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ABSTRACT 

This thesis focuses on applying machine-learning algorithms on water depth inversion from 

remote sensing images, with a case study in Michigan lake area. The goal is to assess the use of 

the public available Landsat images on shallow water depth inversion. Firstly, ICESat elevation 

data were used to determine the absolute water surface elevation. Airborne bathymetry Lidar data 

provide systematic measure of water bottom elevation. Subtracting water bottom elevation from 

water surface elevation will result in water depth. Water depth is associated with reflectance 

recorded as DN value in Landsat images. Water depth inversion was tested on ANN models, SVM 

models with four different kernel functions and regression tree model that exploit the correlation 

between water depth and image band ratios. The result showed that the RMSE (root-mean-square 

error) of all models are smaller than 1.5 meters and the R2 of them are greater than 0.81. The 

conclusion is Landsat images can be used to measure water depth in shallow area of the lakes. 

Potentially, water volume change of the Great Lakes can be monitored by using the procedure 

explored in this research.  
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CHAPTER 1. INTRODUCTION 

Bathymetric data is widely used for ship navigation, underwater construction, water 

resources management, flood disaster monitoring, aquaculture, and military operations. 

Traditionally, bathymetry survey was performed by using echo-sounding apparatus and multi-

beam bathymetric system mounted on vessels, with high cost and low efficiency (Zhang, 2013). 

From 1960s, remote sensing technology has found a new way for bathymetric mapping and 

morphological characterization of seabed. Overall, nowadays, there are several remote sensing 

techniques that can be used as a source to derive bathymetry data along coastal areas including 

sonar (sound navigating), LIDAR (light detection and ranging) and high-resolution satellite images 

(Vojinovic, 2013). Compared with traditional methods, remote sensing is superior at its low cost, 

wide coverage, and high repetitive frequency. Shallow water depth inversion from multispectral 

remote sensing images could provide reliable measure of water depth and bottom bathymetry 

(Zhang, 2009). Empirical models have been proposed for bathymetric data estimation. Among 

them, Artificial Neural Network (ANN) and Support Vector Machine (SVM) have proved to be 

effective in modeling virtually any nonlinear function with acceptable accuracy (Suryanarayana, 

2013). Bierwirth (1984) and Lafon (2001) combined theoretical models and experimental 

parameters based on Landsat TM and SPOT image respectively. Su et al. (2008) and Raj et al. 

(2013) used IKONOS and Landsat TM image with non-linear inversion model to estimate water 

depth. Sandidge and Holyer, Wang (1998) utilized a back-propagation artificial neural network 

(BP-ANN) method to develop the relationship between reflectance and observed water depth.  
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In this thesis, multiple machine learning methods, such as ANN, SVM and regression tree 

were applied to build water depth inversion models on a selected Landsat image and the results 

are compared and discussed.  

1.1 REGIONAL BACKGROUND 

The Great Lakes are located in northeastern North America. They are Lake Erie, Lake 

Huron, Lake Michigan, Lake Ontario and Lake Superior, a series of interconnected freshwater 

lakes on the Canada-United States border. The Great Lakes contains about 23,000 km3 of water. 

The volume of water is enough to flood the continental United States to a depth of nearly 3 m. 

Moreover, it covers a total area of 244,000 km2 with 16,000 km of coastline. Lake Michigan is the 

largest lake and is the only one entirely within one country.  

In 2013, the year brought a new record low water level for Lake Michigan, which is 175.57 

meters above sea level. The former record was 175.63 meters above sea level in 1964 (Hayden, 

2013). The low water levels will force shippers to lighten their loads and increase costs so that 

vessels can get into ports (Hayden, 2013). For solving the problem, government has spent money 

to open up more areas of the lake to boaters.  

1.2 WATER-DEPTH REMOTE SENSING PRINCIPLE 

The fundamental physical principle of water depth inversion models is that electromagnetic 

energy leaving water body from the water bottom is attenuated by water volume. The deeper the 

water, the more attenuation. The brightness tune of shallow water area recorded in the images is 

largely determined by the depth of water. Deep areas have low digital number (DN) values in the 

image since the water absorbs much of the reflected light. Shallow areas have high DN values 

since less light reflected from the seabed (Raj, 2013).  
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As showed in Figure 1.1, water absorbs most electromagnetic energy leaving the bottom. 

The lights with wavelength over 0.75 micrometer are completely absorbed. Water are completely 

dark in near infrared wavelengths and beyond. Therefore, for water depth estimation, only visible 

bands, especially the green band and blue band are used to build the inversion models. In this 

research, I used band 1 (blue) and 2 (green) of Landsat data.  

Other than water depth, turbidity is another factor that could affect the brightness of water. 

Turbid water has higher reflectance than clear water. This is also true for waters containing high 

chlorophyll concentrations. These reflectance patterns are used to detect algae colonies as well as 

contaminations such as oil spills or industrial wastewater (Campbell, 2007). However, the 

influence of these environmental factors is still relatively small. In this research, they are not 

considered in the models. 

 

Figure 1.1 Spectral Signatures of Soil, Vegetation and Water, and Spectral Bands of 

LANDSAT7 

(Source: Siegmund, Menz 2005) 
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1.3 OBJECTIVES AND PROCEDURE 

This research aims to apply data mining methods on satellite images in building shallow 

water depth inversion models to evaluate the performance and feasibility of the models. This is 

accomplished through seven tasks outlined below. 

1. Utilize ICESat data and Bathymetry LiDAR data to calculate the water depth. 

2. Use regression tree model as the water depth inversion model. 

3. Use ANN models as the water depth inversion model. 

4. Use different Kernel Functions of Supporting Vector Machine (SVM) method as water 

depth inversion model. The different Kernel Functions of SVM method are compared to 

find the best model. 

5. Compare the shallow water depth inversion models of ANN, SVM and regression tree. 

6. Apply the water depth inversion models to measure water depth.
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CHAPTER 2. LITERATURE REVIEW 

2.1 DATA 

The Ice, Cloud and Land Elevation Satellite (ICESat) was launched by the National 

Aeronautics and Space Administration (NASA) on January 13, 2003 and ended on August 14, 

2010. The on-board Geoscience Laser Altimetry System (GLAS) collects laser reflection from 

ground and clouds. The ground returns measure surface elevation at great accuracy (15cm) 

covering most lands and water bodies of the earth. The application of the ICESat data have been 

used in far more aspects than the initial purpose. The major applications of GLAS data include 

measurement of sea-ice freeboard, land elevation and forest height, change detection of Antarctic 

and Greenland ice sheets elevation, Land cover classification, Urban building height extraction 

and water level changes in lakes (Wang et al., 2011). An overview of the ICESat Mission including 

its objections, requirements, mission description, data products are documented in Schutz et al. 

(2005). Zwally et al. (2002) stated the ICESat’s laser measurements of many aspects in 

considerable detail including the GLAS instrument characteristics, data products, applications of 

data and so on. Both articles agreed that GLAS data could be effective alternative to monitoring 

of water levels of selected rivers and lakes. Chipman and Lillesand (2007) used MODIS and 

ICESat data to assess the dynamics of new lakes in southern Egypt. The results showed that two 

of the new lakes have already disappeared and several remaining lake will disappear shortly. So 

the articles can prove that ICESat data can be used well in different applications.  

Along with the satellites, airborne scanning LiDAR also provides reliable and accurate 3D 

measurement of surface elevation, from which high-resolution Digital Terrain Models (DTMs) 

can be derived for geomorphological studies (Hohenthal, 2011; Hofel, 2011). Laser scanning is 
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now a widespread means of obtaining precise and high-resolution three-dimensional (3D) 

topographic information, with high efficiency and ease of use (Belian, 2005; Buckley, 2008; 

Hodgetts, 2009). Bathymetric LiDAR utilizes a green laser to penetrate through water to the 

bottom for the bathymetry of coastal areas.  The U.S. Army Corps of Engineers (USACE) Joint 

Airborne LiDAR Bathymetry Technical Center of Expertise (JALBTCX) collected the bathymetry 

LiDAR data and published the data for public use. JALBTCX collected its first airborne coastal 

mapping data on the Great Lakes in 1995 (Reif, 2013). Since then, the JALBTCX has collected 

nearly 5 billion elevation and depth measurements and created over 2000 geographic information 

system (GIS) products for the shorelines of the Great Lakes (Reif, 2013). The applications of 

bathymetry LiDAR include shoreline and elevation change analysis, submerged sediment 

characterization, bluff edge detection, invasive species identification and so on. Coastal 

researchers, engineers, and managers can utilize these applications to increase understanding of 

coastal processes, evaluate engineering solutions and examine their performance, and inform 

coastal planning and decision-making (Reif, 2013).  

Accurate bathymetric measurements are of fundamental importance for monitoring sea 

bottom. Retrieving bathymetric information from satellite imagery data is regarded as a fast and 

economically advantageous solution to automatic water depth calculation in shallow water 

(Stumpf et al., 2003 and Su et al., 2008). The primal attempts for automatic estimation of shallow 

water depth were based on the combination of multispectral data and radiometric techniques 

(Lyzenga, 1978). In the following years, with the advance of remote sensing technology, high 

resolution images have become available, such as Ikonos, Quickbird and Worldview-2 data 

(Doxani, 2012).  However, the high cost of the high resolution images and small spatial temporal 

coverage prevent these images to be widely adopted by the research community. Instead, Landsat 



 

7 

 

images have consistent long time coverage and are made free to the public by the USGS. It is 

interesting to provide evaluation of feasibility of Landsat images on shallow water depth inversion 

in concern of the low resolution problem (Conger et al., 2006; Su et al., 2008).  

2.2 SHALLOW WATER INVERSION METHODS 

A wide variety of empirical models have been proposed and tested for bathymetric 

estimations by using the statistical relationship between satellite image pixel values and field 

measured water depth (Doxani, 2012). One of the most widely used method is the inversion 

method proposed by Lyzenga (1978, 1981, 1985). The model assumes the bottom reflectance  and 

water depth can be described by an exponential function. The parameters of the exponential 

function are estimated through least-squared fitting on field sample data. Stumpf et al. (2003) 

presented an algorithm using a ratio of reflectance in replace of reflectance data. The result showed 

that by doing so, there was significant improvement over the standard inversion models.  In 

addition, the model could estimate water depth even over 25 m. Recently, there have been a 

blooming of research activities to develop water depth models from satellite images. The water 

depth inversion model proposed by Zhang (2013) uses a single band and band ratios to derive 

bathymetry from a Linear model, a Logarithmic model, a Power exponential model and an 

Exponential model. The paper showed that the power exponential model based on Landsat band 2 

is the best among other alternatives. The log-linear inversion model by Raj et al. (2013) used data 

from multiple bands images and bathymetry measure from echo sounder. The RMSE of the method 

in the paper was 1.9513 meters. The non-linear bathymetric inversion model by Stumpf et al. (2003) 

used log-transformed band ratio to eliminate errors due to different attenuation coefficients from 

multiple bands. Another non-linear inversion model derived by Su et al. (2008) was based on a 

localized regression algorithm on IKONOS high resolution image and bathymetry data. They 
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found that the localized model was able to compensate the variability of bottom conditions. Doxani 

et al. (2012) derived shallow water bathymetry using Lyzenga linear bathymetry model to extract 

the water depth information from Wordview-2 data and echo sounding. Liu et al. (2010) carried 

out a work on bathymetric depth inversion using a single-band model and a dual-band model based 

on SPOT-5 data. The result showed that the dual-band model was better than the single band model. 

The RMSE of the dual-band model was 1.87 meters. Fan et al. (2008) used wave-number spectrum 

technique to retrieve coastal water depths by the Synthetic Aperture Radar (SAR).  

In addition to above methods, many authors use the data mining methods to retrieve water 

depth. Thomas (2012) used regression tree model to map groundwater depth in the Zinder region.  

Yasa (2013) applied classification and regression trees method for predicting the scour depth. 

Huang et al. (2010) utilized the stepwise regression tree to estimate the subpixel land cover. 

Artificial Neural Networks (ANN) provides a fast and practical solution for depth estimation in 

shallow waters (Raj, 2013). Zhang (2011) used IKONOS satellite image to inverse water depth 

based on bands ratio and an ANN method. Huang et al. (2009) employed a back-propagation 

artificial neural network (BP-ANN) method to derive water depth (Huang, 2009). The image they 

used was from Landsat 7. The reported RMSE was about 0.7 meters. Wang (2007) applied a 

momentum BP neural network (MBPNN) for water depth based on Landsat 7 images. Sandidge 

(1998) measured the depth of the Florida Keys and Tampa Bay using ANN method based on 

AVIRIS data and echo sounding data. The RMS of their experiments were 0.39 meters and 0.84 

meters respectively. To the knowledge of the author, there has not been any research efforts to 

evaluate the use of Support Vector Machine (SVM) method on water depth inversion, although it 

has been used in many aspects of remote sensing applications, such as a water quality mapping 

application in Smola (1998).  
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From the literature review, it is clear that machine-learning methods have been adopted in 

many recent research works for water depth estimation from satellite images. However, it was not 

clear which of the methods should be adopted to map the Great Lakes coastal area, as there was 

no any prior research works mentioned in the literature.  In addition, the SVM method was among 

the machine-learning methodology, but was not well documented or tested. This research will 

focus on comparing the machine-learning algorithms on water depth retrieval, especially on 

including the SVM method in the experiments. 
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CHAPTER 3. STUDY AREA AND DATA PROCESSING 

3.1 STUDY AREA 

As showed in Figure 3.1, the study site is located in the west shallow areas of Lake 

Michigan and lies between latitudes 41° 45ʹ 25.764ʺ N and 41° 57ʹ 29.239ʺ N, and between 

longitude 86° 34ʹ 23.164ʺ W and 86° 50ʹ 9.439ʺ W. It was close to Michigan City. It assumed that 

the water quality were homogeneous and the bottom was uniform in the study area. 

 

Figure 3.1 Study Area 
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3.2 DATA ANALYSIS 

3.2.1 ICESat Data 

This research used the ICESat data product GLA06, which provides global elevation data. 

This product includes elevation data for both land and water bodies, covering most part of the earth. 

The ICESat data points (Figure 3.2) were obtained on December 23, 2008 during one of the ICESat 

campaigns. The surface water elevation at these points are listed in the Table 3.1. These twelve 

points are ordered from the coastline towards the lake. The water surface elevation readings at 

these points are very consistent. The average water surface elevation is 175.42 meters. This value 

is used as the surface elevation, from which the water bottom elevation is subtracted to obtain 

water depth.  

 

Figure 3.2 ICESat Data 
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Table 3.1 The Elevation of Water Surface 

Point Elevation (meter) Point Elevation (meter) 

1 175.105308 7 175.336462 

2 175.356333 8 175.457487 

3 175.392359 9 175.385513 

4 175.527385 10 175.569538 

5 175.44041 11 175.462564 

6 175.414436 12 175.44059 

 

3.2.2 Landsat 7 Data 

The pixel values for water depth inversion is obtained from Landsat 7. It can be download 

from USGS (https://earthexplorer.usgs.gov). The Landsat 7 imagery was acquired on October 09, 

2008. The Landsat ETM+ has shown a data gap of a 22% data loss per scene due to scan line 

corrector failure since May 31, 2003. The data gap areas were avoided when I selected the study 

area. The spatial resolution and wavelength of each band is shown in Table 3.2   

First, 500 points in the study area randomly selected from the three area. The 500 points 

are displayed in the Figure. 3.3. Another 200 points in the area shown in Figure 3.4 are randomly 

selected from the area for testing. The 700 pixel values of band 1-5 and band 7 were gained by 

extracting from the Landsat 7 images.  

In order to select the best set of bands and band ratios for water depth retrieval, correlations 

of pixel values of the six bands (band 1-5 and band 7) and their band ratios with corresponding 

water depths were analyzed. A correlation matrix was built in the SPSS software for the single  

 

https://earthexplorer.usgs.gov/
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Table 3.2 Basic Information of Landsat 7 

Band Wavelength (µm) Spatial Resolution (m) 

1 0.45-0.515 30 

2 0.525-0.605 30 

3 0.63-0.690 30 

4 0.75-0.90 30 

5 1.55-1.75 30 

6 10.40-12.50 60 

7 2.09-2.35 30 

8 0.52-0.90 15 

 

 

Figure 3.3 The Position of Five hundred Training Samples 
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Figure 3.4 The Position of Two Hundred Testing Samples 

band, band ratios, band differences and band sums with water depth values from the 500 training 

data points. The correlation equation is  

r =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑁

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑁
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑁

𝑖=1

                                                          (3.1) 

where r is the correlation index, 𝑥𝑖 is the pixel value factor, 𝑥̅ is the average of the pixel 

value factor, 𝑦 is water depth, 𝑦̅ is the average of water depth, N is the number of samples. 

Results showed that band2, band1/ band2, band2 – band4, band2 – band5，band2 – band7, 

band1 + band2 have stronger correlation with water depth than other bands and band 
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combinations(Table.3.3). Therefore, they were selected to retrieve water depths and adopted for 

further modeling. The distribution of water depth is shown in Figure 3.5. The Figure 3.6 to Figure 

3.12 are the relationships between water depth and each variable. 

Table 3.3 The Correlation of Six Parameters 

Parameters ETM+2 ETM+1 

/ 

ETM+2 

ETM+2 

- 

ETM+4 

ETM+2 

- 

ETM+5 

ETM+2 

- 

ETM+7 

ETM+1 

+ 

ETM+2 

Correlation -0.831 0.859 -0.849 -0.833 -0.827 -0.806 

 

 

Figure 3.5 Histogram of the Depth of Training Data 
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Figure 3.6 The Relationships between Each ETM+ bands 
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Figure 3.7 The Relationships of Water Depth and ETM+2 

 

Figure 3.8 The Relationships of Water Depth and ETM+1/ETM+2 
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Figure 3.9 The Relationships of Water Depth and ETM+2-ETM+4  

 

Figure 3.10 The Relationships of Water Depth and ETM+2-ETM+5 
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Figure 3.11 The Relationships of Water Depth and ETM+2-ETM+7 

 

Figure 3.12 The Relationships of Water Depth and ETM+1+ETM+2 

 



 

20 

 

3.2.3 Bathymetric LiDAR  

The U.S. Army Corps of Engineers (USACE) Joint Airborne LiDAR Bathymetry 

Technical Center of Expertise (JALBTCX) collected its first airborne coastal mapping data on the 

Great Lakes in 1995. Since then, JALBTCX has collected nearly 5 billion elevation and depth 

measurements and created over 2000 geographic information system (GIS) products for the 

shorelines of the Great Lakes. Figure 3.13 displayed the surveying region of Great Lakes. The 

Bathymetric LiDAR data used in this thesis part of the dataset contributed by JALBTCX through 

NOAA’s Digital Coast Data Center. The reported vertical accuracy is 20 cm and the horizontal 

accuracy is 75 cm. The data are all in geographic coordinates using the North American Datum of 

1983. 

 

Figure 3.13 Years in which the Great Lakes Region was Surveyed under the NCMP (Reif, 2013) 

For obtaining the water depth date from raw data download from the NOAA DIGITAL 

COAST, there are four major steps: (1) transfer format “laz” format to “las” format by using laszip 

software; (2) convert the LAS format from the “las” files to multipoint in ArcGIS; (3)  the water 

is the difference of water surface elevation obtained from ICESat and the lake bottom elevation 
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achieved from bathymetric LiDAR. The interpolated shallow water depth in the study is shown in 

the following Figure (Figure 3.14). The maximal water depth in the study area is 16.2159 meters. 

 

Figure 3.14 The Depth of Study Area 
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CHAPTER 4. REGRESSION TREE 

The classification and regression tree (CART) method is a tool for numerical prediction 

and data classification. The regression tree algorithm is based on that of Breiman et al. (1984) 

Each deals with the prediction of a response variable 𝑦 given the values of a vector of predictor 

variables  𝑥 . CART can deal with either categorical or continuous dependent variables. With 

categorical dependent variables, CART produces a classification tree. If the dependent variable is 

continues, it will be a regression problem. In mathematical terms, the problem is to find a function 

𝑓(𝑥) that maps each point in X to a point in Y. The construction of 𝑓(𝑥) requires the existence of 

a training sample of 𝑛 observations L = {( 𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)}. The criterion for choosing 𝑓(𝑥)is 

usually mean squared error (MSE) for regression and expected misclassification cost for 

classification. 

 A regression tree is similarly a tree-structured solution in which a constant or a relatively 

simple regression model is fitted to the data in each partition (Loh, 2008). In the tree design, it is 

represented by branches from the same node that have different splitting predictors.  At each node 

of the tree, the algorithm checks the value of one input 𝑥𝑖 and depending on the (binary) answer, 

it will continue to the left or to the right subbranch. When the algorithm reach a leaf, it finds the 

prediction.  

4.1 MODEL BUILDING 

The open source statistic software R is used for the regression tree method. In R, CART 

can be generated through the “rpart” package. Using the “rpart” of R to build the regression tree, 

there are three major tasks: (1) how to split the data at each step, (2) when to stop splitting, (3) 

how to predict the depth value of the six variables. There are many approaches to the first task. 
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For ease of interpretation, a large majority of algorithms employ univariate splits of the form 𝑥𝑖 

≤ c (if 𝑥𝑖 is non-categorical). The variable 𝑥𝑖 and the split point c are often found by an exhaustive 

search that optimizes a node impurity criterion such as the sum of squared residuals (SSR), mean 

squared errors (MSE). There are also several ways to deal with the second task, such as stopping 

rules and tree pruning. The aim to pruning trees is to decrease the chance of over-fitting. Once the 

tree is built, it is easy to make predictions: trace the tree until it reaches a leaf node. 

To use “rpart” in R, there are three parameters to determine when the creating should stop.  

They are “cp” (complexity parameter), “minsplit”, and “maxdepth”. “minsplit” is the minimum 

number of observations that must exist in a node for a split to be attempted. “maxdepth” is the 

maximum depth of any node of the final tree. The default of these parameters is 0.01, 20 and 30. 

For avoiding over-fitting, the effectiveness of these defaults needs checking. Typically, selecting 

a tree size that minimizes the cross-validation error was preferred. Then, examine the cross-

validated error results, select the complexity parameter associated with minimum error (xerror in 

R), and place it into the prune function. The correct amount of pruning is, however, usually difficult 

to determine. Besides, a large tree is undesirable because it is more difficult to interpret. 

First of all, the “cp” was set as 0.001 for building regression tree. According to the relationship of 

cp and x relative error, it was found that the best size of tree was 8 when cp was 0.0023. Then, the 

cp was set 0.0023 for pruning tree. The Relationship between Relative Error and CP is shown in 

Figure 4.1. The regression tree after pruning is shown in Figure 4.2. The Figure 4.3 showed the 

relationship between number of Splits with the relative error and R2.  

 



 

24 

 

 

Figure 4.1 The Relationship between Relative Error and CP 
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Figure 4.2 The Regression Tree after Pruning 
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Figure 4.3 The Relationship between R2 and Number of Splits and the Relationship between 

Relative Error and Number of Splits  

4.2 RESULTS 

For quantitative evaluation of different equations, statistical indicators such as the 

correlation coefficient (r), and Root Mean Square Error (RMSE) are used as follows: 

r =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑁

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑁
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑁

𝑖=1

                                         (4.1） 

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)2𝑁

𝑖=1                                          (4.2） 
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where 𝑥𝑖 is the pixel value factor, 𝑥̅ is the average of the pixel value factor, 𝑦 is water depth, 

𝑦̅ is the average of water depth, N is the number of samples. The Figure 4.4 showed the mean and 

RMSE of each tree node. 

The performance of the regression tree was evaluated as follows: first, the 80 percent of 

500 samples joined the training of regression tree model and the remaining 20 percent data were 

looked as the independent test samples. Second, use the regression tree model to predict another 

200 samples as an additional test. They were input to the model for calculating the water depths. 

The retrieval water depths were compared with the water depth measurements obtained by remote 

sensing data were shown in Figure. 4.5, and RMSE was 1.085 m. Variables actually used in tree 

construction were band 2, band1/band2, and ban2-band7. Second, the model was estimated by 

dividing three ranges in order to evaluate the performance of regression tree model further. Results 

showed that the regression tree model can effectively predict water depth at less than 5 meters. 

The MSE were 0.36 to 0.9 meters. However, the accuracy was not ideal for the depth over 5 meters. 

The MSE of these were 1.09 to 4.39 meters. Compared the observed and predicted water depth of 

200 testing data, the RMSE of 0-5 meters, 5-10 meters, more than 10 meters is 1.016 meters, 1.17 

meters and 1.22 meters respectively. The relationship of observed and predicted water depth based 

on regression tree models is shown in Figure 4.6. The R2 is about 0.85. 
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Figure 4.4 The Summary of Regression Tree Nodes 
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Figure 4.5 Observed and Predicted Water Depth Based on Regression Tree Models 
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Figure 4.6 The Relationship of Observed and Predicted Water Depth Based on Regression Tree Models 
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CHAPTER 5. ARTIFICIAL NEURAL NETWORK 

Artificial neural networks (ANN), based on the biological neural networks, are information 

processing methods of simulating behaviors of man brain. Owing to the strong abilities of self-

learning, self- organizing, self-adaptability and nonlinear mapping, the ANNs display stronger 

capabilities of simulating the nonlinear systems than the traditional statistical methods (Long, 

1999). The ANN model is an assembly of inter-connected nodes and weighted links. The output 

node sums up each of its input value according to the weights of its links. Figure 5.1 illustrates a 

simple neural network architecture known as a perceptome.  In this thesis, a back- propagation 

artificial neural network (BP-ANN) was applied. BP-ANN has a solid theoretical basis and it is 

widely used in various fields. There are two phases in each iteration of the algorithm: the forward 

phases and the backward phases. 

Forward phases are the computation progresses in the forward direction. During the 

forward phase, the weights obtained from the previous iteration are used to compute the output 

value of each neuron in the network. Outputs of the neurons at level k are computed prior to 

computing the outputs at level k+1. During the backward phase, the weight update formula is 

applied in the reverse direction. In other words, the weights at level k+1 are updated before the 

weights at level k are updated. The back-propagation approach allows us to use the errors for 

neuron at layer k+1 to estimate the error for neurons at layer k (Tan, 2005).  

5.1 MODEL BUILDING 

In this thesis, a typical three-layered BP-ANN model was developed, including an input 

layer, a hidden layer and an output layer by MATLAB software. Firstly, the normalization of 

training data is necessary. “premnmx” function, which is to preprocess data so that the minimum 
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Figure 5.1 The ANN Structure (Tan, 2005) 

is -1 and the maximum is 1 was applied. Then, a logarithmic sigmoid transfer function was used 

for the hidden layer and the linear transfer function was used for the output layer. The training 

function is “traingdx”. “traingdx” is a network training function that updates weight and bias 

values according to gradient descent momentum and an adaptive learning rate. The single band, 

band ratios, band differences and band sums selected above used as predictors and the 

corresponding water depth measurements were predictands. 500 pixel values and water depth 

measurements were randomly selected as the training samples and 200 pixel values left as test 

samples. The number of hidden layer neurons and other parameters in the BP-ANN model were 

determined by continuously learning and training between the predictors and predictands. The 

relationship between the pixel values and the water depths was established by selecting the optimal 

weights and biases. Finally, the structure of BP-ANN model was as follows: the number of input, 

hidden and output layer neurons was 6, 3 and 1 respectively; the learning rate was 0.001; the 

performance goal was 0.001; the maximum number of epochs to train was 500. 
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5.2 RESULTS  

The performance of the BP-ANN was evaluated the same way as before in the 

regressiontree models. First, the 80 percent of 500 samples joined the training of BP-ANN model 

and the remaining 20 percent data were looked as the independent test samples. Second, use the 

BP-ANN model to predict another 200 samples as an additional test. They were put to the model 

for calculating the water depths. The retrieval water depths compared with the water depth 

measurements obtained by remote sensing data were shown in Figure. 5.2. The RMSE was 1.25 

m.  

Second, the observed water depths were compared with the model retrievals by dividing 

three ranges in order to evaluate the performance of BP-ANN model further. Results showed that 

the BPANN model was able to accurately predict water depth if depth is below 5 meters. The 

RMSE was 0.798 meters. However, the accuracy was not ideal for the depth of 5 to 10 meters. The 

RMSE was 1.242 meters. The RMSE for the depth of more than 10 meters was 1.01 meters. The 

relationship of observed and predicted water depth based on ANN models is shown in Figure 5.3. 

The R2 is about 0.86. 
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Figure 5.2 Observed and Predicted Water Depth Based on BP-ANN Model 
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Figure 5.3 The Relationship of Observed and Predicted Water Depth Based on BP-ANN Model 
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CHAPTER 6. SUPPORT VECTOR REGRESSION 

Support Vector Machines is a machine-learning tool, which has been received considerable 

attention. It has its roots in statistical learning theory. In the literature, there have been many 

practical uses of SVM (Tan, 2005). Similar to CART, SVM can do both regression and 

classification. A support vector machine constructs a set of hyperplanes in an infinite dimensional 

space as classification boundary. The SVM equations are formulated as per Vapnik's theory. The 

generalization ability of the SVM is considered better than ANN, in the sense that it is based on 

the structural risk minimization rather than the empirical risk minimization of the ANN (Shiri, 

2013). The main process of SVM model building consists of selecting support vectors to support 

the model structure and determining their weights. The process of an SVM estimator 𝑓(𝑥) on 

regression can be described as: 

𝑓(𝑥) = 𝒘 𝜑 (𝑦) + 𝑏                                                       (6.1) 

where w is a weight vector, and 𝑏 a bias, and φ is a nonlinear transfer function mapping the input 

space into a high-dimensional feature space. 

6.1 MODEL BUILDING 

In this thesis, I used the Support Vector Machine for regression estimation. Generally, the 

accuracy of the SVR (Support Vector Regression) model depends on the appropriate selection of 

kernels and its parameters (Suryanarayana, 2014). In this thesis, four kernel functions were applied 

for building models. They were “Linear kernel function”, “Gaussian Kernel”, “Polynomial kernel 

function” and “sigmoid linear kernel function”. 
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The Linear kernel is the simplest kernel function. It is given by the inner product <x,y>plus 

an optional constant c. Kernel algorithms using a linear kernel are often equivalent to their non-

kernel counterparts. 

𝑘(𝒙, 𝒚) = 𝒙𝑇𝒚 + 𝑐                                                   (6.2) 

The Gaussian kernel is an example of radial basis function kernel. 

𝑘(𝒙, 𝒚) = exp (−
‖𝒙−𝒚‖2

2𝜎2
)                                          (6.3) 

The Polynomial kernels are well suited for problems where all the training data is 

normalized. Adjustable parameters are the slope 𝛼, the constant term c and the polynomial degree 

d. 

𝑘(𝒙, 𝒚) = (𝛼𝒙𝑇𝒚 + 𝑐)𝑑                                              (6.4) 

The sigmoid kernel is popular. The formula of sigmoid linear kernel function is as 

following. 

𝑘(𝒙, 𝒚) = tanh(𝛾(𝒙𝑇𝒚) + 𝑐)                                      (6.5) 

R software was applied for testing these SVM models. It can be generated through the 

“kernlab” package. There are two commonly used versions of SVM regression, 'eps-SVR' and 'nu-

SVR'. Compared the results obtained by the two types, the results showed “eps-SVR” was better 

than “nu-SVR”. Therefore, the “eps-SVR” was used for the SVM models. 

6.2 RESULTS 

To evaluate the SVR models, the 10-fold cross-validation sampling strategy was used. 10-

fold cross-validation broke data into ten sets of size n/10 and train on nine datasets and test on one. 
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Then, repeat 10 times and take the mean error rate.  All the four kernel types were tested on the 

validation data. The results are listed in Table 6.1. The retrieval water depths by four SVM models 

compared with the water depth measurements obtained by remote sensing data are shown in Figure. 

6.1, Figure 6.3, Figure 6.5 and Figure 6.7. The RMSE of “Linear kernel function” was 1.27 m; the 

RMSE of “Gaussian Kernel” was 1.08 m; the RMSE of “Polynomial kernel function” was 1.13 m; 

and the RMSE of “sigmoid linear kernel function” was 1.04 m. The RMSEs in different water 

depth ranges are shown in Table. The relationships of observed and predicted water depth based 

on four kinds SVM models are shown in Figure 6.2, Figure 6.4, Figure 6.6 and Figure 6.8. The R2 

are about 0.81, 0.86, 0.83 and 0.83 respectively. 

Table 6.1 The RMSE of SVM Models Using Different Kernel Functions 

Kernel Function RMSE  (0-5 meters) RMSE (5-10 meters) RMSE (>10 meters) 

Linear 1.31 1.22 1.16 

Gaussian 0.80 1.22 1.09 

Polynomial 0.93 1.10 1.23 

Sigmoid 0.87 1.256  1.14 
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Figure 6.1 Observed and Predicted Water Depth Based on SVM (Linear Kernel) 
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Figure 6.2 The Relationship of Observed and Predicted Water Depth Based on SVM (Linear Kernel) 
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Figure 6.3 Observed and Predicted Water Depth Based on SVM (Gaussian kernel) 
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Figure 6.4 The Relationship of Observed and Predicted Water Depth Based on SVM (Gaussian kernel) 
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Figure 6.5 Observed and Predicted Water Depth Based on SVM (Polynomial Kernel) 
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Figure 6.6 The Relationship of Observed and Predicted Water Depth Based on SVM (Polynomial Kernel) 
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Figure 6.7 Observed and Predicted Water Depth Based on SVM (Sigmoid) 
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Figure 6.8 The Relationship of Observed and Predicted Water Depth Based on SVM (Sigmoid) 
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CHAPTER 7. CONCLUSION 

A regression tree model, a BP-ANN model and several SVMs models with different kernel 

functions were developed for water depth inversion from Landsat remote sensing image. The 

results can be summarized as below:  

(1) Machine learning algorithms are better than regression models in general when dealing 

with non-linear problems. This research tested all the mostly used machine-learning methods for 

water depth retrieval. All three algorithms were capable of retrieving water depth data at 

reasonable accuracy.  

(2) The data mining models established using the relationship between pixel value derived 

from satellite data and water depths obtained from ICESat and Bathymetric LiDAR data in a 

southeastern part of Lake Michigan. The uses of laser altimetry data ensures high accuracy of 

elevation measures.  

(3) Overall, for all models, the R2s of them are greater than 0.85. The RMSE of the 

regression tree model and the SVM model with a Gaussian kernel were smaller than other models.    

(4) All the models had better accuracy at water depth < 5 m than deeper depth areas. 

However, the accuracy was not unsatisfactory for the depth from 5 to 10 meters. The RMSE for 

the depth of more than 10 meters is better than that the depth of 5 to 10 meters.  

(5) Compare among all the machine-learning models, the SVM model with Gaussian kernel 

function had the best accuracy.   
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