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Dolphinfish (Coryphaena hippurus) is a pelagic species that is ecologically and 

commercially important in the western Atlantic region.  This species has been linked to 

dominant oceanographic features such as sea surface temperature (SST) frontal regions.  

This work first explored the linkages between the catch rates of dolphinfish and the 

oceanography (satellite-derived SST, distance to front calculations, bottom depth and 

hook depth) using Principal Components Analysis (PCA).  It was demonstrated that 

higher catch rates are found in relation to warmer SST and nearer to frontal regions.  This 

environmental information was then included in standardizations of catch-per-unit-effort 

(CPUE) indices.  It was found that including the satellite-derived SST and distance to 

front increases the confidence in the index. 

The second part of this work focused on addressing spatial variability in the catch 

rate data for a subsection of the sampling area: the Gulf of Mexico region.  This study 

used geostatistical techniques to model and predict spatial abundances of two pelagic 

species with different habitat utilization patterns: dolphinfish (Coryphaena hippurus) and 

swordfish (Xiphias gladius).  We partitioned catch rates into two components, the 

probability of encounter, and the abundance, given a positive encounter. We obtained 

separate variograms and kriged predictions for each component and combined them to 



 

 

give a single density estimate with corresponding variance.  By using this two stage 

approach we were able to detect patterns of spatial autocorrelation that had distinct 

differences between the two species, likely due to differences in vertical habitat 

utilization. The patchy distribution of many living resources necessitates a two-stage 

variogram modeling and prediction process where the probability of encounter and the 

positive observations are modeled and predicted separately. Such a “geostatistical delta-

lognormal” approach to modeling spatial autocorrelation has distinct advantages in 

allowing the probability of encounter and the abundance, given an encounter to possess 

separate patterns of autocorrelation and in modeling of severely non-normally distributed 

data that is plagued by zeros. 
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 1 

CHAPTER 1:  A SYNOPSIS OF THE FISHERY, ECOLOGY AND HISTORICAL 

MANAGEMENT OF DOLPHINFISH IN THE WESTERN ATLANTIC. 

 

1.1 Introduction and Current Views of Dolphinfish 

 One of the key areas of fisheries biology that presents a challenge to stock 

assessment scientists is the ability to quantify the abundance of a species that is moving 

in space and time over a vast area.  Research in this area is crucial because robust indices 

of abundance are necessary if the goal is the prediction of future abundances and the 

regulation of catches to ensure sustainability.  One of the goals of assessing a pelagic 

species is to identify and understand the factors that may be contributing to the variability 

in abundance.  This is akin to defining the habitat or range of the species, and logical 

influences on this parameter are the presence of prey or predators, suitable spawning 

location, and optimal oceanographic conditions.  Dolphinfish is an example of a pelagic 

species that is migratory and important commercially, recreationally, and ecologically 

throughout its range in the western Atlantic.  However, this species has not received the 

attention to the collection of biological data and assessment that has been afforded to the 

larger tunas and billfish probably due to the fact that there are no large commercial 

fisheries that primarily target dolphinfish.  This suggests that an assessment of 

dolphinfish in the western Atlantic should not only account for removals across fishing 

sectors and across national boundaries, but also incorporate knowledge of the relationship 

of this species to the environment in order to create a complete picture of dolphinfish 

stock dynamics in the region. 
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As Mahon (1999) noted, “Given the migratory, shared nature of the dolphinfish 

resource, a regional approach to assessment and management is required.”  With this in 

mind, the focus of this dissertation is to present a review, for the western Atlantic, of the 

biological information on dolphinfish ecology, the fisheries for this species, the 

oceanographic environment, and to present some alternative methods to the tools 

currently used to estimate relative abundance and stock status.  This chapter begins by 

describing the information on geographic distribution, management, and existing 

assessments for dolphinfish.  Because this species is believed to be strongly affected by 

environmental conditions, the oceanography of the region is presented in detail.  

Additionally, there is a brief introduction to the methods, objectives, and hypotheses 

presented in the dissertation.  The second chapter of the dissertation will focus on the 

abundance of dolphinfish across the western Atlantic, species assemblages and 

environmental parameters that are associated with variation in the catch rates of 

dolphinfish.  The primary spotlight is on two of the largest commercial harvesters of 

dolphinfish: the U.S. and Venezuela, which together are fishing within the majority of the 

western Atlantic area.  Chapters three and four will narrow the focus to the U.S. 

commercial longline fleet in the Gulf of Mexico in order to test novel techniques for 

incorporating spatial variability into indices of abundance.  The techniques introduced in 

these chapters will also be used to evaluate the abundance of another species caught by 

the longline in this area, swordfish, Xiphias gladius, in order to examine the differences 

in the techniques for two pelagic species with very different habitat usages.  The chief 

aim of chapter five is to develop an integrated Bayesian assessment modeling approach to 

examine differences in the biological parameters predicted by the models when spatially- 
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and nonspatially-explicit indices are incorporated into the stock assessment model and to 

address uncertainty within the components. 

Geographic Context of Western Atlantic Dolphinfish 

 Both the common dolphinfish (Coryphaena hippurus) and the pompano or lesser 

dolphinfish (Coryphaena equiselis) are notable for their life history traits and physiology.  

The dolphinfish is renowned for its aggressive feeding behavior and its prized status as a 

game and food fish.  The dolphinfish is a highly migratory pelagic species that has been 

shown to be capable of swimming more than 80 miles in 24 hours (Hammond, 1998).  

Dolphinfish inhabit tropical and subtropical surface oceanic waters worldwide and are 

reported in the literature to be bounded in the north and south Atlantic by the 20°C 

isotherm (Palko et al., 1982) and in the Pacific by the 23°C isotherm (Kraul, 1999).  

There have also been recent reports of a poleward extension of this species in the Pacific 

in response to continued warming of the oceanic habitat (Norton, 1999).  The range for 

dolphinfish in the western Atlantic has been recorded to be from Nova Scotia (Vladykov 

and McKenzie, 1935; Tibbo, 1962) to Rio de Janeiro, Brazil (Ribeiro, 1918; 

Scherbachev, 1973).  However, this species is generally considered to be common only 

from North Carolina throughout the Gulf of Mexico and Caribbean to the northeastern 

coast of Brazil, and they are only seasonally abundant at these locations (Oxenford, 

1999).  In spite of this noted range, the U.S. longline fleet reports high dolphinfish catch-

per-unit-effort (CPUE) north of North Carolina.  In this research, the area of study is 

defined by the areas fished by the U.S. and Venezuelan longline fleet, the two main 

sources of fisheries data used.  The fisheries of several Caribbean nations are also 

encompassed within this area and reference to these fisheries will be in the context of the 
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study area.  The eastern limit of the study area is determined to be 45ºW latitude, the 

northern border is 55ºN longitude, and the southern border is the equator.  The western 

border is the U.S., Canadian, Mexican, and Central and South American coastline, and 

the study area encompasses the entire Caribbean Sea and Gulf of Mexico (Figure 1.1).  

This area encompasses all of FAO statistical fishing area 31 and most of FAO statistical 

fishing area 21. 

 
Figure 1.1:  Map of the extent of the U.S. (blue) and Venezuelan (red) longline 

observer programs.  The colored symbols represent catch of dolphinfish by each 

fleet, and black Xs represent effort resulting in no catch of dolphinfish. 

 

Migration 

Dolphinfish are a significant part of artisanal and large- and small-scale 

commercial and recreational catch within the western Atlantic.  In spite of their 
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significance, landings are most likely greatly under-reported due to the difficulties in 

estimating the abundance of a migratory species.  To address this issue, Oxenford (1986) 

examined the seasonality of the catch in various locations of the Caribbean and Oxenford 

and Hunte (1986) formulated a two stock hypothesis.  In Oxenford’s study, it was found 

that dolphinfish seemed to follow a northern route and a southern route.  The northern 

stock was represented by higher catches off of the northern coast of Puerto Rico in 

January and February, off of the coast of North Carolina in June and July, and off of 

Bermuda in July and August.  The southern stock was believed to be off the Windward 

Island chain in February and March, and off of the Virgin Islands in April and May.  

Both stocks were believed to follow a clockwise rotation.  This proposed migration 

circuit has never been thoroughly re-examined with new spatial environmental data. 

 There have been other estimates of seasonality and peak catch rates that do 

corroborate the movement pattern described by Oxenford.  Rose and Hassler (1968) 

made a survey of the recreational fleet in 1961 and 1962.  They determined that 

dolphinfish were caught off the coast of North Carolina from early May to the end of 

September with a peak in June/July.  Gentle (1977) found dolphinfish to be most 

abundant in Florida from March through August.  In Puerto Rico dolphinfish are caught 

from January through March with a peak in February and March (Perez and Sadovy, 

1996).  Dolphinfish are caught in abundance first on the north coast and then later in the 

year on the south coast, and also in the Mona Passage on the west side of the island.  

They are generally not caught off the east coast over the Puerto Rico-Virgin Islands shelf 

(Rivera and Appeldoorn, 2000).  Off the coast of Bermuda, 45-60% of landings are 

estimated to occur in the third quarter (June-Sept) (Luckhurst and Trott, 2000).  
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Additionally, landings since 1975 have not shown an increasing trend, but have oscillated 

within a smaller range with no clear trend (Luckhurst and Trott, 2000). 

In spite of these data, it is impossible to say with certainty what the exact 

movements of the dolphinfish stock(s) are.  While Oxenford does address this question 

with data from the northern and southern Caribbean, there are several caveats of the 

analysis that need to be addressed.  First, the landings of dolphinfish in the Gulf of 

Mexico and western Caribbean were not examined to determine whether the dolphinfish 

in these regions are part of the migration proposed in the east.  Secondly, there is 

evidence of catch data in locations that do not follow the path of the migration proposed 

by Oxenford.  In the U.S. Virgin Islands, there are increases in catch rate in the spring in 

the southeast around St. Croix, and then higher catches are observed moving in the 

direction of St. Thomas-St. John (Rivera and Appeldoorn, 2000).  These catch rates 

imply that the direction of movement is therefore from southeast to northwest—opposite 

to the direction proposed by Oxenford.  In the Gulf of Mexico dolphinfish are caught 

from April to December, with peaks in May and August (Palko et al., 1982).  

Additionally, there is no study that takes into account the Venezuelan fishery for 

dolphinfish.  In Venezuela the majority (90%) of the landings take place between March 

and August with May and June as the peak months (Arocha et al., 1999).  This is a 

seasonal fishery with two different size groups arriving at different times.  The first group 

of dolphinfish (>90 cm FL) arrive in March and mature by May and the second group 

(50-80 cm FL) arrives in July in the northeast region, moving westward to the central 

coast by the time they are ready to spawn in October.  This contrasts with the proposal 

put forth by Oxenford because the majority of the Venezuelan catch is taken when the 
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“southern group” is purported to be moving north.  In order to determine if there is 

westward movement of the stock, catch data from Colombia, Panama and Costa Rica 

would need to be examined.  Colombia, particularly the area of San Andrés Island, may 

provide some insight to the question of westward movement because there is a small 

artisanal fleet that operates in this area (Martha Prada, pers. comm.).  The dolphinfish 

fisheries of Costa Rica and Panama are primarily in the Pacific because these countries 

have reduced Exclusive Economic Zones (EEZs) in the Caribbean.  Therefore in this 

region, there is not a significant collection of data. 

Management Context 

 Until recently there has been very little management of dolphinfish.  The 1994 

FAO document addressing the management of highly migratory species notes that 

Coryphaena hippurus is included in Annex I of the 1982 Convention on the Law of the 

Sea which lists highly migratory pelagic species (FAO, 1994).  In spite of this 

acknowledgement, the International Commission for the Conservation of Atlantic Tunas 

(ICCAT), which manages highly migratory species, does not specifically take 

responsibility for the management of Atlantic dolphinfish.  Ironically, during the first 

meeting of the Commission, it was decided to create four panels for species that would be 

managed under ICCAT: 1) tropical tunas (yellowfin tuna and skipjack), 2) temperate 

tunas, north (northern bluefin tuna and northern albacore), 3) temperate tunas, south 

(southern bluefin tuna and southern albacore), and 4) other species (bigeye tuna, bonito, 

billfishes and others).  Dolphinfish could theoretically fall into the fourth panel, but has 

not been included in this grouping due to the fact that the “other species” category is 

usually reserved for major bycatch species that are caught primarily in tuna fisheries such 
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as sharks (Restrepo, pers. comm.).  In comparison, the Pacific version of ICCAT, the 

Inter-American Tropical Tuna Commission (IATTC), established by international 

convention in 1950 to conserve and manage fisheries for tunas and other species taken by 

tuna-fishing vessels in the eastern Pacific Ocean, recently established regulations that 

require the release of live dolphinfish that are caught in purse seines and have begun to 

identify areas of high dolphinfish bycatch in order to protect artisanal fisheries that are 

targeting dolphinfish (IATTC, 2005).  Despite this, ICCAT has mandated no such 

regulations in the Atlantic.  The two North Atlantic Fisheries Commissions: the Northeast 

Atlantic Fishery Council (NEAFC) which is advised by the International Council for the 

Exploration of the Sea (ICES), and the Northwest Atlantic Fisheries Organization 

(NAFO) do not include dolphinfish in their lists of managed species because they do not 

regulate any highly migratory species as defined by Annex I of the 1982 Convention on 

the Law of the Sea.  The two FAO commissions, the Western Central Atlantic Fisheries 

Commission (WECAFC) and the Commission for the Eastern Central Atlantic Fisheries 

(CECAF), do include dolphinfish as a species of interest, but neither of these 

commissions deal with the actual management of fisheries as they were established by 

FAO as advisory bodies to FAO member countries.  They can set guidelines, but cannot 

enforce regulations. 

 Within the entire Atlantic region however, there are two organizations that do 

manage dolphinfish.  The General Fisheries Commission for the Mediterranean (GFCM), 

which is part of FAO, manages dolphinfish within the Mediterranean, the Black Sea and 

connecting waters.  This area coincides with FAO Statistical Area 37.  The only 

organization in the western Atlantic that includes dolphinfish in its list of managed 
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species is the Caribbean Regional Fisheries Mechanism (CRFM) which assessed 

dolphinfish species from catches recorded from the Caribbean Community (CARICOM) 

countries in early 2006 (Parker et al., 2006).  The findings were inconclusive due to the 

sparse data for the Caribbean countries.  The report concluded that additional data from 

larger countries with more developed fisheries such as Venezuela could greatly benefit 

the results.  Also, the simple surplus production model that was used in ASPIC gave 

highly uncertain results probably due to the complex spatio-temporal structure of the 

stocks.   

Dolphinfish within the western Atlantic are managed by individual countries 

within their respective EEZs, and because of the size of its EEZ, the US manages 

dolphinfish over a large part of the study region.  In this context, the recent approval in 

January 2003 of the Fishery Management Plan (FMP) for Dolphin and Wahoo in the 

Atlantic Region by the U.S. Secretary of Commerce (SAFMC, 2003) is particularly 

important.  The management plan, developed by the South Atlantic Fisheries Council in 

conjunction with the Mid-Atlantic and New-England Fisheries Councils, sets limits on 

catches of dolphin and wahoo for commercial and recreational fishermen in federal 

waters along the entire Atlantic coast.  The precautionary management plan also 

establishes a framework for long-term management of both dolphinfish and wahoo. 

 The benefit of the FMP is that it identifies several issues with dolphinfish and the 

need for regulation of this species.  One of the main points highlighted by the FMP is that 

dolphinfish are not the direct target species for the commercial fisheries, though they are 

caught in significantly high numbers.  Indeed they represent the fourth highest landed 

species of the US longline operations in the western Atlantic.  This high fishing pressure 
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from the commercial fishery, in combination with the fishing pressure from the 

recreational fishery, may lead to localized reduction of fish abundance and subsequent 

disruption of markets.  Additionally, dolphinfish are generally only one component of 

multispecies fisheries for large pelagics, and in most cases they are considered bycatch 

from these fisheries.  Therefore, it is necessary, when evaluating fishing effort for 

dolphinfish, to understand trends in fishing effort for the large pelagic species being 

targeted.  This is significant when one considers the shifts that were made by the U.S. 

longline fleet in targeting swordfish.  As the numbers of swordfish declined, and 

moratoriums were enforced on the catch of swordfish, other species became more 

valuable, including dolphinfish.  This is likely one of the possible causes of the increased 

landings of dolphinfish in recent years.  Additionally, as other commercially important 

species are fished down, the commercial fleets shift fishing grounds to more productive 

areas.  This has included a shift into shallower inshore shelf-break waters that are 

important for dolphinfish and have traditionally been the fishing grounds of the 

recreational fishery.  Increasing fishing effort in these waters may have an adverse impact 

on stock levels, which in turn may lead to conflict and competition between recreational 

and commercial user groups of dolphinfish potentially leading to reduced social and 

economic benefits. 

 Regionally, other countries within the Caribbean have addressed the management 

of dolphinfish at the national level.  The formulation and acceptance of formal FMPs is a 

relatively long process with many review and comment stages at both the national and 

stakeholder levels, leading to the final approval by the head of state.  Many of the island 
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nations in the Caribbean either have finalized FMPs that have undergone this process, or 

are in the process of drafting their FMPs.  Table 1.1 gives the status of each FMP.  

Country Remarks  

Anguilla  Draft FMP sent to the Department of Fisheries and 

Marine Resources in 2005/2006 for review, 

comments and provision of data/information. 

Antigua & Barbuda Draft FMP sent to Fisheries Division in 2006 for 

review, comments and provision of 

data/information. 

Guyana  Draft FMP revised after Final National Consultation 

in November 2006. Awaiting approval. 

Montserrat  Draft FMP presented at National Consultation in 

2006. Being revised. 

St. Kitts and Nevis  Draft FMP sent to Fisheries Department for review, 

comments and provision of data/information. 

St. Lucia  Draft FMP presented to National Consultation in 

2006. Being revised. 

St. Vincent & the Grenadines Draft FMP sent to Fisheries Division in 2006 for 

review, comments, and provision of 

data/information. 

Turks and Caicos Islands  Draft FMP accepted by the Ministry responsible for 

fisheries, but awaiting approval at the Cabinet level. 

Barbados  Final FMP approved by the Ministry responsible for 

fisheries in 2006.  
Table 1.1: Status of FMPs in the Caribbean. 

 

Ecologically, the dolphinfish is an interesting species because it is not an apex 

predator, but rather a mid-trophic level species.  They represent a prey base for the larger 

tunas and billfish, which as mentioned previously are economically very important.  

Additionally, they are voracious predators on numerous smaller species as well as 

juvenile stages of the tuna and billfish.  Therefore, it is important to understand the 

predator/prey relationships that exist between dolphinfish and other pelagic species that 

are both above and below them in the predator food chain as these relationships are 

fundamental in clarifying the role of dolphinfish in the pelagic environment.!
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 Dolphinfish represents an important import species for the U.S. seafood market.  

The U.S. demand for dolphinfish has likely increased the harvesting pressure on 

dolphinfish at the National and International level.  "#! $%%&'! ()*! +,-,! ./012(*3!

45'$6$'&47!89!1:!31;0).#:.<),! !=)*!92*>(*<(!*?(*#(!1:!()*!./012(<!@>/*!:21/!A).#>'!

B@C>312'!D*2C'!D>#>/>'!>#3!E.*(#>/!2*<0*@(.F*;G!HI.9C2*!4,$J!HKLI-'!$%%MNJ, 

 

Figure 1.2: Dolphinfish imports to the U.S. by country from January through 

December 2005. The United States imported dolphinfish from 20 different 

countries in 2005. China, Ecuador, and Peru combined to account for 71% of 

total imports (NMFS, 2007a). 
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Figure 1.3: Dolphinfish imports to the U.S. by country for January through 

November 2006.  The United States imported dolphinfish from 16 different 

countries in 2006. China, Ecuador, and Peru combined to account for 76% of total 

imports (NMFS, 2007a). 

 

Given its seemingly central role in the ecosystem and the market, it is difficult to 

understand why the species has received such little attention from fisheries management. 

This lack of attention has also led to a dearth of biological, habitat, economic, and social 

information on dolphin stocks and fisheries. 

Regional Dolphinfish Fisheries 

The U.S. Fisheries—Recreational 

 In recent years, landings of dolphinfish from the Atlantic, Caribbean, and Gulf of 

Mexico waters have risen rapidly.  In the U.S., recreational landings have increased 

gradually from about 4 million pounds annually to about 10-14 million pounds, whereas 
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commercial landings have increased also, with recent landings varying between 

approximately 600,000 and 1.4 million pounds (Figure 1.4) (NMFS, 2007c, d). 

 

Figure 1.4:  Annual landings of dolphinfish from the east coast of the 

United States.  Annual commercial landings (on the left Y-axis) are in 

thousands of pounds from 1950 to 2002.  Annual recreational landings (on 

the right Y-axis) are in thousands of pounds from 1981-2003.  Data taken 

from the National Marine Fisheries Service (NMFS) marine recreational 

fishery statistics survey (MRFSS) and commercial landings data (NMFS, 

2007 c, d). 

 

Historically, recreational fisheries have caught the majority of dolphinfish in U.S. waters 

(roughly 87%), and it is not uncommon for sport fishermen to bring in buckets of small 

dolphin, or schoolies as they are commonly called, when the larger bulls and cows are not 

migrating through the area (Hammond, pers. comm).  The recreational sportfishing fleet 

is composed of commercial and private sectors.  The commercial recreational fleet is 

made up of for-hire charterboats (more expensive trips with up to 6 anglers onboard) and 

headboats (also called party boats, offering less expensive trips to more anglers).  In total 
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there are now over ten million saltwater recreational anglers in the U.S., with the sport 

growing as much as 20 percent in the last ten years (Figure 1.5) (NMFS, 2007e). 

 

Figure 1.5:  Numbers of recreational saltwater anglers in the U.S. Atlantic and 

Gulf of Mexico from 1982 to 2005 (NMFS, 2007f). 

 

This is compounded by the fact that dolphinfish catch by recreational anglers was 

unregulated until 2004, when the 10 dolphinfish per angler bag limit was enacted. 

 It is in response to this heavy catch by recreational fisheries that the Florida Fish 

and Wildlife Conservation Commission instituted new rules and limits for dolphinfish in 

early 2005, and emphasized the need for management of this species.  These concerns 

have been raised in spite of the fact that dolphinfish are known to be very fast growing, 

and to mature early.  These attributes are most likely an adaptive response of this fish to 

survive in a highly predatory environment where its main predators, billfish and tuna are 
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also voracious feeders with some of the highest recorded growth observed among fish 

species.  Despite this, it is probably an unwise assumption to think that humans are 

unable to adversely affect this species when fishing pressure is increasing each year.  It is 

hypothesized in this thesis that these levels of exploitation could result in localized 

depletion of stocks and a shift in the historical levels of catch between commercial and 

recreational fishers. 

The U.S. Fisheries—Commercial 

 The primary commercial fleet in the Atlantic off the coast of the U.S. is the 

longline fishery.  The U.S. pelagic longline (PLL) fleet fishes along the east coast of the 

U.S. from Nova Scotia to Florida and from Texas throughout the Gulf of Mexico into the 

Caribbean.  The fleet is comprised of over 300 vessels ranging in size from 34 to 85 feet, 

and specifically targets highly migratory species.  The fishery in the western Atlantic 

primarily targets swordfish and yellowfin tuna in the Gulf of Mexico, the northeastern 

Caribbean, and along the eastern U.S. seaboard in various seasons.  Secondary target 

species include dolphinfish, bigeye tuna, albacore tuna, and sharks.  There are several 

regional sectors to keep in mind when analyzing this data:  The Gulf of Mexico yellowfin 

tuna sector, the Caribbean tuna and swordfish sector, the U.S. Atlantic distant-water 

swordfish sector, the Mid-Atlantic and New England swordfish and bigeye tuna sector, 

and the South Atlantic swordfish sector (Beerkircher et al., 2004).  The longline is 

typically set at different times of the day and depths depending on the target species.  

When swordfish is the target, the lines are generally deployed at sunset at shallower 

depths and hauled in at sunrise to take advantage of the nocturnal near-surface feeding 

habits of swordfish (Berkeley et al., 1981).  Conversely, when targeting tuna, the 
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longliners generally set the gear in the morning, deeper in the water column, and bring it 

in at dusk.  With the exception of the vessels that are making distant, extended trips, the 

longliners preferentially target swordfish during full moon periods to take advantage of 

the species’ tendency to spend increased amounts of time at the surface (Carey and 

Robison, 1981). 

 Data on landings and effort by the pelagic longline fleet are collected by NMFS in 

the form of logbooks.  There is also a pelagic observer program (POP) that targets 8% 

coverage of the vessels based on the fishing effort of the fleet.  The observers record fish 

species, length, weight, sex, location, and environmental information.  This source of data 

is important because the spatial resolution is some of the best recorded for fishery 

dependent data.  Other sources of commercial data include the Accumulated Landings 

System (ALS), which collects landings data in the form of monthly totals of the 

quantities landed and the value of the landings for each species, and the Trip Interview 

Program (TIP), which was developed to gather size frequency and age-at-length data.  

This program also provides CPUE data.  

The Caribbean Fisheries 

The dolphinfish fishery in the wider Caribbean is characterized by multiple gears 

which overlap in space and time.  In the Caribbean, large pelagic species are exploited by 

the local artisanal and small-scale fisheries as well as large-scale commercial operations 

like the longline fisheries.  Additionally, recreational sportfishing for large pelagics is an 

ever-increasing activity in many areas, often in connection with tourism (Mahon, 1991).  

Unfortunately, the status of the major commercial fish stocks are, in many cases, not 

known with much certainty because of a lack of historical, systematically collected data 
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on catch and effort, especially for recreational fisheries (Mahon, 1991, Mahon, 1999). 

The comprehensiveness of current data collection programs also varies from country to 

country.  Because of this, definitive assessments of numbers and sustainable yields for 

the various Wider Caribbean fishery resources are not available.  Vessels that fish for 

dolphinfish and other pelagics are usually targeting a variety of species, therefore, the 

numbers of vessels fishing do not accurately represent the amount of effort directed 

specifically at dolphinfish or even at large pelagics in general (Mahon, 1999).  In spite of 

the difficulty in determining effort directed by these fisheries at dolphinfish, there are 

trends in eastern Caribbean fleets that are showing increasing effort for large pelagics 

including dolphinfish (Mahon, 1999).  Large-scale commercial fishing fleets such as the 

U.S. longline fleet or the Venezuelan longline fleet have been fishing for large pelagics in 

the Caribbean region since the late 1950s. Since the 1970s, there have been purse seine 

and tuna pole and line vessels fishing the Caribbean waters as well.  Unfortunately, with 

the exception of the U.S. and Venezuelan longline fleets, there has been a paucity of 

information regarding catches of dolphinfish by these fleets.  A recent FAO report of 

large pelagic fisheries in CARICOM countries is the exception (Die, 2004). 

Another potentially confounding factor is the fact that dolphinfish, like other 

pelagic migratory species have been seen by many Caribbean countries as a possible 

target of expanded fishing activities through the use of Floating Aggregation Devices 

(FADs).  Many Caribbean countries have justified the movement towards FAD programs 

as a means of diversification of the regional or national fishing activity, and as a way to 

shift fishing pressures from areas that had been depleted of bottom fish resources (Reynal 

et al. 2000, Morales-Nin et al. 2000).  This shift represents a significant change in the 
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exploitation patterns of pelagic fish, including dolphinfish.  Several issues associated 

with the increased use of FADs by artisanal and commercial fisheries in the Caribbean 

have been identified.  First, recruitment overfishing may pose a problem as fishing 

pressure on small pelagics increases around the FAD (Fonteneau et al. 2000).  Secondly, 

FADs may change the ecology of pelagic species by altering migration routes, and 

growth and predation rates (Taquet et al., 2000; Marsac et al., 2000).  This expansion of 

the fisheries to FAD fishing is partially fueled by subsidies from the European Union 

(EU)  

 This fishery presents complex management challenges in that information about 

the population is uncertain and management needs span across national and international 

jurisdictions.  Dolphinfish are believed to be highly migratory, leading to variation in 

seasonal abundance.  Also, dolphinfish may be more closely associated with the interface 

between the shelf regions and the pelagic environment then either billfish or tunas.  

Therefore, this species may exhibit more complex stock structure than the larger species, 

and pose a need for a comprehensive evaluation of the stock dynamics. 

Synopsis of Fisheries Catch Data for the Study Area 

 In an angling survey of the Atlantic coast, U.S. Fish and Wildlife Service 

provided one of the first records of the catch of dolphinfish (Clark, 1962).  In this survey, 

point estimates were made of the number of dolphinfish caught in the Mid-Atlantic, 

South Atlantic, and Gulf of Mexico.  Although no confidence limits were placed around 

these estimates, dolphinfish was reported to be most abundant in the Gulf of Mexico, or 

at the very least most frequently caught in this area.  In the Caribbean, trends in 

increasing catches of dolphinfish have been reported throughout the western-central 
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Atlantic region over the last 3 decades—1700 mt in 1970-1974 to around 2800 mt in 

1989-1993 and 2829 mt in 1989-1993 (Mahon, 1999).  Overall dolphinfish landings have 

shown an increasing trend from 1970 through 1992.  This increase has been attributed 

mainly to increased landings by the U.S.  However, an analysis of FAO reported landings 

of coastal pelagics, a group that includes dolphinfish, suggests that the actual landings 

may be double that which is reported to FAO due to uncertainty in the “unclassified 

species” categories (Die, 2004).  Table 1.2 shows the annual landings from the longline 

and other fisheries by country.  The catch by the U.S. has consistently been less than 15% 

except in 1990. 

 

 



 

 

21 

 

T
a
b

le
 1

.2
: 

A
n

n
u

a
l 

C
a
ri

b
b

ea
n

 c
a
tc

h
 o

f 
d

o
lp

h
in

fi
sh

 b
y
 t

h
e 

U
.S

. 
a
n

d
 s

ev
er

a
l 

o
th

er
 C

a
ri

b
b

ea
n

 n
a
ti

o
n

s 
b

y
 v

a
ri

o
u

s 
ef

fo
rt

 

so
u

rc
es

. 

 



 

 

22  

Preliminary Assessments of Dolphinfish to Date 

 The issue of stock is an important one when making a fishery assessment.  The 

work by Oxenford and Hunte (1986) suggested two separate stocks.  However, a study by 

Wingrove (2000) found that there was not significant mitochondrial DNA variation 

between dolphinfish from different areas in the wider Caribbean, and therefore that the 

dolphinfish in the western central Atlantic belonged to a single stock.  It is important to 

note that in the case of separate stocks, minimal exchange could be sufficient to maintain 

genetic homogeneity.  This is an area that has not been investigated by any genetic 

studies.  However, no difference in growth was found around Puerto Rico by Rivera and 

Appeldoorn (2000) in an age and growth study and this further weakened the two stock 

hypothesis.  Additionally, the period of peak availability of dolphinfish to the artisanal 

fishery is not consistent with the northward migration of the southern stock as Oxenford 

suggested (Arocha et al., 1999). 

Prager (2000) made an initial assessment of what is purported to be the northern 

stock of western Atlantic dolphinfish.  This assessment was conducted exclusively from 

U.S. pelagic longline data for 1986-1997.  In the assessment, he estimated that 

dolphinfish was not overfished in 1998 because biomass was 150 percent of BMSY.  

Similarly, Prager determined that fishing mortality in 1997 was 50 percent less than FMSY 

and therefore dolphinfish were not experiencing overfishing.  The estimated MSY for this 

stock is 12,200 tons with an 80 percent confidence interval of 8,500~21,100.  No decline 

in abundance is suggested by the CPUE indices.  In fact, the biomass seems to have 

increased significantly from the late 1980s to the early 1990s.  Prager acknowledged that 

these population indices are uncertain and may contain artifacts of the data that are 
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contributing to the apparent increase in abundance.  This assessment did not evaluate the 

impact of the recreational fishery on the dolphinfish population, and according to this 

research, the mean size of dolphinfish caught has not declined historically although 

anecdotal evidence from local Miami anglers is to the contrary.  The assumption of this 

assessment is also that the US longline catch is representative of all of the removals of the 

northern stock of western Atlantic dolphinfish.  This is obviously not the case as 

removals by U.S. and Caribbean recreational anglers, Caribbean commercial fisheries, 

and fisheries of countries such as Venezuela represent a large portion of the removals. 

Mahon and Oxenford (1999) chose a yield per recruit analysis to attempt to 

delineate benchmarks for Caribbean dolphinfish stock status.  They concluded that life 

history traits, namely the rapid growth and short lifespan of this species, suggested that 

yield per recruit could be maximized at exploitation rates that would lead to spawning 

stock sizes that were too low to maintain the species.  The conclusion was that yield per 

recruit analysis should not be used for dolphinfish due to uncertainty in the model. 

 Parker et al. (2000) assessed the dolphinfish stock in the eastern Caribbean with a 

combination of two types of length-based models (length-based catch curve and length-

based virtual population analysis (VPA)).  The results of this analysis suggested that 

fishing mortality is much greater than the fishing effort at MSY and that the harvest is 

above MSY.  These results were deemed to be highly uncertain and dependent on growth 

parameters that were not well estimated (Die, 2004).  The results of this research may 

also be skewed due to the fact that a separation in the population to create a northern and 

a southern stock is not well supported, and again, the assumption is that the analysis was 
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on a representative portion of the removals for the stock.  Therefore, the high mortality 

may be attributed to a migration from the eastern Caribbean to other regions. 

1.2 Oceanography 

Regional Overview 

 The western Atlantic is characterized by a diverse and unique oceanography.  

This fact has been noted by researchers studying larval transport (Cowen et al., 2003), 

connectivity (Cowen et al., 2000), and movement of large pelagic species (Prince et al., 

2005).  As oceanographic processes are essential in determining the distribution of 

pelagic fish, and to help develop accurate abundance indices for dolphinfish, it is 

appropriate to describe the oceanography of the study area in detail. 

Caribbean Sea 

The Caribbean Sea has 3 major parts:  the eastern Caribbean north of Venezuela, 

the Cayman Sea in the west and the SW Caribbean Sea.  In terms of topography, there are 

five major basins: (1) Grenada Basin lies between the Lesser Antilles Arc and Las Aves 

Ridge, (2) Venezuelan Basin lies between the Las Aves Ridge and Beata Ridges, (3) 

Colombian Basin lies between the Beata Ridge and the Central American Rise, (4) 

Cayman Basin lies between the Central American Rise and the Cayman Ridge, and (5) 

the Yucatan Basin lies between the Cayman Ridge and the Yucatan Strait where the 

Caribbean ends (Figure 1.6). 
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Figure 1.6:  Map of the major basins of the Caribbean Sea.  The sill levels between 

the basins regulate to a large degree the inflow of water to the Gulf of Mexico and 

the Gulf Stream. 

 

The climate of the region is regulated to a large degree by the position of the 

Intertropical Convergence Zone (ICTZ), an area of low pressure that forms where the 

Northeast Trade Winds meet the Southeast Trade Winds near the earth's equator creating 

a band of heavy precipitation (Holton et al., 1971).  It is due to this variation in rainfall 

that the water structure in the Caribbean Sea is highly stratified in the upper 1200 m.  

Below this depth, the water column is weakly stratified to 2000 m and nearly 

homogeneous below 2000m (Gordon, 1967). 
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It is important to note that there are two major rivers which have a considerable 

influence on the southern Caribbean: the Orinoco and the Amazon (Muller-Karger, 

1993).  These rivers are significant enough to cause changes in the salinity and the 

nutrient levels of the waters along the north coast of South America.  In contrast to this, 

most of the Caribbean Islands in the Antilles chain are more affected by the inflow of the 

nutrient-poor North Equatorial Current, which enters the Caribbean between the eastern 

Antilles islands.  This main current along with the outflow from the rivers influence the 

types of water present in the basins of the Caribbean.  Within the various basins, 

Morrison and Nowlin (1982) identified the presence of several types of water masses.  

The first is Caribbean Surface Water, which is located in the upper 50-75m of water 

column and has a salinity of less that 35.5 ppt because of the presence of Amazon River 

water.  Subtropical Underwater is characterized along the section by a salinity minimum 

found at 150-200m.  The third, 18ºC Sargasso Sea Water, is characterized by an upper 

level oxygen minimum within the Venezuelan Basin.  Tropical Atlantic Central Water is 

characterized by its dissolved oxygen minimum at depths of 400-600 m.  Antarctic 

Intermediate Water has a salinity minimum observed at depths of 600-900 m and a 

relative maximum of silicate, phosphate, and nitrate.  And lastly, North Atlantic Deep 

Water is characterized by decreasing silicate to a minimum at 1600-1800 m.  This water 

type is found only in the western Caribbean. 

 Surface circulation in the region consists of a general westward flow called the 

Caribbean Current.  The majority of the water enters through the Lesser Antilles passages 

(<1200 m deep).  The volume transport in this region can be broken up by area.  The 

transport around eastern Venezuela is 26 Sv, Central Venezuela is 33 Sv, Colombia is 28 
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Sv, Colombia-Cayman-Yucatan is 33 Sv, Cayman-Yucatan is 36 Sv, and Yucatan Straits 

28 Sv.  This gives an average flow throughout the region of 31x10
6
 m

3
/s, which is 

consistent with what is reported to leave the Caribbean through the FL Straits (Larsen et 

al., 1985, Leaman et al., 1989).  There is intense flow (speeds approaching 80 cm/s) in 

the Grenada Passage, along the Colombian coast, south of the Nicaraguan Rise, and from 

the Yucatan Current south of the Yucatan Straits.  These areas are likely to be areas 

containing higher numbers of large pelagic species due to the swift current.   

The mesoscale variability and sea level fluctuations in the Caribbean have been 

related to “eddy waves” (Andrade and Barton, 2000; Carton and Chao, 1999) that may be 

continuously shed from the Northern Brazil retroflection system, which is unstable.  The 

sea level variability in the Caribbean rises from about 7cm in the east to 12cm in the 

west—decreasing to the north (Carton and Chao, 1999).  The amplitude of these eddies 

generally grows as they progress westward.  The majority of eddies have been found to 

spin down in the western Caribbean, near the coast of Nicaragua, before passing the 

Yucatan peninsula.  The Caribbean supports strong eddy activity with about 7-17 month 

time scales and about 250 km spatial scales. 

Loop Current 

 The Loop Current is a portion of the Gulf Stream that extends into the Gulf of 

Mexico in a horseshoe shape.  The Loop Current is the main feature joining the Yucatan 

Current flowing along Belize and Mexico to the Florida Current (Watts, 1983).  The 

Yucatan Current is an example of western boundary current intensification.  This fact has 

been displayed by the dynamic height fields in Molinari (1977), which contribute directly 

to the strong upwelling frontal system (up to 1Sv) along the Yucatan coast (Olson, 2001). 
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There are two dominant and semi-permanent features of circulation in the Gulf of 

Mexico basin: (1) the Loop Current system in the eastern Gulf with a predominately 

annual cycle (Leiper et al., 1970) and (2) the anticyclonic cell of circulation along the 

western boundary.  The first feature has been described as a large, time-dependent 

intrusion of Caribbean waters into the Gulf, which remain distinct from the waters of the 

western Gulf due to differentiation of the thermocline depths due in part to temperature 

decreases in the winter and upwelling of the western boundary current (Nowlin and 

McLellan, 1967; Cochrane, 1972).  The later phenomenon is illustrated by Ichiyes’ 1962 

hypothesis: In the east, anticyclonic rings separate from the Loop Current and travel west 

and break down along the western boundary.  The decay of rings is expressed as a 

gradual flattening of the isotherms across the ring’s radius in concert with a gradual 

shrinking of the radius (Nof, 1982; Hamilton et al., 1999).  The movement of the rings is 

proposed to be the primary mechanism for salt distribution throughout the basin and early 

numerical models suggested that variability in the Loop extension and ring formation are 

intrinsic in the dynamics of the frontal system in the Gulf (Hurlbert and Thompson, 

1980).  The flow from the Yucatan Strait penetrates northward into the Gulf to varying 

degrees before turning anticyclonically and exiting through the Straits of FL.  The general 

patterns of the Loop Current are that there is an annual cycle of growth and decay of the 

Loop Current, the major exchange of heat, salt, and momentum from the current into the 

Gulf is made through the separation of an anticyclonic eddy or current ring, and 

circulation in the eastern Gulf of Mexico is associated with the annual cycle of mass 

transport (Maul, 1977; from observational studies).  Currently, while the period of 
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oscillations is still believed to be roughly annual, there have been noted deviations from 

this pattern (Sturges, 1994; Sturges and Leben, 2000). 

Vertically, the Loop Current front has three layers with two permanent 

thermoclines in the southern North Atlantic Subtropical Gyre (Schmitz and Richardson, 

1991).  Olson et al. (1984) proposed a three layer reduced-gravity model of the frontal 

region in order to predict frontal parameters. Applying the model to the Loop Current, the 

resulting radius of deformation (e-folding scale) for the front is 46 km. The upper 

thermocline itself has a smaller adjustment scale of 25 km in the layered model.   

Gulf Stream and Florida Current 

 The Gulf Stream is a major western boundary current with the mean path of the 

stream along the east coast controlled by a combination of boundary shape, bottom 

topography, entrainment of a fluid from the gyre interior, and adjustment of the flow to 

increased vorticity as the fluid is advected northward (Olson et al., 1983).  The variability 

in the Gulf Stream is believed to have a strong climatic impact.  A significant part of the 

meridional heat transfer is due to the gyre circulation and the Gulf Stream is associated 

with an intense heat loss that could fuel the atmospheric storm track.  The variation in the 

Gulf Stream is related to: (1) wave-like fluctuations primarily associated with the Gulf 

Stream meandering and instability and (2) large-scale lateral shifts reflecting seasonal 

and interannual changes (Frankignoul, et al., 2001).  The use of a satellite altimeter to 

measure the sea surface height illustrated the prominent seasonal variability in the 

transport of the Gulf Stream with a maximum in late winter and early spring, and a 

minimum in late fall and early winter (Fu et al, 1987).  The path of the Gulf Stream 

tended to shift northward in the summer/fall when the current was weakest.  In the FL 
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Straits, the transport increased from 29.6 Sv off of the Keys to approximately 53 Sv off of 

Cape Fear (Leaman et al., 1989). 

 The exact cause of the Florida Current seasonal cycle is not well understood.  

Observational evidence suggests that the wind stress curl over the western Caribbean may 

force the seasonal cycle and the annual cycle is most affected by the wind stress curl over 

the topography of the NW Atlantic (Lee and Williams, 1988).  Transport was considered 

to be barotropic because the increase in transport tended to be constant with depth.  Also, 

the presence of a dominant NW wind causes an Ekman transport east, which establishes a 

westward barotropic pressure gradient that drives a northward geostrophic transport (Lee 

et al., 1985).  At the annual period, the western FL Straits contain all the variation 

whereas the east side (Bimini) shows almost no response. 

The formation of the N. Atlantic Deepwater (NADW) in Greenland and 

Norweigian Sea leads to a thermohaline circulation that transports deep, cold water 

southward along the western margin of the Atlantic Basin, balanced by warm return flow 

in thermocline (Lee et al., 1990).  Observational evidence such as that derived from one 

year moored current measurements east of the Bahamas does not support the existence of 

a reversing boundary current (Schott and Zantopp, 1985).  If a reversing circulation 

actually exists, Schott and Zantopp (1985) felt that it must be “a rather unfocused stream” 

with low speeds in midbasin instead of a boundary jet along the outer Bahamas. 

Venezuelan Basin 

 The Cariaco Basin is a “small, east-west-trending pull-apart basin” (Schubert, 

1982) located on the northern continental shelf of eastern Venezuela.  The Cariaco Basin 

is actually two smaller subbasins, each having maximum depths of about 1400 meters.  
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The basins are separated by a central saddle that is about 900 m maximum depth.  The 

Cariaco Basin is separated along its northern margin from the open Caribbean by the 

shallow Tortuga Bank that extends from Margarita Island west to Cabo Codera on the 

Venezuelan mainland.  The exchange of deep waters with the rest of the Caribbean is 

limited by the surrounding topography and the shallow inlet sills (<146 m).  This lack of 

circulation and the high primary productivity in the region create anoxic conditions below 

about 250 m (Muller-Karger et al., 2001).  A project called the CARIACO (CArbon 

Retention In A Colored Ocean) Program has studied the relationship between surface 

primary production, physical forcing variables like the wind, and the settling flux of 

particulate carbon in the Cariaco Basin.  This project has found that annual primary 

production rates exceed 500 gC/m! of which over 15-20% can be accounted for by events 

lasting one month or less. 

 The upwelling of cold, nutrient-rich waters occurs seasonally along the northern 

Venezuelan coast in response to changes in the prevailing trade-wind field driven by the 

annual movement of the Intertropical Convergence Zone (ITCZ), an area of low pressure 

that forms where the Northeast Trade Winds meet the Southeast Trade Winds near the 

earth's equator (Muller-Karger and Aparicio-Castro, 1994). Between January and March, 

the ITCZ is south of the equator and strong trade winds in the tropical North Atlantic 

induce a slow Ekman drift to the west and northwest.  The Ekman drift is significant 

because it helps to maintain the N. Brazil and Guyana Current systems that are part of the 

NW flow that enters the Caribbean basin through the southern Lesser Antilles channels.  

At the same time, there are strong winds along the northern coast of Venezuela that result 

in intense Ekman drift-induced upwelling.  In the Cariaco Basin, this vertical advection is 
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generally most active during January and February, with isotherms raised by as much as 

175 m and sea-surface temperatures (SSTs) recorded as cool as 22°C (Herrera and 

Febres-Ortega, 1975). Regionally, the upwelling season is also the dry season because the 

ITCZ, along with its associated low pressure and rainfall, lies at its southernmost 

position.  

 In about June or July, the ITCZ moves north to a position near the Venezuelan 

coast, the trade winds diminish and the coastal upwelling weakens.  Sea-surface 

temperatures over the Cariaco Basin typically warm to 27°-28°C.  The northward motion 

of the ITCZ triggers the rainy season north of ~5°N (Hastenrath, 1990), which has a 

strong influence on sea-surface salinity in the western tropical Atlantic and southern 

Caribbean through the discharge of the Amazon and Orinoco Rivers, as well as the 

smaller local rivers that drain directly into the Cariaco Basin (Dessier and Donguy, 

1994).  This region is important biologically because the strong upwelling provides a 

forage base for higher trophic levels.  This is evidenced by the fact that the area is 

important economically for the artisanal commercial longline fishery of billfish and other 

large pelagics. 

The Guiana-Brazil Basin 

In the Brazil Basin, three major water masses are found beneath the permanent 

thermocline: the relatively cool, fresh, and oxygen-poor Antarctic Intermediate Water 

(AAIW) formed in the Southern Ocean, the warm, salty, well-oxygenated North Atlantic 

Deep Water (NADW) derived from the North Atlantic and the Arctic seas, and the 

colder, fresher, oxygen-poorer Antarctic Bottom Water (AABW) formed around 

Antarctica.  There is a strong vertical temperature gradient and a deep thermocline in this 
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region which inhibits the movement of the nutrients and salts from these waters to the 

euphotic zone (Hazin, 1993).  However, while the tropical Atlantic is predominantly 

oligotrophic, this region has localized areas of high biological primary productivity due 

to several oceanographic phenomena.  A primary source, the Amazon River outflow, 

discharges large quantities of nutrients into the basin.  Additionally, the North Brazil 

Current retroflection produces anticyclonic eddies and upwellings around 6°N and 8°N 

(Didden and Schott, 1993).  Upwelling in the region can also be attributed to the 

interaction of local currents with subterranean features of the basin (Trevassos et al., 

1999).  In general, the bottom topography is characterized by abyssal plains, but near to 

the coast, there are islands and rocks, which produce upwelling regions and locally 

increased primary production.  Because of these features and the enhanced production 

that they induce, a significant fishery for pelagic species is found in these areas. 

There are two main surface currents in this area: the North Brazil Current (BC) 

and the Guiana Current (GC).  The NBC is a warm western boundary current that brings 

warm water northward along the coast of Brazil and into the northern hemisphere.  The 

NBC produces large anticyclonic rings (greater than 450 km/270 miles in diameter and 

2,000 m/6,600 ft in vertical extent) that are carried northwest parallel to the South 

American coast until they collide with the Lesser Antilles islands (Fratantoni et. al., 

1995; Bischof et al., 2003).  The shedding of these rings one of the methods of transport 

of South Atlantic surface water, including nutrient- and sediment-rich Amazon and 

Orinoco River discharge, into the North Atlantic (Johns et al., 1998).  On average, six 

NBC rings are generated annually and are responsible for up to a third of the 
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equatorial/subtropical mass and heat transport that is derived from the Atlantic 

meridional overturning circulation (Frantantoni et al., 1995). 

The NBC diverges as it reaches the coast of French Guiana.  At this point, part of 

the current separates and joins the North Equatorial Current. The rest of the flow 

continues northwestward to form the Guiana Current (Bischof et al., 2003) and the main 

flow enters the Caribbean Sea between the coast of South America and Grenada and the 

Lesser Antilles.  The flow entering through these passages is about 10 Sv in strength, and 

represents about 70% of the total water volume flowing into the Caribbean (Johns et al., 

1990). 

 The ITCZ is one of the most important forcing mechanisms in the region.  

Associated with the ITCZ are atmospheric surface low pressures, low winds, strong cloud 

cover, and heavy precipitation—conditions which create a strong seasonal cycle in the 

atmosphere and oceanography of the region.  There is a reduction in the strength of the 

winds along the Guiana Coast when the ITCZ shifts to its northern position.  This 

corresponds to a general weakening of the Guiana Current in the fall. 

Sargasso Sea 

The Sargasso Sea is, geographically, the center of the North Atlantic Ocean.  It is 

located between 20
° 

and 35
°
N and 30

° 
and 70

°
W.  This is a special region of the ocean 

because it is a relatively slow moving body of water arising from the subtropical gyre 

circulation in the North Atlantic, surrounded by the fast moving currents of the Florida 

Straits and the Gulf Stream in the west, the Canary Current in the east, and the North 

Equatorial, Antilles, and Caribbean Currents in the south and south west.  The circulation 

of the gyre drives Ekman downwelling in the central area (McClain and Firestone, 1993), 
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and there is a slow, geostrophic recirculation of water from the northeast toward the 

southwest (Worthington, 1976).  These strong currents separate the Sargasso Sea from 

the rest of the Atlantic, giving this region some unique characteristics.  In particular, the 

waters of the Sargasso Sea are generally warmer and higher in salt content than other 

parts of the North Atlantic.  The waters are clearer and generally were considered to be 

lower in productivity with the exception of the floating mats of Sargassum for which the 

sea is named (Ryther and Menzel, 1960).  Contrary to this view of the Sargasso Sea as a 

desert-like region in terms of biodiversity, current research has shown that new 

production in this area is primarily sustained by nitrogen injection via mesoscale eddies 

and winter convection (Steinberg et al., 2000; Lipschultz et al., 2002). 

 The Sargasso Sea is often considered to be two regions.  In the northwest, 18°C 

subtropical mode water forms in the winter due to convective mixing.  This convection 

brings nutrients to the surface layer (stratification) thereby stabilizing the water column.  

The 18°C subtropical mode water then subducts under the seasonal mixed layer and the 

summer months in this region are characterized by oligotrophic waters (Worthington, 

1976).  In contrast, the southern, tropical Sargasso Sea is stratified and oligotrophic 

throughout the year. 

Importance of Fronts 

One of the factors which make the dynamics of the open ocean more complicated 

is the frequent occurrence of fronts.  These are regions with enhanced horizontal 

gradients of hydrographic properties.  According to Federov (1983), fronts are “vertically 

inclined interfaces between water masses.”  Fronts in the ocean or in the atmosphere can 

be defined as regions where properties change markedly over a relatively short distance.  
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How short this distance is depends on the scale of the process responsible for the front's 

existence (i.e. coastal upwelling, eddy formation, major current regions like the Gulf 

Stream).  Regardless of the process, the change of some hydrographic property— 

temperature, salinity or both—across the width of the front is an order of magnitude 

larger than changes of the same property over the same distance on either side of the 

front.  Frontal dynamics are often nonlinear, which makes the quantitative study of 

frontal behavior a difficult task.  Understanding the formation, movement and persistence 

of frontal systems is important for many practical oceanographic studies. 

Frontogenesis, or the creation of fronts, occurs when there is horizontal 

convergence associated with baroclinic instability (Cushman-Roisin, 1981; Spall, 1995).  

This creates horizontal shear, which acts upon the density field causing forced vertical 

motions (i.e. Ekman upwelling, inertial adjustment).  Also associated with this process is 

differential vertical mixing along tidal fronts (Humston et al., 2004).  Intense biological 

activity is usually associated with fronts because the convergence of different water 

masses concentrates a narrow band at the surface of phytoplankton and zooplankton in 

the subducting water mass, leading to aggregations of predators and to increased 

secondary production (Olson, 2002).   Vertical diurnal migration of midwater 

micronekton occurs at night, with most of the biomass accumulating above the 

thermocline, creating intense vertical patchiness in addition to the horizontal patchiness at 

the surface convergence.  This enhanced biological productivity is one of the main 

reasons why the longline fleet concentrates its efforts in frontal areas.  One of the key 

features of the U.S. and Venezuelan Observer program data is that there is excellent 

spatial and temporal resolution.  The area in which the U.S. longline fishes is extremely 
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dynamic and is comprised of several areas exhibiting complex physical regimes and 

circulation patterns.  The main areas of interest are the Gulf Stream, the Loop Current, 

and the Venezuelan upwelling region.  These areas are indicated in Figure 1.7 which 

displays SST in the region from the AVHRR satellite.  The CPUE of dolphinfish by the 

U.S. and Venezuelan longline observer programs is displayed on the map illustrating that 

the fishing locations of both fleets are predominantly located in frontal regions. 

 

Figure 1.7:  Map of the SST from the MODIS satellite in March 2001.  Major 

frontal features of the western Atlantic are distinguishable from the temperature 

gradients.  White circles containing crosses represent zero CPUE of dolphinfish.  

Pink, yellow, and blue circles represent increasing CPUE of dolphinfish 

respectively.  Note the presence of fishing in the proximity of frontal features. 
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1.3 Estimation of Abundance and Modeling Approach 

Overview 

 One of the major research efforts in fisheries today is the determination of the 

distribution, abundance, and population trends of marine fish species.  In particular, an 

emphasis of this work is on fish stocks that are affected by fishing activities.  

Unfortunately, we face two substantial challenges when inferring abundance from catch 

rates from pelagic fisheries (Stephens and MacCall, 2004).  First, the open ocean is 

prohibitively large to allow for a cost-effective fishery-independent survey.  As a result, 

we have to rely on catch rates from the commercial and recreational fisheries, which are 

not fishing in a random fashion.  Second, many factors may influence the distribution of a 

pelagic, highly migratory species whose abundance changes in time and space with 

production and movement.  For highly mobile species in dynamic environments, such as 

the dolphinfish, the variability in natural systems may induce migratory behavior as a 

species attempts to remain in suitable habitat for locating prey, reproduction, reducing 

competition and avoidance of predators, or to maintain a high level of production (i.e. 

optimal temperature regimes).  This movement can create biases in observed patterns and 

can make it very difficult to detect trends in abundance and also to interpret what 

observed trends are actually indicating because abundance estimates for a fixed region 

may be based on a different proportion of the population at each time.  For example, 

dolphinfish is migratory throughout the western Atlantic and Caribbean, and this can 

cause a shift in the distribution of the dolphinfish throughout the region.  This adds 

variability and reduces the statistical power of any models used to detect trends.  In spite 

of these limitations, this source of data does provide a means of understanding the 
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patterns and trends in species abundance and distribution, and the main question with this 

type of data is how to explain the variability in the dataset in relation to a set of 

explanatory variables. 

 CPUE data have often been utilized to obtain a relative index of abundance of a 

fish stock.  CPUE is usually assumed to be proportional to abundance and is therefore 

included in a stock assessment as a relative index of abundance.  The nominal or 

observed CPUEs are affected by changes of year, season, area in which fishing occurs, 

and many environmental factors.  It is important therefore that these types of factors 

which influence CPUEs be removed from the index.  There are many statistical methods 

available to “standardize” these indices to account for variations that occur because of 

these types of factors.  Examples of these include the Generalized Linear Model (GLM), 

the Generalized Additive Model (GAM), neural networks (NN), regression tree analyses 

(RTAs), and many others (Maunder and Punt, 2004; Stone, 1985; Hastie and Tibshirani, 

1990; Bellman, 1965).  Of these methods, the GLM is the most commonly used.  The 

GLM assumes that the conditional mean is a linear function.  The GAM relaxes this 

constraint by expressing the observations as a sum of non-parametric, nonlinear functions 

on the kinematic parameters.  In this study we consider GLM methods and a 

geostatistical approach (which will be presented in Chapters 3 and 4) to index 

formulation. 

Generalized Linear Models 

GLMs are commonly used to standardize abundance estimates.  These models are 

preferred by stock assessment scientists because they are well understood, and have 

accepted methods to statistically choose the factors or variables in the model that explain 
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the most variance.  They linearly quantify the relationship between several independent 

or predictor variables (i.e. temporal, spatial, vessel, or environmental effects) and a 

dependent or response variable such as CPUE.  A stepwise procedure is often used to 

determine which factors to include based on the degree to which each factor improves the 

fit of the model to the data (Derksen and Keselman, 1992).  The major disadvantage of 

this method is that it is limited to describing linear relationships.  Complexity can be 

added to these relationships by adding higher order terms or interaction (XY) terms.  

However, it is still a drawback that they describe linear relationships when many of the 

factors affecting abundance are non-linear. 

It is common practice when using a GLM to group continuous variables into 

intervals (i.e. daily data into months, or group data into areas).  This is done to provide 

indicators for nonlinear relationships, to account for the limiting effect of degrees of 

freedom in the model (Hocking, 1976; Cook, 1979, Neter et al., 1990), and to reduce 

problems that arise due to large numbers of zeros in the data.  A dataset with many zeros 

is one issue that arises when there is effort in an area at a certain time of year, and no 

catch of the species under study.  The delta-lognormal method is generally a favored 

method to account for strata with positive effort and no catch.  This method models zero 

catches separately and then models the positive catches using a GLM.  These two models 

are then combined to generate the index of abundance. 

A different, but related issue is that that it may be difficult to resolve the variables 

in a stepwise factor selection even when the variables are categorized.  It is a common 

occurrence that some factors and interactions may be deemed a significant reduction of 

the variability of the model, but will not be able to be included in the model due to 
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constraints on the Hessian matrix (Golub and VanLoan, 1989).  This can be a common 

occurrence when the covariance parameters are on a different scale.  A non-positive 

definite Hessian matrix can indicate a surface saddlepoint or linear dependencies among 

the parameters (Golub and VanLoan, 1989).  Additionally, the classification of variables 

is in a sense a smoothing of the data, and it is expected that some important variability 

will be lost that may be important in detecting abundance trends. 

Bayesian Surplus Production Model 

 A simple surplus production model, or biomass dynamic model, is the most 

common choice for stock assessment when there is a lack of age structured data (Hilborn 

and Walters, 1992).  These models fit a trend to catch and relative abundance time series.  

In a Bayesian surplus production model, prior information can quantitatively be 

incorporated, with the posterior distributions directly reflecting the prior assumptions 

(Punt and Hilborn, 1997).  One of the main draws of a Bayesian model is the ability to 

infer parameters of interest that have a relationship to observed data and background 

information on the parameter (Gelman et al., 1995).  The prior can be input to the model 

through the use of a probability density function (PDF).  An informative prior for r was 

developed by assessing the likelihood that the given species would have an r parameter 

similar to the r parameter of other species with similar life histories (Babcock and 

McAllister, 2003).  The key to this technique is the ability to estimate r from the slope of 

the stock-recruitment relationship (Myers et al., 1997; Myers et al, 1999).  This 

methodology will be described in detail in Chapter 5.  Models for both dolphinfish and 

swordfish were developed to test whether the incorporation of spatially or non-spatially 

explicit indices of abundance gave statistically different model results.  Specifically, the 
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interest was to see if the estimates of biomass, maximum sustainable yield (MSY), and 

other measures of productivity from each of the models would lead a stock assessment 

scientist to a different conclusion about the status of the stock.   

1.4 Aims and Objectives of Dissertation 

Overview 

 The main goal of this research is to provide a scientific basis to improve the 

knowledge of the status of the stock or stocks of dolphinfish in the wider Caribbean and 

western Atlantic.  This research aims to use spatial fisheries information and 

environmental data to assess the status of dolphinfish in the western Atlantic by 

identifying physical oceanographic features that may define higher abundance of the 

species.  This work will demonstrate that environmental variables play a role in affecting 

dolphinfish CPUE and will be important in the standardization procedures for indices of 

abundance.  These indices will form the basis of a Bayesian surplus production model 

that will incorporate environmental influences through indices of abundance that are 

standardized with environmental information. 

 One approach will be to identify and classify the pelagic habitat that the species 

occupies more thoroughly than has been previously attempted using oceanographic 

products derived from satellite data.  These types of information (sea surface temperature 

and distance to nearest front) will be used to identify and define quantitative relationships 

between the distribution of fish and their ecosystems using multivariate techniques such 

as detrended correspondence analysis (DCA), principal components analysis (PCA) and 

simple population models.  By identifying environmental attributes, gear configurations, 

and significant species assemblages that account for high dolphinfish CPUE, these factors 
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can be added to a GLM or GAM model to construct more robust indices of abundance.  

Additionally, addressing spatial autocorrelation within the catch rates will also lead to 

better indices of abundance.  These indices will form the cornerstone of a simple stock 

assessment model.  Several questions will be addressed in this thesis: 

1)  What gear configurations and species assemblages are important for dolphinfish 

CPUEs? 

2)  What physical oceanographic features specifically define the habitat of dolphinfish?  

Are certain oceanographic and circulation features more important as descriptors of 

habitat than others? 

3) Can spatial autocorrelation be quantified in catch rates and be introduced a priori to a 

simple stock assessment model by incorporation into the indices of abundance? 

4)  What is the type and quality of information necessary to conduct a sound assessment 

of dolphinfish? 

General Objectives 

1)  To analyze and select environmental parameters, gear configurations, and species 

assemblages which define the pelagic habitat of dolphinfish using multivariate 

techniques; 

2)  To couple the oceanographic multivariate analysis with fishery information to develop 

a functional understanding of the spatial and temporal occupation and movement 

tendencies of dolphinfish through a simple stock assessment model; 

3)  To construct indices of abundance that incorporate environmental data and explicit 

spatial data to be used in a stock assessment model; 
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4)  To estimate priors using demographic methods that incorporate information about 

similar species for biological parameters such as r, the intrinsic rate of growth of a 

species, for use in a Bayesian surplus production model; 

5)  To qualitatively analyze the difference between the productivity parameters of the 

Bayesian surplus production model when a spatial and a non-spatial index are used. 

General Hypothesis 

H0:  Dolphinfish is a highly migratory pelagic species that will benefit from stock 

assessments that take into consideration their environment, significant species 

assemblages, and gear configurations.  Multivariate techniques should reveal patterns 

within complex environmental data that would not be apparent otherwise, and this can 

enhance indices of abundance by corroborating the use of this type of data in their 

formulation.  Additionally, spatial variability may be accounted for and incorporated into 

an index of abundance. 

Specific Hypotheses 

H01:  There will be no significant environmental variables, gear configurations, and 

species assemblages found with multivariate analyses. 

HA1:  Multivariate analyses will highlight specific environmental variables, gear 

configurations, and species assemblages that are important to dolphinfish. 

 

H02:  There will be no difference in the trend between a traditional GLM standardized 

index of abundance and a geostatistical index that accounts for spatial variability. 

HA2:  An index of abundance for a pelagic species may be enhanced when spatial 

autocorrelation is accounted for. The differences between the indices may be increased 
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when the level of spatial autocorrelation is significant (i.e., the species displays a long 

range of spatial autocorrelation). 

 

H03:  Dolphinfish can be assessed with a simple surplus production stock assessment that 

does not incorporate spatial information. 

HA3:  Dolphinfish can be assessed with a simple surplus production stock assessment 

model that incorporates a priori spatial information within catch rate indices. 
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CHAPTER 2:  TOWARDS AN UNDERSTANDING OF DOLPHINFISH 

ABUNDANCE:  A MULTIVARIATE ANALYSIS OF THE RELATIONSHIPS 

BETWEEN ENVIRONMENTAL VARIABLES AND SPECIES ASSOCIATIONS 

FROM THE U.S. PELAGIC LONGLINE FLEET. 

 

2.1  Challenges of Assessing Dolphinfish 

Estimation of abundance is a cornerstone of fisheries stock assessments (Hilborn 

and Walters, 1990).  Trends in population abundance are nearly essential in exploring 

how fishing mortality has affected fish stocks (Maunder, 2001; Maunder and Punt, 2004).  

Yet estimating abundance can be challenging, particularly for highly migratory species 

such as the dolphinfish, Coryphaena hippurus (common) and C. equiselis (pompano).  

These species are not conducive to cost-effective fishery-independent surveys, which 

would use stratified random sampling to assure catch rates were representative of the 

action of the stock (Stephens and MacCall, 2004).  As a result, abundance trends must be 

gleaned from catch rates in the fishery, where fishing activity is anything but random.  To 

complicate matters further, variability in the natural environment may induce variation in 

migratory behavior.  This may be due to attempts to remain in suitable habitat for 

locating prey, reproductive requirements, the need to reduce competition and avoid 

predators, or the maintenance of a high level of production (i.e. optimal temperature 

regimes) (Palko et al., 1982; Oxenford, 1999).  It is especially important to standardize 

catch rate data for highly migratory species because of the potential for biases in 

observed patterns, which can make it difficult to detect trends in abundance and also to 

interpret what the observed trends are actually indicating (Campbell, 2004). 
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Traditional stock assessment techniques often assume that stocks and fishing 

operations are spatially and temporally homogeneous.  This is a pattern that does not hold 

true for most fisheries, especially for those that target highly migratory species.  In spite 

of these limitations, fishery dependent data does provide a means of understanding the 

patterns and trends in species abundance and distribution, and the main question with this 

type of data is how to explain the variability in the dataset in relation to a set of 

explanatory variables. 

Typically, a modest set of factors is available for standardization of catch rates.  

At worst, minimal data are self-reported by fishing crews and are limited to dates, 

roughly specified locations, and a few descriptors of the fishing methods and duration.  

We do better with highly migratory species in the western Atlantic, where pelagic 

observer programs have been in place in the U.S. and in Venezuela since 1992.  Through 

these programs, independent observers collect precise information on timing, location, 

gear configuration, and even intended target species.  Though the motivation for observer 

programs is often concern about bycatch of protected species, these data dramatically 

improve our ability to characterize effort and, to some degree, to standardize catch rates.  

Consequently, they allow us to estimate abundance using something that more closely 

approximates a stratified random sampling regimen. 

 When attempting to determine abundance or distribution patterns from fishery 

dependent data, it is typical to use a form of regression where CPUE is the dependent 

variable which is defined by several explanatory variables.  A common model choice is a 

linear model with a stepwise selection of factors to standardize CPUE against the 

variables of interest.  When dealing with models other than orthogonal, linear Gaussian 
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models, the order in which parameters are added or dropped from the model can have a 

large impact on the final model, meaning that some variables of interest may be dropped 

from the final model and important relationships may be ignored (Miller 2002).  

Conversely, if the majority of the factors are kept in the model, supplemental analyses 

will likely be required to understand complex interactions.   

A PCA is a useful way to understand the significant correlations and importance 

of the variables because it reduces and orthogonalizes the original variables (Legendre 

and Legendre 1998).  The focus of this chapter is on the understanding of the use of the 

commercial pelagic longline fishery data to determine an abundance index for 

dolphinfish and on understanding the relationship of dolphinfish to other species caught 

by the longline.  The goal is to test the applicability of environmental and fisheries-based 

indices as a measure of the variation in the abundance of dolphinfish, Coryphaena 

hippurus. 

To date, little oceanographic research has been conducted with regards to 

dolphinfish fisheries in the western Atlantic.  There are several key oceanographic 

processes that may influence the movement of dolphinfish.  These include SST ranges, 

chlorophyll, salinity, bottom depth or topography, prevailing currents in the area in which 

the dolphinfish is caught, and proximity to thermal fronts.  It is well known that many 

fish species are associated with frontal boundaries in the ocean (Olson, 2001).  These 

areas are prime locations for catching fish because of the tendency for prey to be 

aggregated by dominant current regimes.  In fact, many longliners use in situ water 

temperatures and satellite-derived SST to focus effort along thermal fronts (Podesta et al., 

1993).  Without satellite-derived data, it would be impossible to adequately account for 
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the increased ability of longline vessels to find and fish fronts when standardizing catch 

rates. 

Because of the likelihood of interdependence of these factors, a multidisciplinary 

approach is needed to tease apart the relative importance of each of the factors 

influencing dolphinfish CPUE.  This analysis aims to evaluate the usefulness of 

oceanographic data for this purpose and explores a further refinement in abundance 

indices by linking the time and location reported by observers with remotely sensed 

environmental data collected by government satellite programs.  Though the observer 

program collects some information on environmental conditions, the satellite data 

provide more accurate and consistent measurements of ocean temperatures, and allows 

for examination of the neighborhood to identify such phenomena as ocean fronts.  The 

hypothesis that these data improve standardization and, in doing so, increase confidence 

in the estimates of abundance as measured through catch rates is explicitly tested in this 

chapter. 

Description of the Longline Fishery 

Dolphinfish is a species of great importance in both commercial and recreational 

fleets of the western Atlantic.  Both C. equiselis and the more common C. hippurus are 

caught by the U.S. and Venezuelan longliners, however, the catch of this animal is 

identified only to species level.  Therefore, dolphinfish in this dissertation will refer to the 

undifferentiated catch of both types of dolphinfish.  The fleets operate in overlapping 

realms.   

The U.S. fleet fishes the entire western Atlantic from the equator to the Grand 

Banks, at about 50°N latitude, with the majority of the effort concentrated above 20°N 
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latitude (see Figure 1.1).  The vessels range in size from 35 feet to 90 feet and trips 

typically last 2-45 days.  The Pelagic Longline Observer Program (PLOP) at the National 

Marine Fisheries Service (NMFS) Southeast Laboratory in Miami began in May of 1992.  

This program provides unusually high quality data because total catches (including 

discards) are recorded for every set, along with precise location, timing, gear 

configuration, intended target species, and some vessel-derived environmental 

information.  The observer corps is invaluable in monitoring about 70-75% of the 

longline vessel trips, and observes the catch from about 500 longline sets per year.  This 

is no small task as the distance of a longline set can range from 10 to 50 miles with 200 to 

1000 hooks per set.  The fishery in the western Atlantic primarily targets swordfish, 

Xiphias gladius, and yellowfin tuna, Thunnus albacares, in the Gulf of Mexico, the 

northeastern Caribbean, and along the eastern U.S. seaboard in various seasons.  

Secondary target species include dolphinfish, bigeye tuna (Thunnus obesus), albacore 

tuna (Thunnus alalunga), and sharks.  There are several regional sectors to keep in mind 

when analyzing this data:  The Gulf of Mexico yellowfin tuna sector, the Caribbean tuna 

and swordfish sector, the U.S. Atlantic distant-water swordfish sector, the Mid-Atlantic 

and New England swordfish and bigeye tuna sector, and the South Atlantic swordfish 

sector (Beerkircher et al. 2004).  The longline is typically set at different times of the day 

and depths depending on the target species.  When swordfish is the target, the lines are 

generally deployed at sunset at shallower depths and hauled in at sunrise to take 

advantage of the nocturnal near-surface feeding habits of swordfish (Berkeley et al. 

1981).  Conversely, when targeting tuna, the longliners generally set the gear in the 

morning, deeper in the water column, and bring it in at dusk.  With the exception of the 



 

 

51  

vessels that are making distant, extended trips, the longliners preferentially target 

swordfish during full moon periods to take advantage of the species’ tendency to spend 

increased amounts of time at the surface (Carey and Robison 1981). 

The Venezuelan fleet fishes in the southern Caribbean from the equator to the 

northernmost Lesser Antilles at about 20°N latitude (see Figure 1.1) and is characterized 

as an artisanal longline fleet.  Traditionally, the fleet was smaller in scale and targeted 

snapper (Lutjanidae) and grouper (Serranidae).  The catch was used mainly for local 

consumption and a small portion was processed and exported to countries like the U.S.  

Other species that were caught commercially were sardines (Sardinella aurita), and other 

demersal fish and invertebrates; however these were caught by small commercial vessels 

deploying purse seine nets.  Approximately 65% of this small-scale longline operated 

near the home ports within the EEZ in relatively shallow waters (Arocha, pers. comm.).    

Currently, though the main target species of the Venezuelan fleet is yellowfin tuna 

(Thunnus albacares) dolphinfish represents approximately 25% of the total catch by 

weight.  Similar to the U.S. longline fleet, the Venezuelan national fishery administration 

developed and implemented an observer program (Venezuelan Longline Observer 

Program, VPLOP) for its pelagic tuna longline fishery, and now collects data from 

roughly 13% of the longline trips observed annually.  Like the U.S. PLOP, this dataset 

begins in 1992 and runs through the present, with data entered and checked for errors 

through 2003. 

 In both fisheries, there are several dominant species, both target and nontarget, 

that make up the majority of the catch, and it is important to understand the habitat 

preferences of these species when analyzing this data.  The bigeye tuna (Thunnus obesus) 
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are found worldwide in tropical and subtropical waters between 50°N and 45°S and are 

believed to be among the deepest swimming members of the tuna family ranging from 

the surface to 250 meters (Allen and Punsley 1984).  Blue sharks (Prionace glauca) are 

found in the Atlantic from New Foundland, Canada to Argentina in both near shore and 

open-ocean waters (Skomal 2003).  They are a relatively deep species, inhabiting surface 

waters to 200 m depth (Compagno 1984).  Yellowfin tuna (Thunnus albacares) inhabit 

tropical and subtropical waters of the Atlantic from latitudes of approximately 40°N to 

35°S, with a preference for the upper 100 meters of the water column (Collete and Nauen 

1983).  The swordfish (Xiphias gladius) ranges from approximately 60°N to 45°S (Seki 

et al. 2002).  While swordfish prefer warmer waters from 18-22°C, this species has the 

widest temperature tolerance of any billfish, but usually is found in waters warmer than 

10°C (Carey and Robinson 1981).  Generally a midwater fish with a depth range of 200-

600m, the swordfish is commonly found in surface waters and in frontal zones, where 

productivity is high (Olson 2001).  Dolphinfish (Coryphaena hippurus) inhabit tropical 

and subtropical surface oceanic waters worldwide and are reported in the literature to be 

bounded in the north and south Atlantic by the 20 degree Celsius isotherm (Palko et al. 

1982).  The dolphinfish is generally a pelagic fish that is found both offshore and near the 

coast under floating objects (Taquet et al., 2000).  It is believed to be mostly associated 

with surface waters, with a total depth range from 0-279 feet (0-85 m).  They represent 

the fourth highest catch by the longline fleet, yet their populations have not been fully 

assessed. 
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Chapter Goals and Objectives 

The ultimate goal of this work is to better define the oceanographic variables, 

species assemblages, and gear configurations that influence fishery catch.  In particular, 

this work examines the utility of adding satellite-derived environmental data into catch 

rates standardization processes.  The quantified catch rates are used to document the 

abundance of dolphinfish in the western Atlantic.  This is accomplished by comparing 

GLM-standardized abundance indices with and without the inclusion of the satellite-

derived data for both the U.S. and Venezuelan data.  This process also enhances 

knowledge of dolphinfish ecology by examining the links between dolphinfish catch rates 

and specific environmental conditions.  PCA is used to couple the oceanographic features 

of the western Atlantic with fishery information to develop a functional understanding of 

the spatial and temporal occupation and movement tendencies of dolphinfish.  These 

techniques build on our understanding of dolphinfish spatial ecology and its implication 

for estimating abundance and the movement, migration, and stock structure of 

dolphinfish. 

2.2  Methodology for Multivariate Analysis 

This work consisted of three steps.  First, a major effort was made to compile data 

from satellite imagery and from pelagic observer programs in the U.S. and Venezuela.  

The second part of the chapter examines the relationships between dolphinfish catch from 

the U.S. longline fleet and several environmental and species assemblage factors further 

using PCA.  PCA is a useful way to understand the significant correlations and 

importance of the variables because it reduces and orthogonalizes the original variables 

(Legendre and Legendre 1998).  Finally, GLMs were developed to standardize the U.S. 
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and Venezuelan catch rates, with one set of models relying on conventional data and the 

other relying on that data plus satellite-derived environmental data. 

Fisheries Dataset Preparation 

 The U.S. commercial longline observer program database contains 5979 unique 

sets spanning the period from 1992 to 2003.  The pelagic longline observer program is a 

useful tool for studying correlations between environmental and vessel parameters and 

the various species caught by the longline fleet because longline sets are recorded at a 

higher spatial resolution than most other fishery dependent datasets.  A coordinate 

position is recorded at the beginning and ending of the set and the haul of the gear.  These 

points allow for analysis on a finer scale and allow an association between the 

coordinates and times of the specific haul with data derived from satellites such as SST, 

ocean color (K) and distance to nearest front.  Other data includes vessel characteristics 

such as vessel size, horsepower, gross tonnage, and haul capacity, information on the 

gear configuration such as the amount of gear deployed, depth of hooks, type of bait and 

other gear attributes, and catch characteristics, such as the target species, weight and 

length measurements and condition of the catch.  Access to the U.S. dataset was provided 

by NMFS.  This dataset was cleaned and checked for anomalies by staff at NMFS, and is 

the principle source of data used in constructing indices of abundance for pelagic species 

assessments by U.S. researchers.  Each longline haul was identified as a unique entity.  

Effort was defined as hook hours—the number of hooks set multiplied by the number of 

hours they were deployed.  Catch was converted to weight from length measurements 

using a formula from Oxenford (1986) where: 

 Weight in kg = 1.45*10
-8

*L
2.91

 (Length is measured in mm).  (1) 
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The Venezuelan longline observer program (VPLOP) database was set up in a 

similar manner to the U.S. dataset; however, there were no records for bottom depth or 

average hook depth.  Therefore, the preparation of the Venezuelan data was identical to 

that described for the U.S. data with the exception of these factors. 

Environmental Dataset Preparation 

The satellite derived environmental factors of interest for this analysis were SST 

and distance of CPUE point from the nearest front.  The spatial information collected by 

the observers onboard the longline vessels provides coordinates for the CPUE data in 

terms of a latitude and longitude for the beginning and ending points of the set or 

placement of the longline gear into the water and the haul or retrieval of the longline gear 

from the water as described above.  An average of these four points was used in linking 

the CPUE at a point to the environmental factor of interest. 

SST 

 SST was derived from MODIS and AVHRR satellite imagery.  MODIS views 

almost the entire surface of the Earth every day, acquiring data in 36 spectral bands over 

a 2330 km swath.  MODIS has higher resolution than the AVHRR sensor; however, it 

has only been in operation since 2000.  Therefore, the AVHRR satellite, which operates 

in a very similar manner to the MODIS satellite was used to interpolate SST and ocean 

color data for the longline data from 1992-2000.  For the more recent time period (2000 

to the present) SSTs for MODIS (4mm) and AVHRR (multiple bands) can be compared.  

The daily SST data for the region was converted in ArcGIS 9 to raster data and individual 

daily rasters were overlaid to create a weekly composite because cloud cover left gaps 
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otherwise.  These weekly composites were then temporally linked to the average CPUE 

data point in a particular week. 

Distance to Fronts 

In order to examine the relationship between dolphinfish and their proximity to 

fronts, the single image edge detection algorithm (SIED) of Cayula and Cornillon (1992) 

was applied to the weekly SST images.  This algorithm is unique because it determines 

the location of a front not merely by a change in temperature over the raster image.  

Instead, a histogram of the SSTs in a window of the weekly raster image is examined for 

statistically significant bimodality based on differences in the SST modes and variances 

of two water masses.  In this way, regions of high spatial gradient will correspond to 

edges based on absolute gradient magnitudes.  The algorithm was not used on daily raster 

images because the significant cloud cover caused difficulties in frontal determination.  

Therefore, the weekly composite images were used for the frontal analysis.  Map algebra 

in ArcGIS 9 was used to calculate the straight line distance from the derived front and the 

average CPUE coordinate (Figure 2.1). 
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Figure 2.1: Example weekly SST image for western Atlantic processed with 

frontal boundaries (black line segments) from frontal edge program (“frntedg”) 

overlaid. 

 

2.3 Preliminary Analysis 

Principal Components Analysis 

PCA and the calculation of empirical orthogonal functions (EOFs) is one of the
 

most popular dimensionality reduction techniques for the analysis
 
of high-dimensional 

datasets and has been frequently used in the field of oceanography (Mariano and Chin, 

1996; Weare et al., 1976; Hardy and Walton, 1978).  This analysis tool is a multivariate 

technique that is used to both reduce the dimensionality and efficiently summarize the 

information contained in multivariate data (Gauch, 1982).  Additionally, it has been noted 

that EOFs are the most efficient basis for representing data (Mariano and Chin, in prep.).  

The benefit of PCA is that the correlation matrix of the variables of interest is the input 

for the analysis and therefore, the analysis technique relies only on the data matrix 
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(Pielou, 1984; Gauch, 1982).  This, in and of itself, makes PCA a more objective method 

of analysis than many other ordination techniques (Gauch, 1982), and also eliminates the 

issue of different scaling of the factors.  Additionally, some environmental parameters are 

highly correlated, for example, SST and latitude.  Therefore, the intrinsic dimensionality 

of the data may actually be explained by fewer than the actual number of indices or 

variables.  A principal component model can be used to summarize a set of original 

variables into a new set of uncorrelated variables, and hence is a tool for data reduction 

(Gnanadesikan, 1977).  The first step is to create a matrix of the correlations between the 

original variables.  The principal components are determined by computing the 

eigenvalues and eigenvectors of the correlation matrix.  The principal components are 

computed so that the first component describes the largest part of the data variability.  

The second component is orthogonal to the first and describes the largest part of the 

variability left over after the first is factored out, and so on.  The new “variables” are 

uncorrelated to one another and reduce the dimensionality of the data set because fewer 

are needed to explain the relationships existing among the original variables (Afifi and 

Clark 1984).  The use of PCA to identify factors important for describing dolphinfish 

abundance may enhance traditional techniques such as GLM, and the set of normalized 

principal components or EOFs can be utilized as the predictors or factors in regression 

techniques such as the GLM.  The benefit of this is the avoidance of ill-conditioning of 

the matrix of factors and the reduction of artificial predictability of the model (Mariano 

and Chin, in prep.). 
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U.S. PCA of Dolphinfish CPUE and Environmental Variables 

PCA was performed on the whole U.S. dataset as a preliminary means for 

examining the important patterns in the data and detecting the trends in the factors that 

may be influencing CPUE of dolphinfish.  To begin, the strong seasonal component of 

the SST was removed from the data by fitting a harmonic curve to the SST data.  The 

residuals were derived as the difference between the model's fit to the data and the actual 

SST value.  The fit of the model essentially acts as a high-pass filter of the data, and 

because dolphinfish CPUE also has a strong seasonal component, a curve was also fit to 

this data to remove the seasonal trend.  The residuals of SST and dolphinfish CPUE were 

incorporated into a PCA along with the variables of latitude, longitude, distance from the 

nearest front, hook depth, and bottom depth.  Due to the different scales of the variables, 

a correlation matrix was used as the input to the PCA.  The eigenvalues of the correlation 

matrix were used to determine the significance of the principal components. 

PCAs of Species Assemblage and Environment by Region 

 In second part of the analysis, a PCA was developed using only the CPUEs for the 

main catch of the longline fleet:  bigeye tuna—BET (Thunnus obesus), blue shark—BSH 

(Prionace glauca), dolphinfish—DOL, swordfish—SWO (Xiphias gladius), yellowfin 

tuna—YFT (Thunnus albacares), a skate and ray category—SRX, and a general shark 

category—SHA.  This analysis will be referred to as the “species PCA.”  The purpose of 

the species PCA is to organize the CPUEs in order to determine which species, if any are 

correlated with each other.  The PCA again analyzed the U.S. data, but this time the 

analysis was done for different regions within the fishing area.  The pelagic longline 

observer data is predominantly in two areas: the Gulf of Mexico and along the eastern 
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seaboard into the Sargasso Sea.  Because these areas are very different in a biophysical 

sense, the observer dataset was split by the -82°W longitude line.  The analyses are 

referred to as west and east.  The eastern portion of the data was also truncated east of -

65°W in order to homogenize the eastern dataset. 

This PCA is important for several reasons.  First, the correlations between the 

species dictate to what degree there is enhanced variability in the data.  For example, if 

the catch of dolphinfish is highly correlated with the catch of swordfish, this would 

indicate that that there must be a means developed to extract the source of this 

correlation.  This is inherently difficult because the cause of the correlation may be 

attributed to a particular biophysical interaction between the species or to some particular 

of the directed fishing effort of the longline gear.  Because the PCA organizes the species 

by importance on each of the axes, the dominate axes are defined to be those with 

eigenvalues greater than one following the convention of Kaiser (1960).  The correlation 

matrix from the eastern (Table 2.1) and western (Table 2.2) species PCAs reveal that 

there are no significant correlations between any species.   

Eastern Catch PCA--3726 Observations 

Correlation 

Matrix BET BSH DOL SHA SRX SWO YFT 

Bigeye 1 0.0124 -0.0384 -0.0388 0.0864 -0.0365 0.0182 

Blue Shark 0.0124 1 -0.0716 -0.0203 0.0471 0.0376 -0.0057 

Dolphin -0.0384 -0.0716 1 0.0011 -0.0336 -0.021 0.0088 

Sharks -0.0388 -0.0203 0.0011 1 -0.0413 0.0238 0.0243 

Skates/Rays 0.0864 0.0471 -0.0336 -0.0413 1 -0.0688 0.0185 

Swordfish -0.0365 0.0376 -0.021 0.0238 -0.0688 1 -0.0501 

Yellowfin 0.0182 -0.0057 0.0088 0.0243 0.0185 -0.0501 1 

Table 2.1:  Correlation matrix for the eastern species PCA. 
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Western Catch PCA--2062 Observations 

Correlation 

Matrix BET BSH DOL SHA SRX SWO YFT 

Bigeye 1 0.004 -0.0282 0.0095 0.1852 0.0443 0.1408 

Blue Shark 0.004 1 0.0141 0.029 -0.0309 0.0437 -0.0353 

Dolphin -0.0282 0.0141 1 0.0132 -0.0484 -0.0093 0.0253 

Sharks 0.0095 0.029 0.0132 1 -0.034 0.6949 -0.0547 

Skates/Rays 0.1852 -0.0309 -0.0484 -0.034 1 0.0314 0.1432 

Swordfish 0.0443 0.0437 -0.0093 0.6949 0.0314 1 -0.1341 

Yellowfin 0.1408 -0.0353 0.0253 -0.0547 0.1432 -0.1341 1 

Table 2.2:  Correlation matrix for the western species PCA. 

 

Therefore, this is evidence that the species could be analyzed separately from each other 

with the environmental factors.  Subsequently, PCAs of dolphinfish CPUE and the 

environmental characteristics were performed for the total regional datasets and by 

season.  Season 1 is defined to be the winter (January-March), season 2 is spring (April-

June), season 3 is summer (July-September), and season 4 is fall (October-December).  

This allows an understanding of any seasonal pattern in the data. 

Generalized Linear Model 

GLMs are commonly used to standardize abundance estimates.  They linearly 

quantify the relationship between several independent or predictor variables (i.e. 

temporal, spatial, vessel, or environmental effects) and a dependent or response variable 

such as CPUE.  The GLM analysis utilizes a stepwise procedure to determine which 

factors to include based on the degree to which each factor improved the fit of the model 

to the data (Derksen and Keselman, 1992).  This can be problematic when some of the 

variables are highly correlated, and may require the categorization of most of the 

variables in the analysis due to the limiting effect of degrees of freedom (Hocking, 1976; 

Cook, 1979, Neter et al., 1990, Francis, 1999).  Additionally, this procedure can have 

problems resolving the factors in the stepwise factor selection even when the variables 
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are categorized.  It is a common occurrence that some factors and interactions may be 

deemed a significant reduction of the variability of the model, but will not be able to be 

included in the model due to constraints on the Hessian matrix (Golub and VanLoan, 

1989).  This can be a common occurrence when the covariance parameters are on a 

different scale.  A nonpositive definite Hessian matrix can indicate a surface saddlepoint 

or linear dependencies among the parameters (Golub and VanLoan, 1989).  In our case, 

the model would not converge when including two key satellite-based datasets (SST and 

distance from fronts).  The classification of variables is in a sense a smoothing of the 

data, and it is expected that some important variability was lost that may have been 

important in detecting abundance trends. 

The Delta approach (Lo et al., 1992) was used to model the probability of 

obtaining a zero catch and the catch rate, given that the catch is non-zero, separately 

(Maunder and Punt, 2004).  A Generalized Linear Mixed Model (GLMM) approach in 

SAS 9.0 was used to estimate relative indices of abundance for the U.S. and Venezuelan 

dolphinfish fishery (Littell et al., 1996), using a binomial distribution for analyzing the 

presence of dolphinfish and a lognormal distribution for analyzing catch rates on positive 

trips (trips that land dolphinfish).  This type of combined model is a standard analysis 

tool for evaluating datasets where there are a large proportion of zero catches (i.e. the 

species is not the main target of the fishing fleet) (Ridout et al., 1998; Ortiz and Arocha, 

2004). 

The influence of the following factors on the relative abundance was investigated 

in the U.S. dataset:  year, quarter, area, target species, SST, and distance from nearest 

front.  Two additional factors, depth of hooks and bottom depth, were evaluated only for 
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the U.S. dataset because they were not collected by Venezuelan observers.  Quarter was 

defined in three month increments starting in January.  The fishing area for the U.S. fleet 

was divided into five areas that provided for a balanced design of observations of CPUE 

in all years, quarters, and in terms of target species, and the Venezuelan fleet was divided 

into 2 areas (Figure 2.2). 

 

Figure 2.2:  Fishing areas of the U.S. (in black) and Venezuelan (in red) longline 

fleets for GLMs. 

 

Restrictions were placed on the target species by eliminating the shark (SHX) and 

dolphinfish (DOL) target categories as having inadequate numbers of observations.  

Additionally, bigeye tuna (BET) and yellowfin tuna (YFT) were combined into the 

general tuna (TUN) category.  There were three final target species levels:  mixed (MIX), 
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swordfish (SWO), and tuna (TUN) for the U.S. fleet and only SWO and TUN for the 

Venezuelan fleet. 

The GLM was run for the U.S. and Venezuelan datasets first without satellite data 

(SST and distance from nearest front) as a base, and secondly with these factors included.  

This was done to determine if the GLM would pick up the significance of the satellite-

derived variables or determine other factors more significant. 

2.4 Analysis Results 

U.S. PCA of Dolphinfish CPUE and Environmental Variables 

 The first three principal components of the PCA on the U.S. data were successful 

in explaining almost 80% of the variance in the data (Table 2.3). 

Correlation Matrix 

Component Eigenvalue Difference Proportion Cumulative 

1 2.36120684 0.75163081 0.3373 0.3373 

2 1.60957603 0.10365194 0.2299 0.5673 

3 1.50592409 0.79572224 0.2151 0.7824 

4 0.71020185 0.30465216 0.1015 0.8838 

5 0.40554969 0.19459861 0.0579 0.9418 

6 0.21095108 0.01436066 0.0301 0.9719 

7 0.19659041   0.0281 1 

Table 2.3:  Eigenvalues of the correlation matrix:  The highlighted boxes indicate 

the principal components that explain the majority of the variance. 

 

For this reason, it is sufficient to examine the associations within these first three axes 

(Table 2.4). 
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Eigenvectors 
  Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7 

Cum % 33% 57% 78% 88% 94% 97% 100% 

DOL -0.01611 0.465934 0.546707 -0.200173 -0.63292 0.179672 0.10399 

SST 0.138339 0.563157 0.405216 0.07161 0.677034 -0.17769 -0.066631 

LAT -0.59395 0.084974 -0.040523 -0.080639 0.277921 0.744664 -0.010002 

LONG 0.41738 0.34136 -0.406801 0.291058 -0.014468 0.31677 0.59876 

DIST 0.026422 -0.359957 0.488913 0.77086 -0.02749 0.183117 0.04671 

DEPTH 0.605521 -0.02938 -0.033362 -0.086839 -0.00924 0.470021 -0.634682 

BOTT 0.293723 -0.459979 0.360045 -0.51168 0.250485 0.163777 0.47025 

Table 2.4:  Eigenvectors of the principal components:  The highlighted boxes 

indicate significant correlations. 

 

Because the principal components are magnitudes, the signs of the dominant modes are 

simply indicative of direction along the axis.  Dominant modes of the principal 

components are those that are greater than 0.20. 

The dominant modes of the first principal component were latitude, longitude, 

hook depth, and bottom depth, but not dolphinfish CPUE.  As such, this component 

describes distinct fishing activities.  Since the sign on the modes for longitude, hook 

depth, and bottom depth were all positive, it indicates that they were positively 

correlated, while the negative mode for latitude shows it is negatively correlated.  In other 

words, hooks were set more deeply in deeper water at more western longitudes and more 

southern latitudes.  These factors demonstrate that longliners generally fished along a 

southwestern line, following the continental coastline/shelf, and that they fished deeper 

(i.e., in a way more typical of tuna sets) in the southwest and shallower (i.e., in a way 

more typical of swordfish sets) in the northeast.  This component describes the most 

variation in the data and so indicates that fishing behavior played a large role in 

understanding differences among sets.  The second principal component included 

dolphinfish CPUE as a dominant mode and thus indicates how dolphinfish CPUE 

changed with environmental factors.  The other significant modes included SSTs 



 

 

66  

(positively correlated), bottom depths (negatively correlated), distance to fronts 

(negatively correlated), and longitude (positively correlated).  These results indicate that 

dolphinfish were more likely to be caught in high SSTs, closer to fronts,  and in shallower 

depths and farther west, generally indicating areas closer to shore.  The dominant modes 

of the third principal component were dolphinfish CPUE, SST, longitude, distance from 

nearest front, and bottom depth.  This component suggests that dolphinfish farther from 

shore were more likely to be caught in higher SSTs, further from fronts and at deeper 

depths.  Its ranking as third component, though, suggests that the in-shore pattern 

described by the second component was more influential. 

PCAs of Species Assemblage and Environment by Region 

Eastern U.S. 

 The eastern species PCA explained 47% of the variability with three axes (Figure 

2.3). 
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Figure 2.3:  Principle component scores for the first three axes of the eastern 

species PCA.  The symbols above and below the bars represent the significance of 

the component along the axis greater then 0.2.  The “flag” indicates significant 

components along the first axis, the four-point star for the second axis, and the 

five-point star for the third axis.  Percentages in figure legend indicate the amount 

of variability explained by the principle component. 

 

Each of the axes explained a similar amount of the variability, which was indicative of a 

set of variables that were not strongly covarying with each other.  Along the first axis, 

higher CPUE of skates and rays, bigeye tuna, and blue shark were found when CPUEs of 

swordfish, sharks, and dolphinfish were lower.  This made intuitive sense because bigeye 

tuna and blue shark especially are the deepest of the major species caught by the longline.  

This highlighted the fact that the type of set (i.e., shallow vs. deep) probably plays a large 

role in determining the species caught.  Along the second axis, the CPUEs of blue shark 

and swordfish were high when dolphinfish and yellowfin CPUEs were low.  The third 
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axis described an inverse relationship between both sharks and yellowfin tuna against 

dolphinfish.  The most important result from this PCA was that there were no strong 

correlations between the species (see Table 2.1).  This indicated that it was possible and 

probably desirable to analyze the relationships between the species and the physical data 

separately.  Therefore one level of complexity was removed from this analysis: the 

species interactions. 

 The eastern PCA for the whole dataset revealed some interesting trends and 70% 

of the variation in the data was explained in the first three axes.  The correlation matrix 

showed dolphinfish to be weakly correlated to western longitudes and warmer SST 

(Table 2.5). 

EAST:  All Seasons--2906 Observations 

  DOL LAT LONG SST DEPTH DIST BOTT 

DOL 1 -0.0415 0.113 0.1224 -0.0323 -0.0549 -0.0517 

LAT -0.0415 1 -0.6142 -0.4985 -0.6853 -0.0493 -0.0654 

LONG 0.113 -0.6142 1 0.4013 0.3626 -0.0507 -0.4235 

SST 0.1224 -0.4985 0.4013 1 0.2433 -0.2131 0.0073 

DEPTH -0.0323 -0.6853 0.3626 0.2433 1 0.0937 0.1059 

DIST -0.0549 -0.0493 -0.0507 -0.2131 0.0937 1 0.0289 

BOTT -0.0517 -0.0654 -0.4235 0.0073 0.1059 0.0289 1 

Table 2.5:  Correlation matrix of eastern dolphinfish CPUE with environmental 

variables. 

 

Dolphinfish was not a significant contributor to the first component and this related the 

fact that much of the variability in the data could be attributed to the effort of the 

longliners; where they chose to fish and how they set their lines, and to significant 

correlations between the environmental variables such as SST and latitude (Figure 2.4). 
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Figure 2.4:  Eigenvectors of the principle component 1 for eastern dolphinfish by 

seasons and for all seasons combined.  35%, 43%, 41%, 46%, and 41% of the 

variance is explained by the first principle component of these PCAs respectively. 

 

Dolphinfish was significant on the second axis and an interpretation would be that higher 

CPUE is found in the north, to the west, in warmer waters, with shallower hooks, closer 

to the fronts, and over shallower bottom depths (Figure 2.5). 
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Figure 2.5:  Eigenvectors of the principle component 2 for eastern dolphinfish for 

all seasons combined and by seasons (Winter, Spring, Summer, Fall).  19%, 24%, 

18%, 15%, and 21% of the variance is explained by the second principle 

component of these PCAs respectively. 

 

Along the third component, higher CPUE was described as offshore to the east in deeper 

waters, closer to the front when the water is warm (Figure 2.6). 
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Figure 2.6:  Eigenvectors of the principle component 3 for eastern dolphinfish by 

seasons and for all seasons combined.  16%, 11%, 14%, 14%, and 13% of the 

variance is explained by the third principle component of these PCAs respectively. 

 

The trend that was evident here was that dolphinfish seemed to aggregate along the 

warmer side of the front regardless of whether they were fished on- or offshore. 

 The seasonal PCAs described between 73 and 78% of the variability in the 

system, an improvement over the PCA for the whole dataset.  This was likely due to the 

fact that changes due to the effort of the fleet and movements of the fish were partitioned 

to roughly account for change in the climate.  For this reason it was expected that there 

was a significant seasonality to the dolphinfish catch.  The reader is asked to refer to 

Figure 2.4 for all references to principle component one, Figure 2.5 for principle 

component two, and Figure 2.6 for principle component three.  In the winter months, the 

main pattern was explained by the first component (44%) with higher CPUE in the 
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southeast in warmer waters, using deeper hook depths, closer to the front, and over 

deeper bottom depths.  This was probably indicative of the fact that dolphinfish were 

being caught offshore, perhaps on the shallower hooks of a deep tuna set.  The second 

component was not descriptive for dolphinfish and the third component explained only 

11% of the variability.  In the spring, a similar pattern to that described for the complete 

dataset was found along the first and second axes, however the third axis described 

dolphinfish farther from the front in shallower waters.  The summer was interesting 

because along the second and third components when dolphinfish are significant, the 

directional factors were not significant.  This was likely due to a homogenization of the 

system whereby the range of the dolphinfish was extended along the Gulf Stream.  The 

pattern for higher CPUE along the second axis was in western cooler waters, still in close 

proximity to the front and over shallow waters.  This was likely a reflection of the fact 

that the longliners were catching dolphinfish over the shelf, probably at night on 

swordfish sets when the water over the shelf cools more rapidly.  The third component 

related higher CPUE to warmer waters and deeper bottom depths.  Finally in the fall, 

along the first axis, higher CPUEs were associated with the southwest, warmer waters, 

deeper hook depths, and closer to the fronts.  The deeper hook depth was a surprising 

result, but may be attributed to the fact that it was impossible to know where on the line 

the fish was caught without temperature-depth recorders (TDRs) and hook-strike timers 

(Rice, P. pers.comm.).  Therefore dolphinfish may have been caught on the shallower 

hooks of a deep set.  On the third component, higher CPUE was described in northeastern 

offshore waters, close to the fronts. 
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Western U.S. 

 The western species PCA captured more of the variability within the first three 

axes:  58%.  This result was anticipated due to the fact that the Gulf of Mexico is a more 

homogeneous area.  In this case, the correlation matrix revealed several correlations, the 

strongest between sharks and swordfish (see Table 2.2).  There were several weaker 

correlations:  skates/rays were positively correlated with both bigeye tuna and yellowfin 

tuna, bigeye and yellowfin were positively correlated, and swordfish and yellowfin tunas 

were negatively correlated—the later relationship is probably attributable to the 

difference in the sets for these species.  Figure 2.7 displays the eigenvector distribution 

for the first three principle components. 

 

Figure 2.7: Principle component scores for the first three axes of the western 

species PCA.  Symbol legend is the same as was indicated in the caption for Figure 

2.4. 
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The first principle component explained 25% of the variability and shows that sharks 

were proportional to swordfish, and yellowfin was inversely related to both of these 

species.  The second component (19%) seemed to describe a deep water species group 

with bigeye, skates/rays, and yellowfin tuna correlated and inversely related to 

dolphinfish, a species found in shallower waters.  The third component explained only 

15% of the variability and related dolphinfish dominantly with blue shark and yellowfin 

tuna.  Because dolphinfish was not significantly correlated with any other species, it was 

again feasible to analyze the catch of dolphinfish against the environmental factors 

without including species interactions.  If species interactions with dolphinfish were 

found to be significant for either the east or the west, the vector loadings of the most 

important principle components (i.e. the first three) could have been used in subsequent 

PCAs with the environmental factors, and the analysis would have had to account for the 

relationship between species and the environment. 

 The western analysis for the whole dataset explained less of the variability in the 

dataset than it did in the east (57%) and dolphinfish was not strongly correlated with any 

of the factors (Table 2.6). 

WEST:  All Seasons--2062 Observations 

 DOL LAT LONG SST DEPTH DIST BOTT 

DOL 1 0.1285 -0.1026 0.2093 -0.0582 0.1529 -0.037 

LAT 0.1285 1 0.0254 0.0665 -0.0315 0.1186 -0.3892 

LONG -0.1026 0.0254 1 -0.1718 0.0139 -0.0024 -0.0229 

SST 0.2093 0.0665 -0.1718 1 -0.1239 0.3588 -0.091 

DEPTH -0.0582 -0.0315 0.0139 -0.1239 1 -0.0998 0.1282 

DIST 0.1529 0.1186 -0.0024 0.3588 -0.0998 1 -0.075 

BOTT -0.037 -0.3892 -0.0229 -0.091 0.1282 -0.075 1 

Table 2.6:  Correlation matrix of western dolphinfish CPUE with environmental 

variables. 
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However, it is important to remember that this is a much more homogeneous system, and 

therefore there is inherently less total variability in this area than along the east coast.  

The first axis described higher CPUEs in northeastern parts of the Gulf, in warmer 

waters, shallower bottom depths (i.e. onshore), with shallower hooks, and further from 

fronts (Figure 2.8). 

 

Figure 2.8:  Eigenvectors of the principle component 1 for western dolphinfish by 

seasons and for all seasons combined.  25%, 28%, 24%, 23%, and 25% of the 

variance is explained by the first principle component of these PCAs respectively. 

 

Along the second axis, higher CPUEs were found in southeastern warmer waters, further 

from the front, and in deeper bottom depths (Figure 2.9). 
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Figure 2.9:  Eigenvectors of the principle component 2 for western dolphinfish by 

seasons and for all seasons combined.  18%, 19%, 18%, 19%, and 15% of the 

variance is explained by the second principle component of these PCAs 

respectively. 

 

The third axis described higher CPUE in northeastern waters, with deeper hooks, closer 

to the front, and over shallow depths (Figure 2.10). 
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Figure 2.10:  Eigenvectors of the principle component 3 for western dolphinfish 

by seasons and for all seasons combined.  14%, 15%, 17%, 16%, and 15% of the 

variance is explained by the third principle component of these PCAs respectively. 

 

 Seasonally, the picture was varied but interesting.  Between 56 and 61% of the 

variability was captured in the first three axes of these PCAs.  The reader is asked to refer 

to Figure 2.8 for all references to principle component one, Figure 2.9 for principle 

component two, and Figure 2.10 for principle component three.  In the winter, along the 

first axis, dolphinfish CPUE was higher in the southeast when the waters were warmer, 

hook depths were deeper, over deeper bottom depths and closer to the fronts.  

Secondarily, along the third axis, CPUEs were higher in the west with shallow hooks and 

farther from the front.  In the spring, the first and third axes again described dolphinfish 

CPUE.  Much of the higher CPUEs were found in northeastern Gulf of Mexico waters, 

with shallower hooks, farther from the front, and over shallow bottoms.  Along the third 
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axis, there was again a tendency for higher CPUEs in the northeast Gulf, but the trend 

was in cooler waters, with deeper hooks, closer to the front, and over shallower bottom 

depths.  The summer analysis was descriptive for dolphinfish along the first and second 

axes with higher dolphinfish in the northeast in cool, shallow waters.  Along the second 

axis, higher CPUE was correlated with eastern cooler waters, with deeper hooks, farther 

from the front, and over deeper bottom depths.  It is important to recognize that in the 

summer, the mean temperature is higher (29.593°C) and has a much smaller variance 

(0.725) than in any other season (Table 2.7). 

EAST 

 Simple 

Statistics DOL LAT LONG SST DEPTH DIST BOTT 

Mean All 

Seasons StD 

0.00094 

0.00351 

33.4978 

5.58306 

74.7268 

3.8344 

23.9014 

4.03742 

20.2294 

8.74942 

123.854 

140.253 

598.997 

528.043 

Mean Season 

1 StD 

0.00025 

0.00043 

29.7649 

5.4886 

75.6625 

3.23336 

22.0361 

4.24007 

24.5799 

9.23268 

185.307 

181.986 

689.02 

684.803 

Mean Season 

2 StD 

0.00289 

0.00652 

32.4487 

4.46596 

75.9983 

3.46953 

24.919 

2.85065 

21.3322 

8.37079 

103.739 

108.753 

649.153 

563.423 

Mean Season 

3 StD 

0.00039 

0.00077 

36.0875 

4.65338 

73.378 

4.19904 

25.6853 

3.09238 

16.2564 

8.33934 

81.4913 

101.657 

526.099 

461.947 

Mean Season 

4 StD 

0.00017 

0.00035 

34.5137 

5.78335 

74.2801 

3.56068 

22.2394 

4.57912 

20.3169 

7.00276 

145.126 

147.966 

561.584 

382.728 

WEST 

 Simple 

Statistics DOL LAT LONG SST DEPTH DIST BOTT 

Mean All 

Seasons StD 

0.00026 

0.0008 

26.5346 

1.47904 

90.1633 

2.86536 

26.1336 

2.97654 

33.0104 

13.7766 

116.55 

113.285 

1120.9 

485.645 

Mean Season 

1 StD 

5.9E-05 

0.00014 

25.8175 

1.95426 

90.0415 

3.0449 

22.9439 

2.47961 

32.9652 

15.892 

78.9973 

75.9435 

1250.82 

568.877 

Mean Season 

2 StD 

0.00038 

0.0009 

26.7634 

1.17443 

90.4003 

2.61094 

26.1452 

2.18797 

33.5823 

14.7851 

105.539 

99.0178 

1105.99 

451.311 

Mean Season 

3 StD 

0.0005 

0.00124 

27.0802 

1.14912 

89.8998 

2.57096 

29.5933 

0.72463 

29.998 

6.4988 

204.638 

142.139 

1014.34 

422.901 

Mean Season 

4 StD 

9.4E-05 

0.00018 

26.44 

1.23642 

90.2786 

3.18198 

25.7888 

1.61084 

35.3369 

15.1209 

78.8724 

73.0214 

1117.3 

465.677 

Table 2.7:  Mean and standard deviation of PCA factors for east and west coast 

data by season. 
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Therefore, the cooler water is relative to the season.  In the fall, there were three axes that 

were significant for dolphinfish.  The first described higher CPUE in the southeast in 

warmer waters, with shallow hooks, far from the front and over deep bottom depths.  The 

second axis described greater CPUE in warm northeastern waters, with shallow hooks, 

and over shallow bottoms.  These axes seem to describe an onshore, offshore component.  

Along axis three, there was a trend for higher CPUE in cooler western waters with 

shallow hooks, far from the fronts, and over shallow bottoms. 

General Patterns 

 One of the trends in this analysis was the fact that along the east coast, dolphinfish 

were primarily found closer to the fronts.  In the Gulf of Mexico, the pattern was not as 

clearly defined.  This may have been due to the fact that the Gulf Stream had a stronger 

thermal effect—the fronts were more defined and the fish were more sensitive to warm 

waters (Humston et al. 2000).  This finding would likely be enhanced by a higher 

resolution front detection.  The one caveat of the automated algorithm that was used for 

this work was that it was not able to sufficiently define fronts on daily satellite images 

due to significant cloud cover.  Therefore, weekly composites were used to detect fronts.  

This posed a problem when calculating exact positions of fronts because the movement 

of these features can be significant and the age of a front can play a significant role in the 

attractiveness of a frontal region to a large pelagic species.  However, the distribution of 

the principle component scores against the distance from fronts clearly indicated that the 

fleet is fishing along fronts (Figure 2.11). 
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Figure 2.11:  Principle components (1-3) from the general eastern PCA plotted 

against distance from front. 

 

The apparent bimodality along the first axis was indicative of the patchiness of the fronts 

(Figure 2.12). 
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Figure 2.12:  Principle component 1 from the general eastern PCA against year 

day. 

 

GLMs 

U.S. Indices Excluding Satellite Data:  “Conventional GLM” 

 The conventional U.S. GLM, where satellite data were not included, considered 

six factors:  year, quarter, area, target, depth of hook and bottom depth.  The lognormal 

portion of the model found all of these factors to significantly improve the fit, as well as  

three interactions:  year*depth, quarter*area, and area*bottom depth.  The binomial 

portion of the model found that year, quarter, and area, and the interaction of quarter*area 

sufficiently improved the fit of the model to be included in the final analysis.  These 

factors were combined using the glimmix procedure (SAS 9.0) to explain the variability 

in the nominal CPUE index (Figure 2.13). 
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Figure 2.13:  The U.S. indices of abundance for dolphinfish in the western Atlantic.  

Nominal CPUE is unstandardized.  “Conventional” refers to the exclusion of the 

satellite data. 

 

The results suggested oscillating abundance, with the minimum observed in 2000 and 

maximum in 2002.  The confidence intervals for this model are quite wide meaning that 

there is significant uncertainty about these results.   

U.S. Indices Including Satellite Data 

 When SST and distance from nearest front were added to the model, they were 

identified as significant.  The final lognormal model included year, quarter, area, and SST 

and the interaction year*SST.  The binomial model included year and SST and no 

interaction terms.  These factors were combined using the glimmix procedure (SAS 9.0) 

to explain the variability in the nominal CPUE index (see Figure 2.13).  The resulting 
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series of abundance estimates was similar to the conventional U.S. index, with the most 

notable difference in the tightening of the confidence intervals. 

Venezuelan Indices Excluding Satellite Data 

  The single conventional Venezuelan GLM, where satellite data were not included, 

considered four factors:  year, quarter, area, and target.  The lognormal portion of the 

model found year, quarter and the interaction year*quarter to significantly improve the 

fit.  The binomial portion of the model also found year and quarter, and the interaction of 

year*quarter to significantly improve the fit of the model to be included in the final 

analysis.  These factors were combined using the glimmix procedure (SAS 9.0) to explain 

the variability in the nominal CPUE index (Figure 2.14). 

 

Figure 2.14:  The Venezuelan indices of abundance.  Note the width of the upper 

confidence interval for the conventional GLM.  Nominal CPUE is unstandardized.  

“Conventional” refers to the exclusion of the satellite data. 
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The general trend observed is the slightly fluctuating, but general rise to a peak in SST 

from 1994 to 1999.  At this point, there is a steady decline in abundance through 2004.  

The confidence intervals for this model are extremely wide indicating significant 

uncertainty about the results of the model. 

Venezuelan Indices Including Satellite Data 

 The lognormal model included year and quarter, SST, and distance to front, and 

the interaction of year*quarter.  The binomial model included the single factor year by 

itself.  These factors were combined using the glimmix procedure (SAS 9.0) to explain 

the variability in the nominal CPUE index (see Figure 2.14).  However, this curve also 

followed the pattern of the conventional Venezuelan GLM, and in this case, the 

confidence intervals were greatly tightened compared to those of the conventional GLM. 

2.5 Discussion of Multivariate Analysis Results 

PCA 

The results of the PCAs for both the east and the west conformed well to the 

patterns we anticipated from theory.  These results demonstrated correlation between the 

variables that were available to understand the influencing factors on the CPUE of 

dolphinfish by the U.S. Pelagic Longline, but it is important to realize that correlation is 

not causation.  These findings represent a way to indicate what the possible trends in the 

dataset might be, and the next step is to formulate hypotheses and models to explain the 

indicated phenomena (J. Sladek Nowlis et al. unpublished manuscript).  Some of the 

trends may be attributed to the structure of the fleet itself, while others are reflective of 

the environment that is influencing these species.  It is important to understand the 

relationship of both in order to take the next step of attempting to understand abundance.  
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The picture painted by the PCAs in the Gulf of Mexico and along the eastern seaboard 

allowed for an understanding of the driving environmental influences on the catch of 

dolphinfish both seasonally and regionally.  In the Gulf of Mexico and along the eastern 

seaboard, there was a dominant annual seasonal signal (Figure 2.15) in the catch of the 

fleet that was evident from the yearly amplitude of the sinusoidal curve fit to the principle 

components of the general PCAs (Figure 2.16). 

 

Figure 2.15:  First principle component of the western data against continuous year 

day. 
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Figure 2.16: First principle component of the western data against continuous year 

day. 

 

The annual signal was stronger in the Gulf of Mexico as is evidenced by the fact that this 

trend is picked up along the first principle component, whereas it is the third principle 

component that picks up this signal along the east coast.  This was surprising, and may be 

related to the fact that there were other influences such as differences in fleet 

characteristics that played a greater role in the variability of the system.  The fact that 

there was a dominant seasonal signal that is picked up by the data for the general PCAs 

was motivation to explore the patterns in separate seasonal analyses.  

In the Gulf of Mexico, the general trend was for higher catch closer to the shelf in 

warmer waters.  In general, and in all seasons except for winter, dolphinfish was caught 

predominantly on shallower set hooks.  In fact in the fall and winter, the fleet appeared to 

catch more dolphinfish off the shelf, in a more southwesterly direction and closer to the 

Gulf Stream.  In accordance with this was the fact that dolphinfish appeared to be caught 
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further from the front in general and in all seasons except for winter.  This is likely 

attributed to the fact that due to the homogeneity of the temperature regime in the Gulf, 

the fronts were easier to locate in the winter, both for the fleet and for the dolphinfish.  

This addresses the fact that this analysis was interpreting not only the CPUE of the 

dolphinfish in the region, but the fishing patterns of the fleet.  It is evident that more 

information on the types of vessels and the equipment used to find schools of fish would 

greatly enhance the understanding of the trends noted in this analysis.  One allowance 

that can be made is that the data does come from a fleet that is specialized for targeting 

pelagic species.  It is highly likely that the vast majority of the vessels were fishing with 

knowledge of not only where to fish based on experience, but also sophisticated frontal 

detection systems for specific areas that they are fishing.  The PCAs in this paper 

describe a fleet that is fishing with respect to fronts.  In the east, the fishing was closer to 

the fronts and the CPUEs were higher closer to the fronts (see Figure 2.11).  This is 

interesting for two reasons.  First, the fronts were probably easier to detect, and along the 

east coast there is the dominant Gulf Stream frontal system.  Secondly, Figure 2.12 

reveals an intriguing pattern of bimodality in the catch along the east coast in the later 

part of the year.  This is indicative of a sort of “boom or bust” variability to the fishing.  

In other words, the longliners were either catching the fish or not after July.  This may be 

related to the fact that while most longline vessels (especially the “high-liners” who have 

the larger vessels with more technology) were probably using the fronts to track the fish, 

they were probably not equipped to detect the age of the front.  The age of the front may 

determine whether or not the front contains fish.  Fronts are typically convergence zones 

that collect floating algae, debris, nutrients, and baitfish, that larger pelagic fish take 
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advantage of for food and shelter.  Older fronts may be depleted of smaller bait fish and 

consequentially have less large pelagic fish.  Conversely, older fronts have a better 

chance of being on SST analysis charts that are used by fishermen to find where they 

deploy the gear, but because the older fronts have a lower probability of yielding larger 

catches; this may have contributed to the bimodality seen in Figure 2.12. 

GLM 

These analyses showed that using remotely-based environmental data collected by 

satellites can explain some of the variability in the CPUE indices.  This analysis also 

offered some insight into dolphinfish biology and fishing behavior of longline fleets.  The 

pre-satellite abundance indices were already of relatively high quality due to the law of 

large sample sizes and the quality of observer-collected data.  Nevertheless, the inclusion 

of satellite data in standardization resulted in important improvements to these abundance 

indices.  In both cases, the abundance trends were quite similar with and without the 

satellite data.  What changed was our confidence in the estimates.  This is reflected in the 

confidence intervals, which are much tighter when satellite data were included.  It is also 

apparent in the U.S.-based abundance series in that the peaks of the U.S. data are 

moderated. 

The results were also informative about the dolphinfish population and the 

longline fishery.  If we assume constant catchability, a standard assumption in the 

development of CPUE series, the GLM results provide insight into the distribution of 

dolphinfish.  The U.S.-based analysis indicated that abundance was a function of season, 

area, and SST, with the SST effect varying with year.  When satellite data were not 

included, many more factors were seen as significant, but the fact that they dropped out 
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suggests that they were perhaps serving as proxies for SST relationships.  In contrast, the 

Venezuelan-based analysis indicated that more factors were identified as important when 

SST was included.  In this case, the model went from including only a seasonal 

component to including SST, area, distance from front, and target.  In this case, the 

inclusion of SST and distance from front provided enough additional information to the 

model to recognize the importance of area and target on dolphinfish abundance. 

However, as the inclusion of target species in the GLM shows, it can be a bad 

assumption to assume constant catchability.  The PCA results helped to clarify this 

distinction.  More variation was explained by the first component than any other, and it 

distinguished fishing patterns.  The fact that dolphinfish were not correlated with an axis 

that distinguished shallow northeastern fishing from deep southwestern fishing suggests 

that dolphinfish are likely to be caught using both techniques.  This component explained 

the most variation, though, because the distinction between swordfish and tuna targeting 

is important in understanding the dataset.  The second component provided a better sense 

of dolphinfish biology, and indicated that they were most likely to be found in warmer 

water closer to shore and thermal fronts.  But, the third component showed that there was 

variation in this pattern that included some dolphinfish caught farther from shore and 

fronts and in deeper waters, but still in high SSTs. 

Together, these analyses provide an example of the value of utilizing already-

available satellite data when standardizing fishery-dependent catch rates, and also give 

insight into dolphinfish biology and the fishing behavior of longline vessels.  Future 

extensions will look at additional ways of incorporating satellite data into stock 
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assessments as a way of improving those assessments and adding to our knowledge of 

fish and fishery. 
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CHAPTER 3: MODELING THE SPATIAL AUTOCORRELATION OF CPUE 

DATA IN THE GULF. 

 

3.1 Spatial Patterns in the Environment 

Because it is common for fish to school, the spatial distribution of a fish 

population is often patchy.  It is likely that there is spatial autocorrelation present in a 

schooling fish population due to the fact that the fish move together with positive spatial 

dependence (Nishida and Chen, 2004) and the features which likely serve to aggregate or 

structure fish distributions also possess spatial autocorrelation (i.e., Rossby radius of 

deformation for eddy formation, temperature frontal patterns).  This may result in the 

spatial autocorrelation of the catch data and the subsequent abundance index, which is 

one of the main inputs to a stock assessment model (Pettigas, 2001).  Ignoring spatial 

patterns when using CPUE data to estimate stock abundance can sometimes lead to 

inaccurate assessments due to violations of the assumptions of random and uncorrelated 

samples (Pelletier and Parma, 1994).  Typical abundance estimation procedures 

incorporate space as large statistical areas and make the assumption that these strata are 

internally homogeneous. Geostatistics provides a unique way to explore and model the 

changes in abundance in space and time, and through kriging allows the analysis and 

modeling of the variability of a population in space (Freire et al., 1992). 

Spatial autocorrelation is defined by Legendre (1993) as the “property of random 

variables taking values, at pairs of locations a certain distance apart that are more similar 

(positive autocorrelation) or less similar (negative autocorrelation) than expected for 

randomly associated pairs of observations.”  This property is observed for most 

ecological variables in either a temporally or spatially explicit way.  If we consider 

species abundance at a given location, it is likely that this variable is influenced 
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throughout its range by factors such as species assemblage, growth, reproduction, 

mortality, and migration at surrounding areas.  These types of processes are known as 

contagious biotic processes (Legendre, 1993).  It is therefore possible to predict the value 

of a variable at any locality based on the values at neighboring localities.  This is in direct 

violation of the assumption that is typically made when standardizing abundances using 

traditional statistical methods: observations are stochastically independent from one 

another.  Just as animals or plants are not distributed randomly, environmental processes 

are also linked temporally and spatially.  Because these processes are not merely due to 

random noise, they can be quantified and used to reduce error and provide predictions in 

unsampled locations. 

While spatial autocorrelation poses a hindrance in abundance index 

standardization, it forms the basis of geostatistical analyses.  There are several examples 

of the use of geostatistics in fisheries applications including predictions of catch data and 

as alternatives to design-based estimators (Warren, 1998; Rivoirard et al., 2000; Petitgas, 

2001; Walter, 2006).  Geostatistics takes the spatial autocorrelation between samples into 

consideration, and through kriging (the prediction of data based upon the spatial structure 

of the underlying data, see Chapter 4), allows the analysis and modeling of the variability 

of a population in space (Freire et al., 1992).  Therefore, geostatistics may represent an 

alternative approach to developing an index of abundance that takes the spatial structure 

of the data into account. 

In order to determine the specific spatial and temporal distributions of exploited 

fish populations, scientists have relied on fishery-independent surveys and fishery-

dependent catch records from the commercial and recreational fisheries.  Fishery-
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independent surveys follow standardized sampling protocols, provide precise spatial and 

temporal resolution, and by the nature of their design, lend themselves to unbiased 

statistical analysis.  Many fisheries, however, lack such surveys and rely upon catch data 

recorded or observed during the fishing process.  Such fishery-dependent data typically 

possess the following limitations: 

i) poor spatial resolution recorded (the spatial coverage can be limited to 

a large statistical polygon such as the FAO fishing statistical areas, 

which may be too broad for spatial analysis purposes), 

ii) the targeting of certain species leads to gaps in spatial-temporal 

coverage, 

iii) the absence of a standardized sampling design across space and time. 

In some instances however, spatially explicit locational information is collected in fishery 

dependent data sources.  In these cases, the fishery dependent data becomes more 

valuable as a tool for analyzing spatial and seasonal abundance patterns because of the 

relatively larger sample sizes, and typically more complete temporal and spatial 

coverage. 

This study uses variograms (Cliff and Ord, 1973; Cressie, 1993) to measure the 

spatial structure and pattern of autocorrelation of the CPUE of two pelagic species, 

dolphinfish, Coryphaena hippurus, and swordfish, Xiphias gladius, within the Gulf of 

Mexico.  The main goal of this work is to determine whether spatial autocorrelation 

exists in the CPUE data and if so attempt to determine if the range of autocorrelation is in 

fact reflective of the biology of the species or is confounded by the fact that the fishery is 

moving in space.  Geostatistics provides a way to explain the variability in the catch rates 
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that is due to spatial differences and thus provides an alternative method of standardizing 

abundance indices to remove the influence of spatial heterogeneity on abundance indices.  

We also explore the variograms in relation to some of the oceanographic features that 

may influence the spatial structure of abundance of dolphinfish and other pelagics.  

Specifically, we consider whether the range of autocorrelation of a biological species can 

be linked to the patch size of the species by comparing the two species, dolphinfish and 

swordfish, using the same methodology (Upton and Fingleton, 1985; Legendre and 

Fortin, 1989; Walter, 2006).  A species with a shorter range in the variogram of its CPUE 

may be indicative of smaller patch size, whereas a larger range may indicate a larger 

patch size and perhaps greater predictability of catch.  The expectation is that there will 

be significant differences in the range of autocorrelation of the two species.  Dolphinfish, 

being associated more with surface waters, should have a shorter range than swordfish, 

which makes deeper dives diurnally and therefore lives in a more homogeneous 

environment.  Annual, seasonal, and species statistical differences between the 

variograms are explored using ANOVAs. 

3.2 Data Analysis 

Selection of Study Area and Temporal Scale of Analysis 

An important issue when evaluating statistical associations between the 

distribution of a fish stock and environmental conditions is whether there are enough 

physical and biological data collected at appropriate temporal and spatial scales (Podesta 

et al., 1993).  For the purposes of this study, it is first necessary to select between the use 

of the logbook data, which offers complete coverage of the longline fleet, and the 



 

 

95  

observer data, which represents a sampling of the longline fishing effort.  There are 

several benefits and disadvantages to each dataset, as will be detailed. 

As described in detail in chapter 1, the U.S. logbook dataset is unique in that it 

covers a broad area spatially and consists of a relatively long time series (1986-2005).  

There are approximately 279,918 records in the total logbook dataset.  In the Gulf of 

Mexico, there are 86,522 individual trips that are recorded in the logbooks.  In addition to 

these data, more detailed information on the catch, environmental conditions, and vessel 

characteristics has been collected since 1992 on a subset of the longline fleet by observers 

stationed onboard the longline vessels.  Approximately 2% or about 2062 of the longline 

trips have been sampled by observers (1992-2005) in the Gulf of Mexico.  When 

aggregated over the entire time series, the spatial coverage by the observer fleet is 

relatively well matched to the logbook coverage (see Figure 1.1).  The difference in the 

extent of the spatial coverage of the two datasets is noticeable when the data are mapped 

at a finer temporal scale (Figure 3.1). 
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Spring 

 

Summer 

 
Fall 

 

Winter 

 
Figure 3.1: Seasonal plots of the extent of the longline fleet within the Gulf of 

Mexico from the logbooks (in black) with the observer data (in red) overlaid.  

Figures illustrate the disjoint in the sampling of the observer program. 

 

The PCA (Chapter 2) showed that there was significant seasonal variation in the catch of 

the longline fleet.  For the spatial analysis, a season was defined as Spring (March, April, 

May), Summer (June, July, August), Fall (September, October, November), and Winter 

(December, January, February), and the autocorrelation was modeled for each season 

within each year.  Therefore, the time step was an individual season within a year, which 
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will be referred to as a year-season throughout this analysis.  Catch within each time step 

was assumed to be stationary.  A finer temporal resolution (such as month) could not be 

used due to constraints of sample size.  Plots of the distribution of logbook and observer 

points in each season annually (Figure 3.1) show that at this resolution the logbook data 

offers a more complete coverage of the study area. 

The advantage of the observer data is that it is collected by an independent 

scientifically trained observer who does not work for the fishing vessel, and is generally 

believed to be more accurate for trips that are observed.  Spatial data are collected in the 

logbooks; however, it is only the position of the gear at some point during deployment or 

retrieval.  Therefore, spatial uncertainty exists at approximately the range of the length of 

the gear (about 30-40 km in the Gulf of Mexico), in addition to the uncertainty due to the 

drift of the gear during set and retrieval and due to the rounding off of locational 

information.  Observers record a spatial coordinate for both the beginning and ending of 

the set and haul back of the gear.  This allows for a better estimation of a point of catch.  

For the purposes of a spatial analysis, a finer spatial resolution is preferred because the 

covariance between each individual catch point is a function of the distance from each 

observational location; unfortunately, the observer dataset does not provide adequate 

sample size.  The logbook data represents the most temporally and spatially detailed U.S. 

catch and effort data for large pelagic species in the western Atlantic, and is therefore 

better for a geostatistical analysis. 

The U.S. fleet operates in a relatively vast and oceanographically heterogeneous 

area of the Atlantic Ocean.  Therefore, it is unlikely that spatial processes that determine 

pelagic fish abundance are the same throughout this area. The spatial distribution of fish 
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caught in the Caribbean would be assumed to have a different spatial structure than that 

of fish caught off of George’s Bank.  The Gulf of Mexico is a natural subsection of this 

vast fishery area.  It is a relatively contained ocean basin where the U.S. longline fleet has 

operated regularly over the past twenty years.  In addition the oceanographic environment 

of the Gulf of Mexico should have fewer problems with directionality or anisotropy of 

oceanic processes than might be the case with other subsections where the US longline 

fleet operates.  Anisotropy, the property of being directionally dependent, presents a 

difficulty in a spatial analysis because it adds a layer of complexity.  To properly describe 

the spatial autocorrelation in a system, any anisotropy must be identified and corrected 

for because the theoretical variograms used for kriging are based on isotropic models.  

Zonal anisotropy may be corrected by modeling and detrending the data or by choosing a 

nested variogram model.  The neighboring east coast of the U.S. is another important 

section of the US longline fishery but it stretches along a broad diagonal gradient heavily 

influenced by the Gulf Stream. 

Description of Study Area 

 Dolphinfish are an important species both ecologically and commercially to the 

recreational and commercial fisheries in the Gulf of Mexico.  In the commercial longline 

which targets mainly yellowfin tuna (Thunnus albacares) and swordfish (Xiphias 

gladius) in the Gulf, they represent an important bycatch and occasional target species.  

Commercial longliners concentrate effort near thermal fronts where it is believed that 

bioaccumulation of prey occurs, and therefore the potential for higher catches is 

increased.  To accomplish this, they often use in situ water temperatures and SST derived 

from satellites.  The Loop Current is a very important dynamical feature in the Gulf of 
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Mexico and the majority of the vessels set their gear in the northeastern Gulf along this 

frontal region, and in the northern central Gulf where the dynamics are affected by the 

Loop Current and shedding of eddies or rings from this feature. 

The Gulf of Mexico (Figure 3.2) is a semi-enclosed sea that is connected in the 

east to the Atlantic Ocean through the Straits of Florida, and in the south to the Caribbean 

Sea through the Yucatan Channel. 

 
Figure 3.2: Bathymetry map of the Gulf of Mexico. 

 

The Gulf is about 1,800,000 km
2
 and stretches about 1770 km east to west.  The 

bathymetry of the Gulf of Mexico includes major oceanic inflow and outflow paths in the 

south and the southeast, respectively, with most of the river inflow occurring along the 

northern boundary. Wide shelves are found along the Florida and Campeche banks. The 
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shelves around the western Gulf of Mexico are narrower, with a very narrow shelf along 

the northwestern coast of Florida, where the De Soto Canyon penetrates almost to the 

shoreline. 

During the summer, the temperature of the surface waters of the Gulf of Mexico 

is quite homogeneous, and chlorophyll levels are high.  In contrast, in the winter, warmer 

Caribbean waters entering the Gulf create sharp temperature gradients with the seasonally 

cooled surface waters of the Gulf, especially in relation to the Loop Current, the 

dominant feature of the circulation of the eastern Gulf.  It is in this region that the Florida 

Current originates.  The western inflow of the Loop Current begins in the Yucatan 

Channel with the Yucatan Current.  The flow into the Gulf through the Yucatan Channel 

is approximately 23-27 Sv (Johns et al., 2002).  The flow along the western boundary of 

the Loop Current can reach peak speeds of 1.5 to 1.8 ms
-1

 in the surface waters (Nowlin, 

1972; Schlitz, 1973 and Carder et al., 1977 from hydrography; and Sheinbaum et al., 

2002 from ADCP measurements). 

The Loop Current is variable both in its north-south extent and its east-west 

width.  The gradients that develop from the inflow of warm Caribbean waters with the 

Loop Current are also known as temperature fronts, and are important for their ability to 

aggregate debris and small fish.  It is likely due to this higher productivity and persistence 

of prey items that larger pelagic species are often found along frontal boundaries.  Thus, a 

combination of chlorophyll pigment or ocean color and sea-surface temperature data 

from satellites provides a year-round look at the large-scale, surface processes occurring 

in the Gulf of Mexico that may be affecting the distribution of large pelagic species. 
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Data Processing 

 In order to be able to address the question of spatial autocorrelation in the catch 

rates of dolphinfish and swordfish, it was necessary to parse the logbook dataset down to 

sets that were primarily targeting pelagic species using only longline gear within the Gulf 

of Mexico.  This helped to ensure that no biases were introduced to the analysis due to 

gear or targeting differences and it was hypothesized that issues with spatial trend would 

be reduced within a limited area like the Gulf of Mexico.  The entire logbook database 

consisted of records from June 1986 through December 2005.  To keep the seasons 

uniform, the data from 1986 was dropped as it was an incomplete year.  Only those 

records within the Gulf of Mexico were selected, defined as north of 18°N and west of 

81.5°W.  Analysis was restricted to pelagic longline sets only.  All other gear types (i.e., 

bottom longline, gillnet, bandit or otter trawl, harpoon, rod and reel, handline, greenstick 

tuna fishing, etc.) were removed.  Additionally, if a trip recorded more than one gear 

type, these records were removed.  In order to distinguish between trips that may have 

been using bottom longline gear or targeting sharks on the shelf, and to remove obvious 

outliers such as points recorded on land, only records that were recorded in waters deeper 

than the 25 meter isobath were kept.  Depth isobaths were constructed from ETOPO2 

gridded 2’ elevation data (Version 2).  To remove outliers and ensure that catches were 

consistent, the dataset was truncated by the 2.5% (200 hooks) and 97.5% (1000 hooks) 

quartiles of number of hooks.  CPUE for the logbook records was defined in number of 

fish caught and discarded alive or dead divided by the number of hooks used per set.  

Any CPUE greater than one was removed as it was highly unlikely to get more than one 

fish per hook and this was indicative of an incorrectly reported number of hooks.  Lastly, 
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it was necessary to project the latitude/longitude coordinates to an equidistant coordinate 

system in order to conduct spatial statistics.  While one degree of latitude along a 

meridian always measures the same distance (i.e. about 111.1 km), one degree of 

longitude is a different distance at every latitude (about 55.6 km at 60° north or south; 

and zero at either pole).  An Albers equidistant conic projection was used for the logbook 

data.  With this projection, the direction, area, and shape of the map are slightly distorted 

away from the standard parallels.  This projection is commonly used for areas near to, 

and on one side of, the equator. 

Geostatistical Analysis 

 The abundance of a species as estimated from CPUE measured at discrete spatial 

points may be suitable for geostatistical analysis.  This type of data can exhibit small-

scale variability that can be modeled as spatial correlation.  This information can then be 

incorporated into estimation procedures to predict abundance and create maps of spatial 

distribution (Cressie, 1993; Webster and Oliver, 2001).  The variability in space can be 

modeled as a function of the distance between measurement locations.  In other words, 

measurements that are made closer together are more likely to have similar data values 

than those that are far apart.  This relationship is described by the variogram, which 

provides a measure of spatial autocorrelation by describing the relationship of the 

sampled data with distance and direction (Kanyerere, 2000; Kaluzny et al., 1998). 

Exploratory Data Analysis 

As mentioned before, the logbook data contained a sampling location that was 

defined by a latitude and longitude.  The assumption made when modeling an underlying 

random spatial process is that: 
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i) the spatial distribution is stationary (i.e., the mean and variance do not 

vary significantly in space over the sampling period). 

ii) the spatial pattern is isotropic (uniform in all directions) 

The first assumption pertains to the need to have all CPUE observations within a time 

step reflecting the same underlying spatial process (Pelletier and Parma, 1994).  The fact 

that dolphinfish are a migratory species makes the first assumption difficult to satisfy.  

Typically, the spatial process being modeled is composed of a large-scale deterministic 

component and a small-scale stochastic component.  The variogram models the random 

component after the large scale deterministic pattern has been removed.  To test that there 

are no violations of the first assumption, plots of the CPUE versus the latitude and 

longitude are explored.  The indication of trend would be if there was a linear relationship 

between the two variables.  Trend was tested for and deemed not to be a factor in this 

analysis.  However, if trend were determined to be a confounding factor, it would be 

necessary to first remove this trend from the data before using the variogram to estimate 

the underlying random process.  Procedures for removing trend include:  

i) rotation of the longitude and latitude axes to analyze the directionality in 

the spatial domain, 

ii) using a GAM to model the logged data as a smooth function of the 

longitude and latitude, or 

iii) fitting a local regression model (loess) to the whole trend surface. 

To test the second assumption, variogram models were calculated in various 

directions.  An indicator of anisotropy would be if there were significantly different 

variograms between directions.  Variograms were computed for all year-seasons in 
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several directions (0°, 45°, 90°, 135°, and 180°) and visually evaluated for differences.  

No dominant patterns in directionality were observed, and therefore only zero degree 

variograms were used in the following analyses.  An additional issue arose when a 

variogram could not be obtained for a specific year-season.  When exploring the range 

for a particular species, those year-seasons for which no variogram could be obtained 

were excluded from the analysis. 

Two-stage Variogram Analysis 

The empirical or theoretical variogram 2!(x,y) is the basis for understanding how 

the data are correlated in space and the degree of spatial dependence of a spatial random 

field Z(x).  It is described by the equation: 

      (1) 

which is the expected squared increment of the values between locations x and y (Cressie, 

1993).  The semi-variogram "(x,y) or "(h), is defined as half the average squared 

difference between points separated by a distance h (Kaluzny et al., 1998).  The empirical 

semi-variogram is described by the equation: 

       (2) 

where N(h) is the set of all pairwise Euclidian distances h = x - y, |N(h)| is the number of 

discrete pairs in N(h), and z
x 

and z
y 

are data values at location i and j, respectively.  The 

semi-variogram can be called "(h) only when the process is stationary and isotropic (i.e., 

independent of direction) (Cressie, 1993).  We can determine the variogram for different 

directions, allowing us to find whether spatial continuity shows preferred axes 

(anisotropy). Often, anisotropy is weak or of secondary interest, and an omnidirectional 



 

 

105  

variogram 2"(|h|) is all we need. The variogram is called isotropic if it only depends on 

the distance and not on the direction of the lag, that is, 2"(h) = 2"(|h|).   The h represents 

a distance measure that has magnitude only.  The assumption of isotropy will be 

addressed in the subsequent section. 

 The variogram or structure function itself has three main parameters.  These are 

the nugget, the sill, and the range.  The nugget is also referred to as the nugget effect and 

is representative of the sub-grid scale variation or measurement error in the system, and is 

visualized on the variogram as the intercept of the variogram.  For values of h = 0, the 

nugget effect is estimated from the empirical variogram as the value of "(h).  The sill is 

the limit of the variogram tending to infinite lag distances.  It represents the variance of 

the random field.  The range is the distance at which the data are no longer autocorrelated 

(i.e., the difference of the variogram from the sill is negligible). 

 There were several other parameters that were necessary to customize the 

individual variograms for each year-season:  maximum distance, lag, and number of lags.  

The maximum distance of analysis is the point at which the number of pairs of points 

begins to decline.  For 92% of the variograms, this distance was 200 km.  The reliability 

of the variogram reduces beyond this point.  The lag distance is the interval over which 

the search for neighbors is conducted, 30 km in this study, and the number of lags is 

determined by the number of lags within the maximum distance.  No minimum number 

of pairs needed to be specified for the variogram as the sample number of pairs of 

location points was adequate within each bin. 

The variograms were estimated using the robust variogram method estimation as 

suggested by Cressie and Hawkins as it has the advantage of reducing the effect of 
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outliers without removing specific data points from a data set (Cressie and Hawkins, 

1980). The robust estimation method is based on the fourth power of the square root of 

absolute differences as follows:  

.      (3) 

Because dolphinfish is not a target species of the longline fleet, there are a greater 

proportion of zeros than for standard analyses of this sort.  Additionally, the positive 

catches of both dolphinfish and swordfish follow a lognormal distribution.  The common 

method for dealing for zero-inflated, lognormal distributions, when standardizing 

abundance, is to separate the positive catches from the proportion of positives (Maunder 

and Punt, 2004).  This is known as a two-stage modeling process.  In order to 

approximate a normal distribution when data is lognormally distributed, the log of the 

positives is used.  The catches of dolphinfish were determined to be zero-inflated, and a 

histogram of the positive catches resembled a lognormal distribution.  Therefore, it was 

assumed that there would be different processes described by the positive catches and the 

proportion positive and it would be advantageous to model these processes separately.  

Variograms were computed for each year and season for the logged positive catches and 

the indicator (i.e. zero or positive catch) data.  Variogram models based on the logged 

positive catches will be referred to as lognormal variograms and the variogram models of 

the proportion positives will be referred to as indicator variograms for this analysis. 

Removing Trend Due to Gear Usage from the Swordfish Data 

Dolphinfish, a surface-dwelling species is not influenced by gear modifications 

such as the use of light sticks or different bait type.  The amount of variance explained by 
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these factors was 2.9% and 0.9% respectively.  Typically factors are included in the GLM 

when they account for more than 5% of the variability in the model.  A step-wise 

regression test of swordfish catch reveals that these factors do have a significant effect 

and account for 7.1% and 59.2% of the variance of the model respectively.  In order to 

level the playing field and enable a comparison of the two species, it is necessary to 

remove the trend associated with these effects from the swordfish data through a linear 

regression.  The residuals of this regression represent the removal of this trend, and 

therefore, the variograms for the lognormal positive and the indicator swordfish data are 

calculated using these residuals instead of the raw CPUE data as was the case with the 

dolphinfish data.  Variogram modeling was performed on the raw CPUE data and a 

comparison between these variograms and those computed from the residuals show 

similarities.  The main difference is an increase in the range parameters of the residual 

variograms.  

Theoretical Variogram Modeling 

Once the parameters of the empirical variogram have been estimated, the next 

step is to fit a theoretical model to the variogram.  To ensure that the assumption of 

isotropy was met, focused variograms were generated in each orthogonal direction to 

observe whether or not there were significant differences in the resulting variograms.  No 

significant directionality was observed, and as a result, there was no need to correct for 

anisotropy before fitting a theoretical variogram model to the empirical one.  A 

significant directionality could be corrected by a linear transformation of the lag vector h. 

The theoretical variogram model used in this study was the spherical model.  Other 

models, such as the exponential and Gaussian model were tested, but the spherical model 
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appeared to provide the best fit to the empirical variogram.  Apart from possible a priori 

knowledge about the process and the user's subjectivity, there is no standard methodology 

for quantitatively choosing among valid variogram models (i.e. spherical, exponential, or 

Gaussian).  Recently, Gorsich and Genton (2000) have described a nonparametric 

variogram derivative estimator tool to aid the determination of a variogram model.  Their 

technique draws on the fact that although variogram models look similar, their 

derivatives are often quite different.  A MATLAB® (2007, The MathWorks) program 

was used to nonparametrically determine estimates for both the variogram and its 

derivative for a selection of year seasons for this study (Gorsich and Genton, 2000).  It 

was determined that the spherical model most closely fit the derivatives estimated from 

the estimated nonparametric model.  Qualitatively, the spherical model is preferable as it 

is most commonly used in geostatistical analysis of biological populations (Freire et al., 

1992).  The spherical model (Cressie, 1993) is described by the following series of 

equations: 

 (4) 

where " = (Co, Cs, as), Co # 0, Cs # 0, as # 0, and CO is the nugget effect.  The nugget 

effect exists due to the variability between samples, or errors in measurement or location.  

CS is representative of the sill-nugget effect, where the sill is the asymptotic value of 

semivariance, which is reached with a value of h = a.  This value corresponds to the 

range, which is representative of the maximum distance at which spatial effects are 

detected. 
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 In order to fit this model to the empirical variogram, the residual sum of squares 

between the theoretical and empirical model is minimized by a weighted least-squares 

estimation procedure (Cressie 1993): 

      (5) 

where K is the number of lags, " = (Co, Cs, a), !(h(y)) is the spherical variogram model 

and (h(y)) is the empirical variogram. 

Tests for Statistical Differences Between Theoretical Variograms 

There are no formal methods developed for testing for differences between 

variograms.  The variogram parameters describe the shape of the variogram and therefore 

reflect differences between the variograms.  Of the three parameters, range, sill, and 

nugget, range is perhaps the most indicative of a biological difference behind any 

observed variation in the variograms.  The range of the variogram is related to the patch 

size of the animal (Rossi et al., 1992).  A shorter range indicates that the organism is 

spatially autocorrelated at close distances up to the range of the variogram, and a longer 

range indicates autocorrelation over a larger patch size.  Analysis of Variance (ANOVA) 

was used to test for differences in the ranges of the variograms for a given year/season 

combination without replication, and between species.  All statistical tests were 

conducted using SAS (SAS Institute Inc., 1999).  Of interest in this analysis was whether 

there were significant differences in the variograms across years and seasons and between 

dolphinfish and swordfish.  The ANOVA tests were constructed separately for the 

lognormal positive and the indicator portion of the data.  The range of the variogram was 

used as the dependent variable in separate ANOVA tests. 
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3.3 Results of Spatial Analysis 

Variograms 

The variograms of dolphinfish (Appendix B), show generally strong patterns of 

spatial autocorrelation.  In general, the shape of the variograms displays a “typical” shape 

with a well-defined range.  The variogram parameters for the logged positive dolphinfish 

data are summarized in Table 1 in Appendix A.  The ranges of the variograms are very 

similar between seasons.  In the spring, the range parameters fall between 25.5 and 110.5 

km with an average of 65.5 km.  The summer ranges from 15.3 km to 113.57 km, and has 

an average range of 52.2 km.  The fall has the greatest variance in the range parameters 

with a low of 25.8 km and a high of 147.0 km.  The average for this season was 63.2 km.  

Winter had the lowest average range of 44.4 km and ranged from 15.6 km to 121.7 km.  

Figure 3.3 displays the lognormal positive variograms for each season in 1989 for 

example. 
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Figure 3.3.  Seasonal log positive variograms for dolphinfish for year 1989. 

 

The indicator variograms for dolphinfish exhibited a similar pattern (Appendix B, 

Figures 5-8).  As with the log positive variograms, the average sill was highest in the 

summer and lowest in the winter.  For all seasons the ranges were slightly greater for the 

indicator variograms than the log positive variograms.  This was likely due to the fact that 

the indicator variograms incorporated data from areas where the fleet was fishing, but not 

catching dolphinfish.  The longest range, 83.4 km, was in the summer, and the shortest 
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range was 61.8 km in the winter.  Figure 3.4 displays the indicator variograms for each 

season in 2000 for example. 

 
Figure 3.4.  Seasonal indicator variograms for dolphinfish for year 2000. 

 

Histograms of the variogram parameters by season are helpful in understanding 

some of the patterns between species and between the indicator data and the lognormal 

positive data (Figure 3.5a-f). 
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The ranges of lognormal positive swordfish were generally consistent across seasons 

(Figure 3.5a).  The median range was around 100 km for all seasons, but there was 

variation in the spread of the ranges across years.  The ranges of lognormal positive 

dolphinfish were significantly lower, around 50 km.  There is variation between seasons 

in the ranges for both swordfish and dolphinfish for the proportion positive catch (Figure 

3.5d).  The ranges of swordfish are only significantly higher than dolphinfish in the 

spring and winter and slightly higher in the fall.  The sill, which is indicative of the 

variance of the system, is influenced by the amount of catch of the species.  Since the 

catch of swordfish is much higher than dolphinfish, it was expected that the sills for 

swordfish would also be higher (Figure 3.5b).  In general, the sills of swordfish are 

consistent across seasons.  There is a deviation from this pattern in the winter for the 

proportion positive swordfish catch (Figure 3.5e).  Dolphinfish show a distinct seasonal 

pattern with the highest average sill in the summer and lowest in winter following the 

seasonality in the catch of this species.  In the winter, the fleet fishes less and in general 

exhibits lower catch.  This same pattern is observed for the proportion positive 

dolphinfish catch (Figure 3.5e).  The nugget effect, which is related to the amount of 

measurement error, was generally consistent between seasons for lognormal positive 

dolphinfish, except in the summer when it was higher (Figure 3.5c).  This same pattern is 

found with the proportion positive dolphinfish catch (Figure 3.5f) and is likely attributed 

to the fact that there is higher catch in the summer and therefore likely to be more error 

associated with the increased yield.  The nugget effect for swordfish for both types of 

data was in general consistent across seasons (Figure 3.5c and 3.5f).  The observation 
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error can be attributed mainly to errors in the recording of the positional information, 

errors in the recording of the catch, and discrepancies in the number of hooks. 

The average variogram parameters by season for swordfish for both types of data 

were significantly higher than for dolphinfish (Appendix B, Tables 3 and 4).  Spring and 

winter had the highest average ranges for both the lognormal data (132 km and 124 km, 

respectively) and the swordfish indicator data had very similar average ranges across 

seasons (107km, 107km, 105km, and 112km for spring through winter).  The swordfish 

catch rates also displayed the greatest amount of variability within years over a season.  

For example, in summer of 1988, the range of the variogram of the lognormal positive 

data is 218 km.  This is in contrast to summer of 2001 where the variogram using the 

same type of data is 32 km.  Figures 3.6 and 3.7 display examples of variograms in a 

single year for lognormal and indicator swordfish data respectively. 



 

 

116  

 
Figure 3.6.  Seasonal log positive variograms for swordfish for year 1989. 
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Figure 3.7.  Seasonal indicator variograms for swordfish for year 2000. 

 

Using the Average Variogram 

In general, for both species and both data types (the lognormal positive data and 

the indicator data), a pattern of relatively strong autocorrelation could be determined.  In 

particular, for dolphinfish, the winter season displayed the weakest autocorrelation with 

both types of data.  No variogram could be fit for the lognormal positive dolphinfish 

catch from winter 1998, 2000, and 2003-2005.  A pattern of autocorrelation could not be 
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determined for the indicator dolphinfish catch from winter 1988, 1998, 2001, and 2003. 

When no such pattern of autocorrelation was detectable (Figure 8), the average variogram 

parameters of all of the years in a given season would be used for prediction. 

In contrast, variograms for swordfish were typically well-resolved except in the 

case of winter 1990 with the lognormal positive data and winter 2005 with the indicator 

data.  This may perhaps be due to the significantly higher number of records of positive 

catch of swordfish than dolphinfish in the winter seasons. 

ANOVA Results 

The tests for differences in the variogram ranges of the lognormal positive data 

revealed significant differences annually (p=0.0226) and between the species (p<0.001) 

(Table 2).  However, no significant seasonal differences were found (p=0.5100).  There 

were significant differences between the variogram ranges for all factors for the 

proportion positive data: year (p=0.0144), season (p<0.001), and species (p<0.0024). 

3.4 Discussion of Spatial Patterns 

Most ecological factors display some level of geographical patchiness.  Legendre 

(1993) has found this to be the case at a variety of spatial scales—from the Petri dish to 

the continental and ocean basin scale.  This patchiness in the environment implies that 

most variables of interest will be spatially autocorrelated.  The question then becomes, 

what is causing this patchiness?  Although classical statistics assumes the independence 

of observations, field ecologists have determined that biological organisms are neither 

distributed at random nor uniformly.  This has also been found to be the case with abiotic 

phenomena such as ore or mineral deposits (Journel and Huijbregts, 1978).  The direct 
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causes for this patchiness may be attributed to environmental physical processes that 

constrain the phenomena. 

The concept of scale plays an important part of this analysis.  It is necessary to 

consider the scale of fishing effort of the fleet, the patchiness of the fish species, and the 

scale of the oceanographic features in the ocean.  Each factor contributes to the spatial 

autocorrelation present in the catch rates being modeled.  From the perspective of the 

fisherman, there are many factors influencing where to set the fishing lines.  These 

include knowledge of where higher catches occur (i.e., from satellite information, 

historical perspectives, or communication with other fishermen), the distance a captain is 

willing to travel to find the fish, and whether the climate allows the captain to make the 

fishing trip.  The fish themselves are optimizing their location based on prey availability, 

presence of predators, and optimal oceanography.  This last factor could pertain to an 

optimal temperature range, or an oceanographic feature that serves to aggregate prey or 

offer protection from predators.  Understanding what is influencing the distribution of a 

pelagic species is not straightforward.  It is simpler to consider a benthic oriented species 

such as a reef fish whose distribution is directly linked to the presence of the coral 

habitat.  Even in this type of system, the presence of the coral habitat follows a patchy 

distribution that is linked to the particular physical processes—currents, depth, 

temperature—that allow it to exist.   In the open ocean it is more difficult to define what 

may be constraining a species to a particular region or creating patchiness.  In addition 

these patches are transient, unlike patches associated with most benthic structures.  There 

are many factors to consider, among them, surface and deep water currents, temperature, 

water clarity, and salinity.  The longline dataset used in this analysis can be considered a 
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sort of “dream dataset” in that there is a large quantity of data available with spatial 

information that we can use to address some of these questions.  Additionally, the 

availability of satellite derived oceanographic data allows for some interpretation of the 

spatial patterns detected. 

In this study, the ability to obtain clear variogram models affirms that there is 

spatial autocorrelation occurring in the process under study.  Nonetheless, this technique 

has limitations.  The main hindrance was determining whether the range of 

autocorrelation described by the models was, in fact, due to the biology of the species in 

response to environmental constraints on its habitat, or simply an artifact of the sampling 

construct.  Determining the spatial autocorrelation of a species from catches from a 

longline has several issues that must be addressed.  The first is that the exact location of 

the catch on the longline is not known.  This contributes to poor sample resolution where 

the position of the catch has a margin of error on the scale of the longline length.  In other 

words, we can only accurately attribute what is going on in the ecosystem to the spatial 

scale of the longline set, not to the scale of the individual fishing hook.  The second is 

that catches do not follow a normal distribution and are zero-inflated.  It is therefore 

appropriate to partition and transform the data in a manner similar to a delta lognormal 

method used with GLMs.  In spite of these limitations, it is possible to spatially predict 

abundance using these methods as the main goal of geostatistics is to better explain 

variability due to spatial differences.  Sampling by fishing gear is never going to give you 

the perfect picture of the environment or the state of the species, but the level of spatial 

resolution of this type of data is leaps and bounds ahead of the more typical 10x10 degree 
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blocks that are typically reported in fishing data.  The question that must be asked is 

whether this resolution is enough? 

The fact that there are significant differences in the range parameters between two 

species with very different life histories is evidence that the observed spatial 

autocorrelation does reflect some of the biological characteristics of the species.  With a 

pelagic species in particular, the biology and physiology of the animal is closely linked to 

the oceanography of the system in which the animal is found.  A significant amount of 

work has linked the distribution of pelagic species to temperature gradients and fronts 

(Uda, 1973; Laurs et al., 1984; Power and May, 1991; Andrade, 2003).  As dolphinfish is 

a surface dwelling species, it is likely that its distribution is closely related to the 

temperature fronts in the upper layer of the water.  Swordfish, on the other hand is a 

deeper dwelling species, and therefore will be constrained by fronts both at the surface 

and at depth.  This analysis could be enhanced by testing these hypotheses regarding the 

range of autocorrelation with other species that are associated with different depth 

distributions such as the deeper diving bigeye tuna or the more epipelagic cobia. 

To relate the spatial structure of a population in the Gulf of Mexico to the 

oceanography of the region at varying depths, it is useful to have some idea of the first-

mode (baroclinic) Rossby radius, Ro.  In atmospheric dynamics and oceanography, the 

Rossby radius of deformation is the length scale at which rotational effects become as 

important as buoyancy effects in the evolution of the flow about some disturbance.  It is 

described by the equation:   

         (6) 
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where N is the Brunt-Väisälä frequency (the frequency at which a vertically displaced 

parcel will oscillate within a statically stable environment), H is the scale height or depth 

(distance over which a quantity decreases by a factor of e), and fo is the Coriolis 

parameter at some latitude.  Teague et al. (1990) used calculations based on Generalized 

Digital Environmental Model (GDEM) climatology to determine an Ro of approximately 

30 km in the Gulf and in the northwest Caribbean.  Comparatively, the Ro in the central 

and eastern Caribbean Sea was found to be approximately 40-50 km, and about 10-20 km 

over the shelf break.  These calculations are for surface waters.  Because Ro is 

proportional to depth, it is intuitive that at a deeper depth, the Rossby radius will be 

greater.  Therefore, a species that dwells in the surface layers of the water will be subject 

to greater heterogeneity of the water masses than a species at depth.  If two adjacent 

water masses have very different temperatures, as is often the case in the winter months, 

this variation will serve to constrain a species that is temperature-dependent within a 

particular water mass.  This calculation is important for understanding the resolution of 

any spatial autocorrelation (i.e., the resolution of the spatial scale should only be as fine 

as the most energetic scale).  The Rossby radius of deformation emphasizes the fact that 

oceanography is more consistent at depth than at the surface and that it is important to 

account for the 3 dimensional nature of patches (both physical and ecological).  

Therefore, a species like swordfish that spends time at deeper depths should in theory be 

less constricted in its habitat range because the water masses are more homogeneous over 

a larger horizontal extent.  They also are adapted to a wider range of tolerable 

temperatures and are therefore less constrained in both the horizontal and the vertical 

directions.  In other words, if we presume that a fish is constrained by temperature, it 
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follows that a fish at depth would remain in the same temperature water for a longer 

range and would be more widely distributed. 

Satellite tagging studies of swordfish depth distributions reveal that swordfish 

routinely spend a good deal of time in deeper depths between 500-600m during the day 

and at depths above 200m during the night (Brill, pers. comm.).  This is in stark contrast 

to dolphinfish, which spend the majority of their time above 50m during both the day and 

night (Hammond, 2006).  It is typical to think of patch sizes as a surface characteristic.  

However, it is important to remember that patches are 3-dimensional and to consider that 

the depth that these species are occupying has a direct relationship to the oceanography at 

that depth.   

As previously mentioned, it is expected that there will be a seasonal variation in 

the range of a species.  The proportion positive variogram ranges illustrate this 

variability.  In the winter the frontal regions where this species is likely to be located are 

more well-defined and therefore more easily assessable to the species.  Therefore, it 

would be expected that a surface-associated species like dolphinfish may exhibit a shorter 

range as they are more concentrated in an area of higher frontal energy (Kleisner et al., 

2007).  Indeed, with this analysis, dolphinfish do exhibit a shorter average range in the 

winter than in any other season.  The constraint in the range of the dolphinfish is likely 

twofold due to the heterogeneity of the temperature fronts and the fact that dolphinfish 

are a surface species.  This is in contrast to swordfish, which are displaying an opposite 

pattern with longer ranges in the winter months.  Again, it is important to remember that 

these species are moving in a 3 dimensional environment.  Since swordfish is spending a 

majority of the time at depth and is less constricted to warmer waters at the surface due to 
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its physiology, it would make sense that it would utilize a greater portion of the 

ecosystem than would dolphinfish, whose 3 dimensional habitat is much shallower. 

As there is a movement towards spatial management of fish stocks (i.e., seasonal 

closures of fishing grounds, MPAs, etc.), it is important to determine whether the 

incorporation of spatial autocorrelation into a stock assessment is in fact possible and 

whether it confers enough of an improvement to warrant the inclusion.  In this analysis, 

variogram models were useful in describing the spatial autocorrelation patterns of catches 

of dolphinfish and swordfish from the U.S. pelagic logbook data from the Gulf of Mexico 

and provide the basis for further geostatistical predictions of abundance.  In general, both 

dolphinfish and swordfish catches showed strong spatial autocorrelation as evidenced by 

fits of the spherical empirical variogram models to the theoretical variograms derived 

from the data.  The scale of this correlation is considerably smaller than that of the 

statistical grids typically used in the standardization of CPUE for the US longline. What 

this implies is that for a species such as dolphinfish, which has a shorter range of 

autocorrelation, we may be justified in using a model such as a GLM that assumes 

samples are independent because other than at very close range, samples are independent 

(i.e., at distances greater than the range of autocorrelation).  However, for species with a 

longer range of autocorrelation, there will be more CPUE samples that are actually 

dependent.  This can lead to an underestimation of the variability when we use a model 

such as a GLM rather than a geostatistical index. 

Additionally, advancements were made in dealing with data that is plagued by a 

high number of zeros and is not normally distributed.  While these factors are usually 

considered a problem, the methodology outlined here represents a small step towards 
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developing techniques where zeros no longer pose a detriment, but provide extra 

information about the biology of the species and also provide a basis for spatial 

prediction. Ultimately, the explicit incorporation of spatial autocorrelation in the 

standardization of CPUE may help reduce the unexplained variance and provide more 

precise estimates of abundance. 
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CHAPTER 4:  PREDICTION OF ABUNDANCE BASED ON SPATIALLY 

AUTOCORRELATED CATCHES 

 

4.1 Spatial Variability and Determining Abundance of a Pelagic Species 

The distribution in time and space of biotic and abiotic factors in the environment 

is influenced by major forces such as global energy inputs and their impacts on climate 

change, regional and local wind patterns, and variations induced by factors such as 

plankton blooms and mesoscale physical motions (Rohde, 1992; Shukowsky and 

Mantovani, 1999; Olson et al., 2005).  These distributions affect the harvest of a fishery 

resource by influencing the distribution and catchability of target species.  Environmental 

conditions may also influence what people target and how species are targeted (Olson et 

al., 2004).  Therefore availability of the fish is dependent on oceanographic and 

environmental conditions (Fleming, 2000) as well as factors such as market effects that 

can influence fishing effort (Miller, 2007).  While the potential causal factors involved 

are varied, they typically include spatially continuous changes in ocean conditions (i.e., 

water temperature, large and small-scale currents, climatic patterns, bathymetry) and 

general migration patterns (i.e., food supply, spawning locations).  Additionally, some of 

these changes are readily perceived by the fishery and therefore influence the behavior of 

the anglers toward the target species (Pederson and Hall-Arber, 1999; ICES, 2003; 

Bergmann et al., 2004). 

Generally, these factors change gradually over the majority of the ocean.  In some 

instances, however, there are distinctly different masses of water that can have a great 

influence on the distribution of pelagic species, for example in SST frontal regions.  

These areas where change is more dramatic are areas of aggregation of prey and floating 
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structures that attract larger pelagics for both food and shelter (Mann, 2000).  These 

spatial changes in ocean conditions and general migration patterns can dictate the 

spatiotemporal distribution of a species (Carroll and Pearson, 2000) and variations in 

fishing effort.  Due to these influences, data collected from fisheries are likely to display 

spatial or temporal dependencies induced by a combination of these factors.  In spite of 

this, for many years biologists have relied on statistical methods that were developed for 

data that conform to rather strict assumptions of independence between ecosystem 

variations and fishing.  One of the most common statistical models used to standardize 

catch rate data to obtain indices of abundance is the GLM.  This model attempts to 

control for annual, seasonal, vessel, gear, and sometimes environmental effects.  

Additionally, it is common to address spatial variation at a crude level within the model 

framework, usually in terms of a relatively large area such as the FAO statistical fishing 

areas which typically encompass an entire ocean basin such as the Gulf of Mexico.  

These areas cannot address small scale variation however.  Often with these models, a 

determination of whether the data are actually spatially independent is never made 

(Carroll and Pearson, 2000).  Legendre (1993) has argued that it is necessary to revise our 

current models and address the spatial and temporal dependence that is present in much 

of the biological data.  On the other hand, Carroll and Pearson (2000) note that there are 

most likely many cases where the degree of dependence is small to the point of actually 

being insignificant.  When this is the case, traditional statistical techniques that rely on 

independence are most likely sufficiently robust to make the results from both spatially 

explicit and traditional analyses similar.  When the degree of dependence is high, 

however, these patterns of spatial correlation are important for many reasons including 
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the determination of stock structure, understanding the habitat utilization of a species, and 

determining the influence that the environment has on determining where a species is 

distributed. 

In this chapter the catch of dolphinfish and swordfish from the U.S. pelagic 

logbook database and lognormal ordinary kriging (Cressie, 1992; Goovaerts, 1997; 

Chiles and Delfiner, 1999) were used to obtain a spatial mapping of estimated densities 

for both species in the Gulf of Mexico region.  The results were then used to develop a 

spatial index of abundance that can be used in a stock assessment framework to inform 

management decisions relative to the status of the stock in the area.  As a comparison, the 

logbook data were also standardized by a more traditional GLM approach and annual 

indices were developed for both species.  It was hypothesized that because dolphinfish 

catch rates are spatially correlated at shorter ranges than those of swordfish (see Chapter 

3), there would be less difference between the geostatistical and GLM indices derived for 

dolphinfish.  In other words, with a smaller range of autocorrelation, more of the 

observations would be independent, and the GLM approach would be less biased by 

violations of the assumption of independence.  Conversely, swordfish catch rates are 

correlated over longer ranges and therefore it was expected that there would be 

significant differences between the indices obtained from each approach.  If there are 

differences in the indices due to spatial variability, this could translate into different 

predictions of the status of the stock and other biological reference points when spatial 

indices are incorporated into a stock assessment model. 

There are inherent differences between the geostatistical and GLM approaches 

that must be addressed before comparisons can be made.  In order to understand the 
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nature of the predictions from the two approaches and the extent to which they can be 

compared, it is necessary to understand the nature of two conceptual frameworks that 

support inferences on general population characteristics from samples of the population: 

design-based versus model-based inference (Cassel et al., 1977; Hanson et al., 1983).  

The design-based approach relies on assumptions made for survey methodology.  With 

this estimation scheme, probabilities are assigned to samples to form the basis for the 

inferences.  For the purposes of this analysis, the samples were the records of catch of 

dolphinfish and swordfish by the longline fishery.  The assumption made was that 

sampling is random, and for the GLM analysis, that factors are independent of each other.  

It is because of this independence of the sampling structure that the mean and variance 

estimates can be calculated directly from the samples without making implicit 

assumptions about the spatial distribution of the data (Pettigas, 2001).  When, as it was 

hypothesized in this analysis, there is spatial structure to the population and samples are 

therefore correlated, the ability to make inferences requires a model of the level of spatial 

autocorrelation in the data (Matheron, 1971; Cochran, 1977), and therefore the estimation 

of the variance is model-based.  Between the two approaches, the unbiasedness and 

minimum variance in the design-based model will be quite different from that in the 

model-based approach.  It could be argued that if the catch data followed a “true” design-

based structure (i.e., fishery independent random survey data), then this approach would 

be more suitable for developing the confidence intervals of the index because it allows 

the accuracy of predictions to be assessed objectively (i.e., based on the sample data 

alone).  However, the model-based strategy is useful for local estimation within small 

blocks provided that there is enough data to estimate the variogram. 
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Despite the inherent differences in the approaches, it has been shown that model-

based and design based approaches can lead to similar results when the same prior 

information and standardized data are incorporated (Särndal et al., 1992; Stevens and 

Olsen, 2004).  For this reason, the indices derived by both methods in this analysis have 

been standardized for any extraneous sources of variation such as annual, seasonal, or 

gear effects.  The sole difference between the indices should therefore be due to spatial 

variability.  While the indices themselves may be compared qualitatively, the prediction 

error from the model-based geostatistical approach is not directly comparable to the more 

traditional design-based variance (Warren, 1998; Walter, 2006). 

There are several physical features in the Gulf of Mexico that would play a role in 

the aggregation of pelagic species in this region.  The main feature is the Loop Current.  

This is a warm Caribbean-based current that flows northward into the Gulf between 

western Cuba and the Yucatan peninsula, loops east and south and exits the Gulf through 

the Florida Straits.  This is a dynamic region that varies in its northern-most extent.  The 

Loop Current sheds eddies or rings several times a year that drift westward at speeds of 

2-5 km day
-1

 (Elliott, 1982; Coats, 1992; Shay et al., 1998).  It is expected that the energy 

of the Loop Current is a dominant factor in the level of aggregation of the pelagic species 

in this area.  Indeed, much of the recent work in fisheries has focused on the links 

between some attributes of a biological stock, such as abundance or recruitment, and the 

environmental forces that may be driving fluctuations in the attribute (Laurs et al., 1984; 

Olson and Backus, 1985; Podesta et al., 1993; Bigelow et al., 1999).  Since the physical, 

chemical, and biological characteristics of a particular environment control to a large part 

fish consumption, growth, mortality, and production, the ability to predict a life history 
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parameter spatially should greatly aid a stock assessment.  The following chapter will 

explore the implications on the productivity parameter estimations of the different indices 

when they are used in a surplus production model. 

4.2 Methods for Spatial Abundance Predictions from Kriging 

Kriging is an interpolation method where the value of an unknown real function f 

at a certain point is predicted, given the values of the function at some other points 

(Pelletier and Parma, 1994; Webster and Oliver, 2001).  It is linear due to the fact that the 

estimated values are weighted linear combinations of the available data although it 

involves implicit nonlinear terms (Journel and Huijbregts, 1978).  The theoretical 

variogram model of the covariance of the random function (see Chapter 3) is 

incorporated when calculating the predictions of the unknown values.  There are three 

main forms of kriging used in geostatistical analysis:  simple kriging, ordinary kriging, 

and universal kriging.  Simple kriging assumes that there is knowledge of the stationary 

mean of the stationary random function.  Because this is a difficult criterion to meet, this 

technique is not often used in practice but does form the foundation of ordinary and 

universal kriging (see section 4.2.3).  Ordinary kriging is most commonly used, and 

assumes a constant, but unknown underlying mean.  Again the assumptions for this 

method are that there is intrinsic stationarity (the data do not exhibit a spatial trend) and 

adequate sample size to calculate a variogram model.  This variogram model is used to 

calculate a weighted linear combination of available samples for prediction of abundance 

and variance in areas without samples.  The objective is to minimize the error variance 

and to ensure that the average error for the model is zero.  Universal kriging is used when 

there are temporal trends in the data being estimated (i.e., the data is nonstationary).  
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When this is the case, the stationary condition can be imitated and imposed on the data by 

a polynomial function known as a drift term that models the average value of the scatter 

of points.  In other words, the temporal pattern is identified and removed.  The residuals 

of the theoretical and empirical variogram model represent the difference between the 

drift and the actual values of the scatter of points over time.  The residuals are assumed to 

be stationary, and therefore kriging can be performed on these residuals.  The 

interpolated residuals are then added to the drift to compute the estimated values. 

In this study, ordinary kriging is used to predict the value of the spatial process 

S(x) for every location x within a specified grid surface within the Gulf of Mexico from a 

linear combination of the observed values {Z(xi), i = 1,…,g} where fishing occurred.  It is 

assumed that measurement error is the only source of difference between S(x) and Z(x) 

and therefore the spatial covariance of Z(x) can be modeled directly.  The main 

assumption in ordinary kriging is that the first differences of Z(x) are stationary.  This 

means that the expected value of Z(x) is the same over the whole area regardless of 

location.  This is represented by the equation for the expected value of Z at different 

points: 

       (1) 

where h is a vector representing the distances and directions between individual data 

points.  Additionally, the variance of the difference is also a function of h.  This is 

represented by the equation: 

       (2) 

where 2!(h) represents the variogram model. 

It is typical to assume second-order stationarity in kriging such that: 
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       (3) 

and the covariance between two points is only related to their position.  In this way, it is 

possible to express the covariance in terms of the semivariogram: 

        (4) 

where  is the sill and is representative of the variance of Z(x) (Pelletier and 

Parma, 1994).  An example of a variogram model showing the three parameters is 

displayed in Figure 4.1.   

 
Figure 4.1: An example variogram showing the three parameters defining the 

shape: the range, the sill, and the nugget. 

 

All geostatistical analyses were performed using functions modified from the S-PLUS 

spatial statistics package in R (Kaluzny et al., 1998; R Development Core Team, 2007).  

As stated in Chapter 3, an additional issue arose when a variogram could not be obtained 
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for a specific year-season.  In this case, the average variogram parameters for that season 

were used for kriging purposes. 

Constraining the Prediction Area 

Since the goal of this study was to determine an index of abundance for the area 

fished, it was necessary to krige only within the sampling area.  A caveat to this approach 

is that if constriction of the fishing area is due to serial depletion, this will introduce bias 

into the index of abundance.  Two separate methods were used to obtain grids upon 

which predictions can be made.  One index was based on a grid of locations restricted to 

95% of the kriging variance or the sill as a measure of sample coverage for each year-

season.  This index will be referred to as the KV index (where KV refers to the kriging 

variance).  The second index was based on the 95% kernel or utilization distribution that 

was common among seasons.  This method was adapted from the home range 

calculations of Worton (1995) where the home range is defined as the minimum area in 

which an animal has some specified probability of being located.  In this case, the grid is 

calculated by using the kernel method to estimate the utilization distribution for each 

year-season.  A kernel density estimate (Worton, 1995) is calculated from n locations at 

points (x,y) by the equation: 

        (5) 

where h is the specified value of a smoothing parameter and di is the distance of the ith 

observation from the point at (x,y).  The best estimate of the smoothing parameter h is 

given by: 

         (6) 
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where  is given by: 

        (7) 

and  and  are the estimates of the variances of the x, y locations, respectively. 

Within a season, the kernel-based distributions for each year were overlaid, and 

the union of the polygons was selected as the area where fishing occurred consistently 

over all years during a season.  This step ensured that during a single season, all 

predictions would be made for each year over the same grid.  The polygons for each year 

by season are illustrated in Figure 4.2. 
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Spring 

 

Summer 

 

Fall 

 

Winter 

 
Figure 4.2:  The “home range” kernel estimates for each year-season.  Within a 

season, the polygons are overlaid and the minimum intersection area is clipped 

(the “Inter” polygon).  This ensures that predictions are made only where fishing 

occurred in each year within a given season. 

 

For each season, the annual polygons are overlaid and the minimum area is clipped (the 

“Inter” polygons in Figure 4.2).  This index is referred to as the HR index (HR=home 

range).  Each of these methods produced geostatistical abundance indices that were 
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nearly identical.  Therefore, only the most constrained abundance indices (the HR 

indices) are presented and discussed for both dolphinfish and swordfish.  

Calculating the “Unbiased” Lognormal Predictions and Associated Variance 

The kriging predictions were calculated for the proportion of positive records and 

for the logarithm of the positive records.  Lognormal kriging is a technique that was 

developed in the field of mining geostatistics as a probabilistic approach to determine the 

distribution of precious metals and ores using experimental mining data that was often 

skewed (Journel and Huijbregts, 1978; Goovaerts, 1997).  There are several caveats to 

this method that will be outlined in this section. 

To understand lognormal ordinary kriging, first consider a lognormal simple 

kriging example.  To begin, if we consider the lognormally distributed, stationary random 

function: 

        (8) 

where Z(x) represents the raw data with the following parameters: 

     (9) 

and Y(x) represents the transformed data with 

.  (10) 

If Y(x) is multivariate normally distributed, then the mean of the conditional distribution 

of predictions, Y
*

SK, is normal: 
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      (11) 

and the N coefficients, #$, are solutions of the linear simple kriging system: 

.     (12) 

The variance of the system is represented by: 

.      (13) 

Predictions, Z
*
, are represented by: 

      (14) 

and the prediction variance is represented by: 

.       (15) 

These calculations are relatively straightforward if the mean is known.  As mentioned 

previously, the mean is often not known, and therefore the technique of ordinary 

lognormal kriging must be used.  In this case, again assume that Y(x) = Log Z(x) is 

multivariate Gaussian, and that there is no knowledge of the stationary mean (m).  The 

application of the condition of  

          (16) 

to the kriging system ensures unbiasedness whatever the unknown mean m.  Y(x) and Log 

Z(x) from the simple kriging example can be replaced by ordinary kriging estimators.  

However, there is a problem because the ordinary kriging estimators are not identical to 

the conditional expectations.  The prediction term for ordinary kriging is then represented 

by: 
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        (17) 

where the N coefficients, %$, are solutions of the linear ordinary kriging system of order 

N+1: 

      (18) 

and the prediction variance is represented by: 

.      (19) 

The K in equations 18 and 19 is the Lagrange multiplier parameter.  Lagrange 

multipliers are used when there is a need to maximize the magnitude of a function that is 

subject to fixed outside conditions or constrains.  The Lagrange multiplier provides a 

means for solving problems of this type without the need to explicitly solve the 

conditions and use them to eliminate extra variables.  This technique is useful here 

because the mean of the estimated values, Z
*
, can differ noticeably from the expectation 

m estimated from the available data (Journel and Huijbregts, 1978).  There must be a way 

to determine the extent of the variation and use this constant (the Lagrange multiplier, K) 

to reign in the predictions.  Determining the constant K is relatively straightforward and 

can be solved by considering the estimator: 

       (20) 

where the corrective factor, or Lagrange multiplier, K is determined by equating the 

arithmetic mean of the estimated values, , to the expectation or mean, m (Journel and 
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Huijbregts, 1978).  The explanation given by Journel and Huijbregts (1978) for the 

divergence of the estimator from the mean is that the exponential expression is not robust 

with respect to the multivariate lognormal hypothesis.  The fact is that although the 

univariate distribution of Z(x) can approximate a lognormal distribution, the multivariate 

distribution may not also be lognormal.  Journel and Huijbregts determined that the 

“unbiased” or corrected estimate gave a lower experimental estimation variance than the 

classical linear kriging estimators.  In addition to correcting for bias in the predictions, it 

is also necessary to correct the prediction variances.  Journel (1980) provides the 

methodology outlined here.  If the distribution of  is normal with: 

 (21) 

then the distribution of  is lognormally distributed with a mean of 

.  The unbiased prediction estimation variance 

is then: 

    (22) 

Construction of the Geostatistical Abundance Index 

Lo et al. (1992) outline a method for combining indices for lognormally 

distributed data where the analysis has been made on the positive portion of the data 

separately from the proportion of positive data.  This work focused on the calculation of 

indices of relative abundance from fish spotter data based on delta-lognormal models.  

The final index is a simple product of the predictions from each portion of the analysis.  

The formula for obtaining the index variance is as follows: 
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Variance = (INDvar) * (UBBTpred)
2 
+ (UBBTvar) *    (23) 

(INDpred)
2 
+  cor((INDpred) *(UBBTpred)) * $( INDvar) * $(UBBTpred) 

 

where UBBTpred is the unbiased back transformed predictions from the lognormal 

observations, UBBTvar is the unbiased back transformed variance associated with the 

predictions from the lognormal observations, INDpred is the prediction from the indicator 

kriging, and INDvar is the variance associated with the indicator index.  The term “cor” 

represents the correlation between the positive CPUE predictions and the proportion 

positive CPUE predictions.  This correlation is calculated using Spearman’s correlation. 

Modification for Swordfish 

To test the hypothesis that a species with a shorter range of autocorrelation will 

have a geostatistical index that is similar to that from GLM standardization, a 

geostatistical index and a GLM standardized index were constructed for both dolphinfish 

and swordfish.  A typical GLM standardization will account for such effects as number of 

light sticks used on the longline and bait type (Dead or Alive).  These factors are gear 

effects. While these factors were significant in the swordfish GLM, they do not influence 

the catch rates of dolphinfish.  As noted in Chapter 3, the swordfish catch rates were 

standardized for gear effects (logCPUE/success= light sticks, bait type).  The residuals 

from this standardization were used to calculate variograms for each year-season.   

The “fishing power” effort standardization of Robson (1966) was employed in 

order to standardize the catch data to make predictions through kriging.  This is a 

traditional fisheries method (Gulland, 1956; Beverton and Holt, 1957; Ricker, 1975) 

whereby catch C in number of animals is related to the average population abundance  

in a specified time interval by: 

         (24) 
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where F is the instantaneous rate of fishing mortality, defined as the product of nominal 

fishing effort f and catchability coefficient q, the fraction of the stock removed per unit of 

nominal fishing effort.  CPUE, a relative index of abundance, is given by 

          (25) 

When dealing with several different types of gear fishing the same unit of stock, fishing 

mortality for each gear type j can be described as: 

          (26) 

with the overall fishing mortality described as: 

 .         (27) 

Because catchability can differ substantially between different gear types, Robson’s 

fishing power method serves to estimate the relative catchability among different gears, 

fleets, or vessel types.  In the fishing power model, variation in CPUE is usually 

attributed to two main factors: timing and location of sampling effort and the type of gear 

or vessel that is taking the samples.  This can be expressed for time-location i and gear 

type j by the following model: 

        (28) 

where % is a constant, bi is a time-location coefficient, gj is a gear coefficient, and &ij is an 

additive error term.  There is an assumption that for a given species or life stage of fish, 

the ability of the gear to capture the fish (gj) is constant for each gear type j.  Robson 

(1966) outlines a general linear model for estimating the parameters of equation 28 for 

time-locations i=1, 2,…, q and gears j=1, 2,…, k as: 

    (29) 
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where the parameters that are estimated are the intercept (%), time-location coefficients 

(bi’s), and the gear coefficients (gj’s).  The independent variables (X’s) are discrete 

categorical or “dummy” variables for time-locations (Xi(b)’s ) and gear types (Xi(g)’s).  

The standard ANOVA restrictions: 

          (30) 

are applied to the parameters.  There are q – 1 time-location parameters and k – 1 gear 

parameters estimated from equation 29.  Equation 30 allows the estimation of the 

remaining parameters bi=q and gj=k by imposing the following constraints: 

 .        (31) 

These parameters are used to standardize the raw swordfish CPUE observations.  The 

coefficients bi’s are incorporated into equation 30 in order to correct for temporal and 

spatial variation in CPUE.  The model-predicted CPUE for gear j is estimated by: 

 .        (32) 

Fishing power, which is also referred to as the Gear Calibration Factor for gear j (GCFj), 

is calculated as the ratio of the model-predicted CPUE for gear j to the model-predicted 

CPUE of a standard gear (j = S): 

 .        (33) 
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Although any gear can be selected as the standard, for this analysis, the most common 

gear was selected as the standard.  The standardization of the raw swordfish CPUE was 

done by dividing each CPUE value by its associated GCFj. 

Construction of GLM Abundance Index 

The Delta approach of Lo et al. (1992) was used to model the probability of 

obtaining a zero catch and the catch rate, given that the catch is non-zero, separately 

(Maunder and Punt, 2004).  A GLMM approach in SAS 9.0 was used to estimate relative 

indices of abundance for the U.S. pelagic longline data from the logbooks in the Gulf of 

Mexico (Littell et al., 1996). A binomial distribution was used for the analysis of the 

presence of dolphinfish and a lognormal distribution was used for the analysis of catch 

rates from positive trips (trips that land dolphinfish).  This type of combined model is a 

standard analysis tool for evaluating datasets where there are a large proportion of zero 

catches (i.e. the species is not the main target of the fishing fleet) (Ridout et al., 1998; 

Ortiz and Arocha, 2004). 

The following factors were examined as possible influences on the proportion 

positive trips, and the catch rates on positive trips: 

• Year (1987-2006),  

• season (Dec-Feb; Mar-May; Jun-Aug; Sep-Nov),  

• light sticks (number used: 0-3), 

• bait type (Dead, Alive, Unknown), 

• SST.   

SST was derived from the MODIS and AVHRR satellite imagery.  The daily SST data 

for the region was converted in ArcGIS 9 to raster data and individual daily rasters were 
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overlaid to create a weekly composite because cloud cover left gaps otherwise.  These 

weekly composites were then temporally linked to the average CPUE data point in a 

particular week.  When SST could not be obtained from the satellite, usually as a result of 

cloud cover, the ship board sea surface temperature measurements were used.  The 

temperature readings from the ship were not used explicitly because for many of the 

records, the information was missing, or the entry was not accurate and had to be 

discarded.  A forward stepwise regression procedure was used to determine the set of 

fixed factors and interaction terms that explained a significant portion of the observed 

variability. Factors and interaction terms were selected for final analysis if: 1) the percent 

reduction in deviance per degree of freedom explained by adding the factor exceeded five 

percent , 2) the &2 test was significant and 3) the Type-III test was significant for the 

specified model.  In addition, a &2 analysis was preformed to test the significance of the 

reduction in deviance between each consecutive set of nested models (McCullagh and 

Nelder 1989). 

Once a set of fixed factors was identified, the influence of the YEAR'FACTOR 

interactions was examined.  YEAR'FACTOR interaction terms were included in the 

model as random effects.  Because the goal of this analysis is to compare the 

geostatistical index to the GLM index, every attempt was made to ensure that 

corresponding standardizations were made for each index.  This was done so that any 

apparent differences in the indices could be attributed to spatial differences and not to 

trends due to gear or temporal effects.  In the case of dolphinfish, the GLM was 

straightforward.  The model for both the proportion positives and the positive 

observations included only year and season.  Therefore, the geostatistical index was 
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constructed from the raw data and variograms computed for each year-season.  Swordfish 

on the other hand had an added layer of complexity.  The significant factors were year, 

season, bait type, and light sticks.  Additionally, the interaction terms of YEAR'LIGHT 

STICKS, YEAR'BAIT type, SEASON'LIGHT STICKS, and SEASON'BAIT TYPE 

were significant and these interactions were added to the model because the GCF 

employed to construct the geostatistical index is accounting for annual and seasonal gear 

effects in the same manner as the interaction terms do in the GLM.  The final delta-

lognormal models were fit using the SAS macro GLIMMIX and the SAS procedure 

PROC MIXED (SAS Institute Inc., 1997) following the procedures described by Lo et al. 

(1992). 

4.3 Index Calculation Results 

One of the outputs of this analysis is a set of maps of the abundance of 

dolphinfish and swordfish in the Gulf of Mexico for the period 1986-2005 (Appendix C).  

These maps are seasonal and allow a comparison of the high and low abundance areas 

both seasonally and annually and between species.  Some of the major patterns are a high 

peak fishing area off of the Loop Current extension, and a shelf break fishing area.  An 

example of a high abundance patch off of the northern tip of the loop current is displayed 

in Figure 4.3. 
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Figure 4.3:  An example of higher abundances along the northern edge of the 

Loop Current. 

 

This image has the map of abundance for a given year-season overlaid transparently on a 

composite image of SST for the same season.  The fact that the prediction area for 

kriging was constrained to a “home range” area that was a consistent 95% kernel over a 

season ensures that predictions are only made where fishing has occurred continuously. 

As hypothesized, the GLM index followed the geostatistical index for dolphinfish 

very closely (Figure 4.4).   
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Figure 4.4:  The geostatistically derived and GLM derived indices for dolphinfish. 

 

The GLM index was standardized for annual and seasonal effects.  The geostatistical 

index was also corrected in a similar way since it was based on variograms that were 

calculated for each year-season.  Slight differences in the trend could be due to the fact 

that including spatial variation in the geostatistical index of abundance will reduce bias 

due to autocorrelated samples, but since the range of autocorrelation is small, the 

predictions will revert to the arithmetic mean, which will be similar to the GLM index.  

Overall, the trend of both indices shows a decline in relative abundance from about 1990 

to 2005/2006.  The abundances in 1987 and 1988 are low, but this could be due to the 

fact that dolphinfish were not targeted in the early years of the longline fishery.  A more 

realistic abundance trend may begin in 1990, and for the purposes of the stock assessment 
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model, separate model runs will be made with an index that includes the early years and 

an index that begins in 1990. 

Swordfish, as expected, shows some differences between the GLM and the 

geostatistically derived indices (Figure 4.5). 

 
Figure 4.5:  The geostatistically derived and GLM derived indices for swordfish. 

 

While the overall trend is the same, there are differences annually where the pattern is 

either offset, or completely opposite between the approaches.  For example, in 1988-1990 

and in 2002-2005, when there are peaks in CPUE in one index, there are valleys in the 

other index.  Since it is especially evident that patterns in abundance are different in the 

later years, one could expect that the biomass ratio estimates from a stock assessment 

model may be different if the index was the main input to a stock assessment model.  The 

effect of this difference may, of course, be diluted if there are many other indices added 
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to the stock assessment model that have differing trends, which in effect may negate the 

trend of the geostatistical index.  For example, the ICCAT assessment of swordfish in 

2006 included indices from the U.S., Japan, Brazil, and Spain (ICCAT, 2006).  If the 

trends of any of these indices are pulling in different directions, the result will be a 

biomass trend that is averaged between the CPUEs. 

An examination of the variance of the indices is somewhat problematic since the 

variance of the GLM index is design-based and the variance of the geostatistical index is 

in effect model-based.  Design-based estimators model the status and trend of the 

observations, but do not model the underlying stochastic process.  They have the benefit 

of avoiding selection bias and controlling for sample process variance.  Model-based 

predictions on the other hand model the stochastic behavior of the response and the 

forecasting or predictions are conditional on the observed data.  Walter (2006) addressed 

this issue in an examination of classical design-based and model-based approaches for 

incorporating space into a stock assessment of a benthic species.  He noted that due to the 

fact that the kriging prediction variances rely on the weights assigned to sample values 

based on the variogram model, variances obtained from these methods can not be 

interpreted the same way as a design-based variance where the variance is based on 

samples of an assumed fixed process.  One way of looking at this is that for design-based 

inference, the samples are random and the process is fixed so repeated “samples” can be 

obtained.  Conversely, with model-based estimation, the samples are fixed and the 

process is random (Walter, 2006).  However, a visual comparison of the variance of 

dolphinfish indices shows that although the indices are quite similar, there is a distinct 

tightening of the confidence intervals of the geostatistical index (Figure 4.6). 
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Figure 4.6:  The geostatistically derived and GLM derived indices for dolphinfish 

with confidence intervals. 

 

This is to be expected as the geostatistical index incorporates an additional layer of 

variance that can be attributed to spatial differences.  The swordfish indices actually 

display an opposite pattern with a decrease in the variance of the GLM index (Figure 

4.7). 
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Figure 4.7:  The geostatistically derived and GLM derived indices for swordfish 

with confidence intervals. 

 

An explanation for this difference might be due to the fact that the GLM implicitly 

accounts for temporal and gear effects.  The data for the geostatistical index has also been 

standardized for these effects a priori. However, it is important to realize that the 

variance of the geostatistical index is a measure of the quality of the prediction at a given 

grid point, and therefore encompasses only the spatial variability at a given location, not 

the variance attributed to other factors. 

4.4 Discussion 

One of the goals of geostatistics as applied to fisheries is to determine the spatial 

structure of the processes involved.  These are the population dynamics in the target 

ecosystem and the action of the fishery itself.  As modeled here this involves the size of 

patches in space and the pattern of these patches coupled to the distribution of fishing 
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effort.  The methods introduced here use fishery-based information to build a map of the 

density of a species in an area.  Additionally, if the spatial structure can be determined for 

individual temporal units, this can provide the means for constructing an annual or 

seasonal index of abundance.  Geostatistics provides a unique opportunity to estimate 

density in locations that are not sampled (Rufino et al., 2005).  This therefore allows for 

more realistic representations of the population distribution and a smoothed effect.  

Kriging allows for the removal of spatial variation in the data due to sampling or search 

techniques, and to some extent patterns of environmental heterogeneity that are 

influencing the presence of a species in an area (Rufino et al., 2005).  This work indicates 

that spatial patterns can be determined for dolphinfish and swordfish and patterns of 

abundance for this species may be tied to variation in the local environment. 

Several conclusions may be drawn from this study. First, there are several 

oceanographic features within the Gulf of Mexico that may, in conjunction with 

physiological adaptations of swordfish and dolphinfish, be contributing to the spatial 

patterns observed in the catch rate data.  Within the region, the oceanography is variable 

mainly due to the fluctuations in the Loop Current and eddies produced by this dominant 

current regime.  This variability in the physical environment will affect a pelagic species 

that is dependent on optimal temperature zones and frontal regions for both efficient 

biological function and for effective resource utilization (Olson, 2001; 2007) leading to 

spatial autocorrelation in the catch rates.  A similar “patchy” effect will also be observed 

in the case of schooling species (Conan, 1988; Pettigas, 1993; Freon and Misund, 1999).  

In most cases, it is likely that pelagic schooling fish or pelagic fish that are aggregated 

along a frontal feature may show little or no decline in catch rates as effort increases due 
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to the fact that the patchiness ensures high densities even when the total population 

abundance may be reduced (Hilborn and Walters, 1992).  In this instance it would be 

very important to remove the effect of patchiness by explicitly addressing the spatial 

variability in a system before attempting to determine a pattern of abundance.  This may 

also be true for a species that is less restricted in its habitat usage such as the swordfish.  

Swordfish is a deep-diving species that spends a good deal of time at depths of up to 800 

meters (Carey and Robison, 1981; Brill and Lutcavage, 2001).  The baroclinic Rossby 

radius of deformation, describes the horizontal scale at which rotational effects become 

as important as buoyancy effects (Rossby, 1938).  It is an important measure of 

oceanographic dynamics and describes the horizontal scales of mesoscale processes.  In 

general, as the depth increases, there is an increase in the Rossby radius.  This means that 

at the surface of the ocean, eddies and current structures are much smaller than at depth.  

For a species that is constrained by a particular temperature regime this translates into a 

more constricted habitat at the water surface than at depth.  One might therefore expect 

that a deeper diving species such as swordfish would have a longer range of 

autocorrelation and would be subject to greater spatial variability than a surface species 

such as dolphinfish.  Additionally, dolphinfish distribution is known to be influenced by 

floating objects in the water such as Sargassum or other debris (Dempster, 2003; Taquet 

et al., 2000).  Wind strength has also been shown to have an effect on fish distribution 

and abundance.  Winds create currents which influence prey distribution.  Both swordfish 

and dolphinfish tend to associate with areas of convergence and divergence because there 

is a higher frequency of both plankton and smaller fish species (Olson and Backus, 1985).  

This is true during moderate wind events, and may cause the catch rates to be inflated.  
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Conversely, strong winds tend to have a negative effect on swordfish catch because 

swordfish will remain at deeper depths below the range of the longline gear (Bigelow et 

al., 1999).  

The second conclusion is that the approach of using log-transformed abundances 

and modeling lognormal positive CPUE separately from proportion positive CPUE 

resulted in higher spatial dependency and more precise range estimates than modeling the 

spatial structure of the whole dataset.  This separation is convenient because you can 

separate and analyze each component of the data with different error structures and then 

recombine the pieces to obtain the final index.  By incorporating different model 

structures to the slightly different systems, the underlying process is modeled more 

accurately.  Although the models are representing portions of the same dataset, there may 

be differences in what is revealed about the system by looking at the pieces.  The positive 

catch data addresses patchiness in the catch data and may point to a level of patchiness of 

the species.  The proportion positive data may actually reveal a slightly different view of 

the data structure since the fact that fishing occurred, but no catch was made (the zeros) is 

indicative of areas that may not be suitable for the capture of the species. 

Third, the GLM derived index of abundance assumes that the un-fished areas are 

the same as the areas that are fished.  In other words, across a fishing area, the GLM 

index assumes a mean CPUE.  In contrast, the geostatistical index of abundance assigns a 

value based on the spatial autocorrelation in the data to an area where fishing is 

occurring.  This means that there will be estimates of CPUE in areas where fishing has 

not occurred within the range of autocorrelation.  Outside of the range, in an un-fished 

area, the kriging GLM assumes a mean CPUE value.  Intuitively, this means that the 
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geostatistical index will revert to the GLM index when the range of autocorrelation is 

small enough that it becomes insignificant.  This was the case with the indices for 

dolphinfish.  The indices were quite similar because the range of autocorrelation was 

small and therefore most samples were uncorrelated and estimates reverted to the sample 

mean.  The true power of the geostatistically derived index was seen in the case of 

swordfish, where the range of autocorrelation was significantly greater than the length of 

the longline gear.  This resulted in differences between the indices because fewer of the 

observations regressed to sample mean.  The end result was that the kriging forced a 

definition of the spatial extent of the CPUE that was reflected in the geostatistical index. 

A benefit of geostatistically derived indices of abundance is their applicability in 

spatially explicit stock assessment models, which are becoming increasingly popular 

(Hilborn, 2003).  Incorporating information on the distribution of a species aids in the 

biological understanding of a species and can reduce the uncertainty surrounding 

parameter estimates from stock assessment models.  Additionally, as the use of Marine 

Protected Areas (MPAs) expands, the need to examine the effectiveness of existing 

MPAs demands the use of spatially explicit observations of catch rates.  This is especially 

important in areas where closures have been established for pelagic species such as in the 

De Soto Canyon in the northeastern Gulf of Mexico.  A spatial map of the high and low 

abundance of a species may be a useful tool for delineating areas that could have 

potential as MPAs.  Furthermore, these maps may identify whether areas currently 

designated as MPAs are sufficient in both a spatial and a temporal sense.  For example, if 

a pelagic species is not found in an area other than the specified MPA during critical 

periods such as spawning, then the MPA may be failing to protect the species during a 
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period that it may be most vulnerable to fishing pressures.  Or, perhaps an MPA or 

restricted fishing zone should move according to season in order to protect a greater 

majority of the species in question.  Identifying critical “pelagic habitat” is a very 

important consideration when considering MPAs for a pelagic species that is not 

restricted to a particular benthic habitat.  The drawbacks of accommodating spatial 

correlation are that estimation of the model parameters is more complex and that 

estimation of the model-based predictions is computer intensive.  In addition, prediction 

estimates can be sensitive to the parameters of the fitted semi-variograms, and there are 

no stringent guidelines for obtaining a “best fit” of the variogram model to the data. 

Related to the idea of identifying areas that are consistent “hotspots” for species 

in an MPA context is the idea that geostatistics can be used to account for large 

differences in the spatial distribution of a fishery from one year to the next.  Walters 

(2003) addresses this issue by pointing out two potentially serious flaws in the analysis of 

spatial catch rate data.  The first he describes as the “folly” of incorrectly assuming that 

when you sum catch and effort over large spatial strata you achieve a balanced design.  In 

actuality, you place a greater emphasis on cells where fishing was most prevalent and 

therefore assume that the picture in the heavily fished areas is the same as in the unfished 

or lightly fished areas.  A geostatistical approach would, in a sense, decluster these 

heavily fished areas and weight them appropriately so that the pattern is statistically 

uniform.  An added layer of complexity is found in a fishery where heavy fishing was 

concentrated in a few strata and then over time the fishery expanded.  Walters argues that 

it is often the case that catch rates will decline in the original fishing area before fishers 

reallocate effort to new fishing grounds.  This will cause bias in the estimator when the 



 

 

158  

assumption is made that these catch rate declines are directly related to decreases in the 

overall stock.  The effect of both of these errors would be taken into account in a 

geostatistical analysis such as the one presented here because the data is spatially 

detrended at a seasonal level within the Gulf of Mexico.   

The methods presented here also address the second problem presented by 

Walters (2003) that he describes as the “fantasy” of stock assessment: when areas that are 

unfished are ignored in the analysis.  For this study, careful consideration was given to 

the area that was used for predictions.  Because geostatistical inference results in maps of 

abundance over the area of prediction, this allows predictions for a given time strata over 

areas where fishing (i.e., sampling) did not occur.  The constraints that were made in this 

study were to relegate predictions to an area that was fished consistently over time (i.e., 

the home range of fishing).  Walters argues that when faced with many missing entries 

there are three choices: (1) to only predict abundance for strata that are fished every year, 

(2) to plug in the mean catch rate when faced with an area for which there is no data, and 

(3) to fill the empty cells with an estimate of what catch rates would be if fishing had 

occurred.  The first point would yield an abundance index that was not appropriate for 

stock assessment of the stock as a whole.  The second makes an assumption that is 

similar to what a GLM assumes: that a mean abundance value is applied across the 

spatial domain.  The third point requires the assumption that the stock size in each strata 

was stable over time (i.e., that current biomass is equal to initial biomass before fishing 

occurred).  It is Walters’ assumption that the best option is to fill in the gaps using 

knowledge of the temporal or spatial autocorrelation structure if available.  The 

geostatistical analysis presented here ensures that a robust estimate is provided for areas 
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that are not fished in a certain season.  The constraining of the prediction grid to areas 

that are fished in at least one season means that unlike the GLM, a mean value is not used 

in an area where there is absolutely no information. 

Finally, there are several theoretical and practical tradeoffs to consider when 

deciding between geostatistical model-based approach and traditional GLM design-based 

estimation.  Although the traditional GLM standardized index, a design-based approach, 

is more familiar and more straight-forward, it has drawbacks related to determining the 

exact CPUE in an area.  If the question being asked is, “where are the animals located”, 

the design-based approach fails to address this.  Also statistically, the design-based 

approach requires the assumptions of random, uncorrelated samples, and it is necessary to 

keep this in mind when making predictions from this technique.  Despite these caveats, 

the increase in complexity of the geostatistical modeling may be unnecessary in the case 

where the range of autocorrelation is only slightly greater than the spatial resolution of 

the sampling framework.  In these cases, there will be little difference between the 

indices because the geostatistical index will revert to the sample mean for a majority of 

the data points that are a greater distance apart than the range of autocorrelation. 
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CHAPTER 5:  ACCOUNTING FOR SPATIAL VARIABILITY IN A STOCK 

ASSESSMENT MODEL. 

 

5.1 Background of Stock Assessment Models and Role of CPUE Indices 

While biomass dynamics models may be considered inferior to age-structured 

models because of their simplicity, they are often considered the most appropriate stock 

assessment approach when data are limited to landings and relative abundance time series 

(Hilborn and Walters, 1992).  Such data-limited situations are common in tropical 

fisheries (Caddy, 1992; Sadovy, 2005) and many minor pelagic fisheries.  Comparisons 

of biomass dynamics and age-structured models have demonstrated that when the main 

assumptions of the models are satisfied, both types of models can perform equally well, 

giving similar management recommendations (Punt, 1994). In some cases, biomass 

dynamic models may provide better estimates of management parameters and are thus 

more robust (Hilborn and Walters, 1992; Punt, 1995; and Abuanza et al., 2003).  

Additionally, when age-structured analysis is not feasible, the simpler biomass dynamic 

models are a time-saving and cost-effective alternative (Punt, 1994).  In certain cases, it 

is difficult or impossible to obtain a CPUE index or catch series that is age-structured, 

necessitating the use of an aggregated biomass dynamic pool model.  In this instance, an 

age-structured analysis would not be a feasible option. 

Dolphinfish is a species for which catch-at-age data do not exist.  Similarly, 

swordfish are notoriously difficult to age, and in the Atlantic, a surplus-production model 

has been used to assess the status of this species.  For this study, the dynamics of 

dolphinfish and swordfish were accounted for by fitting surplus-production  
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models using catch and landings records and several CPUE time series from the Gulf of 

Mexico and wider Caribbean within a Bayesian state-space modeling framework.  This 

framework allows observation error to be accounted for, as well as our prior knowledge 

of the demography of the dolphinfish (Millar and Meyer, 2000). 

Bayesian modeling of fisheries allows assessment scientists to more accurately 

portray the variability and uncertainty that is inherent in a dynamical system such as the 

marine environment (Punt and Hilborn, 1997).  The highlight of Bayesian methods is that 

they provide a formal means of making inferences on parameters of interest (usually life 

history parameters) that are based on any observed data and background information on 

the parameter (Gelman et al., 1995).  The uncertainty surrounding the parameter value 

given the prior knowledge is expressed in terms of a probability density function (PDF).  

This method, often referred to as the Bayesian inference approach, allows the 

incorporation of prior knowledge of a species’ demography into the model to supplement 

the information available for the stock.  Additionally, the Bayesian approach allows for 

the accounting and partitioning of the uncertainty in the model parameters and the 

variability due to temporal changes in the abundance data. 

Because CPUE indices must represent the relative abundance of the stock, it is 

important that indices are first standardized for any extraneous factors that may be 

contributing to the annual variation in the CPUE trend so that the final index is 

representative of the fluctuation in the abundance of the species.  Therefore, it is not 

typically the nominal CPUE index that is input to the stock assessment, but a 

standardized version.  Typically this standardization is done using a model such as a 

GLM whereby explanatory variables are added to the model via a selection criterion such 
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as a forward or stepwise selection procedure based on the amount of variance they 

explain.  The indices derived for dolphinfish and swordfish in Chapter 4 have been 

subject to similar standardizations for annual and seasonal variability, and specifically for 

swordfish, gear effects.  Additionally, the effect of spatial autocorrelation was explored 

with a geostatistical model.  The main differences between the nominal CPUE, the GLM 

standardized CPUE index, and the full geostatistical CPUE index are summarized in 

Table 5.1.  It was found that for swordfish, a species that displayed a longer range of 

autocorrelation, the spatial variability was significant enough to lead to major qualitative 

differences between the spatially explicit (geostatistical) and non-spatial (GLM) indices.  

Dolphinfish exhibited spatial autocorrelation on a shorter range, and this was likely the 

reason that there were smaller differences between the geostatistically-derived and GLM-

derived indices.  The question addressed in this chapter is whether the differences 

between the spatial and non-spatial indices would contribute to significant differences in 

the biological reference points and management criteria within a stock assessment 

framework. 
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Index Method Pros Cons 

Nominal • Ratio Estimator • Simplicity • Does not 

include space 

• No 

standardization 

• No attempt at 

removing 

sources of bias 

• Does not deal 

with issue of 

serial depletion 

GLM • Delta 

Lognormal 

• Design based 

 

• Standardization 

• Separation of 

LN positives 

and zeros 

(method for 

handling zeros) 

• Does not 

include space 

usually  

• Does not deal 

with issue of 

serial depletion 

Geostatistical (1): 

Kriging Variance 

• Area of 

prediction 

constrained to 

95% of the 

kriging variance 

• Model based 

 

• Delta 

Lognormal 

method of 

dealing with 

zeros 

• Reduces bias 

of clustered 

observations 

• Allows spatial 

prediction 

• More 

complicated to 

implement than 

other methods 

• Does not deal 

with issue of 

serial depletion 

Table 5.1.  A comparison between the nominal, GLM, and geostatistical indices 

and approaches used to derive each index. 

 

With this question in mind, the purpose of this analysis was to address the 

importance of the CPUE index as a driving force in the stock assessments.  Specifically, 

the CPUE indices that accounted for spatial patterns and those CPUE indices that ignored 

spatial autocorrelation are input separately to a Bayesian Surplus Production (BSP) 

model in order to qualitatively compare the productivity parameters from the models.  It 

was hypothesized that there would be some variation in the results from the swordfish 

model due to the differences between the indices that stem from spatial variability.  

Conversely, because dolphinfish was autocorrelated on a short range (see Chapters 3 and 
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4), there was little difference between the geostatistical and the GLM indices.  Therefore 

there should be no difference between asessment models that incorporate these indices 

separately.  Given the lack of information on stock status for western Atlantic 

dolphinfish, a second objective of this chapter was to use a Bayesian surplus production 

model to re-evaluate whether standardized CPUE and catch data provide information on 

productivity parameters and current stock status for dolphinfish. 

This analysis incorporates recent developments in Bayesian stock assessment and 

its applications to data-limited situations.  These adaptations provide a theoretical 

framework for incorporating externally available information on stock assessment in 

order to reduce the uncertainty that is inherent with uninformative data series or data that 

alone does not have enough information to resolve the trends in biomass and fishing 

mortality in the stock assessment model (Punt and Hilborn, 1997, Hilborn and Liermann, 

1998, McAllister and Kirkwood, 1998 and McAllister et al., 2001). 



 165  

 

5.2 Modeling Methodology 

Data Series 

 The main data collated in previous chapters for the models of dolphinfish and 

swordfish consist of the reported annual landings in the western Atlantic (1950-2005), 

and two relative abundance indices from the U.S. longline operations in the Gulf of 

Mexico (1987-2005): a GLM standardized index and a geostatistical index.  Additional 

sources of data used, are the relative abundance index for swordfish for the Japanese 

longline fleet and the r pior used in ICCAT’s assessments of North Atlantic swordfish. 

Finally, we conducted a meta-analysis of biological parameters for pelagic species that 

helped us obtained a prior for r for dolphinfish. 

Each Gulf of Mexico relative abundance index was added to the model by itself in 

a separate model run to evaluate what information the series contains regarding life 

history parameters and biomass trends.  Differences between the current biomass and 

fishing mortality estimates from the initial values were used to determine if the status of 

the stock was overfished (a measure of relative abundance) or experiencing overfishing (a 

measure of fishing pressure).  If there were differences in the predictions of the models 

when different indices were used, it would serve as a cautionary example of the need to 

address spatial autocorrelation appropriately. 

For both the nominal and the GLM standardized index, the abundance index 

represents the number of fish of the species caught (alive, dead, and discarded) per hook 

per trip.  Because the length of the U.S. time series was relatively short (1986-2005), 

additional models were run that incorporated the Japanese standardized CPUE index 

(JLL) (1967-2005) from the western Atlantic (Yokawa et al., 2003).  The effect of 
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overlap between the U.S. and Japanese index was explored by using the full Japanese 

series with the U.S. indices, and by using a truncated Japanese index (1967-1998) (Figure 

5.1). 

 
Figure 5.1.  Trends in abundance indices and catch rate series for swordfish. 

 

This allowed the current years in the model to be driven by the U.S. indices to 

highlight any differences between the trends in the geostatistical and GLM indices.  

Finally, a model was run for swordfish that only used the Japanese index for comparison 

purposes.  Table 5.2 lists the components involved in each of the BSP model runs.  For 

all models, when more than one index was incorporated into the model, an equal 

weighting was applied to all points in both indices. 
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Species Model Indices Model ID 

Dolphinfish U.S. GLM D1 

Dolphinfish U.S. GEO D2 

Swordfish U.S. GLM SS1 and SF1 

Swordfish U.S. GEO SS2 and SF1 

Swordfish Full Japanese Index Only (1961-2005) SS3 and SF3 

Swordfish U.S. GLM (1987-2005) and Truncated 

Japanese Index (1961-1998) 

SS4 and SF4 

Swordfish U.S. GEO (1987-2005) and Truncated 

Japanese Index (1961-1998) 

SS5 and SF5 

Swordfish U.S. GLM (1987-2005) and Full Japanese 

Index (1961-2005) 

SS6 and SF6 

Swordfish U.S. GEO (1987-2005) and Full Japanese 

Index (1961-2005) 

SS7 and SF7 

Table 5.2.  A summary of the BSP models and the abundance indices incorporated 

in each.  The first letter of the ID refers to the species and the second letter refers 

to whether the model run was the Schaefer or Fletcher model. 

 

BSP Model Formulation 

The models were developed using the BSP model program, which can fit either a 

Schaefer model or a generalized Fletcher/Schaefer model (hereafter referred to as the 

Fletcher model) to CPUE data using the Sampling/Importance Resampling algorithm 

(McAllister and Kirkwood, 1998; McAllister and Ianelli, 1997; Gelman et al., 1995; 

McAllister et al., 1994).  The Schaefer approach was used for the dolphinfish models and 

both the Fletcher and Schaefer models were used for swordfish following the 2006 

assessment by ICCAT in order to explore whether there were significant differences 

between the outputs from either model type.  With this approach, we used a logistic 

difference equation to model changes in the population biomass B in year t according to 

Equation 1: 

       (1) 
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where r is the intrinsic rate of population growth, K is the carrying capacity, and C is the 

total harvest in year t (Hilborn and Walters, 1992; Quinn and Deriso, 1999).  The model 

allows several parameters to be fit, and priors can be estimated for all of these parameters 

for a Bayesian fit of the model.  The Fletcher modification of the model represented in 

equation 1 allows Bmsy/K to vary by including a shape parameter, n, as well as the 

parameters K (carrying capacity) and m (maximum sustainable yield) and is given by 

(Fletcher 1978):  

       (2) 

The parameters that the model estimates are K, r, the Fletcher model shape parameter (n) 

if applicable, the biomass in the first modeled year over K (alpha.b0), the average annual 

catch prior to years when catch was recorded (cat0), parameters for the variance of each 

CPUE series depending on how the CPUE series are weighted, and catchability for each 

CPUE series (q) (McAllister and Babcock, 2008). 

 In order to analyze a system in a Bayesian framework for decision-making 

purposes, it is necessary to make probabilistic statements about model parameters that are 

conditional on information available for the species (Gelman et al., 1995).  This entails 

evaluating P("|data) in terms of the prior distributions for all of the estimated model 

parameters and the unobserved system states P("i) and sampling distributions or 

likelihoods for the observed data P(data|"i) (Meyer and Millar, 1999).  Using Bayes 

theorem, the posterior distribution P("i|data) is: 

       (3) 
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where P("i) is the prior probability distribution for state of nature i and L(data|"i) is the 

likelihood function for the data evaluated at "i (McAllister and Ianelli, 1997). 

Sampling Importance Resampling Algorithm 

 This posterior distribution is approximated by the sampling importance 

resampling (SIR) algorithm, which is a numerical integration method (McAllister and 

Babcock, 2008).  The basis of this algorithm is that a posterior distribution for a 

parameter, g("), can be redefined in terms of the expected value of the probability density 

function, E
h(")

,which is the importance function (McAllister et al., 1994; McAllister et al., 

2002).  Sampling of a larger number of draws (m) from the importance function 

(>20,000) approximates the expected value so that the marginal posterior of g(") is 

defined as: 

       (4) 

where: 

        (5) 

represents the weight of draw k or the importance ratio.  When there are enough samples 

taken, equation 3 should converge on the posterior distribution of g(") for any importance 

function that allows a non-zero probability of sampling each point in the posterior 

distribution (McAllister and Babcock, 2008).  The models for dolphinfish used an 

importance function that was a multivariate t-distribution with 0.01 degrees of freedom, 

the means at the mode of the posterior, and variances that were calculated from the 

Hessian matrix at the mode with an expansion factor of 100.  The caveat to using a 
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multivariate t-distribution is that one must make sure that the importance function is wide 

enough that it does not underestimate the variance of the parameters (McAllister et al., 

2002; McAllister and Babcock, 2008).  This is a diagnostic that must be met by checking 

that the CV of the weights is less than the CV of the likelihood times the priors.  If this 

condition is not met, then that importance function must be expanded by decreasing the 

degrees of freedom, setting the covariance of the t-distribution to 0, using an expansion 

factor, or a combination of all three.  The swordfish models used draws from the priors as 

the importance function.  The caveat to this function is that one must make sure that the 

limits for the parameters are not too far outside the possible values of any of the 

parameters that have been assigned a uniform distribution.  If this criterion is not met, 

then sampling will be very inefficient and many of the draws will be discarded as they 

will be outside the boundary conditions. 
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Starting Parameter Value Estimation 

Dolphinfish Models 

 Preliminary attempts at modeling biomass dynamics of dolphinfish in the western 

Atlantic using an ASPIC surplus production model were unsatisfactory for developing 

management metrics (Prager, 2000).  Parameters of the Schaefer model were ill defined, 

resulting in large uncertainty around parameter estimates and reference points for 

management. This was due to lack of contrast in the CPUE time series.  Despite these 

issues, the r and K parameters from Prager’s model were useful as starting r and K 

parameter guesses for the dolphinfish models for this analysis because they are 

reasonable parameter estimates for a fast growing, short lived species (Table 5.3). 

Parameter Formula Value 

YMSY rK/4 12,241 mt 

FMSY r/2 0.49 

r 2*FMSY 0.98 / year 

K MSY*4/r 49,963 mt 

Table 5.3. Estimates of MSY, FMSY, r, and K from an ASPIC Schaefer surplus 

production model (Prager, 2000). 

 

Using parameters from an ASPIC model is identical to running the BSP model 

with completely uninformative priors when F is iteratively estimated.  ASPIC, which was 

used as the preliminary model, is based on the original, continuous time version of the 

Schaefer model and relates biomass, B, in the following year as a function of current 

biomass through the following non-linear relationship: 

      (6) 

where F is the fishing mortality coefficient.  The Schaefer model assumes that the 

instantaneous rate of variation of the unexploited biomass is linear to the actual biomass.  
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Parameters for this model are estimated using non-linear least-squares with log-normally 

distributed observation errors in the effort.  Sensitivity of the model to starting values in 

the estimation procedure is often a problem with ASPIC.  Therefore, Prager (2000) made 

an assessment of this sensitivity by fitting the model with different initial guess values for 

B0, K, r, and q.  The reference points, FMSY (the fishing mortality at MSY) and YMSY (the 

catch at MSY) of the Schaefer model are calculated as: 

          (7) 

          (8) 

 Prager (2000) assessed the precision of the key parameter estimates of the MSY 

reference points by calculating confidence intervals using bootstrapping (Efron and 

Tibshirani, 1993).  Bootstrapping is carried out in ASPIC by randomly sampling the 

CPUE data to create new datasets.  Residuals from the original fitted model are added to 

the predicted CPUE dataset.  The model is refit using the new CPUE data and new 

estimates of K, r, and q are obtained and new biological reference points are calculated.  

This procedure is repeated 1000 times.  Often, the empirical distributions adopted from 

bootstrap analyses are skewed (Efron and Tibshirani, 1993).  Therefore, the 50% 

confidence intervals are used as bias-corrected percentiles.  Despite the bootstrapping, the 

values of r and K were not reported in the stock assessment because the estimates of r 

and K from ASPIC are typically quite imprecise—more so than the estimates of MSY or 

stock status.  For this reason, and because uncertainty about stock structure was a strong 

theme in the assessment, it is not recommended to put much weight on the values of r and 
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K from the ASPIC model, but to use them as guidelines or starting parameters for the 

BSP model (Prager, pers. comm.). 

Swordfish Models 

There have been more attempts at assessing Atlantic Swordfish stocks than 

dolphinfish stocks, because swordfish is one of the species regularly assessed by ICCAT.  

The last assessment of the northern Atlantic swordfish stock by ICCAT was conducted in 

2006 using an updated version of the dynamic (non-equilibrium) ASPIC model (v5.05) 

and for sensitivity analyses, a BSP model.  The BSP model used was a discrete time-step 

model with harvest estimated at the beginning of the year.  The prior distribution for the r 

parameter from SCRS/1999/085 was applied as the baseline prior for the Northern stock 

for the ICCAT model with a median value of 0.42 and a CV of 0.49.  This distribution 

was used as the prior distribution for r for this analysis.  Additionally, the parameters 

from the ICCAT assessment were used as starting parameter values for this analysis 

(Table 5.4). 

Parameter Mean CV 

K 1.33E+05 0.19 

R 0.43 0.24 

MSY 1.37E+04 0.04 

B2005 6.52E+04 0.18 

B2005/K 0.5 0.15 

B1950 1.16E+05 0.25 

B2005/B1950 0.58 0.23 

C2005/MSY 0.89 0.04 

F2005/Fmsy 0.92 0.19 

B2005/Bmsy 1 0.15 

C2005/rep-y 0.9 0.05 

Bmsy 6.64E+04 0.19 

rep.yield 1.35E+04 0.05 

Table 5.4. Means and CVs of the marginal posterior distributions of management 

parameters from the BSP model for the Northern stock of Atlantic swordfish. 

Values for K, MSY, B. and yield are in metric tons. 
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It is very important to ensure that the BSP model converges on the mode of the posterior.  

This is accomplished by running the “estimate modes” component of the model with 

different starting parameter values.  If the model has converged on the mode, then the 

estimated most likely values will not depend on variations in the starting parameters.  

This is unlike the ASPIC model and if there are different estimates obtained from BSP, 

then the model has not converged on the mode.  Running the “estimate modes” 

component with different starting values ensures that the model has converged on the 

global mode, which can sometimes be difficult if the input to the model is uninformative 

(i.e., a lack of contrast between the landings data and the abundance indices) (McAllister 

and Babcock, 2008).  Additionally, it is important to check the Hessian covariance matrix 

for negative values on the diagonal, which is an indication that the model has not 

converged to the mode of the posteriors, and that none of the parameters are highly 

correlated (> 99%) as this will lead to inefficient importance sampling.  The final models 

for swordfish were run using a starting value of r of 0.4 and a value of 150,000 for K.  

For the Fletcher model runs for swordfish, the starting value of n was 0.5.  The 

catchability coefficient q was not estimated as a free parameter for either species, rather it 

was calculated numerically (McAllister and Babcock, 2008). 

Bayesian Prior Development 

 Ideally, demographic information may be available for a species allowing 

calculation of a prior distribution for the parameter r.  Additional methods for developing 

a prior for r consist of correlating r with other biological parameters, or assessing the 

likelihood of a certain species having an r parameter that is similar to other species that 

have similar life histories (Punt and Hilborn, 1997; Myers et al., 2002).  This latter 
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methodology was adopted by Babcock and McAllister (2003) and forms the basis for the 

prior development of r for the dolphinfish model in this study as it is useful for species 

for which little or no demographic information exists.  This methodology was used only 

for the dolphinfish models as no other information on r was available.  The swordfish 

models closely followed the ICCAT stock assessment models for prior inputs for the 

various parameters of the model. 

 The key to the use of demographic information for developing a prior for a 

species with little information is the ability to estimate r from the slope of the stock 

recruitment relationship (Myers et al., 1997; Myers et al., 1999): 

       (9) 

where rm is the maximum population growth rate at low population size (which can be 

substituted for the r from the surplus production model), ps is the annual survival of 

spawners, a is the age of first maturity, and  is the maximum annual reproductive rate.  

Myers et al. (1999) provides a table of  for a number of teleost species.  Because of the 

lack of information for dolphinfish, this list was assumed to encompass the full range of 

values that this parameter could take.  To narrow the distribution of the parameter to 

values that more closely represented dolphinfish, the list was subset by removing any 

anadromous or benthic species (Table 5.5). 

Species Scientific Name n 

log 

alpha~ SE Sigma
2 

Alpha z20 zmed z80 

Clupeiformes                   

Atlantic menhaden 

Bevoortia 

tyrannus 1 2.20 0.12  24.8  0.86  

Blueback herring Alosa aestivalis 3 2.60 0.55 0.81 31.9 0.71 0.84 0.92 

Gulf menhaden 

Brevoortia 

patronus 1 1.25 0.16  5.3  0.57  

Atlantic herring Clupea harengus 18 0.73 0.28 1.31 22.1 0.52 0.74 0.88 

Pacific sardine Sardinops sagax 2 0.66 0.89 1.56 12.7 0.34 0.59 0.81 

Spanish sardine 

Sardina 

pilchardus 1 –0.56 0.75  2.1  0.34  
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Table 5.5 cont. 

Species Scientific Name n 

log 

alpha~ SE Sigma
2 

Alpha z20 zmed z80 

Sprat Sprattus sprattus 3 0.87 0.55 0.71 10.7 0.48 0.65 0.79 

Anchovy 

Engraulis 

encrasicolus 2 0.70 0.13 0 3.6  0.47  

Gold-spotted 

grenadier anchovy 

Coilia 

dussumieri 1 2.73 0.19  17.6  0.81  

Northern anchovy 

Engraulis 

mordax 1 0.33 0.41  3.1  0.43  

Gadiformes                   

Blue whiting 

Micromesistius 

poutassou 2 0.59 0.33 0 10  0.71  

Atlantic cod Gadus morhua 21 1.37 0.15 0.37 26 0.76 0.84 0.9 

Haddock 

Melanogrammus 

aeglefinus 9 0.72 0.21 0.28 13 0.64 0.74 0.82 

Hake 

Merluccius 

hubbsi 1 1.18 0.45  18  0.82  

Pacific hake 

Merluccius 

productus 1 –0.95 0.83  1.9  0.32  

Pollock or saithe Pollachius virens 5 1.16 0.14 0.05 18 0.78 0.81 0.84 

Silver hake 

Merluccius 

bilinearis 3 –0.18 0.29 0.16 2.7 0.31 0.39 0.47 

Walleye Pollock 

Theragra 

chalcogramma 2 0.28 0.24 0.01 5 0.53 0.55 

0.58 

 

Whiting 

Merlangius 

merlangus 5 1.14 0.51 1.16 30.8 0.64 0.81 0.91 

Lophiiformes                   

Black anglerfish 

Lopius 

budegassa 1 –0.07 0.32  6.7  0.64  

Perciformes                   

Horse mackerel 

Trachurus 

trachurus 2 0.52 0.8 0 12.1  0.75  

Mediterranean 

horse mackerel 

Trachurus 

mediterraneus 1 0.25 0.22  3.5  0.47  

White croaker 

Argyrosomus 

argentatus 1 1.88 0.28  26.1  0.87  

Atlantic bluefin 

tuna Thunnus thynnus 1 –0.4 0.23  5.2  0.56  

Bigeye tuna Thunnus obesus 2 0.73 0.08 0 5.3  0.57  

Chub mackerel 

Scomber  

japonicus 1 –0.05 0.33  2.4  0.38  

Atlantic mackerel 

Scomber 

scombrus 2 1.11 0.91 1.29 31.8 0.62 0.81 0.92 

Southern bluefin 

tuna 

Thunnus 

maccoyii 1 –1.5 0.09  2.9  0.42  

Yellowfin tuna 

Thunnus 

albacares 1 1.43 0.21  9.3  0.7  

New Zealand 

snapper Pagrus auratus 2 1.34 1.31 0 65.6  0.94  

Scup 

Stenotomus 

chyrsops 1 2.60 0.38  74.6  0.95  

Swordfish Xiphias gladius 1 1.70 0.05  30.1  0.88  

Pleuronectiformes                   
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Table 5.5 cont. 

Species Scientific Name n 

log 

alpha~ SE Sigma
2 

Alpha z20 zmed z80 

Northern pike Esox lucius 2 0.51 0.19 0.03 6.1 0.57 0.6 0.64 

Ayu 

Plecoglossus 

altivelis  1.00 4.73 0.16 123.5  0.97  

Scorpaeniformes                   

Sablefish 

Anoplopoma 

fimbria 1 –2.35 0.47  1.4  0.26  

Atka mackerel 

Pleurogrammus 

monopterygius 1 1.13 0.49  12  0.75  

Chilipepper Sebastes goodie 1 –0.85 0.57  2.1  0.35  

Pacific ocean perch Sebastes alutus 3 –1.93 0.18 0 3  0.43  

Deepwater redfish 

Sebastes 

mentella 1 –1.08 0.18  3.6  0.47  

Swordfish Xiphias gladius 1 1.70 0.05  30.1  0.88  

Pleuronectiformes                   

Northern pike Esox lucius 2 0.51 0.19 0.03 6.1 0.57 0.6 0.64 

Ayu 

Plecoglossus 

altivelis  1.00 4.73 0.16 123.5  0.97  

Table 5.5.  Listed are the empirical Best Linear Unbiased Estimators (BLUE) of 

the mean value of the log-transformed maximum annual reproductive rate (log-

alpha), the standard error (SE) of this estimate, the estimated variance among 

populations (sigma-sq) (where possible), the estimated expected maximum lifetime 

reproductive rate for a species, where the expectation is taken over the 

distribution of the random effects (alpha), the 20
th

 percentile of z (z20)—the 

steepness parameter, the median of z (zmed), and the 80
th

 percentile of z (z80).  

Adapted from Myers et al., 1999. 

 

Histograms of the distribution of the remaining values were used to fit a function to 

ln( ) and 1000 random draws were made from a normal distribution with the mean and 

variance of the ln( ) values from the list.  Values of the age at first maturity were drawn 

from a uniform distribution ranging from ages 0.5 to 2.  Spawner survival (ps) was 

calculated as exp(-M), where M represents natural mortality.  Because dolphinfish is a 

short-lived species, generally believed to live fewer than 5 years, for this study it was 

assumed that the natural mortality rate (M) would remain constant.  Natural mortality is 

typically a difficult parameter to estimate.  Hoenig (1983) developed a linear regression 

technique to predict the total mortality rate of fish, cetacean, and mollusk stocks from 
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their maximum age.  This tool is based on the assumption that the lifespan of a species 

should be inversely related to the mortality rate.  The predictive equation for teleost 

species is: 

 .       (10) 

This resulted in values of ps of 0.24, 0.35, and 0.43 for fish with maximum ages of 3, 4 

and 5 years respectively.  Values of M were drawn from a lognormal distribution with a 

median M of 0.35 and standard deviation of 0.4 to allow for variability due to the 

uncertainty of the maximum age.  One thousand draws of each parameter were made, and 

the corresponding value of r was calculated from the equation.  It was necessary to 

truncate implausibly large or small values of r (<0.2 and >1.5).  These truncated values 

came from the fact that the input parameters to the equation were selected from a 

distribution and a small number of draws would have come from the tails of the 

distribution.  The mean (0.83) and standard deviation (0.53) of the remaining r values 

was used to formulate a lognormal prior for r for the Bayesian model (Figure 5.2).   
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Figure 5.2.  Prior distribution of r parameter for dolphinfish models. 

 

 The prior displayed in Figure 5.2 does not represent a good fit to the data and 

looks to be more informative than the actual data.  To test the sensitivity of the model 

output to the prior used for r, a less informative prior was used for separate model runs 

(Figure 5.3).  This prior was also a lognormal fit with a mean of 0.93 and a standard 

deviation of 1.  The less informative prior was used as the prior for r for dolphinfish and 

results of the BSP models are presented for this species as a better alternative to the 

original prior. 
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Figure 5.3.  Less informative prior distribution of r parameter for dolphinfish 

models. 

 

The prior for r for swordfish followed that used in the ICCAT assessment model: a 

median value of 0.42 and a CV of 0.49 (Figure 5.4). 
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Figure 5.4.  Prior distribution of r parameter for swordfish models. 

 

 For the dolphinfish parameter alpha.b0, the biomass in the first modeled year 

expressed as a ratio of the virgin stock biomass (K), a somewhat informative prior with a 

mean of one and a standard deviation of 0.25 was used.  This allowed some flexibility in 

determining the starting biomass while at the same time holding the parameter within 

reasonable bounds.  This is different than the ASPIC model, which requires that alpha.b0 

is either fixed at 1, or estimated by the model.  Similarly for the corresponding parameter 

for swordfish, the prior distribution had a mean of 0.875 and a standard deviation of 0.25 

following the distribution used in the ICCAT stock assessment.  An informative prior for 

K cannot be developed because there is no information that is independent of the data 

used to fit the model.  Therefore for both species, an uninformative prior for K was used, 

which was uniform on the natural log of K.  For the generalized Fletcher model for 

swordfish, it was necessary to set a multivariate t prior for the parameter n, and for the 

covariance of r and n for the multivariate t prior.  The values used were the same as the 
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values of n used in the ICCAT Fletcher model scenario runs: a mean of 1.382 and a 

variance of 0.141, -0.000289 for the covariance of r and n, and 6.62 degrees of freedom 

for the multivariate t distribution.  A starting value of 0.5 was used for all runs. 

5.3 Bayesian Surplus Production Model Results 

 For all model runs, tables of the expected parameters are presented with the 

percentage difference between the values from the models using the U.S. GLM index and 

the U.S. geostatistical index.  The parameters K, r, Bcur/Binit, Bcur/Bmsy, and 

Fcur/Fmsy are highlighted in all of the tables.  K and r describe features of the biology of 

the species.  Bcur/Bmsy and Fcur/Fmsy are typically used by stock assessment scientists 

to tell whether a stock is close to a desirable level of productivity (like Bmsy) or is being 

overfished.  These are important benchmark parameters that are commonly used by stock 

assessment scientists and managers to summarize the current status of the fishery.  

Bcur/Binit is useful for interpreting the amount of depletion of the stock that has occurred 

since the start of the fishery.  The ratios of this parameter are used to compare the fits 

from the models that only use the U.S. data to those that use only the Japanese data to 

discuss the importance of having a long time series of both CPUE and catch with large 

contrast in biomass.  Graphs of the posterior distributions of the parameters and the 

historical trends in biomass and fishing mortality ratios help to clarify the differences in 

the models.  The credibility intervals of the latter evaluate the fit of the models and 

provide a visual interpretation of the status of the fishery over time.  It is important to 

note that the expected values provided in the tables do not correspond with the mode of 

the posterior.  The values presented in the time series graphs are the medians of the 

distributions with the 80% credibility intervals.  The disparity between the expected 



 183  

 

value, median, and mode values can sometimes be attributed to the width of the right tails 

of the marginal posterior distributions. 

Dolphinfish BSP Models 

As expected, the dolphinfish models had very similar results due to the fact that 

there was little difference between the geostatistical and GLM indices (Table 5.6).   

Schaefer Model 

Parameter E(D1) CV(D1) E(D2) CV(D2) % Difference 

E(K) 161513 0.72 156475 0.72 3.12 

E(r) 0.74 0.80 0.69 0.84 6.57 

E(MSY) 26170 1.27 24110 1.34 7.87 

E(Bcur) 123451 0.96 113859 1.02 7.77 

E(Bcur/K) 0.67 0.38 0.63 0.45 6.65 

E(Binit) 161513 0.72 156475 0.72 3.12 

E(Bcur/Binit) 0.67 0.38 0.63 0.45 6.65 

E(Ccur/MSY) 0.90 0.75 1.01 0.75 12.05 

E(Fcur/Fmsy) 1.47 2.61 2.26 2.78 53.87 

E(Bcur/Bmsy) 1.35 0.38 1.26 0.45 6.65 

E(Ccur/repy) 1.08 54.98 1.21 52.89 12.14 

E(Bmsy) 80756 0.72 78237 0.72 3.12 

E(repy) 10602 1.50 10029 1.57 5.40 

Table 5.6.  Expected values (E) and coefficients of variation (CVs) of the posterior 

distribution of the parameters from model D1 and D2 (refer to Table 5.2 for 

model specifications).  Parameters are defined as follows: K is the carrying 

capacity, r is the intrinsic rate of growth, n is the shape parameter for the Fletcher 

model, MSY is maximum sustainable yield, Bcur is the current biomass, Binit is 

the initial biomass at the start of the fishery, Ccur is the current catch, Bmsy is the 

biomass at MSY, Fcur is the current fishing mortality, Fmsy is the fishing 

mortality at MSY, and repy is replacement yield. 

 

For the dolphinfish data, only the Schaefer model was used as there was no information 

available to parameterize the shape parameter n from the Fletcher model and it was likely 

that the inclusion of the additional parameter would lead to over-parameterization of the 

model.  There were no longer time series of abundance for dolphinfish available to 

incorporate into the model to aid in the estimation of the productivity in the early years as 

was the case for swordfish.  The expectation however, was that since the U.S. 
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geostatistical and GLM indices had nearly identical trends, there would not be great 

differences between the models.  The expected value of the posterior of K was around 

140,000 mt for both models.  The expected value of r was 0.82 for the GLM model and 

0.80 for the geostatistical model.  For both models, the value of the ratio of the current 

biomass to the initial biomass was around 0.70 suggesting that the fishery has declined 

roughly 30% from initial, “virgin” conditions.  The models do deviate slightly in the 

estimates of the expected value of the ratio of the current fishing mortality to the fishing 

mortality at MSY.  The GLM model predicts the ratio to be 0.87 whereas the 

geostatistical model predicts the ratio to be 1.10.  In the former case, the interpretation is 

that the fishery is experiencing a level of fishing pressure that does not exceed the MSY 

level, and in the latter case the fishery is exceeding the MSY fishing pressure.  However, 

the CVs of these parameters are relatively large suggesting that for both model fits, it is 

uncertain whether the current fishing mortality rate is above or below FMSY.  Therefore, 

caution should be exercised when interpreting these results.  The similarity between the 

models is readily seen in the distributions of the posteriors of K, current biomass 

(Bcurrent), the ratio of current biomass over K, and the ratio of current biomass over 

initial biomass (Figure 5.5).  In each of these plots the shape of the distributions are 

nearly identical. 
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Figure 5.5.  Posterior distributions of several benchmark parameters for the GLM 

(in blue) and geostatistical (in red)  

 

Additionally, graphs of the biomass and fishing mortality trends with the credibility 

intervals show very similar patters with a relatively constant and high biomass (over 

MSY) and low fishing mortality (below the MSY level) (Figure 5.6). 
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a. Sensitivity D1: U.S. GLM Index 

 
b. Sensitivity D1: U.S. GLM Index 

 
c. Sensitivity D2: U.S. Geostatistical 

Index 

 
d. Sensitivity D2: U.S. Geostatistical 

Index 

Figure 5.6.  Medians (blue) and 80% credibility intervals (dashed red) for relative 

biomass (left panels) and relative fishing mortality (right panels) for the 

dolphinfish Schaefer BSP models using a less informative prior. 

 

 The development of the r prior for dolphinfish from information about other 

species with similar life histories was very useful especially as there is little demographic 

information available for dolphinfish.  The mean r value of 0.83 was very plausible for a 

fast growing species with a short lifespan.  Figure 5.7 shows the distribution of the prior 

and posterior distributions of the r parameter.  The shape of these distributions is very 

similar implying that the combination of CPUE and catch data available for dolphinfish is 

not very informative in the estimation of r. 
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Figure 5.7.  Graph of the prior and posterior distribution of the r parameter. 

 

Swordfish BSP Models 

U.S. Geostatistical and GLM Indices Only 

 The models that incorporated only the U.S. index and the catch series for 

swordfish showed very little difference between any of the expected life history or 

productivity parameters regardless of whether the geostatistical or GLM index was used 

or whether the model was the Schaefer or the generalized Fletcher version (Table 5.7).  
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Schaefer Model 

Parameter E(SS1) CV(SS1) E(SS2) CV(SS1) % Difference 

E(K) 487120 0.38 483920 0.39 0.66 

E(r) 0.44 0.48 0.45 0.47 1.53 

E(MSY) 52061 0.61 52032 0.61 0.06 

E(Bcur) 439859 0.44 439656 0.44 0.05 

E(Bcur/K) 0.88 0.15 0.89 0.13 0.81 

E(Binit) 428211 0.40 425935 0.41 0.53 

E(Bcur/Binit) 1.03 0.23 1.04 0.23 0.77 

E(Ccur/MSY) 0.35 0.88 0.33 0.82 3.35 

E(Fcur/Fmsy) 0.28 3.78 0.24 2.40 14.94 

E(Bcur/Bmsy) 1.77 0.15 1.78 0.13 0.81 

E(Ccur/repy) 1.00 0.35 0.98 0.31 1.13 

E(Bmsy) 243560 0.38 241960 0.39 0.66 

E(repy) 11734 0.19 11774 0.18 0.35 

Fletcher Model 

Parameter E(SF1) CV(SF1) E(SF2) CV(SF2) % Difference 

E(K) 495284 0.38 494807 0.39 0.10 

E(r) 0.44 0.49 0.46 0.49 3.69 

E(n) 1.59 0.55 1.65 0.54 3.58 

E(MSY) 47620 0.70 49827 0.69 4.63 

E(Bcur) 422787 0.46 428979 0.46 1.46 

E(Bcur/K) 0.84 0.20 0.85 0.18 1.81 

E(Binit) 431910 0.41 427750 0.41 0.96 

E(Bcur/Binit) 0.99 0.37 1.01 0.31 2.15 

E(Ccur/MSY) 0.39 0.93 0.37 0.89 6.54 

E(Bmsy/K) 0.43 0.23 0.44 0.23 1.50 

E(Fcur/Fmsy) 0.29 3.66 0.24 2.79 17.33 

E(Bcur/Bmsy) 1.72 0.29 2.03 0.27 0.49 

E(Ccur/repy) 1.00 1.84 0.94 5.87 6.04 

E(Bmsy) 209795 0.43 212611 0.44 1.34 

E(repy) 11429 0.97 11652 1.03 1.95 

Table 5.7.  Expected values (E) and coefficients of variation (CVs) of the posterior 

distribution of the parameters from the BSP model run with either the U.S.  GLM 

or geostatistical (GEO) index (1987-2005) (refer to Table 5.2 for model 

specifications).  Parameters are as defined in Table 5.6. 

 

The estimated K for both Schaefer models was approximately 485,000 mt and r was 

estimated to be 0.44 and 0.45 for the GLM and geostatistical models respectively.  The 

estimated K for both Fletcher models was around 495,000 mt and r was 0.46 for the 

geostatistical model and 0.44 for the GLM model.  The greatest percentage difference 
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(~20%) in the estimated expected values is for the ratio of the current fishing mortality to 

the fishing mortality at MSY (Fcur/Fmsy).  This difference is seen in the trajectories of 

F/Fmsy  where the GLM indices for both models show a relatively steeper increase in 

Fmsy over time and predict a significantly different current level of fishing mortality (in 

2005).  Ultimately, regardless of the index used, both estimates describe the stock as 

experiencing a low level of fishing pressure.  There are differences between the 

trajectories of B/Bmsy for each model type.  In both instances, the GLM index presents a 

slightly more pessimistic picture with biomass nearer to the MSY level.  The graphs of 

the biomass over biomass at MSY (B/BMSY) and the fishing mortality ratio to fishing 

mortality at MSY (F/FMSY) suggest that regardless of whether the Schaefer or generalized 

Fletcher model is used, the trends in both parameters remain fairly constant with biomass 

above the MSY level and fishing mortality below the MSY level (Figure 5.8 and Figure 

5.9).  This is consistent with the fact that the expected values of this parameter are nearly 

identical (Table 5.7).  For all models, the ratio of current biomass to biomass at the start 

of the fishery (Bcur/Binit) was virtually one suggesting that the fishery is at virgin 

conditions. 
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a. Model SS1 

 
b. Model SS1 

 
c. Model SS2 

 
d. Model SS2 

Figure 5.8.  Medians (blue) and 80% credibility intervals (dashed red) for relative 

biomass (left panels) and relative fishing mortality (right panels) for the swordfish 

Schaefer BSP models.  The index used was the U.S. GLM (top) or Geostatistical 

(bottom) standardized indices (1987-2005).  The red point represents the current 

year (2005) biomass and fishing mortality. 
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a. Model SF1 

 
b. Model SF1 

 
c. Model SF2 

 
d. Model SF2 

Figure 5.9.  Medians (blue) and 80% credibility intervals (dashed red) for relative 

biomass (left panels) and relative fishing mortality (right panels) for the swordfish 

Fletcher BSP models.  The index used was the U.S. GLM (top) or Geostatistical 

(bottom) standardized indices (1987-2005).  The red point represents the current 

year (2005) biomass and fishing mortality. 

 

Another difference between the models that use the GLM index and those that 

incorporate the geostatistical index is that there is a tightening of the credibility intervals 

of the geostatistical index biomass trajectory for both the Schaefer and the Fletcher 

models.  Additionally, the credibility intervals of B/Bmsy are greatly tightened in the 

Schaefer model.  The posterior distributions are also similar (Figure 5.10) emphasizing 

the fact that the models should predict similar results. 
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Schaefer Fletcher 

 
a.  SS1 and SS2 

 
b.  SF1 and SF2 

 
a.  SS1 and SS2 

 
b.  SF1 and SF2 

Figure 5.10.  Posterior distributions of current biomass (top) and the ratio of 

current biomass over K (bottom) for the Schaefer and Fletcher models.  Models that 

incorporate the GLM index are shown in blue and those that incorporate the 

geostatistical index are in red. 

 

Full Japanese Index Only 

 In order to estimate the influence of the Japanese index, a model was run using 

only the Japanese index of abundance and the swordfish catch (Table 5.8) for both the 

Schaefer model and the generalized Fletcher model. 
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Japanese Only 

Parameter E(SS3) CV(SS3) E(SF3) CV(SF3) 

E(K) 136479 0.09 288931 0.44 

E(r) 0.39 0.10 0.24 0.57 

E(n) ----------- ----------- 1.14 0.42 

E(MSY) 13084 0.04 10002 0.29 

E(Bcur) 23414 0.83 40859 0.95 

E(Bcur/K) 0.17 0.78 0.14 0.74 

E(Binit) 118207 0.23 245391 0.49 

E(Bcur/Binit) 0.20 0.80 0.17 0.76 

E(Ccur/MSY) 0.88 0.03 1.30 0.52 

E(Bmsy/K) ----------- ----------- 0.38 0.22 

E(Fcur/Fmsy) 6.05 1.25 7.14 1.31 

E(Bcur/Bmsy) 0.34 0.78 0.43 0.93 

E(Ccur/repy) 3.30 1.14 2.72 0.90 

E(Bmsy) 68239 0.09 107059 0.49 

E(repy) 6538 0.58 6358 0.51 

Table 5.8.  Expected values (E) and coefficients of variation (CVs) of the posterior 

distribution of the parameters from the Schaefer and Fletcher BSP model run 

with only the full Japanese CPUE index (1961-2005) (refer to Table 5.2 for model 

specifications).  Parameters are as defined in Table 5.6. 

 

The Schaefer model suggests a significantly lower carrying capacity with a K of 136479 

mt and a higher r of 0.39.  In contrast, the Fletcher model suggests a K of 288931 mt and 

a lower r of 0.24.  For both models, the ratios of Bcur/Bmsy describe a fishery that is 

severely overfished.  These parameters show that currently the biomass is about 60-65% 

below the MSY level.  Historically, the Bcur/Binit ratios for both models suggest that the 

stock has declined by about 80% from conditions at the start of the fishery.  These figures 

correspond to the higher expected values of fishing mortality and signify that the fishery 

is experiencing overfishing.  The trends in the biomass and fishing mortality ratios and 

the credibility intervals are shown in Figures 5.11 and 5.12.   
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a. Model SS3 

 
b. Model SS3 

Figure 5.11.  Medians (blue) and 80% credibility intervals (dashed red) for 

relative biomass (left panels) and relative fishing mortality (right panel) for the 

swordfish Schaefer BSP models.  The index used was the full Japanese 

standardized index (1967-2005).  The red point represents the current year (2005) 

biomass and fishing mortality. 

 

 
a. Model SF3 

 
b. Model SF3 

Figure 5.12.  Medians (blue) and 80% credibility intervals (dashed red) for 

relative biomass (left panels) and relative fishing mortality (right panel) for the 

swordfish Fletcher BSP models.  The index used was the full Japanese 

standardized index (1967-2005).  The red point represents the current year (2005) 

biomass and fishing mortality. 

 

The model predictions show that when the Japanese index is used alone, there is a strong 

decline in biomass from 1950 to the current year.  Similarly, there is a relatively steep 

increase in fishing mortality.  The results are more pessimistic about the level of stock 

decline when the Fletcher model is used.  It is interesting to note that the results of the 

Schaefer model more closely follow the results of the models that incorporate the U.S. 
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indices, and that the K and r values are similar to those predicted in the north Atlantic 

ICCAT assessment. 

U.S. Indices with Truncated Japanese Index 

 The runs that used only the U.S. GLM or geostatistical index showed only slight 

differences.  The length of the series is suggestive of the fact that these indices may not 

be informative enough to show a complete picture of the fishery.  Because the indices 

begin in 1987 and the catch rates extend back to 1950, there is not enough information in 

these short catch rate series to provide a reliable estimation of productivity parameters of 

the model.  The Japanese index begins in 1967 and provides information on the early 

years of the fishery.  By truncating the series, this allowed the U.S. indices to drive the 

trends in the current years of the fishery 

When the shortened Japanese index was included in models with the U.S. 

geostatistical and GLM indices, there were significant differences between the 

parameters, both between the Schaefer and Fletcher versions of the model and between 

the models that incorporated the GLM or geostatistical indices (Table 5.9). 
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Schaefer Model 

Parameter E(SS4) CV(SS4) E(SS5) CV(SS5) % Difference 

E(K) 351260 0.55 453805 0.43 29.19 

E(r) 0.28 0.68 0.41 0.53 46.35 

E(MSY) 21519 1.07 44549 0.71 107.02 

E(Bcur) 201917 0.93 392628 0.52 94.45 

E(Bcur/K) 0.53 0.54 0.84 0.21 59.32 

E(Binit1) 307408 0.58 398991 0.45 29.79 

E(Bcur/Binit1) 0.62 0.58 0.98 0.28 57.54 

E(Ccur/MSY) 0.93 0.67 0.44 0.89 52.71 

E(Fcur/Fmsy) 1.97 2.00 0.40 2.47 79.43 

E(Bcur/Bmsy) 1.05 0.54 1.68 0.21 59.32 

E(Ccur/repy) 1.43 0.89 1.02 0.41 28.96 

E(Bmsy) 175630 0.55 226902 0.43 29.19 

E(repy) 10085 0.33 11683 0.17 15.85 

Fletcher Model 

Parameter E(SF4) CV(SF4) E(SF5) CV(SF5) % Difference 

E(K) 427970 0.45 437096 0.44 2.13 

E(r) 0.33 0.67 0.45 0.66 36.36 

E(n) 1.31 0.64 1.46 0.65 11.82 

E(MSY) 25304 1.02 40394 1.06 59.63 

E(Bcur) 264022 0.73 354710 0.77 34.35 

E(Bcur/K) 0.59 0.45 0.78 0.47 33.78 

E(Binit) 366296 0.48 385581 0.48 5.26 

E(Bcur/Binit) 0.70 0.51 0.92 0.54 31.21 

E(Ccur/MSY) 0.83 0.75 0.49 0.77 40.59 

E(Bmsy/K) 0.39 0.31 0.42 0.31 9.03 

E(Fcur/Fmsy) 0.95 1.53 0.39 2.21 59.54 

E(Bcur/Bmsy) 1.64 0.53 1.93 0.54 17.73 

E(Ccur/repy) 1.20 0.58 1.00 0.85 16.55 

E(Bmsy) 161509 0.55 182549 0.56 13.03 

E(repy) 10671 0.66 11518 0.67 7.94 

Table 5.9.  Expected values (E) and coefficients of variation (CVs) of the posterior 

distribution of the parameters from the BSP model run with the truncated 

Japanese CPUE index (1967-1999) and either the U.S.  GLM or geostatistical 

(GEO) index (1987-2005) (refer to Table 5.2 for model specifications).  Parameters 

are as defined in Table 5.6. 

 

With the Schaefer model, the percentage differences between the GLM index and 

geostatistical index were greater for all parameters except initial biomass (binit).  The 

estimate of K from the GLM model was significantly lower by about 100,000 mt.  
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Interestingly, the productivity parameters of biomass and fishing mortality describe the 

stock as experiencing overfishing when the GLM index is used and present a more 

positive picture when the geostatistical index is used.  In the former instance, the current 

biomass is right around the MSY level although the level of fishing mortality is almost 

double the MSY level.  Historically, the expected value of the biomass in the current year 

compared to the initial biomass at the start of the fishery has declined by about 60%.  The 

expected value of the Bcur/Bmsy parameter suggests that the current biomass is well 

above the MSY level in the geostatistical model and at a fishing mortality level that is 

well below MSY.  A more benign historical picture is also seen as the current biomass is 

relatively close to the biomass at the start of the fishery.  For both the GLM and the 

geostatistical Fletcher models, the current biomass is expected to be well above the MSY 

level at 1.64 and 1.93 respectively.  The biomass ratio of current over initial for the 

geostatistical model describes the stock as slightly below conditions at the start of the 

fishery (0.92), while the GLM model gives a prediction that is 24% lower (0.70), 

suggesting that the stock has experienced some decline but is still well above Bmsy.  The 

expected values of the fishing mortality ratios correspond with this interpretation as the 

geostatistical model predicts that fishing mortality is about 60% lower than the MSY 

value, but very close to the MSY value (0.95) with the GLM model.  The interpretation 

of the status of the stock would differ for each of these models.  According to the 

geostatistical model, the stock is not experiencing overfishing.  However, the 

interpretation of the GLM model results would be that the stock is experiencing 

overfishing and could decline further if fishing mortality rates continue at the same level.  

Additionally, the estimates of K are much closer than in the Schaefer model runs, but the 
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r parameter was significantly different (27%) with the geostatistical model predicting an r 

of 0.45 and the GLM model predicting an r of 0.33. 

 The fits of the biomass and fishing mortality trends are displayed in Figure 5.13 

and Figure 5.14. 

 
a. Model SS4 

 
b. Model SS4 

 
c. Model SS5 

 
d. Model SS5 

Figure 5.13.  Medians (blue) and 80% credibility intervals (dashed red) for 

relative biomass (left panels) and relative fishing mortality (right panels) for the 

swordfish Schaefer BSP models.  The indices used were the U.S. GLM (top) or 

Geostatistical (bottom) standardized indices (1987-2005) and the truncated 

Japanese index (1967-1999).  The red point represents the current year (2005) 

biomass and fishing mortality. 
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a. Model SF4 

 
b. Model SF4 

 
c. Model SF5 

 
d. Model SF5 

Figure 5.14.  Medians (blue) and 80% credibility intervals (dashed red) for 

relative biomass (left panels) and relative fishing mortality (right panels) for the 

swordfish Fletcher BSP models.  The indices used were the U.S. GLM (top) or 

Geostatistical (bottom) standardized indices (1987-2005) and the truncated 

Japanese index (1967-1999).  The red point represents the current year (2005) 

biomass and fishing mortality. 

 

There are significant differences between the Schaefer models using the GLM index and 

the geostatistical index.  The GLM model shows the biomass declining to just below the 

BMSY level and fishing mortality increasing to just above the MSY level.  In contrast, the 

biomass and fishing mortality trends as estimated from the geostatistical model remains 

fairly constant and describe the stock as well above the MSY level and not experiencing 

overfishing.  The Fletcher model with the GLM index describes a decline in the biomass 

of the stock.  However, the stock remains above the MSY level.  Fishing mortality 

increases to the MSY level in 1995, and then remains just below this level.  There is less 
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of a trend in the biomass or the fishing mortality when the geostatistical index is used, 

and the stock would be assumed stable and not undergoing or approaching overfishing.  

Comparing the fits of the Schaefer models to the Fletcher models, it is interesting to note 

that the credibility intervals are significantly wider for the Fletcher model.  With both 

model types, the geostatistical index gives slightly more optimistic results.  The posterior 

distributions of the current biomass and the ratio of current biomass to K are quite 

different when either the GLM or geostatistical indices are used (Figure 5.15).  The GLM 

distributions are skewed toward the lower biomass values and a higher ratio of 

Bcurrent/K while the geostatistical distributions are relatively uniform. 

Schaefer Fletcher 

 
a. SS4 and SS5 

 
b. SF4 and SF5 

 
c. SS4 and SS5 

 
d. SF4 and SF5 

Figure 5.15.  Posterior distributions of current biomass (top) and the ratio of 

current biomass over K (bottom) for the Schaefer and Fletcher models.  Models 

that incorporate the GLM index are shown in blue and those that incorporate the 

geostatistical index are in red. 
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U.S. Indices with Full Japanese Index 

 As expected, the longer Japanese index carries more weight in later years when 

the full index is incorporated in models with the U.S. indices (Table 5.10) and 

overshadows the differences in the U.S. indices. 

Schaefer Model 

Parameter E(SS6) CV(SS6) E(SS7) CV(SS7) % Difference 

E(K) 390588 0.44 333339 0.50 14.66 

E(r) 0.12 0.88 0.16 0.80 39.25 

E(MSY) 7781 0.47 9153 0.50 17.64 

E(Bcur) 60414 0.78 59488 0.94 1.53 

E(Bcur/K) 0.16 0.61 0.18 0.65 13.03 

E(Binit1) 339039 0.46 296485 0.52 12.55 

E(Bcur/Binit1) 0.19 0.65 0.21 0.71 13.15 

E(Ccur/MSY) 1.95 0.65 1.55 0.55 20.66 

E(Fcur/Fmsy) 10.24 1.26 6.97 1.06 31.95 

E(Bcur/Bmsy) 0.32 0.61 0.36 0.65 13.03 

E(Ccur/repy) 4.42 0.91 3.19 0.86 27.88 

E(Bmsy) 195294 0.44 166669 0.50 14.66 

E(repy) 4501 0.64 5536 0.55 23.00 

Fletcher Model 

Parameter E(SF6) CV(SF6) E(SF7) CV(SF7) % Difference 

E(K) 415692 0.35 396551 0.39 4.60 

E(r) 0.15 0.93 0.17 0.88 7.83 

E(n) 1.17 0.63 1.24 0.65 5.73 

E(MSY) 7960 0.56 8242 0.46 3.55 

E(Bcur) 73807 0.79 67613 0.75 8.39 

E(Bcur/K) 0.18 0.66 0.18 0.59 2.29 

E(Binit) 363589 0.39 341378 0.44 6.11 

E(Bcur/Binit) 0.21 0.70 0.21 0.61 2.10 

E(Ccur/MSY) 1.82 0.65 1.78 0.71 2.07 

E(Bmsy/K) 0.37 0.31 0.37 0.33 1.49 

E(Fcur/Fmsy) 6.19 1.16 6.15 1.34 0.66 

E(Bcur/Bmsy) 0.60 1.10 0.58 1.12 2.89 

E(Ccur/repy) 3.18 0.83 3.11 0.91 2.09 

E(Bmsy) 149917 0.45 143167 0.48 4.50 

E(repy) 5661 0.60 5901 0.56 4.24 

Table 5.10.  Expected values (E) and coefficients of variation (CVs) of the 

posterior distribution of the parameters from the BSP model run with the full 

Japanese CPUE index (1967-2005) and either the U.S. GLM or geostatistical 

(GEO) index (1987-2005) (refer to Table 5.2 for model specifications).  Parameters 

are as defined in Table 5.6. 
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This index serves to pull down the biomass estimates and suggests that the stock is being 

fished well over the MSY level.  These models estimate similar K and r values, however 

the percentage difference between these parameters when the U.S. index is varied is 

significantly greater for the Schaefer models.  Both the Schaefer and the Fletcher models 

estimate that the current biomass is only at about 60% of the MSY level, and that the 

historical decline in biomass has been about 80% from the biomass at the start of the 

fishery.  This trend in depletion is complemented by the fishing pressure ratio 

(Fcurrent/fmsy) which for all models is greater than 6 times the MSY level. 

 When the full Japanese index is used, the biomass and fishing mortality trends 

look very similar to the model outputs for these parameters when the Japanese index is 

used alone (Figure 5.16 and Figure 5.17). 
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a. Model SS6 

 
b. Model SS6 

 
c. Model SS7 

 
d. Model SS7 

Figure 5.16.  Medians (blue) and 80% credibility intervals (dashed red) for 

relative biomass (left panels) and relative fishing mortality (right panels) for the 

swordfish Schaefer BSP models.  The indices used were the U.S. GLM (top) or 

Geostatistical (bottom) standardized indices (1987-2005) and the full Japanese 

index (1967-2005).  The red point represents the current year (2005) biomass and 

fishing mortality. 
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a. Model SF6 

 
b. Model SF6 

 
c. Model SF7 

 
d. Model SF7 

Figure 5.17.  Medians (blue) and 80% credibility intervals (dashed red) for 

relative biomass (left panels) and relative fishing mortality (right panels) for the 

swordfish Fletcher BSP models.  The indices used were the U.S. GLM (top) or 

Geostatistical (bottom) standardized indices (1987-2005) and the full Japanese 

index (1967-2005).  The red point represents the current year (2005) biomass and 

fishing mortality. 

 

The difference is that the initial biomass in the two index model is higher and there is a 

greater decline to the current condition.  Additionally, there is a significant tightening of 

the credibility intervals for the biomass trend of the Schaefer model.  The posterior 

distributions are also very similar, emphasizing the pull that the Japanese index has on 

the overall model results (Figure 5.18). 
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Schaefer Fletcher 

 
a. Model SS6 and SS7 

 
b. Model SF6 and SF7 

 
c. Model SS6 and SS7 

 
d. Model SF6 and SF7 

Figure 5.18.  Posterior distributions of current biomass (top) and the ratio of 

current biomass over K (bottom) for the Schaefer and Fletcher models.  Models 

that incorporate the GLM index are shown in blue and those that incorporate the 

geostatistical index are in red. 

 

Synopsis of the Biological Reference Points and r Values (Swordfish Models) 

The model results differ according to the indices incorporated as evidenced by the 

phase plots (Figure 5.19).  The models that only use the U.S. GLM or geostatistical 

indices and the U.S. geostatistical and the truncated JLL index indicate that the stock 

appears to be in a healthy condition both historically and at present.  The Schaefer model 

predicts that at the present time and over the past decade, the stock is experiencing 

overfishing.  This is not the case with the Fletcher model, which shows that the stock is in 

a healthy condition although there may be a tendency towards decline.  Both the Schaefer 

and the Fletcher models using the U.S. index with the truncated JLL index, and the U.S. 

GLM or geostatistical index and the full JLL depict the stock as experiencing overfishing. 
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Figure 5.19.  Time series of B/BMSY B and F/FMSY from 1950 to 2005 showing the 

progression of stock status as the North Atlantic swordfish fisheries evolved and the 

current year (2005) status for the Schaefer (top) and Fletcher (bottom) models. 
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A final comparison of the posterior distributions of r from all of the models 

highlights the influence of incorporating the Japanese index (Figure 5.20).  The r 

posteriors from the models that incorporated the full Japanese index and either of the U.S. 

indices are skewed to lower values of r within a short range like the distribution from the 

model that used only the Japanese index.   Truncating the Japanese index allows the 

current stock level to be dictated by the US indices and thus allows for the differences in 

the trends of the GLM and geostatistical indices to lead to differences in the perception of 

current stock status. 

Schaefer Model Fletcher Model 

  

 
Figure 5.20. Prior and posterior distribution of r parameter for the Schaefer and 

Fletcher models. 

 

5.4 Interpretation of Model Results 

A sound stock assessment requires data on the catch, abundance over time, 

biology, and other information such as age structure when available.  This information is 

used to estimate where the historical levels of the stock have been, the current status of 

the stock in relation to benchmarks such as MSY, and the potential for sustainable 

harvests into the future.  Managers rely on this information to set thresholds or limits to 
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the amount of harvest that can be made in order to optimize the biological and economic 

potential of the stock (Walters and Hilborn, 1978).  The National Academy of Science 

(1998) reviewed the current methods available for stock assessment and found that one of 

the most important pieces of the stock assessment puzzle is a robust index of the relative 

abundance of a stock.  These indices can come from a formal design-based research 

survey or from analyses of the catch rates of the fishery.  Research surveys are typically 

less biased than catch rate data because sampling is close to random but often also less 

precise because sample sizes are usually small in relation to fishery dependent catch rate 

data.  In pelagic species, these types of surveys are not often available as they are 

expensive to implement.  Fishery-dependent relative abundance indices have their own 

set of issues.  Because the fishery is targeting a stock or set of stocks, fishing is typically 

occurring in areas where consistently high catches are found, which can bias the index in 

serious ways.  One example is when technology and knowledge lead to an increase in 

catchability by the fleet over time.  This increase, if not adjusted for, would cause one to 

be overly optimistic about abundance trends.  Another example that is relevant to this 

analysis is that clustered observations will be subject to spatial autocorrelation that may 

violate the assumption made for a relative abundance index: random, uncorrelated 

samples.  With respect to these issues, catch and effort data from the commercial fisheries 

are still the most widely used form of abundance information used to estimate annual 

indices of stock abundance in the absences of fishery-independent survey data, especially 

in the case of pelagic species.  These indices are incorporated into stock assessment 

models to predict trends in biomass and fishing mortality as well as life history 

parameters of the stock.  Models such as the GLM use statistical techniques and allow for 
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the partitioning of sources of variability ranging from annual and seasonal trends in 

abundance to gear and targeting strategies to ensure that the CPUE index is representative 

of the actual abundance of the species. 

Despite the improvements made in standardization techniques, there are still 

problems with these methods.  Biases in the indices can stem from problems obtaining a 

balance of observations in each of the factors of the model, deciding which factors to 

include in the model based on the amount of variability they account for, and ensuring 

that the assumptions of stationarity and uncorrelated samples are met.  This last problem 

has been identified as a significant problem for CPUE standardization of fishery-

dependent catch rates (Walters, 2003; Campbell, 2004) and is addressed by this analysis.  

If there are violations of these assumptions this makes it difficult to assess whether the 

catch rates are actually reflecting the stock abundance directly when there are changes in 

the spatial allocation of the fishing effort combined with movement of the stock. 

While the Bayesian surplus production models presented in this chapter are 

representative of the types of models that are used to assess the status of various fisheries 

in formal stock assessments, the goal of this chapter was not to perform a stock 

assessment for dolphinfish or swordfish, but to determine the amount of variation that 

may occur in the model results when different indices are incorporated.  More 

importantly, this analysis provides the ability to make some qualitative observations on 

how these differences might influence a fishery scientist’s perception of the status of the 

stock and a fishery manager’s decision to set benchmarks or guidelines for how the stock 

should be harvested. 
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It was hypothesized that there would be very little difference between the BSP 

models for dolphinfish when the geostatistical and GLM indices were incorporated.  The 

indices were almost identical.  One can presume that because of the short range of 

autocorrelation of the catch rates, there was less of a benefit to account for the spatial 

variability as the majority of the samples would be outside of the range of autocorrelation 

and therefore uncorrelated.  Overall, the results of these models are interesting as a 

comparison to the model that Prager (2000) developed in ASPIC for dolphinfish (Table 

5.11).   

Parameter ASPIC model BSP model 

(GLM Index) 

BSP model 

(Geostatistical) 

MSY 12,241 mt (8506-

21,110) 

28,772 mt (1.05) 27,176 mt (1.09) 

Fcurrent/FMSY 1997 value: 0.51 

(0.34-0.85) 

1997 value: 0.29 

2005 value: 0.87 

(1.78) 

1997 value: 0.32 

2005 value: 1.10 

(1.91) 

r 0.98 / year 0.82 / year (0.52) 0.80 / year (0.53) 

K 49,963 mt 146,233 mt 

(0.79) 

140,744 mt (0.81) 

Table 5.11.  Comparison of MSY, Fcurrent/FMSY, r, and K from an ASPIC surplus 

production model (Prager, 2000) with the upper and lower bounds of the 

nonparametric 80% confidence estimates in parentheses and two Bayesian 

surplus production models that incorporate different indices of abundance (GLM 

vs. geostatistical).  The CVs of the values from the BSP models are given in 

parentheses.  The current year in the ASPIC model was 1997, so the 

corresponding estimate for 1997 is provided along with the current (2005) value 

for the BSP model. 

 

The estimate of K from both BSP models is about 3 times the value of K estimated by the 

ASPIC model.  The r values from the BSP models are lower than the value of 0.98 

estimated by the ASPIC model, but still feasible for a species that is fast-growing and 

short-lived like dolphinfish.  Because the r value in the BSP model was strongly driven 

by the prior distribution, it was not expected that it would be similar to the ASPIC r 

value.  The main difference between the models is that the fishing pressure estimated by 
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the ASPIC model is much lower (roughly half of the MSY level) than either of the BSP 

models.  Additionally, the BSP model that includes the geostatistical index estimates the 

fishing pressure to be above the MSY level.  The differences between the spatial 

geostatistical index and the nonspatial GLM index for swordfish are manifested in the 

differences between the productivity parameters from the BSP model.  While the 

differences are less obvious when the U.S. indices are used alone, they are interesting 

nonetheless.  The differences in later years of the U.S. indices paint different pictures of 

the current situation of the stock.  When the Japanese index is used to drive the 

productivity of the early years, the differences between the stock statuses is significantly 

different and would probably lead to very different management strategies.  This is 

especially true with respect to F/FMSY, which is a very important management parameter.  

The results of this analysis suggest that this parameter is rather sensitive to the index used 

and highlights the fact that one could arrive at very different conclusions about stock 

status by incorporating different information.  This analysis does not attempt to address 

whether one index is providing the correct picture of the stock abundance.  Using the 

Japanese index in this way also contributes to contrast between the abundance index and 

the landings data.  It is well known that biomass dynamic models require large contrast in 

stock size (a biomass trajectory that includes at least one episode of depletion and 

rebuilding) to accurately estimate productivity parameters.  A comparison of U.S. 

swordfish indices and the Japanese index, shows that whereas US indices change by a 

factor of about two over the period of data, the Japanese index changed by a factor of five 

(see Figure 5.1).  While the Japanese index does provide additional information about the 

earlier years of the fishery, there are several caveats to these data that should be 
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addressed.  During the early years of the fishery, the Japanese index increased during the 

period that the catches were also increasing.  The increasing biomass trend from 1950 to 

1985 is not consistent with the increasing catches during that time.  Therefore, the model 

is forced to assume that this discrepancy is due to measurement error.  As such, the 

Japanese series is not as informative and likely adds uncertainty to the model output.  

When the full Japanese index is used with the U.S. indices, there are some differences 

between the predictions, but the low abundances of the Japanese heavily influence the 

output, driving down the estimates of current biomass regardless of whether the U.S. 

geostatistical or GLM index is used.  This is also illustrated by the distribution of the 

posterior distributions of the r parameter for each of the models (see Figure 5.19).  

Therefore, differences between the U.S. geostatistical and GLM indices are seen most 

clearly when they are incorporated with a truncated Japanese index.  This combination 

allows the U.S. indices to largely determine the current situation in the fishery.  

According to the GLM index, there is a much lower abundance in the current year than 

the geostatistical index predicts.  This translates to a reduction of the current biomass 

predictions and an increase in the current fishing mortality estimates. 

 One of the main questions that must be asked is why there are differences 

between the GLM and geostatistical indices that are so pronounced in certain years.  The 

assumption for the difference is that the geostatistical index is accounting for spatial 

variability while the GLM ignores this factor by equally weighting all observations.  In 

other words, if there is a cluster of observations in an area, the GLM counts these as 

individual replicates.  When there is spatial autocorrelation in the system, the 

geostatistical model will down weight the clustered observations relative to an 



 213  

 

observation from an area with fewer values.  This provides a means to address the issue 

of how to deal with areas where there are zeros.  Certainly the mean of the values may 

not be the optimal value to fill in these areas, however with the GLM, there is no other 

option.  Additionally, if there are clustered observations and a relatively long range of 

autocorrelation then this suggests that more of the observations will be subject to spatial 

bias if one does not account for the spatial pattern. 

5.5 Chapter Conclusions 

The analysis presented in this chapter represents one method of accounting for 

spatial variability in CPUE index standardization.  The downside to this type of spatial 

analysis is that it is more labor intensive than a typical GLM standardization.  However, 

as there is a shift towards ecosystem based management and models that incorporate 

space, there is a need for indices that are spatially explicit.  The MULTIFAN-CL model 

for fisheries stock assessment is a length-based, age, and spatially-structured model.  The 

requirements are an index of abundance that is both spatial and seasonal in nature.  This 

model is used frequently in the Pacific to assess pelagic species such as bigeye and 

bluefin tuna.  Another hurdle with a geostatistical model is determining the correct 

window of space and time.  In this analysis, the choice was made to partition the spatial 

modelling into time components of a year-season and to restrict the analysis to the Gulf 

of Mexico.  The temporal division has the upside that one could account for annual and 

seasonal variability in a spatial manner.  Because the GLM standardizes for annual and 

seasonal variability in the index, these factors should be accounted for in the spatial 

index.  The issue is that because the CPUE index input to the BSP or other surplus 

production model is annual, at some level, it is necessary to aggregate over the 
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predictions in an area to compute the geostatistical annual index.  This leads to questions 

on how to best average the seasonal predictions.  A further investigation that should be 

made is to compare the geostatistical index obtained when variograms for an entire year 

are calculated and used to make predictions of abundance annually over the region. 
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GENERAL CONCLUSIONS 

 There are several main conclusions from this analysis: 

(1) Dolphinfish is a species that is important both ecologically and 

commercially.  Despite this importance, there has been little 

improvement to the current stock assessment status of this species and 

there is an increased need to find new techniques to enhance the 

information on this data-limited species 

(2) Dolphinfish are correlated with prominent oceanographic features in 

the Atlantic.  These include SST and proximity to frontal regions. 

(3) Satellite derived oceanographic data can be used to enhance the 

standardization of indices of abundance of dolphinfish when catch rate 

data includes spatial locational information.  Including this 

information in an abundance index leads to increased confidence of 

the trends observed. 

(4) The degree of spatial autocorrelation can have an impact on the 

indices of abundance, especially in years where there are clustered 

observations of catch.  As such, the spatial autocorrelation in a system 

should be addressed when attempting to derive robust indices of 

abundance. 

(5) Accounting for spatial variability may prevent bias in the CPUE index 

if there is a longer range of autocorrelation and clustered catches in an 

area.
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(6) If the spatial variability in the system is sufficiently high that 

accounting for the variability affects the overall trend in the CPUE 

index, this can translate into differences in the outcomes of a stock 

assessment model. 

(7) Different outcomes in the assessment can lead fisheries managers to 

different perceptions about the appropriate strategies required to 

achieve management goals.  Therefore, it is worthwhile to investigate 

the spatial autocorrelation in a system to determine if it significantly 

affects the abundance index. 
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Appendix A: Variogram Parameters 

 
Spring Summer 

Year 
Num 
Obs. Nug Sill Range 

1987 87 0.00 0.746 X 

1988 164 0.00 0.582 27 

1989 208 0.15 0.756 48 

1990 272 0.20 0.740 113 

1991 355 0.30 0.856 60 

1992 305 0.35 0.904 106 

1993 203 0.05 0.482 86 

1994 195 0.25 0.668 42 

1995 316 0.20 0.853 77 

1996 284 0.20 0.811 107 

1997 394 0.48 1.498 44 

1998 135 0.05 0.289 55 

1999 370 0.40 1.193 81 

2000 211 0.22 0.549 29 

2001 317 0.12 0.407 49 

2002 364 0.20 0.519 65 

2003 334 0.18 0.572 81 

2004 499 0.25 0.735 43 

2005 181 X X X 

Average 273 0.20 0.731 65  

Year 
Num 
Obs. Nug Sill Range 

1987 433 0.30 0.749 69 

1988 424 0.15 0.684 41 

1989 480 0.30 1.392 89 

1990 636 0.67 1.752 48 

1991 742 0.60 1.542 28 

1992 670 0.65 1.671 114 

1993 566 0.52 1.308 48 

1994 523 0.67 1.569 45 

1995 768 0.45 1.530 69 

1996 955 0.61 1.734 64 

1997 1047 0.50 1.380 50 

1998 736 0.47 1.130 44 

1999 835 0.45 1.054 57 

2000 807 0.30 0.807 53 

2001 935 0.30 0.836 34 

2002 1072 0.30 0.785 39 

2003 927 0.31 0.807 23 

2004 1111 0.40 1.052 62 

2005 550 0.20 0.504 18 

Average 748 0.43 1.173 52  
Fall Winter 

Year 
Num 
Obs. Nug Sill Range 

1987 184 0.30 0.825 45 

1988 178 0.10 0.482 93 

1989 397 0.28 0.925 78 

1990 368 0.30 1.022 53 

1991 457 0.30 1.025 49 

1992 265 0.35 1.004 39 

1993 287 0.33 0.768 40 

1994 223 0.15 0.564 57 

1995 207 0.15 0.648 33 

1996 287 0.15 0.486 78 

1997 247 0.10 0.343 44 

1998 175 0.07 0.386 70 

1999 203 0.10 0.432 66 

2000 238 0.07 0.250 76 

2001 389 0.12 0.469 28 

2002 240 0.05 0.259 54 

2003 278 X X X 

2004 204 X X X 

2005 75 0.03 0.174 148 

Average 258 0.17 0.592 62  

Year 
Num 
Obs. Nug Sill Range 

1987 107 0.00 0.229 24 

1988 180 0.00 0.358 15 

1989 217 0.00 0.297 27 

1990 228 0.15 0.490 54 

1991 217 0.19 0.585 47 

1992 348 0.30 0.800 51 

1993 149 0.03 0.345 64 

1994 121 0.10 0.481 52 

1995 223 0.30 0.732 51 

1996 150 0 0.200 33 

1997 250 0.07 0.236 15 

1998 97 X X X 

1999 148 0.06 0.215 28 

2000 107 X X X 

2001 110 0 0.110 120 

2002 376 0.14 0.461 37 

2003 82 X X X 

2004 88 X X X 

2005 71 X X X 

Average 172 0.10 0.396 44  

Table A1.  Variogram parameters for log of positive dolphinfish catch for each year-

season and average for each season. 
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Spring Summer 

Year 
Num 
Obs. Nug Sill Range 

1987 1416 0.000 0.000 90 

1988 1329 0.000 0.001 84 

1989 1309 0.001 0.007 72 

1990 987 0.015 0.059 154 

1991 945 0.010 0.054 85 

1992 1217 0.007 0.020 52 

1993 919 X X X 

1994 883 0.006 0.024 49 

1995 866 0.015 0.066 83 

1996 1188 0.009 0.030 84 

1997 935 0.010 0.061 70 

1998 890 0.001 0.007 27 

1999 1231 0.014 0.053 45 

2000 1116 0.006 0.017 30 

2001 1130 0.020 0.051 43 

2002 1022 0.030 0.079 72 

2003 1359 0.010 0.031 82 

2004 1466 0.025 0.071 140 

2005 1272 0.002 0.006 61 

Average 1131 0.01006 0.035 74  

Year 
Num 
Obs. Nug Sill Range 

1987 1569 0.018 0.048 56 

1988 1093 0.015 0.068 111 

1989 1007 0.008 0.084 162 

1990 961 0.000 0.025 58 

1991 1094 X X X 

1992 986 0.010 0.036 114 

1993 976 0.020 0.073 133 

1994 939 0.020 0.078 32 

1995 1106 0.004 0.017 64 

1996 1414 0.017 0.043 89 

1997 1551 0.003 0.021 62 

1998 1311 0.035 0.096 88 

1999 1301 0.021 0.057 136 

2000 1336 0.029 0.084 98 

2001 1436 0.010 0.053 63 

2002 1556 0.020 0.054 68 

2003 1537 0.010 0.047 105 

2004 1564 0.016 0.040 29 

2005 1022 0.045 0.108 36 

Average 1250 0.017 0.057 84  
Fall Winter 

Year 
Num 
Obs. Nug Sill Range 

1987 1194 0.001 0.006 127 

1988 1013 0.005 0.013 74 

1989 973 0.010 0.072 66 

1990 846 0.025 0.094 47 

1991 872 0.020 0.073 82 

1992 758 0.020 0.079 103 

1993 873 0.013 0.045 103 

1994 702 0.010 0.051 29 

1995 841 0.010 0.036 87 

1996 1066 0.008 0.038 40 

1997 894 0.006 0.037 101 

1998 760 0.009 0.028 18 

1999 1080 0.008 0.017 23 

2000 1255 0.003 0.012 51 

2001 1066 0.035 0.089 61 

2002 1164 0.008 0.024 63 

2003 1171 0.012 0.034 70 

2004 1153 0.005 0.015 42 

2005 468 0.001 0.009 122 

Average 955 0.011 0.041 69  

Year 
Num 
Obs. Nug Sill Range 

1987 1020 0.0001 0.001 81 

1988 1599 0.0012 0.004 65 

1989 1902 0.0015 0.006 69 

1990 1593 0.0100 0.036 45 

1991 859 0.0230 0.065 98 

1992 1066 X X X 

1993 765 0.0030 0.011 115 

1994 717 0.0050 0.031 109 

1995 1006 0.0030 0.009 22 

1996 967 0.0120 0.031 46 

1997 1221 X X X 

1998 817 0.0028 0.007 31 

1999 1025 0.0015 0.005 13 

2000 967 X X X 

2001 861 0.0300 0.095 88 

2002 850 X X X 

2003 1039 X X X 

2004 967 0.0006 0.002 27 

2005 975 0.0000 0.001 115 

Average 1064 0.0067 0.022 66  

Table A2.  Variogram parameters for indicator (proportion positive) dolphinfish catch for 

each year-season and average for each season. 
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Spring Summer 

Year 
Num 
Obs. Nugget Sill Range 

1987 621 0.48 1.786 229 

1988 898 0.46 1.349 82 

1989 935 0.45 1.427 79 

1990 521 0.40 1.388 72 

1991 623 0.30 1.053 142 

1992 620 0.30 1.393 135 

1993 557 0.20 0.769 127 

1994 409 0.00 1.847 203 

1995 552 0.00 0.709 72 

1996 753 0.00 0.717 114 

1997 552 0.00 0.616 61 

1998 427 0.10 0.675 65 

1999 743 0.30 0.912 19 

2000 672 0.44 1.247 129 

2001 724 0.55 1.459 188 

2002 602 0.27 0.965 115 

2003 724 0.38 1.050 119 

2004 724 X X X 

2005 787 0.30 0.751 63 

Average 655 0.27 1.117 112  

Year 
Num 
Obs. Nugget Sill Range 

1987 525 0.20 1.082 92 

1988 487 0.08 2.452 355 

1989 529 0.19 1.458 96 

1990 411 0.25 1.591 102 

1991 451 0.25 0.934 59 

1992 346 0.30 0.876 78 

1993 383 0.43 1.449 53 

1994 294 0.00 1.587 96 

1995 542 0.30 1.193 74 

1996 570 0.20 0.996 116 

1997 646 0.20 0.947 132 

1998 565 0.32 0.889 52 

1999 499 0.30 0.891 61 

2000 568 0.30 0.841 33 

2001 598 0.30 0.867 47 

2002 724 0.23 0.786 67 

2003 528 0.30 0.923 42 

2004 436 0.30 0.791 64 

2005 472 0.30 0.824 50 

Average 504 0.25 1.125 88  
Fall Winter 

Year 
Num 
Obs. Nugget Sill Range 

1987 602 0.50 1.484 98 

1988 670 0.30 1.291 87 

1989 568 0.20 1.274 87 

1990 458 0.30 1.459 113 

1991 478 0.40 1.218 89 

1992 394 0.30 0.974 84 

1993 517 0.40 1.982 76 

1994 378 0.20 1.230 158 

1995 550 0.40 0.960 114 

1996 632 0.30 0.988 173 

1997 378 0.20 0.776 71 

1998 434 0.20 0.747 60 

1999 560 0.40 1.020 77 

2000 750 0.40 1.075 69 

2001 526 X X X 

2002 658 0.30 0.739 64 

2003 501 0.20 0.775 89 

2004 687 0.30 0.854 83 

2005 264 0.27 0.813 70 

Average 527 0.31 1.092 92  

Year 
Num 
Obs. Nugget Sill Range 

1987 658 0.00 0.826 89 

1988 1213 0.00 1.024 50 

1989 1610 0.40 0.997 126 

1990 1169 X X X 

1991 677 0.30 1.598 239 

1992 755 0.30 0.969 95 

1993 567 0.20 0.811 139 

1994 484 0.20 1.139 159 

1995 790 0.00 1.229 188 

1996 712 0.30 0.954 107 

1997 888 0.20 0.724 48 

1998 590 0.10 0.761 65 

1999 727 0.30 0.890 45 

2000 665 0.00 0.896 147 

2001 691 0.40 0.874 41 

2002 531 0.30 0.813 34 

2003 786 0.20 1.001 233 

2004 632 0.30 0.837 81 

2005 703 0.30 0.815 61 

Average 781 0.21 0.975 108  

Table A3.  Variogram parameters for log of positive swordfish catch for each year-

season and average for each season. 
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Spring Summer 

Year 
Num 
Obs. Nugget Sill Range 

1987 1416 0.01 0.070 143 

1988 1329 0.02 0.065 55 

1989 1309 0.00 0.034 106 

1990 987 0.00 0.061 94 

1991 945 0.01 0.052 71 

1992 1217 0.03 0.097 70 

1993 919 0.00 0.057 145 

1994 883 0.00 0.048 93 

1995 866 0.00 0.065 176 

1996 1188 0.00 0.043 95 

1997 935 0.01 0.072 127 

1998 890 0.01 0.069 108 

1999 1231 0.02 0.072 78 

2000 1116 0.02 0.082 83 

2001 1130 0.03 0.079 53 

2002 1022 0.01 0.048 91 

2003 1359 0.02 0.091 89 

2004 1466 0.03 0.099 81 

2005 1272 0.02 0.064 76 

Average 1131 0.01 0.067 97  

Year 
Num 
Obs. Nugget Sill Range 

1987 1569 0.005 0.038 101 

1988 1093 0.005 0.067 293 

1989 1007 0.005 0.060 127 

1990 961 0.000 0.057 60 

1991 1094 0.010 0.070 66 

1992 986 0.030 0.079 38 

1993 976 0.019 0.057 82 

1994 939 0.000 0.024 32 

1995 1106 0.000 0.053 90 

1996 1414 X X X 

1997 1551 0.020 0.066 85 

1998 1311 0.027 0.083 68 

1999 1301 0.020 0.083 72 

2000 1336 0.030 0.093 70 

2001 1436 0.010 0.063 48 

2002 1556 0.035 0.086 100 

2003 1537 0.010 0.045 59 

2004 1564 0.010 0.073 174 

2005 1022 0.005 0.038 142 

Average 1250 0.013 0.063 95  
Fall Winter 

Year 
Num 
Obs. Nugget Sill Range 

1987 1194 0.03 0.100 132 

1988 1013 0.01 0.059 151 

1989 973 0.00 0.064 76 

1990 846 0.01 0.080 80 

1991 872 0.01 0.069 54 

1992 758 0.01 0.057 86 

1993 873 0.01 0.073 90 

1994 702 0.01 0.074 50 

1995 841 0.00 0.044 100 

1996 1066 0.00 0.052 113 

1997 894 0.00 0.051 73 

1998 760 0.00 0.052 64 

1999 1080 0.03 0.096 64 

2000 1255 0.01 0.061 67 

2001 1066 0.02 0.085 52 

2002 1164 0.00 0.047 94 

2003 1171 0.04 0.103 120 

2004 1153 0.01 0.055 40 

2005 468 X X X 

Average 955 0.01 0.068 84  

Year 
Num 
Obs. Nugget Sill Range 

1987 1020 0.035 0.092 67 

1988 1599 0.010 0.029 133 

1989 1902 0.000 0.004 125 

1990 1593 0.000 0.026 84 

1991 859 0.000 0.015 88 

1992 1066 0.000 0.033 74 

1993 765 0.000 0.036 161 

1994 717 0.000 0.056 110 

1995 1006 0.000 0.028 119 

1996 967 0.000 0.027 125 

1997 1221 0.000 0.034 116 

1998 817 0.010 0.048 79 

1999 1025 0.005 0.034 104 

2000 967 0.000 0.036 144 

2001 861 0.000 0.013 67 

2002 850 0.020 0.066 31 

2003 1039 0.002 0.021 200 

2004 967 0.010 0.048 114 

2005 975 X X X 

Average 1064 0.005 0.036 108  

Table A4.  Variogram parameters for indicator (proportion positive) swordfish catch for 

each year-season and average for each season. 
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Appendix B—Variograms 

 

 
Figure B1.  Variograms of the spring lognormal positive dolphinfish catch. 
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Figure B2.  Variograms of the summer lognormal positive dolphinfish catch. 
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Figure B3.  Variograms of the fall lognormal positive dolphinfish catch. 
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Figure B4.  Variograms of the winter lognormal positive dolphinfish catch. 
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Figure B5.  Variograms of the spring indicator dolphinfish catch. 
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Figure B6.  Variograms of the summer indicator dolphinfish catch. 
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Figure B7.  Variograms of the fall indicator dolphinfish catch. 
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Figure B8.  Variograms of the winter indicator dolphinfish catch. 
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Figure B9.  Variograms of the spring lognormal swordfish catch. 
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Figure B10.  Variograms of the summer lognormal swordfish catch. 
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Figure B11.  Variograms of the fall lognormal swordfish catch. 
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Figure B12.  Variograms of the winter lognormal swordfish catch. 
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Figure B13.  Variograms of the spring indicator swordfish catch. 
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Figure B14.  Variograms of the summer indicator swordfish catch. 

 



 253  

 

 

 
Figure B15.  Variograms of the fall indicator swordfish catch. 
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Figure B16.  Variograms of the winter indicator swordfish catch. 
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Appendix C—Dolphinfish Kriging Maps 

 

These kriging maps are based on the variogram models presented in Appendix B for each 

year season.  The maps are grouped by seasons.  Within each season, the maps based on 

the lognormal positive observations are displayed first, followed by the indicator 

(proportion positive) maps. 

Spring Kriging Maps 
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Summer Kriging Maps 
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Fall Kriging Maps 
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Winter Kriging Maps 
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