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ABSTRACT 

The incidence of harmful algal blooms (HABs) caused by blue-green algae has been 

increasing in coastal and freshwater ecosystems of the United States in recent years, and has had 

great influence on ecosystem, economic, and public health. This thesis aims at testing the 

feasibility of using machine learning methods in comparison to traditional regression models to 

detect and map the blue-green algae distribution in low-medium biomass waters (Chl-a < approx. 

20 μg/L) from a Landsat 8 image with the support of some in situ Chl-a measurements in Harsha 

Lake, Ohio. Two algorithms were compared: one is the conventional empirical method – 

Stepwise Multiple Linear Regression – to see if there is a strong linear relationship between 

measured Chl-a concentrations and the Landsat 8 spectral data in the study area, and the other is 

one of the most popular machine learning methods–Random Forests. Major findings include: (1) 

both a conventional linear regression model and a Random Forests model worked well in 

mapping the extent and biomass of blue-green algae in Harsha Lake on September 21, 2015, but 

the Random Forests model outperformed the linear regression model; (2) the prediction surface 

from the Random Forests method illustrated that 89.30% of Harsha Lake’s area had Chl-a values 

less than 10 µg/L on the sampling date, while only 10.70% of the entire study area had Chl-a 

concentrations between 10 µg/L and 20 µg/L. Higher Chl-a values (especially for Chl-a larger 

than 10 µg/L) were mostly distributed in the mouths of rivers or streams, which might be caused 

by the influx of nutrients from agricultural or urban land use by rivers and streams. The results 

show the utility of the Random Forests approach based on Landsat 8 imagery in detecting and 

quantitatively mapping low biomass HABs, which is considered to be a challenging task.



1 
 

CHAPTER 1 INTRODUCTION 

Harmful algal blooms (HABs) refer to the actual or potential harmful effects caused by 

the excessive growth of algae in water bodies (Shutler et al., 2012; Matthews et al., 2012). As for 

inland waters including lakes, ponds, and reservoirs, HABs are mostly made up of cyanobacteria 

(also called blue-green algae) and can cause harmful effects to: (1) freshwater ecosystems, such 

as pollution of beaches, taste and odor problems in drinking water, and depletion of oxygen 

levels causing fish kills (Braig IV et al., 2010); (2) the health of humans as well as other animals 

who use them for drinking or recreation (Matthews et al., 2010). That is because many blue-

green algae species can produce toxins that affect the nervous system, liver, and skin (USACE, 

2016), and hence cause illness, irritation, even death to humans, pets, and other animals (Braig 

IV et al., 2010). According to the World Health Organization (WHO) guidelines, chlorophyll a 

(Chl-a) concentrations between 10-50 µg/L represents a moderate human health risk from 

recreational contact caused by HABs (Braig IV et al., 2010), and the threshold may drop to 

between 10-25 µg/L for more toxic species (Matthews et al., 2012). 

The incidence of HABs has been increasing in coastal and freshwater ecosystem of the 

United States in recent years (Lunetta et al., 2015). For example, Lake Erie in Ohio experienced 

a severe HABs event (three times greater than before) in 2011 due to unusually high runoff 

(Lunetta et al., 2015). HABs caused by blue-green algae have become a major water quality 

issue for inland waters in Ohio (Francy et al., 2015). HABs cost approximately $2.2 billion 

annually in the United States (Lunetta et al., 2015), and cost of treatment has been a burden on 

the already recessing economy in the past decade (Lunetta et al., 2015). Even though HABs have 

such a great influence on ecosystem, economic, and public health, HABs are generally assessed 

infrequently due to high cost and low efficiency of the ground-survey methods (Lunetta et al., 
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2015). For example, the states only assessed 39% (14.8 million of 41.7 million acres) of inland 

waters in the United States according to the 2004 National Water Quality Inventory (Keith et al., 

2012), and many of them only conducted event-based responses (Lunetta et al., 2015). That is 

because the typical water quality monitoring methods—visual assessment and point-scale water 

sampling—are time-consuming and costly (Randolph et al., 2008), and cannot accurately 

describe the spatial patchiness of HABs distribution in a water body (Hunter et al., 2008; Lunetta 

et al., 2015).  

Therefore, satellite and airborne remote sensing can be regarded as the complementary 

approach to monitoring inland water quality, and are increasingly incorporated in the detection of 

freshwater HABs in recent years (Agha et al., 2012). Remote sensing images from hyperspectral 

or multispectral sensors can detect HABs below the water surface, or in turbid waters when the 

human eyes have difficulty interpreting the information (Kasich et al., 2015). Moreover, remote 

sensing images can be used to map the spatial patterns of HABs systemically over a very wide 

area and repeated in a short period (Jupp et al., 1994). For example, the State of Ohio first used 

satellite images to identify possible outbreaks of HABs in lakes, and then conducted ground 

sampling for phytoplankton and toxins in the suspicious areas (Kasich et al., 2015).  

Research showed that hyperspectral data (such as AVIRIS, CASI, etc.) are very effective 

in recognizing and mapping freshwater HABs (Matthews et al., 2010). However, the use of 

hyperspectral data is limited with regard to the cost, availability, processing time and high 

dimensionality (Mutanga et al., 2011). A repeatable and cost-effective alternative is to use 

multispectral satellite imagery that are free to the public, such as MERIS (Wynne et al., 2008; 

Wynne et al., 2010; Matthews et al., 2012; Matthews and Odermatt, 2015; Lunetta et al., 2015 ), 

MODIS (Hu, 2009; Becker et al., 2009), and Landsat (Vincent et al., 2004; Tebbs et al., 2013). 
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MERIS and MODIS have better spectral resolution to identify the HABs, but they are not 

suitable for monitoring small inland water bodies because of their coarse spatial resolution 

(Hunter et al., 2008). To be more specific, the spatial resolution of MERIS is 300 m (Hunter et 

al., 2008) and that of MODIS medium-resolution data is 250 m and 500 m (Hu, 2009). Moreover, 

MERIS stopped working in April 2012 (Matthews and Bernard, 2015). Therefore, monitoring 

freshwater HABs often involves satellite images with higher spatial resolutions designed 

primarily for land applications, such as the Landsat TM and ETM+ images with 30 meters spatial 

resolution (Palmer et al., 2015). Many researchers have used Landsat images to study HABs 

(Vincent et al., 2004; Tebbs et al., 2013; Palmer et al., 2015), and illustrates that simple 

empirical algorithms (multiple regression models) using Landsat images and in situ 

measurements are effective approaches to mapping HABs biomass, particularly for small water 

bodies with severe HABs and for regions where data are limited to multispectral sensors (Tebbs 

et al., 2013). However, the remote sensing images and the in situ measurements of blue-green 

algae might not fit the simple linear regression models well when a low-medium biomass HABs 

event (Chl-a < approx. 20 μg/L) occurs (Matthews et al., 2012). At this point, machine learning 

methods can be employed as an alternative to building nonlinear prediction models to monitor 

and map the spatial distribution of HABs even at low biomass. And it is worthwhile to test 

whether the newly added bands on the Landsat 8 Operational Land Imager (OLI) sensor could 

provide better support for mapping HABs.  

This thesis aims at testing the feasibility of using machine learning methods in 

comparison to traditional regression models by mapping the blue-green algae distribution in low-

medium biomass waters (Chl-a < approx. 20 μg/L) (Matthews et al., 2012) from a Landsat 8 

image with the support of some in situ Chl-a measurements in Harsha Lake, Ohio. Two 
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algorithms were compared; one is the conventional empirical method—Stepwise Multiple Linear 

Regression—to see if there is a strong linear relationship between measured Chl-a concentrations 

and the Landsat 8 spectral data in the study area. The other is one of the most popular machine 

learning methods –Random Forests.  

There are five chapters in this thesis: Chapter 1 introduces the background and objectives 

of this study; Chapter 2 conducts a literature review of existing studies related to the detection 

and mapping of freshwater blue-green algae; Chapter 3 describes the study area, datasets and 

methods used in this thesis; Chapter 4 analyzes and discusses the prediction results of blue-green 

algae biomass by different methods (one is the best fitting Stepwise Multiple Linear Regression, 

and the other is the best fitting Random Forests Regression) along with the prediction surface 

generated by the best prediction model; Chapter 5 presents major findings.  
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CHAPTER 2 LITERATURE REVIEW 

Remote sensing has been increasingly used for monitoring and mapping HABs in aquatic 

systems. The most commonly employed bioindicators to detect blue-green algal biomass include 

the concentration of chlorophyll a (Chl-a, a pigment of all photosynthetic phytoplankton) and 

phycocyanin (PC, the accessory pigment unique to blue-green algae) (Matthews et al., 2010). 

However, phycocyanin related spectral features are not detectable at small concentrations of 

blue-green algae (Kuster, 2009), and only clearly visible at high-biomass conditions (Chl-a 

concentrations greater than 20 μg/L) (Matthews and Odermatt, 2015).This may limit the accurate 

mapping of HABs in early warning systems (Kuster, 2009), and therefore the concentration of 

Chl-a is a better bioindicator of HABs at low biomass. There are several classical methods to 

map freshwater HABs in the literature. 

 

2.1 Empirical approach 

2.1.1 Band or Band ratio chlorophyll-retrieval algorithms  

This kind of spectral algorithm is often developed by applying a statistical method 

(mainly Multiple Linear Regression) to show the relationship between experimental datasets 

(such as measured Chl-a concentrations and other water quality parameters) and the spectral 

values (or ratios) from remote sensing (Randolph et al., 2008). For example, Tebbs et al. (2013) 

developed a linear algorithm for mapping Chl-a in Lake Bogoria, Kenya, based on a time series 

of Landsat ETM+ images and monthly in situ measurement of Chl-a for the period from 

November 2003 to February 2005. They found that both the single near infrared band (835um) 

and the band ratio of near infrared (835um) with the red band (660um) had strong linear 

relationships with high biomass HABs (Chl-a concentrations up to 800 μg/L) (Tebbs et al., 2013).  
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Generally, in clear (oligotrophic) water conditions, this kind of spectral algorithm works 

well and yields accurate estimates of Chl-a concentrations using spectral characteristics in blue 

to green spectrums (Moses et al., 2009; Kuster, 2009).   

As for the productive and turbid coastal and inland waters, where the dissolved organic 

matter and non-algal particles can cause absorptions in blue spectral region (Darecki and 

Stramski, 2004;  Moses et al., 2009), spectral algorithms based on red and near infrared bands 

are preferable for estimating Chl-a concentrations and mapping HABs (Gower et al., 1999; 

Moses et al., 2009). What’s more, a ratio of the red edge band to the red band can always 

enhance the detection results (Jupp et al., 1994). Many authors (Dekker, 1993; Jupp et al., 1994) 

confirm that Chl-a concentration has a strong relationship with band ratio of near infrared with 

red. That is because the Chl-a absorption occurs in the red band near 660-680 nm of the 

spectrum while the spectral reflectance peak due to phytoplankton scattering occurs in the red 

edge spectrum located at 685 - 715 nm (Dekker, 1993). However, water surface reflectance near 

the 700 nm wavelength is commonly measured by hand-held, shipboard remote sensing devices, 

or airborne hyperspectral sensors, but relatively rare in satellites (Kuster, 2009). MERIS, which 

stopped functioning in April 2012, was the only satellite sensor to estimate Chl-a concentration 

at the red edge spectrum (Kuster, 2009).  

In waters with surface scums and floating algae, the detection of HABs can be treated as 

a kind of vegetation cover classification (Kutser, 2004). In such situations, the terrestrial standard 

products (e.g., Normalized Difference Vegetation Index (NDVI)) are considered a solution to 

estimating Chl-a concentrations (Kuster, 2009). 

 



7 
 

2.1.2 Band or Band ratio phycocyanin-retrieval algorithms 

Many researchers use band or band ratio phycocyanin-retrieval methods for HAB 

mapping (Schalles and Yacobi, 2000; Vincent et al., 2004; Mishra and Mishra, 2014). This kind 

of algorithm is mainly based on two spectral features of pigment phycocyanin. One is the 

absorption occuring at approximately 620 to 630 nm, and another is the reflectance peak 

occuring near 650 nm. For example, the single reflectance band ratio algorithm used by Schalles 

and Yacobi (2000) employed a single band ratio algorithm to model the empirical relationship 

between the observed PC concentration and the band ratio of 650 um with 625 um in Carter Lake, 

Nebraska, USA (Ruiz-Verdú et al., 2008). 

 

The above empirical models are easy and robust enough to be applied to a specific water 

body where in situ data can be regularly collected (Matthews et al., 2010). These methods work 

well with severe HABs that show strong spectral reflectance characteristics. However, as 

Matthews et al. (2010) mentioned, these empirical models are mostly used on airborne or hand-

held sensors and cannot separate the signals of different constituents in water.  

 

2.2 Semi-analytical algorithms 

Semi-analytical algorithms have been proposed to detect the relationship of Chl-a or PC 

concentration with the retrieved inherent optical properties (IOPs) (such as the absorption 

coefficients of phytoplankton and other materials in waters, the total and particulate 

backscattering coefficients, and so on) (Matthews et al., 2010). The classical semi-analytical 

algorithms include the semi-analytical baseline subtraction algorithm (Dekker, 1993), the nested 

semi-analytical band ratio algorithm based on MERIS images (Simis et al., 2005), the three band 
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semi-analytical algorithm for MERIS-like sensors (Gitelson et al., 2003; Moses et al., 2009; 

Hunter et al., 2010) as well as the optimal PC 3 algorithm by Mishra and Mishra (2014), and the 

quasi-analytical algorithms (QAA) (Mishra et al., 2013; Mishra and Mishra, 2014; Ruiz-Verdú et 

al., 2008). 

Semi-analytical algorithms are considered to be suitable for estimating PC or Chl-a 

concentration in turbid productive waters because they can solve several parameters 

simultaneously and hence separate the signals of different constituents in water (Matthews et al., 

2010). However, they are sensitive to errors due to the many spectral bands and parameters 

involved (Matthews et al., 2010). Moreover, they are mostly designed for the remote sensing 

data from MERIS, MODIS, or hyperspectral sensors which have narrow bands in red and near 

infrared regions of the spectrum.  

 

2.3 Analytical methods 

Analytical methods use reflectance spectra instead of band ratios and statistics to map 

HABs (Kuster, 2009). For example, using derivative analysis to detect individual pigment 

signatures in absorbance or radiance spectra (Warner and Fan, 2013; Hunter et al., 2008; Kuster, 

2009). Another kind of method, spectral shape methods using a computation process equivalent 

to the second derivative, mainly include fluorescent line height (FLH) (Gower et al., 1999); 

maximum chlorophyll index (MCI) (Gower et al., 2008), cyanobacteria index (CI) (Wynne et al., 

2008; Wynne et al., 2010), the maximum peak-height algorithm (MPH) (Matthews et al., 2012), 

and the scattering line height (SLH) algorithm and aphanizomenon-microcystis index (AMI) 

(Kudela et al., 2015).  
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However, just like semi-analytical methods, most analytical methods work well with 

hyperspectral data and some ocean color sensors like MERIS, MODIS, or SeaWiFS (Kuster, 

2009), and do not work well with multispectral data like Landsat images which have higher 

spatial resolution to map HABs in small water bodies. 

 

2.4 Machine learning methods 

In recent years, machine learning techniques (e.g., Decision Tree, Neural Networks, 

Random Forests) have been employed as more effective alternatives to conventional parametric 

algorithms for analyzing complex, high dimensional and nonlinear dataset (Olden et al., 2008; 

Rodriguez-Galiano et al., 2012), especially for ecological data which rarely require simple 

statistical analysis (Crisci et al., 2012). These algorithms are more efficient and accurate because 

they are less strict on data distribution assumptions (e.g., normal distribution), and can derive 

models from large, noisy datasets (Atkins et al., 2007; Rodriguez-Galiano et al., 2012). For 

example, a few studies have used neural networks (Schiller and Doerffer, 1999; Huang and Lou, 

2003; Pozdnyakov et al., 2005) to retrieve Chl-a concentration and map phytoplankton blooms. 

Chen and Mynett (2004) used decision trees and nonlinear piecewise regression models to detect 

Phaeocystis globose bloom in Dutch coastal waters (Chen and Mynett, 2004).  

The random Forests algorithm, which is reported to have a better performance than 

Support Vector Machine and most other machine learning methods (Crisci et al., 2012), has been 

widely used as a classification and/or a regression algorithm in a variety of fields (Mutanga et al., 

2011). For example, the Random Forests algorithm has been widely applied in land-cover 

classification using multispectral and hyperspectral satellite images (Rodriguez-Galiano et al., 

2012; Grinand et al., 2013; Ghosh et al., 2014). Recently, more studies have focused on the 
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regression application of Random Forests, such as the spatial distribution and prediction of 

aquaculture species (Vincenzi et al., 2011), the digital mapping of soil organic matter stocks 

(Wiesmeier et al., 2011), quantification of live aboveground forest biomass dynamics (Powell et 

al., 2010), and biomass estimation for wetland vegetation (Mutanga et al., 2011).  However, the 

Random Forests approach has not been applied to HABs related studies yet. 

 

As mentioned above, empirical, semi-analytical, and analytical methods have been 

widely applied in the quantitative detection and mapping of HABs, while only a few studies 

employed more complicated machine learning algorithms. Moreover, there is still relatively rare 

case studies to solve regression problems using machine learning algorithms and multispectral 

satellite data (Armston et al., 2009).  



11 
 

CHAPTER 3 MATERIALS AND METHODS 

3.1 Study area 

William H. Harsha Lake (Harsha Lake, or East Fork Lake) in Clemont County, located 

25 miles east of Cincinnati in southwestern Ohio, is a reservoir project built in 1978 (Funk et al., 

2003) and operated by the U.S. Army Corps of Engineers (USACE) for flood reduction, water 

supply, recreation, and a wildlife habitat (Beaulieu et al., 2014a). The reservoir is an open lake 

and covers an area of 8 km2 and drains from a watershed of 890 km2 (64% is land use in 

agriculture and 26% is forest cover), serving as the surface water source for the Bob McEwen 

Water Treatment Plant (10 MGD) (Green et al., 2010). Most areas of the lake have a water depth 

more than 8 m (Beaulieu et al., 2014b), and the maximum depth of the lake is 34 m 

(http://www.lakebrowser.com/ohio/william_h_harsha_lake.asp). Harsha Lake has generated 

about $32.7 million in visitor expenditures and prevented about $77 million in flood damages 

since its impoundment (Chang et al., 2014). 

Over the past 10 years, HABs caused by blue-green algae have been increasing in Ohio 

inland waters (Francy et al., 2015), and Harsha Lake experienced HABs almost every year 

(Beaulieu et al., 2014a). The seasonal trend of blue-green algal biovolume and Microcystin (a 

kind of toxin produced by cyanobacteria) concentration in Harsha Lake has been revealed by 

USGS scientific investigation reports in 2013 and 2014 (Francy et al., 2015) —they increase 

from May to June, keep constant in July, and decrease slowly from August to October (Francy et 

al., 2015). Moreover, the phytoplankton community in Harsha Lake is complex and generally 

dominated by the blue-green algae (Francy et al., 2015).  

http://www.lakebrowser.com/ohio/william_h_harsha_lake.asp
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Generally, the turbidity of Harsha Lake is quite low—Chang et al. (2014) reported that 

the average turbidity of Harsha Lake is 9.1 ntu (Chang et al., 2014). Similar evidence came from 

a report by USGS stating that (Francy et al., 2015) the turbidity values of the lake water were 

between 3.9 - 16.4 ntu in 2013 and 2014.  

Harsha Lake is a typical small water body vulnerable to HABs. On the other hand, the 

low turbidity of the lake water makes Harsha Lake an ideal case study site for testing the 

algorithms for HABs mapping.  

 

Figure 1. Harsha Lake, Ohio 

 

3.2 Data 

Two data sources were used in this thesis, a Landsat 8 OLI image acquired on September 

21, 2015, and same-day in situ measurement of Chl-a in Harsha Lake.  

 Cincinnati, Ohio 
 

Harsha Lake 
 

Clemont County 
 

Ohio State 

0 0.8 Miles 
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3.2.1 In situ measurements of Chl-a 

In situ measurements of Chl-a (μg/L) were conducted on September 21, 2015, 

deliberately synchronized with Landsat 8 satellite overpass. A total of 56 samples were collected 

across the lake (Figure 2) for analysis of Chl-a concentration. A range of Chl-a concentration 

was found between 3.6 - 15.2 μg/L, which was used to train and validate the models.  

As for classifying the measured Chl-a concentrations, this thesis used the ranges of 0 - 6 

μg/L, 6 - 8 μg/L, 8 - 10 μg/L and > 10 μg/L. In general, sample locations are evenly distributed 

in the area, except for southeastern Harsha Lake (only two sample sites) due to accessibility issue.  

 

Figure 2. Sampling locations and measured Chl-a concentrations in Harsha Lake on 09/21/2015 
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The concentration of Chl-a (a pigment of all photosynthetic phytoplankton) is a common 

bioindicator to detect blue-green algae (Matthews et al., 2010). Jupp et al. (1994) indicated that 

algae would be present but with no suggestion of a bloom when Chl-a concentrations were less 

than 10 μg/L. In other words, there was algae present but with no severe HABs outbreak in 

Harsha Lake on September 21, 2015. The histogram in Figure 3 shows the descriptive statistics 

of the data. 

 

Figure 3. Chl-a concentrations histogram 

 

3.2.2 Landsat 8 image 

Landsat 8 OLI and Thermal Infrared Sensor (TIRS) images consist of nine spectral bands 

(bands 1 to 9) and two thermal bands (band 10 and 11). Bands 1 to 7 with a spatial resolution of 

30 meters represent violet (0.43 - 0.45 μm), blue (0.45 - 0.51 μm), green (0.53 - 0.59 μm), red 

(0.64 - 0.67 μm), near infrared (0.85 - 0.88 μm), SWIR 1 (1.57 - 1.65 μm) and SWIR 2 (2.11 - 

2.29 μm) regions of the spectrum, respectively. Band 8 (0.50 - 0.68 μm) which is panchromatic 

band, Band 9 (1.36 - 1.38 μm) which is designed to detect cirrus cloud, and thermal bands 10 and 

11 which provide surface temperatures with a resolution of 100 meters were excluded in this 

study (USGS, 2016).  
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The Landsat 8 image was downloaded from USGS archives 

(http://earthexplorer.usgs.gov/). The image was corrected from atmospheric effects using the 

FLAASH module in ENVI.  Spectral reflectance images of the bands were output from the 

FLAASH algorithm. The reflectance values were multiplied by 10,000 and converted to integers 

for further analyses.  

Many studies (Vincent et al., 2004; Tebbs et al., 2013; Palmer et al., 2015) have 

illustrated that Landsat images can be used to map high biomass HABs for small water bodies 

based on red and near infrared spectral regions. Moreover, in clear water like Harsha Lake, 

Landsat 8 images should also be applicable to detect low-medium biomass of blue-green algae 

based on blue to green spectral regions (Moses et al., 2009; Kuster, 2009). Figure 4 shows the 

spectral reflectance values in each sampling site derived from the Landsat 8 image. Figure 4 

indicates that the spectral reflectance characteristics in the 56 sample sites are similar but also 

could be used to distinguish between different Chl-a values, especially in the blue to red spectral 

region, which is important to detect blue-green algae in low-biomass waters.  

 

Figure 4. The Landsat 8 reflectance values of the 56 sampling sites in Harsha Lake on 

09/21/2015 
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3.3 Methods 

Based on the literature, it can be concluded that given the characteristics of the water 

condition of the study area Harsha Lake, even with low/medium Chl-a concentrations, it is 

possible to measure the biomass of blue-green algae from blue and green bands of the Landsat 8 

image. This case study aims to find the empirical relationship between the spectral reflectance of 

Landsat bands and the in situ measured Chl-a concentrations, and to map the spatial distribution 

of blue-green algae in the study area. Two methods were employed; one is conventional 

Stepwise Multiple Linear Regression (SMLR) that is widely used in HABs studies, and the other 

is one of the popular machine learning method—Random Forests (RF) algorithm. Both methods 

were carried out in R software. To the best of my knowledge, this is the first time the feasibility 

of the RF algorithm has been tested with the use of Landsat 8 imagery to map HABs. 

 

3.3.1 Stepwise Multiple Linear Regression (SMLR) 

This thesis used Landsat 8 band values as the predictor variables, and the measured Chl-a 

concentrations as the dependent variable to build the Multiple Linear Regression model. The 

Multiple Linear Model can be written as Equation (1) (Armston et al., 2009): 




0

1

AXAY i

p

i

i      (1) 

where dependent variable Y is the measured Chl-a concentrations, predictor variable Xi is the 

band values of the Landsat 8 image, p is the total number of predictor variable Xi included in the 

model, parameter Ai is the regression coefficient for Xi, A0 is the constant term, and ɛ is the 

unexplained variance by the model. 
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A series of candidate Multiple Linear Models can be generated for all possible 

combinations of predictor variables. This thesis used the “MASS” and “DAAG” packages in R 

software (R Core Team, 2013) to conduct SMLR. The criterion used to estimate model quality is 

AIC, and a smaller AIC value generally means a better model. The best SMLR model can be 

selected based on the comparison of AIC values obtained from each Multiple Linear Regression 

model. 

 

3.3.2 Random Forests (RF) 

Machine learning methods have been widely used to identify and map the spatial patterns 

of ecological data based on Remote Sensing images and measured geographical data (Chen and 

Mynett, 2004; Na et al., 2010). Currently, the RF approach is considered to be one of the most 

effective machine learning methods with regard to prediction accuracy (Na et al., 2010; Crisci et 

al., 2012). RF has been widely used in classification and regression problems (Mutanga et al., 

2011). 

RF is an ensemble machine learning algorithm developed by Breiman (2001) to minimize 

the over-fitting problem existing in the classification and regression trees (CART) method 

(Mutanga et al., 2011). In the RF regression algorithm, a forest is a large number of regression 

trees determined by randomization (Armston et al., 2009), and each tree is trained by selecting a 

random set of predictor variables from a bootstrap sample of the training data (Mutanga et al., 

2011). The final estimate of the dependent variable is calculated by the ensemble mean of the 

decision trees in the forests (Armston et al., 2009). It is capable of dealing with complex, 

nonlinear and noisy datasets (Mutanga et al., 2011). Moreover, it offers an analysis of predictor 

variables’ importance (Crisci et al., 2012). However, its “black box” nature makes it difficult to 
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interpret the relationships between the dependent and predictor variables (Wiesmeier et al., 2011). 

Furthermore, because of the randomized nature of the RF algorithm, it does not require users to 

provide extra samples for validation. There will be automated cross-validation results as a by-

product of the algorithm.  

In this thesis, the RF regression algorithm was used as a nonlinear variable selection and 

regression method for predicting the Chl-a concentrations of blue-green algae in Harsha Lake on 

September 21, 2015. The implementation of the RF model was through the “randomForest” 

package (Liaw and Wiener, 2002) in R software (R Core Team, 2013; Wiesmeier et al., 2011). 

No variable transformation and reduction technique were employed because RF is considered 

robust to collinearity among predictor variables (Powell et al., 2010).  

 

3.3.3 Model validation and assessment 

Models can be validated with three techniques: an independent test dataset, cross-

validation, or (RF models only) Out-of-bag (OOB) estimation on the training data (Freeman et 

al., 2016). In order to make the above two methods comparable, this thesis performed 

independent test dataset validation. To be more specific, a proportion of the data (80% of the 

data) was set aside randomly as the training dataset, and 20% of the data as the independent test 

dataset. The reason for partitioning the data like this is that it can get the lowest prediction error 

(RMSE) on the test dataset for both SMLR and RF models. This thesis set the seed of R’s 

random number generator as 1115 to make the model results reproducible. 

With respect to the statistics to validate the regression models, Root Mean Squared Error 

(RMSE), Mean Error (ME), Mean Squared Error (MSE), Variance, and Coefficient of Model 

Determination (R2) are the most commonly used statistics in previous studies (Armston et al., 
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2009; Wiesmeier et al., 2011; Powell et al., 2010). This thesis applied RMSE, ME and R2 to 

assess the prediction performance of the SMLR and RF models in predicting the Chl-a 

concentrations of blue-green algae.  

RMSE can measure the accuracy of regression predictions, and is the most important 

statistic for model selection and validation in the literature. Generally, the best prediction model 

has the lowest value of RMSE on the test dataset. R2 is expressed as the ratio of the explained 

variance to the total variance, which is also a commonly used index to assess regression models’ 

performance, especially for the linear regression models. ME is to measure if the prediction error 

measures are biased by the overfitting problem (better fit than the real case). Even though RF 

models seldom over fit in practice, the overfitting problem may still exist if there are too many 

trees in the forest (Lin and Jeon, 2006). The formulae to calculate RMSE, ME and R2 can be 

expressed as: 
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where Ei is the difference between the measured and predicted values of Chl-a concentration, N 

is the number of samples in the dataset, yi is the measured values of Chl-a concentration, 𝑦̅ is the 

mean of all measured values in the dataset, and Yi is the predicted Chl-a concentration by 

regression models.   
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CHAPTER 4 RESULTS AND DISCUSSION 

4.1 Best fitting SMLR model 

The SMLR analysis can generate an equation to describe the linear relationship between 

one or more Landsat 8 bands (variable names are “Band1” to “Band7”) and the dependent 

variable—measured Chl-a values. In the tests, SMLR models were built using the measured Chl-

a concentrations of the 56 samples (variable name is “Chl-a”) as dependent variable; then, the 

SMLR models were built again using the natural log-transformed Chl-a concentrations of the 56 

samples (variable name is “LN(Chl-a)”) as dependent variable. That is because the measured 

Chl-a concentration data are not normally distributed (see Figure 3 in section 3.2), and this thesis 

would like to test if the natural logarithm transformation can improve model performance. As 

mentioned in section 3.3, this thesis used the “MASS” and “DAAG” packages within R (R Core 

Team, 2013) to conduct SMLR and get the final SMLR model, and the criterion to select the 

final model was based on the AIC values. 

 

4.1.1 The final SMLR model using “Chl-a” as dependent variable.  

The final SMLR model consists of three predictor variables including Band2, Band3, and 

Band5, and R2 of the model is 0.48. Table 1 lists the model coefficients, and we can know 

whether any of the predictors have significance in the model by analyzing the P value. The 

coefficients table below implicates that Band3 and Band2 are significant while Band5 is not 

statistically significant using the common confidence interval at 95%. Band 5 is only significant 

at confidence interval of 90%.  
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Table 1. The coefficients of the final SMLR model using “Chl-a” as the dependent variable 

Model Estimate Std. Error T P value 

Constant 6.10393 2.66532 2.290 0.02723 * 

Band2 -0.22728 0.06700 -3.392 0.00155 ** 

Band3 0.12232 0.02336 5.235 5.25e-06 *** 

Band5 0.08603 0.05095 1.688 0.09892 

‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1, ‘ ’ 1. 

 

The final model using “Chl-a” as the dependent variable can be written as Equation (5):  

508603.0312232.0222728.010393.6 BandBandBandaChl    (5) 

 

4.1.2 The final SMLR model using “LN(Chl-a)” as the dependent variable.  

The final SMLR model consists of two predictor variables including Band2 and Band3, 

and R2 of the model is 0.50. Table 2 lists the model coefficients and the implication is that both 

Band2 and Band3 are significant at a significance level of 0.001. The final model using 

“LN(Chl-a)” as a dependent variable can be written as Equation (6).  

3012288.02017790.0726157.1)( BandBandaChlLN     (6) 
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Table 2. The coefficients of the final SMLR model using “LN(Chl-a)” as the dependent variable 

Model Estimate Std. Error T P 

Constant 1.726157 0.326460 5.287 4.17e-06 *** 

Band2 -0.017790 0.004978 -3.574 0.000901*** 

Band3 0.012288 0.002029 6.055 3.31e-07 *** 

‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05, ‘.’ 0.1, ‘ ’ 1. 

 

4.1.3 Best fitting SMLR model 

The above results suggested that the log transformation of the Chl-a observation could 

not significantly increase R2 or lower the prediction error. In order to make the regression results 

more comparable to the RF model, the best SMLR model directly used Chl-a concentration 

(“Chl-a”) as the dependent variable. 

 

4.2 Best fitting RF model 

In order to get the best fit of the RF model, the first step was to select a subset of 

predictor variables that can best predict the dependent variable. Then, based on the variables 

selected, built the best fitting RF model by using optimal parameters “mtry” and “ntree”. 

 

4.2.1 Subset size of the variables and variable importance measures 

The RF model provided an evaluation of the subsets of variables from randomization. 

The principle of variable selection was to “select the fewest number of predictors that offer the 
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best predictive power of the dependent variable and help in the interpretation of the final model” 

(Mutanga et al., 2011). Based on previous studies (Díaz-Uriarte et al., 2006; Genuer et al., 2010), 

the variable selection procedure can be described as follows:  

a. Partition the dependent variable (Chl-a concentrations of 56 samples) into two datasets 

randomly—80% of the data as the training dataset and 20% of the data as the test dataset. 

b. Perform variable importance measures with the “randomForest” package in R using 

default parameters (mtry = 1/3 of the total number of input parameters, ntree = 500), and 

sort the variables in decreasing order of importance. 

The variable importance measures can show the strength of each variable’s relationship 

to the dependent variable (Wiesmeier et al., 2011). There are two types of variable importance 

measures provided by the “randomForest” package. Type one is to measure prediction accuracy 

(i.e., how worse the model performs) if a variable is permuted, and type two is to measure node 

purity (i.e., how pure a node is) at the end of a tree in the forest (Breiman, 2001). Type one can 

be performed by calculating the percent increase in Mean Standard Error (%IncMSE) as each 

variable is permuted while all others are unchanged, and a higher value represents greater 

variable importance (Genuer et al., 2010). %IncMSE is the most widely used importance 

measures of variables (Mutanga et al., 2011), and this thesis also uses it to measure variable 

importance. Figure 5 illustrates the %IncMSE calculated to measure the importance of all seven 

bands in predicting Chl-a concentrations. 

c. Eliminate the smallest importance variable at each iteration and then build a new forest 

with the remaining variables. 

d. Repeat steps b and c to fit RF models iteratively, and the prediction error (RMSE) on the 

test dataset at each iteration can be found in Figure 6.  
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e. Select the set of variables with lowest RMSE on the test dataset.  

 

Figure 5. Variable importance measures (%IncMSE) of all variables in predicting Chl-a 

concentrations using the RF model 

 

Figure 5 illustrates the importance ranking of all variables in decreasing order is Band3, 

Band4, Band2, Band6, Band7, Band1, and Band5. More precisely, this thesis defines the set of 

variables used in the RF model at each iteration as Set A, B, C, D, E, F, and G. The iterative 

process can be described as follows. Set A contains 7 variables—Band3, Band4, Band2, Band6, 

Band7, Band1, and Band5; Set B discards Band5 and contains 6 variables—Band3, Band4, 
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Band4, Band2, Band6, and Band7; Set D discards Band7 and contains 4 variables—Band3, 

Band4, Band2, and Band6; Set E discards Band6 and contains 3 variables—Band4, Band3, and 

Band3 
 

 
 

Band4 
 

 
 

Band2 
 
 

 

Band6 
 

 

 

Band7 
 
 

 

Band1 

 

Band5 

 

%IncMSE 

 0       5         10 



25 
 

Band2; Set F discards Band2 and contains 2 variables—Band3 and Band4; Set E discards Band4 

and contains only variable Band3. The RF model yields a RMSE on the test dataset at each 

iteration, and the results are summarized in Figure 6.  

 

Figure 6. The RMSE on the test dataset yielded from the RF models at each iteration 

 

In general, the RMSE decreases while the less important variables (Band5, Band7, Band6) 

are discarded progressively, and the RMSE increases while the more important variables (Band2, 

Band4) are discarded at the last two iterations. An exception is the increase in RMSE when the 

less important Band1 is discarded. The entire set of seven variables (Set A) yields the highest 

RMSE (2 µg/L) on the test dataset, while the set of three variables Band4, Band3 and Band2 (Set 
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The result indicated that Band 4, Band3 and Band 2 were the most important variables in 

explaining the Chl-a concentrations of Harsha Lake on September 21, 2015. The variable 

selection procedure can identify three bands as the fewest number of variables that could offer 

the best predictive performance of the RF model. Therefore, Set E was selected to build RF 

regression model in predicting the Chl-a concentrations in Harsha Lake. 

 

4.2.2 Optimal parameters for RF model 

According to previous studies (Genuer et al., 2010; Mutanga et al., 2011; Vincenzi et al., 

2011), mtry (the number of input variables randomly chosen for splitting) and ntree (the number 

of trees in the forest) are two parameters that need to be optimized in the RF algorithm. This 

section aims to find the optimal values of mtry and ntree by analyzing the RF model sensitivity 

to mtry and ntree.  

Figure 7 below illustrates the sensitivity of the RF model (built by variable Set E 

including Band4, Band3, and Band2) to parameters mtry and ntree; in other words, it shows how 

RMSE on the test dataset varies with parameters mtry and ntree. This thesis tested seven values 

of ntree (30, 50, 100, 200, 500 the default, 1000, and 2000) and three values of mtry (from 1 to 3 

using a single interval).  
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Figure 7. Sensitivity of the RF model (built by variable Set E including Band4, 3, 2) to 

parameters (mtry and ntree) based on RMSE. 

 

The results implicate that mtry and ntree affect the prediction errors. To be more specific, 

the default mtry = 1 gives the worst prediction; mtry=3 produces the best prediction when ntree > 

500, while mtry = 2 produces the best prediction when ntree < 500. Moreover, ntree = 50 is the 

curve trough and yields the lowest RMSE compared with other ntree values.   

Overall, Parameter ntree = 50 and mtry = 2 yielded the lowest RMSE, and the RF model 

developed using 3 input variables (Band4, Band3, Band2), 2 mtry, and 50 ntree were selected as 

the best fitting model to predict the dependent variable the Chl-a concentrations of blue-green 

algae in Harsha Lake. 

 

4.3 Comparison of the best fitting models  

As mentioned in section 3.3, this thesis applied RMSE, ME and R2 to assess the 

prediction performance of the best fitting models obtained in section 4.1 and 4.2. In order to 
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make the best fitting models comparable to previous studies, RMSE and ME were normalized 

using the range (the maximum value minus the minimum value) of the dataset (Vincent et al., 

2004).  

Table 3. The comparison of the best fitting SMLR and RF models 

Model SMLR Model RF Model 

RMSE (µg/L) 2.43 1.43 

Normalized RMSE 20.93% 12.33% 

ME (µg/L) 0.87 0.02 

Normalized ME 7.52% 00.14% 

R2 0.48 0.82 

 

Table 3 indicates that the best fitting RF model yields higher R2 (0.82) and lower RMSE 

of prediction (1.43 µg/L, about 12.33% of the total range of the observed Chl-a concentrations) 

on the test dataset compared to the best fitting SMLR model which yields R2 of 0.48 and RMSE 

of 2.43 µg/L (about 20.93% of the total range of the observed Chl-a concentrations). The 

uncertainty level is consistent with the previous study by Vincent et al. (2004) using Landsat TM 

imagery to map blue-green algae blooms in Lake Erie. In Vincent et al. (2004), they reported a 

RMSE of about 26% of the total range of Phycocyanin pigment. However, the machine learning 

algorithm greatly outperforms the SMLR model as well as previous research in similar 

approaches.  
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4.4 Prediction surfaces of Chl-a concentration by the best fitting RF model 

The analysis results show that the RF model provides a better prediction of Chl-a 

concentration on the test dataset (R2=0.82, RMSE is 1.43 µg/L), which suggests that the RF 

model is preferred for mapping low biomass HABs, especially with Chl-a concentrations less 

than 20 µg/L in aquatic systems. In this section, the best fitting RF model was applied to the 

entire study area of Harsha Lake to obtain the map of Chl-a concentrations. The prediction 

surface (Figure 8) was generated with a spatial resolution of 30 m ×30 m pixels from the Landsat 

8 image. The spatial patterns can be summarized as follows.  

 

Figure 8. Prediction surface of Chl-a concentration generated by the best fitting RF model 
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The areas at different Chl-a concentration levels were calculated, and 89.30% of Harsha 

Lake area had Chl-a values less than 10 µg/L on the sampling date, while in only 10.70% of the 

entire study area were the Chl-a concentrations between 10 µg/L and 20 µg/L. The lowest Chl-a 

(Chl-a < 6 µg/L) accounted for 43.8% of the lake area, and was mainly distributed in the center 

of the lake area, while higher Chl-a values were closer to the shore. This is consistent with the 

previous conclusions about HABs’ spatial distribution: “higher cyanotoxin concentrations are 

expected near shore” (Kasich et al., 2015). Moreover, the Chl-a concentrations in western 

Harsha Lake were generally less than 8 µg/L, and the Chl-a concentrations larger than 8 µg/L 

were mostly distributed in northeastern and southeastern Harsha Lake.  

In order to analyze the probable causes of the Chl-a spatial patterns, the National 

Hydrography Dataset (NHD) containing the flow direction of the surface water system was 

downloaded the from USGS website (http://nhd.usgs.gov/data.html). NHD Flowline data of Ohio 

inland waters was used to trace the downstream and upstream of Harsha Lake (As shown in 

Figure 9). It should be noted that higher Chl-a values (especially for Chl-a larger than 10 µg/L) 

were mostly distributed close to the mouths of rivers or streams, such as the mouth of Cabin Run 

in northeastern Harsha Lake, the mouth of East Fork Little Miami River which crosses Harsha 

Lake east to west, and the mouth of Cloverlick Creek in southeastern Harsha Lake. Based on 

these patterns, it is suspected that the occurrence of blue-green algae in Harsha Lake might be 

attributed to the nutrient influx generated from the non-point sources of pollution in agricultural 

and urban lands through upstream rivers, although validating this hypothesis is beyond the scope 

of this thesis. 

http://nhd.usgs.gov/data.html
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Figure 9. Flow direction of the surface water network from the National Hydrography Dataset 

(NHD) 
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CHAPTER 5 CONCLUSIONS 

In comparing conventional linear regression and Random Forests machine learning 

algorithm for mapping blue-green algae in Harsha Lake using Landsat 8 imagery, I have come to 

the following conclusions.  

(1) The study area, Harsha Lake, is a low-medium biomass water body, showing some 

spectral reflectance characteristics in blue and green spectral regions. One research 

hypothesis of this thesis is that Landsat 8 data is applicable to the detection and mapping 

of blue-green algae in Harsha Lake by analyzing the blue band (Band2) and green band 

(Band3). This thesis confirms this hypothesis through statistical analysis: the predictor 

variables selected by best fitting models to predict Chl-a concentrations are Band2, 

Band3, and Band5 (representing blue, green and near infrared spectral regions 

respectively) for the SMLR model, and Band4, Band3, and Band2 (representing red, 

green and blue spectral regions respectively) for the RF model. The models were all 

significant. 

(2) The best fitting SMLR model includes 3 predictor variables—Band2, Band3, and Band5 

at a significance level of 0.1. The R2 is 0.48 and the produced RMSE on the test dataset is 

2.43 µg/L—about 20.93% of the total range of the measured Chl-a concentrations. 

(3) The best fitting RF Regression model also includes 3 predictor variables—Band4, Band3, 

and Band2, with parameter ntree = 50 and mtry = 2. The R2 is 0.82 and the produced 

RMSE on the test dataset is 1.43 µg/L—about 12.33% of the total range of the measured 

Chl-a concentrations.  

(4) The results show that compared to the conventional linear regression model, the 

performance of the RF model is better at predicting Chl-a concentrations of blue-green 
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algae, and the prediction accuracy of both models are sufficient to map the extent and 

biomass of the blue-green algae in Harsha Lake on September 21, 2015.  

(5) The prediction surface by the besting fitting RF model illustrates that approximately 90% 

of Harsha Lake’s area had Chl-a values less than 10 µg/L on the sampling date. Higher 

Chl-a values (especially for Chl-a larger than 10 µg/L) were mostly distributed close to 

the mouths of rivers or streams in northeastern and southeastern Harsha Lake, which 

might be caused by the influx of nutrients from agricultural or urban land use by rivers 

and streams. 

(6) The results show the utility of the RF approach and Landsat 8 imagery in detecting and 

quantitatively mapping low-medium biomass HABs, which is considered to be a 

challenging task (Matthews and Odermatt, 2015).  
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