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ABSTRACT 

Upper-level (horizontal) divergence (ULD) is an important variable in tropical weather systems.  As part 

of the circulation within a tropical cyclone (TC), it carries air in the upper troposphere away from the center of 

circulation (COC).  To date, most research assumes the 200 hPa pressure level (approximately 12 km, varying 

with latitude and time of year) as the height for maximum ULD in a TC, possibly because weather observation 

at the 200 hPa level by radiosonde have remained mandatory for aviation purposes.  The more recent 

availability of gridded, high-spatial-resolution, global “reanalysis” data at multiple levels, along with 

improvements in spatial interpolation techniques, has allowed for more precise and accurate determination of 

the heights at which peak ULD actually occurs, how that level varies temporally prior to and after tropical 

cyclogenesis (TCG), and how the spatial and temporal attributes of the three-dimensional zone of the maximum 

ULD field vary by storm.  This research addresses these questions. 

Prediction of TCs is improving rapidly as scientific understanding of the atmospheric and oceanic 

conditions that characterize TCG, along with tools available for measuring the associated variables, are 

becoming more advanced and widespread.  Results using the 2005 Atlantic tropical cyclone season suggest 

peak mean ULD during TCG occurs predominantly at 175 hPa and is typically located in the northeastern 

quadrant of the storm, hundreds of kilometers from the COC.  The mean conditions showed a steady increase in 

magnitude of ULD from TCG ‒12 hours to TCG +6 hours and levels off or reduces at TCG +12 hours.  Mean 

ULD is less organized on most levels before TCG and becomes more organized and concentrated between 200 

hPa and 150 hPa from TCG to TCG +12 hours. 

Peak ULD during individual cyclogenesis occurrences varies widely in magnitude, temporally, and 

vertically.  Therefore, each cyclone should be evaluated individually.  In general, this research supports the 

notion that confinement of ULD analysis to a single pressure level could diminish research or model outcome as 

ULD location is variable in four-dimensional space.  These results may be useful in weather and climate 

modeling as evolution of TC outflow can be better understood.
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1. INTRODUCTION 

1.1. Background 

A tropical cyclone (TC) is defined as a synoptic-scale, non-frontal, warm-cored, low-pressure system 

that forms over tropical waters and has an enclosed area of low-level wind circulation and organized 

convection (Hurricane Research Division 2016).  Such phenomena are relatively common in much of the low-

latitude areas of the Earth.  TCs of any magnitude (from weak tropical disturbances to the strongest named 

storms) can affect inhabitants of coastal zones in the tropics and subtropics.  With coastal population growth, 

urbanization, and density increasing at a faster rate than inland populations (Neumann et al. 2015), the threat to 

life and property by these storms is an increasing concern (Baker 1979).  In addition, as seen with the 

Galveston Hurricane of 1900, Hurricanes Camille (1969), Opal (1995), and Sandy (2012), and many other TCs 

around the world, the devastating effects of TCs can reach far inland as well (NHC 2015).  According to Nolan 

(2007) “the inability to accurately forecast TC genesis can be a critical barrier to achieving sufficiently long 

warning times for landfalling cyclones.”  Therefore, dynamics of TC formation and intensity has been a topic 

of study for many decades. 

1.2. Tropical Cyclogenesis (TCG) 

TC formation is referred to as tropical cyclogenesis (TCG).  Some of the conditions widely accepted 

that favor TCG include; a synoptic-scale, low-level rotation (or vorticity) that exceeds the vorticity imparted on 

the storm by the rotation of the Earth itself (Gray 1968, Vizy and Cook 2009), small tropospheric vertical wind 

shear (Landsea et al. 1998), a location of at least 3° to 5° of latitude away from the equator to allow for 

sufficient Coriolis effect to provide sustained rotational motion within the system (Bracken and Bosart 2000), 

sea surface temperatures of at least 26 °C (Emanuel 1986) and extending to sufficient depth (Pino 2015), near-

surface preexisting atmospheric disturbance (Nolan 2007; Dunkerton et al. 2009), moist mid-tropospheric 

layers (Yan et al. 2015), statically unstable air, and convection (NHC 2015).   

The World Meteorological Organization classifies TCs based on their intensity, with severity 

increasing from tropical disturbance, to tropical depression (TD), tropical storm (TS), subtropical storm (SS), 
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hurricane, and major hurricane.  A tropical disturbance is an area of low pressure, usually a tropical wave, with 

increased thunderstorm activity but little organization.  A TD forms as winds begin to circulate and become 

more organized around a center of low pressure.  The system becomes more efficient when upper-tropospheric 

outflow, or upper-level divergence (ULD), begins as a result of convective organization occurring in regions of 

lowest inertial stability (Mecikalski and Tripoli 2003).  As intensity increases, one closed isobar with peak 

sustained wind exceeding 17 m s-1 (HRD 2011) is present as thunderstorms form more organized bands about a 

center of circulation (COC).  This is the TS or SS stage, at which point the storm is generally given a name.  

The TC is considered a hurricane after the peak sustained winds strengthen and exceed 33 m s-1 (Schott et al. 

2012).  Typically, at this stage the system develops an “eye” near its center.  Hurricanes are rated based on the 

Saffir-Simpson Hurricane Wind Scale with wind speed determining the hurricane category; the thresholds of 

each category in the scale (from 1 to 5) correspond to wind speeds that damage structures through increasing 

categories of sturdiness (Schott et al. 2012).   

Transitions from tropical disturbance to TD are not as straightforward as the other classification 

transitions.  Without a minimum wind speed requirement (HRD 2011) or other direct measurements 

identifying the transition, TDs can be difficult to study.  In addition, numerous tropical disturbances bypass TD 

stage and intensify directly into a TS.  The TS stage can be measured with more accuracy and generally 

indicates the continuation of favorable conditions allowing for more intense tropical development (HRD 2011).  

Briegel et al. (1997) suggests that  

[t]here is nearly universal agreement that when a storm reaches tropical storm intensity, it will 
intensify into a mature cyclone without external forcing unless it is inhibited by an unfavorable 
environment (principally strong vertical wind shear and/or moving over land or cold water). (p. 1398) 
 

Therefore, for the purposes of this study, TCG refers to time of transition to a TS or SS.   

1.3. Tropical Cyclone Circulation 

Through their circulation, TCs are simply one way the Earth regulates its temperature by the transfer of 

heat from the equatorial region to polar regions by way of the upper troposphere (Prasad 2016).  In the 

Northern Hemisphere, horizontal components of motion within a TC primarily involve a counter-clockwise 
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(cyclonic) inward-spiral motion toward the interior of the storm at low levels (i.e., convergence), and 

clockwise (anticyclonic) outward-spiral motion away from the COC at higher levels (i.e., ULD).  These 

horizontal components are part of two circulations (i.e., primary and secondary) required for a TC to develop 

and become efficient (Sall et al. 2006). 

The primary circulation consists of broad-scale horizontal components which respond to pressure 

gradient force, Coriolis effect, centrifugal force, and (surface) friction, the latter of which affects the speed and 

therefore the strength of both the Coriolis effect and centrifugal force (Scowcroft et al. 2011).  The primary 

circulation is found throughout the tropospheric depth and consists of azimuthal inward spiraling motion about 

the vertical axis (i.e., the COC) (Ooyama 1982, Marks and Houze 1987). 

Motion also includes a secondary circulation with both radial and vertical components within a TC 

(Ooyama 1982) and responds to the same forces as the primary circulation (Willoughby 1988).  TCs require a 

strong secondary circulation to maintain the efficiency essential for self-sustainability (Scowcroft et al. 2011).  

Specifically, heat leaving the system in the upper troposphere must be at a lower temperature than the heat 

flowing into the system in the lower troposphere (Scowcroft et al. 2011).  Moreover, the spatial scale and 

strength of the secondary circulation largely controls TC intensity (Fang and Zhang 2011, Rappin et al. 2011).  

The secondary circulation in a TC (Figure 1.1) can be compared to a thermodynamic heat engine (Willoughby 

1999, Denur 2011), or a Carnot engine (Ge et al. 2008). 

Figure 1.1. Secondary circulation of a tropical cyclone. 

Upper Level Divergence Upper Level Divergence 
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The cycle requires heat energy to be lost (i.e., mainly radiational cooling) at the low temperatures of the 

upper troposphere and gained at warmer temperatures near the surface, increasing the thermodynamic heat 

engine efficiency (Denur 2011, Ozawa and Shimokawa 2015) and creating a positive feedback.  

This “engine” process begins as air flows over the ocean surface toward the central lower pressure of the 

system and isothermal expansion of air occurs (Willoughby 1999, Tang and Emanuel 2010).  At this point the 

work (W) done by friction at higher temperatures (TH) near the surface releases kinetic energy of the winds 

(Denur 2011).  Next, air ascends adiabatically within the deep convection (updrafts) occurring toward the 

center of the storm (Willoughby 1999, Tang and Emanuel 2010).  This buoyancy is due to the difference in 

temperature between the ocean surface (TH) and the upper troposphere (TC) where outflow occurs.  The 

difference (i.e., TH – TC) must be sufficient to promote continued lifting at the moist adiabatic lapse rate 

(Denur 2011, Emanuel 1986).  Intensification relies on the cooler upper level to promote the unstable 

atmosphere needed to maintain the convection (Rai et al. 2016) which can reach approximately 13 to 19 km 

(i.e., 150 hPa to 75 hPa) in height (Dessler 2002). 

Air is subsequently radiated outward (i.e., ULD) in the upper troposphere away from the storm and 

isothermal compression occurs (Willoughby 1999, Tang and Emanuel 2010).  The removal of air above surface 

convergence reduces surface pressure, increasing the pressure gradient, and promoting large-scale ascending 

motion (Ge et al. 2010).  Eventually, the cooler air subsides from height away from the COC and warms by 

adiabatic compression (Willoughby 1999, Tang and Emanuel 2010).  The process begins again as the warmer 

air, now near the surface, flows toward the central lower pressure of the system, allowing the TC to maintain 

itself (Scowcroft et al. 2011). 

Many variables contributing to primary circulations are studied extensively, as they are either related to 

conditions favorable for TC or subtropical cyclone (SC) development or intensification.  Other variables, such 

as ULD, however, have not been studied as extensively, particularly in the days when only sparse data were 

available for upper-levels at a coarse spatial and temporal resolution.  The resulting trend was less study of 

secondary circulation variables, leading to more assumptions regarding them in TC research.   
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A long-established assumption that ULD in TCs is best represented at 200 hPa atmospheric pressure 

level has followed the science as far back as the 1960s.  Today, however, with aircraft equipped to fly through 

TCs, the increased availability of measurements, models to make estimates where measurements are 

unavailable, and ability to process such measurements has facilitated an examination of the extent to which 

ULD at the 200 hPa level actually represents a TC’s peak divergence. 

1.4. Research Questions 

Specifically, this research seeks to address the following research questions:   

1.  To what extent does the atmospheric pressure level and temporal evolution for the maximum ULD field 

vary during TCG? 

2.  To what extent does the vertical and temporal evolution of the maximum ULD field vary within individual 

TCs? 

3.  To what extent does the mean ULD field vary within a TC’s evolution around TCG? 

4.  Is it reasonable to assume that the 200 hPa level is most appropriate for identifying ULD during TCG? 

1.5. Summary 

This chapter has provided background on ULD, an important feature affecting TCG.  It also described 

the objectives for the present study of the spatial and temporal evolution, in four dimensions, of the ULD 

during the 28 storms of the 2005 Atlantic-Gulf of Mexico TC season.  The next chapter will review the 

scholarly literature on the 2005 Atlantic-Gulf of Mexico TC season and ULD in TCs in more detail. 
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2. LITERATURE REVIEW 

2.1. Literature Regarding Study Area Significance for TC Research 

The 2005 Atlantic Basin hurricane season was chosen as the study area due to frequency and variety in 

intensity of named storms (Beven et al. 2008).  The 2005 season produced 28 named cyclones (NHC 2015) 

ranking 2.56 times the TC frequency of the 1944‒2003 long-term mean (Beven et al. 2008).  As the most active 

and costliest season on record in the Atlantic-Gulf-Caribbean basin (Figure 2.1), including the production of its 

strongest recorded hurricane (Wilma; Beven et al. 2008), the season has been widely studied.  Moreover, the 

season is recent enough that high-quality measurements are available.  As a result, much research has focused 

on individual storms within the 2005 season and on the season as a whole. 

Figure 2.1. Atlantic-Gulf-Caribbean basin. Source: ESRI (2017). 

Examples of research on individual storms within the 2005 season include sea surface temperatures 

(Foltz and McPhaden 2006), the life cycle of Hurricane Katrina (McTaggart-Cowan et al. 2007a, 2007b), 

Hurricane Dennis landfall damage assessments (Czajkowski and Done 2014), and TCG of Hurricane Cindy 

(Yoo et al. 2014).  Other research that focused on the entire season includes discussions in Beven et al. (2008), 

anomalies of sea surface temperature between the 2005 and 2006 seasons (Chiodi and Harrison 2008), and 

impacts of Saharan dry air and dust on the season (Sun et al. 2008).  The hurricane response of the U. S. 
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Geological Survey in 2005 is thoroughly documented in a USGS comprehensive report (Farris et al. 2007).  

Therefore, with a plethora of available data and previous research, this season was chosen as a proxy in 

determining vertical and horizontal extent of ULD at cyclogenesis.   

Often, predicted TC impacts relative to population centers determine the amount of research on a 

particular storm.  For example, data for some 2005 storms, such as Ophelia and Wilma, are more abundant than 

for others and included multiple data surveillance missions (Aberson 2008).  In order to capture the full extent 

of ULD, this study includes all 2005 Atlantic-Gulf of Mexico storms regardless of their impact or landfall 

location. 

2.2. Use of 200 hPa 

Current literature has sparse coverage of divergence field evolution on a climatic time scale or its 

relationship to other atmospheric variables.  Use of 200 hPa for upper-level outflow for TCs has been the 

widely-accepted assumption in scientific literature.  Although many additional papers exist regarding different 

aspects of TC dynamics, motion, and thermodynamics, only a few have included sufficient examination of ULD 

not confined to 200 hPa (Section 2.3). 

Previous research has examined wind and ULD around the 200 hPa level because it was assumed to 

represent the most important level for wind fields.  Riehl (1948) may have been among the first to use 200 hPa 

for TC analysis while researching the formation of typhoons.  Riehl (1948) recognized 200 hPa to 150 hPa as 

the levels of greatest intensity in upper systems and where the westerlies were the strongest.  Upon review of 

upper level cyclonic circulation, Riehl (1948) determined: “It is indeed a fact that tropical storms of great 

intensity … display an unquestionable affinity for the 200 [hPa] high-pressure cells.  [Therefore] the 200 [hPa 

level was] chosen as the basic level for high-altitude analysis”.  Colón and Nightingale (1963) examined 

hurricane seasons 1956–1962 to produce preliminary results in identifying favorable patterns in upper-level 

flow at 200 hPa associated with TCG.  Conclusions identified a need of further study on TCG “in relation to 

circulation patterns at the 200 [hPa] level” (Colón and Nightingale 1963).  Additional research by Gray (1968) 

concludes: 
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Divergent mass acceleration is stimulated in the upper troposphere at the level where, jointly 1) the deep 
cumulus updraft velocities are decreasing due to sharp increase of stability, and 2) [the] compensating 
outward pressure accelerations are very large.  These two effects combine best near 200 [hPa].  This is 
the primary level of divergent mass compensation. (p. 697) 
 

The 1718 citations compiled by Google Scholar indicate that Gray (1968) has been used as an important source 

for TC research and has “been accepted as the standard genesis criteria” for over 40 years (Agudelo et al. 2011).  

Therefore, many authors have applied the 200 hPa level as the uppermost height in TC analysis. 

In part, this assumption is made because the 200 hPa level was one of the few, preselected mandatory 

vertical levels at which radiosondes would collect and report atmospheric measurements (Ellrod and Knapp 

1992) and the 200 hPa maps were typically included in most atlases (Krishnamurti 1971a).  However, over the 

ocean, the network of rawinsondes for wind data collection was sparse, leading to a lack of data in evaluating 

the TC outflow layer (Black and Anthes 1971).  TC in situ research was limited to aircraft coverage of only 

short high-level data accumulation with restrictions on the aircraft capabilities to hundreds of kilometers outside 

the COC and the exiguous rawinsonde data (Black and Anthes 1971).  Beginning in 1970, photographs from the 

ATS-III satellite allowed for flow fields to be constructed at levels with traceable clouds (Black and Anthes 

1971).  Despite this technological advancement, it remained impossible to determine the pressure at which these 

cloud traces were located when viewed from space.  In an effort to validate the satellite images to the 

corresponding pressure level, methods employed by Black and Anthes (1971) compared cirrus cloud motions 

viewed from space to available 200 hPa rawinsonde data and showed a comparable agreement.  Still though, 

Black and Anthes (1971) also cautioned that cirrus motions may not be occurring at maximum outflow levels.  

Arpe (1989) recognized that although systematic errors in the European Centre for Medium-Range 

Weather Forecast (ECMWF) models had been reduced, they were at that time of unreliable quality regarding 

divergent wind.  Baray (1999) noted that available data resolution is weak both in the vertical and horizontal, 

but upper-level clouds observed in the satellite imagery of TC Marlene (1995) correspond with the 150 hPa 

level.  The TC outflow layer by 1997 was still plagued with minimal observations; therefore, results including 

ULD analysis underscore its importance (Dengler and Reeder 1997).  Furthermore, Dengler and Reeder (1997) 

recognized “a pressing need to obtain such data in order to assess the theories.”  Even a review of tropical 
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convection by Houze (1997) mentions 200 hPa as the height extent of reliably measured divergence (i.e., ULD), 

but data show cloud tops several kilometers higher in the atmosphere. 

 Gray (1998) reported that in his Gray (1968) research, upper-level influences on TC 

development can be underrepresented due to lack of sufficient satellite and upper-air data in the study area 

(McTaggart-Cowan et al. 2013).  However, reevaluation of commonplace upper-level assumptions possibly 

based on Gray (1968) are not evident in the following paragraphs. 

Zehr (1992) analyzed 200 hPa divergence for developing and non-developing disturbances to classify 

synoptic-scale patterns relating to TC formation in the western North Pacific.  Hurricane outflow structure is 

analyzed with flow fields produced from a model by Wu and Emanuel (1994) with an uppermost vertical 

pressure of 200 hPa.  Elsberry and Jefferies (1996) analyze vertical wind shears between 200 hPa and 850 hPa 

to determine a threshold for wind shears unfavorable for TC development.  However, they mention that the 

difference between 200 hPa and 850 hPa for vertical wind shear analysis is commonplace due to limited marine 

atmospheric data and the inability to evaluate it in more detail.  In an analysis of Hurricane Wilma (2005), Chen 

and Zhang (2013) “...recommend that more attention should be paid to the upper-tropospheric flows, rather than 

just [vertical wind shear] in the typical 850–200-hPa layer, in order to reasonably predict the [rapid 

intensification] of TCs.” 

Wind field data with respect to a TC’s COC were used in Briegel et al. (1997) to form composites of 

200 hPa upper-level troughs possibly triggering cyclogenesis.  Analysis determining upper-level anticyclonic 

outflow effects on a computer-generated vortex produced potential vorticity fields at 200 hPa using a model 

simulating cyclone vertical structure in Wang (1998).  Divergence was layer-averaged between 300 hPa and 

200 hPa by Bosart et al. (1999) for evaluation of Hurricane Opal’s (1995) unexpected intensification.  Bracken 

and Bosart (2000) used ~900 hPa to 200 hPa winds to model flow patterns during North Atlantic Ocean TCG 

with composite results for divergence at 200 hPa.  Largest outflow (ULD) magnitudes were found between 250 

hPa and 100 hPa in Barrett et al. (2016) but 200 hPa was the only level selected for analysis due to more 

frequent 200 hPa clustering in the two included case studies over their entire life cycle.  
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Research on the TC environment has similarly assumed a 200 hPa maximum vertical level.  For 

instance, DeMaria et al. (2001) developed a North Atlantic TC genesis parameter that includes vertical wind 

shear and temperature difference analysis between 850 hPa and 200 hPa.  Cheung (2004) looked for mean 

values of environmental parameter thresholds to determine favorable TCG locations with the use of 200 hPa 

divergence.  Chand and Walsh (2009) calculated seasonal threshold averages for favorable TCG conditions, 

including cyclonic relative vorticity, environmental vertical wind shear, and divergence at 200 hPa.  The 

development of a rapid intensity index for rapid intensification of TCs by Kaplan et al. (2010) used 200 hPa 

divergence averaged over a zero to 1000 km radius.  

Likewise, intensification of TCs has also been studied with the assumption of 200 hPa as the “top” of 

the storm.  For example, Davidson and Kar (2002) examined upper-tropospheric flow during intensification and 

used a model “initialized with objective analysis at the 200 hPa level” and even suggest that the absence of 

enhanced ULD during intensification could mean that ULD may not be crucial to intensification.  Bhatia and 

Nolan (2013) compared hurricane intensity forecast models to address which environmental conditions lead to 

better forecasts, but limited the data analysis to 200 hPa and below in the atmosphere.  Lee et al. (2015) 

developed a model predicting intensity changes in TCs related to certain environmental conditions but limits the 

divergence variable to only 200 hPa.   

Even easterly wave development into TCs has assumed a 200 hPa vertical maximum.  Vizy and Cook 

(2009) analyzed 200 hPa divergence during comparison of two African easterly wave-initiated TSs.  Peng et al. 

(2012) investigated developing versus nondeveloping disturbances in the North Atlantic including calculations 

of the wind shear between 850 hPa and 200 hPa in addition to vertical divergence profiles that do not extend 

vertically higher than 200 hPa.  Leppert et al. (2013) distinguished between non-developing and developing 

waves (i.e., TCs) by the presence of three conditions, one of which is “large-scale, upper-level (~200 hPa) 

divergence.” Vertical wind shear in Didlake and Houze (2013) was calculated from 850–200 hPa although cross 

sections show ULD reaching well above 12 km (i.e., 200 hPa).  Brammer and Thorncroft (2015) used ULD 

from 300 hPa – 200 hPa at TD stage to model variability and evolution of African easterly waves.   
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This trend of using 200 hPa upper-air data for variables related to ULD is not limited to studies, models, 

and research.  It can be found in textbooks as well, such as Introduction to Tropical Meteorology (Laing and 

Evans 2011) in which winds were only considered up to 200 hPa.  Even the (U.S.A.) Climate Prediction 

Center’s Climate Diagnostics Bulletin provides monthly mean values and anomalies for vector wind, 

streamfunction, divergence, and velocity potential with divergent wind vectors all at 200 hPa (CPC 2017).  The 

2005 North Atlantic hurricane season climate perspective overview by Bell et al. (2006) incorporated 200 hPa 

data from the above-mentioned Climate Prediction Center.  

These references identify a misconception of the importance and location of outflow associated with 

TCs.  It is not the intention of this research to show error, but only to express the need to revisit commonplace 

assumptions that have become a standard.  One horizontal slice of the atmosphere will not be sufficient to 

capture useful ULD values for use in models or research.  Therefore, future research should reevaluate the 200 

hPa assumption on relevant variables and implement a more encompassing use of available upper-air data.  

Table A.1 in the Appendix consists of a more extensive list of references that represent ULD at 200 hPa and/or 

use other variables related to or included in calculations of ULD. 

2.3. Upper-Tropospheric Analysis at Pressure Levels Other than 200 hPa 

Despite the overwhelming volume of research assuming that ULD occurs at the 200 hPa level, some 

research has examined ULD at other vertical levels.  Jordan (1952) obtained an upper level wind-circulation 

pattern for TCs and recognizes anticyclonic outflow patterns beginning around 300 hPa and extending to above 

150 hPa.  In the 1960s, the U.S. Air Force initiated the High Altitude Clean Air Turbulence program (HICAT) 

to measure ~12 to ~21 km atmospheric conditions (Waco 1970).  Measurements taken during Hurricane Beulah 

(1967) recorded anticyclonic outflow from 100 hPa to 57 hPa with the visual cirrus outflow layer top ranging 

between 147 hPa and 121 hPa mostly on the northern and eastern side of the COC (Waco 1970).    

By 1976 satellite images and rawinsonde data had become readily available and aircraft capabilities had 

improved.  Data for 300 hPa, 250 hPa, and 200 hPa are mentioned in Sadler (1976) as levels where wind 

observations by aircraft are more numerous.  Sadler (1976) selected 250 hPa for the best level to analyze the 
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tropical upper-tropospheric trough (TUTT) associated with tropical cyclones, comparing it to the satellite 

observed cloudiness.  With the use of aircraft wind observation data from the 300 hPa and 200 hPa levels 

combined with the 250 hPa and 200 hPa rawinsonde data, Sadler (1976) minimized voids in the observations.  

In a comparison between equatorial Western Pacific waves with ULD occurring around 175 hPa (Reed and 

Recker 1971) and Eastern Atlantic waves, Thompson et al. (1979) reported that ULD is of similar size and 

position as ULD in the Pacific, except it occurs around 250 hPa.  Emanuel (1986) discussed the importance and 

contribution of the upper-level outflow temperature in relation to TC formation and intensity and its correlation 

to the ratio between radius of maximum winds to the outer radius.  The temperatures used in Emanuel (1986) 

were taken from 300 hPa.   

 In a study of TC structure and evolution during explosive cyclogenesis in the North Atlantic, Wang and 

Rogers (2001) applied ULD data from 250 hPa.  Brayshaw et al. (2009, 2011) also applied 250 hPa ULD to TC 

track studies in the North Atlantic.  Agudelo et al. (2011) recognized that macro-scale environmental conditions 

in Gray (1968) (Section 2.2) are representative of the regional climatology of TC formation and not the 

individual TCG factors, and introduced a divergence index for African easterly waves based on differences 

between divergence at 850 hPa and 300 hPa.  Using a reduced model to evaluate turbulence induced TC 

formation, Schecter (2011) was vertically limited at 300 hPa.  Kerns and Chen (2015) related sea level pressure 

changes to a TC’s warm core with available dropsonde data from aircraft flying no higher than ~350 hPa.  ULD 

at 250 hPa was displayed in storm-centered composites by Rios-Berrios et al. (2016b) for the intensification of 

Ophelia (2011) in a sheared environment. 

Kasahara et al. (1994) used satellite radiometric imagery data to conclude that maximum divergence 

occurs between 175 and 150 hPa.  Davidson (1995) found in a review of vorticity budget diagnostics in tropical 

weather situations that ULD peaks at ~ 150 hPa.  Merrill and Velden (1996) found that the outflow layer of 

Supertyphoon Flo (1990) was located between 180 and 120 hPa through various stages of development.  Liu et 

al. (1997) modeled intense outflows above 300 hPa in Hurricane Andrew, with ULD appearing to extend above 

200 hPa.  In a separate analysis of Hurricane Andrew, Liu et al. (1999) modeled horizontal wind velocity taken 
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from 900 hPa to 150 hPa and intense outflows above 12 km (i.e., the approximate assumed mean height of the 

200 hPa constant pressure surface).  Bender (1997) analyzed the ULD of Hurricane Gilbert (1988) up to 22 km 

while comparing a hurricane model to a case study.  Using the Advanced Microwave Sounding Unit (AMSU) 

data, a satellite analysis of TCs by Kidder et al. (2000) revealed the anticyclonic flow (ULD) structure between 

13 km and 20 km (i.e., 175 hPa to 50 hPa).  Prior to the extratropical transition of Typhoon Vicki in 1998, 

Kitabatake (2002) found that maximum clustered ULD was located around the 150 hPa level. 

Möller and Shapiro (2002) and Shapiro and Möller (2003) used the Geophysical Fluid Dynamics 

Laboratory (GFDL) model forecast to simulate radial outflow up to 15 km during intensification of Hurricane 

Opal (1995).  Liu et al. (2009) analyzed divergence up to 100 hPa for Typhoon Longwang with graphs showing 

ULD varying through time from 200 hPa to above 100 hPa, but the temporal mean determined 200 hPa as the 

contributing level.  Xu and Wang (2010) extended analysis to 16 km showing radial outflow between 13 km 

and 16 km looking at sensitivity of TCs to entropy flux.  Gopalakrishnan et al. (2011) showed that the radial 

wind component of the secondary circulation’s outflow (ULD) extends upwards of 13 km to above 15 km, 

using an experimental atmosphere-ocean coupled Hurricane Weather Research and Forecast (HWRF) system.  

The 13 km to 16 km height was recognized statistically as the maximum cloud top height in Kubokawa et al. 

(2012) (i.e., the location of anvil cirrus formation resulting from the spread of outflow as deep convection 

reaches the tropical tropopause layer) using Nonhydrostatic Icosahedral Atmospheric Model (NICAM) data.  

ULD location varies between 230 hPa to 150 hPa in an evaluation of the upper-level warm core associated with 

Hurricane Wilma (2005) in Chen and Zhang (2013).  Chen and Zhang (2013) also noted the ULD contribution 

to the TC’s warm core in protecting it from environmental flow ventilation.   

Horizontal divergence of TC-generated gravity waves was evaluated in Kim et al. (2014) to the height 

16 km above ground level.  Riemer and Laliberté (2015) limited secondary circulation trajectories to a height of 

12 km in one experimental setup, but recognized outflow layer upper areas to be around 14 km – 15 km in 

height.  Bentley (2017) produced layer-averaged upper-tropospheric divergent outflow from 250 hPa to 150 

hPa.  Komaromi and Majumdar (2014, 2015) used 200 hPa divergence to evaluate ensemble-based error for 
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TCG.  However, Komaromi and Doyle (2017) recognized the lack of observations at higher altitudes in the first 

decade of the 21st century.  According to Komaromi and Doyle (2017) the top of ULD may remained 

undetected even with observations up to 150 hPa, as the outflow can range from 300 hPa to 100 hPa; therefore, 

they used the mean of the combined levels.  Tang (2017) suggested “setting [z (i.e., elevation)] just above the 

initial height of the tropopause allows for the full secondary circulation to be captured.” 

2.4. Summary 

This chapter has traced the development of the idea for using 200 hPa level as the representative height 

for identifying ULD.  Then, some of the most important research that has made use of the 200 hPa assumption 

was reviewed.  The chapter concluded by mentioning ULD research at levels other than 200 hPa.  This review 

was important as a prelude to addressing the research questions identified in Chapter 1.  The next chapter will 

describe the data and methods used to address those research questions.



15 

3. DATA AND METHODOLOGY 

3.1. Upper-Level Divergence (ULD) 

As part of the TC’s secondary circulation, divergent outflow (i.e., ULD) of air from the top of a storm 

is an important variable.  It is easily recognizable in satellite images as the widespread circulation moving 

outward out from the COC (Figure 3.1).  ULD refers to the rate (in m s-1 m-1, or s-1) at which horizontal 

velocity (in m s-1) changes per unit horizontal distance (in m), with positive (negative) values representing a 

net increase (decrease) in horizontal velocity across a distance, or horizontal divergence of air.  It is a measure 

of whether the air is piling up (i.e., convergence, or negative ULD) or spreading out (i.e., divergence, or 

positive ULD) laterally in a given area. 

 

Figure 3.1. Anticyclonic upper level divergent outflow visible above Tropical Storm Zeta. 
Date: 03 January 2006 (NASA 2017). 
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Mathematically, divergence is defined as the dot product of the del operator (∇, i.e., the three-

dimensional gradient vector)  

∇ =  �⃑�𝑣 =  �⃑�𝑖
𝜕𝜕

𝜕𝜕𝜕𝜕
 +  �⃑�𝑗

𝜕𝜕

𝜕𝜕𝜕𝜕
 +  𝑘𝑘�⃑

𝜕𝜕
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of the variable of interest, where 𝚤𝚤, 𝚥𝚥, and 𝑘𝑘�⃑  are unit vectors in the directions of the x, y, and z axes, 

respectively, and the velocity vector 

𝑣𝑣 = 𝑢𝑢𝚤𝚤 + 𝑣𝑣𝚥𝚥 + 𝑤𝑤𝑘𝑘�⃑  

where u, v, and w are the west-to-east, south-to-north, and down-to-up components of the velocity, 

respectively.  Thus, three-dimensional divergence of a vector field can be written as  

𝑈𝑈𝑈𝑈𝑈𝑈 =  𝑣𝑣�⃑  ∙  𝑣𝑣 =  
𝜕𝜕𝑢𝑢
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𝜕𝜕𝑤𝑤
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where ∂ represents the partial derivative of the velocity components, with respect to distance in the x, y, and z 

directions.  In modern data sets, u, v, and w are provided at multiple levels in the atmosphere, based on 

measured or modeled data, at a series of grid points.  Therefore, ULD is derived easily from available 

information. 

3.2. JRA-55: Japanese 55-Year Reanalysis Data Set 

Divergence data were downloaded from the Japanese 55-year Reanalysis (JRA-55) project carried out 

by the Japan Meteorological Agency (Japan 2013, Kobayashi 2017).  This data set was chosen in lieu of the 

more widely-used NCAR/NCEP Reanalysis (Kalnay et al. 1996) due to finer spatial resolution and additional 

model capabilities.  Specifically, JRA-55 applies a four-dimensional variational analysis (4D-Var) with 

Variational Bias Correction (VarBC) and “improves the representation of atmospheric flow and the temporal 

consistency” (Harada et al. 2016).  A preliminary analysis of the Japanese TC Vera (1959) shows high 

potential for use of the JRA-55 Reanalysis on TC research (Ebita et al. 2011).  Moreover, the JRA-55 has 

improved representation of TCs in areas with limited data through its use of a wind profile retrieval method 

(Wood et al. 2013).  At the time of initial research and data retrieval, JRA-55 provided ULD on a spatial grid 

of 1.25° latitude by 1.25° longitude over the research area while the NCAR/NCEP Reanalysis spatial 
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resolution was available only on a 2.5° latitude by 2.5° longitude spatial grid.  In recent years, NCAR/UCAR 

Research Data Archive includes ULD data on a 0.7° latitude by 0.7° longitude spatial grid through the ERA-

Interim Project (ECMWF 2009, Berrisford et al. 2011).  Although Murakami (2014) found that JRA-55 was 

the best reanalysis data set to evaluate TCs among six available, a brief comparison of both JRA-55 and ERA-

Interim Project can be found in Section 4.4.  Both data sets are modeled data; therefore, this research is based 

on the validity of data generated by these models.   

Reanalysis data for divergence are provided in Network Common Data Form (NetCDF) every 6 hours 

at 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC from the JRA-55 (Japan 2013).  All divergence data 

within a bounding box of 5° N to 50° N latitude and 103.25° W to 2.5° W longitude were downloaded to cover 

the relevant basin areas (Figure 2.1).  The data points occur at intervals of 1.25° latitude by 1.25° longitude, 

creating grid blocks covering an approximate area of 139 km in the north/south direction and 138 km in the 

east/west direction in latitudes closest to the equator and decreasing to 89 km in the northernmost portion of 

the study area at latitude 50° N.  The JRA-55 data set includes 37 atmospheric levels from 1000 hPa to 1 hPa.  

Only data from June through December 2005 were included; TS Zeta, although lasting into 2006, achieved TS 

status early 30 December 2005, so divergence data for 2006 were not needed. 

3.3. Individual TCG Occurrences 

Data retrieval, subsetting, sorting, statistical analysis, and plotting used the open source edition of R 

Studio, which is an integrated environment for the R Project for Statistical Computing (R 2014).  International 

Best Track Archive for Climate Stewardship (IBTrACS; Knapp et al. 2010) best track COC data are provided 

to the tenth of a degree of latitude and longitude, while the JRA-55 data are provided in multidimensional 

NetCDF on a 1.25° latitude by 1.25° longitude grid.  R programming code was written to determine which 

JRA-55 grid coordinates would represent the IBTrACS COC coordinates most accurately.  Using the R 

Program’s nearest neighbor (NN) formula, the minimum distance was calculated from each set of 

latitude/longitude coordinates in IBTrACS to the closest set of latitude/longitude coordinates on the JRA-55 

1.25° grid.  The result was a set of grid coordinates matching JRA-55 data for every record in the 2005 season.  
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Additional code produced the time of TCG based on IBTrACS wind speed, and verified with NHC (2015) 

Atlantic cyclone reports for 2005.   

Evaluation of the time series covering 12 hours before to 12 hours after the system acquired TS status 

(i.e., when TCG is considered to have occurred) allowed for 24 hours of continuous ULD data throughout 

development.  Thus, the reporting times are labeled TCG ‒12 hours, TCG ‒6 hours, TCG (time at 

cyclogenesis), TCG +6 hours, and TCG +12 hours.  For storms in which TCG occurred so quickly that data for 

times prior to TCG were not included in IBTrACS, a manual review of the disturbance movement and 

direction prior to record were evaluated to determine the coordinates used in this study.  With time and location 

of TCG identified, latitude and longitude coordinates for 6 and 12 hours before and after TCG could be 

identified in the JRA-55 data set.    

Divergence (i.e., ULD) values were extracted from the JRA-55 data set using a latitude/longitude grid 

covering approximately 11.25° x 11.25° (i.e., nine values across and nine down, each of dimension 1.25° x 

1.25°).  To produce the 11.25° x 11.25° grid, four coordinates to the east and to the west, and four coordinates 

to the north and to the south, of the COC were used.  Therefore, each grid includes 81 (9 x 9) ULD values, 

with the center grid box (5, 5) representing COC location as shown in Figure 3.2 (a).  Total area covered in 

each 9 x 9 box is between approximately 1.0 million and 1.5 million km2 (depending on latitude) to capture 

the spatial distribution of ULD.  The large 81-point gridded area provides the spatial extent necessary to obtain 

an accurate representation of ULD in TCs.  This “grid box” method enables analysis of ULD in relation to the 

TC’s center of circulation (COC).  A similar approach using eye-centered data for TC’s was employed by 

Briegel et al. (1997), Babu et al. (2015), and Rios-Berrios et al. (2016a). 

The above data collection procedure was repeated for the five individual times and on each of the 

pressure levels.  After review of the primary vertical locations of the divergence field for each TC, it was 

determined that nine pressure levels (350, 300, 250, 225, 200, 175, 150, 125, and 100 hPa) would be included 

in the evaluation.  These isobaric levels cover a range of altitudes that encompass vertical extent of ULD 

throughout TCG. 
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Figure 3.2. Nine by nine grid boxes of dimension 1.25º x 1.25º with COC in center box (a). Study area (b). 
Overlain on Tropical Storm Dennis for scale. Program ESRI. Image: Tropical Storm Dennis 07/07/05 
12:00 UTC 13º N 65.9º W. GOES-12 VIS Satellite. Source: https://www.nrlmry.navy.mil/TC.html. 

a 

b 
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Originally, the season produced 27 named storms until one unnoted (subsequently named “Unnamed”) 

SS was included in an after-season review, leading to the listed 28 (Beven et al. 2008; Knapp et al. 2010; NHC 

2015).  Irene, Stan, and Gamma reached TS status (i.e., achieved TCG, as defined in this research) twice in 

their lifespan.  Of the 28 recorded storms, both TCG occurrences for Irene and Gamma were due to favorable 

atmospheric conditions for strengthening and are both included in this study (NHC 2015).  Stan briefly 

weakened to a TD while crossing the Yucatán Peninsula, accounting for only one six-hour interval as a TD 

after (and not included in) the analyzed time series.  Therefore, only the first occurrence of TCG for Stan is 

used, as the second was a result of land interference which caused slight deterioration of the cyclone.  In total, 

30 TCG occurrences (i.e., two TCGs each for Irene and Gamma and 26 named storms) are included in this 

study (Table 3.1).  A full list appears in the Appendix Table A.2. 

By incorporating the 24 hours of observations for each of the nine pressure levels centered on the time 

of TCG, a visualization of the ULD time series was created using the R program “levelplot” package.  

Individual storm plots consist of data for 81 points horizontally during the five times (i.e., TCG ‒12, TCG ‒6, 

TCG, TCG +6, TCG +12) and vertically through nine pressure levels.  All 30 occurrences of TCG from the 

Atlantic-Caribbean-Gulf of Mexico basin 2005 hurricane season were analyzed, resulting in a data set of 

109,350 observations (9 vertical levels x 5 temporal observations x 30 TCG x 81 grid points each).   

3.4. Maximum and Mean ULD 

The maximum 2% of ULD values were used in subsequent analysis to determine the pressure levels 

best representing ULD during TCG.  This ensures the examination of peak ULD while still incorporating a 

sufficient number of observations to reach robust conclusions.  The maximum 2% of ULD values were 

extracted for each individual TCG occurrence, resulting in the top 73 ULD values for each occurrence (109360 

/ 30 x 0.02).  Of these 109350 values, 61259 are positive (i.e., divergence) and 48091 are negative 

(convergence).  Analyzing 2% of the total data produces evaluations of ~3.6% of positive (i.e., divergence) 

values for each of the 30 TCGs, thereby eliminating negative values (i.e., convergence rather than divergence) 

to represent the peak ULD times and pressure levels (hPa).   
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Table 3.1. TCG occurrences in 2005 for Gulf-Atlantic-Caribbean basin.  NN to JRA-55 coordinates listed. 

TCG Name Classification Lat °N Long °W Date 
2005 Time Lat °N 

(NN) 
Long °W 

(NN) 
1 Arlene TCG 18.20 83.90 09-Jun 06:00 18.75 83.75 
2 Bret TCG 20.00 95.80 29-Jun 00:00 20.00 96.25 
3 Cindy TCG 25.10 90.20 05-Jul 06:00 25.00 90.00 
4 Dennis TCG 13.00 65.90 05-Jul 12:00 12.50 66.25 
5 Emily TCG 11.00 46.80 12-Jul 00:00 11.25 46.25 
6 Franklin TCG 25.70 75.90 22-Jul 00:00 26.25 76.25 
7 Gert TCG 20.80 95.00 24-Jul 06:00 21.25 95.00 
8 Harvey TCG 29.50 68.60 03-Aug 06:00 30.00 68.75 
9 Irene (1) TCG 20.20 45.00 07-Aug 12:00 20.00 45.00 
10 Irene (2) TCG 23.30 59.30 11-Aug 00:00 23.75 58.75 
11 Jose TCG 19.60 95.00 22-Aug 18:00 20.00 95.00 
12 Katrina TCG 24.50 76.50 24-Aug 12:00 25.00 76.25 
13 Lee TCG 29.00 50.40 31-Aug 12:00 28.75 50.00 
14 Maria TCG 21.10 49.40 02-Sep 12:00 21.25 50.00 
15 Ophelia TCG 27.90 78.80 07-Sep 06:00 27.50 78.75 
16 Nate TCG 28.40 66.60 06-Sep 00:00 28.75 66.25 
17 Philippe TCG 13.50 54.90 17-Sep 18:00 13.75 55.00 
18 Rita TCG 22.20 72.30 18-Sep 18:00 22.50 72.50 
19 Stan TCG 19.50 87.20 02-Oct 06:00 20.00 87.50 
20 Unnamed TCG 35.90 28.50 04-Oct 12:00 36.25 28.75 
21 Tammy TCG 27.30 79.70 05-Oct 06:00 27.50 80.00 
22 Vince TCG 32.90 20.60 08-Oct 06:00 32.50 20.00 
23 Wilma TCG 16.90 79.60 17-Oct 06:00 17.50 80.00 
24 Alpha TCG 16.50 68.50 22-Oct 18:00 16.25 68.75 
25 Beta TCG 11.00 81.30 27-Oct 06:00 11.25 81.25 
26 Gamma (1) TCG 14.30 66.00 15-Nov 06:00 13.75 66.25 
27 Gamma (2) TCG 15.70 85.60 18-Nov 18:00 16.25 85.00 
28 Delta TCG 30.70 40.50 22-Nov 18:00 31.25 40.00 
29 Epsilon TCG 31.50 49.20 29-Nov 06:00 31.25 48.75 
30 Zeta TCG 24.20 36.10 30-Dec 06:00 23.75 36.25 
         

 This analysis eliminates noise (negative values of divergence) created from the large 81-point gridded 

area that was necessary to ensure a large enough spatial extent to capture relevant ULD and to obtain the 

unique visual representation of individual TCG occurrences and mean ULD in Section 4.  Mean divergence 

around TCG relative to the COC (i.e., the mean for each grid point averaged to a single value at each pressure 

level and every time stamp) calculations use the R program and include all 30 TCG occurrences, resulting in 

3645 (81 grid points x 9 vertical levels x 5 instants in time) mean observations. 

Due to the recent availability of better-resolution ULD data on the NCAR/UCAR Research Data 

Archive, identical COC centered subsetting and analysis was performed on the data to offer results comparable 
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to the JRA-55 data set.  The ULD data are provided on a 0.7° latitude by 0.7° longitude spatial grid through the 

ERA-Interim Project (ECMWF 2009, Berrisford et al. 2011).  The extracted data contain 289 observations per 

time stamp (i.e., 17 values across and 17 down), with a total of 390,150 producing a 11.9° x 11.9° 

latitude/longitude grid (Section 4.4).  Vertical cross sections of mean ULD through the COC for each time 

stamp are used to compare the two data sets. 

3.5. Graphical Display 

Individual and mean plots are colored on a scale diverging at zero to represent areas of divergence 

(positive), nondivergence (i.e., values around zero), and convergence (negative).  Plots are provided for exact 

data values as well as a smoothed plot for a simpler interpretation.  In the histograms displaying level vs. time 

counts, the standard error of the mean with 95% confidence intervals of the standard mean is rounded to the 

nearest 5.0 x 10-6 s-1 to represent mean value intervals.  Distinct colors also represent values 1) below mean, 2) 

near mean, and 3) above mean.  Maximum 2% ULD plots use distinct colors to differentiate between ULD 

found 1) 200 hPa and below and 2) above 200 hPa.  The R program “local regression smoothing” (LOESS) is 

applied to maximum 2% ULD plots with a 95% confidence interval within the shaded area.  LOESS is a local 

polynomial regression fitting and was chosen due to the low number of points (73) for each TCG.  The 

smoothing is fit based on distance-weighted points in the neighborhood of each point (R 2014).  In an effort to 

prevent overplotting, some graphs use “jitter” to spread the points within the areas designated for vertical level 

and time series.  Although the ULD data are continuous, the data points are taken on a discrete scale with only 

nine pressure levels and five time stamps.  Therefore, slight displacement and 50% transparency of the values 

at each set point are necessary to visualize the quantity of the values.  

3.6. Summary 

This chapter has detailed the data used to address research questions in Chapter 1.  It also described the 

methods used to evaluate the individual, mean, and maximum evolution of ULD during TCG.  It concluded 

with a brief description of the visual tools used to display the research data.  The next chapter will review 

results of the analysis described in Chapter 3. 
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4. RESULTS 

4.1. Individual TCG Occurrences 

The following section is a brief review of synoptic history related to storm intensification conditions 

within the 24-hour time period analyzed (Figure 4.1 and Appendix Table A.2).  Additional synoptic 

information can be found on the National Hurricane Center website (NHC 2015).  

ULD in each storm is displayed on a plot with the 24-hour time scale on the x-axis and pressure levels 

from 350 hPa up to 100 hPa on the y-axis.  ULD values are displayed as a ramped color palette showing 

divergence (convergence) in blue (brown) and darker (lighter) as stronger (weaker) values.  The area of non-

divergence (ULD ~ 0.0 s-1) is pale.  The COC is located in the center of each individual grid box, represented 

by a small red dot.  The COC coordinates can vary in latitude and longitude through time depending on the TC 

translation speed and direction.  Therefore, it is important to note that each time stamp has its own unique set 

of coordinates using the best track data location (IBTrACS, Knapp et al. 2010) of COC at a given time.  These 

graphs are intended to show the temporal and three-dimensional spatial maxima, range, and concentrated areas 

of ULD for each storm. 

 
Figure 4.1. Location of each occurrence at time TCG (hurricane symbol) with track of location through the 24 

hours included in study. Colors indicate month of TCG occurrence.  
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4.1.1. Tropical Storm Arlene 

Arlene is the first named TS of the 2005 Atlantic Hurricane Season.  Arlene achieved TS status at 0600 

UTC on 9 June 2005 at 18.2° N, 83.9° W (Knapp et al. 2010) due to cyclonically curved very deep convection 

forming northeast of the COC (NHC 2015).  Throughout the lifetime of Arlene, various centers rotating around 

a larger gyre (NHC 2015) occurred.  These “centers” are noticeable in Figure 4.2 at time TCG predominantly 

occurring at 150 hPa and 6 hours after TCG at 200 hPa.  The ULD values tend to be concentrated northeast of 

the COC.  Arlene displayed steady intensification during this period.  Concentrated ULD values reach to 125 

hPa at TCG ‒6 hours and become less organized through time.  Maximum ULD concentrations also move 

lower in the atmosphere through time.  

Figure 4.2. Arlene ULD at TCG (a) and ULD at TCG with smoothing (b). 



25 

4.1.2. Tropical Storm Bret 

Bret achieved TS status between 1800 UTC on 28 June 2005 and 0000 UTC on 29 June 2005 at 20.0° 

N, 95.8° W (Knapp et al. 2010).  The 0000 UTC report on 29 June 2005 was used for TCG.  Bret formed very 

near the coast of Mexico and was small and short-lived but maintained increasing organization and 

strengthening until landfall at 1200 UTC on 29 June (NHC 2015).  Storm tracking records for Bret began with 

TCG ‒6 hours when it was categorized as a TD.  Therefore, time for TCG ‒12 hours was estimated back from 

initial movement and location records of the storm.  The concentrated ULD values reach 100 hPa six hours 

after TCG in Figure 4.3, with strongest ULD organized between the 175 hPa and 150 hPa heights six hours 

before and at TCG. 

Figure 4.3. Bret ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.3. Tropical Storm Cindy 

Cindy achieved TS status at 0600 UTC on 5 July 2005 at 25.1° N, 90.2° W (Knapp et al. 2010).  The 

high translation speed of Cindy and decrease in southerly wind shear aided in the rapid development of a 

hurricane within the next 18 hours (NHC 2015).  Maximum concentrated ULD values reach the 125 hPa level 

at most times during TCG.  The area of ULD stretches vertically, with the peak value rising higher in the 

atmosphere over time (Figure 4.4).  The remarkable strengthening during the 24 hours surrounding TCG as 

Cindy was about to move onshore is evident in Figure 4.4 and appears to indicate the makings of a major 

hurricane.  In post-season re-analysis, Cindy was upgraded from a TS to a hurricane only 40 nautical miles 

SSW of Grand Isle, Louisiana, and subsequently maintained hurricane status hours after landfall (NHC 2015). 

Figure 4.4. Cindy ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.4. Tropical Storm Dennis 

Dennis achieved TS status at 1200 UTC on 5 July 2005 at 13.0° N, 65.9° W (Knapp et al. 2010).  From 

TD to Category 4 hurricane, Dennis continued steady to rapid intensification in favorable conditions (NHC 

2015).  The largest concentrations of ULD values remain above the 200 hPa level during the 24 hour time 

series and extend up to 125 hPa (Figure 4.5).  ULD magnitude gradually increases from TCG ‒12 hours till 

after TCG, then begins to decrease between TCG +6 hours and TCG +12 hours.  Dennis appears fairly well 

organized throughout the time series and the ULD field is maintained very near the COC from approximately 

225 hPa to 125 hPa.   

Figure 4.5. Dennis ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.5. Tropical Storm Emily 

Emily reached TS status at 0000 UTC on 12 July 2005 at 11.0° N, 46.8° W despite a broad circulation 

and poorly-organized convection (NHC 2015, Knapp et al. 2010).  A dry environment and easterly shear 

slowed Emily’s initial development (NHC 2015).  Forward speed increased due to a low-level surge and later 

the COC reformed to the northeast (NHC 2015).  Maximum ULD values are between the 250 hPa and 150 hPa 

geopotential heights (Figure 4.6).  The ULD field contains numerous smaller pockets of more intense 

concentrations and is located more to the west and north of the COC.  This is most likely due to the presence of 

easterly shear during formation.  A steady maintenance of the ULD field is apparent through time with an 

average level near 200 hPa. 

Figure 4.6. Emily ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.6. Tropical Storm Franklin 

Franklin and the subsequent storm, Gert, both developed from the same tropical wave: Franklin from 

the northern portion and Gert from the southern portion (NHC 2015).  In hours prior to TD development, the 

system displayed deep convection and curved banding due to northwestward migration (NHC 2015).  Still only 

a disturbance at time TCG ‒12 hours, coordinates 25.0° N, 75.0° W are used in analysis for the initial 

disturbance.  Franklin achieved TS status at 0000 UTC on 22 July 2005 at location 25.7° N, 75.9° W (Knapp et 

al. 2010), but westerly shear from Gert’s (still only a disturbance) ULD hindered strengthening (NHC 2015).  

Figure 4.7 shows more organized ULD from 225 hPa to 150 hPa prior to TCG, partial decay at TCG, an 

obvious interference in organization at TCG +6 hours, then an attempt to reorganize at TCG +12 hours.   

Figure 4.7. Franklin ULD at TCG (a) and ULD at TCG with smoothing (b).  
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4.1.7. Tropical Storm Gert 

Gert achieved TS status at 0600 UTC on 24 July 2005 at 20.8° N, 95.0° W (Knapp et al. 2010).  The 

system maintained steady development from TD stage until landfall at 0000 UTC on 25 July (NHC 2015).  

Gert formed from the southern portion of the same tropical wave whose northern portion produced Franklin 

(NHC 2015).  Gert had multiple smaller COCs accompanying a larger circulation (NHC 2015).  They all 

rotated within a gyre; therefore, best track data from IBTrACS for COC was constructed using the mean of the 

gyre (NHC 2015).  The numerous circulations are most pronounced in Figure 4.8 at time TCG ‒6 hours.  ULD 

values fluctuate mainly between 200 hPa and 125 hPa heights.  It is apparent in Figure 4.8 that the area of 

concentrated ULD moves lower in the atmosphere and gains better organization as time progresses. 

Figure 4.8. Gert ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.8. Tropical Storm Harvey 

Harvey began as an African tropical wave on 22 July 2005, but the disturbance remained disorganized 

due to southerly wind shear from an upper-level low to the west (NHC 2015).  Circulation was poorly 

organized when Harvey became a TD, and despite the satellite imagery appearance seeming subtropical, the 

location of deep convection was close enough to the low-level COC to allow a tropical designation (NHC 

2015).  The upper-level low assisted in moving the disturbance northward (NHC 2015) allowing Harvey to 

strengthen to TS at 0600 UTC on 3 August 2005 at 29.5° N, 68.6° W (Knapp et al. 2010).  Harvey continued 

slow intensification and turned east-northeast due to a mid- to upper-level trough to the north (NHC 2015).  

Disorganized ULD in Figure 4.9 ranges from 250 hPa to 150 hPa with a lack of significant closed contours. 

Figure 4.9. Harvey ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.9. Tropical Storm Irene  

Irene achieved TS status twice and both are included in this analysis.  For two days prior to TCG, Irene 

experienced unfavorable environmental conditions that thwarted further development (NHC 2015).  Strong 

stable trade wind flow and cooler water temperatures caused a decrease in organized convection, but 

surprisingly, Irene slowly strengthened (NHC 2015).  Irene was embedded in the upper-level northwesterly 

winds and it is speculated that enough barotropic instability existed for Irene to derive sufficient energy and 

become a TS (NHC 2015).  Irene first achieved TS status at 1200 UTC on 7 August 2005 at 20.2° N, 45.0° W 

(Knapp et al.  2010) as it moved west-northwestward (NHC 2015).  In Figure 4.10, ULD is focused 

substantially more northeast of the COC for TCG ‒12 hours and values are widespread vertically from 350 hPa  

 
Figure 4.10. Irene ULD at first TCG (a) and ULD at first TCG with smoothing (b).  



33 

to 150 hPa before time TCG.  Starting at time TCG the small ULD field is concentrated east of the COC and 

more around 200 hPa to 175 hPa.  Irene only maintained TS status for 24 hours before a dry stable 

environment and upper-level shear hindered convection (NHC 2015).   

Irene redeveloped into a TS a second time 0000 UTC on 11 August 2005 at 23.3° N, 59.3° W (Knapp 

et al. 2010) as convection increased due to decreased vertical shear (NHC 2015).  Irene then made a turn 

northwestward, assisted by a deep southeasterly steering flow (NHC 2015).  The clustered ULD field was 

maintained between the 225 hPa and 175 hPa levels and rose to 150 hPa for times TCG ‒6 hours to TCG in 

Figure 4.11. 

Figure 4.11. Irene ULD at second TCG (a) and ULD at second TCG with smoothing (b). 
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4.1.10. Tropical Storm Jose 

Jose was a very brief TC progressing from disturbance, to TD, to TS, then landfall in under 24 hours 

(NHC 2015).  According to the NHC (2015) “under a very favorable divergent upper-level anticyclonic flow, 

convection exploded” early 22 August 2005 and classified Jose a TS 1800 UTC on 22 August 2005 at 19.6° N, 

95.0° W (Knapp et al. 2010).  Jose made landfall between times TCG +6 hours and TCG +12 hours.  An 

eyewall appeared just before landfall (NHC 2015) as Jose was shaping up to become a hurricane.  Pockets of 

intense ULD at TCG +12 hours in Figure 4.12 could be related to regional topographic features, the Sierra 

Madres, suspected to have enhanced the strongest winds southwest of the COC (NHC 2015).  During the study 

time, the ULD field decreases in height and magnitude from 125 hPa, to below 225 hPa then increases again.   

Figure 4.12. Jose ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.11. Tropical Storm Katrina 

Katrina resulted from a convergence of remnants from Tropical Depression 10 (middle tropospheric 

circulation) and a tropical wave (NHC 2015).  To the north and east of the COC, a well-defined band of deep 

convection formed (NHC 2015), initiating TS status at 1200 UTC on 24 August 2005 at 24.5° N, 76.5° W 

(Knapp et al. 2010).  As seen in Figure 4.13, the ULD field is disorganized and scattered between 250 hPa and 

100 hPa.  Values tend to be located to the north and east of the COC with apparent strengthening and 

organization at time TCG +12 hours.  Katrina evolved into a deeper cyclone at TS status and continued steady 

intensification (NHC 2015). 

 
Figure 4.13. Katrina ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.12. Tropical Storm Lee 

Lee achieved TS status at 1200 UTC on 31 August 2005 at 29.0° N, 50.4° W (Knapp et al. 2010).  

Small circulations were embedded in the larger gyre after northeasterly wind shear displaced the main COC on 

the day before TCG (NHC 2015).  Lee was then considered only an area of low pressure until banding features 

developed and upgraded the cyclone to a TD at TCG ‒6 hours (NHC 2015).  Lee only briefly strengthened 

enough to be classified a TS (Knapp et al. 2010, NHC 2015).  This lasted for 12 hours and by time +12 TCG, 

Lee was again a TD (NHC 2015).  For a struggling TC, the ULD patterns are interesting, as they seem more 

organized than those of strengthening cyclones like Katrina.  Highest ULD values reach the 125 hPa height 

(Figure 4.14) and larger ULD values are maintained above 200 hPa.  

Figure 4.14. Lee ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.13. Tropical Storm Maria 

Maria achieved TS status at 1200 UTC on 2 September 2005 at 21.1° N, 49.4° W (Knapp et al. 2010).  

A reduction in shearing from a nearby upper-level low that originally hampered formation in the days prior to 

TCG allowed Maria to gain strength (NHC 2015).  Environmental conditions were not ripe for rapid 

intensification, so strengthening progressed slowly (NHC 2015).  The largest area of maximum ULD occurs 

before TCG and above 200 hPa.  Figure 4.15 (a) exhibits a trend of the ULD field moving from higher vertical 

heights (175 hPa and 150 hPa) to lower vertical heights (300 hPa and 250 hPa) with a decrease in structure and 

size through time.  Smoothing in Figure 4.15 (b) did not detect the small areas of ULD between 350 hPa and 

250 hPa shown in Figure 4.15 (a) after TCG.  

Figure 4.15. Maria ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.14. Tropical Storm Nate 

Nate originated from the northern portion of a split tropical wave and a cold front (NHC 2015).  As 

convection organized along the wave axis, convective banding was observed on satellite data and the 

disturbance was given TD status (NHC 2015).  The cyclone developed into a TS only six hours after it was 

classified as a TD due to weak wind shear (NHC 2015).  Nate achieved TS status at 0000 UTC on 6 September 

2005 at 28.4° N, 66.6° W (Knapp et al. 2010).  The coordinates for TCG ‒6 hours were used for TCG ‒12 

hours due to a relatively stationary cyclone.  Maximum ULD values start around 250 hPa and reach up to 150 

hPa.  Progression of increasing ULD organization and height through time is clear in Figure 4.16, but 

magnitude decreases slightly after TCG. 

Figure 4.16. Nate ULD at TCG (a) and ULD at TCG with Smoothing (b). 
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4.1.15. Tropical Storm Ophelia 

A low-pressure trough off Lee interacted with a non-tropical cold front to produce Ophelia.  The split 

tropical system formed Nate from the northern portion and Ophelia from the southern portion (NHC 2015).  

Paralleling the east Florida coast (NHC 2015), Ophelia was designated as a TS at 0600 UTC on 7 September 

2005 at 27.9° N, 78.8° W (Knapp et al. 2010).  Ophelia made a counter-clockwise loop, the first of two (second 

loop clockwise farther northeast the following week), while strengthening over the next 24 hours (NHC 2015).  

The area of ULD is apparent north of COC and gradually moves closer to the COC through time (Figure 4.17).   

Substantial maximum ULD values are maintained between 175 hPa and 150 hPa while averages range between 

250 hPa to 125 hPa. 

Figure 4.17. Ophelia ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.16. Tropical Storm Philippe 

Philippe was a large disturbance with convection concentrating south as the COC became better 

defined (NHC 2015).  The cyclone formed in low latitudes with weak steering currents and meandered 

northwestward (NHC 2015) while strengthening to TS status at 1800 UTC on 17 September 2005 at 13.5° N, 

54.9° W (Knapp et al. 2010).  Transition from tropical disturbance to TS occurred over only 12 hours (NHC 

2015); therefore, TCG ‒12 hour coordinates were estimated from relative disturbance movement.  Moving 

toward a weakness in the nearby subtropical ridge allowed for the steady strengthening of Philippe (NHC 

2015).  In Figure 4.18, through time the ULD increases in organization and magnitude while expanding 

vertically between 250 hPa to 125 hPa.  

Figure 4.18. Philippe ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.17. Tropical Storm Rita 

As a TD, the cyclone exhibited a low-level COC with increasing strong convection more to the north of 

the COC (NHC 2015).  This northerly confinement occurred under the influence of southerly vertical shear 

(NHC 2015).  Organization continued, and Rita became a TS 1800 UTC on 18 September 2005 at 22.2° N, 

72.3° W (Knapp et al. 2010).  Vertical shear continued to affect the system until after TCG +12 hours when 

convection became more symmetric allowing for further strengthening (NHC 2015).  Concentrations of ULD 

are seen north of the COC during the study period (Figure 4.19).  Maximum values reach 150 hPa while the 

strongest concentrations occur at TCG and TCG +6 hours.  

 
Figure 4.19. Rita ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.18. Tropical Storm Stan 

After days of struggling, deep and organized convection development permitted characterization as a 

TD on 1 October (NHC 2015).  Establishment of an upper-tropospheric anticyclone aided in the cyclone’s 

strengthening (NHC 2015) and Stan became a TS 0600 UTC on 2 October 2005 at 19.5° N, 87.2° W (Knapp et 

al. 2010) just two hours prior to making landfall (NHC 2015).  Stan traveled west over the Yucatán peninsula 

and weakened briefly to a TD before regaining strength once back over water (NHC 2015).  TD classification 

occurred six hours after TCG +12 hours and only held six hours before returning to TS classification (NHC 

2015).  During both TCG +6 hours and TCG +12 hours, Stan was over land (NHC 2015).  Maximum ULD 

values reach the 125 hPa height and average around 150 hPa in Figure 4.20.  

Figure 4.20. Stan ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.19. Unnamed Tropical Storm  

Identified in a post-season re-analysis as a SC instead of a non-tropical low, Unnamed was a surface 

low at TCG ‒12 hours and subtropical depression (SD) at TCG ‒6 hours (NHC 2015).  The cyclone achieved 

SS status at 1200 UTC on 4 October 2005 at 35.9° N, 28.5° W (Knapp et al. 2010).  Continued development 

occurred through the next day when it merged with a cold front that was subsequently absorbed by a non-

tropical low, which eventually evolved into Vince (NHC 2015).  A 200 hPa warm core suggested a possible 

fully tropical nature but an upper-level trough after TCG suggested a subtropical nature (NHC 2015).  ULD 

values reach to about 175 hPa with the best signature of maximum values between 250 hPa and 200 hPa 

occurring from TCG to TCG +6 hours (Figure 4.21). 

Figure 4.21. Unnamed ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.20.  Tropical Storm Tammy 

Tammy began as the northern portion of a split tropical wave that found favorable conditions in a low 

vertical shear environment (NHC 2015).  As a surface trough, the system moved near a large central Atlantic 

Ocean surface high, causing the pressure gradient to increase and creating gale-force winds (NHC 2015).  A 

low-pressure center developed along with deep convection and low to mid-level cyclonic circulation (NHC 

2015).  Gale-force winds over 17 m s-1 allowed Tammy’s classification to begin with TS status (NHC 2015).  

Therefore, a centralized location for TCG ‒12 hours and TCG ‒6 hours are based on previous location and 

movement.  TCG occurred 0600 UTC on 5 October 2005 at 27.3° N, 79.7° W (Knapp et al. 2010).  ULD 

values weaken before TCG then increase vertically, spatially, and in magnitude after TCG (Figure 4.22).   

Figure 4.22. Tammy ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.21. Tropical Storm Vince 

The system began 0600 UTC on 8 October 2005 at 32.9° N, 20.6° W (Knapp et al. 2010) as a SS that 

resembled the structure of a TS, both with the surface wind field and the core convective structure, but with a 

notable upper tropospheric cold-core circulation (NHC 2015).  Like Tammy, Vince’s complete formation and 

cyclogenesis occurred within 6 hours, and a centralized location for the disturbance twelve hours prior to 

cyclogenesis was estimated using the available location and movement.  Vince maintained steady development 

over the next 18 hours and a warm core developed in the mid- to upper-levels upgrading the classification to 

TS at 1200 UTC on 9 October 2005 (NHC 2015).  Figure 4.23 shows disorganized ULD clusters from 350 hPa 

to 125 hPa and a very concentrated ULD area occurring at TCG +6 hours between 250 hPa and 225 hPa. 

Figure 4.23. Vince ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.22. Tropical Storm Wilma 

Wilma started as a surface low and an area of disturbed weather approximately 14 October (NHC 

2015).  After becoming a TD the next day, Wilma displayed slow strengthening for the next two days and 

eventually became a TS 0600 UTC on 17 October 2005 at 16.9° N, 79.6° W (Knapp et al. 2010).  The cyclone 

had a rather dull beginning compared to what it eventually became.  As a note, Wilma’s explosive episodes, 

record-breaking eye diameter, and record-breaking minimum pressure were well past the time analyzed for this 

study (NHC 2015).  Wilma gradually strengthened during the study period and Figure 4.24 (a) reflects a fairly 

uniform structure.  ULD values seem to be the most consistent between 175 hPa and 125 hPa and expand 

vertically from 250 hPa to 125 hPa.   

Figure 4.24. Wilma ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.23. Tropical Storm Alpha 

Alpha began as a tropical wave that developed a low-pressure center along with organized convection 

(NHC 2015).  It had a well-defined COC prior to depression stage and continued to intensify until landfall 

(NHC 2015).  Classification to a TS occurred 1800 UTC on 22 October 2005 at location 16.5° N, 68.5° W 

(Knapp et al. 2010) after it developed tightly clustered banding features seen on microwave images (NHC 

2015).  Coordinates for time TCG ‒12 hours, while the storm was still a disturbance, were estimated using 

available data.  In Figure 4.25 (b), the ULD field appears to shift from a southeast to a more northwest 

direction through time while the strongest ULD magnitudes in Figure 4.25 (a) are limited to very small areas 

throughout the levels 200 hPa to 125 hPa.  

Figure 4.25. Alpha ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.24. Tropical Storm Beta 

Spawned from the same tropical wave as Alpha, Beta began to organize, displaying banding features 

and deep convection 12 hours prior to TCG (NHC 2015).  Under favorable conditions of 29 °C sea surface 

temperature and minimal vertical wind shear (NHC 2015), the cyclone became a TS at 0600 UTC on 27 

October 2005 at 11.0° N, 81.3° W (Knapp et al. 2010).  A slight increase in northeasterly shear permitted only 

slow strengthening (NHC 2015) for the duration of this study.  Figure 4.26 shows ULD ranging from 250 hPa 

to 150 hPa and is more disorganized during times TCG and TCG +6 hours.  Small concentrations of ULD prior 

to TCG and at TCG +12 hours are very compact and found close to or directly on the IBTrACS coordinates for 

COC location.   

Figure 4.26. Beta ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.25. Tropical Storm Gamma 

Throughout the TC’s lifespan, Gamma maintained deep convection (NHC 2015).  It reached TS status 

twice in its lifespan.  Both are included in this analysis.  It first achieved TS classification briefly at 0600 UTC 

on 15 November 2005 at 14.3° N, 66.0° W and maintained it for twelve hours (Knapp et al. 2010).  An 

increase in westerly vertical shear caused the cyclone to weaken and TCG +12 hour data reflects a TD (NHC 

2015).  Very intense and compact areas of ULD reach the 125 hPa level in Figure 4.27.  The largest maximum 

values of all ULD data included in this study occur during Gamma’s first TCG occurrence at 125 hPa between 

TCG ‒6 hours and TCG.  Although actual ULD values are not the focus of this research, these maximum rates 

should be mentioned.  Gamma was a mid-November cyclone and produced values exceeding 1.5 x 10-4 s-1.  

Figure 4.27. Gamma ULD at first TCG (a) and ULD at first TCG with smoothing (b). 
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Gamma regenerated from a remnant low while interacting with a non-convective low-pressure system 

over the topographical elevations of the Sierra La Esperanza (NHC 2015).  The low-level circulation of both 

systems merged (NHC 2015), allowing TS status to occur a second time at 18:00 on 18 November 2005 at 

15.7° N, 85.6°W (Knapp et al. 2010).  The classification upgrade occurred while the COC was over land just 

south of the Honduran coastline.  Most ULD is dispersed north and northeast of the COC, which is over water 

during the time series in Figure 4.28.  ULD extends vertically to 125 hPa and is concentrated between the 

levels 250 hPa and 150 hPa.  Starting at TCG ‒12 hours values increase in magnitude till TCG when values 

begin decreasing in magnitude through TCG +12 hours. 

Figure 4.28. Gamma ULD at second TCG (a) and ULD at second TCG with smoothing (b). 
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4.1.26. Tropical Storm Delta 

Delta began as an extratropical low, evolved to a SS, then eventually became classified as a TS (NHC 

2015).  As extratropical, the system exceeded the wind requirements of 17 m s-1; therefore, the analysis focuses 

on time of SS transition.  Central convection and an inner wind maximum formed by 0900 UTC on 22 

November and by 1800 UTC on 22 November 2005 the extratropical low became removed from non-tropical 

frontal cloud bands, allowing SS classification at 30.7° N, 40.5° W (Knapp et al. 2010, NHC 2015).  

Convection consolidated the next day and Delta was then listed as a TS (NHC 2015).  In Figure 4.29, ULD 

concentrations occur mainly between 350 hPa and 200 hPa with the most organized concentrations at TCG ‒12 

hours and minor organization at TCG +6 hours. 

Figure 4.29. Delta ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.27. Tropical Storm Epsilon 

Best track data for Epsilon began 0600 UTC on 29 November 2005 at 31.5° N, 49.2° W (Knapp et al. 

2010) when the system was classified as a TS, skipping TD status.  Epsilon appeared on satellite as a SS the 

evening prior as it separated from a frontal zone, but insufficient organization of non-frontal convection was 

present, thereby precluding classification as a SS (NHC 2015).  Coordinates for times prior to TCG were based 

on available information of storm location.  Similar to Delta and beginning with SS characteristics, ULD 

concentrations for Epsilon occur from 350 hPa to 200 hPa in Figure 4.30.  ULD magnitude is greatest prior to 

TCG but begins to organize near the COC after TCG.  

Figure 4.30. Epsilon ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.1.28. Tropical Storm Zeta 

Zeta began when enough increased and organized thunderstorm activity occurred near the center of a 

closed low late 29 December that warranted TD classification early on 30 December (NHC 2015).  TS 

designation occurred at 0600 UTC on 30 December 2005 at 24.2° N, 36.1° W (Knapp et al. 2010) as rapidly 

developing convection banding encircled the low-level center (NHC 2015).  TCG ‒12 hour coordinates were 

estimated based on the slow-moving system’s TCG ‒6 hour coordinates.  The cyclone continued to strengthen 

throughout the time analyzed and ULD increased near and east of the COC between 250 hPa and 175 hPa after 

TCG (Figure 4.31). 

Figure 4.31. Zeta ULD at TCG (a) and ULD at TCG with smoothing (b). 
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4.2. Maximum ULD 

A histogram displaying the percentage contribution of the maximum 2% of ULD values per TCG 

occurrence is shown in Figure 4.32.  The figure shows only levels 200 hPa to 150 hPa since these three vertical 

levels represent ~70% of the maximum ULD values.  The smallest contribution of the three levels is from 200 

hPa.  A more complete version of this histogram including all levels can be found in the Appendix Figure A.1.  

Percentages displayed below are in relation to all nine levels and five times.  Results show that of the 2187 

cases, maximum ULD values are found most commonly at 175 hPa (29.0%), followed by 150 hPa (21.41%), 

and 200 hPa (19.41%).  Over half of maximum ULD in this study is found above 200 hPa.  

 
Figure 4.32. Histogram of greatest 2% ULD values between levels 200 hPa and 150 hPa per TCG occurrence 
for the 2005 season. Time on the bottom x-axis (TCG ‒12 hours, TCG ‒6 hours, TCG, TCG +6 hours, TCG 

+12 hours) and mean of highest 2% ULD values labeled at tick mark. Vertical level in hPa is listed on the left 
y-axis and count on the right y-axis. Bin width is 5.0 x 10-6 s-1, ranging from 2.5 x 10-5 s-1 to 1.45 x 10-4 s-1. 

Colors (green, orange, dark blue) indicate relation to the mean (below, mean, above).  

The maximum 2% ULD per individual TCG (i.e., top 73 ULD values during each of the 30 TCG 

occurrences) between the 350 and 100 hPa level is displayed in Figure 4.33.  LOESS is applied to identify the 

maximum ULD values as they vary within the five time stamps throughout TCG.  The percentage of ULD 

3.61% 4.70% 4.29% 4.52% 4.29% 

4.38% 6.26% 6.44% 5.71% 6.21% 

3.70% 4.20% 4.02% 3.70% 3.79% 
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Figure 4.33. Top 2% of ULD values per TCG occurrence. ULD between levels 350 hPa and 100 hPa with LOESS smoothing in red and 95% 
confidence interval shaded in grey. Time is on each x-axis (TCG ‒12 hours, TCG ‒6 hours, TCG, TCG +6 hours, TCG +12 hours) and vertical 

pressure level in hPa is on each y-axis. Bin width is 5.0 x 10-5 s-1, with a range from 1.0 x 10-5 s-1 to 2.0 x 10-4 s-1. Purple (green) represents above 200 
hPa (includes 200 hPa and below). Larger (smaller) ULD symbol size indicates higher (lower) rates per second. Plot uses jitter and increased 

transparency on points to prevent “overplotting.” 
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values distributed per TCG is the highest in the range above the 200 hPa (purple) level (i.e., compared with 

values at or below 200 hPa (green)).   

An evaluation of the top 2% maxima (not shown) of ULD for the total season (i.e., not per TCG) 

indicates the majority of top ULD observations occur above the 200 hPa vertical level.  Calculations show 

nearly 60% of the ULD maxima reaching above 200 hPa.  Additional review of the total season maxima when 

dispersed by TCG occurrence (not shown) shows an immense variation in individual TCG contribution to the 

whole.  Contributions range from Nate, which during the 24 hours evaluated, did not exhibit any ULD values 

strong enough to be included in the assessment of total season top 2% values, to Gamma, which not only holds 

the two largest single ULD values in the study, but its second TCG occurrence contains the largest percentage 

of the maxima.     

In a similar evaluation of the top 1% ULD values (not shown), the same three levels appear to comprise 

the vast majority of the greatest ULD magnitudes (1080 values), containing 73.1% of maximum values.  The 

200 hPa level contributes only 17.7% of the maximum ULD, while the 175 hPa (29.5%) and 150 hPa (25.9%) 

levels together represent over 55% of the highest 1% of ULD during TCG based on the 2005 Atlantic season.  

It is interesting to note that the 150 hPa level substantially increases its contribution to the whole, as a smaller 

and smaller tail of the distribution is analyzed.  

4.3. Mean ULD 

Mean values of ULD show 175 hPa as the optimum level to analyze ULD during TCG.  That said, 

Figure 4.34 (a) and (b) clearly show that limiting ULD to only one level would provide a less than optimal 

representation.  While keeping in mind each TCG is unique, the mean itself represents a variation that cannot 

be narrowed down to one atmospheric “slice.”  The vertical evolution of ULD appears to be significant 

throughout pressure levels 250 hPa to 125 hPa and temporally appears to organize and strengthen until it levels 

off at TCG +12 hours.  A slight decrease in the elevation of largest ULD magnitude occurs at 125 hPa during 

TCG.  Most notable is ULD becoming more organized between 200 hPa and 150 hPa during times TCG to 

TCG +12 hours.  Mean ULD also clusters to the north and east of the COC.  This could be significant, as 
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research tends to focus more on areas in or around the COC and generally relative to the radius of maximum 

winds.  

Figure 4.34. Mean ULD at TCG (a) and ULD at TCG with smoothing (b). 

Results show that the maximum clustered ULD values are generally found at the 175 hPa level on 

average.  Illustrated in Figure 4.35 which graphs the top 2% of mean values, maximum ULD is contained 

between 225 hPa and 150 hPa.  A LOESS smoothing curve identifies 175 hPa as the best statistical result for 

the location of ULD through all studied times.  This result is consistent through calculations applied to all 30 

TCG occurrences together, but each storm displays a unique variation through time and pressure level (See 

Section 4.1), suggesting that vertically and temporally, the ULD field is dynamic. 
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Figure 4.35. Same as Figure 4.33 but a single plot of top 2% mean ULD values (73). Circle size indicates 
minimum, mean, and maximum with a bin width of 5.0 x 10-6 s-1 for scale. 

 
4.4. Data Set Comparison 

Due to the recent availability of the ERA-Interim Project with ULD on a 0.7° latitude by 0.7° longitude 

spatial grid (ECMWF 2009, Berrisford et al. 2011), the following is a brief comparison of JRA-55 and ERA-

Interim Project data sets.  All available atmospheric levels (i.e., 37) are used to create a full visualization of 

divergence through the entire atmospheric depth for each evaluated time.  Figure 4.36 for JRA-55 and Figure 

4.37 for ERA-Interim Project show the (a) west-to-east and (b) south-to-north vertical cross section view of 

mean ULD through the COC.   

All TCGs are included in the mean analysis and the highest magnitudes of ULD are located above the 

200 hPa level (red dotted line) for each time stamp.  Both (a) and (b) in Figure 4.36 using JRA-55 data, show 

increased ULD concentrations above 200 hPa.  In Figure 4.37 using ERA-Interim data, mean ULD in (b) 

appears closer along the 200 hPa level in comparison to (a).  Although one set of analysis (Figure 4.37 (b)) out 

of the four suggests ULD clustering closer to 200 hPa, all plots show the mean vertical location of the ULD 
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Figure 4.36. Cross section of mean ULD for JRA-55 data, (a) west-to-east and (b) south-to-north through COC 
(tick mark) for each time (top x-axis). Red dotted line represents 200 hPa. 

 

 
Figure 4.37. Same as Figure 4.36 but for ERA-Interim Project data. 
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field to be vertically and spatially widespread and mainly located between the 250 hPa to 100 hPa levels.  

Temporally, the mean does not show significant variation.  

Comparison of mean ULD between the two data sets shows values for ERA-Interim ULD are smaller 

as a whole but the trends are very similar and in close agreement with JRA-55.  Concentrations of the 

divergence field are closer to 200 hPa for the ERA-Interim data analysis (Figure 4.38) than the JRA-55 data 

analysis (Figure 4.34), but the range of levels from 250 hPa to 125 hPa is the same.  The temporal evolution 

shows a general trend of ULD becoming more organized and strengthening or maintaining magnitude during  

and post TCG when compared to pre-TCG in Figures 4.34 (a) and 4.38 (a).  Analysis of both data sets  

Figure 4.38. Same as Figure 4.34 but for ERA-Interim Project data. 
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indicates changes in magnitude and frequency of ULD through a wide range of atmospheric levels over time, 

confirming that ULD maxima cannot be assumed to occur at only one level.  

4.5. Summary 

This chapter has provided a detailed look at individual TCG occurrences and the ULD associated with 

them.  It reviewed the 30 individual TCGs, the season’s overall mean, and the highest percentages of 

maximum ULD.  Visualization of the data and results were displayed throughout the chapter to provide a 

clearer understanding of the results.  A brief comparison of available data sets concludes the chapter.  The next 

chapter will conclude the research and tie it together with the research questions in Chapter 1. 
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5. CONCLUSIONS 

5.1. Upper-Level Divergence at Tropical Cyclogenesis 

Understanding the complex dynamics involved with TC formation and intensification as related to the 

evolution of ULD is pertinent to a more complete investigation of tropical systems.  Prediction of TCs is 

improving rapidly as scientific understanding of the atmospheric and oceanic conditions that characterize TCG, 

along with tools available for measuring the associated variables, are becoming more advanced and 

widespread.  Literature shows that ULD is assumed to occur at the atmospheric pressure level of 200 hPa.  But 

in reality, ULD is a dynamic variable as with all other atmospheric variables and should not be assumed to 

exist at a single, predetermined atmospheric level, especially now that better observations and models to depict 

ULD are advancing.  Evolution of the ULD field during intensification to TS classification shows maximum 

values generally reaching higher in the troposphere than 200 hPa of atmospheric pressure.  Although maximum 

values of divergence identify ~175 hPa as the average ULD level, it is also clear that using an average level is 

not the most significant in all cases.  Each TCG condition is unique and should be evaluated individually.   

Davidson and Kar (2002) suggested that absence of enhanced ULD during intensification could mean 

that it may not be crucial to intensification.  They also noted the absence could possibly be due to the issue of 

measuring ULD accurately at the time of the study (Davidson and Kar 2002).  Boyle (1994) reported that a 200 

hPa ULD signal can be weak or nonexistent, but on average is associated with cyclones.  The present research 

suggests that while the signal may be “weak or nonexistent” at 200 hPa, it can be more robust at other vertical 

levels and lateral locations with respect to the COC.  These results support the Persing et al. (2002) findings of 

ULD patterns above 200 hPa in Hurricane Opal (1995) with “[u]pper-level divergence exhibits significant 

vertical structure, such that single-level or layer-average analysis techniques do not capture the divergence 

signature aloft.”  A few examples of why ULD analysis should not be confined to one pressure level are seen 

in the individual TCG occurrences of Dennis, Gert, Stan, Wilma, and Gamma’s first TCG, registering 

significant clustered ULD higher in the atmosphere than 200 hPa.  Occurrences during Vince, Delta, and Zeta 

reflect significant ULD clustering lower in the atmosphere than 200 hPa.  Investigating many of the other 
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TCGs in 2005 shows that restricting ULD data analysis to 200 hPa would not encompass the full ULD range 

but represent only a fraction of ULD extent, thereby limiting its contribution in models and research.   

Temporal evolution of ULD during the five evaluated times reveals a different pattern for each TCG.  

Comparing a few of the above-mentioned TCG occurrences in relation to the time series, Wilma’s ULD 

reduced in magnitude and moved lower in the atmosphere as TCG progressed, while Gert’s strongest and 

Stan’s weakest ULD field both occurred at TCG –6 hours.  The mean temporal evolution maintains a steady 

increase in magnitude until TCG +12 hours at which point it appears to level off.  Additional analysis is needed 

to further explore the significance of ULD leveling off after TCG. 

In comparing JRA-55 and ERA-Interim modeled data sets, a strong agreement is evident that ULD is 

dynamic and fluctuates vertically, temporally, and spatially during TCG.  Additional comparative analysis (not 

shown) of these data sets also supports these research findings. 

With an increasing amount of research recognizing the significance of the secondary circulation and TC 

outflow, it would seem that it is time to establish new parameters for the examination of TCs.  For example, 

storm intensification is sensitive to the distribution of vertical levels used in Pennsylvania State University–

National Center for Atmospheric Research Mesoscale Model (MM5), and Kimball and Dougherty (2006) 

showed that the outflow layer must be even better-resolved than the inflow layer, to depict a TC correctly.  In a 

study of Ophelia’s genesis, Houze et al. (2009) observed substantial outflow at approximately 14 km (i.e., 

~150 hPa) which is supported by this research (Figure 4.17).  Chen and Zhang (2013) attributed the high 

elevation of Wilma’s ULD to the record-breaking strength it experienced.  According to Barrett et al. (2016), 

radial ULD movement “is critically related to both TC track and intensity.”  Ge et al. (2008) showed that ULD 

could possibly influence TC size.  In an overview of outflow in TCs using ERA-Interim reanalysis (Dee et al. 

2011) from 1979 to 2014, Ditchek et al. (2017) recognized the 175 hPa to 150 hPa level as the location of peak 

ULD.   

It is essential to understand the height and spatial distribution of ULD required for formation, 

development, and intensification of TCs.  An evaluation across spatial (including both vertical and horizontal) 
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and temporal scales of ULD is important for producing a useful analysis or forecasting product.  It is clear that 

in all scientific research, assumptions must be made on variables that are unavailable for detailed analysis.  

Emanuel et al. (2004) references this approach while discussing applied data parameterization: “[w]e make no 

assertion that the 850–200-hPa wind shear is the optimal quantity to use; it is merely expedient to use these 

values until and unless superior measures are developed.”  ULD is no longer unavailable and outflow values 

analyzed throughout the upper troposphere should be included in future models.  Likewise, further research is 

necessary for more accurate outcomes.
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6. FUTURE RESEARCH 

Exploring further into the conditions necessary for the ULD to increase and maintain itself during any 

portion of a TC life cycle is important for improvements in modeling.  Future research can analyze ULD 

during any stage of development of a TC or as it progresses throughout the entire life cycle.  ULD correlation 

with other atmospheric conditions and variables would prove to be useful in understanding the precise 

contribution of ULD to TC stability, strength, and growth.  Analysis of latitudinal and basin position, time of 

occurrence (i.e., diurnal and monthly), and vertical height of the tropopause with the ULD would increase the 

accuracy of TC forecasting.  

If storms provide a “signature” in terms of their ULD field that precedes intensity changes, then TC 

intensity forecasting can be improved substantially.  The advent of higher-resolution data sets, improved 

geospatial analytic techniques, and more precise animations of the temporal evolution of three-dimensional 

mapped ULD may facilitate the identification of such a signature.  As Gehne and Kleeman (2012) mentioned, 

direct global observations are not available for certain dynamical variables (i.e., wind, divergence, 

geopotential).  Therefore, use of reanalysis products is required in the absence of direct measurements.  One 

prospective in situ data source for divergence analysis in future research could be the U. S. Naval Research 

Laboratory Marine Meteorology Division (2012) and their work with NASA using unmanned aircraft to 

measure the hurricane outflow layer environmental conditions in the Atlantic “at higher altitudes than routine 

hurricane research and reconnaissance aircraft can reach.”  Options to apply such data to analysis are limitless. 
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8. APPENDIX: EXPANDED TABLES AND ANALYSIS 

Table A.1. List of 200 hPa uses in literature for upper-level variable.  
Author(s) Year Variable at 200 hPa 
Abish et al. 2015 Mean zonal wind 
Barrett et al. 2016 Outflow winds 
Bell et al. 2006 Wind 
Bhatia and Nolan 2013 Vertical wind shear 
Bhowmik and Kotal 2010 Divergence 
Black and Anthes 1971 Divergence 
Bosart et al. 1999 Divergence 
Boyle 1994 Divergence 
Bracken and Bosart 2000 Divergence 
Brammer and Thorncroft 2015 Divergence 
Braun et al. 2006 Divergence 
Businger et al.  2005 Divergence 
Camargo et al. 2007a Vertical wind shear 
Camargo et al. 2007b Vertical wind shear 
Chan and Kwok 1999 Vertical wind shear 
Chand and Walsh 2009 Divergence 
Cheung 2004 Divergence 
Choi et al. 2016 Divergence 
Christy et al. 2010 Divergence 
Colbert and Soden 2012 Wind 
Colón and Nightingale 1963 Divergence 
Corbosiero and Molinari 2002 Vertical wind shear 
Daloz et al.  2012 Vertical wind shear 
Davidson 2010 Divergence 
Davidson and Kar 2002 Divergence 
Davis 2015 Wind 
Davis and Bosart 2003 Vertical wind shear 
De Bellevue et al. 2007 Horizontal winds 
DeMaria and Kaplan 1994 Vertical wind shear 
DeMaria and Kaplan 1999 Divergence 
DeMaria et al. 2001 Vertical wind shear 
DeMaria et al. 2005 Divergence 
Didlake and Houze 2013 Vertical wind shear 
Dolling and Barnes 2014 Vertical wind shear 
Done et al. 2014 Horizontal wind shear 
Druyan et al. 1999 Vertical wind shear 
Dunkerton et al. 2009 Divergence 
Durden 2013 Divergence 
Ellrod and Knapp 1992 Wind 
(table cont’d.) 
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Author(s) Year Variable at 200 hPa 
Elsberry and Jefferies 1996 Vertical wind shear 
Elsberry and Stenger 2008 Outflow temperatures 
Finocchio and Majumdar 2017 Wind 
Fischer et al. 2017 Vertical wind shear 
Fitzpatrick et al. 1995 Wind 
Frank and Ritchie 2001 Potential vorticity 
Fu et al. 2012 Divergence 
Galarneau et al. 2015 Divergence 
Georgiadis and Bigg 2007 Wind shear absolute intensity 
Goldenberg et al. 2001 Vertical wind shear 
Gollan and Greatbatch 2015 Divergence 
Grams et al. 2011 Potential vorticity 
Gray 1968 Divergence 
Gray 1998 Streamline Winds 
Hanley et al. 2001 Divergence 
Hendricks et al. 2010 Divergence 
Hennon and Hobgood 2003 Wind 
Heymsfield et al. 2006 Vertical wind shear 
Holton and Colton 1972 Divergence 
Hulme and Martin 2009 Wind 
Hunt and Watterson 2010 Vertical wind shear 
Jeevarekha and Philominathan 2016 Vertical wind shear 
Jeong et al. 2014 Wind 
Jones et al.  2003 Divergence 
Kaplan et al.  2010 Wind 
Karyampudi and Pierce 2002 Divergence 
Kerns and Chen 2013 Vertical wind shear 
Kerns et al. 2008 Vorticity 
Klotzbach 2011 Wind 
Klotzbach and Gray 2006 Wind 
Klotzbach and Gray 2009 Wind 
Knaff et al. 2003 Divergence 
Knaff et al. 2004 Vertical wind shear 
Kodama and Businger 1998 Wind 
Komaromi and Majumdar 2014 Divergence 
Komaromi and Majumdar 2015 Divergence 
Korty et al. 2012 Vertical wind shear 
Kotal and Bhowmik 2013 Divergence 
Krishnamurti 1971a Divergence 
Krishnamurti 1971b Divergence 
Landsea et al. 1998 Wind 
Landsea et al. 2010 Wind 
(table cont’d.) 
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Author(s) Year Variable at 200 hPa 
Lee et al. 2015 Divergence 
Leppert and Petersen 2010 Divergence 
Leppert et al. 2013 Divergence 
Leroux et al. 2013 Divergence 
Leroux et al. 2016 Divergence 
Li et al. 2014 Wind 
Lowag et al. 2008 Vertical wind shear 
Mallard et al. 2013a Vertical wind shear 
Mallard et al. 2013b Vertical wind shear 
Mauk and Hobgood 2012 Vertical wind shear 
McBride and Gray 1980 Divergence 
McBride and Zehr 1981 Divergence 
McFarquhar et al. 2012 Vertical wind shear 
McGauley and Nolan 2011 Vertical wind shear 
McTaggart-Cowan 2007a Wind 
McTaggart-Cowan 2007b Wind 
McTaggart-Cowan 2008 Q-Vector divergence 
McTaggart-Cowan 2013 Potential vorticity 
Misra et al. 2013 Vertical wind shear 
Molinari and Vollaro 1989 Outflow layer 
Molinari et al. 2007 Vertical wind shear 
Molinari et al. 1992 Wind 
Moon et al. 2015 Vertical wind shear 
Munsell et al. 2015 Vertical wind shear 
Nolan 2007 Divergence 
Owens and Landsea 2003 Wind 
Paterson et al. 2005 Divergence 
Peevey et al. 2014 Latitude of the maximum wind  
Peng et al. 2012 Divergence 
Qian et al. 2011 Wind 
Qian et al. 2016a Wind 
Qian et al. 2016b Wind 
Randel et al.  2007b Vorticity 
Randel et al.  2007a Vorticity 
Rappin et al. 2011 Vertical wind shear 
Raynak 2009 Divergence 
Reader and Moore 1995 Wind 
Ren et al. 2014 Outflow 
Reynolds et al. 2013 Model bias 
Riehl  1948 Wind 
Riemer and Jones 2010 Wind 
Riemer et al. 2010 Vertical wind shear 
(table cont’d.) 
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Author(s) Year Variable at 200 hPa 
Rios-Berrios et al. 2016a Vertical wind shear 
Rios-Berrios et al. 2016b Vertical wind shear 
Rodgers et al. 1998 Outflow 
Ruiz-Barradas et al. 2000 Divergence 
Sall et al. 2006 Vertical wind shear 
Sanabia et al. 2014 Vertical wind shear 
Sandhya et al. 2015 Wind 
Schiemann et al. 2009 Wind 
Schumacher et al. 2009 Vertical wind shear 
Shi et al. 1997 Divergence 
Shu et al. 2014 Wind 
Simpson et al. 1997 Wind 
Sippel et al. 2011 Vertical wind shear 
Song et al. 2016 Divergence 
Srinivas et al. 2007 Divergence 
Srivastava and Bhardwaj 2014 Divergence 
Strong and Davis 2006 Wind 
Sugi et al. 2002 Potential Temperature 
Tao and Zhang 2015 Vertical wind shear 
Tian et al.  2013 Divergence 
Tippett et al. 2011 Vertical wind shear 
Torn and Cook 2013 Divergence 
Ventrice et al. 2012 Wind anomalies 
Vizy and Cook 2009 Divergence 
Wu and Emanuel 1994 Outflow fields 
Wu and Lau 1992 Divergence 
Wu et al.  2006 Divergence 
Yan et al. 2015 Vertical wind shear 
Yi et al. 2015 Divergence 
Yu and Yu 2011 Divergence 
Zehr 1992 Divergence 
Zhang et al. 2013 Divergence 
Zhao and Held 2012 Vertical wind shear 
Zhao et al. 2012 Vertical wind shear 
Zhao et al. 2015 Vertical wind shear 
Zhu et al.  2015 Divergence 

   
 

 

 

 



90 

Table A.2. Extended version of Table 3.1 with manual Pre-TD coordinates listed. 

TCG Name Classification Lat °N Long °W Date 
2005 Time Lat °N 

(NN) 
Long °W 

(NN) 
1 Arlene TD 16.90 84.00 08-Jun 18:00 17.50 83.75 
1 Arlene TD 17.40 83.90 09-Jun 00:00 17.50 83.75 
1 Arlene TCG 18.20 83.90 09-Jun 06:00 18.75 83.75 
1 Arlene TS 19.00 84.00 09-Jun 12:00 18.75 83.75 
1 Arlene TS 19.70 84.10 09-Jun 18:00 20.00 83.75 
2 Bret Disturbance 20.00 95.00 28-Jun 12:00 20.00 95.00 
2 Bret TD 19.70 95.40 28-Jun 18:00 20.00 95.00 
2 Bret TCG 20.00 95.80 29-Jun 00:00 20.00 96.25 
2 Bret TS 20.40 96.40 29-Jun 06:00 20.00 96.25 
2 Bret TS 20.80 97.30 29-Jun 12:00 21.25 97.50 
3 Cindy TD 22.30 89.00 04-Jul 18:00 22.50 88.75 
3 Cindy TD 23.90 89.70 05-Jul 00:00 23.75 90.00 
3 Cindy TCG 25.10 90.20 05-Jul 06:00 25.00 90.00 
3 Cindy TS 26.40 90.40 05-Jul 12:00 26.25 90.00 
3 Cindy TS 27.60 90.50 05-Jul 18:00 27.50 90.00 
4 Dennis TD 12.20 62.50 05-Jul 00:00 12.50 62.50 
4 Dennis TD 12.50 64.20 05-Jul 06:00 12.50 63.75 
4 Dennis TCG 13.00 65.90 05-Jul 12:00 12.50 66.25 
4 Dennis TS 13.60 67.30 05-Jul 18:00 13.75 67.50 
4 Dennis TS 14.30 68.50 06-Jul 00:00 13.75 68.75 
5 Emily TD 10.90 44.40 11-Jul 12:00 11.25 45.00 
5 Emily TD 11.00 45.40 11-Jul 18:00 11.25 45.00 
5 Emily TCG 11.00 46.80 12-Jul 00:00 11.25 46.25 
5 Emily TS 11.00 48.50 12-Jul 06:00 11.25 48.75 
5 Emily TS 11.00 50.20 12-Jul 12:00 11.25 50.00 
6 Franklin Disturbance 25.00 75.00 21-Jul 12:00 25.00 75.00 
6 Franklin TD 25.00 75.00 21-Jul 18:00 25.00 75.00 
6 Franklin TCG 25.70 75.90 22-Jul 00:00 26.25 76.25 
6 Franklin TS 26.20 76.40 22-Jul 06:00 26.25 76.25 
6 Franklin TS 26.60 76.80 22-Jul 12:00 26.25 76.25 
7 Gert TD 19.30 92.90 23-Jul 18:00 18.75 92.50 
7 Gert TD 19.80 93.80 24-Jul 00:00 20.00 93.75 
7 Gert TCG 20.80 95.00 24-Jul 06:00 21.25 95.00 
7 Gert TS 21.00 95.80 24-Jul 12:00 21.25 96.25 
7 Gert TS 21.40 96.60 24-Jul 18:00 21.25 96.25 
8 Harvey TD 28.20 68.80 02-Aug 18:00 28.75 68.75 
8 Harvey TD 28.90 68.70 03-Aug 00:00 28.75 68.75 
8 Harvey TCG 29.50 68.60 03-Aug 06:00 30.00 68.75 
8 Harvey TS 30.30 68.30 03-Aug 12:00 30.00 68.75 
8 Harvey TS 30.90 67.70 03-Aug 18:00 31.25 67.50 
9 Irene (1) TD 19.30 43.50 07-Aug 00:00 18.75 43.75 
9 Irene (1) TD 19.70 44.20 07-Aug 06:00 20.00 43.75 
9 Irene (1) TCG 20.20 45.00 07-Aug 12:00 20.00 45.00 
9 Irene (1) TS 20.80 46.00 07-Aug 18:00 21.25 46.25 
9 Irene (1) TS 21.30 47.20 08-Aug 00:00 21.25 47.50 
10 Irene (2) TD 22.40 57.20 10-Aug 12:00 22.50 57.50 
(table cont’d.) 
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TCG Name Classification Lat °N Long °W Date 
2005 Time Lat °N 

(NN) 
Long °W 

(NN) 
10 Irene (2) TD 22.80 58.10 10-Aug 18:00 22.50 57.50 
10 Irene (2) TCG 23.30 59.30 11-Aug 00:00 23.75 58.75 
10 Irene (2) TS 23.90 60.40 11-Aug 06:00 23.75 60.00 
10 Irene (2) TS 24.70 61.70 11-Aug 12:00 25.00 61.25 
11 Jose Disturbance 19.40 94.50 22-Aug 06:00 20.00 95.00 
11 Jose TD 19.40 94.50 22-Aug 12:00 20.00 95.00 
11 Jose TCG 19.60 95.00 22-Aug 18:00 20.00 95.00 
11 Jose TS 19.70 95.70 23-Aug 00:00 20.00 96.25 
11 Jose TS 19.70 96.70 23-Aug 06:00 20.00 96.25 
12 Katrina TD 23.40 75.70 24-Aug 00:00 23.75 76.25 
12 Katrina TD 23.80 76.20 24-Aug 06:00 23.75 76.25 
12 Katrina TCG 24.50 76.50 24-Aug 12:00 25.00 76.25 
12 Katrina TS 25.40 76.90 24-Aug 18:00 25.00 77.50 
12 Katrina TS 26.00 77.70 25-Aug 00:00 26.25 77.50 
13 Lee Disturbance 26.90 52.70 31-Aug 00:00 27.50 52.50 
13 Lee TD 28.00 51.60 31-Aug 06:00 27.50 51.25 
13 Lee TCG 29.00 50.40 31-Aug 12:00 28.75 50.00 
13 Lee TS 30.10 50.10 31-Aug 18:00 30.00 50.00 
13 Lee TD 31.10 50.30 01-Sep 00:00 31.25 50.00 
14 Maria TD 19.90 47.20 02-Sep 00:00 20.00 47.50 
14 Maria TD 20.50 48.30 02-Sep 06:00 20.00 48.75 
14 Maria TCG 21.10 49.40 02-Sep 12:00 21.25 50.00 
14 Maria TS 21.50 50.20 02-Sep 18:00 21.25 50.00 
14 Maria TS 22.00 51.00 03-Sep 00:00 22.50 51.25 
15 Ophelia TD 26.80 78.30 06-Sep 18:00 26.25 78.75 
15 Ophelia TD 27.40 78.50 07-Sep 00:00 27.50 78.75 
15 Ophelia TCG 27.90 78.80 07-Sep 06:00 27.50 78.75 
15 Ophelia TS 28.70 79.20 07-Sep 12:00 28.75 78.75 
15 Ophelia TS 28.80 79.30 07-Sep 18:00 28.75 78.75 
16 Nate Disturbance 28.40 67.00 05-Sep 12:00 28.75 67.50 
16 Nate TD 28.40 67.00 05-Sep 18:00 28.75 67.50 
16 Nate TCG 28.40 66.60 06-Sep 00:00 28.75 66.25 
16 Nate TS 28.50 66.50 06-Sep 06:00 28.75 66.25 
16 Nate TS 28.50 66.50 06-Sep 12:00 28.75 66.25 
17 Philippe Disturbance 13.30 54.50 17-Sep 06:00 13.75 55.00 
17 Philippe TD 13.30 54.50 17-Sep 12:00 13.75 55.00 
17 Philippe TCG 13.50 54.90 17-Sep 18:00 13.75 55.00 
17 Philippe TS 13.90 55.10 18-Sep 00:00 13.75 55.00 
17 Philippe TS 14.40 55.30 18-Sep 06:00 15.00 55.00 
18 Rita TD 21.60 70.70 18-Sep 06:00 21.25 71.25 
18 Rita TD 21.90 71.50 18-Sep 12:00 22.50 71.25 
18 Rita TCG 22.20 72.30 18-Sep 18:00 22.50 72.50 
18 Rita TS 22.40 73.00 19-Sep 00:00 22.50 72.50 
18 Rita TS 22.60 73.80 19-Sep 06:00 22.50 73.75 
19 Stan TD 19.10 86.20 01-Oct 18:00 18.75 86.25 
19 Stan TD 19.30 86.70 02-Oct 00:00 18.75 86.25 
19 Stan TCG 19.50 87.20 02-Oct 06:00 20.00 87.50 
(table cont’d.) 
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TCG Name Classification Lat °N Long °W Date 
2005 Time Lat °N 

(NN) 
Long °W 

(NN) 
19 Stan TS 19.80 87.90 02-Oct 12:00 20.00 87.50 
19 Stan TS 20.30 88.80 02-Oct 18:00 20.00 88.75 
20 Unnamed Disturbance 33.80 31.80 04-Oct 00:00 33.75 31.25 
20 Unnamed SD 34.80 30.20 04-Oct 06:00 35.00 30.00 
20 Unnamed TCG 35.90 28.50 04-Oct 12:00 36.25 28.75 
20 Unnamed STS 37.10 26.70 04-Oct 18:00 37.50 26.25 
20 Unnamed STS 38.80 25.00 05-Oct 00:00 38.75 25.00 
21 Tammy Disturbance 26.70 79.20 04-Oct 18:00 26.25 78.75 
21 Tammy Disturbance 27.30 79.70 05-Oct 00:00 27.50 80.00 
21 Tammy TCG 27.30 79.70 05-Oct 06:00 27.50 80.00 
21 Tammy TS 28.30 80.20 05-Oct 12:00 28.75 80.00 
21 Tammy TS 29.50 80.90 05-Oct 18:00 30.00 81.25 
22 Vince Disturbance 32.50 20.60 07-Oct 18:00 32.50 20.00 
22 Vince Disturbance 32.90 20.60 08-Oct 00:00 32.50 20.00 
22 Vince TCG 32.90 20.60 08-Oct 06:00 32.50 20.00 
22 Vince SS 33.00 20.30 08-Oct 12:00 32.50 20.00 
22 Vince SS 33.10 20.10 08-Oct 18:00 32.50 20.00 
23 Wilma TD 17.50 79.40 16-Oct 18:00 17.50 80.00 
23 Wilma TD 17.40 79.60 17-Oct 00:00 17.50 80.00 
23 Wilma TCG 16.90 79.60 17-Oct 06:00 17.50 80.00 
23 Wilma TS 16.30 79.70 17-Oct 12:00 16.25 80.00 
23 Wilma TS 16.00 79.80 17-Oct 18:00 16.25 80.00 
24 Alpha Disturbance 15.80 67.50 22-Oct 06:00 16.25 67.50 
24 Alpha TD 15.80 67.50 22-Oct 12:00 16.25 67.50 
24 Alpha TCG 16.50 68.50 22-Oct 18:00 16.25 68.75 
24 Alpha TS 17.30 69.60 23-Oct 00:00 17.50 70.00 
24 Alpha TS 17.80 70.50 23-Oct 06:00 17.50 70.00 
25 Beta TD 10.40 80.90 26-Oct 18:00 10.00 81.25 
25 Beta TD 10.70 81.10 27-Oct 00:00 11.25 81.25 
25 Beta TCG 11.00 81.30 27-Oct 06:00 11.25 81.25 
25 Beta TS 11.30 81.30 27-Oct 12:00 11.25 81.25 
25 Beta TS 11.60 81.30 27-Oct 18:00 11.25 81.25 
26 Gamma (1) TD 14.10 64.20 14-Nov 18:00 13.75 63.75 
26 Gamma (1) TD 14.20 65.00 15-Nov 00:00 13.75 65.00 
26 Gamma (1) TCG 14.30 66.00 15-Nov 06:00 13.75 66.25 
26 Gamma (1) TS 14.40 67.10 15-Nov 12:00 15.00 67.50 
26 Gamma (1) TD 14.70 68.40 15-Nov 18:00 15.00 68.75 
27 Gamma (2) Disturbance 15.70 84.80 18-Nov 06:00 16.25 85.00 
27 Gamma (2) Disturbance 15.50 85.50 18-Nov 12:00 15.00 85.00 
27 Gamma (2) TCG 15.70 85.60 18-Nov 18:00 16.25 85.00 
27 Gamma (2) TS 16.00 85.60 19-Nov 00:00 16.25 85.00 
27 Gamma (2) TS 16.10 85.60 19-Nov 06:00 16.25 85.00 
28 Delta Extratropical 31.40 39.90 22-Nov 06:00 31.25 40.00 
28 Delta Extratropical 31.20 39.80 22-Nov 12:00 31.25 40.00 
28 Delta TCG 30.70 40.50 22-Nov 18:00 31.25 40.00 
28 Delta SS 29.90 40.90 23-Nov 00:00 30.00 41.25 
28 Delta SS 28.80 41.30 23-Nov 06:00 28.75 41.25 
(table cont’d.) 
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TCG Name Classification Lat °N Long °W Date 
2005 Time Lat °N 

(NN) 
Long °W 

(NN) 
29 Epsilon Disturbance 31.50 47.00 28-Nov 18:00 31.25 47.50 
29 Epsilon Disturbance 31.50 48.00 29-Nov 00:00 31.25 47.50 
29 Epsilon TCG 31.50 49.20 29-Nov 06:00 31.25 48.75 
29 Epsilon TS 31.60 50.00 29-Nov 12:00 31.25 50.00 
29 Epsilon TS 31.40 50.80 29-Nov 18:00 31.25 51.25 
30 Zeta Disturbance 23.90 35.60 29-Dec 18:00 23.75 35.00 
30 Zeta TD 23.90 35.60 30-Dec 00:00 23.75 35.00 
30 Zeta TCG 24.20 36.10 30-Dec 06:00 23.75 36.25 
30 Zeta TS 24.70 36.60 30-Dec 12:00 25.00 36.25 
30 Zeta TS 25.20 37.00 30-Dec 18:00 25.00 37.50 
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Figure A.1. Same as Figure 4.32 but for all levels included in study. 

0.37%  0.00% 0.09% 0.27% 0.00% 

1.51% 1.51% 1.23% 1.19% 1.64% 

3.61% 4.70% 4.29% 4.52% 4.29% 

4.38% 6.26% 6.44% 5.71% 6.21% 

3.70% 4.20% 4.02% 3.70% 3.79% 

3.01% 1.96% 2.51% 2.33% 1.83% 

2.19% 0.64% 1.10% 1.51% 1.28% 

1.37% 0.41% 0.14% 0.32% 0.37% 

0.78% 0.32% 0.14% 0.05% 0.14% 
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