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ABSTRACT 

The digit ratio (2D:4D) is a sexually dimorphic trait in mammalian hands that is a result 

of levels of prenatal androgen exposure (PNAE) during limb development. Previous studies have 

shown that females have a higher ratio than males and that sexual dimorphism in the ratio is 

greater in species with polygynous mating strategies and high levels of intermale aggression 

compared to monogamous species with low intermale aggression. This study used metacarpals 

instead of phalanges to test the hypotheses that the metacarpal ratio (2Mc:4Mc) will be higher in 

females than males within a species and that the ratio would be more sexually dimorphic in 

species with high intermale competition compared to species with low intermale competition. 

Intermale competition is defined as the frequency and intensity of aggression found in adult 

males within a species. Second and fourth metacarpals were measured on skeletonized animals 

for six species with different mating strategies (M=monogamy; P=polygyny) and levels of 

intermale aggression (H=high; I=intermediate; L=low; F=female; M=male). All animals used in 

the study were designated by the museum as wild-caught. Sample sizes for each species 

including mating strategy and level of intermale aggression were as follows: Aotus azarae (M,L; 

9F, 11M), Hylobates lar (M,L; 49F, 51M), Presbytis rubicunda (P,I; 18F, 19M),  Trachypithecus 

cristatus (P,I; 31F, 18M), Alouatta seniculus (P,H; 17F, 19M), and Macaca fascicularis (P,H; 

19F, 18M). Results comparing medians fail to reject the null hypotheses that the metacarpal ratio 

is the same between sex within the species and the ratios will be the same regardless of 

competition level. The sexes are non-significantly different in metacarpal ratio in A. seniculus, A. 

azarae, H. lar, and M. fascicularis; males have a significantly higher ratio than females in P. 

rubicunda, but females have a significantly higher ratio than males in T. cristatus. Results are not 
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consistent with previous research on digit ratios indicating that metacarpals and phalanges may 

respond differently in their growth and PNAE. 
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CHAPTER 1.  INTRODUCTION 

 Sexual dimorphism is a characteristic found in different organisms that can be associated 

with different social behaviors such as aggression and mating strategy. These characteristics can 

be seen in canines, body size, and dichromatism. One characteristic that has been the recent 

subject of much research is the ratio of the 2nd to the 4th digit (2D:4D) of the hand which is used 

to interpret the extent of prenatal androgen exposure (PNAE) during limb development. This 

ratio is computed by dividing the length of the second digit by the length of the fourth digit. 

Ratios that are closer to 1.0 are found in females while ratios less than 1.0 are found in males 

(Manning et al., 1998). These sexually dimorphic ratios can also be found in the digits in the 

feet, although most studies focus on the ratios in the hand.  

Manning et al. (1998) were among the first to determine that there was a relationship 

between prenatal hormonal influences and the 2D:4D ratio and that this relationship is 

instrumental in the understanding of testosterone levels within individuals. The low 2D:4D ratio 

characteristic of males indicates higher levels of PNAE in osteogenesis (Nelson and Shultz, 

2010). This low 2D:4D ratio has since been linked to increased intrasexual competition and high 

levels of aggression among males within a species (Bailey and Hurd, 2004; Benderlioglu and 

Nelson, 2004; Hӧnekopp et al., 2005). This thesis examines these relationships using metacarpals 

to determine the metacarpal ratio (2Mc:4Mc ratio) instead of the phalangeal ratio with the 

assumption that the metacarpal and the phalangeal development occurs during the same period of 

exposure to androgens.  

This study is a comparative analysis of metacarpal ratios in six species of primates. Since 

sexual dimorphism is increased in canine and body size in species with high intermale 

competition and decreased in low intermale competition (Nelson et al., 2011), this dimorphism 
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can be tested in the hand bones. The questions that this study addresses are: 1) is there a sexual 

difference in the 2Mc:4Mc ratio as in the 2D:4D ratio, and 2) is the intraspecific level of 

intermale competition (or alternatively, mating strategy) associated with this ratio? In accord 

with results for the 2D:4D ratio, the hypothesis in this study is that females will have a higher 

2Mc:4Mc ratio than males of species with high intermale competition (i.e., polygynous species), 

whereas the sexes will not differ in 2Mc:4Mc ratio in species with low intermale competition 

(i.e., monogamous species). The difference between the sexes is also expected to be greater in 

species with higher intermale competition than species with low intermale competition. The 

species used in this study are: Alouatta seniculus (Venezuelan red howler), Aotus azarae 

(Azara’s night monkey), Hylobates lar (lar gibbon), Macaca fascicularis (crab-eating macaque), 

Presbytis rubicunda (maroon leaf-monkey), and Trachypithecus cristatus (silvery lutung). These 

specific species were chosen for their representation of the Competition Levels used for this 

research and their availability within museum collections. 

Metacarpals are used instead of phalanges to determine whether they too show sexual 

dimorphism in relative lengths. McFadden and Bracht (2005) measured gorilla and chimpanzee 

metacarpals and found that the sex differences in the digit ratios are larger than the differences in 

the metacarpals but that the difference is still measurable justifying this research. McFadden and 

Bracht (2005) hypothesized that the variation in the differences was attributed to the digit and 

metacarpal growth being influenced by different mechanisms at different times during fetal 

development. In addition to the use of metacarpals, metatarsals will also be used because 

research measuring metacarpals and metatarsals found differences in both metapodials 

(McFadden and Bracht, 2003; 2005). This research analyzes the effect of intermale competition 
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and sex on the 2Mc:4Mc and 2Mt:4Mt ratios and does not include or control for potential factors 

such as interfemale competition, geographic region, locomotion, and body size. 

1.1 Focus of this research 

This research will evaluate whether there is a relationship between social behavior and 

2Mc:4Mc ratios within six primate species. In species with high intermale competition such as A. 

seniculus and M. fascicularis, the female 2Mc:4Mc ratio is expected to be greater than that of the 

male 2Mc:4Mc ratio. This study will test whether the same sexual dimorphism based on mating 

strategies in the phalanges is seen using metacarpals and metatarsals. Since this study compares 

the extent of the sexually dimorphic ratio in the metapodials between different intermale 

competition levels, the species with the same competition levels as predetermined by Plavcan 

and van Schaik (1992) are expected to have similar ratio differences between sexes in their 

metapodials. If results are consistent with research on 2D:4D, then use of metacarpals or 

metatarsals will facilitate future research into the relationship among prenatal exposure to 

androgens, skeletal development, and social behavior because the number of specimens in 

museum collections with usable and identifiable metapodials is far greater than specimens with 

usable and identifiable phalanges. However, if results are not consistent with those based on the 

digit ratio, the important issue is to explain why metapodial development differs from that of 

phalanges. 

Other researchers have found significant sexually dimorphic patterns in different 

metacarpal ratios. For gorillas, McFadden and Bracht (2003) found that the largest sex difference 

was in the 4Mc:5Mc ratio for both hands. For chimpanzees, the largest sex difference was in the 

2Mc:3Mc ratio only in the left hand, and for baboons the largest differences were in the 

3Mc:5Mc and the 4Mc:5Mc ratios in the right hand (McFadden and Bracht, 2003). While the 
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2D:4D ratio is known to show a significant difference in humans, another metacarpal ratio that 

has a difference is the 2Mc:5Mc in the left hand (McFadden and Bracht, 2002). Tague (2002) 

also found sex differences in the 3Mc:4Mc ratios although he did not specifically look for sex 

differences in ratios with his research on metacarpal lengths. Because the difference between the 

sexes in these ratios was considered meaningful in other research, this study will test all ratios in 

the metacarpals to determine whether another metacarpal ratio was sexually dimorphic relative to 

level of intermale competition. 

Using the identification of levels of intermale competition outlined by Plavcan and van 

Schaik (1992), the species were grouped into three categories: Competition Level 1, Competition 

Level 3, and Competition Level 4. Plavcan and van Schaik’s (1992) system put the species in 

their study on a spectrum based on the frequency and intensity of intermale aggression and found 

a positive correlation between this behavior and canine dimorphism. Type 2 will not be used for 

this research because of small available sample sizes.  

The first competition level (Type 1) can be identified as monogamous with little to no 

intermale aggression within the species. The second competition level (Type 2) is a multiple 

male and multiple female society but with low intermale aggression. Competition Level 3 (Type 

3) consists of species with multiple males and multiple females with seasonal intermale 

competition. Competition Level 4 (Type 4) consists of polygynous species with heightened 

intermale competition throughout the entire year. There is expected to be a gradient in the 

2Mc:4Mc (and 2D:4D) ratio difference between females and males, with no significant 

difference in Type 1 species, a slight difference in Type 3 species, and the largest difference in 

Type 4 species. Based on Plavcan and van Schaik (1992), the species in this study classified by 



5 

 

competition level are as follows: Type 1: A. azarae and H. lar, Type 3: P. rubicunda and T. 

cristatus, and Type 4: A. seniculus and M. fascicularis.  
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CHAPTER 2.  THEORETICAL BACKGROUND 

The foundational research that led to the examination of the relationship between digit 

length and exposure to prenatal androgens was conducted more than 50 years ago. In this 

research, Phoenix et al. (1959) exposed female guinea pigs to androgens which in turn 

“masculinized” the guinea pigs’ behavior. Phoenix et al. (1959) concluded that PNAE alters the 

normal expected behavior in adult guinea pigs. In another research project, Goy and Phoenix 

(1972) removed the testes of a male rhesus monkey after the second trimester of prenatal 

development, which is the time of heightened androgen exposure, and found that despite the 

absence of the male testes, the postnatal rhesus monkeys continued normal levels of male play 

behavior but less mounting behavior. The results from this early research and other research 

mentioned later in this literature review emphasize the importance in learning more about sex 

hormones and behavior which has the potential to increase our understanding of the proximate 

causes behind social bonding, aggression, and other behaviors (Nelson and Shultz, 2010). 

Robertson et al. (2008) conducted a study on the 2D:4D ratio and 2Mc:4Mc ratio in 

humans. Their results showed an average 2D:4D ratio of 0.908 for males and 0.922 for females 

with a standard deviation of 0.02 for both sexes with a statistical significance of p<0.01 and an 

average 2Mc:4Mc of 1.152 for males and 1.157 for females with a standard deviation of 0.03 for 

both sexes and a p-value of 0.01 (Robertson et al., 2008). Robertson et al. (2008) stated that 

metacarpals were advantageous over phalanges because of “finger problems” such as 

interphalangeal joint osteoarthritis and other trauma. They were able to use a larger sample size 

of metacarpals than phalanges of the same population, with 99% of usable metacarpals compared 

to 84% of usable phalanges in a sample size of 3172 participants (Robertson et al., 2008). One 
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difference between the current study and Robertson et al.’s is that this study will include the 

categorical variable of intermale competition in the analysis. 

 2.1 Prenatal fetal development and testosterone 

The sexually dimorphic characteristics in the 2D:4D ratio are established during prenatal 

development based on exposure to androgens. This difference in the ratio is first evident in 

humans as early as the ninth week of fetal development, is established by week 14, and is 

sustained throughout puberty (Malas et al., 2006; Manning, 2002; Nelson and Shultz, 2010; 

Shaw et al., 2012). The production of testosterone in fetal development is at maximum capacity 

in week 13, which is before the establishment of the sexual difference in the ratio (Malas et al., 

2006; Manning, 2002; Nelson and Shultz, 2010; Shaw et al., 2012). The temporal association 

between the establishment of sexual dimorphism in the 2D:4D ratio and heightened testosterone 

secretion suggests a causal relationship.  

Some structures of the body develop as a suite, independently of other structures. This is 

a concept known as modularity (Callebaut and Rasskin-Gutman, 2005). The presence of 

testosterone during a critical period of fetal development can change reproductive structures to 

male-like structures and sensitize the brain to male hormones, while the absence of testosterone 

can change the structures to female-like structures and sensitize the brain to female hormones 

(Mitchell, 1979). While this period can vary in different mammalian species, in monkeys it 

occurs during the 19th day for reproductive tissues and 46th day for the brain of fetal development 

(Mitchell, 1979; Neuman et al., 1970).  

The whole limb bud is a module, developing at the same time independently from the rest 

of the body (Raff, 1996). Therefore, the metacarpals may be influenced by the same hormonal 

stimuli as the digits, but the second and fourth digits seem to differ in their interaction with 
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androgen and estrogen exposure. In the fourth digit, the androgen receptors increase the length 

while estrogen receptors decrease the length (Howlett et al., 2015). Therefore, the length of the 

fourth digit is dependent on the balance of androgen and estrogen exposure beginning at the 

ninth week of development for humans. Generally, males are exposed to more testosterone and 

less estrogen (i.e., resulting in a longer fourth digit) while females are exposed to more estrogen 

and less testosterone (resulting in a shorter fourth digit), which creates the sexually dimorphic 

2D:4D ratio. The fourth digit can then be identified as the defining factor of the sexually 

dimorphic 2D:4D ratio. 

Berenbaum and Beltz (2011) made an interesting connection between hormones and 

development. They argued that social experience can cause hormone deficiencies in individuals 

(Berenbaum and Beltz, 2011). They identified this effect from social experience as something 

that occurs at puberty; however, there could be lasting epigenetic effects on the individual 

because of this hormone deficiency. Primate adults have behavioral patterns that are strongly 

correlated with their reproductive system creating sexually differentiated behavior. According to 

Neuman et al. (1970), these behaviors are affected by estrogens and androgens which are 

sex-specific hormones. This relationship with androgens and behavior could be indicative of 

social experiences being an influence on the growth and development of an individual. 

More specifically, Berenbaum and Beltz (2011) were able to ascertain the relationship 

between testosterone and growth during fetal development. They found that the difference 

between the sexes begins in early development and finishes at puberty; however, social and 

biological experiences could influence this development as they could cause hormone 

deficiencies at puberty (Berenbaum and Beltz, 2011). Berenbaum and Beltz’s research shows 

that sexual differentiation is existent before puberty, the time when there is the highest lifetime 
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amount of secretion of estrogen or testosterone excluding pregnancy. Thus, studying 

characteristics that are evident in prenatal development should be further researched to better 

understand the prenatal androgen levels in different species prior to the influences of social 

experiences.  

The masculinized digit ratio (low 2D:4D ratio) has been found in human fetuses that have 

high levels of amniotic testosterone (Lutchmaya et al., 2004; Nelson and Shultz, 2010). 

Interestingly, van Anders et al. (2006) stated that in a study on dizygotic twins, females with a 

male twin have a lower 2D:4D ratio (masculine ratio) than females with a female twin, which 

was attributed to hormone-transfer during development and not postnatal behavior associated 

with females growing up with male co-twins. The amniotic testosterone levels have also been 

found to affect postnatal growth and metabolism (Manikkam et al., 2004; Smith et al., 2010; 

Wolf et al., 2002). In other research on amniotic levels of testosterone, Resko (1974) found 

higher levels of testosterone in the umbilical artery in normal male rhesus monkey fetuses than 

normal female fetuses. This was to be expected; however, he also performed an experiment in 

which he castrated male rhesus monkey fetuses on day 100 of gestation (during week 14, which 

is when digit ratio is fixed) and found that this did not affect the testosterone level of these male 

fetuses compared to normal male fetuses (Resko, 1974). This is significant because it shows that 

prenatal testosterone levels are secreted prior to the fixation of the digit lengths.  

2.1.1 Uterine environment and its effect on the fetus 

As previously stated, the uterine environment influences many aspects of the embryo 

during integral periods of development. The method of examining hormones in the amniotic 

fluid and relating them to postnatal behavior was first conducted by Finnegan et al. (1989). 

Finnegan et al. (1989) used amniocentesis during the second trimester and concluded that 
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hormone levels of the fetus were not determined by the fetal sex. In a study conducted on 

Callithrix geoffroyi (white-headed marmoset) to determine the relationship between a mother’s 

level of testosterone and the level in her offspring during prenatal and postnatal development, 

Smith et al. (2010) found that changes in maternal androgen levels can affect prenatal and 

postnatal growth rates. The maternal androgens that are exposed to the fetus are not influenced 

by the fetal sex both in marmosets and in humans (Glass and Klein, 1981; Meulenberg and 

Hofman, 1991). Smith et al. (2010) found that this influence depended on the life stage the infant 

was in when exposed to the androgens. For example, marmoset mothers with high levels of 

androgens during their first trimester gave birth to smaller infants with slower growth rates than 

mothers with low levels of androgens (Smith et al., 2010), showing the significance of maternal 

androgens during the first trimester. The marmosets made up for this decreased growth during 

late infancy and with an increased growth rate as juveniles (Smith et al., 2010). The evidence in 

this research shows that growth rates of individuals at different life stages, whether prenatally or 

postnatally, depend on the androgen levels of the mother during the first trimester of their 

pregnancy, which is the same trimester in which the limbs develop. The relationship between 

maternal androgens and fetal development shown in Smith et al. (2010) indicates that the first 

trimester is an integral time in development relating to hormones that have organizational effects 

on the individual. 

2.1.2 Masculinization and feminization as a result of hormones 

Digit growth in mammals is determined by the levels of androgens and estrogens secreted 

during fetal development along with activational effects during postnatal development. During 

normal fetal development for males, testosterone is synthesized from the Leydig cells of the 

interstitial testicular tissue which leads to male secondary sex characteristics, masculinized 
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behavior, and spermatogenesis (Manning, 2002; Smith et al., 2010). Exposure to high prenatal 

testosterone stimulates the growth of the fourth digit creating a more masculine ratio, whereas 

exposure to prenatal estrogen reduces the growth of the fourth digit resulting in a more feminine 

ratio (Howlett et al., 2015; Manning, 2002). The relationship between the two receptors for 

testosterone and estrogen determines the sexual dimorphism in this ratio, with a positive 

relationship between testosterone receptors and the length of the fourth digit and a negative 

relationship between estrogen receptors and the fourth digit. Therefore, the extent of the sexual 

difference in the ratios in different species should indicate the interspecific differences in number 

of androgen and estrogen receptors which can then be used for further analyses on the behavior 

of these animals.  

 Hormones can have masculinizing effects on individuals that could permanently 

influence their growth and development. One example is through Congenital Adrenal 

Hyperplasia (CAH). CAH is an autosomal recessive disorder that is caused by an enzyme defect 

that affects cortisol production, thus resulting in high levels of prenatal androgen exposure 

(Berenbaum and Beltz, 2011). The common case of a person with CAH has a deficiency of the 

21-hydroxylase enzyme which negatively affects cortisol synthesis (Mathews et al., 2009; New, 

1998). The enzyme deficiency increases androgens by inhibiting cortisol synthesis through the 

adrenal cortex, thus preventing androgens from converting into cortisol (New, 1998). This causes 

an overall increase in androgen production, creating a more masculinized effect because of this 

decrease in cortisol secretion (Mathews et al., 2009). Mathews et al. (2009) found that CAH in 

both male and female individuals alters sex-specific behaviors. Also, women with CAH have a 

masculinized 2D:4D ratio caused by them being exposed to an increased amount of prenatal 

androgen hormones (Shaw et al., 2012). There is also evidence that the ratio of testosterone to 
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progesterone to which a fetus is exposed can affect their sexual differentiation (Mitchell, 1979; 

Resko, 1974). In addition to CAH, another indicator of imbalanced hormones is polycystic 

ovarian syndrome (PCOS), whose symptoms include hyperandrogenism which causes women to 

give birth to smaller offspring at gestational age (Smith et al., 2010). As previously discussed, 

this could influence the growth rate of the individual and shows the effect of maternal androgens 

on the fetal growth. Also, men born with androgen insensitivity have a feminized 2D:4D ratio 

indicating the relationship between hormonal imbalance and digit length is evident in men (Shaw 

et al., 2012).  

Sex-specific hormones play a part in organizing the brain and the body (Nelson and 

Shultz, 2010). Therefore, feminine hormones can also influence certain aspects of the brain and 

the body. One such influential hormone is progesterone. According to Resko (1974), there are 

higher levels of progesterone in the umbilical vein and artery of female fetuses than found in 

male fetuses which act as an antagonist to androgens. Thus, more progesterone means less 

androgen (Mitchell, 1979). Because of this negative correlation, progesterone could have an 

indirect effect on the influences that different androgens have on the growth and development of 

the fetus.  

Growth and development of an individual are affected by testosterone sensitivity and 

insensitivity. This sensitivity peaks at perinatal development, declines throughout puberty and 

ends in late adolescence/early adulthood (Berenbaum and Beltz, 2011). The time between birth 

and puberty is also influential on the later development of the individual. The previous research 

on marmoset growth conducted by Smith et al. (2010) emphasizes that maternal androgens affect 

prenatal and postnatal growth rates and shows that this sensitive period can influence the growth 

and physiology of the individual.   
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 2.2 Genetic effects 

The codon, CAG, repeats on exon 1 of the androgen receptor gene, and more CAG 

repeats on the exon causes an increased insensitivity to androgens during development (Shaw et 

al., 2012). Manning et al. (2003) tested the correlation between CAG repeats and 2D:4D ratio 

and concluded that the sensitivity resulting from the number of CAG repeats can partially 

explain the 2D:4D ratio. The repeats of CAG and 2D:4D ratio have a positive allometric 

relationship, meaning that the more CAG repeats there are on the androgen receptor, the higher 

the 2D:4D ratio because the cells are less responsive and, therefore, more insensitive to 

androgens keeping the fourth digit shorter (Manning et al., 2003).  

2.2.1 Homeobox genes 

Modules are evident in the osteological structures and respond the same way to the same 

stimulus in development. One of these modules is the distal zeugopod/posterior digit module, as 

suggested by Reno et al. (2008), which is regulated by Hoxd11 of the group of homeobox genes 

(Reno et al., 2008). The modules are regulated through different Hox genes. Hox genes affect the 

overall pattern of development by regulating the digits and testes based on different extents of 

androgen sensitivity in the Hox gene clusters (Manning et al., 1998; Manning, 2002; Reno et al., 

2008). However, knowledge is limited regarding the exact targets of Hox gene expression (Reno 

et al., 2008).  

This research will focus on the Hoxa and Hoxd genes, as they are associated with the 

organization of the distal zeugopod and regulate parts of the reproductive system including the 

gonads and the penis which are all associated with testosterone levels within an individual 

(Nelson and Shultz, 2010). Additionally, these Hox genes regulate the mesenchyme allocated to 

the growth of digits which could induce a reduction or an increase in the length of the digits 
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(Tague, 2002). Hox gene expression in the distal limbs is divided into separate phases. In the first 

phase, as outlined by Reno et al. (2008), the zeugopod is organized (Tarchini and Duboule, 

2006) and then, in the second phase, the Hoxd genes pattern the digits (Reno et al., 2008; Spitz et 

al., 2003). Reno et al. (2008) believe that since there is a strong correlation between Hox gene 

expression and limb development, then any research into the evolution of mammalian limbs 

should consider the influence of these genes and their “downstream targets.” 

In the zeugopod, Hoxd11, Hoxd12, and Hoxd13 are the only Hox genes known to 

influence the posterior digit morphology (Reno et al., 2008). For example, a posterior extension 

of Hoxd13 expression has shown to expand the wing of a bat (Chen et al., 2005). Also, deletion 

of Hox genes negatively affects the development of the distal zeugopod. If Hoxd12 and Hoxd13 

are deleted, then Hoxd11 action is unmodified and causes deformations in the wrist and hand 

such as partially fused metacarpals and shortened phalangeal lengths (Kmita et al., 2002; Reno et 

al., 2008). Another example of how Hox genes can affect development is through complete 

ablation of Hoxa11 and Hoxd11, which Davis et al. (1995) have shown to result in the 

appearance of shorter radii and ulnae.  

While complete ablation of these Hox genes shortens bones, an increase in Hox gene 

dosage can also influence bone lengths, as seen with Hoxd11 and Hoxd13 (Boulet and Capecchi, 

2002; Reno et al., 2008). Altered expression of Hoxd11 in mutated mice caused reductions in 

metacarpals and phalanges (Davis and Capecchi, 1996). The Hox dosage influences the length of 

metacarpals and phalanges as shown in experiments with mice (Boulet and Capecchi, 2002). 

This experiment showed that there is a relationship with Hox genes and metacarpal/digit growth 

in mice. This difference in the amount of Hox gene dosage among different species could explain 

the specialization of different digits in the hands of some primates (Reno et al., 2008). Hoxa and 
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Hoxd expressions are significant because they control different anatomical features that 

essentially include the positional identity of the feature’s function and, most importantly, they 

control cell adhesion and proliferation that specify the anatomy of the limbs (Reno et al., 2008). 

In research altering Hoxd11 and Hoxd13 on mice, when mutated to be homozygous, the Hoxd13 

mice had shorter metacarpal lengths, missing phalanges, and deformed carpals (Davis and 

Capecchi, 1996) while Hoxd11 mice had reduced lengths in the metacarpals and phalanges 

carpals (Davis and Capecchi, 1996; Reno et al., 2008). Reno et al. (2008) conclude that Hoxd11 

is one of the primary regulator genes for the distal zeugopod and posterior digits.  

There is an evidentiary relationship between Hox gene regulation and the developing 

forelimb. Fluctuations in Hox gene expression have been shown to affect the length of the 

forelimb module. Results found in the previously mentioned research could also explain the 

derived traits in the digit lengths in certain primates that result in a change in one or more digits 

with little to no effect on the rest. For example, the digit elongation in different ateline and 

colobine monkeys could be attributed to an increase in Hoxd11/Hoxd12 expression, a decrease in 

Hoxa13/Hoxd13 expression, or some sort of modification of their Hox response systems (Goff 

and Tabin, 1997; Reno et al., 2008).  

 2.3 Hormonally influenced behavior 

 Males and females are observed to have different roles in many primate groups. Often, 

their social roles differ regarding dominance and status rankings (Mazur, 1976). Dominance and 

social ranking depend on the effect that testosterone has on different behaviors (Mazur, 1976). 

Therefore, the feedback loop relationship between prenatal and postnatal testosterone levels, 

behavior, and social ranking should be examined in research involving a combination of the 

three. While there is weak evidence for PNAE effects on sex-typed behavior, characteristics such 
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as aggression, autistic-like features, and cognition have been found to be influenced by prenatal 

androgens to a moderate degree (Berenbaum and Beltz, 2011).  

Other examples of hormonally influenced characteristics are “maternal investment; 

growth and developmental patterns; body and canine size; scent glands and scent-marking 

behavior; vocalisations and various visual ornaments such as manes, flanges, coloured skin and 

fur; as well as interspecific variation in traits such as relative testes size and penile morphology, 

and the presence of sexual swellings” (Kappeler and van Schaik, 2004:3-4). In a society that 

depends on a hierarchical structure of dominance to maintain social stability, a change in an 

individual’s social status could affect an individual’s fitness and, by inference, could also be 

affected by an individual’s PNAE (Howlett et al., 2015). Males and females have competitive 

regimes that can be associated with one another; however, the intermediate Competition Level 

(Type 3) used in this study had no discrepancy between the extent of male and female 

competition (Nelson and Shultz, 2010). If the 2D:4D ratio and 2Mc:4Mc ratio can be informative 

of PNAE levels, then these ratios can be used as additional variables in studies involving 

androgen exposure and other behaviors associated with these hormones such as intrasexual 

competition.  

 2.4 Sexual dimorphism and intermale competition 

There are two different types of hormonal effects on the structure of the brain. The first is 

organizational effects which “produce permanent changes to brain structures and the behaviors 

they subserve” (Berenbaum and Beltz, 2011:183). The second is activational effects which are 

“hormones acting later in life to produce temporary alterations to the brain and behavior (through 

ongoing changes to neural circuitry) as the hormones circulate in the body throughout 

adolescence and adulthood” (Berenbaum and Beltz, 2011:183). The importance of the 
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relationship between organizational and activational hormonal effects is that PNAE presents 

variability during fetal development which, in turn, causes variability in these networks during 

adulthood (Shaw et al., 2012). These prenatal sex hormones have been found to influence 

masculine behaviors such as foot-clasp mounting and rough-and-tumble play in different 

anthropoids (Nelson and Shultz, 2010) and feminine behaviors such as sociality and affiliative 

behavior (Howlett et al., 2015). The prenatal hormones that determine the 2D:4D ratio are 

considered to have organizational effects because they occur early in development and are more 

permanent. This indicates that any variation in sex hormone exposure with pubertal timing could 

influence aspects of brain organization and associated behavior (Berenbaum and Beltz, 2011). 

The organizational and activational hypothesis is examined in a longitudinal study on 

PNAE and the growth rates over time in marmoset monkeys, C. geoffroyi. In this study, Smith et 

al. (2010) measured the growth rate of marmosets born with “normal” PNAE from birth to 300 

days old. In addition to the growth, Smith et al. (2010) documented intra- and interindividual 

variation in the marmosets’ urinary androgen levels. The growth rates in these marmosets were 

found to be contingent upon the level of androgen exposure during the first trimester (Smith et 

al., 2010). The relationship between growth rate and androgen exposure was negatively 

correlated because, as the androgen exposure during the first trimester increased, the weight and 

postnatal growth rate decreased (Smith et al., 2010). The conclusions in this study suggest that 

PNAE during the early stages of development can have lasting effects on the postnatal 

development of the individual, such that a heightened exposure to androgens could inhibit the 

morphological size of certain characteristics (Smith et al., 2010). This study supports the 

organizational and activational hypothesis because the PNAE produces permanent changes to the 

structure that become more prominent later in life. 
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2.4.1 Notable research on sexual dimorphism 

Previous research on the 2D:4D ratio across primates shows consistency with sexually 

dimorphic 2D:4D ratios. Nelson and Shultz (2010) conducted the first study of 2D:4D ratio 

variation among primates comparing the ratios of species with different mating strategies. They 

found that 2D:4D ratio among males is lower (higher PNAE, masculinized) in polygynous 

species with high intrasexual competition and that 2D:4D ratio among males is higher (lower 

PNAE, feminized) in pair-bonded species with low levels of intrasexual competition (Nelson and 

Shultz, 2010). Within pair-bonded and nonpair-bonded species, all species examined had a 

significant sexual difference in the ratio (Nelson and Shultz, 2010). In addition to high intermale 

competition being associated with low 2D:4D ratio, interfemale competition and 2D:4D ratio 

was also strongly associated (Nelson and Shultz, 2010). Nelson and Shultz (2010) controlled for 

phylogeny and locomotion, which removed different influences on hand morphology, and found 

the 2D:4D ratios and social behaviors to be maintained with consistent results in Anthropoidea. 

Nelson and Shultz (2010:401) believe that their results are “consistent with prenatal 

androgens in non-human primates potentially promoting the development of competitive and 

aggressive behaviors, which can ultimately be manifested in increased intrasexual competition, 

polygynous social systems and dominance hierarchies.” This consistent relationship in this study 

and others mentioned in this chapter shows that PNAE could be considered a mechanistic 

explanation for the evolutionary development of sex-specific behavior, predominantly behavior 

associated with aggression (Nelson and Shultz, 2010). Nelson and Shultz (2010) believe that one 

evolutionary mechanism that is a result of PNAE is female philopatry in nonhuman primates, 

which is now believed to be a derived response to competition versus an ancestral trait response. 

The hormones that influence the 2D:4D ratio and the associated behaviors originate from the 
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fetal gonads or the maternal adrenal glands and can therefore be either fetally or maternally 

derived (Mesanio and Jaffe, 1997; Rabinovici and Jaffe, 1990), meaning that mothers and their 

uterine environment could be considered an influence for the evolution associated with these sex 

hormones in addition to the male fetal secretion of testosterone. This is significant especially in 

species with female dominance hierarchies that could have an epigenetic effect on offspring 

(Nelson and Shultz, 2010). Nelson and Shultz (2010) continued to speculate whether the shifts in 

PNAE with associated genetic changes may have contributed to flexibility and dexterity in the 

hands of apes and, consequentially, modern humans. They found that there was a dimorphic ratio 

in relation to interfemale competition (Nelson and Shultz, 2010). Their results show that lower 

2D:4D ratios in females were associated with high interfemale competition and female 

philopatry, while high 2D:4D ratios in females were associated with low interfemale competition 

and heterosexual or female dispersal (Nelson and Shultz, 2010). Overall, they found a more 

extreme difference in the ratios of nonpair-bonded species than in pair-bonded species (Nelson 

and Shultz, 2010).  

 2.5 Evidence in other species 

Testosterone levels have been proven to be varied among different mating strategies in 

nonprimate animals. A study on the polygynous pectoral sandpiper (Calidris melanotos) and the 

monogamous semipalmated sandpiper (Calidris pusilla) has found that the polygynous males 

had higher levels of testosterone than the monogamous males and sustained the testosterone 

levels for a longer period during their breeding season (Steiger et al., 2006). This study supports 

the organizational and activational hypothesis and suggests that certain behavior is sensitive to 

levels of testosterone (Steiger et al., 2006). 
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Further information that the 2D:4D ratio and 2Mc:4Mc ratio can provide is an 

understanding of the social relations in extinct species. Nelson et al. (2011) examined proximal 

phalanges and their ratios in early hominoids to predict the social systems of these species. The 

early hominins (Middle to Late Miocene) were estimated to have generally polygamous, high 

intermale competition social systems using the proximal phalangeal ratio (2PP:4PP) (Nelson et 

al., 2011). In contrast, Australopithecus africanus had the proximal phalangeal ratio of a 

monogamous species. Nelson et al. (2011) found Neandertals and other early anatomically 

modern humans to have a 2PP:4PP ratio suggesting higher intermale competition compared to 

modern human populations. With further research into the accuracy of the association between 

ratios in the hand and mating strategies, the findings in this study suggest that the social systems 

of extinct primates can be inferred through the utilization of 2D:4D ratios in postcranial analysis 

of fossils and can assist with the understanding of the evolution of human social behavior 

(Nelson et al., 2011). 
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CHAPTER 3.  MATERIALS AND METHODS  

 3.1 Materials 

Table 3.1 presents sample sizes for each species and their level of intermale competition. 

Two species were used to represent each competition level and its corresponding ordinal 

variable. For the research, 100 H. lar specimens (Type 1; 51 male; 49 female) and 20 A. azarae 

specimens (Type 1; 11 male; 9 female) were measured. There were 37 P. rubicunda specimens 

(Type 3; 19 male; 18 female) and 49 T. cristata specimens (Type 3; 18 male; 31 female). For this 

sample, 36 A. seniculus specimens (Type 4; 19 male; 17 female) and 37 M. fascicularis 

specimens (Type 4; 18 male; 19 female) were measured. Adults were used in this research and 

were defined as specimens with their metacarpal epiphyses fused. Metacarpals that were 

articulated or damaged were disregarded. Sex, species, and locality were determined using 

museum records. The specimens measured at the museums were all indicated as wild-caught.  

Table 3.1 Sample sizes and competition level of species 

 

 

 

 

 

 

 3.2 Methods 

Digital calipers were used to measure the maximum length of each metapodial to the 

nearest 0.01 mm. I measured all available metapodials 1-5 of the specimens but am only 

reporting metapodials 2-5 because they are the metapodials in ratios mentioned in previous 

Species 

Competition 

Level Males Females Total 

Alouatta seniculus 4 19 17 36 

Aotus azarae 1 11 9 20 

Hylobates lar 1 51 49 100 

Macaca fascicularis 4 18 19 37 

Presbytis rubicunda 3 19 18 37 

Trachypithecus cristatus 3 18 31 49 
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literature. The average 2Mc:4Mc and 2Mt:4Mt is defined as the average of the left and right side 

combined or the single left or right side if either was unavailable. To determine intra-observer 

error and precision, A. seniculus was measured twice and using the first 100 double 

measurements of the metapodials, the intra-observer error was estimated using the equation: 

(|original value-repeated value|/original value). This mean value was 0.0623. The precision was 

then calculated as 1- intra-observer error. The precision value was 0.9377. 

 3.3 Statistical analysis 

 SPSS was used for all statistical analyses. Statistical tests included Mann-Whitney U tests 

and two-way factorial ANOVA (Analysis of Variance) using the independent variables 

Competition Level and Sex for each ratio used as the dependent variables. The Wilcoxon signed-

rank test was used to determine asymmetry in the metapodial ratios. The null hypotheses and the 

corresponding alternative hypotheses were as follows. Null Hypothesis 1: Female ratio values 

will be the same as male ratio values averaged across species; Alternative Hypothesis 1: Female 

ratios will not equal male ratios. Null Hypothesis 2: The average 2Mc:4Mc ratios of the species 

are the same averaged over sex among the competition levels; Alternative Hypothesis 2: The 

average 2Mc:4Mc ratios of the species are different averaged over sex among the competition 

levels. Level of statistical significance was set at p≤0.05 for analyses.  
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CHAPTER 4.  RESULTS 

4.1 Descriptive statistics for metapodials 

Tables 4.1 and 4.2 show the descriptive statistics found for each variable in the 

metapodials. Among 88 comparisons for each metapodial between the sexes, the male average 

was greater than female average seven times out of eleven for metacarpal 2 on either side, nine 

times for metacarpals 3 and 5 out of eleven, ten times out of eleven for metacarpal 4 and 

metatarsals 3 and 5, and all eleven times for metatarsals 2 and 4. The female average was larger 

than the male average four times for metacarpal 2 out of eleven, twice for metacarpals 3 and 5 

out of eleven, and once for metacarpal 4 and metatarsals 3 and 5 out of eleven comparisons. 

These results show that in general males have longer metapodials than females, but that the 

prevalence of this dimorphism is the least frequent for metacarpal 2. Left metapodial values for 

male P. rubicunda were unavailable and therefore left out of the comparison of the descriptive 

statistics.  

Table 4.3 presents the results of the Wilcoxon signed-rank test for asymmetry between 

the left and right metapodial ratios: 2Mc:4Mc and 2Mt:4Mt. The only species with a significant 

difference in the ratios was T. cristatus in the metacarpals. There were no significant differences 

for the left and right side of the other species in the 2Mc:4Mc and 2Mt:4Mt ratios. 

Table 4.1 Descriptive statistics for individual metacarpals in mm 

   Female   Male   

Species Metacarpal N Mean Std. Dev. N Mean Std. Dev. 

Alouatta seniculus 

(Type 4) 
Left Second 10 29.92 2.29 13 30.31 2.94 

Left Third 9 33.04 2.40 14 34.04 3.17 

Left Fourth 12 30.48 4.19 13 32.87 3.22 

Left Fifth 11 27.24 4.28 15 28.86 3.17 

Right Second 14 30.78 4.94 16 30.03 3.18 

Right Third 14 33.23 4.45 14 33.64 3.60 

Right Fourth 15 31.55 4.39 15 31.92 3.49 

Right Fifth 15 28.04 4.56 15 28.43 3.18 

(table cont’d) 
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   Female   Male     

Species Metacarpal N Mean Std. Dev. N Mean Std. Dev. 

Aotus azarae 

(Type 1) 

Left Second 3 17.94 0.33 6 18.10 0.55 

Left Third 5 19.36 0.41 6 19.66 0.68 

Left Fourth 5 17.86 0.50 5 18.46 0.67 

Left Fifth 7 13.98 0.93 5 14.12 0.42 

Right Second 3 18.09 0.52 7 18.29 0.39 

Right Third 3 19.19 0.39 7 19.88 0.49 

Right Fourth 4 17.73 0.47 7 18.66 0.50 

Right Fifth 5 13.66 0.77 7 13.95 0.31 

Hylobates lar 

(Type 1) 
Left Second 39 64.27 4.61 39 65.14 3.50 

Left Third 40 60.50 4.56 39 61.39 3.87 

Left Fourth 39 55.38 3.96 41 56.80 2.91 

Left Fifth 38 49.18 3.52 39 50.13 2.99 

Right Second 40 64.55 3.43 38 64.54 3.38 

Right Third 42 60.61 4.07 39 60.93 3.47 

Right Fourth 42 55.56 3.04 40 55.97 2.92 

Right Fifth 41 49.33 2.93 46 50.40 2.94 

Macaca 

fascicularis 

(Type 4) 

Left Second 4 28.56 1.01 2 27.94 0.36 

Left Third 4 27.78 1.54 2 27.50 0.60 

Left Fourth 4 26.53 1.50 3 27.26 3.72 

Left Fifth 6 23.84 1.28 1 23.42   

Right Second 17 27.72 1.13 15 31.14 2.00 

Right Third 18 26.76 1.21 14 30.19 1.91 

Right Fourth 17 25.65 1.20 15 28.66 1.97 

Right Fifth 14 23.55 1.03 15 26.38 2.01 

Presbytis 

rubicunda 

(Type 3) 

Left Second 2 41.59 1.07 0     

Left Third 2 42.96 1.33 0     

Left Fourth 2 41.40 1.61 0     

Left Fifth 2 40.08 2.36 0     

Right Second 17 40.83 1.03 18 41.85 1.09 

Right Third 16 42.18 1.08 17 42.74 1.23 

Right Fourth 17 39.87 1.15 18 40.58 1.10 

Right Fifth 18 38.44 1.11 17 38.98 1.28 

Trachypithecus 

cristatus 

(Type 3) 

Left Second 10 37.13 3.24 3 35.71 2.29 

Left Third 10 36.60 1.79 4 36.34 2.02 

Left Fourth 9 35.53 1.61 4 34.70 1.48 

Left Fifth 10 33.79 1.57 4 33.59 1.48 

Right Second 28 36.04 1.57 16 36.43 1.92 

Right Third 31 36.38 1.44 16 37.20 2.15 

Right Fourth 29 35.33 1.31 15 36.43 2.13 

Right Fifth 29 33.72 1.50 16 34.82 1.98 
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 Table 4.2 Descriptive statistics for individual metatarsals in mm 

   Female   Male   

Species Metatarsal N Mean Std. Dev. N Mean Std. Dev. 

Alouatta seniculus 

(Type 4) 
Left Second 14 37.58 5.60 12 40.49 4.42 

Left Third 13 38.91 4.72 13 40.89 3.66 

Left Fourth 15 37.51 4.58 12 40.29 3.37 

Left Fifth 15 34.41 6.19 11 38.64 3.45 

Right Second 14 39.84 3.16 9 41.36 4.89 

Right Third 13 39.54 2.99 13 41.16 3.85 

Right Fourth 15 37.80 4.93 11 40.07 3.48 

Right Fifth 15 35.24 4.93 11 37.38 4.37 

Aotus azarae 

(Type 1) 

Left Second 4 30.75 0.57 7 31.72 1.01 

Left Third 4 31.77 0.28 4 32.62 0.93 

Left Fourth 5 32.81 0.68 8 34.06 0.90 

Left Fifth 4 32.51 1.24 9 33.87 0.59 

Right Second 5 31.52 1.08 7 32.20 0.74 

Right Third 5 32.48 0.88 7 33.48 1.20 

Right Fourth 5 33.35 1.10 7 34.65 1.08 

Right Fifth 4 32.50 1.27 8 34.23 0.94 

Hylobates lar 

(Type 1) 
Left Second 36 46.18 2.34 43 47.44 3.49 

Left Third 39 43.68 2.81 45 44.81 3.21 

Left Fourth 33 41.87 2.56 43 42.82 2.89 

Left Fifth 33 38.18 3.58 43 38.51 2.90 

Right Second 37 46.10 2.67 31 46.72 2.63 

Right Third 37 43.69 2.69 30 44.36 2.77 

Right Fourth 38 41.69 2.42 35 42.44 2.74 

Right Fifth 38 37.89 2.21 35 38.59 2.71 

Macaca 

fascicularis 

(Type 4) 

Left Second 4 35.40 1.54 2 38.67 4.67 

Left Third 4 37.66 2.03 3 40.63 3.91 

Left Fourth 4 37.37 2.06 1 37.40   

Left Fifth 5 34.79 1.80 3 38.06 2.30 

Right Second 18 34.55 1.49 13 38.26 3.26 

Right Third 18 36.80 1.40 14 40.29 4.64 

Right Fourth 19 36.32 1.36 14 39.90 4.78 

Right Fifth 19 34.54 1.36 11 38.43 4.89 

Presbytis 

rubicunda 

(Type 3) 

Left Second 2 52.52 0.99 0     

Left Third 2 57.13 0.79 0     

Left Fourth 2 58.68 0.33 0     

Left Fifth 2 59.19 0.28 0     

Right Second 17 52.07 1.35 18 53.73 1.46 

Right Third 16 57.09 1.11 19 58.91 2.19 

Right Fourth 17 58.24 1.20 17 60.23 1.79 

(table cont’d) 
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  Female   Male     

Metatarsal N Mean Std. Dev. N Mean Std. Dev. 

Right Fifth 17 58.13 2.39 18 60.72 2.14 

Trachypithecus 

cristatus 

(Type 3) 

Left Second 9 45.57 4.01 3 45.66 2.89 

Left Third 6 50.21 1.63 3 48.93 2.88 

Left Fourth 9 49.41 5.39 3 50.26 3.50 

Left Fifth 7 50.94 1.93 3 50.45 3.88 

Right Second 27 45.81 1.80 17 46.53 2.44 

Right Third 29 48.98 1.95 17 49.72 2.53 

Right Fourth 26 50.48 1.80 17 51.24 2.80 

Right Fifth 28 49.91 1.95 16 51.19 2.55 

  

 Table 4.3 Test for asymmetry in the metacarpals and the metatarsals of each species (* indicates 

significance) 

Test for Asymmetry 

Species Metapodial Ratio p- value 

Alouatta seniculus 2Mc:4Mc 0.117 

2Mt:4Mt 0.520 

Aotus azarae 2Mc:4Mc 0.686 

2Mt:4Mt 0.917 

Hylobates lar 2Mc:4Mc 0.656 

2Mt:4Mt 0.162 

Macaca fascicularis 2Mc:4Mc 1.000 

2Mt:4Mt 0.273 

Presbytis rubicunda 2Mc:4Mc 0.317 

2Mt:4Mt 0.678 

Trachypithecus cristatus 2Mc:4Mc 0.036* 

2Mt:4Mt 0.655 

  

4.2 Mann-Whitney U test results 

 The Mann-Whitney U test was used to compare the male 2Mc:4Mc ratio to the female 

2Mc:4Mc ratio to determine whether this difference was significant (Table 4.4). The left 

2Mc:4Mc ratios for M. fascicularis and P. rubicunda were excluded from this analysis because 

their sample sizes were too small. For the Mann-Whitney U tests, the only ratios that were 

significantly different were the right 2Mc:4Mc ratios of A. azarae (p=0.048), the average and 
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right 2Mc:4Mc ratio of P. rubicunda (p=0.017; p=0.025), and the average and right 2Mc:4Mc 

ratio of T. cristatus (p=0.01; p=0.001). For these ratios, the results would reject the Null 

Hypothesis 1 that the male and female 2Mc:4Mc ratios are equal. The Null Hypothesis 2 states 

that the average 2Mc:4Mc ratios of the species are the same averaged over sex among the 

competition levels; however, since all of the results from Competition Level Type 4 and Type 1 

species fail to reject the hypothesis of a sexual difference in the 2Mc:4Mc ratio, neither 

difference is significant, and therefore, the Null Hypothesis 2 cannot be rejected. 

Table 4.4 Comparisons of 2Mc:4Mc ratio between sex within the species (* indicates 

significance) 

 

4.3 Interaction of competition levels and sex on the metacarpal ratios 

 Table 4.5 presents the results for the interaction between sex and competition level on the 

2Mc:4Mc ratio and 2Mt:4Mt ratio for the left, right, and average of the two ratios testing Null 

    Mann-Whitney U Test Results 

Species 

Competition 

Level Variable p- value 

Decision on 

Null 

Hypothesis 2 

Alouatta seniculus 4 Average 2Mc:4Mc 0.217 Fail to reject 

Left 2Mc:4Mc 0.722 Fail to reject 

Right 2Mc:4Mc 0.134 Fail to reject 

Aotus azarae 1 Average 2Mc:4Mc 0.052 Fail to reject 

Left 2Mc:4Mc 0.250 Fail to reject 

Right 2Mc:4Mc 0.048* Reject 

Hylobates lar 1 Average 2Mc:4Mc 0.064 Fail to reject 

Left 2Mc:4Mc 0.375 Fail to reject 

Right 2Mc:4Mc 0.107 Fail to reject 

Macaca fascicularis 4 Average 2Mc:4Mc 0.299 Fail to reject 

Right 2Mc:4Mc 0.401 Fail to reject 

Presbytis rubicunda 3 Average 2Mc:4Mc 0.017* Reject 

Right 2Mc:4Mc 0.025* Reject 

Trachypithecus 

cristatus 

3 Average 2Mc:4Mc 0.010* Reject 

Left 2Mc:4Mc 0.497 Fail to reject 

Right 2Mc:4Mc 0.001* Reject 
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Hypothesis 2 that the average 2Mc:4Mc ratios and 2Mt:4Mt ratios of the species are the same 

among the competition levels. The ratios 2Mc:4Mc and 2Mt:4Mt are significant for the 

competition level for the left, right, and average ratios. For sex, average, and right side 2Mc:4Mc 

ratios are significant. For the interaction, average and left side 2Mt:4Mt ratios are significant. 

For left 2Mc:4Mc, the relationship with level of competition is significant but the 

relationship with sex is not significant. The interaction of competition level and sex with left 

2Mc:4Mc ratio is not significant. Therefore, we cannot conclude that the effect of sex on the 

2Mc:4Mc ratio for each competition level is different.  

For the average and the right 2Mc:4Mc ratio values, the effect of the level of competition 

is significant. The relationship with sex is also significant. From the interaction of sex and 

competition level for the average and the right 2Mc:4Mc ratios, the results are not significant and 

we cannot conclude that the effect of sex on the average and right 2Mc:4Mc ratios for each 

competition level is different. 

Table 4.5 Interaction between the variables competition level and sex on the ratios using 

ANOVA (* indicates significance) 

 

  p-values 

Variable 

Competition 

Level Sex 

Competition Level and 

Sex 

Average 2Mc:4Mc <0.001* <0.001* 0.372 

Left 2Mc:4Mc <0.001* 0.062 0.105 

Right 2Mc:4Mc <0.001* 0.004* 0.696 

Average 2Mt:4Mt <0.001* 0.163 0.001* 

Left 2Mt:4Mt <0.001* 0.139 0.019* 

Right 2Mt:4Mt <0.001* 0.343 0.216 

 

4.4 Results for the interaction of competition levels and sex on the metatarsal ratios 

The average 2Mt:4Mt ratio is significantly affected by the level of competition (p<0.001) 

and the interaction of competition level and sex (p<0.001) but the effect of sex on the ratio is not 



29 

 

significant. For the left 2Mt:4Mt, the main effect of the level of competition is significant 

(p<0.001). For the effect of sex on the left 2Mt:4Mt, the main effect of sex on the left metatarsal 

ratio is not significant (p=0.139). The p-value of the interaction of competition level and sex on 

the left 2Mt:4Mt (p=0.019) means that there is a significant relationship between competition 

level and sex on the ratio. In the right 2Mt:4Mt, the p-value for the main effect of competition 

level on the ratio is significant (p<0.001). The other effects, sex and the interaction variable, are 

not significant on the right 2Mt:4Mt (p=0.343 and p=0.216). 

 4.5 Other results in other ratios 

 All ratios for the remaining combinations of metacarpals 2-5 are presented in Table 4.6 

for each species. These additional ratios were used because of other research that found a sexual 

difference in ratios besides 2Mc:4Mc (see Chapter 5; Tague, 2002; McFadden and Bracht, 2003). 

Comparing these Mann-Whitney U tests between sexes within species, results show that only the 

right 3Mc:4Mc for H. lar (p<0.001), right 2Mc:3Mc and 2Mc:5Mc for P. rubicunda (p=0.040; 

p=0.031), and right 2Mc:3Mc, 2Mc:5Mc, and 3Mc:4Mc for T. cristatus (p=0.006; p<0.001; 

p=0.011) are significant.   

Table 4.6 Comparisons of other ratios for metacarpals 2-5 between sex within the species (* 

indicates significance) 

 

    Mann-Whitney U Test Results 

Species 

Competition 

Level Variable p-value 

Decision on Null 

Hypothesis 1 

Alouatta 

seniculus 

4 Left 2Mc:3Mc 0.917 Fail to reject 

Right 2Mc:3Mc 0.265 Fail to reject 

Left 2Mc:5Mc 0.571 Fail to reject 

Right 2Mc:5Mc 0.102 Fail to reject 

Left 3Mc:4Mc 0.554 Fail to reject 

Right 3Mc:4Mc 0.667 Fail to reject 

Left 3Mc:5Mc 0.473 Fail to reject 

(table cont’d) 
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Mann-Whitney U Test Results 

Variable p-value 

Decision on Null 

Hypothesis 1 

Left 4Mc:5Mc 0.738 Fail to reject 

Right 4Mc:5Mc 0.486 Fail to reject 

Aotus azarae 1 Left 2Mc:3Mc 0.571 Fail to reject 

Right 2Mc:3Mc 0.262 Fail to reject 

Left 2Mc:5Mc 0.571 Fail to reject 

Right 2Mc:5Mc 0.262 Fail to reject 

Left 3Mc:4Mc 0.222 Fail to reject 

Right 3Mc:4Mc 0.117 Fail to reject 

Left 3Mc:5Mc 0.548 Fail to reject 

Right 3Mc:5Mc 0.667 Fail to reject 

Left 4Mc:5Mc 0.690 Fail to reject 

Right 4Mc:5Mc 0.788 Fail to reject 

Hylobates lar 1 Left 2Mc:3Mc 0.959 Fail to reject 

Right 2Mc:3Mc 0.554 Fail to reject 

Left 2Mc:5Mc 0.490 Fail to reject 

Right 2Mc:5Mc 0.328 Fail to reject 

Left 3Mc:4Mc 0.070 Fail to reject 

Right 3Mc:4Mc 0.001* Reject 

Left 3Mc:5Mc 0.258 Fail to reject 

Right 3Mc:5Mc 0.081 Fail to reject 

Left 4Mc:5Mc 0.656 Fail to reject 

Right 4Mc:5Mc 0.335 Fail to reject 

Macaca 

fascicularis 

4 Right 2Mc:3Mc 0.710 Fail to reject 

Right 2Mc:5Mc 0.905 Fail to reject 

Left 3Mc:4Mc 0.400 Fail to reject 

Right 3Mc:4Mc 0.830 Fail to reject 

Right 3Mc:5Mc 0.667 Fail to reject 

Right 4Mc:5Mc 0.458 Fail to reject 

Presbytis 

rubicunda 

3 Right 2Mc:3Mc 0.040* Reject 

Right 2Mc:5Mc 0.031* Reject 

Right 3Mc:4Mc 0.217 Fail to reject 

Right 3Mc:5Mc 0.780 Fail to reject 

Right 4Mc:5Mc 0.322 Fail to reject 

Trachypithecus 

cristatus 

3 Left 2Mc:3Mc 0.600 Fail to reject 

Right 2Mc:3Mc 0.006* Reject 

Left 2Mc:5Mc 0.376 Fail to reject 

Right 2Mc:5Mc 0.001* Reject 

(table cont’d) 
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Mann-Whitney U Test Results 

Variable p-value 

Decision on Null 

Hypothesis 1 

Right 3Mc:4Mc 0.011* Reject 

Left 3Mc:5Mc 0.503 Fail to reject 

Right 3Mc:5Mc 0.088 Fail to reject 

Left 4Mc:5Mc 0.503 Fail to reject 

Right 4Mc:5Mc 0.899 Fail to reject 

 
 

Table 4.7 lists the descriptive statistics for all the ratios used in this analysis. While the 

Null Hypothesis 1 was not rejected for the majority of the metapodial ratios, the average values 

of the ratios can still be compared to determine the difference between sexes. For the 2Mc:4Mc 

ratio regardless of side, the female ratio is larger eleven times out of the seventeen comparisons. 

For the 2Mt:4Mt ratio regardless of side, the female ratio is larger ten times out of the seventeen 

comparisons. The ratios are the same across the sexes for 2Mc:4Mc zero times and 2Mt:4Mt five 

times. Out of 53 comparisons, females in the other ratios compared were larger thirty-three 

times. In the other ratios, females and males were equal fifteen times. Males were larger in these 

ratios five times. 

Table 4.7 Descriptive statistics for ratios used in this study in mm 

  Descriptive Statistics of Ratios 

Species 

  Female   Male    

Ratio N Mean 

Std. 

Dev. N Mean 

Std. 

Dev. 

Female-

Male 

Alouatta 

seniculus 

(Type 4) 

Left 2Mc:4Mc 10 0.95 0.02 12 0.94 0.04 0.01 

Right 2Mc:4Mc 14 0.96 0.04 15 0.94 0.03 0.02 

Average 

2Mc:4Mc 15 0.96 0.02 15 0.94 0.03 0.02 

Left 2Mt:4Mt 13 1.00 0.05 11 1.02 0.02 -0.02 

Right 2Mt:4Mt 14 1.03 0.02 9 1.03 0.04 0.00 

Average 

2Mt:4Mt 13 1.03 0.03 15 1.02 0.02 0.01 

Left 2Mc:3Mc 9 0.91 0.02 12 0.90 0.02 0.01 

(table cont’d) 
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Descriptive Statistics of Ratios 

  Female   Male      

Ratio N Mean 

Std. 

Dev. N Mean 

Std. 

Dev. 

Female-

Male 

Right 2Mc:3Mc 14 0.92 0.04 14 0.91 0.03 0.01 

Left 2Mc:5Mc 8 1.07 0.03 12 1.05 0.06 0.02 

Right 2Mc:5Mc 14 1.08 0.03 15 1.06 0.04 0.02 

Left 3Mc:4Mc 9 1.05 0.01 12 1.04 0.02 0.01 

Right 3Mc:4Mc 14 1.04 0.02 14 1.04 0.02 0.00 

Left 3Mc:5Mc 8 1.18 0.04 12 1.17 0.05 0.01 

Right 3Mc:5Mc 14 1.18 0.05 14 1.17 0.04 0.01 

Left 4Mc:5Mc 10 1.13 0.04 13 1.12 0.04 0.01 

Right 4Mc:5Mc 15 1.13 0.05 15 1.12 0.03 0.01 

Aotus azarae 

(Type 1) 
Left 2Mc:4Mc 3 1.01 0.02 5 0.99 0.03 0.02 

Right 2Mc:4Mc 3 1.03 0.02 6 0.99 0.03 0.04 

Average 

2Mc:4Mc 5 1.02 0.02 6 0.99 0.03 0.03 

Left 2Mt:4Mt 4 0.94 0.00 7 0.93 0.01 0.01 

Right 2Mt:4Mt 5 0.95 0.01 7 0.93 0.02 0.02 

Average 

2Mt:4Mt 7 0.94 0.00 10 0.93 0.01 0.01 

Left 2Mc:3Mc 3 0.94 0.01 5 0.92 0.02 0.02 

Right 2Mc:3Mc 3 0.94 0.01 6 0.93 0.02 0.01 

Left 2Mc:5Mc 3 1.33 0.08 5 1.29 0.04 0.04 

Right 2Mc:5Mc 3 1.36 0.03 6 1.32 0.04 0.04 

Left 3Mc:4Mc 5 1.08 0.01 5 1.07 0.02 0.01 

Right 3Mc:4Mc 3 1.09 0.01 7 1.07 0.03 0.02 

Left 3Mc:5Mc 3 1.43 0.05 5 1.40 0.05 0.03 

Right 3Mc:5Mc 3 1.44 0.05 7 1.43 0.03 0.01 

Left 4Mc:5Mc 5 1.31 0.04 5 1.31 0.03 0.00 

Right 4Mc:5Mc 4 1.32 0.04 7 1.34 0.03 -0.02 

Hylobates lar 

(Type 1) 
Left 2Mc:4Mc 36 1.16 0.02 38 1.15 0.02 0.01 

Right 2Mc:4Mc 39 1.16 0.02 38 1.15 0.02 0.01 

Average 

2Mc:4Mc 41 1.16 0.02 48 1.15 0.02 0.01 

Left 2Mt:4Mt 32 1.11 0.02 41 1.10 0.03 0.01 

Right 2Mt:4Mt 35 1.11 0.03 31 1.11 0.02 0.00 

Average 

2Mt:4Mt 40 1.11 0.02 45 1.10 0.03 0.01 

Left 2Mc:3Mc 39 1.06 0.02 38 1.06 0.02 0.00 

Right 2Mc:3Mc 38 1.06 0.02 38 1.06 0.02 0.00 

(table cont’d) 
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Descriptive Statistics of Ratios 

  Female   Male      

Ratio N Mean 

Std. 

Dev. N Mean 

Std. 

Dev. 

Female-

Male 

Left 2Mc:5Mc 34 1.31 0.03 37 1.30 0.04 0.01 

Right 2Mc:5Mc 37 1.31 0.03 37 1.30 0.03 0.01 

Left 3Mc:4Mc 37 1.09 0.02 38 1.09 0.02 0.00 

Right 3Mc:4Mc 39 1.09 0.01 39 1.06 0.17 0.03 

Left 3Mc:5Mc 35 1.23 0.03 37 1.22 0.03 0.01 

Right 3Mc:5Mc 38 1.23 0.03 39 1.19 0.20 0.04 

Left 4Mc:5Mc 37 1.13 0.02 38 1.12 0.02 0.01 

Right 4Mc:5Mc 39 1.13 0.02 39 1.12 0.02 0.01 

Macaca 

fascicularis 

(Type 4) 

Left 2Mc:4Mc 3 1.07 0.03 1 1.13   -0.06 

Right 2Mc:4Mc 16 1.08 0.03 15 1.09 0.03 -0.01 

Average 

2Mc:4Mc 16 1.08 0.03 15 1.09 0.03 -0.01 

Left 2Mt:4Mt 4 0.95 0.02 1 0.95   0.00 

Right 2Mt:4Mt 18 0.95 0.02 12 0.98 0.09 -0.03 

Average 

2Mt:4Mt 18 0.95 0.02 13 0.97 0.08 -0.02 

Left 2Mc:3Mc 3 1.02 0.01 2 1.02 0.01 0.00 

Right 2Mc:3Mc 17 1.04 0.02 14 1.04 0.02 0.00 

Left 2Mc:5Mc 3 1.17 0.02 0       

Right 2Mc:5Mc 13 1.18 0.04 14 1.18 0.04 0.00 

Left 3Mc:4Mc 4 1.05 0.02 1 1.10   -0.05 

Right 3Mc:4Mc 17 1.04 0.02 14 1.05 0.02 -0.01 

Left 3Mc:5Mc 4 1.15 0.01 0       

Right 3Mc:5Mc 14 1.14 0.03 14 1.14 0.04 0.00 

Left 4Mc:5Mc 4 1.10 0.01 1 1.10   0.00 

Right 4Mc:5Mc 13 1.09 0.02 14 1.08 0.03 0.01 

Presbytis 

rubicunda 

(Type 3) 

Left 2Mc:4Mc 2 1.00 0.01 0       

Right 2Mc:4Mc 16 1.02 0.01 18 1.03 0.01 -0.01 

Average 

2Mc:4Mc 17 1.02 0.01 18 1.03 0.01 -0.01 

Left 2Mt:4Mt 2 0.90 0.01 0       

Right 2Mt:4Mt 16 0.89 0.01 17 0.89 0.01 0.00 

Average 

2Mt:4Mt 16 0.92 0.01 17 0.91 0.02 0.01 

Left 2Mc:3Mc 2 0.97 0.01 0       

Right 2Mc:3Mc 15 0.97 0.01 17 0.98 0.01 -0.01 

Left 2Mc:5Mc 2 1.04 0.01 0       

(table cont’d) 
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Descriptive Statistics of Ratios 

  Female   Male      

Ratio N Mean 

Std. 

Dev. N Mean 

Std. 

Dev. 

Female-

Male 

Right 2Mc:5Mc 17 1.06 0.02 17 1.07 0.02 -0.01 

Left 3Mc:4Mc 2 1.04 0.01 0       

Right 3Mc:4Mc 16 1.06 0.01 17 1.05 0.01 0.01 

Left 3Mc:5Mc 2 1.07 0.03 0       

Right 3Mc:5Mc 16 1.09 0.02 16 1.07 0.02 0.02 

Left 4Mc:5Mc 2 1.03 0.02 0       

Right 4Mc:5Mc 17 1.04 0.01 17 1.04 0.02 0.00 

Trachypithecus 

cristatus 

(Type 3) 

Left 2Mc:4Mc 8 1.02 0.02 3 1.03 0.02 -0.01 

Right 2Mc:4Mc 27 1.02 0.02 15 1.00 0.02 0.02 

Average 

2Mc:4Mc 29 1.02 0.02 16 1.01 0.02 0.01 

Left 2Mt:4Mt 8 0.92 0.03 3 0.91 0.01 0.01 

Right 2Mt:4Mt 24 0.91 0.01 17 0.91 0.01 0.00 

Average 

2Mt:4Mt 26 0.90 0.01 17 0.89 0.01 0.01 

Left 2Mc:3Mc 9 0.99 0.01 3 0.98 0.02 0.01 

Right 2Mc:3Mc 28 0.99 0.01 16 0.98 0.01 0.01 

Left 2Mc:5Mc 8 1.06 0.03 3 1.06 0.01 0.00 

Right 2Mc:5Mc 27 1.07 0.02 16 1.05 0.02 0.02 

Left 3Mc:4Mc 9 1.03 0.02 4 1.05 0.01 -0.02 

Right 3Mc:4Mc 29 1.03 0.01 15 1.02 0.01 0.01 

Left 3Mc:5Mc 9 1.08 0.02 4 1.08 0.02 0.00 

Right 3Mc:5Mc 29 1.08 0.02 16 1.07 0.02 0.01 

Left 4Mc:5Mc 9 1.05 0.02 4 1.03 0.02 0.02 

Right 4Mc:5Mc 28 1.05 0.02 15 1.05 0.02 0.00 
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CHAPTER 5.  DISCUSSION AND CONCLUSIONS 

The results fail to reject the Null Hypothesis 1 that the sexes do not differ in their 

2Mc:4Mc ratio within the species. The only species with a statistically significant difference 

were A. azarae on their right side, P. rubicunda on their right side and the average of both sides, 

and T. cristata on their right and the average of both sides. This result is consistent with findings 

on the fourth digit in Manning (2002) and Howlett et al. (2015) that, in the fourth digit, the 

androgen receptors would increase the length while estrogen receptors decrease the length. The 

results from comparing other ratios between sex within species deemed meaningful in other 

research were also generally not significant. Despite McFadden and Bracht (2002; 2003) and 

Tague (2002) finding results that were statistically significant, the Mann-Whitney U test results 

showed no significant difference between sexes of the species and sexes of the competition level 

in the same ratios found in their studies. Therefore, other ratio differences are not consistent and 

cannot be used as a proxy for sexual dimorphism in the 2Mc:4Mc ratio.  

Null Hypothesis 2 predicted that the average 2Mc:4Mc ratios of the species are the same 

averaged over sex among the competition levels. Species with Competition Level Type 3 would 

be intermediate between levels one and four. Since testosterone levels are an influencer of the 

2D:4D ratio, the hypothesis is that species with high aggression, and therefore high testosterone, 

would have lower ratios because of the increased length in fourth digit. This research does not 

consider interfemale aggression as a variable. Using the two-way factorial ANOVA, the 

relationship between competition level and 2Mc:4Mc ratios and 2Mt:4Mt regardless of sex was 

not significant. However, the main effect of competition level on the 2Mc:4Mc ratios and 

2Mt:4Mt was significant, although the interaction of competition level and sex on the ratio was 

generally not significant. Therefore, competition level influences the dimorphic trait of the 
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metacarpals more than the variable sex influences the 2Mc:4Mc ratio. This significant difference 

was expected as the variation in testosterone levels would influence the fourth digit/metapodial 

(Manning, 2002; Howlett et al., 2015). However, the results show that neither the Competition 

Level Type 1 nor the Competition Level Type 4 species have a statistically significant difference 

which fails to reject the Null Hypothesis 2. Using the Mann-Whitney U test, the Alternative 

Hypothesis 2 was that the Competition Level Type 4 species would be the only ones with a 

significant difference between sexes, but Competition Level Type 1 species will still have more 

testosterone exposure to males than females. As previously stated, the only species with a 

significant difference on either side were A. azarae, T. cristata, and P. rubicunda. None of these 

species is ascribed to Competition Level Type 4 with one species from Competition Level Type 

1 and two from Competition Level Type 3. Therefore, there is not enough evidence to reject the 

Null Hypothesis 2 that the Competition Level Type 4 would have the greatest statistical 

difference. 

A significant finding from McFadden and Bracht (2005) is that the sex differences in the 

digits are not evident in the metacarpals. A hypothesized explanation for these results was that 

the metapodials developed before the exposure to androgens (McFadden and Bracht, 2009). 

Given the results from this research and other research mentioned throughout this study 

(McFadden and Bracht, 2003, 2005; Nelson and Shultz, 2010) examining the sexual differences 

in metacarpals, this is most likely the reason as to why there was no significant difference 

detected. As stated earlier, Hox genes affect the overall pattern of development by regulating the 

structures that directly control cellular processes based on different extents of androgen 

sensitivity in the Hox gene clusters (Manning et al., 1998; Manning, 2002; Reno et al., 2008). 

The distal zeugopod module is assumed to include both the metacarpals and the phalanges, but 



37 

 

inferring from this study, the metacarpals are influenced by androgens to a different extent than 

results found for 2D:4D. Since there is still much to learn about the effects of Hox genes, the 

modules may be incorrect. The modules in the limbs could be smaller to include the bones that 

are affected the same way by the same hormones. The zeugopod and the autopod are modules 

existing in the distal aspect of the limbs (Reno et al., 2008). The digits and the metacarpals are 

thought to be part of the same module meaning they are influenced by the same stimulus; 

however, the results from this research indicate that the metacarpals are not influenced in the 

same way as the digits. The findings in this research contradict the concept of modularity 

(Callebaut and Rasskin-Gutman, 2005). 

The differences in the lengths of the male and female ratios in metapodials are not 

significant nor as large as the differences found in phalanges. Tables 4.4 and 4.6 show that the 

differences are not what would be expected since pair-bonded species with low intermale 

competition have larger differences than the polygynous species with high intermale 

competition. This finding could also indicate a potential interfemale competition of the species 

that could affect the results. Further research would need to be conducted to examine the 

correlations of interfemale competition on PNAE and the 2D:4D ratio.  

Another cause for the differences could be from locomotion use. Tague (2002) found that 

differences in the metapodial lengths corresponded with differences in locomotion which could 

be produced by homeobox gene fluctuations. In addition, Harris et al. (1992) found that the 

sexual dimorphism in human hands changes from 11.7 percent at a young age to 12.2 percent at 

an older age which was attributed to males changing more than females in adulthood. They also 

found that hand changes were more pronounced in males with stronger grip strengths (Harris et 

al., 1992). If grip strength is associated with change in hand dimensions, then metacarpal and 
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phalangeal lengths among other primate species may be influenced by grip strength and mode of 

locomotion. For example, Shultz (1933) measured gibbons and siamangs, which are brachiators, 

and found a pattern in the finger length with the second digit to be longer than the fourth digit, 

but he found the opposite in Old World Monkeys whose locomotion behavior is terrestrial and 

arboreal quadrupedalism (i.e. M. fascricularis, P. rubicunda, and T. cristatus) (Fleagle, 1988).  

The difference in length of the second digit and second metacarpal for Hylobatidae as discussed 

in Shultz (1933; 1936) could explain why there was no significant difference in comparing 

2Mc:4Mc among competition levels. Future studies should include locomotion as a factor as the 

locomotion behavior can change the hand and the corresponding ratios.  

The results from this study could be due to a biased sample. As discussed in McFadden 

and Bracht (2005), specimens available in a museum may not be a random sample from the wild 

population. Essentially, the specimens collected for the museums may not be a representative 

sample of the dominance hierarchy in a species as certain hierarchical levels could be more 

prominent in the sample population (McFadden and Bracht, 2005). Therefore, the sex differences 

may not be representative of the species. However, it should not influence the results for the 

Competition Level Type 1 species because these individuals should not have as much of a sex 

difference in androgen levels.   

 5.1 Conclusions and future research 

In conclusion, the results from this research have found that the 2Mc:4Mc ratio is not 

influenced by intermale competition to the same extent and in the same direction as measured in 

the 2D:4D ratios. However, competition level has a consistently significant effect on the 

2Mc:4Mc ratio while sex and the interaction between sex and competition level does not. There 

was no statistical difference between the sexes with the Competition Level Type 1 and Type 4 
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species, but there was a statistically significant difference in the Competition Level Type 3 

species which could be attributed to factors not included in this research. The results also show 

that the levels of intermale competition have more of an influential effect on the ratios than sex 

indicating the importance in further studies on intrasexual competition in species. 

For future research, the cause of the significant difference between the Competition Level 

Type 3 species should be explored. Several factors not controlled for in this research could 

explain the results, such as body size and geographic region. In addition, locomotion may be a 

relevant factor in comparing ratios in metacarpals and phalanges between species. Other research 

measuring the factors influencing 2D:4D and 2Mc:4Mc ratios should consider the influence of 

interfemale aggression or maternal behavior within species as they can affect testosterone and 

estrogen levels. The variation could then stimulate or inhibit either the growth of the second digit 

or the growth of the fourth digit. 
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