
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

March 2019

Using Entheseal Length to Infer Locomotor Type
Antonio R. Otero
Louisiana State University and Agricultural and Mechanical College, arotero627@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Biological and Physical Anthropology Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Otero, Antonio R., "Using Entheseal Length to Infer Locomotor Type" (2019). LSU Master's Theses. 4868.
https://digitalcommons.lsu.edu/gradschool_theses/4868

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4868&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4868&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4868&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4868&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/320?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4868&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/4868?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4868&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


 
 

USING ENTHESEAL LENGTH TO INFER LOCOMOTOR TYPE 

 

 

 

 

 

 

 

 

A Thesis 

Submitted to the Graduate Faculty of the 
Louisiana State University and 

Agricultural and Mechanical College 
in partial fulfillment of the 

requirements for the degree of 
Master of Arts 

in 

The Department of Geography and Anthropology 

 

 

 

 

 

 

 

 

 

by 

Antonio R. Otero 

B.A., Louisiana State University, 2017 

May 2019 



 

ii 

Acknowledgements 

I would like to thank my advisor, Dr. Robert Tague, along with Drs. Juliet Brophy and 

Teresa Wilson for being a part of my committee and aiding me in formulating and providing 

advice on this project. Thank you to Dr. Athanasios Gentimis at Louisiana State University for 

his aid in statistical analyses. Also, thank you to Dr. Jake Esselstyn at the Louisiana State 

University Museum of Natural Science; Dr. Mark Omura at the Museum of Comparative 

Zoology; Ms. Sara Ketelson, Ms. Eleanor Hoeger, and Ms. Marisa Surovy at the American 

Museum of Natural History; Dr. Darrin P. Lunde at the Smithsonian National Museum of 

Natural History; Dr. Bruce Patterson, Dr. Lawrence Heaney, Dr. Adam Ferguson, and Ms. 

Lauren Smith at the Field Museum of Natural History; and Dr. Joseph Cook, Dr. Jon Dunnum, 

and Ms. Adrienne Raniszewski at the Museum of Southwestern Biology for allowing me to 

conduct my research at all of these institutions.  

I would like to thank Ms. Caroline Fontaine, Ms. Dee, Mr. Rick, and Mrs. Christiane and 

Mr. Patrick for allowing me into their homes while I conducted my research. I would also like to 

thank my family, Mr. and Mrs. Armando and Judith Otero and Mr. Alejandro Otero, my partner 

Ms. Allison Fontaine, and my friends Ms. Meredith Aulds, Ms. Brittney Blevins, and Ms. Sophie 

Reck for their moral support and financial aid. Thank you to the LSU Department of Geography 

and Anthropology for the Robert C. West and R.J. Russell Field Research Grant, which was a 

great aid in funding this project. 

 

 

  



 

iii 

Table of Contents 

Acknowledgements ……………………………………………………………………………… ii 

List of Tables  ……………………………………………………………………………………. v 

List of Figures  …………………………………………………………………………………... ix 

Abstract  ………………………………………………………………………………………… xii 

Chapter 1. Introduction  ………………………………………………………………………….. 1 

Chapter 2. Materials and Methods  ………………………………………………………………. 5 

2.1. Materials  ……………………………………………………………………………. 5 

2.2. Methods ……………………………………..………………………………………. 6 

Chapter 3. Results  ……………………………………………………………………………….. 9 

 3.1. Summary Statistics and Correlation Analysis ………..……………………………... 9 

3.2. First GLM Analysis with Tukey-Kramer’s Tests for Species  ……………………… 9 

3.3. Second GLM Analysis with Tukey-Kramer’s Tests for Species  ………………….. 22 

3.4. Student’s T-tests ………..………………………………………………………….. 28 

Chapter 4. Discussion  ………………………………………………………………………….. 31 

4.1. GLM and Tukey-Kramer’s Test Results for Species  ……………………………… 31 

4.2. Student’s T-test Results for Sex …………………………………………………… 36 

4.3. Student’s T-test and Tukey-Kramer’s Test Results for Location  …………………. 37 

Chapter 5. Conclusion ………………………………………………………………………….. 40 

References  ……………………………………………………………………………………… 41 

Appendix A. Correlation Results Tables  ………………………………………………………. 46 

Appendix B. GLM Results  …………………………………………………………………….. 52 



 

iv 

Appendix C. Tukey-Kramer Adjusted Means Tables  …………………………………………. 57 

Appendix D. Tukey-Kramer Species by Location Tables  ……………………………………... 59 

Appendix E. HD and FGM Tukey-Kramer Test Results for Species without A. geoffroyi  ……. 61 

Vita ……………………………………………………………………………………………... 62 

 

  



 

v 

List of Tables 

Table 1. Number of specimens for each sex and location (captive or wild) …………………….. 5 

Table 2. Female summary statistics for all measurements/ratios. Blank spaces for body length 

and body mass due to information gathered from literature ……………………………. 10 

 

Table 3. Male summary statistics for all measurements/ratios. Blank spaces for body length     

and body mass due to information gathered from literature  …………………………… 11 

 

Table 4. Female and male combined summary statistics …………………….………………… 12 

Table 5. Summary table of p-values in the first GLM analysis (A. geoffroyi, C. guereza,             

H. lar, and M. mulatta)  ………………………………………………………………… 14 

 

Table 6. Tukey-Kramer test results (p-values) among species for the humerus  ……………….. 14 

Table 7. Tukey-Kramer test results (p-values) among species for the femur  ………………….. 14 

Table 8. Tukey-Kramer test results (p-values) among species for pectoralis major  …………... 15 

Table 9. Tukey-Kramer test results (p-values) among species for teres major  ………………... 15 

Table 10. Tukey-Kramer test results (p-values) among species for deltoid  …………………… 15 

Table 11. Tukey-Kramer test results (p-values) among species for gluteus maximus  ………… 15 

Table 12. Tukey-Kramer test results (p-values) among species for HPM  ……………………... 16 

Table 13. Tukey-Kramer test results (p-values) among species for HTM  …………………….. 16 

Table 14. Tukey-Kramer test results (p-values) among species for HD ……………………….. 16 

Table 15. Tukey-Kramer test results (p-values) among species for FGM  ……………………... 16 



 

vi 

Table 16. Summary table of p-values in the second GLM analysis (C. guereza, H. lar, and M. 

mulatta)  ………………………………………………………………………………… 22 

 

Table 17. Tukey-Kramer test results (p-values) among species for the radius  ………………… 23 

Table 18. Tukey-Kramer test results (p-values) among species for the ulna …………………... 23 

Table 19. Tukey-Kramer test results (p-values) among species for biceps brachii  ……………. 23 

Table 20. Tukey-Kramer test results (p-values) among species for brachialis  ………………… 23 

Table 21. Tukey-Kramer test results (p-values) among species for supinator  ………………… 23 

Table 22. Tukey-Kramer test results (p-values) among species for RBB  ……………………... 24 

Table 23. Tukey-Kramer test results (p-values) among species for UB  ……………………….. 24 

Table 24. Tukey-Kramer test results (p-values) among species for US  ……………………….. 24 

Table 25. T-test p-values from comparing sex within species …………………………………. 29 

Table 26. T-test p-values by location for specific measurements for C. guereza and H. lar  ….. 30 

Table 27. Summary table for all Tukey-Kramer test results (first and second GLM) in 

comparison of species. * indicates a significant difference between species, blank     

space indicates no significant difference, and shaded area indicates not enough 

information for comparison. Ag = A. geoffroyi, Cg = C. guereza, Hl = H. lar, Mm =      

M. mulatta  ……………………………………………………………………………… 30 

 

Table A.1. Ateles geoffroyi correlation results among body length, body mass, and left and    

right side entheseal and long bone lengths. No comparison among body length and    

body mass with any measurement because not enough information was available.       

First row for each category is the correlation value, second row is the p-value     

indicating significance ………………………………………………………………….. 46 

 

Table A.2. Colobus guereza correlation results among body length, body mass, and left and  

right side entheseal and long bone lengths. First row for each category is the     

correlation value, second row is the p-value indicating significance  ………………….. 47 

 



 

vii 

Table A.3. Hylobates lar correlation results among body length, body mass, and left and right 

side entheseal and long bone lengths. First row for each category is the correlation   

value, second row is the p-value indicating significance  ………………………………. 49 

 

Table A.4. Macaca mulatta correlation results among body length, body mass, and left and   

right side entheseal and long bone lengths. No comparison among body length and    

body mass with any measurement because not enough information was available.       

First row for each category is the correlation value, second row is the p-value     

indicating significance  …………………………………………………………………. 50 

 

Table B.1. Humerus  ……………………………………………………………………………. 52 

Table B.2. Femur  ………………………………………………………………………………. 52 

Table B.3. Pectoralis major  …………………………………………………………………….. 52 

Table B.4. Teres major …………………………………………………………………………. 53 

Table B.5. Deltoid  ……………………………………………………………………………… 53 

Table B.6. Gluteus maximus  …………………………………………………………………… 53 

Table B.7. HPM  ………………………………………………………………………………... 53 

Table B.8. HTM  ………………………………………………………………………………... 54 

Table B.9. HD  ………………………………………………………………………………….. 54 

Table B.10. FGM  ………………………………………………………………………………. 54 

Table B.11. Radius  ……………………………………………………………………………... 54 

Table B.12. Ulna  ……………………………………………………………………………….. 55 

Table B.13. Biceps brachii  ……………………………………………………………………... 55 

Table B.14. Brachialis ………………………………………………………………………….. 55 



 

viii 

Table B.15. Supinator  ………………………………………………………………………….. 55 

Table B.16. RBB  ……………………………………………………………………………….. 56 

Table B.17. UB  ………………………………………………………………………………… 56 

Table B.18. US  …………………………………………………………………………………. 56 

Table C.1. First GLM analysis mean measurement lengths/ratio values and 95% confidence 

intervals (95% CI) with Tukey-Kramer adjustment for species (Tables 6-15)  ………... 57 

 

Table C.2. Second GLM analysis mean measurement lengths/ratio values and 95%      

confidence intervals (95% CI) with Tukey-Kramer adjustment for species (Tables 17-  

24)  ……………………………………………………………………………………… 58 

 

Table D.1. Deltoid ……………………………………………………………………………… 59 

Table D.2. HD  ………………………………………………………………………………….. 59 

Table D.3. HPM  ………………………………………………………………………………... 59 

Table D.4. Biceps brachii ………………………………………………………………………. 60 

Table D.5. Supinator  …………………………………………………………………………… 60 

Table D.6. RBB ………………………………………………………………………………… 60 

Table D.7. US  ………………………………………………………………………………….. 60 

Table D.8. Gluteus maximus  …………………………………………………………………... 60 

Table E.1. HD  ………………………………………………………………………………….. 61 

Table E.2. FGM  ………………………………………………………………………………... 61  



 

ix 

List of Figures  

Figure 1. Female H. lar teres major (top) and pectoralis major (bottom) entheses  ……………... 7 

Figure 2. Female A. geoffroyi deltoid enthesis  ………………………………………………….. 7 

Figure 3. Female A. geoffroyi biceps brachii enthesis  …………………………………………... 7 

Figure 4. Female H. lar brachialis enthesis  ……………………………………………………... 8 

Figure 5. Male C. guereza supinator enthesis  …………………………………………………… 8 

Figure 6. Female H. lar gluteus maximus enthesis  ……………………………………………… 8 

Figure 7. Humerus Tukey-Kramer test illustration (Table 6), x- and y-axes are long bone    

length. The length of the blue or red line correlates with the 95% confidence interval    

for the mean value used in the Tukey-Kramer test of each species (Table C.1). The 

dashed line splits the graph in half ……………………………………………………… 17 

 

Figure 8. Femur Tukey-Kramer test illustration (Table 7), x- and y-axes are long bone length. 

The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.1). The dashed      

line splits the graph in half  ……………………………………………………………... 17 

 

Figure 9. Pectoralis major Tukey-Kramer test illustration (Table 8), x- and y-axes are     

entheseal length. The length of the blue or red line correlates with the 95% confidence 

interval for the mean value used in the Tukey-Kramer test of each species (Table C.1). 

The dashed line splits the graph in half  ………………………………………………... 18 

 

Figure 10. Teres major Tukey-Kramer test illustration (Table 9), x- and y-axes are entheseal 

length. The length of the blue or red line correlates with the 95% confidence interval    

for the mean value used in the Tukey-Kramer test of each species (Table C.1). The 

dashed line splits the graph in half  ……………………………………………………... 18 

 

Figure 11. Deltoid Tukey-Kramer test illustration (Table 10), x- and y-axes are entheseal   

length. The length of the blue or red line correlates with the 95% confidence interval    

for the mean value used in the Tukey-Kramer test of each species (Table C.1). The 

dashed line splits the graph in half  ……………………………………………………... 19 

 



 

x 

Figure 12. Gluteus maximus Tukey-Kramer test illustration (Table 11), x- and y-axes are 

entheseal length. The length of the blue or red line correlates with the 95% confidence 

interval for the mean value used in the Tukey-Kramer test of each species (Table C.1). 

The dashed line splits the graph in half  ………………………………………………... 19 

 

Figure 13. HPM Tukey-Kramer test illustration (Table 12), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval    

for the mean value used in the Tukey-Kramer test of each species (Table C.1). The 

dashed line splits the graph in half  ……………………………………………………... 20 

 

Figure 14. HTM Tukey-Kramer test illustration (Table 13), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval    

for the mean value used in the Tukey-Kramer test of each species (Table C.1). The 

dashed line splits the graph in half  ……………………………………………………... 20 

Figure 15. HD Tukey-Kramer test illustration (Table 14), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval    

for the mean value used in the Tukey-Kramer test of each species (Table C.1). The 

dashed line splits the graph in half  ……………………………………………………... 21 

 

Figure 16. FGM Tukey-Kramer test illustration (Table 15), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval    

for the mean value used in the Tukey-Kramer test of each species (Table C.1). The 

dashed line splits the graph in half  ……………………………………………………... 21 

 

Figure 17. Radius Tukey-Kramer test illustration (Table 17), x- and y-axes are long bone    

length. The length of the blue or red line correlates with the 95% confidence interval    

for the mean value used in the Tukey-Kramer test of each species (Table C.2). The 

dashed line splits the graph in half  ……………………………………………………... 24 

 

Figure 18. Ulna Tukey-Kramer test illustration (Table 18), x- and y-axes are long bone length. 

The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.2). The dashed      

line splits the graph in half  ……………………………………………………………... 25 

 

Figure 19. Biceps brachii Tukey-Kramer test illustration (Table 19), x- and y-axes are    

entheseal length. The length of the blue or red line correlates with the 95% confidence 

interval for the mean value used in the Tukey-Kramer test of each species (Table C.2). 

The dashed line splits the graph in half  ………………………………………………... 25 

 

 



 

xi 

Figure 20. Brachialis Tukey-Kramer test illustration (Table 20), x- and y-axes are entheseal 

length. The length of the blue or red line correlates with the 95% confidence interval    

for the mean value used in the Tukey-Kramer test of each species (Table C.2). The 

dashed line splits the graph in half  ……………………………………………………... 26 

 

Figure 21. Supinator Tukey-Kramer test illustration (Table 21), x- and y-axes are entheseal 

length. The length of the blue or red line correlates with the 95% confidence interval    

for the mean value used in the Tukey-Kramer test of each species (Table C.2). The 

dashed line splits the graph in half  ……………………………………………………... 26 

 

Figure 22. RBB Tukey-Kramer test illustration (Table 22), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval    

for the mean value used in the Tukey-Kramer test of each species (Table C.2). The 

dashed line splits the graph in half  ……………………………………………………... 27 

 

Figure 23. UB Tukey-Kramer test illustration (Table 23), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval    

for the mean value used in the Tukey-Kramer test of each species (Table C.2). The 

dashed line splits the graph in half  ……………………………………………………... 27 

 

Figure 24. US Tukey-Kramer test illustration (Table 24), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval    

for the mean value used in the Tukey-Kramer test of each species (Table C.2). The 

dashed line splits the graph in half  ……………………………………………………... 28 

 

  



 

xii 

Abstract 

 An enthesis is a marking (tuberosity or impression) on bone where a muscle or tendon 

attaches and it can be influenced by age, sex, physical activity, and muscle size. This study 

ascertains whether entheses, long bones, and their respective ratios can be used as an indicator 

for mode of locomotion in four primate species: Ateles geoffroyi (Geoffroy’s spider monkey), 

Colobus guereza (mantled guereza), Hylobates lar (lar gibbon), and Macaca mulatta (rhesus 

monkey). Seven entheses on four long bones were chosen based on importance of the muscle in 

relation to specific locomotor types, use in other studies, and ease of measurement; for each 

enthesis and accompanying long bone, a ratio was created which indicated the percentage of 

length the enthesis occupied on the long bone. Body length and not body mass was used in 

statistical analysis since a correlation analysis showed these two variables as having a significant, 

positive association. Comparisons were done among species, sex, and location (captive or wild 

caught specimen) using a Generalized Linear Model (GLM) with Tukey-Kramer’s tests and 

Student’s t-tests. The hypothesized pattern for results comparing species will be that C. guereza 

and M. mulatta group together, H. lar will be separate, and A. geoffroyi will be intermediate 

between H. lar and C. guereza/M. mulatta due to differences in their locomotion. Results show 

that five out of seven entheses, one out of four long bones, and one out of seven ratios follow the 

hypothesized pattern. Reasons for the discrepancy between the hypothesized pattern and results 

include body length and variable locomotor types within each species. Regarding sex, entheses 

are sexually dimorphic. Location was not a significant factor among species, which allowed 

captive and wild caught specimens to be combined into a larger sample. These results show that 

entheses are indicative of sex and are not affected by captivity. Overall, entheseal length is 

indicative of locomotor type, but long bone length and the ratio are not.    



1 

Chapter 1. Introduction 

An enthesis is a marking (tuberosity or impression) on bone where muscles or tendons 

attach and consists of two types: fibrous and fibrocartilaginous. In fibrous entheses, the tendon or 

ligament attaches directly to the bone, while in fibrocartilaginous entheses the tendon or ligament 

passes through four zones: dense fibrous connective tissue, uncalcified fibrocartilage, calcified 

fibrocartilage, and bone (Benjamin et al., 2002). Most entheses are of the fibrocartilaginous type, 

and thus most entheseal studies are conducted on fibrocartilaginous entheses (Benjamin et al., 

2002). These sites are influenced by age, sex, physical activity, and/or muscle size. Most 

research done in this field relates to humans by attempting to discover activity or occupational 

stress markers. However, entheseal studies are not only done on humans and some studies have 

been done using non-human primates. Results of human studies differ among one another and 

there is no clear consensus for the effect that age, sex, physical activity/occupation, or muscle 

size have on entheseal morphology (Acosta et al., 2017; Foster et al., 2012; Godde and Taylor, 

2013; Milella, 2014; Milella et al., 2012; Niinimäki and Sotos, 2012; Schlecht, 2012; Shaw and 

Benjamin, 2007; Villotte and Knüsel, 2012; Villotte et al., 2009; Zumwalt, 2006). While overall 

conclusions regarding human studies may not always agree, there is consensus that entheses are 

affected by activity level in some manner. This study takes a new approach by comparing 

different locomotor types. Specifically, this research attempts to ascertain whether entheses can 

be used as an indicator for mode of locomotion in four primate species: Ateles geoffroyi 

(Geoffroy’s spider monkey), Colobus guereza (mantled guereza), Hylobates lar (lar gibbon), and 

Macaca mulatta (rhesus monkey).   

Ateles geoffroyi, C. guereza, H. lar, and M. mulatta are ideal for this study because they 

are similar in body mass but differ in modes of locomotion. The locomotion of A. geoffroyi is 



 

 

2 

eclectic and includes quadrupedal walking and running, vertical climbing, brachiation and arm-

swinging, bipedalism, and leaping (Hirasaki et al., 1993; Mittermeier and Fleagle, 1976). 

Colobus guereza is an arboreal quadruped whose locomotion consists of quadrupedal running 

and bounding, leaping, and rare arm-swinging (Mittermeier and Fleagle, 1976). Hylobates lar is 

a brachiator that will also occasionally engage in terrestrial bipedalism or quadrupedalism 

(Chang et al., 2000; Michilsens et al., 2009; Vereecke et al., 2006). Macaca mulatta is a 

quadruped whose range of locomotion includes arboreal and terrestrial quadrupedalism 

depending on environment, bipedalism, and infrequent climbing and leaping (Demes et al., 2001; 

Wells and Turnquist, 2001).  

Seven entheses on four long bones were chosen based on importance of the muscle in 

relation to specific locomotor types, use in other studies, and ease of measurement (Acosta et al., 

2017; Foster et al., 2012; Godde and Taylor, 2013; Henderson, 2013; Milella, 2014; Milella et 

al., 2012; Niinimäki and Sotos, 2012; Shaw and Benjamin, 2007; Villotte and Knüsel, 2012; 

Villotte et al., 2009; Zumwalt, 2006). The seven muscle entheses used are pectoralis major, 

deltoid, and teres major located on the humerus, biceps brachii located on the radius, brachialis 

and supinator located on the ulna, and gluteus maximus located on the femur. The deltoid is the 

only fibrous enthesis used in this study, while the other six muscles form fibrocartilaginous 

entheses. The function of pectoralis major is flexion, adduction, and medial rotation of the arm 

(Howell and Straus, 1931; White et al., 2012). The deltoid is a major abductor for the arm 

(Howell and Straus, 1931; White et al., 2012; Youlatos, 2000). Teres major is a medial rotator, 

adductor, and extensor of the arm (Howell and Straus, 1931; White et al., 2012; Youlatos, 2000). 

Biceps brachii is a flexor and supinator of the forearm and also provides weak medial rotation for 

the arm (Howell and Straus, 1931; White et al., 2012; Youlatos, 2000). Brachialis is a flexor for 
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the forearm (Howell and Straus, 1931; White et al., 2012; Youlatos, 2000). Supinator supinates 

the forearm (White et al., 2012; Youlatos, 2000). The function of the gluteus maximus is to 

extend, abduct, and laterally rotate the femur (White et al., 2012; Yirga, 1987).  

Due to the different actions that muscles perform, locomotor type will affect the 

importance of each muscle among A. geoffroyi, C. guereza, H. lar, and M. mulatta. For example, 

a brachiator like H. lar will differentially use the forelimb muscles more than the hindlimb. Thus, 

the forelimb muscles are more important in locomotion, and the stresses, strains, and use will be 

different compared to a quadruped (Fleagle et al., 1981; Miller, 1932). Entheses will be analyzed 

to determine if the differences in muscle use caused by different locomotor types also cause 

differences in entheseal length. Therefore, the hypothesized pattern will be that C. guereza and 

M. mulatta group together due to similarities in locomotion, H. lar will be separate, and A. 

geoffroyi will be intermediate. More specifically, for the forelimb, H. lar should have the largest 

entheseal length, C. guereza and M. mulatta the smallest entheseal length, and A. geoffroyi will 

be intermediate in entheseal length. For the hindlimb, entheseal length is expected to be the 

largest in C. guereza and M. mulatta, the smallest in H. lar, and intermediate in A. geoffroyi. 

This research has paleoanthropological implications. A difficult problem in 

paleoanthropology is determining all or preferred modes of locomotion in species such as 

Australopithecus afarensis, Australopithecus africanus, Australopithecus sediba, and Homo 

naledi among others (Berger et al., 2010; Berger et al., 2015; Ruff, 2009; Skinner et al., 2015; 

Ward, 2002, 2013). Bipedality is not in question here. Rather, the question is how frequently 

Australopithecus and Homo species were engaging in some type of arboreal locomotion in 

conjunction with bipedality, and if those other locomotor types can be identified. Comparing 

entheseal lengths of extant primate species may provide information that could help better 
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resolve this problem. The sexing of fossil hominoids and other primates is also problematic and 

is usually done through craniodental morphology, body size estimates, or other morphological 

features (Grine et al., 2012; Lockwood, 1999; Simpson et al., 2008). Since entheses are shown to 

be affected by sex, entheseal length may also be an indicator for determination of sex or sexual 

dimorphism (Acosta et al., 2017; Foster et al., 2012; Milella, 2014; Milella et al., 2012; 

Niinimäki and Sotos, 2012; Schlecht, 2012). 

Differentiating entheses between species with different modes of locomotion would allow 

trends to be seen between modes of locomotion and entheseal length. Also, identifying sexual 

differences in entheseal length would mean that entheses could be used as an indicator for sex. 

Comparison between captive and wild caught specimens is done in this study to determine if 

captive specimens have shorter entheseal lengths than wild caught specimens. The possibility 

exists that captive individuals may not employ their full range of locomotor type(s) in a restricted 

environment, compared to wild caught specimens that lived in an open environment with no 

restriction on locomotor type(s). If no difference is found between captive and wild caught 

specimens, they could then be combined to increase sample size. Therefore, this study compares 

entheseal and long bone length, along with a ratio characterized by entheseal length/relevant long 

bone length, across four primate species to determine if these measurements differ across 

species, sex, and location (captive vs. wild caught). 
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Chapter 2. Materials and Methods 

2.1. Materials 

 The sample consists of four primate species: A. geoffroyi, C. guereza, H. lar, and M. 

mulatta. Measurements were taken on four long bones and seven entheses. The four long bones 

measured are the humerus, radius, ulna, and femur. The seven entheses measured are for 

pectoralis major, teres major, deltoid, biceps brachii, brachialis, supinator, and gluteus maximus. 

From these measurements, seven ratios were created which consisted of the entheseal length 

divided by long bone length of the relative long bone. The ratios are an indication of percentage 

of length an enthesis occupies on the long bone. The seven ratios are pectoralis major/humerus 

(HPM), teres major/humerus (HTM), deltoid/humerus (HD), biceps brachii/radius (RBB), 

brachialis/ulna (UB), supinator/ulna (US), and gluteus maximus/femur (FGM).  

Skeletal material was studied at six locations in the USA: American Museum of Natural 

History in New York, New York, Field Museum of Natural History in Chicago, Illinois, Museum 

of Natural Science in Baton Rouge, Louisiana (Louisiana State University), Museum of 

Comparative Zoology in Cambridge, Massachusetts (Harvard University), Museum of 

Southwestern Biology in Albuquerque, New Mexico (University of New Mexico), and 

Smithsonian National Museum of Natural History in Washington, D.C. Total specimen number 

and number of specimens per category are located in Table 1. 

Table 1. Number of specimens for each sex and location (captive or wild). 

 Ateles geoffroyi Colobus guereza Hylobates lar Macaca mulatta 

Female captive 2 5 2 19 

Female wild 5 6 35 1 

Male captive 1 12 3 22 

Male wild 1 6 35 2 

Total 9 29 75 44 
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2.2. Methods 

 At each location, photographs were taken using a Nikon COOLPIX AW100. 

Measurements of long bone length were done using the VINCA DCLA-1205 300mm sliding 

digital caliper.  Measurements of entheseal length were done using the iGaging Absolute Origin 

150mm sliding digital caliper. Maximum length of the humerus, radius, ulna, and femur was 

measured. Entheseal length for pectoralis major, teres major, biceps brachii, brachialis, 

supinator, and gluteus maximus was taken on the maximum straight-line length for each 

enthesis. Deltoid measurements were taken from the inferior aspect of the greater 

tubercle/surgical neck to the inferior aspect of the deltoid tuberosity. Examples of entheseal 

measurements are provided in Figures 1-6.  

Sex, body length, body mass, and location (captive or wild caught) were also obtained 

from museum records. Ateles geoffroyi and M. mulatta did not have enough data for body length 

or body mass so information was gathered from literature (Fooden, 2000; Ford and Davis, 1992; 

Glander et al., 1991; Hamada et al., 2006; Schultz, 1941). This was done for female A. geoffroyi 

body mass, female M. mulatta body length, male A. geoffroyi body length and body mass, and 

male M. mulatta body length and body mass. The body length or body mass for individual A. 

geoffroyi or M. mulatta specimens that did not have one or both of those values was replaced 

with the mean of means from information gathered through literature. For example, the mean 

body mass for female A. geoffroyi used in this study is 7.44 kg. Of the seven total specimens, six 

are individually given a body mass of 7.39 kg, which was the mean of means gathered from 

literature. The seventh has a mass of 7.71 kg, which was available at the collection. Thus, the 

total body mass for all seven specimens is 7.44 kg (Table 2). In species where enough data were 

gathered from the collections (female A. geoffroyi body length, female M. mulatta body mass, 
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male and female C. guereza, and male and female H. lar), individual specimens without a mean 

for body length or body mass were given the sample mean. All measurements except for body 

mass are recorded in millimeters; body mass is recorded in kilograms. Statistical analyses were 

then run in SAS 9.4 for all information gathered. Statistical tests included Pearson’s correlation 

analyses, Generalized Linear Model (GLM) including Tukey-Kramer’s tests (for species and 

species by location), and Student’s t-test. Tukey-Kramer’s test compares each species to the 

others to determine the source of the GLM’s significant results.  Since a high number of tests 

were run for this study, the alpha level has been set to 0.01 to minimize type I errors.  

 

Figure 1. Female H. lar teres major (top) and pectoralis major (bottom) entheses. 

 

Figure 2. Female A. geoffroyi deltoid enthesis. 

 

Figure 3. Female A. geoffroyi biceps brachii enthesis. 
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Figure 4. Female H. lar brachialis enthesis. 

 

Figure 5. Male C. guereza supinator enthesis. 

 

Figure 6. Female H. lar gluteus maximus enthesis. 
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Chapter 3. Results  

3.1. Summary Statistics and Correlation Analysis 

Summary statistics are provided for female, male, and combined sex in Tables 2-4. 

Correlation analysis was run separately for body length and body mass for C. guereza and H. lar. 

Body length and body mass have a significant positive correlation for both C. guereza (0.75, 

p=0.0082) (Table A.2) and H. lar (0.53, p < 0.0001) (Table A.3). Due to this, only body length 

was used in all other statistical tests. Body length shows a significant correlation across several 

measurements (four of 11 on the left-side and five of 11 on the right-side for C. guereza and 

eight of 11 on both the left- and right-sides for H. lar), leading to the inclusion of body length in 

other statistical analyses (Tables A.2 and A.3). Lengths of the left and right side of long bones 

and entheses were compared by correlation analysis. Results show A. geoffroyi (range from 0.71 

to 0.99), C. guereza (range from 0.87 to 0.99) , H. lar (range from 0.90 to 0.98), and M. mulatta 

(range from 0.85 to 0.99) all have significant positive correlations between the left and right-side 

measurements, which allowed the left and right-side measurements to be combined (Tables A.1-

4). The combined measurements were then used to create each ratio. 

3.2. First GLM Analysis with Tukey-Kramer’s Tests for Species 

The GLM evaluates each long bone, entheseal measurement and ratio separately with 

respect to how species, sex, body length, and location associate with each individual 

measurement. The GLM was performed on the combined sample of females and males. Two 

GLM tests were run because male A. geoffroyi specimens do not have enough data in 

measurements for the radius, ulna, biceps brachii, brachialis, and supinator (Table 3). Therefore, 

the first GLM test included the humerus, femur, pectoralis major, teres major, deltoid, gluteus 
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Table 2. Female summary statistics for all measurements/ratios. Blank spaces for body length and body mass due to information 

gathered from literature. 

Species Ateles geoffroyi Colobus guereza Hylobates lar Macaca mulatta 

Measurement n Mean SD n Mean SD n Mean SD n Mean SD 

Body length (mm) 4 445.33 10.65 8 574.88 32.08 29 466.31 14.37  471.741  

Body mass (kg)  7.442  6 7.79 0.77 26 5.33 0.46 11 6.16 0.96 

Humerus (mm) 7 202.97 6.44 10 145.94 5.28 37 234.31 9.55 20 137.68 8.11 

Radius (mm) 7 211.43 5.78 7 136.46 7.10 37 256.77 10.34 20 137.11 7.54 

Ulna (mm) 7 224.67 5.51 7 151.81 8.93 37 264.70 10.70 20 152.43 9.00 

Femur (mm) 7 201.84 9.96 10 189.40 8.30 37 204.27 9.63 20 162.69 9.17 

Pectoralis major (mm) 7 35.33 1.62 10 26.01 3.17 37 44.23 3.54 20 21.14 1.29 

Teres major (mm) 7 30.51 2.86 10 21.48 1.41 37 35.39 2.75 20 16.09 1.40 

Deltoid (mm) 7 75.80 4.38 10 52.61 4.91 37 102.69 4.35 20 48.27 4.47 

Biceps brachii (mm) 7 15.11 0.57 7 12.26 0.74 37 18.21 1.36 20 13.75 1.14 

Brachialis (mm) 7 24.24 3.17 7 14.80 1.63 37 32.21 1.90 20 13.67 1.44 

Supinator (mm) 7 16.01 1.86 7 9.83 1.27 37 21.16 1.41 20 10.03 1.08 

Gluteus maximus (mm) 7 42.04 1.86 10 40.20 2.26 37 34.42 2.86 20 34.47 3.13 

HPM 7 0.17 0.01 10 0.18 0.02 37 0.19 0.01 20 0.15 0.01 

HTM 7 0.15 0.01 10 0.15 0.01 37 0.15 0.01 20 0.12 0.01 

HD 7 0.37 0.02 10 0.36 0.03 37 0.44 0.01 20 0.35 0.03 

RBB 7 0.07 0.003 7 0.09 0.01 37 0.07 0.004 20 0.10 0.01 

UB 7 0.11 0.01 7 0.10 0.01 37 0.12 0.01 20 0.09 0.01 

US 7 0.07 0.01 7 0.07 0.01 37 0.08 0.003 20 0.07 0.01 

FGM 7 0.21 0.01 10 0.21 0.01 37 0.17 0.01 20 0.21 0.01 

                                                           
1 M. mulatta body length means from literature: Hamada et al. (2006) – 474.68 mm (n=12); Fooden (2000) – 468.8 mm (n=72); 

Literature mean of means – 471.74 mm; Mean for Table 2 – 471.74 mm. 

2 A. geoffroyi body mass means from literature and from specimens used in this study: Ford and Davis (1992) – 7.9 kg (n=97); Glander 

et al. (1991) – 6.62 kg (n=12); Schultz (1941) – 7.64 kg (n=32). Literature mean of means – 7.39 kg; Mean from specimens used in 

this study – 7.71 kg (n=1); Mean for Table 2 – 7.44 kg. 
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Table 3. Male summary statistics for all measurements/ratios. Blank spaces for body length and body mass due to information 

gathered from literature. 

Species Ateles geoffroyi Colobus guereza Hylobates lar Macaca mulatta 

Measurement n Mean SD n Mean SD n Mean SD n Mean SD 

Body length (mm)   471.751   10 630.69 19.64 34 471.23 18.01   533.812   

Body mass (kg)   7.913   10 9.81 0.75 26 5.89 0.56   8.534   

Humerus (mm) 2 189.45 5.16 17 157.88 6.19 38 237.69 9.05 24 155.18 10.5 

Radius (mm) 1 196.00   14 151.76 5.98 38 258.85 11.51 24 154.23 10.94 

Ulna (mm) 1 210.00   14 169.86 6.98 38 266.62 12.16 24 172.28 12.92 

Femur (mm) 2 194.15 0.07 17 205.64 9.64 38 205.88 8.56 24 186.00 14.31 

Pectoralis major (mm) 2 36.65 1.63 17 31.12 3.6 38 45.95 3.19 24 26.11 1.96 

Teres major (mm) 2 30.55 2.19 17 24.41 2.84 38 36.79 2.43 24 19.70 2.94 

Deltoid (mm) 2 74.90 0.71 17 58.25 4.22 38 104.15 3.9 24 58.50 4.58 

Biceps brachii (mm) 1 15.30   14 15.32 1.72 38 18.98 2.87 24 17.19 2.21 

Brachialis (mm) 1 19.40   14 17.80 1.4 38 33.40 2.25 24 16.22 1.86 

Supinator (mm) 1 15.20   14 11.80 1.96 38 21.95 1.97 24 11.71 1.08 

Gluteus maximus (mm) 2 43.40 0.99 17 46.21 4.03 38 35.06 2.35 24 40.54 4.16 

HPM 2 0.19 0.01 17 0.20 0.02 38 0.19 0.01 24 0.17 0.01 

HTM 2 0.16 0.01 17 0.15 0.02 38 0.15 0.01 24 0.13 0.01 

(Table cont’d)     

                                                           
1 A. geoffroyi body length means from literature: Glander et al. (1991) – 466 mm (n=2); Smithsonian National Museum of Natural 

History – 477.5 mm (n=16). Literature mean of means: 471.75 mm; Mean for Table 3 – 471.75 mm. 

2 M. mulatta body length means from literature and from specimens used in this study: Fooden (2000) – 531.8 mm (n=48). Literature 

mean of means: 531.8; Mean from specimens used in this study: 580 mm (n=1); Mean for Table 3 – 533.81 mm. 

3 A. geoffroyi body mass means from literature: Ford and Davis (1992) – 7.91 kg (n=52); Glander et al. (1991) – 8.38 kg (n=2); 

Schultz (1941) – 7.45 (n=20). Literature mean of means: 7.91 kg; Mean for Table 3 – 7.91 kg. 

4 M. mulatta body mass means from literature and from specimens used in this study: Fooden (2000) – 7.7 kg (n=25); Schultz (1941) – 

8.72 kg (n=7). Literature mean of means: 8.21 kg; Mean from specimens used in this study: 10.73 (n=3); Mean for Table 3 – 8.53 kg. 
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Species Ateles geoffroyi Colobus guereza Hylobates lar Macaca mulatta 

Measurement n Mean SD n Mean SD n Mean SD n Mean SD 

HD 2 0.40 0.01 17 0.37 0.02 38 0.44 0.01 24 0.38 0.02 

RBB 1 0.08   14 0.10 0.01 38 0.07 0.01 24 0.11 0.01 

UB 1 0.09   14 0.10 0.01 38 0.13 0.01 24 0.09 0.01 

US 1 0.07  14 0.07 0.01 38 0.08 0.01 24 0.07 0.01 

FGM 2 0.22 0.01 17 0.22 0.02 38 0.17 0.01 24 0.22 0.02 

Table 4. Female and male combined summary statistics. 

Species Ateles geoffroyi Colobus guereza Hylobates lar Macaca mulatta 

Measurement  n Mean SD n Mean SD n Mean SD n Mean SD 

Body length (mm)  451.20  18 609.51 36.89 63 468.81 16.39  505.60  

Body mass (kg)  7.54  16 9.05 1.25 52 5.62 0.58  7.45  

Humerus (mm) 9 199.97 8.37 27 153.46 8.23 75 236.02 9.39 44 147.22 12.87 

Radius (mm) 8 209.50 7.64 21 146.66 9.65 75 257.82 10.92 44 146.44 12.78 

Ulna (mm) 8 222.84 7.28 21 163.84 11.47 75 265.67 11.43 44 163.26 15.00 

Femur (mm) 9 200.13 9.27 27 199.63 12.04 75 205.09 9.08 44 175.40 16.87 

Pectoralis major (mm) 9 35.62 1.62 27 29.22 4.21 75 45.10 3.45 44 23.85 3.01 

Teres major (mm) 9 30.52 2.60 27 23.32 2.78 75 36.10 2.67 44 18.06 2.97 

Deltoid (mm) 9 75.60 3.82 27 56.16 5.20 75 103.43 4.17 44 53.85 6.83 

Biceps brachii (mm) 8 15.14 0.53 21 14.30 2.07 75 18.60 2.28 44 15.63 2.49 

Brachialis (mm) 8 23.64 3.40 21 16.80 2.04 75 32.82 2.15 44 15.06 2.10 

Supinator (mm) 8 15.91 1.75 21 11.14 1.97 75 21.56 1.75 44 10.95 1.36 

Gluteus maximus (mm) 9 42.34 1.76 27 43.99 4.53 75 34.74 2.62 44 37.78 4.79 

HPM 9 0.18 0.01 27 0.19 0.02 75 0.19 0.01 44 0.16 0.01 

HTM 9 0.15 0.01 27 0.15 0.01 75 0.15 0.01 44 0.12 0.01 

HD 9 0.38 0.02 27 0.37 0.02 75 0.44 0.01 44 0.37 0.02 

RBB 8 0.07 0.003 21 0.10 0.01 75 0.07 0.01 44 0.11 0.01 

UB 8 0.11 0.01 21 0.10 0.01 75 0.12 0.01 44 0.09 0.01 

US 8 0.07 0.01 21 0.07 0.01 75 0.08 0.01 44 0.07 0.01 

FGM 9 0.21 0.01 27 0.22 0.02 75 0.17 0.01 44 0.22 0.02 
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maximus, HPM, HTM, HD, and FGM. The second GLM test was only run on C. guereza, H. lar, 

and M. mulatta for the radius, ulna, biceps brachii, brachialis, supinator, RBB, UB, and US. 

While A. geoffroyi still has a small sample size regarding the humerus, femur, pectoralis major, 

teres major, deltoid, and gluteus maximus measurements (Table 4), enough data are available for 

both sexes to run comparisons.  

The first GLM test shows that all measurements and ratios are significantly associated 

with species and sex. Location and body length are associated with some measurements, but not 

all (Table 5). Species has the greatest effect, followed by sex (Tables B.1-10). Tukey-Kramer’s 

test was run to compare species and determine significant differences among them. Humerus, 

pectoralis major, teres major, and deltoid measurements follow the hypothesized pattern; C. 

guereza and M. mulatta do not differ from one another, whereas H. lar and A. geoffroyi differ 

significantly from one another and from C. guereza and M. mulatta. Femur and gluteus maximus 

measurements do not follow the hypothesized pattern and will be elaborated upon later (Tables 

6-11; Figures 7-12). Not one of the ratios follows the hypothesized pattern and these results will 

also be discussed further. However, HD does follow the hypothesized pattern regarding H. lar 

(Tables 12-15; Figures 13-16).  

Figures 7-16 illustrate the Tukey-Kramer’s test results held in Tables 6-15. The figures 

show the intersection for the mean values of two species and whether or not those species are 

significantly different (Table C.1). For example, when comparing A. geoffroyi and C. guereza for 

humeral length (Figure 7), each species is associated with a specific line. Every intersection 

indicates the relationship between two species; significance of the relationship is demonstrated 

by the color of the line (blue = significant, red = not significant). Additionally, the length of the 

blue or red line represents the 95% confidence interval for the measurement/ratio mean used in 
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the Tukey-Kramer test of each species (Table C.1). Overall, the graph provides an illustration for 

determining the grouping of and significance among species.  

Table 5. Summary table of p-values in the first GLM analysis (A. geoffroyi, C. guereza, H. lar, 

and M. mulatta).  

 Species Sex Location Body length 

Humerus (H) <0.0001 <0.0001 0.8260 <0.0001 

Femur (F) <0.0001 <0.0001 0.1160 <0.0001 

Pectoralis major (PM) <0.0001 <0.0001 0.4847 <0.0001 

Teres major (TM) <0.0001 <0.0001 0.4790 0.0007 

Deltoid (D) <0.0001 <0.0001 0.0046 <0.0001 

Gluteus maximus (GM) <0.0001 <0.0001 0.0032 <0.0001 

HPM <0.0001 <0.0001 0.0056 <0.0001 

HTM <0.0001 0.0004 0.7579 0.1201 

HD <0.0001 <0.0001 <0.0001 0.0003 

FGM <0.0001 0.0087 0.0363 0.3409 

 

 

Table 6. Tukey-Kramer test results (p-values) among species for the humerus. 

Humerus 
 C. guereza H. lar M. mulatta 

A. geoffroyi <0.0001 <0.0001 <0.0001 

C. guereza  <0.0001 0.8522 

H. lar   <0.0001 

 

 

Table 7.  Tukey-Kramer test results (p-values) among species for the femur. 

Femur 
 C. guereza H. lar M. mulatta 

A. geoffroyi 0.0110 0.8280 <0.0001 

C. guereza  0.0003 0.3213 

H. lar   <0.0001 
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Table 8. Tukey-Kramer test results (p-values) among species for pectoralis major. 

Pectoralis major 
 C. guereza H. lar M. mulatta 

A. geoffroyi <0.0001 <0.0001 <0.0001 

C. guereza  <0.0001 0.9594 

H. lar   <0.0001 

 

 

Table 9. Tukey-Kramer test results (p-values) among species for teres major. 

Teres major 
 C. guereza H. lar M. mulatta 

A. geoffroyi <0.0001 0.0002 <0.0001 

C. guereza  <0.0001 0.4148 

H. lar   <0.0001 

 

 

Table 10. Tukey-Kramer test results (p-values) among species for deltoid. 

Deltoid 
 C. guereza H. lar M. mulatta 

A. geoffroyi <0.0001 <0.0001 <0.0001 

C. guereza  <0.0001 0.7367 

H. lar   <0.0001 

 

 

Table 11. Tukey-Kramer test results (p-values) among species for gluteus maximus. 

Gluteus maximus 
 C. guereza H. lar M. mulatta 

A. geoffroyi 0.2368 <0.0001 <0.0001 

C. guereza  0.2688 0.1407 

H. lar   0.9986 
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Table 12. Tukey-Kramer test results (p-values) among species for HPM. 

HPM 
 C. guereza H. lar M. mulatta 

A. geoffroyi 0.8922 0.9766 0.0003 

C. guereza  0.9406 0.0292 

H. lar   <0.0001 

 

 

Table 13. Tukey-Kramer test results (p-values) among species for HTM. 

HTM 
 C. guereza H. lar M. mulatta 

A. geoffroyi 0.7095 0.9258 <0.0001 

C. guereza  0.8285 0.0043 

H. lar   <0.0001 

 

 

Table 14. Tukey-Kramer test results (p-values) among species for HD. 

HD 
 C. guereza H. lar M. mulatta 

A. geoffroyi 0.3549 <0.0001 0.0251 

C. guereza  <0.0001 0.9937 

H. lar   <0.0001 

 

 

Table 15. Tukey-Kramer test results (p-values) among species for FGM. 

FGM 
 C. guereza H. lar M. mulatta 

A. geoffroyi 0.9990 <0.0001 0.8849 

C. guereza  <0.0001 0.8200 

H. lar   <0.0001 
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Figure 7. Humerus Tukey-Kramer test illustration (Table 6), x- and y-axes are long bone length. 

The length of the blue or red line correlates with the 95% confidence interval for the mean value 

used in the Tukey-Kramer test of each species (Table C.1). The dashed line splits the graph in 

half. 

 

 

Figure 8. Femur Tukey-Kramer test illustration (Table 7), x- and y-axes are long bone length. 

The length of the blue or red line correlates with the 95% confidence interval for the mean value 

used in the Tukey-Kramer test of each species (Table C.1). The dashed line splits the graph in 

half. 
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Figure 9. Pectoralis major Tukey-Kramer test illustration (Table 8), x- and y-axes are entheseal 

length. The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.1). The dashed line splits the 

graph in half. 

 

 

Figure 10. Teres major Tukey-Kramer test illustration (Table 9), x- and y-axes are entheseal 

length. The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.1). The dashed line splits the 

graph in half. 
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Figure 11. Deltoid Tukey-Kramer test illustration (Table 10), x- and y-axes are entheseal length. 

The length of the blue or red line correlates with the 95% confidence interval for the mean value 

used in the Tukey-Kramer test of each species (Table C.1). The dashed line splits the graph in 

half. 

 

 

Figure 12. Gluteus maximus Tukey-Kramer test illustration (Table 11), x- and y-axes are 

entheseal length. The length of the blue or red line correlates with the 95% confidence interval 

for the mean value used in the Tukey-Kramer test of each species (Table C.1). The dashed line 

splits the graph in half. 
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Figure 13. HPM Tukey-Kramer test illustration (Table 12), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.1). The dashed line splits the 

graph in half. 

 

 

Figure 14. HTM Tukey-Kramer test illustration (Table 13), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.1). The dashed line splits the 

graph in half. 
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Figure 15. HD Tukey-Kramer test illustration (Table 14), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.1). The dashed line splits the 

graph in half. 

 

 

Figure 16. FGM Tukey-Kramer test illustration (Table 15), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.1). The dashed line splits the 

graph in half. 
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3.3. Second GLM Analysis with Tukey-Kramer’s Tests for Species 

The second GLM test shows that all measurements and two of three ratios are associated 

with species and sex; US by sex closely approaches significance. Species has the greatest effect, 

followed by sex (Tables B.11-18). Location is associated with three out of eight variables and 

body length is associated with four variables (Table 16). Tukey-Kramer’s test shows that lengths 

of the radius and ulna are significantly different across all species (Tables 17-18; Figures 17-18). 

For the entheseal measurements, brachialis and supinator follow the hypothesized pattern (C. 

guereza and M. mulatta are nonsignificantly different, and H. lar is significantly different from 

C. guereza and M. mulatta), but biceps brachii shows significant differences across all species 

(Tables 19-21; Figures 19-21). For the ratios, UB follows the hypothesized pattern, but RBB and 

US do not, grouping together C. guereza and H. lar, but C. guereza also groups with M. mulatta. 

However, H. lar does not group with M. mulatta for any of the ratios (Tables 22-24, Figures 22-

24). All but one result do not follow the hypothesized pattern and will be elaborated upon later. 

Figures 17-24 are an illustration of the Tukey-Kramer test results held in Tables 17-24 (Table 

C.2). 

  

Table 16. Summary table of p-values in the second GLM analysis (C. guereza, H. lar, and M. 

mulatta).  

 Species Sex Location Body length 

Radius (R) <0.0001 <0.0001 0.7356 <0.0001 

Ulna (U) <0.0001 <0.0001 0.4949 <0.0001 

Biceps brachii (BB) <0.0001 <0.0001 <0.0001 0.0002 

Brachialis (B) <0.0001 <0.0001 0.0220 0.0004 

Supinator (S) <0.0001 <0.0001 0.0024 0.0164 

RBB <0.0001 <0.0001 <0.0001 0.0827 

UB <0.0001 0.0004 0.0374 0.6476 

US <0.0001 0.0118 0.0258 0.2585 
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Table 17. Tukey-Kramer test results (p-values) among species for the radius. 

Radius 
 H. lar M. mulatta 

C. guereza <0.0001 0.0007 

H. lar  <0.0001 

 

Table 18. Tukey-Kramer test results (p-values) among species for the ulna. 

Ulna 
 H. lar M. mulatta 

C. guereza <0.0001 0.0003 

H. lar  <0.0001 

 

Table 19. Tukey-Kramer test results (p-values) among species for biceps brachii. 

Biceps brachii 
 H. lar M. mulatta 

C. guereza <0.0001 0.0030 

H. lar  <0.0001 

 

Table 20. Tukey-Kramer test results (p-values) among species for brachialis. 

Brachialis 
 H. lar M. mulatta 

C. guereza <0.0001 0.2396 

H. lar  <0.0001 

 

Table 21. Tukey-Kramer test results (p-values) among species for supinator. 

Supinator 
 H. lar M. mulatta 

C. guereza <0.0001 0.1337 

H. lar  <0.0001 
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Table 22. Tukey-Kramer test results (p-values) among species for RBB.  

RBB 
 H. lar M. mulatta 

C. guereza 0.1879 0.0756 

H. lar  <0.0001 

 

Table 23. Tukey-Kramer test results (p-values) among species for UB. 

UB 
 H. lar M. mulatta 

C. guereza <0.0001 0.3022 

H. lar  <0.0001 

 

Table 24. Tukey-Kramer test results (p-values) among species for US. 

US 
 H. lar M. mulatta 

C. guereza 0.0286 0.6716 

H. lar  <0.0001 

 

 

Figure 17. Radius Tukey-Kramer test illustration (Table 17), x- and y-axes are long bone length. 

The length of the blue or red line correlates with the 95% confidence interval for the mean value 

used in the Tukey-Kramer test of each species (Table C.2). The dashed line splits the graph in 

half. 
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Figure 18. Ulna Tukey-Kramer test illustration (Table 18), x- and y-axes are long bone length. 

The length of the blue or red line correlates with the 95% confidence interval for the mean value 

used in the Tukey-Kramer test of each species (Table C.2). The dashed line splits the graph in 

half. 

 

 

Figure 19. Biceps brachii Tukey-Kramer test illustration (Table 19), x- and y-axes are entheseal 

length. The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.2). The dashed line splits the 

graph in half. 
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Figure 20. Brachialis Tukey-Kramer test illustration (Table 20), x- and y-axes are entheseal 

length. The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.2). The dashed line splits the 

graph in half. 

 

 

Figure 21. Supinator Tukey-Kramer test illustration (Table 21), x- and y-axes are entheseal 

length. The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.2). The dashed line splits the 

graph in half. 
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Figure 22. RBB Tukey-Kramer test illustration (Table 22), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.2). The dashed line splits the 

graph in half. 

 

 

Figure 23. UB Tukey-Kramer test illustration (Table 23), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.2). The dashed line splits the 

graph in half. 
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Figure 24. US Tukey-Kramer test illustration (Table 24), x- and y-axes are ratio percentage 

values. The length of the blue or red line correlates with the 95% confidence interval for the 

mean value used in the Tukey-Kramer test of each species (Table C.2). The dashed line splits the 

graph in half. 

 

3.4. Student’s T-tests 

Student’s t-tests were run comparing sex within species since the GLM showed sex is 

significantly associated with length of long bones and absolute and relative length of entheses. T-

tests were only run for C. guereza, H. lar, and M. mulatta due to insufficient sample size for A. 

geoffroyi (Tables 2 and 3). Results for all long bone and entheseal measurements – except for 

supinator in C. guereza – show significant differences for C. guereza and M. mulatta, with males 

larger than females. Regarding the ratios, C. guereza shows no significant differences and M. 

mulatta shows differences for HPM, HD, and RBB, with males larger than females (Tables 2 and 

3). H. lar shows no significant differences for any measurement and ratio (Table 25). 
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Table 25. T-test p-values from comparing sex within species. 

 Colobus guereza Hylobates lar Macaca mulatta 

Humerus <0.0001 0.1207 <0.0001 

Radius <0.0001 0.4128 <0.0001 

Ulna <0.0001 0.4723 <0.0001 

Femur 0.0002 0.4451 <0.0001 

Pectoralis major 0.0010 0.0305 <0.0001 

Teres major 0.0056 0.0220 <0.0001 

Deltoid 0.0041 0.1307 <0.0001 

Biceps brachii 0.0003 0.1408 <0.0001 

Brachialis 0.0003 0.0158 <0.0001 

Supinator 0.0265 0.0503 <0.0001 

Gluteus maximus 0.0002 0.2994 <0.0001 

HPM 0.0240 0.0469 <0.0001 

HTM 0.2269 0.0648 0.0139 

HD 0.4097 0.9738 0.0002 

RBB 0.0191 0.2289 0.0004 

UB 0.0335 0.0227 0.0642 

US 0.3856 0.0644 0.1914 

FGM 0.0561 0.4311 0.1905 

 

Student’s t-test was also run on specific measurements for location since the GLM 

showed location was significantly associated with several measurements. Tests were run on 

deltoid, HPM, and HD for C. guereza and biceps brachii, supinator, HPM, RBB, and US for H. 

lar. Only these measurements were tested because the species by location Tukey-Kramer’s tests 

identified which species were the cause of the significant result (p < 0.01) seen in the GLM 

results (Tables 5, 16, D.1-7). A Student’s t-test was not run on gluteus maximus because the 

Tukey-Kramer test indicated no significant differences within species (Table D.8). Results show 

significant differences for C. guereza across deltoid, HD, and HPM but H. lar shows no 

significant differences (Table 26). However, the Tukey-Kramer test indicates significant 

differences for H. lar; this discrepancy in results between the Student’s t-test and Tukey-Kramer 

test will be discussed later. Table 27 provides a summary table of all the Tukey-Kramer’s species 



 

 

30 

test results in this study (Tables 6-15, 17-24). This table is added for ease of access for the reader 

when results are considered in the Discussion section. 

Table 26. T-test p-values by location for specific measurements for C. guereza and H. lar. 

 Colobus guereza Hylobates lar 

Deltoid <0.0001  

HD <0.0001  

HPM <0.0001 0.0540 

Biceps brachii  0.1698 

Supinator  0.1235 

RBB  0.1731 

US  0.1268 

  

Table 27. Summary table for all Tukey-Kramer test results (first and second GLM) in 

comparison of species. * indicates a significant difference between species, blank space indicates 

no significant difference, and shaded area indicates not enough information for comparison.  

Ag = A. geoffroyi, Cg = C. guereza, Hl = H. lar, Mm = M. mulatta. 

 Ag:Cg Ag:Hl Ag:Mm Cg:Hl Cg:Mm Hl:Mm 

Humerus * * * *  * 

Radius    * * * 

Ulna    * * * 

Femur   * *  * 

Pectoralis major * * * *  * 

Teres major * * * *  * 

Deltoid * * * *  * 

Biceps brachii    * * * 

Brachialis    *  * 

Supinator    *  * 

Gluteus maximus  * *    
HPM   *   * 

HTM   *  * * 

HD  *  *  * 

RBB      * 

UB    *  * 

US      * 

FGM  *  *  * 
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Chapter 4. Discussion 

4.1. GLM and Tukey-Kramer’s Test Results for Species 

 In general, the entheseal comparisons among species follow the hypothesized pattern for 

the forelimb, which is that H. lar will have the largest measurements, C. guereza and M. mulatta 

will group together and have the smallest measurements, and A. geoffroyi will be intermediate 

between the two groups (Tables 27, C.1, C.2). The exception to the hypothesized pattern for 

entheses is biceps brachii, for which C. guereza, H. lar, and M. mulatta are all significantly 

different from one another. However, the results for the radius and ulna were unexpected (Table 

27). Colobus guereza, H. lar, and M. mulatta are all significantly different from one another, 

when C. guereza and M. mulatta were expected to group together based on the hypothesis of 

how locomotion affects limb structure. The means for lengths of the radius and ulna are similar 

for C. guereza and M. mulatta, but the GLM shows that body length is significantly associated 

with the measurements (Table 16). Therefore, body length is the most likely cause for a 

significant difference between C. guereza and M. mulatta since C. guereza is larger than M. 

mulatta – although there are not enough data for body length in the M. mulatta specimens used in 

this study because only one specimen out of 44 had body length data available at the collection 

(Tables 2-4, C.2).  However, the radius, ulna, and biceps brachii measurements were the only 

measurements that did not follow the hypothesized pattern. The GLM indicated that all forelimb 

measurements – except for supinator – are significantly associated with body length (Tables 5 

and 16). If body length does have a significant association with the measurements and is 

associated with differences between species, why would this cause only three out of nine 

measurements to not follow the hypothesized pattern and not all of them? Body length may have 
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a greater impact on the radius, ulna, and biceps brachii measurements compared to the other 

measurements, but this is outside the scope of this article.  

The results for the hindlimb, on the other hand, were all unanticipated (Tables 27 and 

C.1). The results for the femur indicate that A. geoffroyi is only significantly different from M. 

mulatta. Therefore, A. geoffroyi groups with both C. guereza and H. lar. While not hypothesized, 

the result indicates that A. geoffroyi groups with both quadrupeds and brachiators. Thus, the 

eclectic locomotion could be the reason for grouping A. geoffroyi with both C. guereza and H. 

lar. For the gluteus maximus measurement, the only significant differences seen are for A. 

geoffroyi with H. lar and M. mulatta. The hypothesized pattern was that H. lar would have a 

shorter gluteus maximus enthesis and not group with C. guereza and M. mulatta due to H. lar not 

using the hindlimb as frequently in locomotion, but instead all three group together. This result 

can be attributed to H. lar’s femur; since H. lar has a longer femur, the enthesis for gluteus 

maximus will be longer. The ratio provides an explanation for the unanticipated femur and 

gluteus maximus results for H. lar, which will be discussed next. 

Miller (1932) states that brachiators like H. lar will have the longest bone length in the 

forelimb, and quadrupedal primates like C. guereza and M. mulatta, which are mainly walkers 

and/or runners, will have the shortest bone length in comparison to brachiators. Animals that 

perform a variety of locomotor types, like A. geoffroyi, will be intermediate between those two 

groups. The reason for these differences is because the way in which the muscles are used varies 

between locomotor type. Brachiators have longer forelimbs, quadrupedal primates have shorter 

forelimbs which are closer to the length of their hindlimbs, and intermediate locomotors have 

intermediate forelimb length between brachiators and quadrupeds because they use a 

combination of both locomotor types. Fleagle et al. (1981) also discovered that muscle responses 
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differ between locomotor types. Thus, the differences among the radius, ulna, femur, biceps 

brachii, and gluteus maximus lengths can be due to an overlap in locomotor type and muscle 

response. Macaca mulatta and C. guereza are both quadrupeds, but they can differ in their form 

of quadrupedalism depending on the environment and both engage infrequently in other 

locomotor types. Colobus guereza also performs leaping and rare arm-swinging, while its 

quadrupedal movement generally consists of rapid leaps and bounds (Mittermeier and Fleagle, 

1976). Macaca mulatta can be a predominantly arboreal or terrestrial quadruped, depending on 

the environment, along with infrequent bipedalism, climbing, and leaping which would cause 

variations in locomotion (Demes et al., 2001; Wells and Turnquist, 2001). Therefore, their 

skeletal and muscular structure would slightly differ even though the general characterization of 

locomotion is similar (Burr et al., 1989; Rodman, 1979). However, this does not explain why H. 

lar is similar to C. guereza and M. mulatta in the gluteus maximus entheseal length since their 

locomotor forms differ significantly. Hylobates lar has longer forelimbs and hindlimbs, so this 

could account for part of the unexpected results. Since H. lar has very long forelimbs, longer 

hindlimbs are needed for balance when walking bipedally amongst tree branches or during less 

frequent terrestrial bipedalism and quadrupedalism (Vereecke et al., 2006). Therefore, the 

femoral and gluteus maximus measurements do not follow the hypothesized pattern since H. lar 

has a longer femur than C. guereza and M. mulatta. The gluteus maximus/femur ratio (FGM) 

provides evidence for gluteus maximus entheseal length being influenced by femoral length 

more than locomotor type for H. lar. The Tukey-Kramer test for FGM indicates significant 

differences for H. lar with C. guereza and M. mulatta while for gluteus maximus alone H. lar, C. 

guereza, and M. mulatta show no significant differences (Tables 2-4, 27, C.1). 
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Larger animals need larger muscles and bones; thus, body length has been posited as an 

influence on entheseal length and/or rugosity. Several studies have shown that body length is 

associated with entheseal length and/or rugosity in humans and non-human primates (Godde and 

Taylor, 2011; Nolte and Wilczak, 2013; Weiss, 2003, 2004, 2007; Weiss et al., 2010), but body 

length has also been shown to not influence entheseal length and/or rugosity (Niinimäki and 

Sotos, 2012). The results of this study mirror the inconsistencies of previous entheseal research 

regarding the influence of body size. Due to these issues, the entheseal/long bone ratio was 

posited as a possible solution to determine the influence of locomotor type on entheseal and long 

bone length. The ratio is meant to indicate the percentage of long bone length attributed to the 

specific muscle enthesis, which is interpreted here as an indicator of use/importance related to 

locomotor type. 

While the entheseal and long bone measurement results generally followed the 

hypothesized pattern, the results from the ratios did not. The logical line of thinking was that 

since the entheseal and long bone measurements followed the hypothesized pattern, the ratio 

would too. However, only one of the seven ratios followed the hypothesized pattern: UB (Table 

27). The humerus, pectoralis major, and teres major comparison found that C. guereza and M. 

mulatta grouped together, A. geoffroyi was intermediate, and H. lar was separate and had larger 

measurements than the other three species, but the HPM and HTM ratios did not follow the same 

pattern. For both ratios, A. geoffroyi, C. guereza, and H. lar group together and are significantly 

different from M. mulatta. HD also differs from the humerus and deltoid measurements, but it is 

closer to the hypothesized pattern than HPM and HTM (Table 27). The only difference for HD is 

that A. geoffroyi groups with C. guereza and M. mulatta instead of being intermediate. One 

explanation for this could be that the deltoid muscle is more important in brachiation compared 
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to other locomotor types, so while the overall entheseal measurements follow the hypothesized 

pattern, the percentage of long bone length occupied causes A. geoffroyi to group with C. 

guereza and M. mulatta instead of being intermediate. Another explanation could be that the 

results regarding A. geoffroyi are skewed because of sample size. Without A. geoffroyi, HD 

follows the hypothesized pattern (Table E.1). However, the results for HPM and HTM would 

still not follow the hypothesized pattern. 

 Results show that one forearm ratio conforms with the hypothesis, while the other two do 

not. For RBB, C. guereza grouped with H. lar and M. mulatta, while H. lar was significantly 

different from M. mulatta (Table 27). Unlike the humeral measurements, the radius and biceps 

brachii did not follow the hypothesized pattern; instead, C. guereza and M. mulatta are 

significantly different for both measurements. RBB also differs from the hypothesized pattern 

but differs due to no significant difference between C. guereza and H. lar. If locomotion is 

important in determining long bone and muscle length, then H. lar should not be close to 

grouping with C. guereza. HPM, HTM, and US have similar results to RBB, grouping together 

C. guereza and H. lar, although HTM also shows a significant difference between C. guereza 

and M. mulatta (Table 27). However, as a brachiator H. lar should be different from the 

quadruped C. guereza like it is with M. mulatta.  

Since the femur and gluteus maximus measurement results were unanticipated, the result 

for the gluteus maximus/femur ratio is similarly unanticipated. For FGM, A. geoffroyi groups 

with C. guereza and M. mulatta while all three are significantly different from H. lar (Table 27). 

When thinking of the hypothesized pattern, this result is more understandable compared to the 

other ratios since A. geoffroyi frequently engages in quadrupedal locomotion. However, A. 

geoffroyi engages in a variety of locomotor types, so the ratio not reflecting that outcome is 
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surprising. Like HD, part of the problem for FGM could be caused by the sample size of A. 

geoffroyi. If A. geoffroyi is removed, then FGM matches the hypothesized pattern (Table E.2). 

Thus, three out of seven ratios may match what was hypothesized, but that is still less than half 

that are different from the original hypothesized pattern.  

4.2. Student’s T-test Results for Sex 

 Regarding sex, C. guereza and M. mulatta are polygamous and sexually dimorphic in the 

long bone and entheseal lengths in this study, while H. lar is monogamous with no sexual 

dimorphism (Table 25). For C. guereza, 10 out of 11 measurements were significantly different 

between the sexes while all 11 measurements were significantly different for M. mulatta. As with 

comparison between the species, the ratios do not match the results of the long bones and 

entheses. For C. guereza, none shows significant differences while M. mulatta only had two out 

of seven with significant differences. For all 18 measurements, H. lar had no significant 

differences. These results are similar to those of Milella (2014), although a different form of 

entheseal measurement was used in that study. Milella found that entheseal robusticity was an 

indicator of sexual dimorphism in modern humans, Gorilla, and Pan. Along with this, entheseal 

morphology was partially linked to life stages, where older individuals had more robust entheses 

and differences between the sexes were greater in older individuals. Although this study does not 

account for age, entheseal length is shown to be sexually dimorphic in C. guereza and M. 

mulatta.  

The discrepancy for sexual differences between entheseal and long bone lengths with 

their ratios can be explained by similarities in locomotion. While the overall measurements differ 

due to sexual dimorphism, the ratios do not. Since the ratio is an indicator of the percentage of 

long bone length the enthesis covers in a straight line, that percentage should be the same 
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between similar locomotors. As earlier results have indicated, that is not always the case, but that 

is most likely because the locomotor repertoire between species like C. guereza and M. mulatta 

is similar but not identical. However, for comparison within species, their locomotion will be the 

same, and thus significant differences will not be seen between the sexes for the ratios.  

Regarding paleoanthropology, the Student’s t-test results for sex indicate that entheseal 

length can be used as an indicator for sex. However, there are challenges associated with this, 

such as understanding whether a fossil species is sexually dimorphic or monomorphic in long 

bone length. While these results favor the use of entheseal length as an indicator for sex, more 

research must first be carried out before this method can be used for sex estimation. Due to these 

issues, sexing an individual through entheseal length would not be the definitive answer for the 

sex of a specimen, but rather, a supplementary analysis to provide another estimate to the overall 

conclusion. 

4.3. Student’s T-test and Tukey-Kramer’s Test Results for Location 

 The final variable for discussion is location, which overall did not have a significant 

association with the measurements (Tables 5 and 16). However, a few measurements were 

significantly different between captive and wild caught specimens of C. guereza: deltoid, HD, 

and HPM (Tables 26, D.1-3). This is a difficult result to explain because only these three 

measurements were significantly affected, and only for this species. The GLM also suggested 

that H. lar had significant differences for location, but the Student’s t-test results indicate that 

there was no significant difference (Tables 26, D.4-7). The discrepancy in results regarding the 

Student’s t-test and Tukey-Kramer’s test is because the Tukey-Kramer’s test is not a straight 

comparison between captive and wild caught specimens of C. guereza or H. lar, but instead is 

affected by other variables like body length. While an important variable, body length is not 
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necessary when testing within a species. Due to this, the Student’s t-test is a more accurate 

method for testing differences in location. Another interesting result is that the GLM found 

location to be significantly associated with the gluteus maximus measurements, but the Tukey-

Kramer test revealed no significant differences within species (Tables 5, D.8). This result 

suggests that location is associated with gluteus maximus when all species are combined, but not 

within each individual species.  

Since only three measurements within one species were significantly associated with 

location, the location results for C. guereza did not significantly alter the overall results because 

the deltoid and HD results follow the hypothesized pattern. Therefore, the only Tukey-Kramer 

species test result that could have been influenced by location is HPM. Even though location was 

not a factor in this study, the results are intriguing and possibly a more in-depth study comparing 

captive and wild caught primates would shed some light on what would cause the few 

differences seen here. Previous research has demonstrated differences between captive and wild 

caught specimens of the same species relating to behavior or locomotion (Isler and Thorpe, 

2003; Sarmiento, 1986; Veasey et al., 1996), but this study has shown that differences between 

captive and wild caught specimens do not necessarily translate to entheseal changes. Therefore, 

slight differences in locomotor type between captive and wild caught specimens are not expected 

to cause great differences in entheseal length. Perhaps no difference between captive and wild 

caught specimens implies that entheseal length is genetically determined, instead of behaviorally 

through locomotion. While intriguing, this study has shown that entheseal length does differ due 

to specific locomotor types, and not locomotion in general. Thus, behavior (i.e., locomotor type) 

– and possibly genetics – play a role in entheseal length but determining the genetic component 

of entheseal length is outside the scope of this study.  
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Zumwalt (2006) provides evidence that specific locomotor type influences entheseal 

length. This study examined how endurance exercise affects entheseal morphology in sheep and 

found that it does not. The method used was to place one group on a treadmill each day over a 

few months and compare them to a control group that did not perform any variation to their 

natural locomotor type. The results indicating no change in entheseal morphology match the 

results found in this study when comparing sex and location. The locomotor type of the sheep 

did not change, just the intensity and frequency of locomotion. Since there was no variation in 

locomotor type between the two groups – similar to how males and females of the same species 

will share similar locomotor types – entheseal morphology did not change. Thus, the results of 

Zumwalt (2006) suggest that intensity of locomotion is not the driving force behind entheseal 

changes. In this sense, if locomotion is causing entheseal changes, those changes are caused by 

different locomotor types and not intensity of locomotion.  
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Chapter 5. Conclusion 

 The goal of this project was to determine if locomotion is associated with the ratio of 

entheseal length divided by long bone length, and if this ratio could be used to differentiate or 

group together species by locomotor type. This aim was achieved through an analysis of 

entheseal length, long bone length, and the respective ratio. As secondary analyses, sex and 

location were tested to determine if differences could also be seen for those variables. Taking 

everything into account, locomotion is related with entheseal length and long bone length, but 

not necessarily the ratio. Other factors not accounted for in this study, such as age (Milella, 2014; 

Milella et al., 2012; Villotte and Knüsel, 2012), may play a role. Although entheseal ratios are 

not as suggestive of locomotion as hypothesized, overall entheseal length is indicative of sex in 

sexually dimorphic species and can be used as an indicator of sex for paleoanthropological 

specimens and non-human primates. This study has also shown that for this sample, location is 

associated with only a few measurements for one species – C. guereza. Therefore, future 

entheseal studies can combine captive and wild caught specimens to increase sample size. 

Overall, this project has shown that locomotion is associated with entheseal length, but long bone 

length and the entheseal/long bone ratio are not. Future research can expand upon this work by 

incorporating more species, specimens, and methodologies to reach a better understanding of the 

relationship between entheses and locomotion.  
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Appendix A. Correlation Results Tables 

 Results of correlation analyses run comparing body length, body mass, and left and right-side measurements. Analyses only 

included data gathered at the collections for body length and body mass. Abbreviations: R = right, L = left, hum = humerus, pec major 

= pectoralis major, bi brachii = biceps brachii, brach = brachialis, sup = supinator, glut max = gluteus maximus. 

 

Table A.1. Ateles geoffroyi correlation results among body length, body mass, and left and right side entheseal and long bone lengths. 

No comparison among body length and body mass with any measurement because not enough information was available. First row for 

each category is the correlation value, second row is the p-value indicating significance. 
 

R  

hum 

R pec 

major 

R 

deltoid 

R teres 

major 

R  

radius 

R bi 

brachii 

R  

ulna 

R  

brach 

R  

sup 

R  

femur 

R glut  

max 

L  

hum 

0.99 
          

<0.0001 
          

L pec 

major 

 
0.96 

         

 
<0.0001 

         

L 

deltoid 

  
0.99 

        

  
<0.0001 

        

L teres 

major 

   
0.89 

       

   
0.0002 

       

L 

radius 

    
0.98 

      

    
<0.0001 

      

L bi 

brachii 

     
0.71 

     

     
0.0099 

     

L  

ulna 

      
0.98 

    

      
<0.0001 

    

(Table 

cont’d) 
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 R  

hum 

R pec 

major 

R 

deltoid 

R teres 

major 

R  

radius 

R bi 

brachii 

R  

ulna 

R  

brach 

R  

sup 

R  

femur 

R glut  

max 

L brach 
       

0.96 
   

       
<0.0001 

   

L  

sup 

        
0.79 

  

        
0.0024 

  

L 

femur 

         
0.99 

 

         
<0.0001 

 

L glut 

max 

          
0.97           

<0.0001 

Table A.2. Colobus guereza correlation results among body length, body mass, and left and right side entheseal and long bone lengths. 

First row for each category is the correlation value, second row is the p-value indicating significance. 

Correlation value (first row) 

Probability (p) value (second row)  
Body 

length 

Body 

mass 

R  

hum 

R pec 

major 

R 

deltoid 

R teres 

major 

R 

radius 

R bi 

brachii 

R  

ulna 

R 

brach 

R  

sup 

R 

femur 

R glut 

max 

Body 

length 

1.00 0.75 0.66 0.81 0.67 0.70 0.86 0.51 0.90 0.81 -0.46 0.73 0.82  
0.0082 0.0105 0.0005 0.0090 0.0049 0.0287 0.3005 0.0135 0.0528 0.3617 0.0029 0.0003 

Body 

mass 

0.75 1.00 0.54 0.58 0.51 0.39 0.77 0.86 0.73 0.55 -0.81 0.71 0.53 

0.0082 
 

0.0885 0.0604 0.1055 0.2333 0.2274 0.1380 0.2662 0.4529 0.1929 0.0134 0.0900 

L  

hum 

0.61 0.51 0.99 
          

0.0198 0.1076 < 

0.0001 

          

L pec 

major 

0.82 0.71 
 

0.98 
         

0.0003 0.0147 
 

< 

0.0001 

         

(Table 

cont’d) 
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 Body 

length 

Body 

mass 

R  

hum 

R pec 

major 

R 

deltoid 

R teres 

major 

R 

radius 

R bi 

brachii 

R  

ulna 

R 

brach 

R  

sup 

R 

femur 

R glut 

max 

L 

deltoid 

0.62 0.46 
  

0.95 
        

0.0171 0.1512 
  

< 

0.0001 

        

L teres 

major 

0.35 0.46 
   

0.87 
       

0.2156 0.1518 
   

< 

0.0001 

       

L 

radius 

0.89 0.8 
    

0.99 
      

0.0184 0.2013 
    

< 

0.0001 

      

L bi 

brachii 

0.79 0.81 
     

0.89 
     

0.0591 0.1925 
     

< 

0.0001 

     

L 

ulna 

0.92 0.79 
      

0.99 
    

0.0100 0.2065 
      

< 

0.0001 

    

L brach 0.66 0.75 
       

0.88 
   

0.1506 0.2503 
       

< 

0.0001 

   

L  

sup 

-0.54 -0.81 
        

0.95 
  

0.2675 0.1856 
        

< 

0.0001 

  

L 

femur 

0.77 0.68 
         

0.99 
 

0.0014 0.0207 
         

< 

0.0001 

 

L glut 

max 

0.78 0.52 
          

0.97 

0.0010 0.1029 
          

< 

0.0001 
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Table A.3. Hylobates lar correlation results among body length, body mass, and left and right side entheseal and long bone lengths. 

First row for each category is the correlation value, second row is the p-value indicating significance. 

Correlation value (first row) 

Probability (p) value (second row)  
Body 

length 

Body 

mass 

R  

hum 

R pec 

major 

R 

deltoid 

R teres 

major 

R 

radius 

R bi 

brachii 

R  

ulna 

R 

brach 

R  

sup 

R 

femur 

R glut 

max 

Body 

length 

1.00 0.53 0.38 0.39 0.42 0.27 0.51 0.31 0.51 0.27 0.48 0.45 0.34 
 

< 

0.0001 

0.0031 0.0020 0.0008 0.0414 < 

0.0001 

0.0142 < 

0.0001 

0.0360 0.0001 0.0003 0.0080 

Body 

mass 

0.53 1.00 0.39 0.44 0.42 0.35 0.37 0.43 0.42 0.41 0.57 0.50 0.56 

< 

0.0001 

 
0.0029 0.0006 0.0014 0.0092 0.0038 0.0006 0.0010 0.0010 < 

0.0001 

< 

0.0001 

< 

0.0001 

L  

hum 

0.36 0.37 0.97 
          

0.0045 0.0051 < 

0.0001 

          

L pec 

major 

0.38 0.42 
 

0.97 
         

0.0027 0.0013 
 

< 

0.0001 

         

L 

deltoid 

0.40 0.32 
  

0.95 
        

0.0019 0.0185 
  

< 

0.0001 

        

L teres 

major 

0.34 0.31 
   

0.90 
       

0.0078 0.0184 
   

< 

0.0001 

       

L 

radius 

0.51 0.42 
    

0.98 
      

< 

0.0001 

0.0011 
    

< 

0.0001 

      

(Table 

cont’d) 
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 Body 

length 

Body 

mass 

R  

hum 

R pec 

major 

R 

deltoid 

R teres 

major 

R 

radius 

R bi 

brachii 

R  

ulna 

R 

brach 

R  

sup 

R 

femur 

R glut 

max 

L bi 

brachii 

0.27 0.40 
     

0.96 
     

0.0375 0.0020 
     

< 

0.0001 

     

L 

ulna 

0.52 0.37 
      

0.98 
    

< 

0.0001 

0.0038 
      

< 

0.0001 

    

L brach 0.28 0.39 
       

0.94 
   

0.0243 0.0021 
       

< 

0.0001 

   

L  

sup 

0.41 0.50 
        

0.92 
  

0.0008 < 

0.0001 

        
< 

0.0001 

  

L 

femur 

0.48 0.48 
         

0.98 
 

0.0001 0.0002 
         

< 

0.0001 

 

L glut 

max 

0.32 0.48 
          

0.91 

0.0128 0.0002 
          

< 

0.0001 

Table A.4. Macaca mulatta correlation results among body length, body mass, and left and right side entheseal and long bone lengths. 

No comparison among body length and body mass with any measurement because not enough information was available. First row for 

each category is the correlation value, second row is the p-value indicating significance. 
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<0.0001 
          

(Table 
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Appendix B. GLM Results 

First and second GLM analysis output for all measurements and ratios. Corresponding 

tables are in Chapter 3: Results Tables 5 (first GLM analysis) and 16 (second GLM analysis). 

These output tables indicate significance of species, sex, location, and body length for all 

measurements/ratios. The larger the Type I SS number, the greater the effect that variable has on 

the measurement/ratio.  

 

Table B.1. Humerus 

Variable DF Type I SS Mean Square F Value P-value 

Species 3 273415.88 91138.6252 1309.00 <0.0001 

Sex 1 2533.63 2533.6294 36.39 <0.0001 

Location 1 3.38 3.3776 0.05 0.8260 

Body Length 1 1753.69 1753.6882 25.18 <0.0001 

 

Table B.2. Femur 

Variable DF Type I SS Mean Square F Value P-value 

Species 3 25319.04 8439.6815 91.89 <0.0001 

Sex 1 3745.12 3745.1221 40.78 <0.0001 

Location 1 229.75 229.7509 2.50 0.1160 

Body Length 1 2562.40 2562.4029 27.90 <0.0001 

 

Table B.3. Pectoralis major 

Variable DF Type I SS Mean Square F Value P-value 

Species 3 13941.14 4647.0466 845.50 <0.0001 

Sex 1 387.89 387.8911 70.57 <0.0001 

Location 1 2.70 2.6982 0.49 0.4847 

Body Length 1 177.15 177.1486 32.23 <0.0001 
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Table B.4. Teres major 

Variable DF Type I SS Mean Square F Value P-value 

Species 3 9888.43 3296.1436 612.51 <0.0001 

Sex 1 188.84 188.8374 35.09 <0.0001 

Location 1 2.71 2.7122 0.50 0.4790 

Body Length 1 65.16 65.1551 12.10 0.0007 

 

 

Table B.5. Deltoid 

Variable DF Type I SS Mean Square F Value P-value 

Species 3 86745.57 28915.1900 1983.12 <0.0001 

Sex 1 799.11 799.1191 54.81 <0.0001 

Location 1 120.90 120.9004 8.29 0.0046 

Body Length 1 462.30 462.3035 31.71 <0.0001 

 

 

Table B.6. Gluteus maximus 

Variable DF Type I SS Mean Square F Value P-value 

Species 3 1916.06 638.6892 77.08 <0.0001 

Sex 1 371.74 371.7466 44.87 <0.0001 

Location 1 74.44 74.4412 8.98 0.0032 

Body Length 1 171.99 171.9988 20.76 <0.0001 

 

 

Table B.7. HPM 

Variable DF Type I SS Mean Square F Value P-value 

Species 3 0.0258 0.0086 113.45 <0.0001 

Sex 1 0.0041 0.0041 54.36 <0.0001 

Location 1 0.0006 0.0006 7.93 0.0056 

Body Length 1 0.0023 0.0023 29.88 <0.0001 
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Table B.8. HTM 

Variable DF Type I SS Mean Square F Value P-value 

Species 3 0.02919 0.00973 83.54 <0.0001 

Sex 1 0.00151 0.00151 12.99 0.0004 

Location 1 0.00001 0.00001 0.10 0.7579 

Body Length 1 0.00028 0.00028 2.45 0.1201 

 

 

Table B.9. HD 

Variable DF Type I SS Mean Square F Value P-value 

Species 3 0.1994 0.0664 303.32 <0.0001 

Sex 1 0.0037 0.0037 16.89 <0.0001 

Location 1 0.0060 0.0060 27.69 <0.0001 

Body Length 1 0.0030 0.0030 13.59 0.0003 

 

 

Table B.10. FGM 

Variable DF Type I SS Mean Square F Value P-value 

Species 3 0.0868 0.0289 189.08 <0.0001 

Sex 1 0.0010 0.0011 7.07 0.0087 

Location 1 0.0007 0.0007 4.47 0.0363 

Body Length 1 0.0001 0.0001 0.91 0.3409 

 

 

Table B.11. Radius 

Variable DF Type I SS Mean Square F Value P-value 

Species 2 431426.10 215713.0576 2486.73 <0.0001 

Sex 1 2574.09 2574.0904 29.67 <0.0001 

Location 1 9.93 9.9273 0.11 0.7356 

Body Length 1 3173.39 3173.3956 36.58 <0.0001 
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Table B.12. Ulna 

Variable DF Type I SS Mean Square F Value P-value 

Species 2 363893.10 181946.5577 1761.73 <0.0001 

Sex 1 3301.04 3301.0432 31.96 <0.0001 

Location 1 48.37 48.3771 0.47 0.4949 

Body Length 1 4516.73 4516.7393 43.73 <0.0001 

 

 

Table B.13. Biceps brachii 

Variable DF Type I SS Mean Square F Value P-value 

Species 2 428.53 214.2687 80.14 <0.0001 

Sex 1 128.64 128.6481 48.12 <0.0001 

Location 1 82.44 82.4485 30.84 <0.0001 

Body Length 1 40.65 40.6596 15.21 0.0002 

 

 

Table B.14. Brachialis 

Variable DF Type I SS Mean Square F Value P-value 

Species 2 10338.02 5169.0108 1638.76 <0.0001 

Sex 1 119.61 119.6143 37.92 <0.0001 

Location 1 16.95 16.9599 5.38 0.0220 

Body Length 1 42.07 42.0758 13.34 0.0004 

 

 

Table B.15. Supinator 

Variable DF Type I SS Mean Square F Value P-value 

Species 2 3879.77 1939.8854 982.54 <0.0001 

Sex 1 52.07 52.0753 26.38 <0.0001 

Location 1 18.98 18.9806 9.61 0.0024 

Body Length 1 11.67 11.6742 5.91 0.0164 
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Table B.16. RBB 

Variable DF Type I SS Mean Square F Value P-value 

Species 2 0.0350 0.0175 270.67 <0.0001 

Sex 1 0.0013 0.0013 21.58 <0.0001 

Location 1 0.0014 0.0014 22.37 <0.0001 

Body Length 1 0.0002 0.0002 3.06 0.0827 

 

 

Table B.17. UB 

Variable DF Type I SS Mean Square F Value P-value 

Species 2 0.02917 0.01458 299.00 <0.0001 

Sex 1 0.00065 0.00065 13.48 0.0004 

Location 1 0.00022 0.00022 4.43 0.0374 

Body Length 1 0.00001 0.00001 0.21 0.6476 

 

 

Table B.18. US 

Variable DF Type I SS Mean Square F Value P-value 

Species 2 0.00667 0.00333 90.10 <0.0001 

Sex 1 0.00024 0.00024 6.52 0.0118 

Location 1 0.00018 0.00018 5.09 0.0258 

Body Length 1 0.00005 0.00005 1.29 0.2585 
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Appendix C. Tukey-Kramer Adjusted Means Tables 

 Summary tables for Tukey-Kramer’s test adjusted means for measurement lengths/ratio 

percentage and 95% confidence intervals for each species for the first and second GLM analysis. 

Corresponding tables and figures are in Chapter 3: Results Tables 6-15, 17-24. The Tukey-

Kramer mean measurement lengths and ratio values are different from the overall values due to 

the incorporation of body length in the test. For the ratios, the number is the value out of one, not 

the percentage. For example, HPM for C. guereza is 0.18, or 18% (Table C.1). 

 

Table C.1. First GLM analysis mean measurement lengths/ratio values and 95% confidence 

intervals (95% CI) with Tukey-Kramer adjustment for species (Tables 6-15). 

 A. geoffroyi C. guereza H. lar M. mulatta 

 Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI 

Humerus 201.57 

193.85, 

209.29 138.46 

129.06, 

147.86 235.89 

231.07, 

240.71 142.67 

137.69, 

147.65 

Femur 206.13 

197.27, 

214.99 178.84 

168.04, 

189.64 210.01 

204.48, 

215.54 168.55 

162.83, 

174.27 

Pectoralis 

major 37.53 

35.35, 

39.71 24.26 

21.61, 

26.91 43.60 

42.25, 

44.95 23.53 

22.14, 

24.92 

Teres 

major 31.23 

29.09, 

33.37 19.70 

17.07, 

22.33 35.91 

34.58, 

37.24 17.46 

16.07, 

18.85 

Deltoid 77.60 

74.07, 

81.13 48.83 

44.52, 

53.14 104.59 

102.39, 

106.79 51.28 

49.01, 

53.55 

Gluteus 

maximus 44.31 

41.64, 

46.98 39.42 

36.17, 

42.67 35.33 

33.66, 

37.00 35.53 

33.81, 

37.25 

HPM 0.19 

0.182, 

0.198 0.18 

0.170, 

0.190 0.18 

0.174, 

0.186 0.16 

0.154, 

0.166 

HTM 0.16 

0.150, 

0.170 0.14 

0.128, 

0.152 0.15 

0.144, 

0.156 0.12 

0.114, 

0.126 

HD 0.38 

0.366, 

0.394 0.36 

0.342, 

0.378 0.44 

0.432, 

0.448 0.36 

0.350, 

0.370 

FGM 0.22 

0.208, 

0.232 0.22 

0.206, 

0.234 0.17 

0.162, 

0.178 0.21 

0.202, 

0.218 
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Table C.2. Second GLM analysis mean measurement lengths/ratio values and 95% confidence 

intervals (95% CI) with Tukey-Kramer adjustment for species (Tables 17-24). 

 C. guereza H. lar M. mulatta 

 Mean 95% CI Mean 95% CI Mean 95% CI 

Radius 119.00 107.34, 130.66 264.06 258.47, 269.65 142.74 137.13, 148.35 

Ulna 131.35 118.63, 144.07 273.81 267.71, 279.91 158.83 152.71, 164.95 

Biceps brachii 11.43 9.37, 13.49 21.13 20.15, 22.11 15.14 14.16, 16.12 

Brachialis 12.74 10.51, 14.97 34.53 33.47, 35.59 14.69 13.61, 15.77 

Supinator 8.92 7.16, 10.68 23.32 22.48, 24.16 10.76 9.92, 11.60 

RBB 0.09 0.080, 0.100 0.08 0.076, 0.084 0.10 0.096, 0.104 

UB 0.10 0.092, 0.108 0.13 0.126, 0.134 0.09 0.086, 0.094 

US 0.07 0.062, 0.078 0.08 0.076, 0.084 0.07 0.066, 0.074 
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Appendix D. Tukey-Kramer Species by Location Tables 

 Species by location Tukey-Kramer’s test results for all species for deltoid, HD, HPM, 

biceps brachii, supinator, RBB, US, and gluteus maximus. These tables include the p-values 

calculated by the Tukey-Kramer’s test comparing captive and wild caught specimens of each 

species. The results indicate which species are associated with the differences for location in the 

GLM analyses.  

 

Table D.1. Deltoid 

 A. geoffroyi wild C. guereza wild H. lar wild M. mulatta wild 

A. geoffroyi captive 0.9823    

C. guereza captive  0.0061   

H. lar captive   0.9330  

M. mulatta captive    0.4083 

 

Table D.2. HD 

 A. geoffroyi wild C. guereza wild H. lar wild M. mulatta wild 

A. geoffroyi captive 0.9209    

C. guereza captive  <0.0001   

H. lar captive   0.7914  

M. mulatta captive    0.9385 

 

Table D.3. HPM 

 A. geoffroyi wild C. guereza wild H. lar wild M. mulatta wild 

A. geoffroyi captive 0.9992    

C. guereza captive  <0.0001   

H. lar captive   <0.0001  

M. mulatta captive    0.7014 
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Table D.4. Biceps brachii 

 C. guereza wild H. lar wild M. mulatta wild 

C. guereza captive 1.0000   

H. lar captive  <0.0001  

M. mulatta captive   0.9604 

 

Table D.5. Supinator 

 C. guereza wild H. lar wild M. mulatta wild 

C. guereza captive 0.9002   

H. lar captive  0.0019  

M. mulatta captive   0.9995 

 

Table D.6. RBB 

 C. guereza wild H. lar wild M. mulatta wild 

C. guereza captive 0.9881   

H. lar captive  <0.0001  

M. mulatta captive   0.9859 

 

Table D.7. US 

 C. guereza wild H. lar wild M. mulatta wild 

C. guereza captive 0.9493   

H. lar captive  0.0035  

M. mulatta captive   0.9989 

 

Table D.8. Gluteus maximus 

 A. geoffroyi wild C. guereza wild H. lar wild M. mulatta wild 

A. geoffroyi captive 0.8896    

C. guereza captive  0.7688   

H. lar captive   0.9786  

M. mulatta captive    0.1480 



 

 

61 

Appendix E. HD and FGM Tukey-Kramer Test Results for Species without A. 

geoffroyi 

 

 These tables are similar to Tables 14 and 15, but do not include A. geoffroyi in the 

analysis. This is to show that these two ratios follow the hypothesized pattern when A. geoffroyi 

is excluded from the analysis. 

Table E.1. HD 

 H. lar M. mulatta 

C. guereza <0.0001 0.9160 

H. lar  <0.0001 

 

Table E.2. FGM 

 H. lar M. mulatta 

C. guereza <0.0001 0.7573 

H. lar  <0.0001 
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