 
Age 5 0.25 0.30 -80% 0.03 

Age 6+ 0.15 0.30 -60% 0.03 
F region 3 Age 1 0.2 0.23 -62% 0.03 

Age 2 0.25 0.23 -75% 0.03 
Age 3 0.3 0.23 -54% 0.03 
Age 4 0.35 0.23 -70% 0.03 
Age 5 0.4 0.23 -85% 0.03 

Age 6+ 0.45 0.23 -54% 0.03 
F region 4 Age 1 0.45 0.62 -11% 0.03 

Age 2 0.4 0.62 -22% 0.03 
Age 3 0.35 0.62 56% 0.03 
Age 4 0.3 0.62 -38% 0.03 
Age 5 0.25 0.62 -50% 0.03 

Age 6+ 0.2 0.62 149% 0.03 
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Table 4.6. Estimated parameters from the bigeye tuna space state models.  The age 
structured parameter values from the simulation model (actual) were used to estimate the 
percent bias for both the age-specific and the not-age-specific space state model. 

Parameter Actual Value Estimated 
Mean 

Mean Percent 
Bias 

CV 

Age specific parameters    
F Region 1         Age 1       0.5 0.37 -26% 0.05 

Age 2 0.4 0.35 -12% 0.05 
Age 3 0.3 0.27 -11% 0.05 
Age 4 0.1 0.11 5% 0.07 
Age 5 0.2 0.25 24% 0.06 
Age 6 0.3 0.39 31% 0.07 
Age 7 0.4 0.52 31% 0.07 

Age 8+ 0.45 0.53 18% 0.07 
 F Region 2              Age 1 0.5 0.32 -37% 0.05 

Age 2 0.45 0.39 -14% 0.05 
Age 3 0.4 0.40 -1% 0.05 
Age 4 0.3 0.32 8% 0.05 
Age 5 0.25 0.34 38% 0.06 
Age 6 0.2 0.33 63% 0.07 
Age 7 0.15 0.21 39% 0.09 

Age 8+ 0.1 0.16 56% 0.10 
F Region 3 Age 1 0.05 0.06 16% 0.11 

Age 2 0.05 0.06 26% 0.09 
Age 3 0.1 0.11 7% 0.07 
Age 4 0.25 0.28 11% 0.05 
Age 5 0.3 0.41 37% 0.06 
Age 6 0.35 0.47 35% 0.07 
Age 7 0.4 0.49 22% 0.07 

Age 8+ 0.45 0.47 5% 0.07 
F Region 4 Age 1 0.05 0.10 97% 0.12 

Age 2 0.1 0.13 26% 0.10 
Age 3 0.15 0.22 44% 0.08 
Age 4 0.2 0.31 54% 0.07 
Age 5 0.25 0.41 63% 0.08 
Age 6 0.3 0.46 54% 0.10 
Age 7 0.4 0.63 57% 0.10 

Age 8+ 0.45 0.61 35% 0.10 
     
Lorenzen Reference 
M 

0.17 0.57 235% 0.01 
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Not Age Specific Parameters    
M Age 1 0.70 0.84 20% 0.01 

Age 2 0.44 0.84 69% 0.01 
Age 3 0.35 0.84 111% 0.01 
Age 4 0.30 0.84 141% 0.01 
Age 5 0.26 0.84 181% 0.01 
Age 6 0.24 0.84 212% 0.01 
Age 7 0.23 0.84 237% 0.01 

Age 8+ 0.21 0.84 301% 0.01 
     
F region 1 Age 1 0.5 0.28 -43% 0.02 

Age 2 0.4 0.28 -29% 0.02 
Age 3 0.3 0.28 -5% 0.02 
Age 4 0.1 0.28 185% 0.02 
Age 5 0.2 0.28 42% 0.02 
Age 6 0.3 0.28 -5% 0.02 
Age 7 0.4 0.28 -29% 0.02 

Age 8+ 0.45 0.28 -37% 0.02 
F region 2  Age 1 0.5 0.32 -36% 0.03 

Age 2 0.45 0.32 -29% 0.03 
Age 3 0.4 0.32 -20% 0.03 
Age 4 0.3 0.32 7% 0.03 
Age 5 0.25 0.32 28% 0.0 
Age 6 0.2 0.32 60% 0.03 
Age 7 0.15 0.32 113% 0.03 

Age 8+ 0.1 0.32 220% 0.03 
F region 3 Age 1 0.05 0.20 308% 0.03 

Age 2 0.05 0.20 308% 0.03 
Age 3 0.1 0.20 104% 0.03 
Age 4 0.25 0.20 -18% 0.03 
Age 5 0.3 0.20 -32% 0.03 
Age 6 0.35 0.20 -42% 0.03 
Age 7 0.4 0.20 -49% 0.03 

Age 8+ 0.45 0.20 -55% 0.03 
F region 4 Age 1 0.05 0.26 420% 0.04 

Age 2 0.1 0.26 160% 0.04 
Age 3 0.15 0.26 73% 0.04 
Age 4 0.2 0.26 30% 0.04 
Age 5 0.25 0.26 4% 0.04 
Age 6 0.3 0.26 -13% 0.04 
Age 7 0.4 0.26 -35% 0.04 

Age 8+ 0.45 0.26 -42% 0.04 
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Table 4.7. Estimated parameters from the skipjack tuna space state models.  The age 
structured parameter values from the simulation model (actual) were used to estimate the 
percent bias for both the age-specific and the not-age-specific space state model. 

Parameter Actual Value Estimated 
Mean 

Mean Percent 
Bias CV 

Age Specific Parameters    
F Region 1 Age 1 0.3 0.13 -57% 0.009 

Age 2 0.4 0.27 -31% 0.02 
Age 3 0.7 0.55 -21% 0.02 
Age 4 0.8 0.55 -31% 0.02 
Age 5 0.8 0.64 -20% 0.03 

Age 6+ 0.9 0.71 -21% 0.04 
F Region 2  Age 1 0.5 0.24 -52% 0.01 

Age 2 0.8 0.44 -45% 0.02 
Age 3 1 0.68 -32% 0.03 
Age 4 0.8 0.56 -30% 0.02 
Age 5 0.5 0.43 -15% 0.02 

Age 6+ 0.4 0.33 -17% 0.02 
F Region 3 Age 1 0.1 0.04 -57% 0.006 

Age 2 0.4 0.29 -27% 0.02 
Age 3 0.6 0.45 -26% 0.02 
Age 4 0.9 0.70 -22% 0.03 
Age 5 0.9 0.75 -16% 0.04 

Age 6+ 1 0.78 -22% 0.04 
F Region 4 Age 1 0.1 0.13 27% 0.01 

Age 2 0.2 0.31 53% 0.03 
Age 3 0.3 0.63 112% 0.04 
Age 4 0.2 0.47 137% 0.06 
Age 5 0.1 0.29 185% 0.03 

Age 6+ 0.1 0.27 170% 0.03 
     
Lorenzen Reference 
M 0.4 0.85 112% 0.009 

   
  Not Age Structured Parameters    

M Age 1 0.3 1.55 -14% 0.01 
Age 2 0.4 1.55 53% 0.01 
Age 3 0.7 1.55 105% 0.01 
Age 4 0.8 1.55 146% 0.01 
Age 5 0.8 1.55 177% 0.01 

Age 6+ 0.9 1.55 202% 0.01 
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F region 1 Age 1 0.3 0.43 42% 0.02 
Age 2 0.4 0.43 6% 0.02 
Age 3 0.7 0.43 -39% 0.02 
Age 4 0.8 0.43 -47% 0.02 
Age 5 0.8 0.43 -47% 0.02 

Age 6+ 0.9 0.43 -53% 0.02 
F region 2 Age 1 0.5 0.45 -9% 0.02 

Age 2 0.8 0.45 -43% 0.02 
Age 3 1 0.45 -55% 0.02 
Age 4 0.8 0.45 -43% 0.02 
Age 5 0.5 0.45 -9% 0.02 

Age 6+ 0.4 0.45 13% 0.02 
F region 3 Age 1 0.1 0.43 333% 0.02 

Age 2 0.4 0.43 8% 0.02 
Age 3 0.6 0.43 -28% 0.02 
Age 4 0.9 0.43 -52% 0.02 
Age 5 0.9 0.43 -52% 0.02 

Age 6+ 1 0.43 -57% 0.02 
F region 4 Age 1 0.1 0.36 260% 0.03 

Age 2 0.2 0.36 80% 0.03 
Age 3 0.3 0.36 20% 0.03 
Age 4 0.2 0.36 80% 0.03 
Age 5 0.1 0.36 260% 0.03 

Age 6+ 0.1 0.36 260% 0.03 
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Figure 4.1. Four region model used with region one the northeast Atlantic, region two 
the southeast Atlantic, region three the southwest Atlantic, and region four the northwest 
Atlantic.  
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Figure 4.2. Posterior distributions of yellowfin tuna natural mortality as percent bias 
compared to the true parameter.  Black line indicates 0% bias. 
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Figure 4.3.  Posterior distribution of yellowfin tuna age- and region- specific fishing 
mortality as percent bias compared to the true parameter. Black line indicates 0% bias. 
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Figure 4.4. Posterior distributions of bigeye tuna natural mortality as percent bias 
compared to the true parameters. Black line indicates 0% bias. 
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Figure 4.5.  Posterior distribution of bigeye tuna age- and region- specific fishing 
mortality as percent bias compared to the true parameter.  Black line indicates 0% bias. 
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Figure 4.6. Posterior distributions of skipjack tuna natural mortality as percent bias 
compared to the true parameters. Black line indicates 0% bias. 
 

 
Figure 4.7.  Posterior distribution of skipjack tuna age- and region- specific fishing 
mortality as percent bias compared to the true parameter.  Black line indicates 0% bias. 
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CHAPTER 5: SYNTHESIS, RECOMMENDATIONS, AND CONCLUSIONS 

 Large-scale tagging programs can provide a wealth of fishery independent data on 

important life history parameters such as growth, maturity, stock structure, movement 

rates, fishing mortality and natural mortality. These parameters are necessary and 

valuable inputs to stock assessment models and when they are not known precisely they 

lead to highly uncertain assessments of stock status.  This uncertainty makes providing 

management advice challenging, and led to the development of the Atlantic Ocean Tuna 

Tagging Program (AOTTP). The AOTTP provides an excellent opportunity to collect 

tagging  data from the relatively data-poor Atlantic tropical tuna stocks. To help ensure 

that the AOTTP meets its goals and is successful we have used, as proposed by Leroy et 

al., 2015 a simulation model to test various tagging design scenarios and to evaluate the 

performance of different types of tags. The large tagging programs in the Pacific and 

Indian Oceans as well as the small tagging programs in the Atlantic Ocean, were used to 

parameterize the simulations enhancing the probability that simulated populations are a 

reasonable approximation for reality.   

  

Analysis of Historical Tagging Data 

The analysis of historical tagging data showed there was not enough data to 

estimate basin-wide movement rates from the four regions used in chapters three and 

four, with the Atlantic divided east and west at 32°W and north and south at 7°N, 

primarily due to the concentration of tags in the eastern Atlantic with few release and 

recapture events in the western Atlantic.  This analysis highlighted the necessity of 

tagging fish throughout the entire Atlantic, rather than in localized areas. Furthermore, 
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the majority of the data were from short-term recoveries which provide information on 

the area-specific parameters such as the local fishing mortality but are limited in their use 

for estimating stock-wide parameters. However, the analysis provided quantitative 

movement rates within the Eastern Atlantic estimated from the tagging data which 

supported the previous hypotheses about tropical tuna movements. Previous hypotheses 

indicate tropical tuna movements north out of the Gulf of Guinea in the spring and a 

return to the Gulf in the fall, along with seasonal east and west movements by yellowfin 

from the Caribbean Sea to the Gulf of Guinea for reproduction (Miyabe and Bard, 1986; 

Hallier et. al, 2004; Zagalia et. al, 2004; Hallier, 2005; Carruthers et. al, 2010).  The 

CPUE data analysis provided information of the seasonal movement of the three species 

into the northwestern Atlantic over the course of the boreal summer.  These movements 

are likely driven in part by their response to the changes in water temperature (Graham, 

1974; Brill, 1994; Brill and Lutcavage, 2001) and their response to prey movements, as 

they are known to be fairly opportunistic predators (Lebourges-Dhaussy et al., 2000; 

Menard et al., 2006). 

The movement rates estimated by the tagging model and described by the CPUE 

data suggest that significant exchange occurs between regions within the eastern Atlantic 

Ocean, movements that should be taken into account whenever the stocks are assessed, as 

many of the baitboat and purse seine fleets targeting tropical tunas are localized and 

employ different targeting techniques (Fonteneau et al., 2000a).  The incorporation of 

spatially explicit assessment models into tropical tuna stock assessments has begun  
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(Anonymous, 2016c), and the results of the AOTTP is seen as a necessary step in 

obtaining parameter estimates on the stock structure which can help support the 

development of these models (Million, 2013).   

 

Recommendations for the AOTTP 

The simulation work for the AOTTP provided many insights on what kind of 

information is necessary to have a successful tagging program where the data can be used 

to estimate fishing and natural mortality and stock structure and movement rates.    

Previous research with this simulation showed that releasing conventional tags equally 

between regions produces the least biased fishing and natural mortality parameter 

estimates (Die et al., 2013; Lauretta, 2013).  The analysis of historical tag data, 

concentrated in the eastern Atlantic showed that basin-wide movement rate estimates 

require tag releases and recoveries to occur in all regions.  The recommendation for the 

AOTTP is to distribute tagging efforts throughout the Atlantic dispersing tags as equally 

as possible.  This ensures parameter estimates reflect the entire population or stock, rather 

than the regions where the majority of the tags are released. 

The analysis of the historical tagging data and the parameterization of the 

simulation framework required the development of priors for use in the Bayesian 

estimation models.  Using a meta-analysis of historical Atlantic tagging programs and 

incorporating parameters estimated from tagging studies in the Indian and Pacific 

Oceans, instantaneous tag shedding rate and tag reporting rate priors were developed.  It 

is recommended that these informative priors be used when analyzing the tagging data 

from the AOTTP.  
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The electronic tagging simulation showed that the fishing and natural mortality 

parameter estimates are very similar to each other, with the DST tags producing better 

parameter estimates in regions where there are large movement rates and low residency 

rates but PSAT tags performing better in areas with low reporting rates.  The biggest 

disadvantages for using popup satellite archival tags (PSAT) are that only large fish can 

be tagged and PSATs are rarely at large for more than a year (Musyl et al., 2011; 

Thorstad et al., 2013; Jepsen et al., 2015).  Movement rates estimated from these tags 

only apply to large tuna and do not provide information on juvenile movements.  The 

short time at large for PSAT tags means that the movement information is limited.  These 

tags are best suited for habitat studies, bycatch survival, handling mortality from tagging, 

and short term movements when there is low chance of DST returns rather than long-term 

movement studies (Cooke et al., 2013a).   

Data storage tags, however are well adapted to long term studies as tag loss is 

generally low, data can be retrieved even if the batteries die, and DSTs typically have a 

much longer time at liberty (Ådlandsvik et al., 2007; Thorstad et al., 2013; Jepsen et al., 

2015). The biggest disadvantage to DSTs is that recoveries are dependent upon returns 

from the fishery.  This means that more tags must be released to achieve high enough 

return rates to provide sufficient data on movements.  There is also a risk of bias if tag 

return rates vary in ways that are not adequately incorporated into the estimation model. 

However, the model results indicate that even when return rates are similar to those 

expected from conventional tags, movement rates are estimable from the data and 

provide good estimates of fishing and natural mortality parameters.  These return rates 

are within the expected range of return rates from conventional tags and DSTs  
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(Hallier, 2000; Block et al., 2005; Schaefer et al., 2007; Walli et al., 2009; Whitlock et 

al., 2012; Teo et al., 2013).  The best way to ensure tags are returned when they are 

caught is to implement a well-planned publicity and recovery campaign (Million, 2013).  

This type of campaign should be implemented in all areas where tropical tuna caught in 

the Atlantic are expected to be landed.  Since this is necessary for the recovery of 

conventional tags, the additional information regarding DSTs will not be an undue 

burden to the tagging program and will significantly increase the probability of tags being 

returned.  Therefore it is recommended that the AOTTP use DSTs to provide information 

on movements and stock structure and ensure that the publicity campaign for the AOTTP 

include information on how to return DSTs. A combination of PSAT and DST tags may 

eliminate the concerns about low reporting rates, however it is unknown if the reduced 

number of each electronic tag released would impact the parameter estimates.  

The age-structured simulation addressed questions about potential problems with 

the tagging platform proposed for the AOTTP. Tagging operations will primarily occur 

on baitboat vessels, from which large numbers of tropical tunas have been successfully 

tagged in other tagging programs (Hallier and Fonteneau, 2015), although the majority of 

the fish tagged will be small and/or juveniles.  This simulation showed that when the 

underlying tagged population experiences age-specific fishing and natural mortality, 

modeling these parameters assuming constant fishing and natural mortality across ages 

produces significantly biased parameter estimates.  This is an important consideration for 

the AOTTP because a goal of the program is to estimate population parameters for the 

entire population.  Therefore the recommendation to the AOTTP is to selectively tag 

individuals based upon their size and ensure that tags are distributed across all sizes. 
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Key to both obtaining good estimates of movement rates from DSTs and 

estimating age-specific mortality parameters is reducing the number of short-term 

recoveries in favor of long times at large for the tags. This is particularly challenging for 

the AOTTP because historically 80% of  conventional tags released have been recovered 

within the first few months (Ortiz, 2016). Two methods to reduce the number of short-

term recoveries are 1.) tag during periods of low fishing effort or 2.) tag in area with low 

fishing effort. Hallier (2005) found that tags released outside the main Dakar fishing 

season, July-December, which accounts for over 70% of the annual catch, had much 

longer times at liberty than those released during their fishing season.  Additionally, a 

two month closure in the Gulf of Guinea FAD fishery (Anonymous, 2016a) would 

provide opportunities for tagging tuna while fishing effort is low.  Tagging fish outside of 

the main fishing regions would contribute to aiding in ensuring tags are distributed 

throughout the Atlantic and potentially increase the time at liberty for those tagged 

individuals.   

 

Future Research 

 This research was the first attempt at analyzing the historical Atlantic tropical 

tagging data to provide Bayesian priors for movement rates, tag shedding rates, and 

reporting rates for tropical tunas.  The simulation modeling also provided a significant 

amount of insight to the AOTTP to help ensure the program is successful.  All of the data 

in this research were modeled using an annual time step, with the exception of the 

electronic tag data.  However, the analysis of the historical tagging and catch data 

suggested that the tropical tunas make important seasonal movements that cannot be 
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captured in the annual time step.  It would be useful to use a seasonal or monthly time 

step in future analyses of the data collected from the AOTTP to fully understand these 

movements.  This type of analysis was not possible using the historical tagging data as it 

was too sparse for a more frequent time step, however due to the scale of the AOTTP, it 

is probable that a seasonal time step would be possible using the data collected. 

 One of the most significant advantages to using the Bayesian space-state model to 

analyze tagging data was that individual heterogeneity can be incorporated into the 

survival and detection probabilities (Gimenez et al., 2007; Royle, 2008).  In the 

simulation work described here, the individual heterogeneity was the age of the fish, 

which was assumed to be known without error.  However, in the AOTTP the age of the 

fish will only be available for those fish which are aged using hard parts, and length data 

will be collected for the releases and the majority of the recoveries.  This model 

framework already incorporates a growth curve to calculate the age-specific natural 

mortality, and incorporating individual length data rather than age data would be 

relatively simple.  This would allow for the uncertainty around the individual length 

measurements and the variability around the growth curve to be incorporated into the 

tagging model to estimate the age-specific mortality parameters (Royle, 2009). The 

AOTTP intends to collect hard parts to age the tropical tunas, this data could also be 

incorporated into the tagging model.  This would allow for inclusions of uncertainty in 

the aging process and allow for a growth model to be developed with individual 

variegation within the growth model parameters (Zhang et al., 2009; Lunn et al., 2013).   

All of these additions to the current estimation model framework will help ensure that the  
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population parameters estimated from the Atlantic Ocean Tuna Tagging Program 

accurately reflect the tropical tuna stocks and reduce uncertainty in future stock 

assessments.
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APPENDIX A: ADDITIONAL TABLES AND DIAGNOSTIC PLOTS FOR THE 
HISTORICAL TAG DATA ANALYSIS 

 
Table A1. Movement and residency rates, fishing mortality, and tag shedding rates and 
the coefficient of variation (CV) for each of the mortality rate assumptions used the 
bigeye tuna models.  First numbers of the movement rates indicate origin and final 
numbers indicate destination.  Azores = 1, Canary Islands = 2, Senegal/Cape Verde 
Islands = 3, North Sherbro = 4, Sherbro = 5, Cote d’Ivoire = 6, Cape Lopez =7, 
Equatorial = 8. 

 Mean CV  Mean CV  Mean CV 
F 0.25 9% p[3,5] 0.01 123% p[6,3] 0.10 101% 
M 0.80 0.4% p[3,6] 0.01 121% p[6,4] 0.11 103% 
lambda 0.01 182% p[3,7] 0.05 57% p[6,5] 0.08 110% 
p[1,1] 0.12 91% p[3,8] 0.02 113% p[6,6] 0.36 45% 
p[1,2] 0.15 85% p[4,1] 0.09 97% p[6,7] 0.09 104% 
p[1,3] 0.14 87% p[4,2] 0.11 89% p[6,8] 0.08 106% 
p[1,4] 0.14 87% p[4,3] 0.10 91% p[7,1] 0.08 101% 
p[1,5] 0.10 94% p[4,4] 0.36 42% p[7,2] 0.12 89% 
p[1,6] 0.12 89% p[4,5] 0.08 96% p[7,3] 0.11 96% 
p[1,7] 0.12 90% p[4,6] 0.09 96% p[7,4] 0.12 90% 
p[1,8] 0.11 92% p[4,7] 0.10 92% p[7,5] 0.07 106% 
p[2,1] 0.02 122% p[4,8] 0.08 95% p[7,6] 0.10 88% 
p[2,2] 0.74 9% p[5,1] 0.12 91% p[7,7] 0.19 58% 
p[2,3] 0.11 43% p[5,2] 0.14 87% p[7,8] 0.21 53% 
p[2,4] 0.03 88% p[5,3] 0.13 87% p[8,1] 0.07 94% 
p[2,5] 0.02 125% p[5,4] 0.14 86% p[8,2] 0.08 90% 
p[2,6] 0.02 131% p[5,5] 0.11 90% p[8,3] 0.08 95% 
p[2,7] 0.05 71% p[5,6] 0.13 88% p[8,4] 0.08 94% 
p[2,8] 0.02 119% p[5,7] 0.13 87% p[8,5] 0.07 96% 
p[3,1] 0.02 112% p[5,8] 0.12 90% p[8,6] 0.07 95% 
p[3,2] 0.04 81% p[6,1] 0.09 106% p[8,7] 0.34 33% 
p[3,3] 0.82 6% p[6,2] 0.11 95% p[8,8] 0.21 49% 
p[3,4] 0.03 82%       
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Table A2. Movement and residency rates, fishing mortality, and tag shedding rates and 
the coefficient of variation (CV) for each of the mortality rate assumptions used in the 
skipjack tuna models.  First numbers of the movement rates indicate origin and final 
numbers indicate destination.  Canary Islands = 1, Senegal/Cape Verde Islands = 2, North 
Sherbro = 3, Cote d’Ivoire = 4, Cape Lopez =5, Equatorial = 6. 

Single F  Two Fs 
 Mean CV  Mean CV 
F 0.10 1% F[1] 0.10 1% 
M 0.80 1% F[2] 0.15 1% 
lambda 0.79 12% M 0.80 1% 
p[1,1] 0.98 1% lambda 0.78 13% 
p[1,2] 0.01 40% p[1,1] 0.98 1% 
p[1,3] 0.00 0% p[1,2] 0.01 44% 
p[1,4] 0.002 50% p[1,3] 0.000 0% 
p[1,5] 0.002 100% p[1,4] 0.002 50% 
p[1,6] 0.01 38% p[1,5] 0.002 50% 
p[2,1] 0.05 39% p[1,6] 0.01 43% 
p[2,2] 0.92 2% p[2,1] 0.05 40% 
p[2,3] 0.02 29% p[2,2] 0.93 2% 
p[2,4] 0.003 67% p[2,3] 0.02 30% 
p[2,5] 0.001 100% p[2,4] 0.002 100% 
p[2,6] 0.002 100% p[2,5] 0.001 100% 
p[3,1] 0.11 84% p[2,6] 0.002 100% 
p[3,2] 0.23 62% p[3,1] 0.11 86% 
p[3,3] 0.40 32% p[3,2] 0.24 62% 
p[3,4] 0.04 109% p[3,3] 0.39 32% 
p[3,5] 0.06 95% p[3,4] 0.03 106% 
p[3,6] 0.16 56% p[3,5] 0.06 95% 
p[4,1] 0.004 125% p[3,6] 0.16 55% 
p[4,2] 0.02 56% p[4,1] 0.01 100% 
p[4,3] 0.02 46% p[4,2] 0.02 56% 
p[4,4] 0.86 4% p[4,3] 0.03 50% 
p[4,5] 0.04 44% p[4,4] 0.86 3% 
p[4,6] 0.06 39% p[4,5] 0.04 45% 
p[5,1] 0.03 163% p[4,6] 0.06 38% 
p[5,2] 0.004 125% p[5,1] 0.02 175% 
p[5,3] 0.01 71% p[5,2] 0.003 133% 
p[5,4] 0.09 56% p[5,3] 0.01 67% 
p[5,5] 0.65 24% p[5,4] 0.08 60% 
p[5,6] 0.22 61% p[5,5] 0.68 23% 
p[6,1] 0.18 146% p[5,6] 0.21 68% 
p[6,2] 0.01 538% p[6,1] 0.18 156% 
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p[6,3] 0.01 100% p[6,2] 0.01 608% 
p[6,4] 0.04 67% p[6,3] 0.004 100% 
p[6,5] 0.52 50% p[6,4] 0.03 77% 
p[6,6] 0.25 76% p[6,5] 0.53 55% 
   p[6,6] 0.24 89% 
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Table A3. Movement and residency rate, fishing mortality, and tag shedding rates and 
the coefficient of variation (CV) for each of the mortality rate assumptions for yellowfin 
tuna models.  First number indicates origin and second number indicates destination. NE 
= 1, SE = 2, W = 3. 

 Single F  Multiple Fs 
 Mean CV  Mean CV 
F 0.17 17% F[1] 0.224 28% 
M 0.41 0.2% F[2] 0.315 22% 
lambda 0.39 19% F[3] 0.273 22% 
p[1,1] 0.92 4% F[4] 0.206 24% 
p[1,2] 0.06 46% F[5] 0.244 21% 
p[1,3] 0.02 78% F[6] 0.119 26% 
p[2,1] 0.08 52% M 0.408 3% 
p[2,2] 0.92 4% lambda 0.45 15% 
p[2,3] 0.002 33% p[1,1] 0.927 4% 
p[3,1] 0.01 78% p[1,2] 0.056 54% 
p[3,2] 0.09 100% p[1,3] 0.017 82% 
p[3,3] 0.90 3% p[2,1] 0.079 44% 
   p[2,2] 0.919 4% 
   p[2,3] 0.002 150% 
   p[3,1] 0.007 86% 
   p[3,2] 0.095 32% 
   p[3,3] 0.899 3% 
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Table A4. ΔAIC values for the five best fit models for each region and species.  
 Bigeye Tuna 
 Region 1 Region 2 Region 3 Region 4 
Model Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Month 110.85 0 585 9.5 4620 1470 12160 5671 
Month + Effort 5.46 0 49 11.8 1130 582 1070 2117 
Month + Effort + Fleet 5.46 0 0 18.2 740 446 230 1830 
Month + Fleet 5.46 0 12 14.7 1600 1014 880 3066 
Month + Gear 5.46 0 77 0 4450 1380 11690 4332 
Year + Month 0 11.2 178 13.1 4450 430 11690 3225 
Year + Month + Effort 0 11.2 20 17.5 860 169 800 1014 
Year + Month + Gear 0 11.2 59 7.5 460 276 920 1107 
Year + Month + Fleet 0 11.2 12 12.4 680 117 270 615 
Year + Month + Effort + Fleet 0 11.2 0 10.8 490 0 50 536 
Year + Month + Effort + Gear 0 11.2 20 14.5 260 171 730 449 
Year + Month + Fleet + Gear 0 11.2 5 6.8 250 102 100 42 
Year + Month + Effort + Gear + 
Fleet 

0 11.2 0 1256.3 0 0 0 0 

         
 Region 5 Region 6 Region 7 Region 8 
Model Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Month 10720 8119 4960 13340 1517 2602 24660 13110 
Month + Effort 920 2494 1900 3020 233 1164 1880 2090 
Month + Effort + Fleet 630 2327 1290 2610 187 769 630 1505 
Month + Fleet 1820 4809 3290 5900 876 1179 3950 6270 
Month + Gear 10020 7519 4900 11770 1495 2217 24620 11170 
Year + Month 10060 2384 4900 1180 1239 686 1550 2500 
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Year + Month + Effort 260 610 610 1210 55 602 840 964 
Year + Month + Gear 790 906 990 1180 1239 686 1550 2500 
Year + Month + Fleet 450 554 1520 1280 260 132 2570 1437 
Year + Month + Effort + Fleet 0 123 170 710 0 130 20 144 
Year + Month + Effort + Gear 230 535 540 650 9 395 810 835 
Year + Month + Fleet + Gear 310 535 270 240 9 0 370 715 
Year + Month + Effort + Gear + Fleet 0 0 0 0 0 128 0 0 
            
         
 Skipjack Tuna 
 Region 1 Region 2 Region 3 Region 4 
Model Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Month 75.9 0 261.8 174 5570 1281 9650 5893 
Month + Effort 0 2.0 125.5 58.3 1640 173 1800 827 
Month + Effort + Fleet 0 7.8 40 28.3 150 0 60 11 
Month + Fleet 0.6 2.0 131.5 68.3 2640 154 1940 493 
Month + Gear 0.6 2.0 136.9 67.3 2370 247 1870 936 
Year + Month 0 7.8 56 95 3770 1000 8750 5063 
Year + Month + Effort 0 7.8 22 0 1380 80 1210 304 
Year + Month + Gear 0 7.8 56 48.3 310 65 570 377 
Year + Month + Fleet 0 7.8 40 39.2 1300 49 1940 73 
Year + Month + Effort + Fleet 0 7.8 0 32.3 1070 14 670 0 
Year + Month + Effort + Gear 0 7.8 22 31 230 66 510 298 
Year + Month + Fleet + Gear 0.6 2.0 115.4 56.8 1350 68 1160 323 
Year + Month + Effort + Gear + Fleet 
 
 
 

0 7.8 0 1983.7 0 1 0 3 
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 Region 5 Region 6 Region 7 Region 8 
 Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Month 10390 3580 3320 14300 2141 624 21560 10150 
Month + Effort 1360 830 1860 3520 507 328 1840 1770 
Month + Effort + Fleet 30 10 40 650 31 15 40 10 
Month + Fleet 2180 730 1050 3070 662 23 2780 2090 
Month + Gear 3050 810 450 7250 1261 37 2650 1550 
Year + Month 8600 2890 2410 7890 1411 42 20250 9310 
Year + Month + Effort 440 340 1390 2390 190 88 1000 1190 
Year + Month + Gear 450 370 180 3310 255 531 1070 780 
Year + Month + Fleet 360 360 760 750 33 48 1910 1500 
Year + Month + Effort + Fleet 10 30 210 70 0 0 0 100 
Year + Month + Effort + Gear 440 280 150 2000 84 5 970 740 
Year + Month + Fleet + Gear 870 410 520 1260 309 0 630 370 
Year + Month + Effort + Gear + Fleet 0 0 0 0 0 1 0 0 
 
 

        

 Yellowfin Tuna 
 Region 1 Region 2 Region 3 Region 4 
Model Positives Prop. 

Pos. 
Positives Prop. Pos. Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Month 23 0 196.2 28.6 6470 743 20530 976 
Month + Effort 0.1 1.97 108.5 15.4 780 587 1310 698 
Month + Effort + Fleet 0.1 1.97 61.1 18 590 476 480 584 
Month + Fleet 0.1 1.97 93.5 20.4 2690 492 2790 755 
Month + Gear 0.1 1.97 92.1 16.4 4330 488 3930 634 
Year + Month 0 0 139.5 13.4 4560 390 20070 640 
Year + Month + Effort 0 0 86.1 5.7 360 268 720 476 
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Year + Month + Gear 0 0 69.1 16.1 720 205 630 302 
Year + Month + Fleet 0 0 33.4 0 390 233 260 408 
Year + Month + Effort + Fleet 0 0 0 1.3 100 205 260 366 
Year + Month + Effort + Gear 0 0 66.2 7.6 260 95 390 78 
Year + Month + Fleet + Gear 0 0 0.4 2.7 310 18 160 49 
Year + Month + Effort + Gear + Fleet 
 

0 0 0 Not 
Converged 

0 0 0 0 

 Region 5 Region 6 Region 7 Region 8 
Model Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Positives Prop. 

Pos. 
Month 20920 1611 14820 3380 3590 281 44940 1978 
Month + Effort 1200 466 3350 680 700 72 2710 412 
Month + Effort + Fleet 590 401 1950 380 188 48 920 203 
Month + Fleet 5300 970 6720 1030 850 98 11430 792 
Month + Gear 6310 1578 8340 2550 2180 280 9650 1523 
Year + Month 19890 350 10710 470 2480 118 42640 850 
Year + Month + Effort 390 120 1870 150 375 30 1700 198 
Year + Month + Gear 940 323 2380 460 1290 90 2860 698 
Year + Month + Fleet 2300 42 4350 230 338 6 7750 263 
Year + Month + Effort + Fleet 20 0 710 30 0 0 110 0 
Year + Month + Effort + Gear 360 120 360 150 102 32 1370 157 
Year + Month + Fleet + Gear 390 45 1170 190 201 2 860 240 
Year + Month + Effort + Gear + Fleet 0 2 0 0 0 0 0 4 
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Diagnostic Plots of the Bayesian Movement models 
 

 
Figure A1. Diagnostic plots for the bigeye tuna model. 

 
 
Figure A2. Diagnostic plots for the yellowfin tuna Single F model. 
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Table A3. Diagnostic plots for the yellowfin tuna multiple F model. 
 

 
Figure A4. Diagnostic plots for the skipjack tuna Single F model. 
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Figure A5. Diagnostic plots for the skipjack tuna Multiple Fs model. 
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CPUE Model Diagnostics 

Bigeye tuna 
 

 
Figure A6. Standardized monthly CPUEs for bigeye tuna. 
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Figure A7. Standardized monthly CPUEs for yellowfin tuna. 
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Figure A8. Standardized monthly CPUEs for skipjack tuna. 
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Figure A9. Region 1 – Azores GLM diagnostic plots 

 
Figure A10. Region 1 – Azores Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A11. Region 2 – Canary Islands GLM diagnostic plots 
 

 
Figure A12. Region 2 – Canary Islands Histograms of Fitted and Observed log 
transformed CPUE. 
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Figure A13. Region 3 – Senegal GLM diagnostic plots 
 

 
Figure A14. Region 3 – Senegal Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A15. Region 4 – North Sherbro GLM diagnostic plots 
 

 
Figure A16. Region 4 – North Sherbro Histograms of Fitted and Observed log 
transformed CPUE. 
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Figure A17. Region 5 - Sherbro GLM diagnostic plots 
 

 
Figure A18. Region 5 - Sherbro Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A19. Region 6 – Cote d’Ivoire GLM diagnostic plots 
 

 
Figure A20. Region 6 – Cote d’Ivoire Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A21. Region 7 – Cape Lopez GLM diagnostic plots 
 

 
Figure A22. Region 7 – Cape Lopez Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A23. Region 8 – Equator GLM diagnostic plots 
 

 
Figure A24. Region 8 - Equator Histograms of Fitted and Observed log transformed 
CPUE. 
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Skipjack tuna 

 
Figure A25. Region 1 – Azores GLM diagnostic plots 
 

 
Figure A26. Region 1 – Azores Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A27. Region 2 – Canary Islands GLM diagnostic plots 
 

 
Figure A28. Region 2 – Canary Islands Histograms of Fitted and Observed log 
transformed CPUE. 
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Figure A29. Region 3 – Senegal GLM diagnostic plots 

 
Figure A30. Region 3 – Senegal Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A31. Region 4 – North Sherbro GLM diagnostic plots 
 

 
Figure A32. Region 4 – North Sherbro Histograms of Fitted and Observed log 
transformed CPUE. 
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Figure A33. Region 5 - Sherbro GLM diagnostic plots 
 

 
Figure A34. Region 5 - Sherbro Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A35. Region 6 – Cote d’Ivoire GLM diagnostic plots 
 

 
Figure A36. Region 6 – Cote d’Ivoire Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A37. Region 7 – Cape Lopez GLM diagnostic plots 
 

 
Figure A38. Region 7 – Cape Lopez Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A39. Region 8 – Equator GLM diagnostic plots 

 
Figure A40. Region 8 - Equator Histograms of Fitted and Observed log transformed 
CPUE.  
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Yellowfin tuna 

 
Figure A41. Region 1 – Azores GLM diagnostic plots 
 

 
Figure A42. Region 1 – Azores Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A43. Region 2 – Canary Islands GLM diagnostic plots 
 

 
Figure A44. Region 2 – Canary Islands Histograms of Fitted and Observed log 
transformed CPUE. 
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Figure A45. Region 3 – Senegal GLM diagnostic plots 
 

 
Figure A46. Region 3 – Senegal Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A47. Region 4 – North Sherbro GLM diagnostic plots 
 

 
Figure A48. Region 4 – North Sherbro Histograms of Fitted and Observed log 
transformed CPUE 
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Figure A49. Region 5 - Sherbro GLM diagnostic plots 
 

 
Figure A50. Region 5 - Sherbro Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A51. Region 6 – Cote d’Ivoire GLM diagnostic plots 
 

 
Figure A52. Region 6 – Cote d’Ivoire Histograms of Fitted and Observed log transformed 
CPUE 
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Figure A53. Region 7 – Cape Lopez GLM diagnostic plots 
 

 
Figure A54. Region 7 – Cape Lopez Histograms of Fitted and Observed log transformed 
CPUE. 
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Figure A55. Region 8 – Equator GLM diagnostic plots 
 

 
Figure A56. Region 8 - Equator Histograms of Fitted and Observed log transformed 
CPUE. 
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APPENDIX B: OPENBUGS CODE FOR THE BAYESIAN SPACE-STATE 
ESTIMATION MODELS DESCRIBED IN CHAPTER 3 
 
DST Space-state model 
model 
{ 
for (i in 1:arcntag){ 
#calculate their survival 
for (j in 2:arclast[i]){    
#first is their first release, can be years 1 2 or 3, this is to calculate survival, second is 
first+1, last is the last year they are at large 
arcalive[i,j]~dbern(arcsurvival[i,j-1])   
 } 
for(j in 1:arclast[i]){ 
arcsurvival[i,j]<-exp(-(M/12))*arcalive[i,j]  #if you are alive, then survival rate 
arcpcap[1,i,j] <-0  # If dead, then you are unavailable for capture 
#if you are alive, then state (movement) dependent probability of recapture 
arcpcap[2,i,j]<-arcprecovery[arcmovement[i,j],j,i]*arcreporting[arcmovement[i,j]] 
##asuse[i,j] and apuse[i,j] tells us if the fish is alive or not (1 if alive, 2 if dead) 
arcapuse[i,j] <- arcalive[i,j] + 1 
arcreturned[i,j]~dbern(arcpcap[arcapuse[i,j],i,j]) 
#write out the probabilities of being recaptured: for recovery region, year j, and 
individual i 
for (k in 1:4){ 
arcprecovery[k,j,i]<-1-exp(-(F_at_age[k]/12)) 
 } 
  } 
#estimate movement rates, arcmovement is which region (1,2,3,4) the fish is in at time j 
for (j in 1:1) { 
 arcmovement[i,j]~dcat(arcpsi[arcmark_region[i],1:4])  
 } 
for (j in 2:arclast[i]) { 
arcmovement[i,j] ~ dcat(arcpsi[arcmovement[i,j-1],1:4]) #psi[p,s] is the probability of 
moving from region p to region  
} 
} 
##priors:# 
for(p in 1:4){    
arcpsi[p,1:4] ~ ddirch(alpha[p,1:4])      
for (n in 1:4){ 
psi[n,p]<-arcpsi[n,p] 
} 
}   
M~dunif(0,10) 
for (j in 1:4){ 
  F_at_age[j]~dunif(0,10) 
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  } 
for (i in 1:ntags){ 
#calculate their survival 
for (j in second[i]:last[i]){    
alive[i,j]~dbern(survival[i,j-1])   
 } 
for(j in first[i]:last[i]){ 
survival[i,j]<-exp(-M)*alive[i,j]   
pcap[1,i,j] <-0   
pcap[2,i,j]<-precovery[movement[i,j],j,i]*reporting[movement[i,j]] 
apuse[i,j] <- alive[i,j] + 1 
returned[i,j]~dbern(pcap[apuse[i,j],i,j]) 
for (k in 1:4){ 
precovery[k,j,i]<-1-exp(-F_at_age[k]) 
 } 
  } 
for (j in first[i]:first[i]) { 
 movement[i,j]~dcat(psi[mark_region[i],1:4])  
 } 
for (j in second[i]:last[i]) { 
 movement[i,j] ~ dcat(psi[movement[i,j-1],1:4])  
} 
} 
} 
PSAT Model 
model 
{ 
for (i in 1:pntags){ 
pmovement[i,1]~dcat(ppsi[pmark_region[i],1:4])  
# Model the state transitions   
for (j in 1:plast[i]){ 
preturned[i,j]~dbern(popup) } 
for (j in 2:plast[i]) { 
pmovement[i,j] ~ dcat(ppsi[pmovement[i,j-1],1:4]) #psi[p,s] is the probability of moving 
from region p to region  
} 
} 
##priors:# 
popup~dbeta(0.5,0.5) 
for(p in 1:4){    
psi[p,1:4] ~ ddirch(alpha[p,1:4])  
for (n in 1:4){ 
ppsi[n,p]<-psi[n,p] }    }   
for (i in 1:ntags){ 
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#calculate their survival 
for (j in second[i]:last[i]){    
#first is their first release, can be years 1 2 or 3, this is to calculate survival, second is 
first+1, last is the last year at large 
alive[i,j]~dbern(survival[acuse[i,j-1],i,j-1])   
 } 
for(j in first[i]:last[i]){ 
acuse[i,j]<-alive[i,j]+1 
survival[1,i,j]<-0 
survival[2,i,j]<-exp(-M)  #if you are alive, then survival rate 
pcap[1,i,j] <-0  # If dead, then you are unavailable for capture 
#if you are alive, then state (movement) dependent probability of recapture 
pcap[2,i,j]<-precovery[movement[i,j],j,i]*reporting[movement[i,j]] 
##asuse[i,j] and apuse[i,j] tells us if the fish is alive or not (1 if alive, 2 if dead) 
apuse[i,j] <- alive[i,j] + 1 
returned[i,j]~dbern(pcap[apuse[i,j],i,j]) 
#write out the probabilities of being recaptured: for recovery region, year j, and 
individual i 
for (k in 1:4){ 
precovery[k,j,i]<-1-exp(-F_at_age[k]) 
 } 
  } 
for (j in first[i]:first[i]) { 
 movement[i,j]~dcat(psi[mark_region[i],1:4])  
 } 
for (j in second[i]:last[i]) { 
movement[i,j] ~ dcat(psi[movement[i,j-1],1:4]) #psi[p,s] is the probability of moving 
from region p to region  
} 
} 
M~dunif(0,10) 
for (j in 1:4){ 
  F_at_age[j]~dunif(0,10) 
 } 
}  
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APPENDIX C: CHAPTER 3 ALTERNATIVE MODEL RESULTS 

Table C1. Parameters used to populate the tagging model (Actual) and estimates, percent 
biases, and CVs for the model with half of the DST returns than expected and the PSAT 
tagging model for yellowfin tuna. 
    PSAT Model DST Model (reduced) 
  Actual Estimate Percent 

Bias CV Estimate Percent 
Bias CV 

F Region 1 0.18 0.13 -27% 0.03 0.13 -27% 0.03 
F Region 2 0.21 0.16 -25% 0.05 0.16 -25% 0.05 
F Region 3 0.18 0.14 -24% 0.04 0.13 -25% 0.04 
F Region 4 0.08 0.06 -26% 0.07 0.06 -25% 0.06 
M 0.6 0.73 22% 0.02 0.73 22% 0.02 
P[1,1] 0.948 0.95 0% 0.00 0.95 0% 0.01 
P[1,2] 0.05 0.04 -14% 0.10 0.05 -7% 0.09 
P[1,3] 0.001 0.002 123% 0.44 0.002 126% 0.45 
P[1,4] 0.001 0.002 150% 0.66 0.006 498% 0.42 
P[2,1] 0.05 0.03 -36% 0.11 0.04 -28% 0.11 
P[2,2] 0.6 0.68 13% 0.03 0.68 14% 0.03 
P[2,3] 0.15 0.12 -20% 0.07 0.12 -19% 0.07 
P[2,4] 0.2 0.17 -15% 0.10 0.16 -20% 0.10 
P[3,1] 0.001 0.002 58% 0.49 0.002 64% 0.49 
P[3,2] 0.15 0.13 -16% 0.07 0.13 -17% 0.07 
P[3,3] 0.799 0.82 3% 0.01 0.84 5% 0.01 
P[3,4] 0.05 0.05 -2% 0.17 0.04 -24% 0.22 
P[4,1] 0.001 0.001 -23% 0.73 0.001 16% 0.56 
P[4,2] 0.2 0.19 -7% 0.06 0.18 -9% 0.06 
P[4,3] 0.05 0.04 -24% 0.12 0.03 -32% 0.13 
P[4,4] 0.749 0.78 3% 0.02 0.78 4% 0.02 
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Table C2. Parameters used to populate the tagging model (Actual) and estimates, percent 
biases, and CVs for the model with half of the DST returns than expected and the PSAT 
tagging model for bigeye tuna. 
  DST Model (Reduced) PSAT Model  
  Actual Estimate Percent 

Bias 
CV Estimate Percent 

Bias 
CV 

F Region 1 0.24 0.17 -28% 0.03 0.20 -17% 0.03 
F Region 2 0.24 0.23 -6% 0.04 0.20 -17% 0.04 
F Region 3 0.12 0.20 -20% 0.04 0.10 -20% 0.04 
F Region 4 0.12 0.11 -7% 0.06 0.11 -9% 0.05 
M 0.4 0.54 34% 0.02 0.54 34% 0.02 
P[1,1] 0.749 0.82 9% 0.01 0.81 9% 0.01 
P[1,2] 0.2 0.16 -21% 0.05 0.16 -22% 0.05 
P[1,3] 0.001 0.002 143% 0.43 0.001 41% 0.57 
P[1,4] 0.05 0.02 -56% 0.20 0.03 -44% 0.16 
P[2,1] 0.2 0.15 -27% 0.06 0.15 -27% 0.05 
P[2,2] 0.65 0.75 15% 0.02 0.75 15% 0.02 
P[2,3] 0.05 0.04 -25% 0.12 0.04 -26% 0.12 
P[2,4] 0.1 0.07 -32% 0.11 0.07 -29% 0.11 
P[3,1] 0.001 0.0008 -16% 0.58 0.001 8% 0.50 
P[3,2] 0.05 0.03 -45% 0.10 0.03 -45% 0.10 
P[3,3] 0.749 0.85 13% 0.01 0.84 13% 0.01 
P[3,4] 0.2 0.12 -39% 0.09 0.13 -36% 0.08 
P[4,1] 0.05 0.03 -40% 0.11 0.03 -38% 0.10 
P[4,2] 0.1 0.07 -27% 0.07 0.07 -27% 0.07 
P[4,3] 0.2 0.15 -23% 0.07 0.16 -22% 0.07 
P[4,4] 0.65 0.74 14% 0.02 0.74 14% 0.02 
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Figure C1. Yellowfin tuna fishing mortality posterior probabilities from the model using 
conventional tags combined with each of the electronic tags with DST return rates cut in 
half to estimate movement rate. Blue represents the reduced DST model, red represents 
the PSAT model and the black line indicates the actual value used to populate the 
simulation. 
 

 
Figure C2. Yellowfin tuna natural mortality posterior probabilities from the model using 
conventional tags combined with each of the electronic tags with DST return rates cut in 
half to estimate movement rate. Blue represents the reduced DST model, red represents 
the PSAT model and the black line indicates the actual value used to populate the 
simulation. 
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Figure C3. Bigeye tuna fishing mortality posterior probabilities from the model using 
conventional tags combined with each of the electronic tags with DST return rates cut in 
half to estimate movement rate. Blue represents the reduced DST model, red represents 
the PSAT model and the black line indicates the actual value used to populate the 
simulation. 

 
Figure C4. Bigeye tuna fishing mortality posterior probabilities from the model using 
conventional tags combined with each of the electronic tags with DST return rates cut in 
half to estimate movement rate. Blue represents the reduced DST model, red represents 
the PSAT model and the black line indicates the actual value used to populate the 
simulation. 
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APPENDIX D: OPENBUGS CODE FOR THE BAYESIAN AGE-SPECIFIC 
SPACE STATE MODEL DESCRIBED IN CHAPTER 4 
 
model 
{ 
for (i in 1:ntag){ 
#calculate their survival 
for (j in second[i]:lasti[i]){    
#first is their first release, can be years 1 2 or 3, this is to calculate survival, second is 
first+1, last is the last year at large 
 #for each age, a different survival value  
alive[i,j]~dbern(survival[asuse[i,j-1],i,j-1])   
##asuse[i,j] and apuse[i,j] tells us if the fish is alive or not (1 if alive, 2 if dead) 
 } 
 
for(j in first[i]:last[i]){ 
asuse[i,j]<-alive[i,j]+1  #1 if dead and 2 if alive 
survival[1,i,j]<-0  #if dead, stays dead 
survival[2,i,j]<-exp(-(TermM*(Lreference/L[age[i,j]])))  #if you are alive, then age 

dependent survival rate 
pcap[1,i,j] <-0  # If dead, then you are unavailable for capture 
#if you are alive, then age and state (movement) dependent probability of recapture 
pcap[2,i,j]<-precovery[movement[i,j],j,i]*reporting[movement[i,j]] 
apuse[i,j] <- alive[i,j] + 1 
returned[i,j]~dbern(pcap[apuse[i,j],i,j]) 
#write out the probabilities of being recaptured: for recovery region k, year j, and 
individual i 
for (k in 1:4){ 
precovery[k,j,i]<-1-exp(-F_at_age[age[i,j],k]) 
 } 
  } 
# Model the movements   
for (j in first[i]:first[i]) { 
 movement[i,j]~dcat(psi[mark_region[i],1:4])   #Fish can move in the first year 
 } 
for (j in second[i]:last[i]) { 
movement[i,j] ~ dcat(psi[movement[i,j-1],1:4]) #psi[p,s] is the probability of moving 
from region p to region  
} 
} 
for (i in 1:maxage){ 
L[i]<-97.258*(1-exp(-(0.251*number[i])))  #SKJ growth model 
L[i]<-217.3*(1-exp(-0.18*(number[i]+0.709)))  #BET growth model 
L[i]<-192.4*(1-exp(-0.37*(number[il]+0.003)))  #YFT growth model 
#number is a vector with a sequence from 1:maxage to calculate length at age 
} 
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##priors: 
for(p in 1:4){ 
  psi[p,1:4] ~ ddirch(alpha[p,1:4]) 
     }   
TermM~dunif(0,10) 
for (i in 1:maxage){ 
for (j in 1:4){ 
  F_at_age[i,j]~dunif(0,10) 
 } 
 } 
} 
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