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ABSTRACT

Ahmed, Chandrama M.S.B.M.E., Purdue University, December 2017. Continuous
Characterization of Universal Invertible Amplifier Using Source Noise. Major Pro-
fessor: Ken Yoshida.

With passage of time and repeated usage of a system, component values that make

up the system parameters change, causing errors in its functional output. In order to

ensure the fidelity of the results derived from these systems it is thus very important

to keep track of the system parameters while being used. This thesis introduces

a method for tracking the existing system parameters while the system was being

used using the inherent noise of its signal source. Kalman filter algorithm is used to

track the inherent noise response to the system and use that response to estimate the

system parameters. In this thesis this continuous characterization scheme has been

used on a Universal Invertible Amplifier (UIA).

Current biomedical research as well as diagnostic medicine depend a lot on shape

profile of bio-electric signals of different sources, for example heart, muscle, nerve,

brain etc. making it very important to capture the different event of these signals

without the distortion usually introduced by the filtering of the amplifier system. The

Universal Invertible Amplifier extracts the original signal in electrodes by inverting

the filtered and compressed signal while its gain bandwidth profile allows it to capture

from the entire bandwidth of bioelectric signals.

For this inversion to be successful the captured compressed and filtered signals

needs to be inverted with the actual system parameters that the system had during

capturing the signals, not its original parameters. The continuous characterization

scheme introduced in this thesis is aimed at knowing the system parameters of the
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UIA by tracking the response of its source noise and estimating its transfer function

from that.

Two types of source noises have been tried out in this method, an externally added

noise that was digitally generated and a noise that inherently contaminates the signals

the system is trying to capture. In our cases, the UIA was used to capture nerve

activity from vagus nerve where the signal was contaminated with electrocardiogram

signals providing us with a well-defined inherent noise whose response could be tracked

with Kalman Filter and used to estimate the transfer function of UIA.

The transfer function estimation using the externally added noise did not produce

good results but could be improved by means that can be explored as future direc-

tion of this project. However continuous characterization using the inherent noise,

a bioelectric signal, was successful producing transfer function estimates with mini-

mal error. Thus this thesis was successful to introduce a novel approach for system

characterization using bio-signal contamination.
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1. INTRODUCTION

Todays diagnostic medicine relies heavily on the bio-electric signals originating

from bio-electric activities of different tissues, which imposes utmost importance on

measurement fidelity. The instrumentation for processing and recording each of the

different signals including electrocardiogram (ECG), electromyogram (EMG), Elec-

troneurogram (ENG) etc. have evolved based on the unique characteristics of the

respective signal, becoming highly specialized and unsuitable for use with a differ-

ent bio-signal. Approaches are being made to design systems that address the need

for a universal system capable of capturing the varying wide spectrum of bioelectric

signals.

Design of all these specialized as well as universal systems comes down to the

simple electric components like resistors and capacitors. With advanced technology

in play it is possible to have very high precision components. These nonetheless will

either have some degrees of variance in their value or drift from their original values

with time or both, affecting the performance of the system and the signal they are

used to capture. While it is vastly beneficial to have a universal system capable of

capturing different bio-signals, it is of paramount importance to have a knowledge of

the fidelity of the system as well as the captured signal.

This thesis stems from these two needs: a functional universal system compatible

with the wide range of bio-signal spectrum and a use-case characterization schema

for the system that ensures its stability and the fidelity of any signal it is responsible

to process. Here use-case characterization can be defined as obtaining the parameter

values that the system had while being used as opposed to real-time characterization

which is obtaining them during its use.

The basis of the first need, design of a successful universal system for processing

bio-signals has been addressed in a previous work [1] on which this thesis introduces
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some improvements. The second need, design of a schema for use-case characteri-

zation of a system uses Kalman filter, an estimation algorithm, to track the system

transfer function.

Background for both the needs is described in this introduction while details on

the design and procedure are described in the subsequent chapters.

1.1 Prior Works of This Thesis: An Introduction to Universal Invertible

Amplifier

Current technologies available for recording or monitoring bio-signals focus on spe-

cific signals with distinct set of system parameters. Thus multiple number of systems

are required for recording different signals. A convenient solution would be design

of an analog system versatile enough to be able to capture bio-signals from different

sources and digitally robust enough that the different signals can be extracted from

the captured mixed signal in digital end processing. Universal Invertible Amplifier,

UIA is an amplifier that uses a compressor-expander architecture employing a variable

gain tuned to the bandwidth characteristics of bio-signals.

The common amplifier filtering systems used in recording the different biosignals

additionally distort the signal in order to reduce noise and to elevate Signal-to-Noise

ratio (SNR) within the frequency bandwidth of signal of interest. However this fil-

tering causes irreversible distortion, making it impossible to go back to the original

signal that is seen at the electrode even during post processing. The filtering along

with attenuating the noise affects the shape of the signal of interest to some extent

making a shape dependent detection or diagnosis difficult. Thus it is necessary to go

back to the original signal seen at the electrode for shape based detection of signal of

interest [1].

Inspired from the need of such a common convergent system with a reversible

filtering architecture a first order UIA was built successfully [2]. However the very

small scale neural signal prompted the necessity for a higher gain system, hence a
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second order UIA was designed with a similar basic principle as the first one but

with a better system characterization schema because a higher order system is more

susceptible to instability and signal infidelity.

1.1.1 Universal Invertible Amplifier Architecture

Universal Invertible Amplifier, UIA architecture involves an analog front end

which is the compressor and a digital back end that is the expander. The basic

principle for the compressor is a variable gain amplification and filtering strategy

that spans the entire spectrum of bioelectric signals. This has been possible because

the general bioelectric signal profile follows a low pass filter characteristics as shown

in Figure 1.1. Thus the compressor follows a high pass filter profile to counter balance

the bioelectric profile. This serves the purpose of increasing the resolution with which

the compressed signal can be captured.

Fig. 1.1.: UIA profile (red) counter balancing general bioelectric signal profile

(blue). In general bio-electric signals fit into low-pass filter characteristics thus,

making UIA profile a high-pass filter with defined gain at low frequency range. This

is adopted from [1].
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Across the entire spectrum different bio-signals show different magnitude profile,

with Electrode Interface Potential, EIP, having magnitudes in the range of V and

Electromyogram, EMG and Electroneurogram, ENG in the range of mV and µV [3]

spanning a high range of magnitude. The amplifier captures the signals in the low

frequency region, that inherently have comparatively larger amplitude with a lower

gain profile whereas, in the high frequency region where the signals generally have

a comparatively lower amplitude the amplifier captures with a higher gain profile.

Hence, at the output the entire bio spectrum is captured at same magnitude scales.

On the recording side the entire resolution available for recording can be employed

within this shorter range of magnitudes enabling very high resolution recording. This

schema of compressing the signal based on its magnitude and then expanding later

is not new, the principle of companding system was first patented by AT&T [4] and

then it had been used by the music industry.

The compressor consists of a flat low gain stage that captures the DC parts of the

bio-spectrum and a main amplifier with the mentioned high pass filter profile that

keeps the entire amplifier from saturating [1]. The entire architecture is described in

the thesis works done by Kevin Mauser [1].

The digital back end or the expander is a digital filter that employs the inverted

transfer function of the UIA analog front end (1/UIA compressor transfer function)

which reverses the distortion applied by the compressor and goes back to the original

signal seen at the input of UIA compressor. The inverted signal should be a mixture

of different bio-signals from where the signal of interest can be extracted with digitally

filtering the inverted signal within the spectral band of the signal of interest.

The first generation UIA, described in [1], UIA01 Figure 1.2 is a first order

amplifier-filter system with a gain profile of 2-1000, Figure 1.3 over a frequency band-

width of DC-20 KHz. The instrumentation amplifier, INA 111 [5] at the front end

acts as a high impedance headstage and provides with a variable gain of 1-500 over

DC-20 KHz. The general purpose Op-amp OP27 [6] at the final stage provides with

a flat gain of 2 over all the frequencies.
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INA111

OP27GP

R1

R2
R3

C2

C1

Fig. 1.2.: UIA01, first generation UIA, circuit diagram. The Instrumentation

Amplifier INA111 forms the first stage and shapes the high-pass filter profile of the

system. OP27GP a the final stage provides a flat gain 2 over all frequencies.
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Fig. 1.3.: UIA01 frequency response. With a flat gain of 2 over the low frequency

range DC-0.1Hz and of 1000 over the high frequency range beyond 1KHz it holds

the variable gain region within 0.1Hz-1KHz with a first order high-pass filter profile.

The second order UIA was implemented by modifying the high pass filter in the

compressor into a second order one and adding an additional channel to the input

for realizing use-case characterization. The second order UIA modification and its

bench-top characterization is discussed in detail in chapter 2.
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1.2 Use-Case Characterization: System Parameter Estimation

The analog amplifier and filter chains used in the recording instrumentation are all

comprised of passive elements such as resistors and capacitors. These passive elements

tend to drift from their original values used in the design of the system depending

on multiple factors like passage of time, continuous usage, temperature etc..These

shifts in the original value are so small that in most applications they do not affect

the results. But in the case of bio-signal processing even very small amount of shifts

may be potential to cause shape distortion of the signal of interest, more so in case

of neural signals, which being very small are very much susceptible to changes in the

amplification system. Thus it is very important to keep track of the changes in the

system parameter values to compensate for them in post-process. Many high fidelity

recording systems compensates for the distortion by using the apriori characterization

of the system, but cannot compensate for changes taking place during usage.

The Universal Invertible Amplifier (UIA) architecture involves an expander stage

that inverts captured signal by the amplifier to refer to the original signal seen at the

electrode. This expander is essentially the inverted transfer function of the system,

which is known beforehand. But if the transfer function shifts during use because of

any change in the parameter values, inversion of the captured signal by the original

transfer function would cause distortion which fails the purpose of UIA. Besides, the

second order UIA being a fourth order system, a second order compressor and a

second order expander, its susceptibility to distortion is even more.

This thesis is inspired from the need for a continuous characterization scheme,

introducing a way to track the changes in parameter values thus enabling use-case

characterization of the system. The method used takes advantage of Kalman filter

algorithm [7]. In this thesis, its filtering property is used but in the reverse manner,

it is used to track the noise instead of tracking the actual signal for characterizing

the system.
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1.2.1 An Introduction to Kalman Filter

Kalman filter as an estimation algorithm has been around for more than 50 years.

Introduced by Emil Rudolf Kalman in 1960 [8] it found very fast acceptance in NASA

[7] and saw and continues to see extensive application in solving navigation problems

in marine systems, astronomy, Global Positioning Systems (GPS) etc. [9]. Kalman

filter made the application of estimation algorithm in modern control system easier

and in recent times its modifications like extended Kalman filter, EKF is being used

for nonlinear systems [7] . Kalman Filtering, Theory and Practices [7] by Mohinder S.

Grewal and Angus P. Andrews does a great job of introducing its background history

as well as the basics of its derivation. A short introduction of its working procedure

will be provided here to help understand the transfer function estimation calculation.

Before diving into Kalman filter theory, however, one needs to have a basic un-

derstanding about system modeling, especially state-space modeling, which is the

domain Kalman filter problems are defined in.

1.2.2 System Models

A system can be modeled in different ways, in different domains. Two such models

are transfer function model and state space model. A transfer function model gives

the input-output relation of a system in the frequency domain (as a function of s). A

state pace model on the other hand defines the system just not by its input-output

relation, rather it looks into the internal state of the system in time domain (as a

function of t).

State Space Model

State space model is a time domain approach of defining a system by its inputs,

outputs and the internal state variables. It is essentially breaking down and repre-

senting an Nth-order system into N first order differential equations. An analogy by
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Raymond A. DeCarlo [10] explains it as adding a perspective to the system definition.

An object can be seen from the top-down view or an oblique side view, Figure 1.4.

The oblique side view obviously adds new information about the object which can be

Fig. 1.4.: Top view (above) versus side-view (below) of objects, adopted from [10] .

The oblique view in this case carries additional information about the dimensions.

considered as the state variables conveying information about the internal state of a

system. Formally state of a system is defined as the minimum set of internal variables

which if known at time t0 is sufficient to specify the system at any time t given that

the input for time t is known [10,11].

The block diagram in Figure 1.5 shows the state space representation of a discrete

system.

Here,

uk = value of the input U at time point tk

yk = value of the output Y at the time point tk

xk = value of the state variable X at the time point tk
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B(k)

A(k)

D(k)

C(k)
u(k) x(k+1) x(k)

Delay y(k)
+

+

+ +

Fig. 1.5.: Block Diagram of a lumped system in state space model.

xk+1 = value of the state variable X at the next time point tk+1

Ak = State transition matrix, that relates state variable from previous time to its

state in next time point.

Bk = Input coupling matrix, that relates the state variable to the deterministic input

Ck = Output coupling matrix, translates the state variable to the output

Dk = Feed through matrix, relates the deterministic input to the output.

The model equations for this discrete system is given by:

xk+1 = Akxk + Bkuk (1.1)

yk = Ckxk + Dkuk (1.2)

For example, The state space model for the RC circuit in Figure 1.6 can be given

by Equation 1.6.

Fig. 1.6.: RLC series circuit.
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Using Kirchoff’s Voltage Law (KVL) in the circuit, we have,

d2v2(t)

dt2
=
−R
L

dv2
dt
− v2

1

LC
+ v1

1

LC
(1.3)

With Y = V2(t), the output, we can define the state variables,

X1 = Y (1.4)

X2 = X1 (1.5)

Thus,

Ẋ1 =
d2v2(t)

dt2

Ẋ2 =
dv2
dt

Ẋ =

 0 1

−1
LC

−R
L

X +

 0

1
LC

V1 (1.6)

Y =
[
1 0

]
X + [0]v1 (1.7)

Where,

X =

 v2
dv2
dt


and

Ẋ =

 dv2
dt

d2v2(t)
dt2


Transfer Function Models

In control systems another common way of defining a system is by its transfer

function in frequency domain where the input and output equations are differential

equations in s. One way to measure the performance of a system and determine its
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stability is to look at the solutions of these differential equations which are called

poles and zeros.

For example the continuous form of the lumped system shown in block diagram

of Figure 1.5 in s-domain can be represented as in Figure 1.7. With U(s) and Y(s)

as the Laplace transforms of the inputs u(t) and output y(t) the transfer function of

the system can be given by 1.8,

B(s)

A(s)

D(s)

C(s)
u(t) x(t) x(t)

1/s y(t)
+

+

+ +

Fig. 1.7.: Block Diagram of a continuous system in s-domain.

H(s) =
Y(s)

U(s)

= B(s)

(
1

s−A(s)

)
C(s) + D(s) (1.8)

For the RLC series circuit in Figure 1.6 the transfer function model is given by

Equation 1.9. Applying KVL in the circuit we get,

v1 − CR
dv2
dt
− LCd

2v2
dt2
− v2 = 0

V1(s)− CRsV2(s)− LCs2V2(s)− V2(s) = 0

V2(s)

V1(s)
=

1

1 + sRC + s2LC
(1.9)

The roots of the characteristics equations in the numerator and denominator of

the transfer function are the zero and poles respectively. The transfer function model

however, maps the input-output relation only without giving any insight into its inner

state variables.
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1.2.3 Kalman Filter Model

Kalman filter is a Least-Square Estimation algorithm, that operates in time do-

main and in a recursive manner. It refines its estimation by minimizing the covariance

between the true signal and its estimation and does so by updating its old estimation

for every new measurement in time. These two concepts will be better understood as

we proceed through this section and explain the algorithm.

With a system defined in a state space model as in Equation 1.1 and Equation

1.2, the Kalman filter is used to estimate X, the state variable at each point in time,

which in turn is used to calculate the output estimate Y. The relationship between

the observations or measurements, Z made with the process and state variable X can

be modeled with the linear relation Equation 1.10

zk = Hkxk + Dkuk (1.10)

Here,

zk = the observed value of the process at time tk.

Hk = Measurement sensitivity matrix, that transforms the state space variable pa-

rameters into the measurement domain. For example if we were to estimate velocity,

that is, the state variables are velocities at each point in time and the observations

made was distances then H would be ∆t. An important assumption in Kalman al-

gorithm is that all the parameters and state variables used to define the system are

Gaussian in nature and as a result the estimates calculated are Gaussian in nature.

Both the system definition and the measurement process come with a certain level

of uncertainty. This uncertainty can be incorporated in the system model as well as

measurement model by modifying Equation 1.1 and 1.10 as

xk+1 = Akxk + Bkuk + wk (1.11)

zk = Hkxk + Dkuk + vk (1.12)
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w and v are process error and measurement error respectively and are both mod-

eled as white noise and thus are uncorrelated. The covariance matrices for these

parameters are respectively Q and R given by Equation 1.13 and Equation 1.14,

E[wkwi] =

Qk i = k

0 i 6= k

(1.13)

E[vkvi] =

Rk i = k

0 i 6= k

(1.14)

Thus, Q and R are the parameters that quantify the uncertainty associated with

system model and measurement process respectively.

The entire algorithm can be divided into two stages, predictor stage or Time

Update stage [12] where a prior prediction is made and the time point is updated and

corrector stage or Measurement Update stage where this initial estimate made in the

predictor stage is updated.

At first, in the predictor stage, the estimate, x̂k−1 from the previous time point is

taken to make an apriori estimate of the state of the system at present time point,

x̂−
k based on the system definitions and the reference input U with Equation 1.15. At

the start however when there is no previous time point data a blind initial estimate

is made prior to any knowledge of the system to be used to predict the state of the

system at that point in time.

x̂−
k = Akx̂k−1 + Bkuk (1.15)

The apriori estimation error is defined as,

e−
k = x̂−

k − xk (1.16)

And the parameter that quantifies the uncertainty in the estimation process is

the estimation error covariance matrix, P. Thus the apriori estimation covariance is

given by,

P−
k = E[e−

k e−T
k ] (1.17)
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From Equations 1.15, 1.16 and 1.17, the apriori estimation covariance matrix

equation for the current time point is obtained,

P−
k = AkPk−1A

T
k + Qk (1.18)

In the corrector stage, these current time point apriori estimations, x̂−
k and P−

k

are taken and based on the current process measurement zk, input uk, and Kalman

gain K updated state estimation xk and the updated estimation covariance Pk is

determined.

The updated estimation is a linear combination of the apriori estimation, x̂−
k and a

weighted difference between the measurement, zk, and measurement prediction,(Hkx̂
−
k−

Dkûk), as shown in Equation 1.20. This difference is called measurement innovation,

showing the discrepancy between the predicted measurement and actual measure-

ment [12] . The weighting factor, Kalman gain K, updates the estimation based

on the estimation covariance matrix, P and measurement noise covariance matrix

R. When the observations are less noisy thus more accurate but there is not much

known about the system itself making the system model as well as estimation possess

comparatively highly uncertain, K favors the measured values more than the apriori

estimates. The opposite is also true, When the system measurement process is noisy,

and the system definition is comparatively accurate K favors the initial estimates over

the measurements to obtain the updated estimate for each time point. The expression

for K is given as,

Kk = (P−
k HT

k )/(HkP
−
k HT

k + Rk) (1.19)

And the state estimation as well as estimation covariance update is given by,

x̂k = x̂−
k + Kk(ẑk −Hkx̂

−
k −Dkûk) (1.20)

Pk = (I−KkHk)P−
k (1.21)

The output estimate ŷk is calculated from the estimated state variable xk

ŷk = Ckx̂k + Dkuk (1.22)
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x̂k and Pk are used as the apriori state estimate and estimation covariance re-

spectively for the next time point estimation. This way each time point estimation

retains all the previous time point estimations and makes the algorithm recursive. The

block diagram of Figure 1.8 adopted from ‘An Introduction to the Kalman Filter’ [12]

summarizes the process

Prediction Stage

kx̂- = Axk-1
^ +B k-1u

Pk
-
= A k-1P AT+ Q

project ahead

Corrector Stage

H
T
k

Determine the Kalman gain

Update the estimate with measurement zk

kx̂ kx̂-= + (kK zk-Hk kx̂- -Dk ku )

Update the error covariance 

Pk= (I- HkkK )Pk
-

initial estimate of
xk-1
^

k-1Pand

kK =Pk
- (Hk H

T
k +R)-Pk

-

Fig. 1.8.: Kalman filter estimation Block Diagram.

1.2.4 System Characterization: Transfer Function Estimation

Kalman Filter and its various modifications is being used for estimating system

parameters, tracking state of systems and denoising signals for years. Here we use its

denoising by signal estimation scheme for system characterization.

The way the use-case characterization is realized is a well-known input, a reference

signal, is fed into the UIA using a second channel. UIA mixes this signal with the

captured signals of interest and a mixed response is recorded as its output. However

since the reference input R is known, its response Y can be estimated from within

the mixed signal response using Kalman filter as shown in Figure 1.9 .

Then the estimated transfer function for this particular recorded signal becomes,
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Signal of interest, S + Reference, R Measured response, Z

= response of signal of interest, So

+ response of the reference Y

Kalman filter
Reference, R

estimate of reference response, Y
^

Universal Invertible Amplifier

Fig. 1.9.: Transfer function estimation Block Diagram.

TF =
Ŷ

R
(1.23)

Two different approaches were taken for feeding a reference to the system,

• Using a digitally synthesized noise signal to capture the signal characteristics

across a wide band of frequencies. In this case the synthesized reference needs

to be fed through the second channel of UIA, Figure 1.10.

Signal of interest, S
Measured response, Z

= response of signal of interest, So

+ response of the noise input, Y

Kalman filter estimate of noise response, Y

Pink noise, N

^

Universal Invertible Amplifier

Fig. 1.10.: Transfer function estimation using external noise reference.

• Using an inherent bio-signal with well known characteristics. This cancels the

requirement of a second input channel in UIA but requires a second recording

channel to capture the well characterized bio-signal as seen at the input of

the UIA in order to provide Kalman filter with a reference input to track its

response. In our case the well known signal is Electrocardiogram, ECG which

in most cases is contaminated with the signal of interest, Figure 1.11.

For both cases Kalman filter considers the signal of interest as noise and the

injected noise, which is the reference, as signal of interest, filtering out everything but

the reference response, which in turn is used to generate a transfer function estimate.
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Universal Invertible AmplifierSignal of interest, S

+ ECG contamination

Measured response, Z

= response of signal of interest, So

+ response of the ECG, Y

ECG

Kalman filter estimate of reference response, Y

ECG Amplifier

ADC

ADC

^

Fig. 1.11.: Transfer function estimation using inherent bio-signal reference.

A problem that was faced with estimating a second order transfer function was

that the estimation tended to go out of bound and would produce unstable results.

Splitting the transfer function into two first order transfer functions solved the prob-

lem. This way two separate measurements were recorded from the two stages of UIA

and they were used to estimate the two different transfer functions, combining them

in the end to produce the final transfer function.

1.3 Objectives

The aims of this thesis was:

• Implementation and characterization of a higher order Universal Invertible

Amplifier, and

• Implementation of a use-case characterization schema.

These aims and their implementation is discussed in the later chapters.
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2. UNIVERSAL INVERTIBLE AMPLIFIER: SECOND

GENERATION

The first generation of Universal Invertible Amplifier was a low noise variable

gain architecture that comprised the entire bio-signal spectrum with a profile com-

plementing the bio-signal spectrum. This was using OEIE algorithm as a means to

characterize the system [1]. However a need for higher gain, lower noise variable gain

system with more robust characterization scheme was evident, which prompted the

design of second generation UIA.

One of the main focus for UIA was detection of very low amplitude nerve signal

which could be on the order of 10 µ V. The total noise of the system, which included

thermal noise produced by the different the components in the system was contribut-

ing an input to output referred noise [13] equivalent of 30 µV which essentially buries

the signal of interest. This necessitated the design of a quieter system. For similar

reasons A higher gain at 1 Khz - 10 Khz frequency, where these nerve signals lie

was necessary. These modifications in the UIA architecture will be discussed in the

following sections in this chapter.

The Output Error Input Error algorithm used to characterize the first generation

UIA is a transfer function estimation algorithm, that is applicable for benchtop char-

acterization before or after the use of the system. The second generation UIA being

fourth order system (Second order compressor and second order expander) is more

susceptible to instability and transfer function shift thus requires a characterization

scheme that is real-time. Kalman filter algorithm is used to estimate the response

of a known reference input instead of directly estimating the transfer function and

the estimated response and reference is used to determine the system characteristics.

The system characterization scheme will be discussed in later chapters.
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2.1 UIA Architectures

The universal aspect of the UIA comes from the fact that its gain bandwidth

property encompasses the entire bio-signal spectrum making it universally applicable

to all common bio-signals. The same gain bandwidth property that has a defined gain

at all the frequencies of interest down to DC signal makes it invertible. No signal is

permanently distorted by the amplifier-filtering architecture of the UIA. These are

the common properties maintained throughout all the iterations of its modification.

The first generation UIA, UIA01 is described in Chapter 1, the modifications in

the architecture and improvements in the characteristics of the second generation

UIA, UIA02 and UIA03, are presented in this chapter.

2.1.1 Second Order UIA: UIA02 and UIA03

The need for the design of a second generation of UIA, a second order amplifier-

filter system, was the requirement of a higher gain profile at high frequency region for

the low amplitude nerve signal recording. Two different prototypes were developed

as second generation UIA, UIA02 and UIA03.

UIA02

UIA02, Figure 2.1, consists of two INA 111 at its front end giving it an additional

channel for injecting reference. This headstage provides for a flat gain of 2 at all

frequencies. The second stage is another INA 111 with a variable gain profile of 1-50

over frequencies DC-40 KHz. The second order variable gain of 1-100 over the same

spectrum was introduced by precession amplifier OPA228. The total gain bandwidth

profile, 2-10000 over DC-40 KHz, of UIA02 is shown in Figure 2.2. Its benchtop

characterization shows stability up to 40 KHz. The component values incorporated

in the circuit of Figure 2.1 to produce the frequency response of Figure 2.2 are R1
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and R2 equal to 50KΩ, R3 and R4 equal to 1KΩ and R5 equal to 100 KΩ. UIA02

transfer function is,

TF02 =
10004(s+ 19.6)(s+ 10)

(s+ 1000)(s+ 980.4)
(2.1)

INA111

INA111

INA111

OPA 228

R1

R2

R3

R4
R5

C2

C1

Fig. 2.1.: UIA02 circuit diagram.

Even though UIA02 fulfilled the requirement of a stable higher gain second order

system, the additional INA 111s were adding to the noise. The input referred noise [13]

caused by the higher feedback resistances in its internal circuit was increasing the noise

level above our signal of interest, the neural activity. Thus a low noise system design

was developed with UIA03.

UIA03

In UIA03 architecture, Figure 2.3, the INA 111 was replaced with low noise instru-

mentation amplifier, INA 217 [14]. The high impedance headstage was removed and

a separate unity gain high impedance preamplifier was used to communicate with the

electrodes along with a spatial averaging circuit added to the preamplifier, making

the UIA architecture smaller.

The gain profile of UIA03 was reduced to 1-5000, Figure 2.4, from gain of 2-

10000 in UIA02 by the removal of INA 111 headstage. The variable gains in the first

stage (1-100 over its bandwidth) and second stage (1-50 over its bandwidth) were also
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Fig. 2.2.: UIA02 frequency response.

INA217

OPA 228

R1

R2
R3

C2

C1

Fig. 2.3.: UIA03 circuit diagram.

switched. The reason was to reduce the resistor values required in the circuit reducing

overall thermal noise. The component values implementing these changes for the cir-

cuit in Figure 2.3 are R1 = 100Ω, C1 = 10µF, R2 = 50Ω, R3 = 2.5KΩ and C2 = 47µF.
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The transfer function for UIA03 is,

TF03 =
5151(s+ 9.901)(s+ 8.344)

(s+ 1000)(s+ 425.5)
(2.2)

10-2 10-1 100 101 102 103 104 105 106
100

101

102

103

104

G
ai

n
 (

ab
s)

Frequency (Hz)

Fig. 2.4.: UIA03 frequency response.

UIA03 was the final second order UIA architecture used for data recording and

evaluation of transfer function estimation process.

2.2 Use Cases: Signal Extraction

For validation of the Universal and invertible architecture, UIA03 was used for

ECG and EMG extraction. ECG Data was collected from rat vagus nerve while EMG

data was collected from human muscle.
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2.2.1 ECG Extraction

Vagus nerve data from Sprague Dawley rats was used for ECG extraction. All

the procedures were carried out according to protocol SC235R approved by IUPUI

School of Science Animal Resource Center (SARC) Institutional Animal Care and

Use Committee (IACUC). The vagus nerve was accessed through a chest opening in

an anesthetized rat using Transverse Intrafascicular Multichannel Electrodes, TIMEs.

Adequate anesthesia was maintained during the entire procedure. At the end of the

procedure the rat was euthenized according to protocol.

For recording the amplified data from UIA an ADAT recording system along

with Cubase VST32 software was used. A standard flat amplifier was also used for

simultaneous amplification and recording to validate the extracted data using UIA.

The recorded output, Figure 2.5 after inversion was reduced to the data seen

by the electrode. ECG extraction was done by bandpass filtering the inverted data

within the bandwidth, 0.2Hz-200Hz [3]. It shows close match with the ECG signal

collected using the standard amplifier, Figure 2.6. The difference in amplitude can be

attributed to the difference in signal sources, since the standard amplifier data was

collected from across the chest using hypodermic needle electrode whereas the UIA

data was collected from Vagus nerve using TIMEs. But the phase match for P-wave

an the QRS-complex is considered successful extraction in this case.

2.2.2 EMG Extraction

EMG data was collected from human muscle using Ag/AgCl surface electrode

(MEDITRACE 530 series, gel type adhesive). Prior to data collection the skin was

prepped by abrasion using medical grade sand paper for skin impedance reduction.

For recording the amplified data NIDAQ (NI USB 6212) and Mr. Kick version III

was used. EMG data was extracted using bandpass filter within the bandwidth,

200Hz-2KHz [3]. The extracted EMG showed close match with the EMG data
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Fig. 2.5.: Mixed and compressed signal at the output of UIA.

recorded with the standard amplifier Figure 2.8 Figure 2.9. The mean error between

the extracted EMG from UIA and the standard amplifier was 0.02 µV.
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Fig. 2.6.: ECG extracted from the UIA output by bandpass filtering the inverted

signal between 0.2Hz and 200Hz.
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Fig. 2.7.: Mixed signal at the output of UIA.
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Fig. 2.8.: Extracted EMG from inverted UIA output using bandpass filer between

200Hz and 2KHz. the signal show muscle contraction and relaxation.
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Fig. 2.9.: Simultaneous EMG recorded using a standard amplifier showing the same

muscle contraction and relaxation matching UIA data extraction.
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3. A CASE FOR CONTINUOUS CHARACTERIATION

AND INTRODUCTION TO TRANSFER FUNCTION

ESTIMATION

Most systems have a range of variance in its performance depending on the envi-

ronment conditions such as temperature or usage condition such as source power etc.,

which is normally mentioned in their user manual. This holds true for Universal In-

vertible Amplifier, UIA too. Each of the component used in its design have their own

variance factors which can multiply to produce a transfer function drift substantial

enough that will throw off the inversion process.

Several error analyses were run simulating conditions where different components

were introduced with different percentage errors in their values and the UIA inversion

performance against the calculated total shifted transfer function was evaluated and

was found to be substantial for small scale signals. This validated the necessity to

know the actual transfer at the time of amplifying. All the simulations were run in

Matlab 2016b.

The first attempt at use-case characterization was to use a known reference signal,

digitally generated noise, as a second input to the UIA and estimating its output using

Kalman filter. The estimation performance was perfect at higher frequency region

but was not that great at lower frequency region.

3.1 Inversion Error Analysis

The inversion error analyses were done in simulation to reflect various shifts in

three different component values in UIA architecture that can happen over time,

change of temperature or usage condition. Resultant transfer function shift for shifts

in different component was calculated by the method of propagation of error [15] .
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For inversion simulation, software generated White Gaussian Noise was used with

micro level amplitude.

3.1.1 Transfer Function Shift Calculation

Two capacitor values and one resistor values were varied in random within a

range of ±50% of their values. These components were chosen because they formed

the poles as the shift in poles contributes largely to the instability. The resulting

transfer function was calculated using equation of error propagation [15] as.

dH

H
=
dR

R
+
dC1

C1
+
dC2

C2
(3.1)

percentage of transfer function error =
dH

H
× 100% (3.2)

Where dH, dR, dC1, and dC2 are the changes in the values of the transfer function,

H, resistor, R, capacitor, C1 and second capacitor C2.

For each shift, dH, mean of the inversion error was calculated.

3.1.2 Inversion Error calculation for Varying Shifts in Transfer Function

10000 random cases of dH shifts corresponding to 10000 random combination of

the three component shift were taken for inversion error simulation for a known noise

input, N(t). The block diagram of Figure 3.1 shows the procedure.

Fig. 3.1.: Block diagram for error analysis.

The response, Rs(t) of N(t) to the shifted transfer function, Hs was inverted using

both the original transfer function, Ho giving Rs inv o(t) and the shifted transfer

function, Hs giving Rs inv s. For the inversion to be accurate the inverted signal
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should match N(t). Inverting with Hs compensates for the shift in transfer function

during recording the response and thus the inverted signal, Rs inv s should show no

difference from the N(t). However, it shows a significantly small amount of difference

which can be accounted as computational errors. The inverted signal Rs inv o which

was not compensated for transfer function shift in comparison shows considerable

difference. Median value was taken as a measure of the average error for each transfer

function shift.

Figure 3.2 shows the error level in inversion without shift compensation for varying

shifts in transfer function. Here the transfer function errors are sorted and grouped

within interval of 5% of error and mean of the inversion error within every interval is

plotted along with the upper quartile and lower quartile values within that interval.
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Fig. 3.2.: Inversion error in shift uncompensated inversion.

Figure 3.3 shows the inversion error with transfer function shift compensation.

A similar approach of plotting the mean inversion error within an interval of 5%

transfer function shifts was taken. From a comparison of Figures 3.2 and 3.3 with the

same transfer function shift of 15%-20%, which corresponds to a variance of around

5%-6.67% for each of the components, the mean inversion error becomes 4% whereas



31

in the case of shift compensated inversion, error lies at 0.3%. The inversion error

in case of shift compensation does not depend too much on the transfer function

shifts and has an almost constant level of around 0.3% within the entire range of

error calculation. This error can be attributed to computational errors and can be

considered insignificant.
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Fig. 3.3.: Inversion error in shift compensated inversion.

3.2 Transfer Function Estimation Process

The process for transfer function estimation was briefly introduced in Chapter

1. To find out the transfer function of the system either the component values of

the system need to be measured or it can be estimated from a known input-output

pair. Measuring the component values is not possible while the system is being used.

So we use a known input-output pair to estimate the transfer function or system

characteristics.

However, even if we consider a perfect error less recording setup, only the recorded

output is known and the input is unknown. If an additive known input is introduced
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into the system along with the signal of interest, its response will be mixed with the

response of the signal of interest to the system. Thus at that point the output of the

known input is unknown.

Thus we use the Kalman filter estimation algorithm introduced in Chapter 1 to

track the response of the known input to the system, filtering out other responses

and estimate the transfer function using the known input-estimated output pair with

Equation 1.23, as shown in Figure 3.4.

Signal of interest, S + Reference, R Measured response, Z

= response of signal of interest, So

+ response of the reference Y

Kalman filter
Reference, R

estimate of reference response, Y
^

Universal Invertible Amplifier

Fig. 3.4.: Transfer function estimation Block Diagram.

The two cases evaluated for estimating the response of a known input are,

1. Using a digitally synthesized input. This use-case and its outcomes are discussed

in details in the following section, Section 3.3

2. Using a well-defined bio-signal that is naturally collected by the recording system

along with the signal of interest, i.e. a well-defined inherent noise, which is discussed

in Chapter 4.

The Kalman filter estimation process that is used to track the response of the

known reference signal in the mixed output is described in Chapter 1. For ease of

explanation the equations will be presented in brief in this Chapter too.

After the development of the algorithm, it was tested for known input-output pair

in simulation for characterizing its estimation performance.

3.2.1 Kalman Filter Estimation

For Kalman filter estimation the UIA system needs to be defined in state space

model. The UIA in transfer function model is given by,
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TF =
5151(s+ 9.901)(s+ 8.344)

(s+ 1000)(s+ 425.5)
(3.3)

In state space model the discrete form of UIA transfer function is

Xk =

1.863 −0.8671

1 0

Xk−1 +

32

0

Uk−1 (3.4)

Yk =
[
−21.43 20.79

]
Xk + 5151Uk (3.5)

With,

A =

1.863 −0.8671

1 0

 (3.6)

B =

32

0

 (3.7)

C =
[
−21.43 20.79

]
(3.8)

D = 5151 (3.9)

Equation 3.4 and Equation 3.5 becomes,

Xk = AXk−1 + BUk−1 (3.10)

Yk = CXk + DUk (3.11)

Here, A, B, C and D represents the State transition matrix, Input Coupling

matrix, Output coupling matrix and Feed through matrix respectively of the system.

The UIA being time-invariant A, B, C and D are all constant in this case.

And from Equation 1.10 the known reference input in this case is U and its

response is Y. The measurement equation is as given by Equation 3.12

Zk = HXk + DUk (3.12)
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With,

H =
[
−21.43 20.79

]
(3.13)

(3.14)

In this case measurement sensitivity matrix H is the same as C since the estimated

output Y and the measured signal Z have the same units of measurement, V. Z in

this case is the mixed response Y + So, Figure 3.4. It treats S as noise and estimates

Y, essentially filtering out the noise So.

In the prediction stage an apriori estimate of the state variable X and estimation

covariance P is made with Equations 3.15 and 3.16. At time point zero where no

previous time point estimate is not available the initial estimate x̂k−1 was set to be

equal to zero, and since this was a blind estimate which potentially is very far from

the actual measurement, the initial Pk−1 was set a relatively high value. Once the

estimate stabilizes the covariance at steady state becomes small too.

x̂−
k = Ax̂k−1 +Buk (3.15)

P−
k = AkPk−1A

T
k + Qk (3.16)

In the corrector stage the apriori estimate of state variable and its covariance are

updated using Kalman gain K and the measured signal Z by Equations 3.18 and 3.19

Kk = (P−
k HT

k )/(HkP
−
k HT

k + Rk) (3.17)

x̂k = x̂−
k + Kkzk −Hkx̂k −Dkûk) (3.18)

Pk = (I−KkHk)P−
k (3.19)

The estimate updates depend on Kalman gain K which in turn depends on process

noise, Q, and measurement noise, R [16]. Thus one way to manipulate the estimation

process is to manipulate these two parameters. In our case we were confident with
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the system definition to keep Q small but with the actual signal of interest being the

noise to be filtered in the estimation algorithm R was set to be relatively large.

The response estimate, Ŷ to the known reference U can be calculated by 3.20

Ŷk = CX̂k + DUk (3.20)

The estimation algorithm was developed as a Matlab code and all estimation

processing including estimation error evaluation was done in Matlab 2016b.

3.2.2 Kalman Filter Estimation Performance

To test the performance of the code for estimation developed in Matlab, A software

generated square-wave input and its response to the UIA transfer function was used.

A block diagram of the process is shown in Figure 3.5.

Generated square  wave, u UIA transfer function True output, y

Kalman filter estimated output, y
Measurement noise, v

+ +
measured output, z ^

Fig. 3.5.: Block diagram for Kalman filter algorithm performance evaluation.

The Kalman filter estimation code was used to estimate the response,y of a square

input, u, Figure 3.6, generated in Matlab 2016b to the UIA transfer function. A

random noise signal, also generated in Matlab 2016b was added to the true response,

y to simulate a noisy measured signal, z. The active input, u and measured noisy

data, z were fed into the estimation code to evaluate the estimation performance.

A positive outcome should be a close match of the estimated signal, ŷ to the true

response y, even though its being fed a noisy version, z, of the true response.

As shown in Figure 3.8 The estimated response is a close match to the true

response, the difference between the true response and estimated response as well as

the difference between true response and the noise introduced measured response is
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Fig. 3.6.: Square wave input signal for estimation code evaluation.

shown in Figure 3.9 which shows that the estimation algorithm was able to filter out

most of the noise introduced in the measured data and estimate the actual response,

the mean residual noise present in the measured data is 0.5 V where as the mean

difference between y and ŷ is 0.0049 V.

It is noticeable from Figure 3.9 that at the very start of estimation the estimation

error is very large. this is due to the blind initial estimate that is made prior to any

knowledge about the system. The estimation algorithm adopts to the system model

very fast and the error level comes down as it reaches steady state.
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Fig. 3.7.: True response, estimated response and measured noisy response of the

square wave to the input.

Even with the close estimation of response the estimated transfer function using

the estimated response ŷ and the square wave input, u was not close to the actual

transfer function that generated this response, UIA transfer function. Figure 3.11

and 3.12 show the significant error level at the low frequency region.
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Fig. 3.8.: Zoomed in true response, estimated response and measured noisy response

of the square wave to the input.

3.2.3 Transfer Function Split

To stabilize the transfer function estimation, UIA transfer function was split into

two first order transfer functions reducing the number of pole and zero to be estimated

to one. For UIA02,

TF =
5151(s+ 9.901)(s+ 8.344)

(s+ 1000)(s+ 425.5)

=
101(s+ 9.901)

(s+ 1000)
× 51(s+ 8.344)

(s+ 425.5)

(3.21)
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Fig. 3.9.: Estimation error (above) and measurement error (below) showing that the

estimation algorithm successfully filtered out the injected noise.

With,

TF1 =
101(s+ 9.901)

(s+ 1000)
(3.22)

TF2 =
51(s+ 8.344)

(s+ 425.5)
(3.23)

Thus the estimation algorithm is used twice to estimate the reference responses

at the first stage and the final stage. From these TF1 and TF2 are estimated and

later combined to give the total transfer function estimate TFest. This required us to
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Fig. 3.10.: Transient estimation error at the start of estimation process.

take recording from the output of the first stage, Z1 as well as the output of the final

stage Z2

The state space models for TF1 and TF2 are given by,

Xk = 0.9792Xk−1 + 2Uk−1 (3.24)

Yk = −1.031Xk + 101Uk (3.25)

Xk = 0.99912Xk−1 + 0.5Uk−1 (3.26)

Yk = −0.8826Xk + 51Uk (3.27)
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Fig. 3.11.: Unstable transfer function estimation even when reference response

estimation performance was good.

And the estimated transfer functions are:

TF1est =
Ŷ1

U
(3.28)

TF2est =
Ŷ2

Ŷ1
(3.29)

TFest = TF1est × TF2est (3.30)

Since Z1 is the output from the first stage of UIA it is also the input to the

second stage and the estimated response, Y1, of the reference, U, at the output

of first stage is the reference input of the second stage with its estimated response

being Y2. The split transfer function estimation process is summarized in the block

diagram of Figure 3.13.
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Fig. 3.12.: Estimation error.

Signal of interest, S + Reference, R

^
Measured response, Z1 

= response of signal of interest, S1o

+ response of the reference Y1

Kalman filter
Reference, R

TF1 TF2

Measured response, Z2

= response of signal of interest, S2o

+ response of the reference Y2

Kalman filter
estimate of reference 

response, Y1^

estimate of reference 

response, Y2^

Fig. 3.13.: Block diagram for estimation process with split transfer function.
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With the same square wave evaluation in Matlab The final transfer function esti-

mation was a match to the original one, Figure 3.14.
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Fig. 3.14.: Transfer function estimation performance with split transfer function.

3.3 Use-Case: Using Digitally Generated Noise Input

Transfer function estimation using noise reference input was evaluated with UIA02

only. For broad spectrum transfer function estimation a noise signal is considered to

be good, with it having equal response at all frequencies. But the initial trials suffered

instability at lower frequency. Thus pink noise, which is low frequency spectrum noise

was used as the reference in this use-case.
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3.3.1 Noise Reference

Pink noise, shown in Figure 3.15 is a low frequency spectrum noise with power

spectrum profile as shown in Figure 3.16. Pink noise input was digitally generated

using Matlab 2016b and was injected into the second channel of UIA using NIDAQ

(NI USB 6212) and LabVIEW 2014 as shown in block diagram 3.17. Output from

the two stages was recorded and used to track the noise response.
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Fig. 3.15.: Pink noise reference input.



45

10 0 10 1 10 2 10 3 10 4 10 5

frequency (Hz)

10 -8

10 -7

10 -6

10 -5

10 -4

p
o

w
e
r 

s
p

e
c
tr

a
l 
d

e
n

s
it

y

Fig. 3.16.: Pink noise power spectral density.

Signal of interest, S
Measured response, Z

= response of signal of interest, So

+ response of the noise input, Y

Kalman filter estimate of noise response, Y

Pink noise, N

^

Universal Invertible Amplifier

Fig. 3.17.: Block diagram for transfer function estimation using pink noise.

3.3.2 Estimated Transfer Function

The estimated transfer functions of the two stages from the tracked responses

were,
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TF1est =
100.9(s+ 12.83)

(s+ 1003)
(3.31)

TF2est =
51.16(s+ 73.71)

(s+ 518.8)
(3.32)

Giving the final result as Equation 3.33 and Figure 3.18

TFest =
5162.2(s+ 12.83)(s+ 73.71)

(s+ 1003)(s+ 518.8)
(3.33)
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Fig. 3.18.: Transfer function estimation using noise input.



47

3.3.3 Estimation Error

Even with the split transfer function scheme estimation using noise reference still

suffered significant error level, about 1000% in the low frequency range, DC-1Hz,

Figure 3.19.
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Fig. 3.19.: Estimation error for noise input estimation.

This was because of the smaller total sample numbers in the reference noise in-

put. With larger signal the estimation performance would have improved. But the

estimation performance using an inherent bio-signal noise produced far better results

which inclined us towards exploring that route more.
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4. CONTINUOUS CHARACTERIZATION USING

BIO-SIGNAL

A common contaminant in bio-signal recordings is bio-signals originating from

surrounding organ systems. In our cases, while recording from peripheral nerves,

Electrocardiogram, ECG coupling happens more often than not acting as an in-band

noise. However the ECG signal is something that is well-characterized [17] and is a

very good candidate to be used as reference, which acts to our advantage. Instead of

using an external reference signal, the pink noise, an inherent bio-signal noise could

be used.

However to implement the idea a clean and simultaneous recording of the ECG

contaminant input is required for the reference input. One way to do that was to

record the ECG simultaneously while recording the signal of interest with a separate

standard amplifier with a flat gain within the bandwidth of ECG. This simultaneous

ECG input was used as the reference input to track its response mixed within the

UIA output and estimate the transfer function using the reference and response.

4.1 Electrocardiogram, ECG

ECG is heart tissue activation signal, encompassing a bandwidth of roughly 0.2

Hz - 200 Hz [3]. The three major segments of the signal are the low-frequency P-

wave, higher frequency QRS-complex followed by the low frequency T-wave. Its well

defined [17] characteristics makes its response easier to follow and be used as reference.
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4.2 ECG Response Estimation

The procedure for ECG response estimation is shown in Figure 4.1. ECG being the

inherent bio-signal noise UIA did not require a second channel for reference injection.

The reference signal seen at the input required for response estimation with Kalman

filter was recorded with a second standard amplifier with a flat gain of 1000. The

reference U, Figure 4.2, to the estimation algorithm was the output of the standard

amplifier scaled down by the flat gain of the amplifier.

Universal Invertible AmplifierSignal of interest, S

+ ECG contamination

Measured response, Z

= response of signal of interest, So

+ response of the ECG, Y

ECG

Kalman filter estimate of reference response, Y

ECG Amplifier

ADC

ADC

^

Fig. 4.1.: Transfer function estimation using inherent ECG contamination.

Using this reference, the ECG response was tracked from the mixed signal output,

Z of UIA, Figure 4.3. Figure (ref) shows the estimated response, Ŷ.

Data Collection

Same animal procedure as descried in Chapter 2 for Electrocardiogram data col-

lection from Sprague Dawley rat vagus nerve was taken. All the procedure were

conducted within the scope of protocol SC235R approved by IUPUI School of Sci-

ence IACUC. TIME electrodes were used to collect spontaneous nerve activation data,

signal of interest in this case, from the left vagus nerve in-vivo. Hypodermic needle

(18 gauge) electrodes were used to record the simultaneous ECG reference from across

the chest.
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Fig. 4.2.: ECG reference recorded using standard amplifier.

4.3 Transfer Function Estimation

Transfer function estimate, TFest, Equation 4.1 was obtained from the estimated

ECG response and the simultaneous reference record. Figure 4.5 shows a close match

between the estimated transfer function and the original UIA transfer function with

a percentage of error shown in Figure 4.6. The error level is still comparatively higher

in the low frequency region but the mean percentage of error within 1Hz-100Hz being

10−2 it is fairly insignificant.

TFest =
5151(s+ 9.899)(s+ 8.349)

(s+ 1000)(s+ 425.5)
(4.1)
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Fig. 4.3.: Mixed signal at the output of UIA.

Estimation error can be calculated using the equation of error propagation [15].

With dTF, dz1, dz2, dp1, dp2 being the difference in total transfer function, zero 1,

zero 2, pole 1 and pole 2 the transfer function estimation error is given by 4.2,

dTF

TF
=
dz1

z1
+
dz2

z2
+
dp1

p1
+
dp2

p2
(4.2)

Successful transfer function estimation using ECG reference was reproduced 10

times with a mean estimation error of 0.09% calculated using Equation 4.2 which is

considerably small making this a valid system characterization process.
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5. SUMMARY AND CONCLUSION

The aims of this thesis work was to introduce a continuous characterization schema

for higher order Universal Invertible Amplifier, UIA, with the objective of building

high fidelity amplification system. A second order UIA was designed and several pro-

totypes were built with that aim in mind and two different Use-Case Characterization

techniques were tested with successful results.

Use-Case Characterization technique using external noise source was not as suc-

cessful as the characterization scheme using inherent noise of the signal of interest, but

there are still potential ways of making the technique better. As we obtained better

results with using inherent noise source we stopped pursuing those techniques. How-

ever, for systems for which an external noise reference will be suitable this technique

can be easily tried out.

For Use-Case Characterization using inherent noise of the system we used ECG

cross contamination which is a very well-defined reference and can be captured using

standard amplification systems for collection of a simultaneous reference signal. Not

all systems have such a well-defined noise contamination and it can be difficult, if not

impossible, to characterize the inherent noise as well as its response to the amplifier-

filter chain system that needs to be characterized. Thus a future focus for this work

can potentially be tracking inherent noise of a system without a reference, but just

from the known apriori system definition.

As for the Universal Invertible Amplifier system, a complete system with the

low noise headstage in the form of a product is the immediate future goal. We

believe it can be a useful application in the biomedical research world and with more

improvements in time i the diagnostic medicine as well. However the Characterization

of system using its inherent noise may have far reaching potential applications, with

any unstable longterm use system.
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